
Patrizio Angelini
Reinhard von Hanxleden (Eds.)

LN
CS

 1
37

64

Graph Drawing 
and Network Visualization
30th International Symposium, GD 2022 
Tokyo, Japan, September 13–16, 2022 
Revised Selected Papers



Lecture Notes in Computer Science 13764

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558


Patrizio Angelini • Reinhard von Hanxleden (Eds.)

Graph Drawing
and Network Visualization
30th International Symposium, GD 2022
Tokyo, Japan, September 13–16, 2022
Revised Selected Papers

123



Editors
Patrizio Angelini
John Cabot University
Rome, Italy

Reinhard von Hanxleden
Kiel University
Kiel, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-22202-3 ISBN 978-3-031-22203-0 (eBook)
https://doi.org/10.1007/978-3-031-22203-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7602-1524
https://orcid.org/0000-0001-5691-1215
https://doi.org/10.1007/978-3-031-22203-0


Preface

This volume contains the papers presented at GD 2022, the 30th International Sym-
posium on Graph Drawing and Network Visualization, held during September 13–16,
2022 in Tokyo, Japan. Graph drawing is concerned with the geometric representation
of graphs and constitutes the algorithmic core of network visualization. Graph drawing
and network visualization are motivated by applications where it is crucial to visually
analyze and interact with relational datasets. Information about the conference series
and past symposia is maintained at http://www.graphdrawing.org.

As with GD 2020 and GD 2021, this 2022 conference was held under extraordinary
circumstances. After the GD 2020 conference, which sadly had to be held wholly
online due to the COVID-19 pandemic, and GD 2021, which took place as a hybrid
conference at Universität Tübingen, we had another hybrid conference at the Tokyo
Institute of Technology. The credit for this remarkable achievement in such uncertain
times goes wholly to the local organizers.

A total of 29 participants from ten different countries attended the conference in
person, with a further 115 registered participants from 17 countries online.

With regards to the program itself, regular papers could be submitted to one of two
distinct tracks: Track 1 for papers on combinatorial and algorithmic aspects of graph
drawing and Track 2 for papers on experimental, applied, and network visualization
aspects. Short papers were given a separate category, which welcomed both theoretical
and applied contributions. An additional track was devoted to poster submissions. All
the tracks were handled by a single Program Committee. As committed to during the
GD 2021 business meeting, particular attention was given to the design of Track 2.
Broadly speaking, Track 2 should serve as platform that links the theory with the
practice of graph drawing, and is seen as vital component for the overall relevance and
further development of the community. Aiming for that goal prompted fairly deep
discussions involving the current and former Program Chairs and the Steering Com-
mittee and resulted in a slightly revised track description in the Call for Papers (CfP).
As in previous editions of GD, the papers in the different tracks did not compete with
each other, but all Program Committee members were invited to review papers from
either track.

In response to the CfP, the Program Committee received a total of 70 submissions,
consisting of 65 papers (32 in Track 1, 16 in Track 2, and 17 in the short paper
category) and five posters. As a novelty for GD, the review process switched from a
single-blind to a “lightweight double-blind” process, where authors were asked to not
disclose their identities but were free to disseminate draft versions of the paper prior to
the conference and to give talks on the topic as they normally would.

More than 210 reviews were provided, about a third having been contributed by
external sub-reviewers. After extensive electronic discussions by the Program Com-
mittee via EasyChair, interspersed with virtual meetings of the Program Chairs pro-
ducing incremental accept/reject proposals, 25 long papers, seven short papers, and five
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posters were selected for inclusion in the scientific program of GD 2022. This resulted
in an overall paper acceptance rate (not considering posters) of 49% (53% in Track 1,
50% in Track 2, and 41% in the short paper category). As is common in GD, some hard
choices had to be made, in particular during the final acceptance/rejection round, where
several papers that clearly had merit still did not make it. However, the number of
submitted high-quality papers speaks for the community, and we were also pleased that
Track 2 ended up well-represented.

In total, 20 of the 34 oral presentations (including two invited talks) were delivered
on-site; the remaining 14 were delivered remotely using Zoom. Two posters were
displayed on-site, all posters were also presented in Zoom breakout rooms.

Authors published an electronic version of their accepted papers on the arXiv e-print
repository; a conference index with links to these contributions was made available
before the conference.

There were two invited lectures at GD 2022. Ulrik Brandes from ETH Zürich
(Switzerland) discussed “Positions in Social and Other Spaces”, while Kazuo Misue
from the University of Tsukuba (Japan) talked about “Graph Drawing for Thinking
Support.” Abstracts of both invited lectures are included in these proceedings.

The conference gave out best paper awards in Track 1 and Track 2, as well as a best
presentation award and a best poster award. The award for the best paper in Track 1
was given to “Unavoidable patterns in complete simple topological graphs” by Andrew
Suk and Ji Zeng, and the award for the best paper in Track 2 was assigned to
“FORBID: Fast Overlap Removal By Stochastic Gradient Descent for Graph Drawing”
by Loann Giovannangeli, Frédéric Lalanne, Romain Giot, and Romain Bourqui. Based
on a majority vote of conference participants, the best presentation award was given to
Philipp Kindermann for his presentation of the paper “Morphing Rectangular Duals.”
There was a tie for the best poster award, which was given to “The Witness Unit Disk
Representability Problem” by Giuseppe Liotta, Maarten Löffler, Fabrizio Montecchi-
ani, Alessandra Tappini, and Soeren Terziadis and to “Edge Bundling by
Density-based Pathfinding Approach” by Ryosuke Saga, Tomoki Yoshikawa, and
Tomoharu Nakashima. Many thanks to Springer whose sponsorship funded the prize
money for these awards.

A PhD School was held on the two days prior to the conference. Three half-day
sessions led by six invited lecturers covered both theoretical and practical topics in
graph drawing and network visualization.

As is traditional, the 30th Annual Graph Drawing Contest was held during the
conference. The contest was divided into two parts, creative topics and the live chal-
lenge. The creative topics task featured two graphs, an Opera Network (the data rep-
resented a collection of opera performances that took place across Europe between
1775 and 1833) and an Aesthetic Experience Network (the data set represented eight
networks that model an aesthetic experience of the viewers when observing artworks).
The live challenge focused on minimizing the planar polyline edge-length ratio on a
fixed grid, with planar undirected inputs. There were two categories: manual and
automatic. We thank the Contest Committee, chaired by Philipp Kindermann, for
preparing interesting and challenging contest problems. A report about the contest is
included in these proceedings.
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Many people and organizations contributed to the success of GD 2022. We would
like to thank all members of the Program Committee and the external reviewers for
carefully reviewing and discussing the submitted papers and posters; this was crucial
for putting together a strong and interesting program. Thanks to all authors who chose
GD 2022 as the publication venue for their research.

We are grateful for the support of our “Gold” sponsor Tom Sawyer Software, our
“Silver” sponsor yWorks, and our “Bronze” sponsor Springer.

Our special thanks go to all the members of the organizing committee based at
Ochanomizu University, Tokyo Institute of Technology, Hokkaido Information
University, St. Polten University of Applied Sciences, IBM Research, Japan, and the
National Institute of Advanced Industrial Science and Technology (AIST), Japan.

The 31st International Symposium on Graph Drawing and Network Visualization
(GD 2023) will take place during September 20–22, 2023, in Palermo, Italy. Michael
Bekos and Markus Chimani will co-chair the Program Committee, and Emilio Di
Giacomo, Fabrizio Montecchiani, and Alessandra Tappini will co-chair the Organizing
Committee.

October 2022 Patrizio Angelini
Reinhard von Hanxleden
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Takao Nishizeki, 1947–2022

Peter Eades1, Seok-Hee Hong1, Shin-ichi Nakano2,
and Md. Saidur Rahman3

1 The University of Sydney, Australia
2 Gunma University, Japan

3 Bangladesh University of Engineering and Technology (BUET), Bangladesh

It was with great sadness that we received the news that Takao Nishizeki passed away
on January 30, 2022. Takao was a great contributor to Graph Drawing.

Takao Nishizeki studied at Tohoku University, and spent most of his career there,
including some years as the Dean of Graduate School of Information Sciences. He
retired in 2010, but continued research and teaching at Kwansei Gakuin University.

The Graph Drawing community knows Takao’s books on planar graphs and planar
graph drawing. His 1985 paper “Drawing plane graphs nicely” introduced us to the
“CYN” graph drawing algorithm; this was the first method to construct a planar
straight-line drawing of a graph in linear time. Since the resulting drawing has convex
faces, the CYN algorithm forms the basis for many subsequent planar graph drawing
algorithms, such as symmetric drawings and star-shaped drawings, as well as beyond
planar graphs, such as straight-line drawings of 1-planar graphs.

Takao’s main focus was for fundamental Graph Theory and Algorithms, and he
produced many ground-breaking theorems and algorithms: in arboricity, planarity,
matchings, Hamiltonicity, and colouring. Nevertheless, his work was broad; for
example, his paper on Secret Sharing is very highly cited.

He served as an editor and Program Committee member for many prestigious
journals and conferences, such as Algorithmica, Journal of Combinatorial Optimization
and JGAA, and was a PC chair of the 15th International Symposium on Graph Drawing
2007, held in Australia.

In particular, the ISAAC (International Symposium on Algorithms and Computa-
tion) conference was founded by Takao Nishizeki, and he chaired the Advisory
committee for many years. It is no exaggeration to say that the basis for a collaborative
and supportive Algorithms community in Asia comes from Takao: his calm manner,
his generous yet efficient way of steering ISAAC, as well as love of beer and karaoke.
He ensured that ISAAC became the most internationally recognised Algorithms con-
ference that was based in Asia. He was also the key motivating person behind the
establishment of WALCOM conference.

We remember Takao fondly as a mentor and as a colleague.

Peter Eades, Seok-Hee Hong, Shin-ichi Nakano, and Md. Saidur Rahman on behalf
of the Graph Drawing community, September 2022.
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Positions in Social and Other Spaces

Ulrik Brandes

ETH Zürich, Zürich, Switzerland
ubrandes@ethz.ch

Social networks are a traditional source of inspiration for graph drawing methods, and
their analysis continues to motivate a variety of layout constraints and objectives.

In recent years, my research has increasingly been focused on methodological
questions related to social networks and other applied areas of network science. This
has led to a framework, dubbed the positional approach, which facilitates adaptive and
theory-informed empirical network data science. It turns out, however, that it is also
another rich source of algorithmic and visualization problems. The present contribution
is therefore forward-looking, using results from the past few years to point out possible
directions for future research in three parts.

In the first part, I review some defining aspects of the positional approach to
network science with an eye towards challenges for graph drawing and network
visualization. These are centered largely on combinatorial problems involving pre-
orders and graph classes.

A particularly strong link between influence processes on social networks and
barycentric graph drawing is discussed in the second part. Using concepts from above,
this extends naturally to calls for novel scaling methods and research on graph
embeddings.

The final part is about collective behavior in the context of team sports. More
precisely, I will outline problems arising from our most recent efforts of performance
analysis in association football (soccer) using proximity graphs.
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Graph Drawing for Thinking Support

Kazuo Misue

University of Tsukuba, Tsukuba, Japan
misue@cs.tsukuba.ac.jp

In human intellectual activities, organizing the objects of thought is an important task.
When the object of thought is large or complex, it is difficult for many people to
organize it in their minds. In such cases, it is effective to take these objects out of our
minds and observe them externally. When we externalize our thoughts in this way, the
form of representation of the objects also influences the effectiveness and efficiency of
our thinking process. When we organize fragments of information, we often establish a
relationship between two fragments and group several fragments together. In the case
of externalization, these relationships and groups are represented graphically, that is,
the words and figures representing the fragments are connected by line segments or
surrounded by closed lines. Some of the so-called “thinking support techniques” sys-
tematize such diagramming methods. The KJ method is one such technique.

In the diagram used in the KJ method, if each fragment of information is repre-
sented by a node, links connecting two nodes and closed curves surrounding the nodes
are used. Moreover, in the KJ method, we can organize objects of thought by trans-
forming a compound diagram that comprises a node-link diagram and an Euler dia-
gram. The original KJ method was designed to be performed entirely by hand using
analog tools such as cards, pens, and cords, and it was not intended for the use with
computers. This, however, is also a factor that discourages the active use of the KJ
method, although its usefulness as an ideation technique has been recognized. For
example, despite the effectiveness of repeated drawing of diagrams on the same topic,
we often do so only once because repeating the process requires time and effort.

The transformation operation of a compound diagram can be viewed as the
transformation operation of a compound graph; to obtain a visual representation of such
a compound graph, automatic drawing techniques are required. If we can separate the
transforming operations of a compound diagram from the thinking process and if the
transforming operations can be supported by a computer, the hurdles associated with
the use of such an ideation technique will be reduced, and the efficiency of the ideation
process could increase. Eventually, this increased efficiency will lead to an improve-
ment in the quality of the ideation process and its products.

This talk introduces the research and development that has been carried out with
this motivation.

https://orcid.org/0000-0003-0216-8969
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Properties of Drawings of Complete
Graphs



Unavoidable Patterns in Complete Simple
Topological Graphs

Andrew Suk and Ji Zeng(B)

Department of Mathematics, University of California at San Diego,
La Jolla, CA 92093, USA
{asuk,jzeng}@ucsd.edu

Abstract. We show that every complete n-vertex simple topological
graph contains a topological subgraph on at least (logn)1/4−o(1) vertices
that is weakly isomorphic to the complete convex geometric graph or
the complete twisted graph. This is the first improvement on the bound
Ω(log1/8 n) obtained in 2003 by Pach, Solymosi, and Tóth. We also show
that every complete n-vertex simple topological graph contains a plane
path of length at least (logn)1−o(1).

Keywords: Topological graph · Unavoidable patterns · Plane path

1 Introduction

A topological graph is a graph drawn in the plane or, equivalently, on the sphere,
such that its vertices are represented by points and its edges are represented by
non-self-intersecting arcs connecting the corresponding points. The arcs are not
allowed to pass through vertices different from their endpoints, and if two edges
share an interior point, then they must properly cross at that point in common.
A topological graph is simple if every pair of its edges intersect at most once,
either at a common endpoint or at a proper crossing point. If the edges are drawn
as straight-line segments, then the graph is said to be geometric. If the vertices
of a geometric graph are in convex position, then it is called convex.

Simple topological graphs have been extensively studied [11,13,15,17,21],
and are sometimes referred to as good drawings [1,2], or simply as topological
graphs [14]. In this paper, we are interested in finding large unavoidable patterns
in complete simple topological graphs. Two simple topological graphs G and H
are isomorphic if there is a homeomorphism of the sphere that transforms G
to H. We say that G and H are weakly isomorphic if there is an incidence
preserving bijection between G and H such that two edges of G cross if and only
if the corresponding edges in H cross as well. Clearly, any two complete convex
geometric graphs on m vertices are weakly isomorphic. Hence, let Cm denote
any complete convex geometric graph with m vertices.

By the famous Erdős-Szekeres convex polygon theorem [6] (see also [20]),
every complete n-vertex geometric graph contains a geometric subgraph on m =
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Ω(log n) vertices that is weakly isomorphic to Cm. (Note that no three vertices in
a complete geometric graph are collinear.) Interestingly, the same is not true for
simple topological graphs. The complete twisted graph Tm is a complete simple
topological graph on m vertices with the property that there is an ordering on
the vertex set V (Tm) = {v1, v2, . . . , vm} such that edges vivj and vkv� cross if
and only if i < k < � < j or k < i < j < �. See Fig. 1. It was first observed by
Harborth and Mengerson [10] that Tm does not contain a topological subgraph
that is weakly isomorphic to C5. However, in 2003, Pach, Solymosi, and Tóth
[14] showed that it is impossible to avoid both Cm and Tm in a sufficiently large
complete simple topological graph.

Fig. 1. C5 and T5.

Theorem 1 (Pach-Solymosi-Tóth). Every complete n-vertex simple topolog-
ical graph contains a topological subgraph on m ≥ Ω(log1/8 n) vertices that is
weakly isomorphic to Cm or Tm.

The main result of this paper is the following improvement.

Theorem 2. Every complete n-vertex simple topological graph has a topological
subgraph on m ≥ (log n)1/4−o(1) vertices that is weakly isomorphic to Cm or Tm.

In the other direction, let us consider the following construction. Let V =
{1, 2, . . . , n} be n vertices placed on the x-axis, and for each pair {i, j} ∈ V ,
draw a half-circle connecting i and j, with this half-circle either in the upper or
lower half of the plane uniformly randomly. By applying the standard probabilis-
tic method [3], one can show that there is a complete n-vertex simple topological
graph that does not contain a topological subgraph on m = �8 log n� vertices that
is weakly isomorphic to Cm or Tm. Another construction, observed by Scheucher
[18], is to take n points in the plane with no 2�log n� members in convex position,
and then draw straight-line segments between all pairs of points.

It is not hard to see that both Cm and Tm contain a plane (i.e. crossing-free)
subgraph isomorphic to any given tree T with at most m vertices (see, e.g., [9]).
Thus, as a corollary of Theorem 2, we obtain the following.

Corollary 1. Every complete n-vertex simple topological graph contains a plane
subgraph isomorphic to any given tree T with at most (log n)1/4−o(1) vertices.
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In the case when T is a path, we improve this bound with the following result,
which is also recently obtained in [2] independently.

Theorem 3. Every complete n-vertex simple topological graph contains a plane
path of length at least (log n)1−o(1).

In order to avoid confusion between topological and combinatorial edges,
we write uv when referring to a topological edge in the plane, and write {u, v}
when referring to an edge (pair) in a graph. Likewise, we write {u1, . . . , uk} when
referring to an edge (k-tuple) in a k-uniform hypergraph. We systemically omit
floors and ceilings whenever they are not crucial for the sake of clarity in our
presentation. All logarithms are in base 2.

2 Monotone Paths and Online Ramsey Numbers

Before we prove Theorem 2, let us recall the following lemmas. Let H be a k-
uniform hypergraph with vertex set [n] = {1, 2, . . . , n}. We say that H contains
a monotone k-path of length m if there are m vertices v1 < v2 < · · · < vm such
that {vi, vi+1, . . . , vi+k−1} ∈ E(H) for 1 ≤ i ≤ m − k + 1. We say that the
edge set E(H) is transitive if for any v1 < v2 < · · · < vk+1 in [n], the condi-
tion {v1, v2, . . . , vk}, {v2, v3, . . . , vk+1} ∈ E(H) implies all k-element subsets of
{v1, . . . , vk+1} are in E(H). We will need the following lemma due to Fox, Pach,
Sudakov, and Suk.

Lemma 1 ([7]). Let n > k, and let H be a k-uniform hypergraph with vertex set
[n], which contains a monotone path of length n, that is, {i, i+1, . . . , i+k−1} ∈
E(H) for all 1 ≤ i ≤ n − k + 1. If E(H) is transitive, then H is the complete
k-uniform hypergraph on [n].

Next, we need a lemma from Online Ramsey Theory. The vertex online Ram-
sey game is a game played by two players, builder and painter. Let t ≥ 1 and
suppose vertices v1, v2, . . . , vt−1 are present. At the beginning of stage t, a new
vertex vt is added. Then for each vi ∈ {v1, . . . , vt−1}, builder decides (in any
order) whether to create the edge {vi, vt}. If builder creates the edge, then
painter has to immediately color it red or blue. When builder decides not to
create any more edges, stage t ends and stage t + 1 begins by adding a new
vertex. Moreover, builder must create at least one edge at every stage except for
the first one. The vertex online Ramsey number r(m) is the minimum number
of edges builder has to create to guarantee a monochromatic monotone path
of length m in a vertex online Ramsey game. Clearly, we have r(m) ≤ O(m4),
which is obtained by having builder create all possible edges at each stage and
applying Dilworth’s theorem [5] on the m2 vertices. Fox, Pach, Sudakov, and
Suk proved the following.

Lemma 2 ([7]). We have r(m) = (1 + o(1))m2 log2 m.
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3 Convex Geometric Graph Versus Twisted Graph

In this section, we prove the following theorem, from which Theorem 2 quickly
follows.

Theorem 4. Let m1,m2, n be positive integers such that

9(m1m2)2 log(m1) log(m2) < log n.

Then every complete n-vertex simple topological graph contains a topological sub-
graph that is weakly isomorphic to Cm1 or Tm2 .

Proof. Let G = (V,E) be a complete n-vertex simple topological graph. Notice
that the edges of G divide the plane into several cells (regions), one of which is
unbounded. We can assume that there is a vertex v0 ∈ V such that v0 lies on
the boundary of the unbounded cell. Indeed, otherwise we can project G onto
a sphere, then choose an arbitrary vertex v0 and then project G back to the
plane such that v0 lies on the boundary of the unbounded cell, moreover, the
new drawing is isomorphic to the original one as topological graphs.

Consider the topological edges emanating out from v0, and label their end-
points v1, . . . , vn−1 in clockwise order. For convenience, we write vi ≺ vj if i < j.
Given subsets U,W ⊂ {v1, . . . , vn−1}, we write U ≺ W if u ≺ w for all u ∈ U and
w ∈ W . Following the notation used in [14], we color the triples of {v1, . . . , vn−1}
as follows. For vi ≺ vj ≺ vk, let χ(vi, vj , vk) = xyz, where x, y, z ∈ {0, 1} such
that

1. setting x = 1 if edges vjvk and v0vi cross, and let x = 0 otherwise;
2. setting y = 1 if edges vivk and v0vj cross, and let y = 0 otherwise;
3. setting z = 1 if edges vivj and v0vk cross, and let z = 0 otherwise.

Pach, Solymosi, and Tóth observed the following.

Observation 1 ([14]). The only colors that appear with respect to χ are 000,
001, 010, and 100.

vi vj vk vi vj vk vi vj vkvi vj vk

v0 v0v0v0

Fig. 2. Configurations for 000, 010, 001, 100 respectively.

See Fig. 2 for an illustration. We now make another observation.
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Lemma 3. Colors 001 and 100 are transitive. That is, for vi ≺ vj ≺ vk ≺ v�,

1. if χ(vi, vj , vk) = χ(vj , vk, v�) = 001, then χ(vi, vj , v�) = χ(vi, vk, v�) = 001;
2. if χ(vi, vj , vk) = χ(vj , vk, v�) = 100, then χ(vi, vj , v�) = χ(vi, vk, v�) = 100.

Proof. Suppose χ(vi, vj , vk) = χ(vj , vk, v�) = 001. Since edges v0v� and vjvk

cross, vertex v� must lie in the closed region bounded by edges vjvk, vivj , and
v0vk. See Fig. 3. Hence, edge v0v� crosses both vivj and vivk. Therefore, we have
χ(vi, vj , v�) = χ(vi, vk, v�) = 001 as wanted. If χ(vi, vj , vk) = χ(vj , vk, v�) = 100,
a similar argument shows that we must have χ(vi, vj , v�) = χ(vi, vk, v�) = 100.

	


iv

jv

vk

v0

vl

Fig. 3. The closed region bounded by edges vjvk, vivj , and v0vk in Lemma 3.

Based on the coloring χ, we define a coloring φ of the pairs of
{v1, v2, . . . , vn−1} as follows. For vi ≺ vj , let φ(vi, vj) = (a, b) where a is the
length of the longest monotone 3-path ending at {vi, vj} in color 100, and b is
the length of the longest monotone 3-path ending at {vi, vj} in color 001. We
can assume that a, b < m2. Otherwise, by Lemmas 3 and 1, we would have a
subset U ⊂ V of size m2 whose triples are all of the same color, 100 or 001. And
it is not hard to argue by induction that such a U corresponds to a topological
subgraph that is weakly isomorphic to Tm2 as wanted.

Before we continue, let us give a rough outline of the rest of the proof. In
what follows, we will construct disjoint vertex subsets V a,b ⊂ {v1, . . . , vn−1},
where 1 < a, b < m2, such that φ colors every pair in V a,b with color (a, b). For
each V a,b, we will play the vertex online Ramsey game by letting the builder
create an edge set Ea,b and designing a painter’s strategy, which gives rise to a
coloring ψ on Ea,b. We then apply Lemma 2 to show that if n is sufficiently large,
some vertex set V a,b will contain a monochromatic monotone 2-path of length
m1 with respect to ψ. Finally, we will show that this monochromatic monotone
2-path will correspond to a topological subgraph that is weakly isomorphic to
Cm1 . The detailed argument follows.
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For integers t ≥ 0 and 1 < a, b < m2, we construct a vertex subset V a,b
t ⊂

{v1, . . . , vn−1}, an edge set Ea,b
t of pairs in V a,b

t , and a subset St ⊂ {v1, . . . , vn−1}
such that the following holds.

1. We have
∑

1<a,b<m2

|V a,b
t | = t.

2. For all 1 < a, b < m2, we have V a,b
t ≺ St.

3. For u1 ∈ V a,b
t , we have φ(u1, u2) = (a, b) for every u2 ∈ V a,b

t ∪St with u1 ≺ u2.
4. For each edge {u1, u2} ∈ Ea,b

t , where u1 ≺ u2, we have χ(u1, u2, u3) =
χ(u1, u2, u4) for all u3, u4 ∈ V a,b

t such that u1 ≺ u2 ≺ u3 ≺ u4.

We start by setting V a,b
0 = ∅ for all 1 < a, b < m2, and S0 = {v1, . . . , vn−1}.

After stage t, we have V a,b
t , Ea,b

t , for 1 < a, b < m2, and St as described above.
At the beginning of stage t + 1, let wt+1 be the smallest element in St with

respect to ≺. By the pigeonhole principle, there exists integers 1 < α, β < m2 and
a subset St,0 ⊂ St \ {wt+1} of size at least (|St| − 1)/m2

2, such that φ(wt+1, u) =
(α, β) for all u ∈ St,0. Then we set V α,β

t+1 := V α,β
t ∪ {wt+1}. For all 1 < a, b < m2

with (a, b) = (α, β), we set V a,b
t+1 := V a,b

t and Ea,b
t+1 := Ea,b

t .

Claim 1. For all u ∈ V α,β
t and v ∈ St,0, we have χ(u,wt+1, v) ∈ {000, 010}.

Proof. For the sake of contradiction, suppose χ(u,wt+1, v) = 100, where u ∈
V α,β

t and v ∈ St,0. Since φ(u,wt+1) = (α, β), the longest monotone 3-path in
color 100 ending at {u,wt+1} has length α. Hence, the longest monotone 3-path
in color 100 ending at {wt+1, v} has length at least α + 1. This contradicts the
fact that φ(wt+1, v) = (α, β). A similar argument follows if χ(u,wt+1, v) = 001.

	

Now that we have constructed V α,β

t+1 by adding wt+1 to V α,β
t , we play the

vertex online Ramsey game so that builder chooses and creates edges of the form
{u,wt+1}, where u ∈ V α,β

t , according to his strategy. After each edge {u,wt+1}
is created, painter immediately colors it ψ(u,wt+1) ∈ {000, 010} as follows. In
painter’s strategy, after the j-th edge {uj , wt+1} is created and colored, a set
St,j ⊂ St,0 will be constructed such that all triples {uj , wt+1, v} with v ∈ St,j

are colored by χ with the same color in {000, 010}. After the (j + 1)-th edge
{uj+1, wt+1} is created, painter looks at all triples of the form {uj+1, wt+1, v}
with v ∈ St,j . Since χ(uj+1, wt+1, v) ∈ {000, 010} by Claim 1, the pigeonhole
principle implies that there exists a subset St,j+1 ⊂ St,j with size at least |St,j |/2
such that all triples {uj+1, wt+1, v} with v ∈ St,j+1 are colored by χ with the
same color xyz ∈ {000, 010}. Then painter sets ψ(uj+1, wt+1) = xyz.

If builder decides to stop creating edges from wt+1 to V α,β
t after j edges

are created and colored, the stage ends and we set St+1 = St,j , and we let
Eα,β

t+1 be the union of Eα,β
t and all edges built during this stage. Let et+1 denote

the total number of edges builder creates in stage t + 1. Recall that et+1 ≥ 1
unless V α,β

t = ∅. As long as |St+1| > 0, we continue this construction process by
starting the next stage. Clearly, V a,b

t+1, Ea,b
t+1, for all 1 < a, b < m2, and St+1 have

the four properties described above. We now make the following claim.
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Claim 2. For t ≥ 1, we have

|St| ≥ n − 1
m2t

2 · 2∑t
i=2 ei

−
t∑

i=2

1

m
2(t+1−i)
2 · 2

∑t
j=i ej

.

Proof. We proceed by induction on t. For the base case t = 1, there’s no edge for
the builder to build in the first stage, so |S1| = |S0,0| ≥ (n − 1)/m2

2 as desired.
For the inductive step, assume the statement holds for t ≥ 1. When we start
stage t + 1 and introduce vertex wt+1, the set St shrinks to St,0 whose size is
guaranteed to be at least (|St| − 1)/m2

2, and each time builder creates an edge
from wt+1 to V α,β

t , our set decreases by a factor of two. Since builder creates
et+1 edges during stage t + 1, we have

|St+1| ≥ |St| − 1
m2

22et+1
≥ n − 1

m
2(t+1)
2 · 2∑t+1

i=2 ei

−
t∑

i=2

1

m
2((t+1)+1−i)
2 · 2

∑t+1
j=i ej

− 1
m2

22et+1

=
n − 1

m
2(t+1)
2 · 2∑t+1

i=2 ei

−
t+1∑

i=2

1

m
2((t+1)+1−i)
2 · 2

∑t+1
j=i ej

,

which is what we want. 	

After t stages, builder has created a total of

∑t
i=1 ei edges, such that each

edge has color 000 or 010 with respect to ψ. If there is no monochromatic 2-path
of length m1 with respect to ψ on any (V a,b

t , Ea,b
t ), this implies that

t∑

i=1

ei < m2
2r(m1) ≤ 2(m1m2)2 logm1.

Also, since ei ≥ 1 for all but m2
2 many indices 1 ≤ i ≤ t, we have

t ≤ m2
2 +

t∑

i=1

ei < 3(m1m2)2 logm1.

Since we assumed

n > 29(m1m2)
2 log(m1) log(m2),

we have

|St| ≥ n − 1
m2t

2 · 2∑t
i=2 ei

−
t∑

i=2

1

m
2(t+1−i)
2 · 2

∑t
j=i ej

≥ n − 1
28(m1m2)2 log(m1) log(m2)

−
t∑

i=2

1
2t−i+1

> 1.
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Hence, we can continue to the next stage and introduce vertex wt+1. There-
fore, when this process stops, say at stage s, we must have a monochromatic
monotone 2-path of length m1 with respect to ψ on some (V a,b

s , Ea,b
s ).

Now let W ∗ = {w∗
1 , . . . , w

∗
m1

}, where w∗
1 ≺ · · · ≺ w∗

m1
, be the vertex set that

induces a monochromatic monotone 2-path of length m1 with respect to ψ on
(V a,b

s , Ea,b
s ). Since φ colors every pair in W ∗ with the color (a, b), by following

the proof of Claim 1, we have χ(w∗
i , w∗

j , w∗
k) ∈ {000, 010} for every i < j < k.

Hence, the following argument due to Pach, Solymosi, and Tóth [14] shows that
W ∗ induces a topological subgraph that is weakly isomorphic to Cm1 . For the
sake of completeness, we include the proof.

Claim 3. Let W ∗ = {w∗
1 , . . . , w

∗
m1

} be as described above. Then W ∗ induces a
topological subgraph that is weakly isomorphic to Cm1 .

Proof. Suppose ψ(w∗
i , w∗

i+1) = 000 for all i. It suffices to show that every triple
in W ∗ has color 000 with respect to χ. For the sake of contradiction, suppose
we have w∗

i ≺ w∗
j ≺ w∗

k such that χ(w∗
i , w∗

j , w∗
k) = 010, and let us assume that

j − i is minimized among all such examples. Since {w∗
i , w∗

i+1} ∈ Ea,b
s , we have

χ(w∗
i , w∗

i+1, w
∗
k) = ψ(w∗

i , w∗
i+1) = 000. This implies that j > i + 1 and the edge

w∗
i+1w

∗
k crosses v0w

∗
j (see Fig. 4), which contradicts the minimality condition. A

similar argument follows if ψ(w∗
i , w∗

i+1) = 010 for all i. 	

This completes the proof of Theorem 4 	


w*j

iw* w*k

w*i+1

v0

Fig. 4. A figure illustrating Claim 3.

4 Plane Path

In this section, we prove Theorem 3. We will need the following lemma, which
was observed by Fulek and Ruiz-Vargas in [8].
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Lemma 4. If a complete simple topological graph G contains a topological sub-
graph that is isomorphic to a plane K2,m2 , then G contains a plane path of length
Ω(m).

Let us briefly explain how to establish this lemma, as it is not explicitly stated
in [8]. In [22], Tóth proved that every n-vertex geometric graph with more than
29k2n edges contains k pairwise disjoint edges. His proof easily generalizes to
simple topological graphs whose edges are drawn as x-monotone curves, and, in
fact, shows the existence of a plane path of length 2k.

Given a plane topological subgraph K2,m2 inside a complete simple topolog-
ical graph G, Fulek and Ruiz-Vargas [8] showed that there exists a topological
subgraph G′ ⊂ G, with m2 vertices and Ω(m4) edges, that is weakly-isomorphic
to an x-monotone simple topological graph G′′. Hence, we can conclude Lemma 4
by applying Tóth’s result stated above with k = Ω(m).

Proof (of Theorem 3). First, we keep the following notations from the proof of
Theorem 2. Let G = (V,E) be a complete n-vertex simple topological graph. We
can assume that there is a vertex v0 ∈ V such that v0 lies on the boundary of the
unbounded cell. We label the other vertices by v1, . . . , vn−1 such that the edges
v0vi, for 1 ≤ i < n, emanate out from v0 in clockwise order. We write vi ≺ vj if
i < j, and color every triple vi ≺ vj ≺ vk by χ(vi, vj , vk) ∈ {000, 010, 100, 001}.

For each vi, we arrange the vertices {vi+1, . . . , vn−1} into a sequence θ(vi) =
(vj1 , . . . , vjn−1−i

) such that the topological edges viv0, vivj1 , vivj2 , . . . , vivjn−1−i

emanate out from vi in counterclockwise order. See Fig. 5. We call a sequence of
vertices S = (vi1 , . . . , vik) increasing (or decreasing) if vi1 ≺ vi2 ≺ · · · ≺ vik (or
vi1 � vi2 � · · · � vik).

0v

1v 4v
5v

2v 3v

Fig. 5. An example with θ(v1) = (v4, v3, v2, v5).

Lemma 5. If there exists a vertex u such that θ(u) contains an increasing sub-
sequence (u1, . . . , um2), then the edges v0ui and uui, for all 1 ≤ i ≤ m2, form a
plane subgraph K2,m2 .
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Proof. It suffices to show v0ui and uuj do not cross each other for every 1 ≤ i, j ≤
k. When i = j, this follows from G being simple. When j > i, by the increasing
assumption, the edges uv0, uui, and uuj emanate out from u in counterclockwise
order. Observe that this condition forces uj to be outside the region Δv0uui

bounded by the topological edges v0u, uui, and uiv0. Then the Jordan arc uuj

starting at u, initially outside Δv0uui
, cannot enter Δv0uui

then leave again to
end at uj . In particular, uuj doesn’t cross v0ui. See Fig. 6 for an illustration. A
similar argument follows if j < i. 	


0v

ui
uj

u

Fig. 6. An increasing subsequence of θ(u) induce a plane K2,m2 .

We set m =
⌊

log n
2 log log n

⌋
and prove that G contains a plane path of length

Ω(m). We can assume m > 1, otherwise there’s nothing to prove. If some
sequence θ(vi) contains an increasing subsequence of length m2, then by Lem-
mas 5 and 4, we are done. Therefore, we assume that θ(vi) doesn’t contain an
increasing subsequence of length m2 for every i.

For integer t ≥ 1, we inductively construct subsets Ut, St ⊂ {v1, . . . , vn−1}
with Ut = {u1, . . . , ut}, where u1 ≺ · · · ≺ ut, and Ut ≺ St. Initially we set
U1 = {u1 := v1} and S1 = {v2, . . . , vn−1}. Suppose for some t, we have already
constructed Ut and St. If |St| ≤ m2, we stop this construction process, otherwise
we continue to construct Ut+1 and St+1 as follows: Let θ′ be the subsequence
of θ(ut) that contains exactly those vertices in St. Note that the length of θ′

equals to |St|. According to our assumption, the length of the longest increasing
subsequence in θ′ is less than m2. Hence, by Dilworth’s theorem [5], θ′ contains
a decreasing subsequence of length at least |St|/m2. Let S′

t+1 be the set of
vertices that appear in this decreasing subsequence of θ′. Next, we take ut+1 to
be the smallest element of S′

t+1 with respect to ≺ and let Ut+1 := Ut ∪ {ut+1}.
Consider the region Δv0utut+1 bounded by the topological edges v0ut, utut+1,
and ut+1v0. Each vertex in S′

t+1 \ {ut+1} is either inside or outside Δv0utut+1 .
So, by the pigeonhole principle, there exists a subset St+1 ⊂ S′

t+1 \ {ut+1} with
|St+1| ≥ |S′

t+1 \{ut+1}|/2 such that the whole set St+1 is either inside or outside
Δv0utut+1 . Clearly, we have Ut+1 ≺ St+1 and
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|St+1| ≥ |St|/m2 − 1
2

≥ |St|
(2m)2

.

Using the inequality above and the fact that |S1| = n−2, we can inductively
prove |St| ≥ n

(2m)2t . When t = m − 1, this gives us

|Sm−1| ≥ n

(2m)2(m−1)
>

n

(2m)log n/ log log n−2
> m2 · n

(log n)log n/ log log n
≥ m2.

Hence, the construction process ends at a certain t larger than m − 1, and we
will always construct Um = {u1, . . . , um}.

Now we show that uiui+1, for 1 ≤ i < m, form a plane path. Our argument
is based on the following two claims.

Claim 4. For any vertices ui ≺ ui+1 ≺ uj ≺ uk, we have uj and uk either both
inside or both outside the region Δv0uiui+1 .

Claim 4 is obviously guaranteed by the construction process of Um.

Claim 5. For any vertices ui ≺ uj ≺ uk, the topological edges v0ui and ujuk

do not cross each other.

Proof. Consider the region Δv0uiuj
bounded by the topological edges v0ui, uiuj ,

and ujv0, then uk is either inside or outside Δv0uiuj
. If uk is inside Δv0uiuj

, then
v0uk must cross uiuj . By Observation 1, we have χ(ui, uj , uk) = 001, which
implies v0ui and ujuk do not cross. See the third configuration in Fig. 2.

Suppose uk is outside Δv0uiuj
. By the construction process of Um, the edges

uiv0, uiuk and uiuj must emanate from ui in counterclockwise order, this implies
that uiuk crosses v0uj . Then, by Observation 1, χ(ui, uj , uk) = 010 and ujuk

doesn’t cross v0ui. See the second configuration in Fig. 2. 	


0v

ujui+1ui j+1u

0v

ujui+1ui j+1u

Fig. 7. For uiui+1 and ujuj+1 with i+1 < j to cross each other, either uj and uj+1 are
not both inside or both outside Δv0uiui+1 (left graph), or the topological edge ujuj+1

crosses one edge in {v0ui, v0ui+1} (right graph).

Finally, we argue that the edges uiui+1 and ujuj+1 do not cross for any i < j.
When j = i+1, this follows from G being simple. When j > i+1, by Claim 4, the
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vertices uj and uj+1 are either both inside or both outside the region Δv0uiui+1 .
So, the edge ujuj+1 crosses the boundary of Δv0uiui+1 an even number of times.
On the other hand, by Claim 5, ujuj+1 doesn’t cross v0ui or v0ui+1. So ujuj+1

doesn’t cross uiui+1. See Fig. 7 for an illustration. This concludes the proof of
Theorem 3. 	


5 Concluding Remarks

Answering a question of Pach and Tóth [15], Suk showed that every complete
n-vertex simple topological graph contains Ω(n1/3) pairwise disjoint edges [19]
(see also [8]). This bound was later improved to n1/2−o(1) by Ruiz-Vargas in [16].
Hence, for plane paths, we conjecture a similar bound should hold.

Conjecture 1. There is an absolute constant ε > 0, such that every complete
n-vertex simple topological graph contains a plane path of length nε.

Let h = h(n) be the smallest integer such that every complete n-vertex
simple topological graph contains an edge crossing at most h other edges. A
construction due to Valtr (see page 398 in [4]) shows that h(n) ≥ Ω(n3/2). In the
other direction, Kynčl and Valtr [12] used an asymmetric version of Theorem 1 to
show that h(n) = O(n2/ log1/4 n). By using Theorem 4 instead, their arguments
show that h(n) ≤ n2/(log n)1/2−o(1). We conjecture the following.

Conjecture 2. There is an absolute constant ε > 0 such that h(n) ≤ n2−ε.
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Abstract. For a simple drawing D of the complete graph Kn, two
(plane) subdrawings are compatible if their union is plane. Let TD be
the set of all plane spanning trees on D and F(TD) be the compatibility
graph that has a vertex for each element in TD and two vertices are adja-
cent if and only if the corresponding trees are compatible. We show, on
the one hand, that F(TD) is connected if D is a cylindrical, monotone,
or strongly c-monotone drawing. On the other hand, we show that the
subgraph of F(TD) induced by stars, double stars, and twin stars is also
connected. In all cases the diameter of the corresponding compatibility
graph is at most linear in n.

Keywords: Compatibility graph · Plane spanning tree · Simple
drawing

1 Introduction

A drawing D of a graph G is a representation of G in the Euclidean plane
such that the vertices of G are distinct points and the edges are Jordan arcs
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Fig. 1. A simple drawing of the complete bipartite graph with a tree (drawn in red,
bold edges) that is an isolated vertex in the corresponding compatibility graph. (Color
figure online)

connecting their incident vertices such that no edge passes through any other
vertex. A drawing is simple if any pair of edges intersect at most once - either
in a common vertex or a proper crossing in the relative interior of the edges.
All drawings considered in this paper are simple and the term simple is mostly
omitted. A drawing is plane if it does not contain any crossing.

For a fixed integer n let D be a simple drawing of the complete graph Kn and
let TD be the set of all drawings of plane spanning trees which are subdrawings
of D. Note that TD is non-empty, as it contains at least the n stars in D (where
a star contains all edges incident to a single vertex). Unless explicitly stated
otherwise, the word tree always refers to a plane spanning tree in TD, where the
drawing D is either clear from the context or the statement holds for any simple
drawing of Kn. Two (plane) subdrawings H and H ′ of a simple drawing D are
said to be compatible if the union of H and H ′ is still plane.

Let F(TD) be the (abstract) graph that has a vertex for each plane spanning
tree in TD and two vertices are adjacent if and only if the corresponding trees
are compatible. We call F(TD) the compatibility graph of TD. In this paper, we
study properties of F(TD), focusing primarily on connectivity aspects:

Question 1. Let n be an integer. Is the compatibility graph F(TD) connected
for any simple drawing D of the complete graph Kn?

Note that the notion of compatibility is closely related to the notion of edge
flips: An edge flip in a plane spanning tree is the operation of removing an edge
and replacing it with a new edge such that the resulting graph is again a plane
spanning tree. In our setting, we further require this pair of edges to be non-
crossing. In fact, one can simulate transformations via compatible trees in terms
of crossing free edge flips: for two compatible trees T1, T2, successively add edges
from T2 to T1, while removing an edge that is not in T2 from the resulting cycle.

We observe that the compatibility graph of simple drawings that are not of
the complete graph might not be connected even if the graph is dense. For exam-
ple, Fig. 1 shows a simple drawing of the complete bipartite graph containing a
plane tree that crosses all edges of the graph not belonging to the tree. Hence,
this tree is an isolated vertex in the corresponding compatibility graph.

Related Work. The problem of transforming elements within a class of objects
(e.g. plane spanning trees or matchings) into each other via a certain operation
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Fig. 2. Left to right: cylindrical, monotone, strongly c-monotone drawing.

(e.g. edge flips or compatibility) has been studied extensively in a huge variety of
contexts. Considering edge flips, some of the earliest results have been obtained
on triangulations: Wagner [16] showed connectivity of the corresponding flip-
graph in the combinatorial setting and Lawson [13] in the straight-line setting.
For more details we refer the reader to the survey of Bose and Hurtado [9].

Considering the notion of compatibility, most of the work has been done in
the straight-line setting, e.g., in the context of perfect matchings with [5,8] or
without [1,2] vertex coloring, or for edge-disjoint compatibility [3,12]. Aichholzer
et al. [4] showed, in the straight-line setting, that the compatibility graph of plane
spanning trees is connected with diameter O(log k), where k denotes the number
of convex layers of the point set. Buchin et al. [10] provided a corresponding worst
case lower bound of Ω(log n/ log log n).

It is natural to extend this question to simple drawings, which however are
inherently difficult to handle (even the existence of certain plane substructures
is still unresolved in simple drawings; see e.g. [14]). On the positive side, Garćıa,
Pilz and Tejel [11] proved that any maximal plane subgraph is 2-connected,
which guarantees for any plane spanning tree the existence of a compatible plane
spanning tree. In this paper, we aim to shed some light on this wide open topic
of compatibility graphs of trees in simple drawings.

Contribution. We approach Question 1 from two directions, proving a posi-
tive answer for special classes of drawings (namely, cylindrical, monotone, and
strongly c-monotone drawings) and for special classes of spanning trees (namely
stars, double stars, and twin stars). We postpone the precise definitions of these
classes of drawings and graphs to the later sections, however, Fig. 2 gives an
illustration of these notions.

Theorem 1. Let D be a cylindrical, monotone, or strongly c-monotone drawing
of the complete graph Kn. Then, the compatibility graph F(TD) is connected.

Theorem 2. Let D be a simple drawing of the complete graph Kn and let T ∗
D

be the set of all plane spanning stars, double stars, and twin stars on D. Then,
the compatibility graph F(T ∗

D) is connected.
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Section 2 is devoted to the proof of Theorem 1, while Sect. 3 is dedicated to
the proof of Theorem 2. See Appendix A in the full version of this paper [6] for
the details of the missing proofs.

2 Special Simple Drawings of Kn

In this section we prove connectedness of the compatibility graph for certain
classes of drawings. Clearly, for any drawing of Kn that admits a plane spanning
tree which is not crossed by any edge of D, the compatibility graph is connected
with diameter at most 2. This is, for example, the case for 2-page book drawings,
where the vertices are placed along a line and each edge lies entirely in one of
the two open halfplanes defined by this line.

2.1 Cylindrical Drawings

Following the definition of Schaefer [15], in a cylindrical drawing of a graph the
vertices are placed along two concentric circles, the inner and outer circle, and
no edge is allowed to cross these circles.

Lemma 1. Let D be a cylindrical drawing of Kn. Then F(TD) is connected with
diameter at most 4.

2.2 Monotone Drawings

A simple drawing in which no two vertices have the same x-coordinate and
every edge is drawn as an x-monotone curve is called monotone drawing. Let
v1, v2, . . . , vn denote the sequence of vertices in increasing x-order. W.l.o.g.
assume that these vertices are on the x-axis. Then, the plane spanning path
S = v1, v2, . . . , vn is called spine path. An edge that intersects the spine path is
called twiggly edge.

We define a relation on the twiggly edges of D as follows: for two twiggly
edges e, f we have e � f if they are non-intersecting and admit a vertical line
intersecting the relative interiors of both edges that intersects e at a larger y-
coordinate than f . All other pairs of twiggly edges are incomparable. For a set E
of pairwise non-intersecting twiggly edges, an edge e ∈ E is maximal if there is
no other edge f ∈ E s.t. f � e. Note that this relation is acyclic, i.e., there are
no twiggly edges e1, . . . , ek such that e1 � e2 � . . . � ek � e1. And hence, any
non-empty set of twiggly edges admits a maximal element.

Lemma 2. For any monotone drawing D of Kn, the compatibility graph F(TD)
is connected with diameter O(n).

Proof (Sketch). We show that any plane spanning tree T in D can be trans-
formed to the spine path S. If T does not contain any twiggly edge, clearly it is
compatible to S. Otherwise, we proceed as follows. Corresponding to a maximal
twiggly edge e of T , we find a path P ′ connecting the vertices of e (see Fig. 3).
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Fig. 3. The (maximal) twiggly edge e = vivj divides the vertices between vi and vj
into two groups – above and below. The path P ′ is formed by joining the consecutive
vertices lying above e including the vertices of e.

We can show that P ′ is compatible to T and lies strictly above e. Thus, we can
add P ′ to T , which creates at least one cycle in T . Removing appropriate edges
including e, we get a compatible tree with at least one twiggly edge less and
repeating this process, we will eventually reach the spine path S. ��

2.3 Strongly C-Monotone Drawings

A curve is called c-monotone (w.r.t. a point x) if every ray emanating from x
intersects the curve at most once. A simple drawing is c-monotone, if all vertices
are drawn along a circle and every edge is a c-monotone curve w.r.t. the center of
the circle. A c-monotone drawing is strongly c-monotone if for any pair of edges
e, e′ there is a ray (rooted at the circle center) that neither intersects e nor e′.

In a (strongly) c-monotone drawing, we label the vertices v1, v2, . . . , vn in
cyclic order and denote the center of the circle by c. In the following, we often
consider edges and their intersections with rays rooted at c; unless stated other-
wise, any ray is rooted at c and edges are intersected in their relative interiors.

An edge e connecting two consecutive vertices vi, vi+1 is called cycle edge
and if e is drawn along the “shorter” side of the circle it is called spine edge (that
is, no ray formed by the center and any vertex intersects e). All spine edges form
the spine and any path consisting entirely of spine edges is called spine path.

Lemma 3. Any strongly c-monotone drawing D of Kn either has all cycle edges
as spine edges or is isomorphic to a monotone drawing.

Again, we define twiggly edges to be those that intersect a spine edge. A
crucial difference to the monotone setting is that an analogue to the relation ‘�’
(adjusted with respect to the intersection with rays emanating from c) may now
be cyclic and hence, we cannot guarantee the existence of a maximal twiggly
edge anymore. We therefore need a different approach.

For a twiggly edge e = uw, let x1, . . . , xk be its crossings with the spine
(note that these are not vertices of Kn) and assume the labeling to be in such
a way that u, x1, . . . , xk, w appear in clockwise order. For i ∈ {1, . . . , k} denote
the vertex (of Kn) in clockwise order before xi by x−

i and the one after by x+
i .

Furthermore, set u = x−
0 and w = x+

k+1. Then, for i ∈ {0, . . . , k}, we call the
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Fig. 4. Left: The red dotted edges are bumpy edges of the twiggly edge e. Right: A
set of twiggly edges and some corridors; the dotted green is an inner corridor. (Color
figure online)

edges x−
i x+

i+1 bumpy edges (see Fig. 4 (left)). Note that bumpy edges do not
intersect the spine and for any twiggly edge there are at least two bumpy edges.

Clearly, we can identify any ray r with an angle θ, the angle it forms with
the vertical ray (upwards). Two edges e, f are called neighbours on an interval
[θ1, θ2], if for any ray r ∈ [θ1, θ2] the intersections of e and f with r appear
consecutively on r. A corridor is a maximally connected region bounded by two
neighbouring edges (along a maximal interval). Again, we identify corridors by
an interval [θ1, θ2] and usually we speak of corridors defined by the edges of a
plane spanning tree. The twiggly depth (with respect to a plane spanning tree T )
of a ray r is the number of twiggly edges (of T ) that r intersects.

We extend our definition of neighbours (along an interval) also to the very
inside and very outside by inserting a dummy edge at the circle center and
one at infinity. More precisely, an edge e is the neighbor of the circle center c
along an interval [θ1, θ2] if for any ray r ∈ [θ1, θ2] the intersection of r and e is
closest to c (and furthest in the case of being a neighbor of infinity). We call the
corresponding corridors inner/outer corridors. Note that the set of all corridors
partitions the plane. See Fig. 4 (right) for an illustration.

We further remark that for any plane spanning tree T , any corridor
C = [θ1, θ2] (of edges of T ) begins and ends at a vertex, i.e., the rays at θ1
and θ2 hit a vertex.

Lemma 4. For any plane spanning tree T of a strongly c-monotone drawing D
and any corridor C of T with start and end vertex s and t, there is a path P in
D from s to t staying entirely in C, that does not intersect T . Furthermore, if
C is an inner or outer corridor, P does not use any twiggly edge.

Lemma 5. For any strongly c-monotone drawing of Kn, the compatibility graph
F(TD) is connected with diameter O(n).

Proof. Let D be a strongly c-monotone drawing of Kn and let T be a plane
spanning tree. We show that T can be compatibly transformed to a spine path



22 O. Aichholzer et al.

(by iteratively decreasing its twiggly depth). By Lemma 3, we may assume that
all n spine edges are present in D. Again, if there is no twiggly edge in T , then
T is compatible with the spine.

Let Etwig be the set of twiggly edges of T and construct the set C of all
corridors. Next, for any corridor C ∈ C with start and end vertex s and t, we
add the path PC as guaranteed by Lemma 4 to T .

Clearly, we do not disconnect T when removing Etwig now. Indeed, let e =
uw ∈ Etwig, then the collection of corridor paths below (and also above) e
connects u and w. So we remove Etwig and potentially some further edges until
T forms a spanning tree again (which by Lemma 4 is also plane). Furthermore,
any ray r that intersects x previous twiggly edges (i.e., Etwig) intersects x + 1
corridors, two of which are either an inner or outer corridor. By Lemma 4 and
the properties of c-monotone curves, r intersects at most x − 1 (new) twiggly
edges. Hence, the twiggly depth of any ray decreased by at least one and we
recursively continue this process until all rays have twiggly depth 0, in which
case T is compatible to a spine path. As we have twiggly depth at most n − 1
in the beginning, F(TD) has diameter O(n). ��

Theorem 1 now follows from Lemma 1, 2, and 5.

3 Special Plane Spanning Trees

In this section, we are not restricting our drawing anymore, i.e., D will be a
simple drawing of Kn throughout this section. Instead we focus on special classes
of spanning trees and show that the subgraph F(T ∗

D) of F(TD) induced by the
set of vertices corresponding to stars, double stars, and twin stars is connected.

A plane spanning tree with a fixed path P of length k such that all other
vertices are incident to either the start or end vertex of P is called a k-star. A
0-star (i.e., P consists of a single vertex) is called star. A 1-star is called double
star and a 2-star is called twin star.

The following relation, introduced in [7], will be very useful: Given a simple
drawing of Kn with vertex set V and two vertices g �= r ∈ V , for any two vertices
vi, vj ∈ V \{g, r}, we define vi →gr vj if and only if the edge vir crosses vjg.
In [7] it is shown that this relation is asymmetric and acylic.

We start by showing that stars can always be transformed into each other
via a sequence of crossing free edge flips.

Lemma 6. Any two stars in D have distance O(n) in F(T ∗
D).

Proof. Given a star T in g (i.e., g is incident to all other vertices of T ), we can
transform it into a star H in r via a sequence of crossing free edge flips, such
that in every step, the graph is a double star with fixed path r,g, in the following
way. We label the vertices in V \{g, r} such that vi →gr vj implies i < j (see
Fig. 5). We iteratively replace an edge gvi by rvi starting from i = n − 2 and
continuing in decreasing order. Clearly, all intermediate trees are double stars
(with fixed path r,g) and hence, it remains to argue that the flips are compatible,
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Fig. 5. Proof of Theorem 6: The solid edges represent a star in g, while the dotted
edges form a star in r. The vertices are labeled conforming to the relation →gr. In
order to transform the star in g to the star in r, the first step is adding the dotted blue
edge v4r and deleting the red edge v4g. (Color figure online)

i.e., for i = n − 2, . . . , 1 the edge gvi does not cross any edge of the current T .
By construction, in any step i, T contains edges of the form (a) rvj for j > i
and (b) gvk for k < i. The edge gvi cannot cross edges in (a) by the definition
of the relation →gr and also not those in (b) due to the properties of simple
drawings. As we need at most n − 2 steps for the transformation, any two stars
have distance O(n) in F(T ∗

D). ��

Theorem 2 then follows from Theorem 6 in combination with the following
two lemmata.

Lemma 7. Any double star in D has distance O(n) to any star in F(T ∗
D).

Lemma 8. Any twin star in D has distance O(n) to any star in F(T ∗
D).
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Abstract. Let Γ be a straight-line drawing of a graph and let u and v
be two vertices of Γ . The Gabriel disk of u, v is the disk having u and v
as antipodal points. A pair 〈Γ0, Γ1〉 of vertex-disjoint straight-line draw-
ings form a mutual witness Gabriel drawing when, for i = 0, 1, any two
vertices u and v of Γi are adjacent if and only if their Gabriel disk does
not contain any vertex of Γ1−i. We characterize the pairs 〈G0, G1〉 of
complete bipartite graphs that admit a mutual witness Gabriel drawing.
The characterization leads to a linear time testing algorithm. We also
show that when at least one of the graphs in the pair 〈G0, G1〉 is com-
plete k-partite with k > 2 and all partition sets in the two graphs have
size greater than one, the pair does not admit a mutual witness Gabriel
drawing.

Keywords: Proximity drawings · Gabriel drawings · Witness
proximity drawings · Simultaneous drawing of two graphs

1 Introduction

Proximity drawings, including Delaunay triangulations, rectangle of influence
drawings, minimum spanning trees, and unit disk graphs, are among the most
studied geometric graphs. They are commonly used as descriptors of the “shape”
of a point set and are used in a variety of applications, including machine learn-
ing, pattern recognition, and computer graphics (see, e.g., [14]). They have also
been used to measure the faithfulness of large graph visualizations (see, e.g., [11]).

Proximity drawings are geometric graphs in which two vertices are adjacent
if and only if they are deemed close by some measure. A common approach to
define the closeness of two vertices u and v uses a region of influence of u and
v, which is a convex region whose shape depends only on the relative position of
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u with respect to v. Then we say that u and v are adjacent if and only if their
region of influence does not contain some obstacle, often another vertex of the
drawing. For example, a Gabriel drawing Γ is a proximity drawing where the
region of influence u and v is the disk having u and v as antipodal points, called
the Gabriel region of u and v; u and v are adjacent in Γ if and only if their
Gabriel region does not contain any other vertex. See also [17] for a survey on
different types of proximity regions and drawings.

An interesting generalization of proximity drawings is given in a sequence
of papers by Aronov, Dulieu, and Hurtado who introduce and study witness
proximity drawings and mutual witness proximity drawings [2–5]. In a witness
proximity drawing the obstacles are points, called witnesses, that are suitably
placed in the plane to impede the existence of edges between non-adjacent ver-
tices; these points may or may not include some of the vertices of the drawing
itself. A mutual witness proximity drawing is a pair of witness proximity draw-
ings that are computed simultaneously and such that the vertices of one drawing
are the witnesses of the other drawing. For example, Fig. 1 depicts a mutual wit-
ness Gabriel drawing (MWG-drawing for short) of two trees. In the figure, the
Gabriel disk of v0, v1 of Γ0 includes vertex v2 but no vertices of Γ1 and hence
v0, v1 are adjacent in Γ0; conversely, v1 and v2 are not adjacent in Γ0 because
their Gabriel disk contains vertex u1 of Γ1.

Fig. 1. A mutual witness Gabriel drawing of two trees (Gabriel disks are dotted).

In this paper we characterize those pairs of complete bipartite graphs that
admit an MWG-drawing. While every complete bipartite graph has a witness
Gabriel drawing [3], not all pairs of complete bipartite graphs admit an MWG-
drawing. To characterize the drawable pairs we also investigate some properties
of MWG-drawings that go beyond complete bipartiteness. More precisely:

– We show that if 〈Γ0, Γ1〉 is an MWG-drawing such that both Γ0 and Γ1 have
diameter two, then the set of vertices of Γ0 is linearly separable from the
set of vertices of Γ1. This extends a result of [4], where linear separability is
proved when the diameter is one, i.e. when the two graphs are complete.
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– We show, perhaps surprisingly, that if 〈G0, G1〉 is a pair of complete bipartite
graphs that admits an MWG-drawing, then both must be planar.

– The above result let us characterize those pairs 〈G0, G1〉 of complete bipartite
graphs that admit an MWG-drawing and leads to a linear time testing algo-
rithm. When the test returns that 〈G0, G1〉 is drawable, an MWG-drawing
can be constructed in linear time in the real RAM model.

– We show that relaxing the bipartiteness assumption does not significantly
enlarge the class of representable graph pairs: We consider those pairs of
complete multi-partite graphs each having all partition sets of size at least
two and prove that if at least one of the graphs in the pair has more than
two partition sets, then the pair does not admit an MWG-drawing.

We remark that our contribution not only fits into the rich literature devoted
to proximity drawings, but it also relates to two other well studied topics in graph
drawing, namely simultaneous embeddings (see, e.g., [8,21] for references) and
obstacle representations (see, e.g., [1,6,9,10,12,15,18–20]). As in simultaneous
embeddings, the coordinates of the vertices of Γi in a mutual witness proximity
drawing are defined by taking into account the (geometric and topological) prop-
erties of Γ1−i; as in obstacle graph representations, the adjacency of the vertices
Γi depends on whether their geometric interaction is obstructed by some exter-
nal obstacles, namely the vertices of Γ1−i;. Finally, mutual witness proximity
drawings are of interest in pattern recognition, where they have been used in the
design of trained classifiers to convey information about the interclass structure
of two sets of features (see, e.g. [13]).

2 Preliminaries

We assume familiarity with basic definitions and results of graph drawing [7].
We assume that all drawings occur in the Euclidean plane with standard x and y
axes, and so concepts such as above/below a (non-vertical) line are unambiguous.
Given two distinct points p and q in the plane, we denote by pq the straight-line
segment whose endpoints are p and q. Also, let a, b, c be three distinct points in
the Euclidean plane, we denote by Δ(abc) the triangle whose vertices are a, b, c.
Given two non-axis-parallel lines �1 and �2 intersecting at a point b, those lines
divide the plane into four wedges: the top, bottom, left, and right wedges of b
with respect to �1 and �2. The top and bottom wedges lie entirely above and
below the horizontal line through b, respectively; the left and right wedges lie
entirely to the left and right of the vertical line through b. When the two lines
are determined by providing a point (other than b) on each line, say a and c,
we denote the wedges by WT [b, a, c], WB [b, a, c], WL[b, a, c], and WR[b, a, c] when
we want to include the boundary of each wedge as part of that wedge and by
WT (b, a, c), WB(b, a, c), WL(b, a, c), and WR(b, a, c) when we do not.

Note that exactly one of the four wedges will have both a and c on its
boundary, we denote that wedge as W [b, a, c] (or W (b, a, c)). See Fig. 2(a).

Let Γ be a straight line drawing of a graph G and let u and v be two vertices
of Γ (and of G). Vertices u and v may either be adjacent in G and thus uv is an
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Fig. 2. (a) W (b, a, c) = WT (b, a, c), WB(b, a, c), WL(b, a, c), and WR(b, a, c) (b) If w ∈
Δ(vu1v1), at most one of vu1 and vv1 is an edge of a WG-drawing.

edge of Γ or u and v are not adjacent vertices, in which case uv is a non-edge
of Γ . For example, v0v1 in Fig. 1 is an edge while v1v2 is a non-edge of Γ1. Also,
the Gabriel disk of p and q, denoted as D[p, q] is the disk having p and q as
antipodal points; D[p, q] is a closed set.

Let V and P be two sets of distinct points in the plane. A witness Gabriel
drawing (WG-drawing) with vertex set V and witness set P is a geometric graph
Γ whose vertices are the points of V and such that any two vertices u and v form
an edge if and only if D[u, v] ∩ P = ∅. A graph G is witness Gabriel drawable
(WG-drawable) if there exist two point sets V and P such that the witness
Gabriel drawing with vertex set V and witness set P represents G (i.e., there
is a bijection between the vertex set of G and the point set V and between the
edge set of G and the edge set of Γ that is incidence-preserving). The following
property can be proved with elementary geometric arguments (see also Fig. 2(b)).

Property 1. Let Γ be a WG-drawing with witness set P and let vu1 and vv1 be
two edges of Γ incident on the same vertex v. Then Δ(vu1v1) ∩ P = ∅.

For a pair 〈G0, G1〉 of WG-drawable graphs, a mutual witness Gabriel drawing
(MWG-drawing) is a pair 〈Γ0, Γ1〉 of straight-line drawings such that Γi is a WG-
drawing of Gi with witness set the vertices of Γ1−i (i = 0, 1). If 〈G0, G1〉 admits
an MWG-drawing we say that 〈G0, G1〉 is mutually witness Gabriel drawable
(MWG-drawable).

Some proofs have been omitted. They can be found in Lenhart and
Liotta [16].

3 Linear Separability of Diameter-2 MWG-drawings

In this section we extend a result by Aronov et al. [4] about the linear separability
of the MWG-drawings of complete graphs to graphs of diameter two.

Lemma 1. Let 〈Γ0, Γ1〉 be an MWG-drawing such that Γi has diameter at most
2 (i = 0, 1). Then no segment of Γ0 intersects any segment of Γ1.
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Fig. 3. Illustration for the proof of Theorem 1: a non-edge u1v1 of Γ1 in a region R
bounded by portions of edges and non-edges of Γ0.

Proof. Note first that by Property 1, a vertex u of Γi cannot lie on a non-edge
u1, v1 of Γ1−i since {u1, v1} have at least one common neighbor v. Also no vertex
of Γi can lie on an edge of Γ1−i. Let u0v0 be an edge of Γ0 and let u1v1 be an edge
of Γ1. Assume that they cross and consider the quadrilateral Q whose vertices
are the end-points of the two crossing edges. Since some internal angle of Q must
be at least π

2 , either D[u0, v0] contains one of {u1, v1} or D[u1, v1] contains one
of {u0, v0} contradicting the fact that both u0v0 is an edge of Γ0 and u1v1 is an
edge of Γ1.

Let u0v0 be an edge of Γ0 and let u1v1 be a non-edge of Γ1. Since Γ1 has
diameter at most two, there is a vertex v in Γ1 such that both vu1 and vv1 are
edges of Γ1. Since u1v1 crosses u0v0, but neither vu1 nor vv1 crosses u0v0, we
have that one of {u0, v0} is a point of Δ(u1, v1, v). However, Γ1 is a WG-drawing
whose witness set is the set of vertices of Γ0 and, by Property 1, no vertex of
Γ0 can be a point of Δ(u1, v1, v). An analogous argument applies when u0v0 is
a non-edge of Γ0 while u1v1 is an edge of Γ1.

It remains to consider the case that u0v0 is a non-edge of Γ0 and u1v1 is a
non-edge of Γ1. Let v be a vertex such that both vu1 and vv1 are edges of Γ1.
By the previous case, neither of these two edges can cross u0v0. It follows that
one of {u0, v0} is a point of Δ(u1, v1, v) which, by Property 1, is impossible.

We are now ready to prove the main result of this section. We denote by
CH (Γ ) the convex hull of the vertex set of a drawing Γ .

Theorem 1. Let 〈Γ0, Γ1〉 be an MWG-drawing such that each Γi has diameter
2 . Then Γ0 and Γ1 are linearly separable.

Proof. By Lemma 1, no vertex, edge or non-edge of Γi intersects any vertex, edge
or non-edge of Γ1−i. Hence, either CH (Γ0) and CH (Γ1) are linearly separable
and we are done, or one of the convex hulls – say CH (Γ1) – is contained in a
convex region R bounded by (portions of) edges and/or non-edges of Γ0. We
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Fig. 4. Non-linearly separable MWG-drawings of: (a) a diameter two graph and a
diameter three graph; (b) a diameter two graph and a diameter one graph.

prove that region R cannot exist, which implies the statement. Suppose for a
contradiction that Γ1 is contained in R and let u1v1 be a non-edge of Γ1 with
x(u1) ≤ x(v1). See Fig. 3 for a schematic illustration. Since u1 and v1 are not
adjacent, there is some vertex v of Γ0 such that v ∈ D[u1, v1]. Without loss of
generality, assume that u1v1 is horizontal and that v is below the line through u1

and v1. Since u1 and v1 are points of WT [v, u1, v1] and Γ1 is contained in R, there
is some segment pq of the boundary of R such that pq intersects WT (v, u1, v1)
above the line through u1 and v1. Let u0 and v0 be the two vertices of Γ0 such
that pq is a subset of u0v0. For concreteness, we assume that the x-coordinates
of u0, p, q, and v0 are such that x(u0) ≤ x(p) ≤ x(q) ≤ x(v0).

Claim. u0 ∈ WL(v, u1, v1) , v0 ∈ WR(v, u1, v1) and u0v0 is a non-edge of Γ0.

Proof of the claim: Suppose for a contradiction that a vertex of {u0, v0} – say
v0 – were a point of WT [v, u1, v1]. Since pq intersects WT (v, u1, v1) above the
horizontal line through u1 and v1, we have that v0 must also be above this
horizontal line or else u0v0 and u1v1 would cross, contradicting Lemma 1. How-
ever, if v0 is above the line through u1 and v1 we have that u1v1 and vv0 cross
which again contradicts Lemma 1. Therefore, v0 �∈ WT [v, u1, v1] and, by the
same argument, u0 �∈ WT [v, u1, v1]. Note that this argument also precludes
either point of {u0, v0} from being in WB [v, u1, v1], since, because pq inter-
sects WT [v, u1, v1], we would then have that the other point of {u0, v0} lies
in WT [v, u1, v1]. Finally, observe that if u0 and v0 were both points of either
WL(v, u1, v1) or WR(v, u1, v1), segment pq would not intersect WT (v, u1, v1). It
follows that u0 ∈ WL(v, u1, v1) and v0 ∈ WR(v, u1, v1). Note that 	(u0vv0) con-
tains both u1 and v1, so ∠u0vv0 > ∠u1vv1 ≥ π

2 , which implies that ∠u0v1v0 > π
2

and so u0v0 is a non-edge of Γ0. This concludes the proof of the claim.
By the claim above and by the assumption that Γ0 has diameter two, there

is some vertex z such that both zu0 and zv0 are edges of Γ0. Vertex z may
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or may not coincide with v. If z coincides with v or if z ∈ WB [v, u1, v1], we
have that Δ(zu0v0) contains both u1 and v1 and two of its sides are edges of
Γ0, which contradicts Property 1. If z ∈ WT [v, u1, v1] and z is above the line
through u1 and v1, we have that vz and u1v1 cross, which contradicts Lemma
1. If z ∈ WT [v, u1, v1] and z is below the line through u1 and v1, either u1v1
crosses one of {zu0, zv0} contradicting Lemma 1, or Δ(zu0v0) contains both u1

and v1 contradicting Property 1. If z ∈ WL(v, u1, v1), we consider three cases. If
edge zv0 crosses u1v1, we would violate Lemma 1. If edge zv0 is above u1v1, then
∠zvv0 > π

2 and since both u1 and v1 are in the interior of 	(zvv0), we have that
u1 and v1 are in D[z, v0], contradicting the fact that zv0 is an edge of Γ0. If edge
zv0 is below u1v1, 	(u0zv0) contains both u1 and v1, which violates Property 1.
By a symmetric argument, we have that z cannot be a point of WR(v, u1, v1)
either. Since point z does not exist, it follows that R does not exist.

Theorem 1 shows that MWG-drawings with diameter two capture useful
information about the interaction of two point sets. As pointed out by both
Ichino and Slansky [13] and by Aronov et al. [4], the linear separability of mutual
witness proximity drawings gives useful information about the interclass struc-
ture of two set of points. It is also worth noting that if at least one of the graphs
in the pair has diameter different from two, a non-linearly separable drawing
may exist. For example Fig. 4(a) and Fig. 4(b) show MWG-drawings of graph
pairs in which the diameter two property is violated for one of the two graphs.

4 MWG-drawable Complete Bipartite Graphs

In this section we exploit Theorem 1 to characterize those pairs of complete
bipartite graphs that admit an MWG-drawing. In Sect. 4.1 we prove that any
two complete bipartite graphs that form an MWG-drawable pair are planar.
The complete characterization is then given in Sect. 4.2. In what follows we shall
assume without loss of generality that the line separating a drawing Γ from
its set of witnesses is horizontal and it coincides with the line y = 0, with the
witnesses in the negative half-plane. The proof of the following property is trivial
and therefore omitted, but Fig. 5(a) and its caption illustrate it.

Property 2. Let Γ be a WG-drawing with witness set P , let uv be a non-edge
of Γ with witness p ∈ P , and let z be a vertex of Γ such that both zu and zv
are edges of Γ . Then z ∈ W (p, u, v).

4.1 Planarity

Let Γ be a WG-drawing; an alternating 4-cycle in Γ consists of two vertex-
disjoint edges u0u1 and v0v1 of Γ such that u0v0 and u1v1 are both non-edges in
the drawing. For example, Fig. 5(b) shows a WG-drawing Γ whose witness set
consists of points p0 and p1. In the figure, u0u1 and v0v1 are edges of Γ while
u0v0 and u1v1 are non-edges of Γ : these two pairs of edges and non-edges (bolder
in the figure) form an alternating 4-cycle in Γ .
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Fig. 5. (a) If z �∈ W (p, u, v), then p ∈ D[z, v] and zv is not an edge of Γ . (b) A
WG-drawing Γ with an alternating 4-cycle highlighted in bold.

Lemma 2. Let Γ be a WG-drawing of a complete bipartite graph such that Γ
is linearly separable from its witness set P and let C be an alternating 4-cycle
defined on Γ . The two edges of Γ in C do not cross while the two non-edges of
Γ in C do cross.

Proof. Let � be the line separating Γ from its witness set. Let u0, u1, v1, v0 be
the four vertices of C such that u0u1 and v0v1 are two edges of Γ while u0v0 and
u1v1 are two non-edges of Γ . Since the drawing is a complete bipartite graph,
u0v1 and v0u1 are edges of Γ . We prove that u0v0 and u1v1 must cross in Γ ,
which implies that u0u1 and v0v1 do not cross.

Let p0 ∈ P such that p0 ∈ D[u0, v0]. By Property 2, both u1 and v1 lie in the
wedge W (p0, u0, v0) = WT (p0, u0, v0). Observe that p0 cannot also be a witness
for the pair u1 and v1 as otherwise, by Property 2, we should have that also u0

and v0 lie in the top wedge WT (p0, u1, v1), which is impossible. So, let p1 ∈ P be
distinct from p0 and such that p1 ∈ D[u1, v1]. If p0 were a point in WT [p1, u1, v1],
p0 would also be a point in 	(v1p1u1) and we would have p0 ∈ D[u1, v1], which
we just argued is impossible (see, e.g. Figure 6). By analogous reasoning we have
that p1 cannot be a point of WT [p0, u0, v0]. Also, p1 �∈ WB [p0, u0, v0] or else
p0 would be in WT [p1, u1, v1] since WT (p1, u1, v1) contains both u0 and v0. It
follows that either p1 ∈ WL(p0, u0, v0) or p1 ∈ WR(p0, u0, v0). In either case,
WT (p1, u1, v1) can contain both u0 and v0 only if u0v0 and u1v1 cross.

The following corollaries are a consequence of Lemma 2 and of Theorem 1 .

Corollary 1. Let G0 and G1 be two vertex disjoint complete bipartite graphs.
If the pair 〈G0, G1〉 is MWG-drawable, then both G0 and G1 are planar graphs.

Corollary 2. Let Γ be a WG-drawing of a complete bipartite graph such that
Γ is linearly separable from its witness set. Any 4-cycle formed by edges of Γ is
a convex polygon.
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Fig. 6. If p0 ∈ WT [p1, u1, v1], then p0 ∈ D[u1, v1].

4.2 Characterization

We start with two technical lemmas.

Lemma 3. Let 〈G0, G1〉 be an MWG-drawable pair admitting a linearly separa-
ble MWG-drawing. Then the pair 〈G0∪{v0}, G1〉 also admits a linearly separable
MWG-drawing, where v0 is a vertex not in G0 and is adjacent to all vertices in
G0—that is, a universal vertex of G0 ∪ {v0}.

Figure 7(b) shows the addition of the universal vertex v0 to the MWG-
drawing of Fig. 7(a). In fact, a universal vertex can be added to either drawing
as long as it is positioned sufficiently far from the separating line.

Let u0, u1 be two points with x(u0) < x(u1). The open vertical strip of u0,
u1, denoted as S(u0, u1), is the set of points (x, y) such that x(u0) < x < x(u1).
Assume now that u0 and u1 are vertices of a WG-drawing Γ such that Γ is
linearly separable from its witness set by a line �. Segment u0u1 divides S(u0, u1)
into two (open) half-strips: SN (u0, u1) is the (near) half-strip on the same side
of u0u1 as � and SF (u0, u1) is the other (far) half-strip. S[u0, u1], SN [u0, u1],
and SF [u0, u1] consist of S(u0, u1), SN (u0, u1), and SF (u0, u1) along with their
respective boundaries.

Lemma 4. Let 〈G0, G1〉 be an MWG-drawable pair admitting a linearly separa-
ble MWG-drawing. Then at least one of the pairs 〈G0∪{v0}, G1〉, 〈G0, G1∪{v1}〉
also admits a linearly separable MWG-drawing, where, for i = 0, 1, vi is a vertex
not in Gi and has no edges to any vertex in Gi—that is, vi is an isolated vertex
of Gi.

Figure 8(b) shows the addition of the isolated vertex v0 to the MWG-drawing
of Fig. 8(a). In fact, an isolated vertex can be added to the left (right) of
whichever of the two drawings has the leftmost (rightmost) vertex, as long as it
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Fig. 7. (a) A linearly separable MWG-drawing 〈Γ0, Γ1〉. (b)Adding a universal vertex
v0 to Γ0 by placing it far enough from p on �′.

is positioned sufficiently far enough to the left (right) of that vertex. Lemmas
3 and 4 are used in the following lemma, where we use colors to distinguish
vertices in distinct partition sets.

Lemma 5. 〈K1,n0 ,K1,n1〉 has a MWG-drawing if |n0 − n1| ≤ 2 .

Proof. Observe that two independent sets whose sizes differ by at most 1, one
consisting of red vertices and one consisting of blue vertices, admit a linearly
separable MWG-drawing where the red vertices are above a horizonal separat-
ing line � while the blue vertices are below �: start with one red vertex with
coordinates (0, 1) and a blue vertex with coordinates (−1,−1) and iteratively
add red and blue vertices by applying the isolated vertex-addition procedure in
the proof of Lemma 4. Let Gi = K1,ni

, for i = 0, 1.
Denote by v0 the non-leaf vertex of G0 and by u0 the non-leaf vertex of G1.

Assume first that |n0−n1| ≤ 1. By the previous observation, 〈G0\{v0}, G1\{u0}〉
admits a linearly separable MWG-drawing. Therefore, by Lemma 3 applied to
〈G0 \ {v0}, G1 \ {u0}〉 we have that 〈G0, G1 \ {u0}〉 admits a a linearly separable
MWG-drawing. By Lemma 3 applied to 〈G0, G1\{u0}〉 we have that if |n0−n1| ≤
1, the pair 〈G0, G1〉 is MWG-drawable.

Consider now the case |n0 − n1| = 2 and assume that n0 > n1 (the proof
when n1 > n0 is analogous). Let v1 be a leaf of G0. With the same reasoning as
in the previous case, 〈G0 \{v0, v1}, G1 \{u0}〉 admits a linearly separable MWG-
drawing that we denote as 〈Γ0\{v0, v1}, Γ1\{u0}〉. By the technique in the proof
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Fig. 8. (a) A linearly separable MWG-drawing 〈Γ0, Γ1〉. (b)Adding an isolated vertex
v0 to Γ0.

of Lemma 3, we add the universal vertex u0 to Γ1 \{u0} in such a way that u0 is
the rightmost vertex of the linearly separable MWG-drawing 〈Γ0 \ {v0, v1}, Γ1〉.
We now exploit the construction of Lemma 4 to add the isolated vertex v1 to
〈Γ0 \ {v0, v1}, Γ1〉 and obtain a linearly separable MWG-drawing 〈Γ0 \ {v0}, Γ1〉.
Finally, we use Lemma 3 to construct an MWG-drawing of 〈G0, G1〉 also when
|n0 − n1| = 2.

Lemma 6. Let Γ be a WG-drawing of a graph such that Γ is linearly separable
from its witness set P . If uv is an edge of Γ and z ∈ SF [u, v] is a vertex of Γ ,
then both uz and vz are edges of Γ .

Proof. Consider, w.l.o.g., the segment uz. If it is not an edge of Γ , then it
must have a witness in SN (u, z). But any such point will also be in D[u, v],
contradicting the fact that uv is an edge of Γ .

Lemma 7. Let Γ be a WG-drawing of a graph such that Γ is linearly separable
from its witness set P . Let u0, u1, v0, v1 be such that u0, v0, u1, v1 induce a C4 in
Γ . We have that: (i) v0 and v1 are in opposite half-planes with respect to the line
through u0, u1, and (ii) one of {v0, v1} is a point of SN (u0, u1) and the other is
not in S[u0, u1].

By means of Lemma 7 we can restrict the set of complete bipartite graph
pairs that are MWG-drawable.

Lemma 8. Let Γ be a WG-drawing of a complete bipartite graph such that Γ is
linearly separable from its witness set. Then Γ does not have K2,3 as a subgraph.

We now characterize the MWG-drawable pairs of complete bipartite graphs.
We recall that Aronov et al. prove that every complete bipartite graph admits a
WG-drawing (Theorem 5 of [3]). The following theorem can be regarded as an
analog of the result by Aronov et al. in the context of MWG-drawings.
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Fig. 9. An MWG-drawing of K2,2 and of an independent set of size three.

Theorem 2. Let 〈G0, G1〉 be a pair of complete bipartite graphs such that Gi

has ni vertices. The pair 〈G0, G1〉 admits an MWG-drawing if and only if, for
i = 0, 1, Gi is either K1,ni−1 or K2,2 and |n0 − n1| ≤ 2.

Proof. By Theorem 1, any MWG-drawing 〈Γ0, Γ1〉 of G0 and G1 is linearly
separable, so any witnes for a non-edge uv in Γi must lie in S(u, v). By Corollary 1
both G0 and G1 must be planar. By Lemma 8 each of the two graphs is either
K2,2 or a star (i.e. K1,ni−1, i = 0, 1). Together, these imply that the difference
in the cardinalities of the vertex sets in the two graphs is at most two.

If G0 = K1,n0−1 and G1 = K1,n1−1, the theorem follows by Lemma 5.
If G0 = K2,2 and G1 = K2,2 the pair 〈G0, G1〉 has an MWG-drawing as
shown, for example, in Fig. 7(a). By removing one of the bottom-most ver-
tices of Γ1 in Fig. 7(a) we obtain an MWG-drawing of 〈K2,2,K1,2〉 and by
removing both the bottom-most vertices of Γ1 in Fig. 7(a) we obtain an MWG-
drawing of 〈K2,2,K1,1〉. To complete the proof we have to show that 〈K2,2,K1,3〉,
〈K2,2,K1,4〉, and 〈K2,2,K1,5〉 are also MWG-drawable pairs. To this end refer
to Fig. 9 that shows an MWG-drawing 〈Γ0, Γ1〉 where Γ0 is K2,2 while Γ1 is an
independent set consisting of three vertices. By applying Lemma 3 we can add a
universal vertex to Γ1, thus obtaining an MWG-drawing of 〈K2,2,K1,3〉. In order
to construct MWG-drawings of 〈K2,2,K1,4〉 and of 〈K2,2,K1,5〉, notice that in
Fig. 9 v0 is the leftmost vertex and v1 is the rightmost vertex of 〈Γ0, Γ1〉. By
Lemma 4 we can add either one isolated vertex or two isolated vertices to Γ1. In
the former case we obtain an MWG-drawing of K2,2 and of an independent set
of size four which can be extended to an MWG-drawing of 〈K2,2,K1,4〉 by means
of Lemma 3. In the latter case, we again use Lemma 3 to add a universal vertex
to the drawing of the independent set of size five and obtain an MWG-drawing
of 〈K2,2,K1,5〉.

The following theorem is a consequence of Theorem 2 and of the constructive
arguments of Lemma 5
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Fig. 10. v4 ∈ SN (u2, u
′
2) implies WL(u2, v2, v2+k) ∩ WB(v4, u2, u

′
2) = ∅ .

Theorem 3. Let 〈G0, G1〉 be a pair of complete bipartite graphs such that G0

has n0 vertices and G1 has n1 vertices. There exists an O(n0+n1)-time algorithm
that tests whether 〈G0, G1〉 admits an MWG-drawing. In the affirmative case,
there exists an O(n0 + n1)-time algorithms to compute an MWG-drawing of
〈G0, G1〉 in the real RAM model of computation.

5 MWG-drawable Complete k-partite Graphs

Aronov et al. also showed that there exists a complete multipartite graph, namely
K3,3,3,3, which does not admit a WG-drawing (Theorem 15 of [3]). We extend
this result in the context of MWG-drawings by proving the following result.

Theorem 4. Let 〈G0, G1〉 be a pair of complete multi-partite graphs such that
for each of the graphs every partition set has size at least two. The pair is mutu-
ally Gabriel drawable if and only if it is 〈K2,2,K2,2〉.
Proof (Sketch). Let Γ be a WG-drawing of a complete k-partite graph, with
k ≥ 2 such that Γ is linearly separable from its witness set P by a separating
line �. Note that any induced subgraph G′ of G admits a WG-drawing with
witness set P , which can be derived from Γ by removing the vertices not in G′.
By this observation, Theorem 1, and Lemma 8 we conclude that if 〈G0, G1〉 is a
pair of complete MWG-drawable multi-partite graphs, then neither G0 nor G1

can have K2,3 as a subgraph. Therefore we can assume that all partition sets in
each of the two graphs have size exactly two. Refer to Fig. 10.
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The proof proceeds by first showing that CH (Γ ) is a convex terrain with
respect to �; that is for each vertex v on the boundary of CH (Γ ), the segment
from v to � perpendicular to � does not intersect CH (Γ ). Using this property we
can order the vertices of Γ by increasing x-coordinate and show that the i-th
partite set consists of vertices vi, vi+k. Let pi be a witness for vertices vi and
vk+i and let pj be a witness for vertices vj and vk+j . Thirdly, we show that if
i < j then pi ∈ WL(pj , vj , vj+k); if i > j then pi ∈ WR(pj , vj , vj+k). Consider
now an MWG-drawing 〈Γ0, Γ1〉 where Γ0 is in the upper half-plane with respect
to the separating line � and it has at least three partition sets. Let u1, u2 and
u3 be three vertices of Γ1 that act as witnesses for partition sets {v1, v1+k},
{v2, v2+k}, and {v3, v3+k}, respectively. We have u1 ∈ WL(u2, v2, v2+k) and u3 ∈
WR(u2, v2, v2+k). Let u′

2 be the vertex of Γ1 that is in the same partition set
as u2 and assume that u′

2 is to the right of u2 (the proof in the other case
being symmetric). Let v be a vertex of Γ0 that is a witness of u2 and u′

2 (i.e.
v ∈ D[u2, u

′
2]).

By Property 2 either v ∈ {v2, v2+k} or v ∈ WT (u2, v2, v2+k), hence v ∈
WT [u2, v2, v2+k]. Again by Property 2, all vertices of Γ1 must lie in WB [v, u2, u

′
2].

Because v ∈ WT [u2, v2, v2+k], WB [v, u2, u
′
2] is disjoint from WL(u2, v2, v2+k). But

u1 ∈ WL(u2, v2, v2+k), a contradiction.

6 Open Problems

The results of this paper naturally suggest many interesting open problems.
For example: (i) Can one give a complete characterization of those pairs of
complete multipartite graphs that admit an MWG-drawing extending Theorem
4 by taking into account graphs some of whose partition sets have size one? It
is not hard to see that the ideas of Lemmas 3 and 5 can be used to construct
MWG-drawings of graph pairs of the form 〈K1,··· ,1,n0 ,K1,··· ,1,n1〉 as long as the
number of partition sets of size one in the two graphs differ by at most two.
However, this may not be a complete characterization. (ii) Which other pairs of
diameter-2 graphs admit an MWG-drawing? (iii) Which pairs of (not necessarily
complete) bipartite graphs admit an MWG-drawing? (iv) Finally, it would be
interesting to study mutual witness drawings for other proximity regions.
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In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 295–308. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 23

10. Dujmovic, V., Morin, P.: On obstacle numbers. Electron. J. Comb. 22(3), 3.1
(2015). http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p1

11. Eades, P., Hong, S., Nguyen, A., Klein, K.: Shape-based quality metrics for large
graph visualization. J. Graph Algorithms Appl. 21(1), 29–53 (2017). https://doi.
org/10.7155/jgaa.00405

12. Firman, O., Kindermann, P., Klawitter, J., Klemz, B., Klesen, F., Wolff, A.:
Outside-obstacle representations with all vertices on the outer face (2022). https://
arxiv.org/abs/2202.13015. https://doi.org/10.48550/ARXIV.2202.13015

13. Ichino, M., Sklansky, J.: The relative neighborhood graph for mixed feature vari-
ables. Pattern Recognit. 18(2), 161–167 (1985). https://doi.org/10.1016/0031-
3203(85)90040-8

14. Jacob, J.O., Goodman, E., Toth, C.: Handbook of discrete and computational
geometry, third edition. Wiley Series in Probability and Mathematical Statistics.
Chapman and Hall/CRC (2017)
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Abstract. Simple drawings are drawings of graphs in the plane or on
the sphere such that vertices are distinct points, edges are Jordan arcs
connecting their endpoints, and edges intersect at most once (either in
a proper crossing or in a shared endpoint). Simple drawings are general-
ized twisted if there is a point O such that every ray emanating from O
crosses every edge of the drawing at most once and there is a ray ema-
nating from O which crosses every edge exactly once. We show that all
generalized twisted drawings of Kn contain exactly 2n− 4 empty trian-
gles, by this making a substantial step towards proving the conjecture
that this is the case for every simple drawing of Kn.

Keywords: Simple drawings · Simple topological graphs · Empty
triangles

1 Introduction

Simple drawings are drawings of graphs in the plane or on the sphere such that
vertices are distinct points, edges are Jordan arcs connecting their endpoints, and
edges intersect at most once either in a proper crossing or in a shared endpoint.
The edges and vertices of a drawing partition the plane into regions, which are
called the cells of the drawing. A triangle in a simple drawing D is a subdrawing
of D which is a drawing of K3. By the definition of simple drawings, any triangle
is crossing free and thus splits the plane (or the sphere) in two connected regions.
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We call those regions the sides of the triangle. If one side of a triangle does not
contain any vertices of D, that side is called an empty side of the triangle, and
the triangle is called empty triangle. Note that empty (sides of) triangles might
be intersected by edges. We observe that simple drawings of K3 consist of exactly
one triangle, which has two empty sides. Triangles in simple drawings of graphs
with n ≥ 4 vertices have at most one empty side.

In this work, we study the number of empty triangles in simple drawings
of Kn. Note that simple drawings are a topological generalization of straight-
line drawings. The number h3(n) of empty triangles that every straight-line
drawing of Kn contains has been subject of intensive research. It is easy to see
that h3(n) = Ω(n2). The currently best known bounds are n2 − 32

7 n + 22
7 ≤

h3(n) ≤ 1.6196n2 + o(n2) [2,6].
For simple drawings of complete graphs, the situation changes drastically.

Harborth [9] showed in 1989 that there are simple drawings of Kn that contain
only 2n− 4 empty triangles; see Fig. 1b. This especially implies that most edges
in these drawings are not incident to any empty triangles. On the other hand,
Harborth observed that every vertex in these drawings is incident to at least two
empty triangles, a property he conjectured to be true in general. This conjecture
has been proven in 2013 [8,13]. The currently best lower bound on the number
of empty triangles in simple drawings of Kn is n [4]. Further, it is conjectured
that Harborth’s upper bound should actually be the true lower bound.

Conjecture 1 ([4]). For any n ≥ 4, every simple drawing of Kn contains
at least 2n − 4 empty triangles.

The drawings that Harborth used for his upper bound are now well known as
twisted drawings [12] and have received considerable attention [1,5,7,10–12,14].
A generalization of twisted drawings was introduced in [3] as a special type of
c-monotone drawings. A simple drawing D in the plane is c-monotone if there
is a point O such that any ray emanating from O intersects any edge of D at
most once. A c-monotone drawing D is generalized twisted if there exists a ray r
emanating from O that intersects every edge of D.

As twisted drawings and the upper bound obtained by them are crucial in
the study of empty triangles, it is natural to ask about the number of triangles in
their generalization. The initial goal of this work was to prove Conjecture 1 for
generalized twisted drawings. As the number of such drawings is exponential (in
the number of vertices), one might expect that they contain different numbers
of empty triangles. However, we show that surprisingly, the conjectured bound
is tight for all of them.

Theorem 1. For any n ≥ 4, every generalized twisted drawing of Kn contains
exactly 2n − 4 empty triangles.

Outline. In Sect. 2, we introduce some properties of generalized twisted draw-
ings and empty triangles in general simple drawings. Then, in Sect. 3, we show
several results about empty triangles in generalized twisted drawings, which we
finally put together to obtain a proof of Theorem 1.
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Fig. 1. All (up to weak isomorphism) generalized twisted drawings of K5 and K6. O
and Z have to lie in cells marked with red squares or in cells with blue crosses. Curves
OZ are drawn dashed or dash-dotted (and as ray in c). (Color figure online)

2 Preliminaries

Two simple drawings are weakly isomorphic if the same pairs of edges cross. It
is well-known that the weak isomorphism class of a drawing of Kn completely
determines which triangles are empty. To prioritize readability, several of our
figures show drawings that are weakly isomorphic to generalized twisted (sub-
)drawings rather than a generalized twisted drawing.

For a generalized twisted drawing D of Kn, we put a point Z into the
unbounded cell of D, on the ray r that crosses everything. Similarly, for every
drawing that is weakly isomorphic to a generalized twisted drawing, there exists
a simple curve OZ corresponding to the part of the ray r from O to Z; see [3].
Note that, given a simple drawing D of Kn, there might be several cell pairs
where O and Z could be placed such that D is weakly isomorphic to a gener-
alized twisted drawing with the corresponding cells for O and Z. For instance,
Fig. 1 shows all [3] generalized twisted drawings of K5 and K6 up to weak iso-
morphism, together with all possible cell pairs for O and Z and some curve OZ
for each pair. With this addition of O and Z, we will use the following properties
of generalized twisted drawings, which have been shown in [3].

Lemma 1 ([3]). Let D be a simple drawing in the plane that is weakly isomor-
phic to a generalized twisted drawing of Kn. Then the following holds:
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1. For each triangle of D, the cell containing O and the cell containing Z lie
on different sides. In particular, this implies that D does not contain three
interior-disjoint triangles.

2. The cells containing O and Z each have at least one vertex on their boundary.
3. Every subdrawing of D induced by four vertices contains a crossing. If p is

such a crossing, then O and Z lie in two different cells that are incident to p
and opposite to each other (see Fig. 2a for an illustration).

Fig. 2. (a) O and Z have to lie in cells marked with red squares or in cells with blue
crosses. (b) The edge (x, y) cannot cross (v, u) and (v, w) simultaneously. (Color figure
online)

We will also use the following technical lemma for simple drawings.

Lemma 2. Let D be a simple drawing of Kn. Let Δ be a triangle of D with
vertices u, v, w. Let x, y be two vertices on the same side of Δ. If the edge (x, v)
crosses (u,w), then the edge (x, y) can cross at most one of (v, u) and (v, w).

Proof. Assume that (x, y) crosses both (v, u) and (v, w). Since x and y are on the
same side of Δ, the edge (x, y) must cross the boundary of Δ an even number
of times. Thus, if (x, y) crosses (v, u) and (v, w), it cannot cross (u,w). Let p
be the crossing point between (x, v) and (u,w). See Fig. 2b for an illustration.
Suppose that (x, y) crosses first (v, u) and then (v, w). After crossing (v, u), the
edge (x, y) and the vertex y are in different regions defined by the closed curve C
consisting of (v, u), the part of the edge (u,w) from u to p and the part of the
edge (x, v) from p to v. Then, after crossing (v, u), the edge (x, y) must cross C to
reach y, and this is not possible without violating the simplicity of the drawing.
Therefore, (x, y) cannot cross (v, u) and (v, w) simultaneously. An analogous
analysis can be done if (x, y) crosses first (v, w) and then (v, u).

In addition to the properties of generalized twisted drawings, we will use the
concept of star triangles as introduced in [4]. A triangle Δ with vertices x, y, z is
a star triangle at x if yz is not crossed by any edges incident to x. We will use
the following properties of star triangles in simple drawings of Kn.
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Lemma 3. Let D be a simple drawing of Kn in the plane and x be a vertex
of D. Then the following holds:

1. There are at least two empty star triangles at x.
2. A star triangle xyz at a vertex x is an empty triangle if and only if the vertices

y and z are consecutive in the rotation around x.
3. For any two different empty star triangles at x, xy′z′ and xyz, the empty

sides of xy′z′ and xyz are disjoint.

Proof. Properties 1 and 2 have been shown in [4]. To prove Property 3, consider
the boundary edges of the triangles xyz and xy′z′. Of these edges, the only pair
that could cross is (y, z) and (y′, z′). However, y′ and z′ lie on the same side of
the triangle xyz, so (y′, z′) has to cross the boundary of xyz an even number
of times, which is not possible if exactly (y, z) and (y′, z′) cross. Thus, no edges
on the boundary of the star triangles cross, and therefore their empty sides are
disjoint.

3 Proof of Theorem 1

In the following, we derive several lemmata about empty triangles in generalized
twisted drawings. These lemmata put together will give the proof of Theorem 1.

Lemma 4. Let D be a generalized twisted drawing of Kn in the plane with n ≥ 4
and x be a vertex of D. Then x is incident to exactly two empty star triangles,
one has O on the empty side and the other has Z on the empty side. Further,
these star triangles have disjoint empty sides.

Proof. By Lemma 3 (1 and 3), for every vertex x there are at least two empty star
triangles at x and the empty sides of these triangles are disjoint. By Lemma 1(1),
any triangle of a generalized twisted drawing has O on one side and Z on the
other side, and D cannot contain three interior-disjoint triangles. Thus, for any
vertex x in a generalized twisted drawing it holds that: (i) one empty star triangle
at x has O on the empty side, (ii) another empty star triangle at x has Z on the
empty side, and (iii) there cannot be a third empty star triangle at x.

Lemma 5. Let D be a generalized twisted drawing of Kn with n ≥ 4. Let CO

be the cell of D containing O and let v be a vertex on the boundary of CO. Let
Δ be an empty triangle in D that has O on the empty side. Then the following
holds:

1. The vertex v is a vertex of Δ, that is, Δ = xyv for some x, y.
2. The triangle Δ = xyv is an empty star triangle at x or y or both.
3. If Δ = xyv is a star triangle at both x and y, then all edges emanating from

v cross (x, y). Hence, Δ is a star triangle for at most two of its vertices.
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Proof. Since Δ has O on its empty side and since CO is a cell of D, Δ also
has CO on the empty side. Therefore, since v belongs to CO and Δ is empty,
necessarily v must be one of the vertices of Δ and Property 1 is fulfilled.

To prove Property 2, assume to the contrary that Δ = xyv is not a star
triangle at x or y. Then at least one edge (x, x′) must cross (v, y) at a point
q′ and at least an edge (y, y′) must cross (v, x) at a point q (see Fig. 3a for an
illustration). Note that since Δ is empty and any edge incident to x or y can
cross Δ at most once, (x, x′) and (y, y′) must emanate from x and y, respectively,
at the empty side of Δ, and cross at a point p on that side of Δ. Without loss
of generality, we may assume that O is very close to v. Consider the subdrawing
D′ induced by x, x′, y and y′. Observe that since (x, y′) cannot cross (x, v) or
(y, y′), the cell of D′ defined by x, p and y′ cannot contain O, regardless of the
shape of (x, y′). Thus, by Lemma 1(3) applied to D′, O is in the region defined
by x′, p and y′, and Z is in the region defined by x, p and y, contradicting that
O and Z lie on different sides of Δ.

Fig. 3. (a) Illustrating the proof of Lemma 5(2). (b) Any empty triangle of D that has
O on the empty side cannot be a star triangle at three vertices.

To prove Property 3, take a vertex w that is not a vertex of Δ. By
Lemma 1(3), the subdrawing induced by v, x, y and w has a crossing. As Δ
is a star triangle at x and y, any edge incident to x or y emanates from x or
y on the non-empty side of Δ, so neither (x,w) nor (y, w) can cross Δ. Then
(v, w) must cross (x, y), emanating from v on the empty side of Δ. Therefore,
Property 3 follows.

Note that by Lemma 1(2), the cell containing O always has a vertex on its
boundary. Hence, by Lemma 5, any empty triangle with O on the empty side is
a star triangle at one or two vertices. The following lemma proves that there are
exactly two such triangles that are star triangles at two vertices.

Lemma 6. Let D be a generalized twisted drawing of Kn with n ≥ 4. Then
D contains exactly two empty triangles with O on the empty side that are star
triangles at two vertices.

Proof. Let CO be the cell containing O and v be a vertex on the boundary
of CO, which exists by Lemma 1(2). By Lemma 4, there is an empty star triangle
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Δ = vuw at v that has CO on the empty side. By Lemma 5, Δ is a star triangle
at exactly one of u or w, say w. Thus, Δ is an empty star triangle at two vertices
with O on the empty side.

On the other hand, by Lemma 5(3), all edges emanating from u cross (v, w).
Among all edges crossing (v, w), we choose the edge (a, b) that crosses (v, w)
closest to v. Let p be the crossing point between (a, b) and (v, w), and consider
the triangle vab. We will show that the triangle vab is a star triangle at a and b
and that the side F of it in which O lies is empty.

If a �= u, then (a, b) crosses (v, u) at a point q; see Fig. 4. Note that F is
partitioned into three triangular shapes vaq, vqp, and vpb, where O lies in vqp.
Assume, for a contradiction, that a vertex x lies in vbp. Since (a, x) can cross
neither (a, b) nor (v, p), it has to cross (v, b). As no simple drawing of the K4 can
contain more than one crossing, the edges xv and xb have to stay completely in
F . Since (v, p) is crossing-free, the edges (x, v) and (x, b) must be in vbp, one side
of the triangle vxb is contained in vpb. As O is not on the side of vxb contained
in F , then Z has to be on that side. This implies that both O and Z are in F , a
contradiction. Therefore, vbp is empty. Using a similar argument, one can prove
that vqa is also empty, so F is empty. Besides, any edge incident to a or b must
emanate outside F because (v, p) is crossing free. As a consequence, F is the
empty side of the triangle vab, which is a star triangle at a and b.

The reasoning for a = u is similar (with two triangular shapes vup and vpb).

Fig. 4. Illustrating the proof of Lemma 6.

What remains to show is that there is no third empty triangle with O on
the empty side that is a star triangle at two vertices. Assume for a contradiction
that such a triangle x′y′z′ exists. By Lemma 5(1), one of x′, y′ and z′ must be v,
say z′ = v. As v, a, and b are incident to at most one empty star triangle with O
on the empty side, by Lemma 4, x′ and y′ are different from a and b, and vx′y′

is a star triangle at x′ and y′. Consider the triangle vab. Since x′ and y′ are on
the same side of vab and (v, x′) crosses (a, b) by Lemma 5(3), the edge (x′, y′)
cannot cross (v, a) and (v, b) by Lemma 2. But all edges emanating from v must
cross (x′, y′) by Lemma 5(3), a contradiction. Hence x′y′z′ cannot exist.

We note that the lemmata above and their proofs hold for every choice of CO

(if there are many) and any vertex v on the boundary CO. However, whether a
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triangle is empty and at how many vertices it is a star triangle does not change
between weakly isomorphic drawings. As a consequence, the empty star triangles
obtained in the previous lemmata and proofs must be the same, regardless of
the choice of CO and the vertex v on the boundary of CO. We also note that for
empty triangles having Z on the empty side, the reasoning in Lemmas 5 and 6
works to prove that these triangles are star triangles at one or two vertices, and
that exactly two of them are star triangles at two vertices. By Lemma 6 and
these observations, we get the following lemma.

Lemma 7. Let D be a generalized twisted drawing of Kn with n ≥ 4. Then D
contains exactly four empty triangles that are star triangles at two vertices.

Now, we can prove our main theorem.

Proof (of Theorem 1). When summing up the number of empty star triangles
over all vertices, we obtain 2n empty star triangles by Lemma 4 (n triangles
with O on the empty side and n with Z on the empty side). By Lemma 5, all
empty triangles have been counted this way, but the triangles that are empty
star triangles at two vertices have been counted twice. By Lemma 7, there are
exactly four triangles that are empty star triangles at two vertices. Thus, there
are exactly four triangles that have been counted exactly twice and the precise
number of empty triangles in D is 2n − 4.
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10. Kynčl, J., Valtr, P.: On edges crossing few other edges in simple topological com-
plete graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp.
274–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11618058 25

11. Omaña-Pulido, E., Rivera-Campo, E.: Notes on the twisted graph. In: Márquez, A.,
Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 119–125. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34191-5 11
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Abstract. Simple drawings are drawings of graphs in which two edges
have at most one common point (either a common endpoint, or a proper
crossing). It has been an open question whether every simple drawing
of a complete bipartite graph Km,n contains a plane spanning tree as a
subdrawing. We answer this question to the positive by showing that for
every simple drawing of Km,n and for every vertex v in that drawing, the
drawing contains a shooting star rooted at v, that is, a plane spanning
tree containing all edges incident to v.
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1 Introduction

A simple drawing is a drawing of a graph on the sphere S2 or, equivalently,
in the Euclidean plane where (1) the vertices are distinct points in the plane,
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points, (3) no edge passes through vertices other than its incident vertices, (4)
and every pair of edges intersects at most once, either in a common endpoint, or
in the relative interior of both edges, forming a proper crossing. Simple drawings
are also called good drawings [5,7] or (simple) topological graphs [11,12]. In star-
simple drawings, the last requirement is softened so that edges without common
endpoints are allowed to cross several times. Note that in any simple or star-
simple drawing, there are no tangencies between edges and incident edges do
not cross. If a drawing does not contain any crossing at all, it is called plane.

The search for plane subdrawings of a given drawing has been a widely con-
sidered topic for simple drawings of the complete graph Kn which still holds
tantalizing open problems. For example, Rafla [14] conjectured that every sim-
ple drawing of Kn contains a plane Hamiltonian cycle, a statement which is by
now known to be true for n ≤ 9 [1] and several classes of simple drawings (e.g., 2-
page book drawings, monotone drawings, cylindrical drawings), but still remains
open in general. A related question concerns the least number of pairwise disjoint
edges in any simple drawing of Kn. The currently best lower bound is Ω(n1/2)
[3], which is improving over several previous bounds [8–10,12,13,15,16], while
the trivial upper bound of n/2 would be implied by a positive answer to Rafla’s
conjecture. A structural result of Fulek and Ruiz-Vargas [10] implies that every
simple drawing of Kn contains a plane sub-drawing with at least 2n − 3 edges.

We will focus on plane trees. Pach et al. [12] proved that every simple drawing
of Kn contains a plane drawing of any fixed tree with at most c log1/6 n vertices.
For paths specifically, every simple drawing of Kn contains a plane path of
length Ω( log n

log log n ) [3,17]. Further, it is trivial that simple drawings and star-
simple drawings of Kn contain a plane spanning tree, because every vertex is
incident to all other vertices and adjacent edges do not cross. Thus, the vertices
together with all edges incident to one vertex form a plane spanning tree. We
call this subdrawing the star of that vertex.

In this work, we consider the search for plane spanning trees in drawings of
complete bipartite graphs. Finding plane spanning trees there is more involved
than for Kn. In fact, not every star-simple drawing of a complete bipartite graph
contains a plane spanning tree; see Fig. 1.

Fig. 1. Star-simple drawing of K2,3 that does not contain a plane spanning tree.
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Fig. 2. Left: Simple drawing of K3,3. Right: its stereographic projection from r1.

It is not hard to see that straight-line drawings of complete bipartite graphs
always contain plane spanning trees. Consider the star of an arbitrary vertex v.
The prolongation of these edges creates a set of rays originating at v that par-
titions the plane into wedges, which we divide into two parts using the angle
bisectors. We connect the vertices in each part of a wedge to the point on the
ray that bounds it. These connections together with the star of v form a plane
spanning tree of a special type called shooting star. A shooting star rooted at v
is a plane spanning tree with root v that has height 2 and contains the star of
vertex v. Aichholzer et al. showed in [4] that simple drawings of K2,n and K3,n,
as well as so-called outer drawings of Km,n, always contain shooting stars. Outer
drawings of Km,n [6] are simple drawings in which all vertices of one bipartition
class lie on the outer boundary.

Results. We show in Sect. 2 that every simple drawing of Km,n contains shoot-
ing stars rooted at an arbitrary vertex of Km,n. The tightness of the conditions
is shown in Sect. 3 and in Sect. 4 we discuss algorithmic aspects.

2 Existence of Shooting Stars

In this section, we prove our main result, the existence of shooting stars:

Theorem 1. Let D be a simple drawing of Km,n and let r be an arbitrary vertex
of Km,n. Then D contains a shooting star rooted at r.

Proof. We can assume that D is drawn on a point set P = R ∪ B, R =
{r1, . . . , rm}, B = {b1, . . . , bn}, in which the points in the two bipartition classes
R and B are colored red and blue, respectively. Without loss of generality let
r = r1.

To simplify the figures, we consider the drawing D on the sphere and apply a
stereographic projection from r onto a plane. In that way, the edges in the star
of r are represented as (not necessarily straight-line) infinite rays; see Fig. 2. We
will depict them in blue. In the following, we consider all edges oriented from
their red to their blue endpoint. To specify how two edges cross each other, we
introduce some notation. Consider two crossing edges e1 = ribk and e2 = rjbl

and let x be their crossing point. Consider the arcs xri and xbk on e1 and xrj and
xbl on e2. We say that e2 crosses e1 in clockwise direction if the clockwise cyclic
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e1
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Fig. 3. Left: e2 crosses e1 in clockwise direction. Right: e2 crosses e1 in counterclockwise
direction.

order of these arcs around the crossing x is xri, xrj , xbk, and xbl. Otherwise, we
say that e2 crosses e1 in counterclockwise direction; see Fig. 3.

We prove Theorem 1 by induction on n. For n = 1 and any m ≥ 1, the whole
drawing D is a shooting star rooted at any vertex, and in particular at r.

Assume that the existence of shooting stars rooted at any vertex has been
proven for any simple drawing of Km,n′ with n′ < n. By the induction hypothesis,
the subdrawing of D obtained by deleting the blue vertex b1 and its incident
edges contains at least one shooting star rooted at r. Of all such shooting stars,
let S be one whose edges have the minimum number of crossings with rb1, and let
M be the set of edges of S that are not incident to r. We will show that S∪{rb1}
is plane and hence forms the desired shooting star. Note that it suffices to show
that M ∪ {rb1} is plane, since rb1 cannot cross any edges of {⋃n

j=2 rbj} in any
simple drawing.

Assume for a contradiction that rb1 crosses at least one edge in M . When
traversing rb1 from b1 to r, let x be the first crossing point of rb1 with an edge
rkbt in M . W.l.o.g., when orienting rb1 from r to b1 and rkbt from rk to bt, rkbt

crosses rb1 in counterclockwise direction (otherwise we can mirror the drawing).
Suppose first that the arc rkx (on rkbt and oriented from rk to x) is crossed

in counterclockwise direction by an edge incident to b1 (and oriented from the
red endpoint to b1). Let e = rlb1 be such an edge whose crossing with rkx at
a point y is the closest to x. Otherwise, let e be the edge rkb1 and y be the
point rk. In the remaining figures, we represent in blue the edges of the star of r,
in red the edges in M , and in black the edge e.

We distinguish two cases depending on whether e crosses an edge of the star
of r. The idea in both cases is to define a region Γ and, inside it, redefine the
connections between red and blue points to reach a contradiction.

Case 1: e does not cross any edge of the star of r. Let Γ be the closed region
of the plane bounded by the arcs yb1 (on e), b1x (on rb1), and xy (on rkbt); see
Fig. 4. Observe that all the blue points bj lie outside the region Γ and that for all
the red points ri inside region Γ , the edge rib1 must be in Γ . Let MΓ denote the
set of edges rib1 with ri ∈ Γ and note that rkb1 ∈ MΓ . Consider the set M ′ of
red edges obtained from M by replacing, for each red point ri ∈ Γ , the (unique)
edge incident to ri in M by the edge rib1 in MΓ , and keeping the other edges in
M unchanged. In particular, the edge rkbt has been replaced by the edge rkb1.
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Fig. 4. Illustration of Case 1.

The edges in MΓ neither cross each other nor cross any of the blue edges rbj .
Moreover, we now show that the non-replaced edges in M must lie completely
outside Γ . These edges can neither cross rkbt (by definition of M) nor the arc b1x
(on rb1). Thus, if they are incident to b1, they cannot cross the boundary of Γ ; If
they are not incident to b1, both their endpoints lie outside Γ and they can only
cross the boundary of Γ at most once (namely, on the arc b1y). Therefore, M ′

satisfies that M ′ ∪ {⋃n
j=2 rbj} is plane and has fewer crossings with rb1 than M ,

since at least the crossing x has been eliminated and no new crossings have
been added. This contradicts the definition of M as the one with the minimum
number of crossings with rb1.

Case 2: e crosses the star of r. When traversing e from rk or rl (depending
on the definition of e) to b1, let I = {α, β, . . . , ρ} be the indices of the edges
of the star of r in the order as they are crossed by e and let yα, . . . , yρ be the
corresponding crossing points on e. Note that, when orienting e from rk or rl

to b1, the edges rbξ, ξ ∈ I, oriented from r to bξ, cross e in counterclockwise
direction, since they can neither cross rkbt (by definition of M) nor rb1.

The three arcs ryα (on rbα), yαb1 (on e), and b1r divide the plane into two
(closed) regions, Πleft, containing vertex rk, and Πright, containing vertex bt. For
each ξ ∈ I, let Mξ be the set of red edges of M incident to some red point in
Πright and to bξ. Note that all the edges in Mξ (if any) must cross the edge e.
When traversing e from rk or rl to b1, we denote by xξ, zξ the first and the
last crossing points of e with the edges of Mξ ∪ rbξ, respectively; see Fig. 5 for
an illustration. We remark that both xξ and zξ might coincide with yξ and, in
particular, if Mξ = ∅ then xξ = yξ = zξ.

We now define some regions in the drawing D. Suppose first that there are
edges in M (oriented from the red to the blue point) that cross rb1 (oriented from
r to b1) in clockwise direction. Let rsbη be the edge in M whose clockwise crossing
with rb1 at a point x′ is the closest one to x (recall that the arc b1x on rb1 is not
crossed by edges in M). Then, if η /∈ I, we denote by Wη the region bounded
by the arcs rx′ (on rb1), x′bη (on rsbη), and rbη and not containing b1; see
Fig. 5 (left). If η ∈ I, we define Wη as the region bounded by the arcs rx′ (on rb1),



54 O. Aichholzer et al.

Fig. 5. Illustration of Case 2. Region Πright is striped in gray, region Γ is shaded in
blue, and regions in

⋃
ξ∈I Wξ ∪ Wη are shaded in yellow. Left: bη does not cross e

(η /∈ I). Right: bη crosses e (η ∈ I). (Color figure online)

x′bη (on rsbη), bηzη, zηyη (on e), and yηr (on rbη) and not containing b1; see
Fig. 5 (right). If no edges in M cross rb1 in clockwise direction, then η is undefined
and we set Wη = ∅ for convenience. Moreover, for each ξ ∈ I \ {η}, we define
Wξ as the region bounded by the arcs xξbξ, bξzξ, and zξxξ (and not containing
b1); see again Fig. 5.

We can finally define the region Γ for Case 2, which is the region obtained
from Πleft by removing the interior of all the regions Wξ, ξ ∈ I plus region Wη

if η /∈ I (otherwise it is already contained in
⋃

ξ∈I Wξ). Now consider the set of
red and blue vertices contained in Γ . Let J denote the set of indices such that
for all j ∈ J , the blue point bj lies in Γ (note that 1 ∈ J). Since bt is not in Γ ,
we can apply the induction hypothesis to the subdrawing of D induced by the
vertices in Γ plus r. Hence there exists a set of edges MΓ connecting each red
point in Γ with a blue point bj , j ∈ J such that MΓ ∪ {⋃j∈J rbj} is plane.
Moreover, all the edges in MΓ lie entirely in Γ : An edge in MΓ cannot cross any
of the edges rbj , with j ∈ J . Thus, it cannot leave Πleft, as otherwise it would
cross e twice. Further, if it entered one of the regions in

⋃
ξ∈I Wξ ∪Wη, it would

have to leave it crossing e, and then it could not re-enter Γ .
Consider the set M ′ of red edges obtained from M by replacing, for each red

point ri ∈ Γ , the edge ribξ in M by the edge ribj , j ∈ J , in MΓ , and keeping
the other edges in M unchanged. In particular, the edge rkbt has been replaced
by some edge rkbj , j ∈ J . The edges in MΓ neither cross each other nor cross
any of the blue edges rbj , j ∈ J nor any of the other ones, lying completely
outside Γ . Moreover, the non-replaced edges in M cannot enter Γ since the only
boundary part of Γ that they can cross are arcs on e. Therefore, M ′ satisfies
that M ′ ∪ {⋃n

j=2 rbj} is plane and has fewer crossings with rb1 than M . This
contradicts the definition of M as the one with the minimum number of crossings
with rb1. ��
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Fig. 6. Left: A simple drawing of Km,n where no plane subdrawing has more edges
than a shooting star. Right: convex (n + m)-gon on the convex hull (green). (Color
figure online)

3 Some Observations on Tightness

There exist simple drawings of Km,n in which every plane subdrawing has at
most as many edges as a shooting star. For example, consider a straight-line
drawing of Km,n where all vertices are in convex position such that all red
points are next to each other in the convex hull; see Fig. 6 (left). The convex
hull is an (m + n)-gon which shares only two edges with the drawing of Km,n;
see Fig. 6 (right). All other edges of the drawing of Km,n are diagonals of the
polygon. As there can be at most (m+n)− 3 pairwise non-crossing diagonals in
a convex (m + n)-gon, any plane subdrawing of this drawing of Km,n contains
at most m + n − 1 edges.

Furthermore, both requirements from Theorem 1—the drawing being simple
and containing a complete bipartite graph—are in fact necessary: As mentioned
in the introduction, not all star-simple drawings of Km,n contain a plane spanning
tree. Further, if in the example in Fig. 6 (left), we delete one of the two edges of
Km,n on the boundary of the convex hull, then any plane subdrawing has at most
m + n − 2 edges and hence it cannot contain any plane spanning tree.

4 Computing Shooting Stars

The proof of Theorem 1 contains an algorithm with which we can find shooting
stars in given simple drawings. We start with constructing the shooting star for
a subdrawing that is a Km,1 and then inductively add more vertices. Every time
we are adding a new vertex, the shooting star of the step before is a set fulfilling
all requirements of M1∪{⋃n

j=2 rbj} in the proof. By replacing edges as described
in the proof, we obtain a new set with the same properties and fewer crossings.
We continue replacing edges until we obtain a set of edges (M in the proof) that
form a shooting star for the extended vertex set. We remark that the runtime of
this algorithm might be exponential, as finding the edges of MΓ might require
solving the problem for the subgraph induced by Γ . However, we believe that
there exists a polynomial-time algorithm for this task.

Open Problem 1. Given a simple drawing of Km,n, is there a polynomial-time
algorithm to find a plane spanning tree contained in the drawing?
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r

Fig. 7. An example of a shooting star rooted at r in a monotone drawing of K9,5.

For some relevant classes of simple drawings of Km,n we can efficiently com-
pute shooting stars. This is the case of outer drawings. In [4] it was shown that
these drawings contain shooting stars and this existential proof leads directly
to a polynomial-time algorithm to find shooting stars in outer drawings. In the
full version of this paper [2] we show that monotone drawings of Km,n, which
are simple drawings in which all edges are x-monotone curves, admit an efficient
algorithm for computing a shooting star. Figure 7 shows an illustration. The idea
is as follows. Let the sides of the bipartition be R and B and let v be the leftmost
vertex (without loss of generality assume r ∈ R). We first consider the star of r,
which we denote by T . For each vertex w ∈ R not in T we shoot two vertical
rays, one up and one down. If only one of those vertical rays intersects T we con-
nect w with the endpoint in B of the first intercepted edge. If both vertical rays
intersect T we consider the endpoints in B of the first edge intercepted by the
upwards and the downwards ray. We connect w with the horizontally closest one
of the two. If neither of the rays intersects T we connect w with the horizontally
closest vertex in B. In the full version [2] we prove that this indeed constructs a
shooting star and we show how to efficiently compute it.
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Abstract. While many graph drawing algorithms consider nodes as
points, graph visualization tools often represent them as shapes. These
shapes support the display of information such as labels or encode var-
ious data with size or color. However, they can create overlaps between
nodes which hinder the exploration process by hiding parts of the infor-
mation. It is therefore of utmost importance to remove these overlaps
to improve graph visualization readability. If not handled by the layout
process, Overlap Removal (OR) algorithms have been proposed as lay-
out post-processing. As graph layouts usually convey information about
their topology, it is important that OR algorithms preserve them as
much as possible. We propose a novel algorithm that models OR as
a joint stress and scaling optimization problem, and leverages efficient
stochastic gradient descent. This approach is compared with state-of-
the-art algorithms, and several quality metrics demonstrate its efficiency
to quickly remove overlaps while retaining the initial layout structures.

Keywords: Layout adjustment · Overlap removal · Stress
optimization · Stochastic gradient descent

1 Introduction

Most dimension reduction algorithms consider data as points (e.g., Multi Dimen-
sional Scaling [23,24], Graph Layout [10,16,26]). However, most visualization
tools represent them by shapes with an area, whether to encode additional data
within the screen representation of the nodes, or because it is simply more visu-
ally pleasing for end-users. Rendering such data that was laid out as points with
shapes creates overlaps that can severely hinder the representation readability
by hiding information. If not handled directly inside the dimension reduction
algorithm (e.g., [11,17]), it is then the responsibility of a post-processing Over-
lap Removal (OR) algorithm to remove these overlaps.

In this paper, we consider the OR problem in graph layouts context, meaning
that our laid out data points are nodes positioned by a graph drawing algorithm.
These nodes are represented as rectangles with a position and size in two dimen-
sions. Other shapes can be considered as well, as long as it is possible to check
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for overlaps and measure a distance between them. We consider that a pair of
nodes overlaps if the intersection of their shapes representations is not null.

An OR algorithm takes a set of nodes positions and sizes as input and move
these nodes to remove all overlaps while optimizing two main criteria: compact-
ness and initial layout preservation. An algorithm that uniformly upscales the ini-
tial layout until there is no overlap perfectly works (e.g., uniform Scaling [4]), but
its result is not satisfactory as it produces very sparse layouts where the nodes vis-
ible areas are significantly reduced. Hence, a good OR algorithm should be able to
optimize compactness by preserving the scale of the initial layout, using its empty
spaces to move nodes apart. Initial layout preservation is also of utmost impor-
tance in a graph drawing context since the initial graph layout is often computed
to emphasize the graph structure. It is then imperative to preserve the mental map
a user has of the initial layout. In addition, graph representations also include visu-
alization of their edges. In that regard, optimizing compactness only is not suited
to the graph context since it ends up hiding the graph edges.

The main contribution of this paper is FORBID1: Fast Overlap Removal By
stochastic gradIent Descent, a novel OR algorithm dedicated to graph draw-
ings that produces overlap-free layouts balancing compactness and initial layout
preservation. To the best of our knowledge, it is the first method to explicitly
optimize the conjunction of these two aspects. It models the problem as a stress
function: each pair of nodes in the overlap-free layout should be put at an ideal
distance such that (i) there is no longer overlaps in the layouts and (ii) the dis-
tances between all the nodes are preserved. This stress is then optimized with
an efficient state-of-the-art stochastic gradient descent algorithm [26]. Lever-
aging Chen et al. [3,4] evaluation protocol, FORBID is compared with major
state-of-the-art OR algorithms on a set of quality metrics specifically selected for
this purpose. It demonstrates great capabilities to preserve initial layouts while
retaining a decent level of compactness.

The remainder of this paper is organized as follows. Section 2 presents related
works principally centered around the description of OR algorithms and their
evaluation as proposed in [3,4]. Section 3 describes FORBID algorithm, while
Sect. 4 reports its evaluation. Finally, Sect. 5 discusses visual examples of overlap-
free layouts from several OR algorithms as well as FORBID convergence.

Notations: Let G = (V,E) be a graph with V = {v1, v2, ..., vN} its set of
N = |V | nodes and E ⊆ V × V its set of edges. A graph layout is defined as a
tensor X ∈ RN×2 where Xi is the node vi projection in 2D. A node vi is defined
by a rectangle of width and height (wi, hi) centered in Xi. Two nodes overlap
each other if the intersection between their rectangles is not null. For convenience,
we define the set of overlapping pairs of nodes in a graph by O ⊆ V × V .
A corresponding overlap-free layout is defined as X ′ ∈ RN×2. The euclidean
distance between two nodes vi and vj is noted ||Xi − Xj ||.

1 FORBID implementation: https://github.com/LoannGio/FORBID.

https://github.com/LoannGio/FORBID
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2 Related Works

This section presents major prior works in the Overlap Removal (OR) field. As
described in Chen et al. survey [3,4], several efficient OR algorithms exist, many
of which (e.g., [12,14,19]) rely on scan line [6] to detect overlap presency in
O(N log N) and find all overlaps in O(|O|N(log N + |O|)) which can be faster
than the pairwise search in O(N2). These OR algorithms focus on different con-
texts (e.g., graph or generic 2D representation) and optimize different criteria (e.g.,
compactness, layout preservation). PFS [19], PFS’ [12], FTA [14], RWordle-L [22]
and uniform scaling [3,4] rely on the scan line algorithm to remove overlaps. PFS,
PFS’ and FTA are made of two passes handling horizontal and vertical movements
separately, while RWordle-L moves nodes on both axes at the same time. In the
end, they all have a quadratic complexity according to how nodes movements are
computed. PRISM [8] models OR as a stress optimization problem in a proxim-
ity graph (i.e., Delaunay triangulation of the initial layout) of a layout and runs
in O(t(mkN + N log N)) where m, k are optimization hyper-parameters and t
depends on the number of overlaps.GTREE [20] leveragesPRISMproximity graph
to remove overlaps, but constructs a minimum spanning tree upon it to reduce
the number of forces to compute. They both propose a good level of initial layout
preservation. As FORBID idea is close to that of PRISM in some way, it will be
further discussed in Sect. 3. VPSC [6,7] models OR as a set of constraints to relax
but tends to highly deform the initial layout. Its complexity is O(CN log C) where
C is the number of constraints in O(N) to relax; leading to a final complexity in
O(N2 log N). Finally, Diamond [18] is another constraint programming-based OR
algorithm in O(N2) that optimizes orthogonal order preservation. Its originality
is to propose to temporarily rotate nodes by 45◦, representing them as diamonds
to facilitate the constraints relaxations.

3 FORBID Algorithm

This section presents FORBID Overlap Removal (OR) algorithm. It is based
on finding an optimal (i.e., smallest) upscaling ratio while minimizing a stress
function that models an overlap-free layout that preserves the initial one. The
optimal scaling ratio is found with binary search, while the stress function is
optimized with the S GD2 algorithm [26] that simulates stochastic gradient
descent. An overview of the algorithm components is presented in Fig. 1 and its
complexity is in O(s(N2 + N log N)) where s is defined later in Sect. 3.3.

3.1 Stress Modelization for Overlap Removal

Preliminaries. Traditional graph layout algorithms (e.g., [2,16,21,26]) often
optimize a stress function that has been shown to lead to meaningful layouts
and is defined as:

σ(X) =
∑

i,j∈V

Wij(||Xi − Xj || − δij)2 (1)
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Fig. 1. Simplified schema of FORBID algorithm representing how the stress and upscal-
ing criteria are organized together. Gears represent the algorithms FORBID relies on
(i.e., S GD2 [26] and scan line [6]), and colored boxes represent layouts while white
boxes represent the search for the optimal scaling. (Color figure online)

where δij is an ideal distance that the projected layout should preserve, and Wij

is a weight factor usually set to δ−2
ij . In the graph layout context, δij is set to

the graph theoretical distances so that the projected representation of the graph
enables end-users to apprehend the graph structure.

As proposed by Gansner and Hu [8], stress is also a good criterion for OR
problems. In fact, optimizing stress comes down to fit a distribution of distances
in a low dimensional space to that of a higher space, considered ideal but of too
high dimensions to be represented. The adaptation to an overlap removal context
simply changes the notion of ideal distances. Rather than fitting the projected
positions to match graph theoretical distances, the ideal distances are two-folded
here. For a pair of nodes pij = (vi, vj), with pij /∈ O, the ideal distance δij is
set to their distance ||Xi − Xj || in the original layout. On the other hand, if
pij ∈ O, δij is set to a distance such that vi and vj do not overlap anymore;
that distance depending on the nodes shapes and some design choices. This two-
folded definition enables the optimization of both the preservation of the original
layout and the overlapped nodes movement at the same time.

PRISM [8] is an example of OR algorithm that optimizes stress. It constructs
a proximity graph (Delaunay triangulation of the initial layout) and optimizes
stress alongside its edges. Considering nodes are represented as rectangles, they
define the ideal distance as δij = sij ||Xi−Xj || where sij is an expansion factor of
the edge (vi, vj) computed so that both nodes would be side by side. PRISM main
limitations comes from the use of the proximity graph that does not capture all
the overlaps and only enables the preservation of distances between close nodes
in the initial layout, ignoring longer distances preservation.

FORBID Stress Modelization. For every pair of overlapped nodes, δij is set
to the distance between vi and vj centers if they were tangent in their corner. It
allows one of them to be placed on the circle centered on the other and which radius
is the minimum so that the nodes do not overlap anymore regardless of their rel-
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ative position. This distance ensures that two nodes do not overlap anymore and
favors convergence by adding some margin space between them, which is necessary
for two reasons. First, since stress is optimized by stochastic gradient descent in
FORBID (see Sect. 3.2), the ideal distances will most likely get approximated, but
never perfectly matched. Second, the PRISM definition of ideal distance means
there is only one correct placement for every pair of overlapping nodes that satis-
fies the stress. However, as opposed to PRISM, FORBID optimizes the distances
between all N2 pairs of nodes, making the number of constraints to relax much
higher. This margin enables FORBID to converge faster toward a solution. For-
mally, the stress is defined as Eq. 1 with δij and Wij set to:

δij =

⎧
⎪⎨

⎪⎩

√(
wi+wj

2

)2

+
(

hi+hj

2

)2

, if (vi, vj) ∈ O

||Xi − Xj ||, if (vi, vj) /∈ O

(2)

Wij =

⎧
⎨

⎩

δk∗α
ij , if (vi, vj) ∈ O

δα
ij , if (vi, vj) /∈ O

(3)

where α is generally set to −2 and k ∈ R is an overlap-related factor to tailor
the algorithm behavior to a desired initial layout preservation. The smaller the
weight is given to overlapping pairs of nodes, the more the initial layout will be
preserved at the cost of slower convergence or higher scaling.

3.2 FORBID Stress Optimization

FORBID optimizes stress by stochastic gradient descent by leveraging
S GD2 [26] algorithm. S GD2 models stress as a set of constraints that are
relaxed by individually moving pairs of nodes. The process is based on con-
strained graph layout [1,5], and is optimized by considering the constraints indi-
vidually to efficiently model clothes movements [15]. By individually moving
pairs of nodes to optimize the stress, the algorithm can create new overlaps.
And since overlapping and non-overlapping pairs of nodes have different notions
of ideal distances, δij and Wij are updated at each optimization iteration (every-
time all pairs of nodes have been moved once) so that, at any time, the algorithm
optimizes distances according to the current state of the layout.

S GD2 optimization convergence is based on an annealing step size schedule
that mimicks a stochastic gradient descent. It computes O(N2) movements, but
in practice it converges in very few iterations, making it competitive with other
algorithms (see Sect. 4.3). To make it even faster, we also stop the gradient
descent if, at any iteration, the sum of all nodes movements in the current
iteration is null. This explains why every execution of S GD2 is not necessarily
of the same length (see Sect. 5).

3.3 Scaling to Ensure Convergence

Here, we define the bounding box as the minimum rectangle in which the initial
layout fits. Removing all overlaps in a layout is sometimes not feasible without
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deforming its bounding box, e.g., when the sum of the nodes areas exceeds
the layout bounding box area. Two strategies can overcome this: (i) to allow
the optimization algorithm to distort the bounding shape, or (ii) to scale up
the drawing to create empty spaces that can be used to move nodes. These
two choices boil down to considering that either “more space is needed” or
“nodes must be smaller” to provide an overlap-free layout. The first strategy has
the benefit of limiting the bounding box upscaling, but can result in strongly
distorted layouts that makes it difficult to recognize the original graph structure.
To guarantee that FORBID finds a solution, it uses the second method and
searches for the optimal upscale ratio so that there is enough space to remove
overlaps without deforming its aspect. The optimal upscale ratio is found by
binary search between 1 and the minimum scaling ratio smax for an overlap-free
layout that has not moved any node (i.e., scaling ratio of Scaling [4]). FORBID
moves the nodes until there is no overlap (scan line [6]) and until the scaling
ratio is optimal up to a given precision sstep (e.g., 0.1).

We name pass a call to the optimization algorithm S GD2 (see Sect. 3.2) and
iteration a step within S GD2 (i.e., moving all pairs of nodes once). The max-
imum number of passes over S GD2 is defined by the binary search maximum
depth s ≤ log

(
smax−1

sstep

)
. Since the pass in S GD2 costs O(N2) and that we

test if there remains any overlap right after with the scan line [6] algorithm that
executes in O(N log N); the final complexity of FORBID is O(s(N2+N log N)).

As every pass in the optimization algorithm resets the annealing step size
schedule (see Sect. 3.2), the nodes can be moved a lot at the beginning of every
pass; meaning that FORBID is somewhat allowed to modify the initial layout
more than expected. Hence, we also experiment a variant of FORBID, called
FORBID’, in which the model starts from the scaled initial layout at every pass
of the optimization algorithm. We expect this variant to be able to preserve the
initial layout even better, probably at the cost of convergence speed.

Algorithm 1 presents FORBID algorithm pseudo-code. It has been simplified
by removing the first pass that occurs with the initial scaling of the layout if the
sum of nodes areas is lower than the layout bounding box. In practice, it only
enters the while loop (line 20) to search for the optimal scale if scaling is neces-
sary. The only modification required to implement FORBID’ is to change line 21
into X ′ ← scaleLayout(X, curScale) so that the next pass in the optimization
algorithm starts with the scaled initial layout.

4 FORBID Evaluation

For the sake of reproducibility, we used the same evaluation protocol as in the
Chen et al. survey [3,4]. That includes quality metrics, datasets and algorithms.
This section describes this protocol and presents the results of FORBID compari-
son with the selected algorithms on these datasets and metrics. Finally, FORBID
execution time is also compared with some algorithms.
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Algorithm 1. FORBID pseudo-code
1: Methods
2: getScalingRatio(Layout, Sizes): returns the minimum scaling ratio [3,4] so that

there is no overlap anymore in Layout
3: containsOverlap(Layout, Sizes): [6] returns true if there is overlap in Layout,

false otherwise
4: scaleLayout(Layout, scaleFactor): returns Layout scaled by scaleFactor
5: SGD2 StressOPT(Layout′, Layout, Sizes): One pass of S GD2 [26] to optimize

overlap removal modeled as stress
6: end Methods
7:
8: Variables
9: X: Initial layout, 2D position of every node

10: S: Nodes sizes in 2D, Si = (wi, hi)
11: scaleStep: Scaling step size to stop the search of optimal scale
12: end Variables
13:
14: procedure FORBID(X, S, scaleStep, SGD2 HP )
15: lowScale ← 1
16: upScale ← getScalingRatio(X, S)
17: curScale ← (lowScale + upScale)/2
18: X ′ ← X
19: thereIsOverlap ← containsOverlap(X ′, S)
20: while thereIsOverlap or (upScale − lowScale > scaleStep) do
21: X ′ ← scaleLayout(X ′, curScale)
22: X ′ ← SGD2 StressOPT(X ′, X, S)
23: thereIsOverlap ← containsOverlap(X ′, S)
24: if thereIsOverlap then
25: lowScale ← curScale
26: else
27: upScale ← curScale
28: end if
29: curScale ← (lowScale + upScale)/2
30: end while
31: return X ′

32: end procedure

4.1 Evaluation Protocol

Quality Metrics. The quality metrics used to compare FORBID with other
algorithms from the literature were selected by Chen et al. [3,4]. All are oriented
as lower is better, the optimal value being 0 unless specified otherwise.

oo nni : stands for the Orthogonal Ordering: Normalized Number of Inver-
sions and counts the number of times the nodes orthogonal order have been
violated.

sp ch a [22]: is for Spread Minimization: Convex Hull Area. It measures by
how much the convex hull area of the overlap-free layout is different from the
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one of the initial layout: sp ch a = convex hull area(X′)
convex hull area(X) , the optimal value being 1.

This metric mainly measures the layout scaling.
gs bb iar : means Global Shape preservation: Bounding Box Improved Aspect

Ratio and is a variant of the aspect ratio between the bounding box of the initial
and overlap-free layouts in which the minimal and target value is 1.

nm dm imse : stands for Node Movement minimization: Distance Moved
Improved Mean Squared Error. It quantifies how much the nodes moved from
their position in the initial layout to theirs in the overlap-free layout. To lessen
the effect of positions value domains, the layouts are aligned as follows:

nm dm imse =
1
N

∑

vi∈V

||X ′
i − scale(shift(Xi))||2 (4)

where shift and scale are moving and scaling the initial layout bounding box
to match the center and dimensions of the overlap-free layout. It is important
to mention that both in [3,4] and therefore in this paper, the bounding boxes
computed to scale the layouts do not take the nodes sizes into account.

el rsd : is for Edge Length preservation: Relative Standard Deviation. It mea-
sures by how much the lengths of edges in the Delaunay Triangulation graph of
an initial layout are preserved, i.e., how well short-distances are preserved.

Datasets. Still following Chen et al. [3,4] evaluation protocol, we use the Gen-
erated and Graphviz datasets available online2.

Generated is a set of 840 synthetic graphs specifically generated
for the benchmark in [3,4]. It is made of 120 graphs of each size
10, 20, 50, 100, 200, 500, 1000, laid out with the FM3 algorithm [10]. These lay-
outs have 2770 ± 7567(std) initial overlaps in average, ranging between 0 and
31843.

Graphviz is a set of 14 real-world graphs from the Graphviz suite. They
have between 36 and 1463 nodes and are laid out with SFDP algorithm [13]
and have for between 4 and 11582 initial overlaps (2118± 4078(std) in average).

Baseline Algorithms. As already state (see Sect. 2), there are two main cri-
teria to optimize in overlap removal algorithms: compactness and initial lay-
out preservation. By design, FORBID belongs to the second category and is
then only compared with its corresponding algorithms (i.e., PFS [19], PFS’ [12],
PRISM [8], GTREE [20] and Diamond [18]). Other algorithms create embed-
dings so compact that it is not even possible to visualize the graph edges and
structures anymore; meaning they are not suited to overlap removal for graph
visualization. Scaling is also excluded since it does not look for balance and rawly
upscales the layout; which is not a satisfactory solution on its own.

2 Generated and Graphviz graphs: https://github.com/agorajs/agora-dataset, last
consulted on May 2022.

https://github.com/agorajs/agora-dataset
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4.2 Comparison with Baseline Algorithms on Quality Metrics

This section reports and discusses the performances of FORBID and the selected
algorithms from the literature on the Generated and Graphviz datasets.

On the Generated dataset (see Fig. 2), every algorithm succeeds in minimiz-
ing oo nni , with Diamond and FORBID having slightly higher scores than others
on worst cases (Q3). On sp ch a and gs bb iar , FORBID and FORBID’ have the
best scores by a fair margin, especially on worst cases (Q3). This demonstrates
a good capability to limit the upscaling of the drawing in complicated layouts.
Both FORBID and FORBID’ also minimize nodes movements nm dm imse more
than other algorithms, especially FORBID’ that barely moves the nodes even on
complex cases (nm dm imse = 50.23 on Q3). Finally, FORBID and its variant
both have high scores on el rsd . As defined in Sect. 4.1, this metric measures the
edge length preservation along the edges of the Delaunay Triangulation (DT) of
a graph. Hence, it does not measures that the lengths of the actual graph edges
are preserved, but rather quantifies the preservation of the distances between the
closest nodes. On the other hand, FORBID focuses on the preservation of all the
nodes pairwise distances. These two strategies do not have the same notion of
preservation of the initial layout and by ignoring long distances, PRISM tends
to break the overall layout aspect. In addition, since overlapped nodes are likely
to be adjacent in the DT graph and since our ideal distance between them is

Fig. 2. Quality metrics quartile values for each algorithm on the Generated dataset
(see Sect. 4.1). Cells color are selected based on the median value of the algorithms on
each metric to enhance comparisons readability. The greener/lighter a cell color is, the
better its quality metric score. (Color figure online)

Fig. 3. Quality metrics mean values on the Graphviz dataset (see Sect. 4.1). The
greener/lighter a cell color is, the better its quality metric score. (Color figure online)
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not the shortest possible (see Sect. 3.1), it was expected that FORBID would
distord these distances more than other algorithms (e.g., PRISM).

The performances on the Graphviz dataset are reported in Fig. 3. On that
dataset, the same trend can be observed with slight differences. Here again, every
algorithm successfully minimizes oo nni and both FORBID and FORBID’ are
still ahead by a fair margin on gs bb iar . However, they are no longer the bests
on sp ch a and FORBID’ is the only one to keep the lead on nm dm imse.
On those two metrics, PRISM is slightly better than FORBID, while FORBID’
has a deteriorated sp ch a for a much better node movement nm dm imse in
comparison to other algorithms and to its own performances on the Gener-
ated dataset. In fact, since FORBID’ focuses on preserving the initial layout,
it tends to upscale the layouts more (worsening sp ch a) to minimize the nodes
movements (improving nm dm imse). Finally, both have again the highest el rsd
scores, though the difference with other algorithms is less pronounced.

4.3 Execution Time Comparison with Some Baseline Algorithms

This section compares FORBID execution time with that of the best techniques
according to the performances observed in Sect. 4.2: PFS’, GTREE and PRISM.

Execution times on the Graphviz dataset are reported in Fig. 4 and enable
to categorize three groups of difficulty. FORBID, FORBID’ and PFS’ are instan-
taneous on easy graphs, taking less than 20ms to solve the OR problem, being
about ten to twenty times faster than GTREE and PRISM. On medium com-
plexity graphs, PFS’ achieves again the best performances. FORBID is slower,
but remains faster than GTREE and PRISM by a fair margin, while FORBID’
is slower than GTREE. On these graphs, PRISM is significantly slower than the
four others. Finally, on the hardest graphs, PFS’ is still almost instantaneous.

Fig. 4. Execution time (in ms) of FORBID, FORBID’, GTREE and PRISM on the
Graphviz dataset (see Sect. 4.1). Rows are sorted by “graph complexity” measured
with their number of nodes |V|, edges |E| and overlaps |O|. The greener/lighter a cell
color is, the better its quality metric score. (Color figure online)
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FORBID is faster than the remaining methods, while FORBID’ loses to GTREE.
On hard graphs, PRISM becomes dramatically slower than other algorithms.

In the end, we can conclude that FORBID scales well with the OR problem
complexity, while it is more difficult for FORBID’. For this last, the constraint
to start from the scaled initial layout at each pass in the optimization algorithm
significantly slows its convergence (see Sect. 5) and is responsible of the higher
upscaling observed in Sect. 4.2 that enables a better layout preservation. In com-
parison with PRISM, which also optimizes OR modeled as stress, both FORBID
variants are much faster, while PFS’ faster handles large graphs.

5 Discussion

This section discusses FORBID behavior on some specific graph examples by
comparing it to other algorithms. It also briefly discusses the convergence of
FORBID and FORBID’ variants, highlighting their different behaviors.

Visual Evaluation. This section focuses on the study of FORBID, FORBID’,
PFS’, GTREE and PRISM on three graphs of the Graphviz dataset: mode,
badvoro and root. Both initial and overlap-free layouts are presented in Fig. 5,
while the methods quality metrics are reported in Table 1.

On mode, both FORBID and PRISM damaged the initial layout to produce
more compact embeddings. On the other hand, the others preserved the initial
layout structure, FORBID’ being the most pleasing one. The quality metrics cor-
roborate this observation, with FORBID and PRISM having lower sp ch a (i.e.,
upscaling) scores while FORBID’, PFS’ and GTREE have smaller nm dm imse
(i.e., nodes movements) scores; FORBID’ having the smallest one.

On both badvoro and root, the same trend can be observed between the
Overlap Removal methods. PRISM produces more compact embeddings that
makes it difficult to recognize the initial layout and even to visualize edges. On
the other hand, GTREE produces less compact layouts, but distorts the ini-
tial graph structures. Finally, FORBID, FORBID’ and PFS’ are satisfactory,
but PFS’ upscales the initial layout more than necessary. Again, these obser-
vations are corroborated by the quality metrics presented in Table 1: PRISM
is consistently better on sp ch a, GTREE is not the best on any metric, and
the remaining three have less nodes movements but higher upscaling. The high
nm dm imse scores of PFS’ can be imputed to the fact that this metric is sen-
sitive to the overlap-free layout scale, even though the graph layout structures
seem visually preserved.

Overall, FORBID and FORBID’ produce balanced layout that optimize both
the initial layout preservation and the embedding compactness.

Convergence Analysis. This section studies how re-initializing the layout
at every pass (i.e., call to the optimization algorithm) in FORBID’ affects its
convergence speed in comparison to FORBID. Observations of both variants on
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Fig. 5. Graph visualization of examples from the Graphviz dataset with FORBID,
FORBID’, PFS’ GTREE and PRISM. Nodes are colored in transparent red if they
overlap each other, and opaque blue otherwise. (Color figure online)
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Table 1. Quality metrics of the drawings presented in Fig. 5. For each graph and
quality metric, the best score is highlighted in bold.

FORBID FORBID’ PFS’ GTREE PRISM

mode oo nni 0.20 0.03 0.54 0.05 0.06

sp ch a 2.98 10.35 9.08 7.77 3.72

gs bb iar 1.02 1.01 1.20 1.23 1.52

nm dm imse 20417 1657 8655 10238 17442

el rsd 0.95 0.70 0.39 0.54 0.62

badvoro oo nni 0.01 0.00 0.48 0.02 0.02

sp ch a 11.42 12.40 17.92 13.45 6.87

gs bb iar 1.00 1.00 1.25 1.17 1.85

nm dm imse 979 451 57267 67296 47708

el rsd 0.32 0.23 0.20 0.40 0.39

root oo nni 0.01 0.01 0.53 0.05 0.04

sp ch a 19.17 29.99 48.34 14.29 6.27

gs bb iar 1.01 1.01 1.34 1.30 2.04

nm dm imse 24502 12151 662185 356632 450287

el rsd 0.90 0.72 0.43 0.67 0.72

the mode, badvoro and root Graphviz graphs are presented in Fig. 6. Each plot
reports the number of passes, the length of each pass and the stress, number of
overlaps and scaling ratio evolution against the total number of iterations.

For both FORBID and FORBID’, the number of passes never exceeded 10.
In these executions, the maximum number of iterations in the optimization algo-
rithm was set to 30. Many passes stop before reaching this limit thanks to the
stop condition on null nodes movements (see Sect. 3.2). As the stress and number
of overlaps follow the same trends on every plot, it confirms that optimizing our
stress effectively removes overlaps. The difference between FORBID and FOR-
BID’ is also distinctly observable. In FORBID, most overlaps are removed in
the first few passes while the last ones are dedicated to the search for the opti-
mal upscaling ratio while preserving the overlap-free layout. On the other hand,
FORBID’ has to restart from the scaled initial nodes every time a new pass
begins, the problem being made simpler or harder through a different upscal-
ing ratio. This explains why FORBID’ is consistently slower than FORBID (see
Sect. 4.3) but better preserves the initial layout (see Sect. 4.2).

Finally, we would like to discuss the choice of the binary search upper-bound
smax. In this paper, it was set to the minimum scaling ratio for an overlap-free
layout that has not moved any node (see Sect. 3.3). Doing so guarantees that
FORBID finds a overlap-free layout and solve the Overlap Removal task. Such
an smax value can be high when two nodes are almost perfectly overlapped, but
in practice FORBID output layouts scaling remained far from this upper-bound
during the benchmark (e.g., green lines in Fig. 6). Nevertheless, it would be
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Fig. 6. Convergence plots of FORBID and FORBID’. It reports the evolution of stress,
number of overlaps and scaling ratio against the total number of iterations. Vertical
dashed lines represent beginning of new passes. Stress and number of overlaps are
normalized by their respective maximum value, while upscaling ratio is normalized by
its binary search maximum bound (see Sect. 3.3).

possible to set smax to a lower value to enforce a smaller scaling in the produced
layout, at the cost of initial layout preservation and the guarantee that it is
overlap-free. For instance, smax could be set to twice the sum of nodes areas,
leading toward a layout which bounding box space is at least half occupied, but
there would be no guarantee that this restrained space is enough to provide an
overlap-free layout that preserves the initial one. The notion of overlap itself
could also be approximated with a tolerance to speed up the convergence (i.e.,
consider as not overlapped the pairs of nodes that do overlap by less than a
tolerance margin). In the end, these choices mainly depend on the initial graph
layout and the desired aspect of overlap-free layout. Although it can be slightly
suboptimal, the smax defined and used in this paper (see Sect. 3.3) is better
adapted to the general case.

6 Conclusion

This paper has presented FORBID, an Overlap Removal (OR) algorithm that
leverages upscaling and stress optimization by simulated stochastic gradient



FORBID 75

descent to minimize deformations in the initial layout. FORBID idea is based
on combining upscaling and the preservation of all nodes pairwise distances to
produce an overlap-free layout, focusing on the preservation of the initial graph
layout structures while limiting the surface used. It has been compared to sev-
eral state-of-the-art algorithms, and is among the best techniques to preserve
the initial layout, which is critical in graph drawing to retain the readability of
the graph layout structures. FORBID complexity is in O(s(N2 + N log N)) and
is among the fastest methods on the benchmark graphs (with up to 1463 nodes
and 11 582 Overlaps). Future works leads include improvements of the algo-
rithm complexity to better handle large graphs. The first idea to achieve that is
to sub-sample the nodes pairs to process to remove overlaps. A multi-scale app-
roach could enable to optimize the initial graph layout structures preservation
while sampling the distances to preserve (i.e., preserve distances between-clusters
and within-cluster; ignore between nodes of different clusters). Finally, with the
recent advances in Deep Learning for graph drawing [9,25], we plan to learn a
Deep Learning model solve OR problems. By design, these models can scale to
large graphs as they are capable of solving the task they have learned in almost
constant time.
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porting this work through its foundings OPE 2020–0408 and OPE 2020–0513.
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Abstract. We describe an efficient and scalable spherical graph embed-
ding method. The method uses a generalization of the Euclidean stress
function for Multi-Dimensional Scaling adapted to spherical space, where
geodesic pairwise distances are employed instead of Euclidean distances.
The resulting spherical stress function is optimized by means of stochas-
tic gradient descent. Quantitative and qualitative evaluations demon-
strate the scalability and effectiveness of the proposed method. We also
show that some graph families can be embedded with lower distortion
on the sphere, than in Euclidean and hyperbolic spaces.

1 Introduction

Node-link diagrams are typically created by embedding the vertices and edges of
a given graph in the Euclidean plane and different embedding spaces are rarely
considered. Multi-Dimensional Scaling (MDS), realized via stress minimization
or stress majorization, is one of the standard approaches to embedding graphs
in Euclidean space. The idea behind MDS is to place the vertices of the graph in
Euclidean space so that the distances between them are as close as possible to the

Fig. 1. Applying spherical MDS to embed 30 cities from around the Earth (given
pairwise distances between the cities). The spherical MDS recovers the underly-
ing geometry.
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given graph theoretic distances. Due to the nature of Euclidean geometry, this
cannot always be done without some distortion (e.g., while K3 naturally lives in
2D, K4 does not, as there are no four equidistant points in the Euclidean plane).
Moreover, some graphs “live” naturally in manifolds other than the Euclidean
plane. For example 3-dimensional polytopes, or triangulations of 3-dimensional
objects can be better represented on the sphere, while trees and special lattices
are well-suited to hyperbolic spaces (Fig. 1).

When visualizing graphs in Euclidean space, common techniques include
adapting off-the-shelf dimensionality reduction algorithms to the graph setting.
Such algorithms include the Multi-Dimensional Scaling (MDS) [38], Principal
Component Analysis (PCA) [11], t-distributed Stochastic Neighbor Embedding
(t-SNE) [25], and Uniform Manifold Approximation Projection (UMAP) [26].
The popularity of graph visualisation, and the fact that some of the underlying
datasets are easier to embed in non-Euclidean spaces, led to some visualization
techniques for spherical geometry [9,33] and hyperbolic geometry [19,27,36].
Most of the existing non-Euclidean graph visualization approaches, however,
either lack in accuracy or do not scale to larger graphs.

With this in mind, we propose and analyze a stochastic gradient descent
algorithm for spherical MDS. Specifically, we present a scalable technique to
compute graph layout directly on the sphere, adapting previous work for gen-
eral datasets [9] and applying stochastic gradient descent [34,41]. We provide
an evaluation of the technique by comparing its speed and faithfulness to the
exact gradient descent approach. We also investigate differences in graph lay-
outs between the consistent geometries (Euclidean, spherical, hyperbolic) by
first showing that dilation or resizing has a large effect on layouts in spherical
and hyperbolic geometry, and second by showing some structures can be better
represented in one geometry than the other two. All sourcecode, datasets and
experiments, as well a web based visualization tool are available on GitHub:
https://github.com/Mickey253/spherical-mds.

Note that the proposed method is not restricted to graphs, but is applicable
to any dataset specifying a set of objects and pairwise distances between them.

2 Background and Related Work

We review related work in non-Euclidean geometry and graph layout methods.

2.1 Multi-dimensional Scaling

Using graph-theoretic distances to determine a graph layout dates back to the
Kamada-Kawai algorithm [16]. A more general embedding approach from a given
set of distances is the multi-dimensional scaling (MDS) [38] which has extensively
been applied to graph layout; see [12,13,41]. Both the Kamda-Kawai and (met-
ric) MDS algorithms aim to minimize the stress function, which is the sum of
residual squares between the given and the embedded distances of each pair of
datapoints. Formally, given a graph G = (V,E) with the graph theoretic dis-
tances between its n vertices (dij)

n,n
i,j=1, where the vertices are labeled 1, 2, . . . , n

https://github.com/Mickey253/spherical-mds
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MDS aims to embed the graph in R
d by minimizing the following stress function

to find the locations for its vertices:

σ(X) =
∑

i<j

wij(||Xi − Xj || − dij)2. (1)

The resulting solution of X1,X2, . . . , Xn ∈ R
d represents the coordinates of the

embedded graph vertices.
Various forms of MDS have been analyzed. Metric MDS was first studied

by Shepard [38] (see equation in (3)), and the related non-metric MDS by
Kruskal [21]. Classical MDS is similar but uses an objective function called strain.

The classical MDS has a closed form solution while the metric MDS and
non-metric MDS rely on solving an optimization problems to minimize the corre-
sponding stress functions. Many approaches have been proposed to solve (metric)
MDS including stress majorization [13] and (stochastic) gradient descent [2].

When used for the purposes of visualization, the embedding space for MDS
is almost always 2 dimensional Euclidean, as that is the space of a flat sheet of
paper, or the flat screen of a computer monitor. The natural measure of distance
is then the Euclidean norm.

In this work we will focus on metric MDS, defined in (1) but instead of
embedding the graph in Euclidean space, we embed it directly on the sphere. The
MDS approach has already been applied to embed graphs on spherical [9] and
hyperbolic [27] spaces. Our contribution is to solve the proposed optimization
problem faster and be able to handle larger graphs, address the dilation/resizing
problem, as well as analyze the approach on wider range of graphs and provide
a working and easy to use implementation.

2.2 Non-Euclidean Geometry

Non-Euclidean geometries are a special case of Riemannian geometries, which
are spaces that are locally “smooth”: one can define an inner product on the
tangent space at each point. Spherical and hyperbolic non-Euclidean geometries
are similar to Euclidean geometry, except for one axiom.

Euclid’s Elements specify five axioms/postulates upon which all true state-
ments about geometry should be proved. The fifth axiom is significantly more
involved than the first four and mathematicians attempted for centuries to prove
it using only the first four. In 1892 Lobachevsky and Bolyai independently dis-
covered and published their formulation of hyperbolic geometry by inverting an
equivalent statement to Euclid’s fifth axiom, Playfair’s axiom: In a plane, given
a line and a point not on it, at most one line parallel to the given line can be
drawn through the point. Replace “at most one line” with “at least two distinct
lines” to get hyperbolic geometry. Replace “at most one line” with “there does
not exist a line” to arrive at spherical geometry.

Spherical geometry has benefits in the context of data visualization. In
Euclidean (or hyperbolic) layouts, one is forced to choose a “center” of the
embedding, intentionally or not, whereas on the sphere there is no notion of
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Fig. 2. The Maps of Science dataset [5] laid out using our SMDS algorithm,
from three different perspectives. Each color represents a different field of science
(nodes are subfields), and their relationships exhibit a ring-like structure. Any
field can be placed in the center of the view.

a center (Fig. 5). A perceptual side effect of centered embeddings is that ver-
tices near the center seem more important, while vertices away from the center
seem more peripheral. This problem does not occur in spherical space, where
simple rotation can place any vertex in the center of the view (a feature that
is very useful when visualizing social networks, or networks of research fields);
see Fig. 2. Additionally, many spherical projections into Euclidean space, such
as the stereographic projection, provide a desirable focus+context effect.

Some focus+context type algorithms for visualizing large hierarchies by using
hyperbolic geometry are discussed in [23,24].

Distances in non-Euclidean geometries generalize the concept of a straight
line to that of a geodesic, defined as an arc of shortest length (not necessarily
unique) that contains both endpoints. The distance between two endpoints is
then the length of that curve.

A point on a sphere of radius R is uniquely represented by a pair of angles,
(φ, λ), where 0 ≤ φ ≤ π is known as the latitude and 0 ≤ λ ≤ 2π is the
longitude. Given two points (φ1, λ1), (φ2, λ2) on the sphere with radius R, the
geodesic distance is then derived by the spherical law of cosines:

δ((φ1, λ1), (φ2, λ2)) = R ∗ arccos(sin φ1 sin φ2 + cos φ1 cos φ2 cos(λ1 − λ2)) (2)

where δ(Xi,Xj) denotes the geodesic distance between points Xi and Xj , assum-
ing X is an n × 2 matrix whose rows correspond to spherical coordinates.

It is known that the surface of a sphere cannot be perfectly preserved in
any 2-dimensional Euclidean drawing, due to its curvature. One can preserve
various combintations of angles, areas, geodesics, or distances but not all of
these simultaneously. The orthographic projection, or the “view from space”
projects the sphere onto a tangent plane with point of perspective from outside
the sphere. While half of the sphere is obscured and shapes and area are distorted
near the boundary, geodesics through the origin are preserved and it gives the
impression of a 3-dimensional globe. The stereographic projection is similar but
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Fig. 3. A subdivided isocahedron graph embedded on the sphere, displayed with
the orthographic, stereographic, Mercator, and equal Earth projections.

instead with a point of projection looking through the sphere, and preserves
angles. The Mercator projection is a common cylindrical map projection with
heavy area distortion near the poles. The equal Earth projection preserves area
and gives the impression of a spherical shape. Examples are shown in Fig. 3. We
primarily use the orthographic and equal Earth projections in this paper.

2.3 Graph Layout in Non-Euclidean Geometry

Non-Euclidean graph visualization has been studied by Munzner, with an empha-
sis on trees and hierarchies [28–31], and the following link treevis.net, provides
several examples of hyperbolic and sphere based tree visualizations [37]. Spher-
ical layouts have been investigated in an immersive setting such as virtual real-
ity [22,40]. Self-organizing maps have been developed for both spherical and
hyperbolic geometries [32]. Several other examples of spherical graph visualiza-
tion include the Map of Science [5], the “Places and Spaces” [4], and “Worldpro-
cessor” [15] exhibitions. Some limitations of the existing algorithms for hyper-
bolic graph visualization are discussed in [10].

Force-directed algorithms model the nodes and edges as a physical system,
and provide a layout by minimizing the total energy. These algorithms are popu-
lar in part due to their conceptual simplicity and quality layouts [17]. A general
technique for generalizing force-directed algorithms to non-Euclidean spaces is
described in [18]. However, it only works for small graphs as for larger ones it is
too computationally expensive and is unlikely to escape local minima.

There are several different approaches to embedding a graph on the sphere.
A simple idea is to generate a 2D Euclidean layout and project it onto the sphere
through a linear map [8,33], however, this embedding will not make full use of
spherical geometry. Another approach is to embed the graph in 3D Euclidean
space and modify it to force it on the surface of a sphere [7,33], but this is
quite mathematically involved and complicates the optimization. A more natural
method directly computes a 2D spherical embedding (in latitude and longitude)
such that the geodesic distances on the sphere and graph-theoretic distances
between pairs of vertices are closely matched [9]. We focus on this approach and
make it scalable by adopting stochastic gradient descent for the optimization
phase and by solving the dilation/resizing problem specified below.

http://treevis.net
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Fig. 4. A dodecahedron subdivision graph. Left: a small dilation factor forces
the layout on a small patch of the sphere. Middle: a correct dilation factor using
our heuristic discussed in Sect. 5.1, allows the graph to make use of the spherical
geometry. Right: a large dilation factor makes the distances unachievable.

In the graph drawing literature, the normalized stress of a layout is a stan-
dard quality measure [12,20,42]. This is perfectly acceptable in Euclidean space
where a layout is not meaningfully changed when the layout is resized. For
non-Euclidean graph layouts there is a possible issue of dilation or resizing. For-
mally, a dilation is a function on a metric space M , f : M −→ M that satisfies
d(f(x), f(y)) = rd(x, y) for x, y ∈ M , r > 0 ∈ R and d(x, y) being the distance
between x and y. In non-Euclidean spaces, such as the sphere, the size of a lay-
out can have drastic effects; see Fig. 4. At small dilation, a graph embedded on
the sphere takes only a small patch and the sphere patch behaves like a piece of
the Euclidean plane. At large dilation, a graph embedded on the sphere wraps
over itself. At some optimal dilation the embedded graph fits on the sphere
with low distortion. Choosing the size of the sphere is important to accurately
represent the data. We are unaware of any work regarding this problem in spher-
ical embedding, and propose a heuristic and optimization scheme to solve it in
Sect. 5.1.

As stress is difficult to interpret between geometries, we use a more fair
comparison metric called distortion [27,36] defined later in Sect. 5.

3 Algorithm

Our spherical multi-dimensional scaling algorithm (SMDS) resembles that of
other stress based graph layout algorithms. That is, we first compute a graph-
theoretic distance matrix via an all-pairs-shortest-paths algorithm and then use
this distance matrix as an input to minimize the generalized stress function and
compute vertex coordinates on the sphere. This differs from standard Euclidean
MDS in that Euclidean distances between points are replaced by geodesic dis-
tances between the points on sphere. The corresponding stress function defined
on the sphere is

σS(X) =
∑

i<j

wij(δ(Xi,Xj) − dij)2 (3)
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Fig. 5. The Sierpinski3d [20] graph on the sphere (left) and in the plane (right).
While the Euclidean drawing on the right is aesthetically pleasing, it looks decep-
tively like a 2D structure and implies a center. The sphere more accurately
captures the structure.

where δ(Xi,Xj) denotes the geodesic distance between vertices i and j, dij is the
graph-theoretic distance between vertex i and j, and wij is a weight, typically set
to d−2

ij . However, one can also give preferred weights based on the importance
of the points and based on the application. Another typical choice is binary
weights, where wij is either 0 or 1. Unless otherwise specified, δ corresponds to
the geodesic distances on the unit sphere and δR the geodesic distances on a
sphere with radius R.

We minimize Eq. (3) by stochastic gradient descent (SGD), which we exper-
imentally show converges in fewer iterations while achieving lower distortion
than exact gradient descent for sufficiently large graphs. SGD is a minimiza-
tion approach in the gradient descent family of algorithms. Fully computing the
exact gradient can be too expensive and SGD instead repeatedly performs a
constant time approximation of the gradient, by considering only a single term
of the sum (or subset of terms for mini-batch stochastic), which allows it to make
more updates. As a result, SGD tends to converge in fewer iterations while more
consistently finding the global minimum [35].

To perform SGD on the stress function, we approximate the gradient by look-
ing at only a single pair of vertices. Note that this corresponds to one summand
of the full stress function. If we rewrite Eq. (3) as σS(X) =

∑
i<j fi,j(X) then

we can more simply write the full gradient in terms of f . Apply the chain rule to
see we will need to derive the partial gradient of the geodesic distance function:

∂δ(Xi,Xj)
∂φi

=
− cos φi sin φj − sin φi cos φj cos(λi − λj)√

1 − cos2 (δ(Xi,Xj))

∂δ(Xi,Xj)
∂λi

=
cos φi cos φj sin(λi − λj)√

1 − cos2 (δ(Xi,Xj))
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Unlike in Euclidean space, the gradient of the spherical distance function is
not symmetric, i.e., dδ(Xi,Xj)

d(φi,λi)
�= −dδ(Xi,Xj)

d(φj ,λj)
. Writing out the full gradient:

∂fi,j

∂Xk
=

⎧
⎪⎪⎨

⎪⎪⎩

2wi,j(δ(Xi,Xj) − dij)
(

∂δ(Xi,Xj)
∂φi

,
∂δ(Xi,Xj)

∂λi

)
k = i

2wi,j(δ(Xi,Xj) − dij)
(

∂δ(Xi,Xj)
∂φj

,
∂δ(Xi,Xj)

∂λj

)
k = j

0 otherwise

(4)

We can apply SGD to Eq. (3) by selecting pairs i, j in random order, and
updating X by X − η

∂fi,j

∂Xk
where η is the learning rate; see Algorithm 1.

We randomly initialize the placement of vertices uniformly on the sphere, as
other work has shown that SGD is consistent across initialization strategies [1,
27,41].

Algorithm 1. Stochastic gradient descent algorithm for spherical MDS
procedure Stochastic gradient descent(d)

X ←random initialization
while Δ(stress(X)) > ε or max iterations is reached do

for (i,j) in random order do

Xi ← Xi − η
dfi,j
dXi

, according to (4)

Xj ← Xj − η
dfj,i
dXj

, according to (4)

end for
end while
return X

end procedure

4 Evaluation

We first investigate the various parameters that effect SGD’s optimization, then
compare our results to exact gradient descent.

4.1 Hyper-parameters

There are several hyper-parameter choices to be made when using SGD. The
learning rate η (also known as step size, annealing rate) has a large effect on
the resulting embedding. If the learning rate is too large, the optimization will
“overstep” and either fluctuate around a minimum, or diverge. If the learning
rate is too small, the optimization may require many iterations to converge and
is more likely to converge to a local minimum. A better strategy is to employ
a learning rate schedule, where at early iterations the learning rate is large but
decreases over time to allow for convergence. This is known to converge to a
stationary point (could be a saddle) under certain conditions:

∑
g(t) = ∞ and∑

g(t)2 < ∞ [3].
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Fig. 6. (Left) Effect of the learning rate schedule on the optimization. The piece-
wise schedule adapted from [41] arrives at a minimum faster on average. (Right)
Effect of the upper bound on the learning rate on the optimization. An upper
bound of 0.1 behaves predictably. Values for both are averaged over all graphs
in our benchmark.

We investigate a limited subset of possible learning rate schedules, a fixed
learning rate at 0.05, a piece-wise schedule similar to that of Zheng et al. [41], a
fractional decay of Θ(t−1), and a slower fractional decay of Θ(t−.5). The piece-
wise schedule begins with an exponential decay function, with large initial val-
ues and switches to Θ(t−1) once below a threshold. There are a few changes we
needed to make to the piece-wise schedule. Firstly, while Zheng et al. [41] upper
bound their learning rate by 1, this upper bound is too large for SMDS. The
upper bound for the Euclidean algorithm was derived from the geometric struc-
ture, and a value of 1 reduces the stress between a single pair of vertices to 0. The
latitude and longitude of the sphere are angles and so do not have this property.
We instead need a relatively small upper bound, noting that large movements
of a pair vertices on the sphere that need to be moved apart can actually bring
them closer together (by wrapping around the sphere). We investigated values
in the range 0 to 1, and settled on 0.1 as it achieves low stress quickly while not
being so small as to fall into local minima; see Fig. 6.

Randomization is a to select pairs i, j in the stochastic optimization func-
tion. While SGD was originally done using sampling with replacement, random
reshuffling has been shown to converge in fewer total updates [14]. To use ran-
dom reshuffling in stress minimization, we enumerate all pairs i < j of vertices
in a ordered list and shuffle this list after every iteration. This ensures that the
order in which we visit pairs is random, but that each pair is visited before we
sample the same pair again.

A stopping condition is how the algorithm determines to terminate, either by
converging or by reaching a maximum number of iterations. We measure conver-
gence by tracking the change in the value of the optimization function between
iterations. In the figures and evaluation results below, we set the convergence
threshold to 1e−7 or a balance between speed and quality.
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4.2 Evaluation

Our code is open source and written in Python. Experiments are performed on
an Intel R© CoreTM i7-3770 CPU @ 3.40GHz × 8 with 32 GB of RAM with a 64
bit installation of Ubuntu 20.04.3 LTS.

We use a set of 40 graphs to evaluate our SMDS algorithm: 34 from the
SuiteSparse Matrix Collection [6] and the remaining 6 from skeletons of 3-
dimensional polytopes. We use the cube, dodecahedron, and isocahedron, and
subdivide them 4 times each to obtain cube 4, dodecahedron 4 and isocahe-
dron 4. We present spherical layouts of a subset of our benchmark graphs; see
Table 1. The remaining layouts can be found in the Appendix. We see that there
are several graphs particularly well suited to spherical layout: the 3D polytopes
and their subdivisions have much lower distortion on the sphere than in the
plane. 3-dimensional meshes and triangulations of surfaces such as dwt 307 and
delaunay n10 also have lower error on the sphere.

The SGD optimization scheme performs better than exact GD on both time
to convergence and stress as the size of the data becomes large as we expect; see
Fig. 7.

5 Geometry Comparison

Here we discuss some possible drawbacks of graph embedding in spherical space
and compare graph embeddings between Euclidean, spherical and hyperbolic
spaces. Stress works well for producing layouts, but directly comparing stress
scores between geometries are difficult to interpret. Layouts are often uniformly
scaled so that stress is minimum before reporting (see [12,20]) which works fine
in Euclidean space, but becomes a problem in spherical and hyperbolic spaces.
In order to more fairly compare embedding error across geometries, we use the
distortion [27,36] metric, defined as

distortion(X) =
1

(|V |
2

)
∑

i<j

|δ(Xi,Xj) − di,j |
di,j

. (5)

5.1 Dilation of Distances

It is known that Euclidean MDS is invariant to dilation, that is if one multiplies
the given distances by a positive real number, the corresponding MDS solution is
the original MDS solution multiplied by the same scalar factor (up to rotation).
However, this is not true for spherical and hyperbolic spaces. Moreover, spherical
space is bounded, unlike Euclidean space. For example, on the 2D unit sphere
the maximum distance that can be achieved between two points is π (assuming
that between any two points we always take the shortest geodesic distance). Any
graph with diameter (longest shortest path) longer than π cannot possibly be
embedded on the unit sphere with zero error. A reasonable solution is to dilate
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Table 1. Layouts

E-MDS SMDS E-MDS SMDS
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Fig. 7. How the SGD optimization scheme fairs compares to the exact GD in
terms of time (left) and error (right). The larger the size of the graph, the more
benefit is seen from the use of SGD.
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the input distances so that all the given distances are less than or equal to π.
That is, to multiply the distance matrix, d, by max d

π . This heuristic appears to
work well in practice; see Fig. 9. For all of our experiments and layouts, we use
this heuristic. However, this has no guarantees of being optimal (Fig. 8).

Fig. 8. Behavior of distortion on selected graphs with respect to dilation factor
in each geometry.

One possible approach to the dilation problem is to make the radius of the
sphere also a parameter to optimize. The problem would then become finding
the best radius so that the defined stress function is as small as possible. This
can be captured by reformulating Eq. (3) to also optimize the radius:

arg min
R,X1,...Xn∈S2

R

N∑

i,j=1

(δR(Xi,Xj) − dij)
2
. (6)

Here δR(Xi,Xj) corresponds to the geodesic distance on the sphere with radius
R between points Xi and Xj . We derive the gradient for R and update it along
with the vertex positions at each update step.

To the best of our knowledge none of the existing algorithms for spherical
embedding consider this dilation/resizing problem. However, we believe that it
is a crucial parameter while embedding/drawing a graph on the sphere.

Fig. 9. Effect of dilation on distortion. Our proposed heuristic (orange line) is
often very close to the minimum (of the blue curve). (Color figure online)
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Fig. 10. The left subfigure shows a subset of results from the direct comparison
for distortion in Euclidean, spherical and hyperbolic space. The right subfigure
plots the first 10 rows. We note that 3D polytopes and meshes (the can graphs)
are particularly well suited to the sphere, the LesMis graph is a complex network
which is best embedded into hyperbolic space, and Euclidean space is better for
the remaining ones.

5.2 Choosing Between Geometries

One reason to consider embedding graphs on different manifolds (Euclidean,
hyperbolic, spherical) is to be able to preserve and visualize important properties
of the given graph. Some graphs achieve lower distortion on the sphere, others
in hyperbolic space. In this section we investigate how spherical graph layouts
differ from other consistent geometries. We choose a selection of graphs from the
sparse matrix collection, and lay them each out using the Euclidean, spherical,
and hyperbolic variants of MDS and measure the distortion. We repeat the layout
5 times each, and report the average distortion for each graph in each geometry.
We make use of [41] for the Euclidean MDS implementation and [27] for the
hyperbolic MDS (HMDS) implementation.

The hypothesis we test here is that some graphs have a dramatically lower
distortion in a particular geometry. For instance, rectangular lattices can be
embedded with constant error in Euclidean space [39], regular 3D polytopes can
be thought of as tesselations of the sphere, and trees have been described as
“discrete hyperbolic spaces” [19]. The results are summarized in Fig. 10 with
additional data can be found in the arXiv version: https://arxiv.org/abs/2209.
00191. We observe that spherical geometry is in fact able to embed polytopes and
3D meshes with lower distortion. Further, hyperbolic geometry is able to embed
networks with “small-world” properties such as lesmis and block 400 with lower
distortion. In graphs with 2D structure, Euclidean space is the clear winner.

In Fig. 11 we go beyond graphs to verify the different nature of the three
geometries. We sample points randomly from each space, and use these points

https://arxiv.org/abs/2209.00191
https://arxiv.org/abs/2209.00191
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Fig. 11. Results from sampling data uniformly at random from each consistent
geometry: as expected SMDS, MDS and HMDS perform dramatically better on
data that comes from the geometry it embeds in.

to define the distance matrices. We expect the corresponding geometry’s MDS
to embed the data with much lower distortion and this is indeed the effect we
see.

6 Conclusions and Future Work

We described an efficient method for embedding graphs in spherical space.
The method generalizes beyond graphs to embedding high-dimensional data.
We studied (quantitatively and qualitatively) the difference between spherical
embeddings of graphs and embeddings in Euclidean and hyperbolic spaces. We
discussed the issue of dilation and proposed an approach that seems to work well
in practice. Furthermore, we compared how structures are preserved in different
geometries. The algorithm is implemented and fully functional and we provide
the source code, experimental data and results, and a web based visualization
tool on GitHub: https://github.com/Mickey253/spherical-mds.

While our proposed algorithm is much faster than exact gradient descent
(5 s for a 1000-vertex graph), it still requires an all-pairs-shortest-paths com-
putation as a preprocessing step, which cannot be done faster than quadratic
time in the number of vertices. This is a bottleneck computation for any graph-
distance based approach and coming up with a strategy (e.g., sampling a subset
of distances) is a problem whose solution can impact many existing algorithms.
Another direction for future work is to quickly determine the best embedding
space for a given graph. That is given a graph, decide the best manifold to
embed it in: Euclidean, spherical or hyperbolic. We considered stress and distor-
tion measures here, but exploring other graph drawing aesthetics across different
geometries seems to be a worthwhile direction to explore.
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Abstract. Shape-based metrics measure how faithfully a drawing D
represents the structure of a graph G, using the proximity graph S of
D. While some limited graph classes admit proximity drawings (i.e.,
optimally shape-faithful drawings, where S = G), algorithms for shape-
faithful drawings of general graphs have not been investigated.

In this paper, we present the first study for shape-faithful drawings of
general graphs. First, we conduct extensive comparison experiments for
popular graph layouts using the shape-based metrics, and examine the
properties of highly shape-faithful drawings. Then, we present ShFR and
ShSM , algorithms for shape-faithful drawings based on force-directed
and stress-based algorithms, by introducing new proximity forces/stress.
Experiments show that ShFR and ShSM obtain significant improve-
ment over FR (Fruchterman-Reingold) and SM (Stress Majorization),
on average 12% and 35% respectively, on shape-based metrics.

1 Introduction

Recently, shape-based metrics [7] have been introduced for evaluating the quality
of large graph drawing. It measures how faithfully the “shape” of a drawing D
represents the ground truth structure of a graph G, by comparing the similarity
between the proximity graph S of the vertex point set of D and the graph G.

For a point set P in the plane, proximity graphs are defined as: two points
are connected by an edge if they are “close enough”. Specifically, a proximity
region is defined for each pair of points, and if the proximity region is empty,
the points are connected by an edge in the proximity graph [24].

Some limited graph classes always admit a proximity drawing D, where the
graph G is realized as a proximity graph S in D. For such proximity drawable
graph classes, some characterizations are known, and algorithms to construct
such proximity drawings are available [1,3]. Consequently, such proximity draw-
ings are optimally shape-faithful (i.e., shape-based metric of 1), since S = G.

However, such optimally shape-faithful drawings are only applicable for very
limited graph classes. Algorithms to optimize shape-based metrics for general
graphs (i.e., not proximity drawable graphs) have not been studied yet.

In this paper, we present the first study for shape-faithful drawings of general
graphs. Specifically, our main contributions can be summarized as follows:
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1. We evaluate the shape-faithfulness of popular graph drawing algorithms for
various proximity drawable graph classes, including strong proximity draw-
able graphs (i.e., the best possible shape-based metric is 1), almost proximity
drawable graphs with some forbidden subgraphs, weak proximity drawable
graphs, and mesh graphs.
Experiments show that tsNET [16] obtains the highest shape-faithfulness on
most large graph instances, for strong and almost proximity drawable graphs,
and stress-based layouts [11] achieve good results on mesh graphs.

2. We present ShFR and ShSM , algorithms for shape-faithful drawings for gen-
eral graphs, based on the force-directed and stress-based layouts, by intro-
ducing new proximity forces/stress.
Experiments with strong proximity drawable graphs, scale-free graphs and
benchmark graphs show that ShFR and ShSM obtain significant improve-
ment (on average, 12% and 35%) on the shape-based metrics over FR
(Fruchterman-Reingold) [9] and SM (Stress Majorization) [11].

2 Related Work

2.1 Shape-Based Metrics

Shape-based metrics measure how faithfully the “shape” of a drawing D rep-
resents the ground truth structure of a graph G, by comparing the similarity
between the proximity graph S of the vertex point set of D and the graph G [7].

Specifically, the shape-based metrics use proximity graphs such as the Gabriel
Graph (GG) and Relative Neighborhood Graph (RNG) (defined in Sect. 2.2).
To compute the similarity between G and S, both with vertex set V , the
shape-based metrics use the Jaccard Similarity (JS) [15] as follows: JS(G,S) =
1

|V |
∑

v∈V
NG(v)∩NS(v)
NG(v)∪NS(v) , where NG(v) (resp., NS(v)) is the set of neighbors of

vertex v in G (resp., S). We denote the shape-based metrics computed with this
formula using RNG (resp., GG) as QRNG (resp., QGG), having values between
0 and 1 where 1 means perfectly shape-faithful.

2.2 Proximity Graphs

For a point set P in the plane, a proximity graph S of P is roughly defined as fol-
lows: two points are connected by an edge if and only if they are “close enough”.
Namely, the proximity region defined for the two points should be empty (i.e.,
contains no other points) [24,25]. For example, Gabriel Graph (GG) [10] (resp.,
Relative Neighborhood Graph (RNG) [26]) is a proximity graph where two points
x and y are connected by an edge if and only if the closed disk (resp., open lens)
having line segment xy as its diameter contains no other points.

For strong proximity, two conditions must be fulfilled: (a) two points are
connected by an edge only if their proximity region is empty, and (b) two points
are not connected by an edge only if their proximity region is not empty [2].

A relaxation of condition (b) gives rise to the definition of weak proximity,
where the proximity graph may omit an edge between points x and y even if their
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proximity region is empty [2]. Namely, while points need to be “close enough”
to be connected by an edge in the proximity graph S, points can be made to be
not connected by an edge in S even if they are “close enough”.

2.3 Proximity Graph Drawing

Characterizations of strong proximity drawable graphs (i.e., graphs that admit a
proximity drawing D, where the graph G is realized as a proximity graph S = G
in D) are known for RNG and GG [3,17]:

– RNG-drawable graphs: trees with maximum degree 5, maximal outerplanar
graphs, biconnected outerplanar graphs

– GG-drawable graphs: trees with maximum degree 4 and no degree 4 vertex
with all “wide” subtrees, maximal and biconnected outerplanar graphs

Moreover, forbidden subgraphs have also been characterized: no GG- and
RNG-drawable graphs may contain K4 and K2,3 as subgraphs [10].

Characterizations of weak proximity drawable graphs include wider classes:

– trees (regardless of maximum degree): weak GG- and RNG-drawable [2]
– 1-connected outerplanar graphs with no vertex of degree 1: weak GG-

drawable [8].

Algorithms to construct proximity drawings of both strong and weak proxim-
ity drawable graphs are available [2,3,17], although implementations are unavail-
able and challenging due to requiring precise geometric computations. For details
on proximity graph drawing, see a survey [19].

3 Graph Layout Comparison Experiments

3.1 Experiment Design and Data Sets

In this Section, we present extensive experiments using the shape-based metrics
QRNG and QGG to compare popular graph drawing algorithms:

– Force-directed layouts: Fruchterman-Reingold (FR) [9], Organic (OR) [28].
– Multi-level force-directed layouts: FM3 [12], sfdp [14].
– Backbone layout (BB) [23], which untangles hairballs in a drawing.
– LinLog layout (LL) [22], a force-directed algorithm displaying clusters.
– Stress-based layouts to minimize the stress: Stress Majorization (SM) [11],

Stochastic Gradient Descent (SGD) [29].
– tsNET layout [16], based on the t-SNE dimension reduction [20].
– Walker’s level drawing algorithm (W ) for trees [27].
– Chrobak and Kant algorithm (CK) [5] for convex grid drawings of tricon-

nected planar graphs in quadratic area.
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For data sets, we generate graphs with various sizes: small graphs with 50–250
vertices, medium graphs with 250–500 vertices, and large graphs with 500–1000
vertices. Furthermore, we consider graph types based on proximity drawability
characterization: strong proximity drawable graphs, almost proximity drawable
graphs, and weak proximity drawable graphs. We also use mesh graphs, which
do not fall into known proximity drawability characterizations. For each graph
type and size, we generate ten graph instances.

Strong Proximity Drawable Graphs: We generate strong proximity draw-
able graphs based on known characterizations [3,17]:

– Maximum outerplanar graphs, generated using the connected planar graph
generator of OGDF [4].

– Biconnected outerplanar graphs: We start G as a cycle of random length ≤
the target size n. Then, select an edge (u, v) in G that is only involved in one
cycle. Select a cycle length x < n, create a path p of length x−2, and add an
edge between u and the first vertex of p, and between v and the last vertex
of p. Repeat while the number of vertices in G is less than n.

– Proximity drawable trees, generated using the random tree generator of
OGDF: For RNG-drawable trees, we set the maximum vertex degree as 5; for
GG-drawable trees, we set the maximum vertex degree as 4, and then prune
forbidden subtrees until the tree contains no more forbidden subtrees.

Almost Proximity Drawable Graphs with Forbidden Subgraphs: We
start with a strong proximity drawable graph G, and then add a few edges
and/or vertices to create a forbidden subgraph. The number of edges (resp.,
vertices) added are limited to at most 10 (resp., 5). Specifically, we perform two
types of forbidden subgraph augmentation:

– L-AUG (Local Augmentation) graphs: We choose a vertex v of G and add new
vertices and edges around v to create a forbidden subgraph F .

– F-AUG (Global Augmentation) graphs: We select a subset of vertices of G, all
separated by a shortest path length above a predefined threshold, and add
edges between the selected vertices to create a forbidden subgraph F .

Weak Proximity Drawable Graphs: We also use weak proximity drawable
graphs based on the weak proximity drawability characterization [2]:

– 1-connected outerplanar graph with a minimum degree of 2, which are weak
GG-drawable [8]: We generate the graphs in a similar way to the biconnected
outerplanar graphs, however alternately appending the new cycle to a random
vertex rather than a random edge.

Mesh Graphs: We use simple mesh graphs containing no chordless cycles of
length > 3, from the jagmesh set of the SuiteSparse Matrix collection [6]. These
graphs are not part of known proximity drawability characterizations, but can be
drawn as an RNG drawing, by drawing each 3-cycle as an equilateral triangle.
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(a) Small (b) Medium (c) Large

Fig. 1. Average QRNG for trees. LL, OR, and sfdp consistently perform well, with
tsNET performing much better on large trees. Even the highest-performing layouts
are still far from optimal shape-faithfulness (QRNG = 1).

(a) Small (b) Medium (c) Large

Fig. 2. Average QRNG for maximum outerplanar graphs. tsNET and CK are the
top performing layouts on medium and large graphs. For highest-performing layouts,
QRNG is slightly closer to optimal compared to RNG-drawable trees.

3.2 Results

Strong Proximity Drawable Graphs. On strong proximity drawable trees,
all the drawing algorithms used fail to obtain shape-based metrics close to opti-
mal.

Figure 1 shows the average QRNG for RNG-drawable trees. On small trees,
the best performing layouts, OR, BB, multi-level layouts, and stress-based lay-
outs, only obtain QRNG of 0.5–0.6 on average. tsNET becomes the best per-
forming layout on medium and large trees, with QRNG of about 0.4 on average.
On large trees, the differences in QRNG between layouts are more pronounced,
with tsNET and LL performing the best, followed by sfdp and OR.

For small proximity drawable outerplanar graphs (both GG- and RNG-
drawable), the best performing layouts, stress-based layouts and BB, obtain
QRNG of around 0.7 (see Fig. 2). This is notably closer to optimal compared to
RNG-drawable trees, where all layouts obtain average QRNG of at most 0.6.

tsNET and CK are the top performing layouts on medium and large outer-
planar graphs, despite lower performance on small graphs: on medium and large
maximum outerplanar graphs, tsNET (resp., CK) obtains QRNG of 0.6 (resp.,
0.5) on average. This is closer to optimal compared to large RNG-drawable trees,
where tsNET , the best performing layout, only obtains average QRNG of 0.4.

For GG-drawable trees, the results on QGG are mostly similar to QRNG;
similarly, for GG-drawable outerplanar graphs (same set of graphs as RNG-
drawable outerplanar graphs), the results on QGG are similar to QRNG. For
details, see Figures. 7 and 8 in Appendix B of the full version [21].
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Table 1. Example layout comparison for a large RNG-drawable tree.

Table 2. Example layout comparison for a large maximum outerplanar graph.

Table 1 shows a visual comparison of graph layouts on a large RNG-drawable
tree. For the best performing layouts tsNET and LL, subtrees closer to the
leaves are often “compacted” together, compared to the second best performing
layouts such as OR and sfdp, where all branches are more “opened” up.

Table 2 shows a visual comparison of layouts on a maximal outerplanar graph.
The best performing layout, tsNET , collapses the faces on the periphery, com-
pared to the faces in the middle of the drawing. The “long” drawing of CK may
have obtained a comparable effect, producing high shape-based metrics.
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Fig. 3. Average QRNG for L-AUG and F-AUG graphs, compared to RNG-drawable trees.
tsNET obtains the highest shape-based metrics; surprisingly, QRNG is sometimes
higher on L-AUG and F-AUG than on the strong proximity drawable graphs.

Table 3. Example layout comparison for a medium F-AUG graph.

BB FM3 FR LL OR

sfdp SGD SM tsNET

Almost Proximity Drawable Graphs. In general, the ranking of the graph
drawing algorithms on the shape-based metrics do not change much between
strong proximity drawable graphs and almost proximity drawable graphs.

Figure 3 shows comparisons on QRNG for the base RNG-drawable trees and
the L-AUG and F-AUG graphs, where tsNET still obtains the highest QRNG. LL
also obtains the second highest QRNG, although with a smaller difference to the
next best performing layouts OR and sfdp, compared to RNG-drawable trees.

Table 3 shows a visual comparison on a F-AUG graph, where the layouts with
highest shape-based metrics, such as tsNET and LL, draw the “branches” in
the periphery of the drawing in a more compact way, than other layout. This
observation is consistent with the pattern also seen in the visual comparison for
strong proximity drawable trees and outerplanar graphs.
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(a) Small (b) Medium (c) Large

Fig. 4. Average QGG for 1-connected outerplanar graphs. OR and CK performs the
best on large 1-connected outerplanar graphs.

Table 4. Example layout comparison for a large 1-connected outerplanar graph.

BB FM3 FR LL OR

sfdp SGD SM tsNET CK

Weak Proximity Drawable Graphs. For weak GG-drawable 1-connected
outerplanar graphs, OR surprisingly obtains the highest QGG on large 1-
connected outerplanar graphs, followed by CK and tsNET; see Fig. 4.

Table 4 shows a visual comparison, where OR draws a number of chordless
cycles with their vertices in a regular polygon configuration. In fact, this is the
correct way to draw such cycles as GG, resulting in high QGG.

Mesh Graphs. On mesh graphs, the best performing layouts, stress-based
layouts, obtain on average much higher shape-based metrics than on other strong
proximity drawable graphs, see Fig. 5. In particular, SGD and SM obtain near-
perfect shape-based metrics (QRNG = 0.99 on average), and OR and BB also
obtain very high shape-based metrics (QRNG = 0.98 on average). On the other
hand, tsNET obtains comparatively lower shape-based metrics.

Table 5 shows a visual comparison on a mesh graph; most layouts manage
to untangle the mesh. Furthermore, SGD and SM manage to untangle without
twists or “distortions”, where triangles in the periphery are more “squashed”
compared to the triangles in the middle, as seen in sfdp or tsNET layouts.
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Fig. 5. Average QRNG for mesh graphs. Stress-based layouts obtain the best shape-
based metrics, at almost perfect.

Table 5. Example layout comparison for mesh.

BB FM3 FR LL OR

sfdp SGD SM tsNET CK

3.3 Discussion and Summary

Overall, tsNET performs the best on large strong proximity drawable graphs,
followed by LL. Looking at the visual comparison, these layouts often “collapse”
subgraphs on the periphery. This may have lead to fewer non-adjacent vertices
being close to each other, leading to better shape-based metrics. Moreover, this
improvement compared to other layouts is more apparent in larger graphs, where
the larger number of vertices means more non-adjacent vertices being close to
each other in drawings where subgraphs on the periphery are not “collapsed”.

Most layout algorithms are better at computing drawings closer to opti-
mal shape-faithfulness for dense strong proximity drawable graphs: the best-
performing layouts, tsNET and LL, obtain much higher average shape-based
metrics on outerplanar graphs compared to trees. Lower density means more
pairs of vertices are not adjacent in G, i.e., more proximity regions need to be
non-empty in D.

The mesh graphs are drawn as RNG by drawing each face as equilateral
triangles, i.e., having uniform edge lengths, a readability metric which is often
used as a goal for a number of layout algorithms. This may be why more layout
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algorithms, especially stress-based layouts which emphasize distance faithfulness,
are able to produce almost-perfect shape-faithful drawings for the mesh graphs.

4 Algorithms for Shape-Faithful Graph Drawings

In this Section, we present algorithms for shape-faithful drawings. Based on
the qualitative observations from the layout comparison experiments in Sect. 3,
high shape-based metrics are obtained often by “collapsing” subgraphs on the
drawing’s periphery - this keeps non-adjacent vertices in G distant from each
other, and adjacent vertices in the collapsed subgraphs within close proximity.
Therefore, our main idea for shape-faithful graph drawings is to “drive away”
non-adjacent vertices in G that are geometrically too close in the drawing D.

Specifically, we present two algorithms ShFR and ShSM based on two popu-
lar graph drawing algorithms, force-directed and stress minimization algorithms.
ShFR and ShSM aim to improve shape-based metrics by introducing two new
types of proximity forces/stress. For a pair of adjacent vertices v and u in G and
another vertex of t currently located in the proximity region of v and u in D:

– proximity repulsion force/stress: push t out of the proximity region of u, v;
– proximity attraction force/stress: pull v and u closer together.

4.1 ShFR: Force-Directed Layout for Shape-Faithful Drawings

We present ShFR, a force-directed layout for shape-faithful drawing, incorpo-
rating proximity forces with Fruchterman-Reingold (FR) [9].

To explain the design rationale for ShFR, consider the following case: for a
pair of adjacent vertices u and v in a graph G = (V,E), the edge (u, v) does not
exist in the proximity graph S = (V,E′) of a drawing D of G, due to a vertex t
located inside the proximity region of u and v in D. For such a case, to add back
the edge (u, v) in the proximity graph S to achieve S = G, we introduce two
new proximity forces: (1) repulsion force to repel t out of the proximity region
of u and v; (2) attraction force on u and v to shrink the proximity region.

We first add a proximity repulsion force to drive t out of the proximity region
of u and v in D. From the midpoint m between u and v, we add a repulsion
force acting on t, with a magnitude proportional to how far t needs to be away
from m in order to be driven out of the proximity region of u and v. Specifically,
the x-displacement of t induced by the repulsion force can be computed as:

xt−xm

||Xt−Xm||2 fl
2 ||Xv−Xu||

||Xt−Xm|| , where xt is the x-coordinate of t, ||Xt − Xm|| is the
Euclidean distance between t and m, l is the parameter for ideal spring length
(i.e., target edge length), and f is the parameter for spring stiffness.

Next, we add a proximity attraction force for a pair of adjacent vertices u
and v in G with non-empty proximity regions. Specifically, we add an attraction
force acting between u and v: (xu − xv)(||Xv − Xu||)l−1.

The new proximity forces can be added to any force-directed algorithms. For
our specific implementation, we add the proximity forces in conjunction with FR,
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where the proximity force computations are added to each force computation
iteration of FR. For the details, see Appendix C of the full version [21].

GG and RNG are subgraphs of the Delaunay Triangulation, which can be
computed in O(n log n) time [24]. The original FR algorithm runs in O(n2) time.
Therefore, the total runtime of ShFR is O(n2).

4.2 ShSM : Stress-Based Layout for Shape-Faithful Drawings

We now present ShSM for shape-faithful drawing, incorporating proximity stress
with Stress Majorization (SM) [11]. Similar to the force-directed case, for each
case where in drawing D a vertex t lies in the proximity region of two neighboring
vertices v and u, i.e. (u, v) ∈ E but (u, v) /∈ E′, we add two new types of stress:
(1) repulsion stress to push t out of the proximity region; (2) attraction stress
to pull v and u closer together.

We first add the proximity repulsion stress by exerting stress on t from the
midpoint m of u and v. Specifically, we compute the x-displacement of t due to
the stress between t and m as wuv(xm)+ duv(xm −xt)||Xv −Xu||/||Xt −Xm||),
where duv is the shortest path distance between u and v and wuv is the weight
computed for the vertex pair u and v, often computed as (duv)k for a constant
k. Since m is not an actual vertex of G, there is no graph theoretic distance or
weight between m and t; we instead use duv and wuv, and then scale them based
on the ratio of the Euclidean distances between u, v, and between t,m.

We next add the proximity attraction stress which has a weight lower than
the standard stress of SM , to attract u and v closer in order to to reduce the
distance between u and v. The x-displacement of v due to this additional stress
is computed as w′

uv(xu)+duv(xv−xu)/||Xv−Xu||), where w′
uv = wk′

uv for k′ < 1.
The new proximity stress can be added to any stress-based algorithms. For

our specific implementation, we add the proximity stress in conjunction with
SM , where the proximity stress computations are added to each stress compu-
tation iteration of SM . For details, see Appendix D in the full version [21].

As with ShFR, GG and RNG can be computed in O(n log n) time and the
original stress computation of SM takes O(n2) time. The total runtime of ShSM
is therefore O(n2).

5 ShFR and ShSM Experiments

5.1 Experiment Design and Data Sets

In this experiment, we evaluate the effectiveness of ShFR and ShSM over FR
and SM respectively, using shape-based metrics QRNG and QGG.

For data sets, we use strong proximity drawable graphs, as well as scale-free
graphs and benchmark graphs:

– strong proximity drawable graphs, from Sect. 3.
– scale-free graphs: We generate synthetic scale-free graphs with density 2, 3,

and 5, using the NetworkX [13] scale-free generator.
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– benchmark graphs, including real-world scale-free graphs [6,18,30] with up
to 6000 vertices and 15000 edges. For details, see Appendix A in the full
version [21].

To measure the improvement of the shape-based metrics, for exam-
ple, on QRNG by ShFR over FR, we define the formula I(QRNG) =
QRNG(ShFR)−QRNG(FR)

QRNG(FR) . We use the same formula for QGG, and for the improve-
ment by ShSM over SM .

5.2 Results

ShFR obtains notable improvement over FR on QRNG and QGG for large strong
proximity drawable graphs, obtaining average improvement of 15%, 12%, and
12% on maximum outerplanar graphs, biconnected outerplanar graphs, and trees
respectively, see Fig. 6 (a). ShFR also obtains significant improvement over FR
on QGG for scale-free graphs, at on average 18%. For real-world benchmark
graphs, the improvement on QRNG and QGG average at around 10%.

(a) ShFR improvement (b) ShSM improvement

Fig. 6. Average shape-based metrics improvement (in percent) of ShFR over FR and
ShSM over SM on QRNG and QGG. ShFR and ShSM obtain significant improvement
over FR and SM respectively on all data sets.

ShSM obtains significant improvement over SM for strong proximity draw-
able graphs, see Fig. 6 (b). For maximum outerplanar graphs, ShSM obtains
significant improvement over SM (average 20% and 25%) on QRNG and QGG

respectively, which is much higher than the improvement by ShFR over FR. For
biconnected outerplanar graphs, an even larger improvement of on average 40%
is achieved on QGG. For large trees, ShSM also obtains significant improvement
over SM , on average 18% and 30% on QRNG and QGG, respectively.

ShSM also obtains significant improvement over SM for scale-free graphs,
on average 20% improvement on QRNG. Notably, the largest improvement is
obtained by ShSM on QGG for scale-free graphs, at over 70%, on scale-free
graphs. Note that ShSM obtains on average 20% and 42% improvement over
SM for real-world benchmark graphs, on QRNG and QGG respectively.

Table 6 shows a visual comparison of FR and ShFR on the benchmark
scale-free graph G 4. ShFR untangles the “hairball” more clearly, compared
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Table 6. Visual comparison of FR and ShFR, SM and ShSM on benchmark graphs.
ShFR often untangles the hairballs better than FR, and ShSM expands faces that
are “collapsed” by SM .

FR ShFR

G_ 4

SM ShSM

netscience

to FR. Table 6 also shows a visual comparison of SM and ShSM on the bench-
mark scale-free graph netscience. ShSM “expands” faces that are “squashed” in
SM , showing the local neighborhood of some vertices more clearly. However, the
expanded faces also leads to the drawing feeling more “crowded” compared to
SM , thus increasing faithfulness but affecting readability. For more visual com-
parisons on other data sets, see Table 9 in Appendix E of the full version [21].

5.3 Discussion and Summary

Our extensive experiments demonstrate the effectiveness of ShFR and ShSM for
shape-faithful drawings. ShFR (resp., ShSM) obtains significant improvement
over FR (resp., SM) of 11% and 13% (resp., 20% and 50%) on QRNG and QGG

respectively, averaged over all data sets.
For strong proximity drawable graphs, ShFR (resp., ShSM) obtains

improvement over FR (resp., SM) of on average 13% and 13% (resp., 20% and
30%) on QRNG and QGG respectively. For real-world benchmark graphs, ShFR
(resp., ShSM) obtains improvement over FR (resp., SM) of on average 10%
and 10% (resp., 20% and 43%) on QRNG and QGG respectively. For scale-free
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graphs, ShFR (resp., ShSM) obtains improvement over FR (resp., SM) of on
average 10% and 16% (resp., 17% and 70%) on QRNG and QGG respectively.
Notably, the QGG improvement of ShSM over SM on scale-free graphs at 70%
is the largest among all data sets.

The improvements are much higher for large graphs. In general, large graphs
have many vertex pairs, with a high ratio of non-adjacent vertices to adjacent
pairs of vertices in G. Therefore, there are potentially more vertices located in
proximity region that should be empty, creating more instances for the proximity
forces and stress to improve the shape-based metrics.

Furthermore, the best improvement is achieved by ShSM over SM on QGG,
significantly higher than the improvement on QRNG and the improvements of
ShFR over FR. Specifically, larger improvements are obtained on QGG than
QRNG on scale-free and real-world benchmark graphs by ShSM . Since the prox-
imity region of RNG (i.e., lens at points u and v) is larger than the proximity
region of GG (i.e., disk with uv as diameter), when applying proximity stress, it
is harder to push all non-adjacent vertices out of the proximity region of RNG.
In addition, the tendency for ShSM to “open up” collapsed faces compared to
ShFR may have led to the better improvements obtained by ShSM .

6 Conclusion and Future Work

In this paper, we present the first study for the shape-faithful drawings of gen-
eral graphs. We first evaluate the shape-faithfulness of existing graph layouts
and examine the properties of good shape-faithful drawings. In general, tsNET
obtains the highest shape-faithfulness on medium-to-large graphs.

We then present ShFR and ShSM , algorithms for shape-faithful drawings
of general graphs, based on force-directed and stress-based layouts, introducing
new proximity forces/stress. Extensive experiments show that ShFR and ShSM
achieve significant improvement over FR and SM , on average, 12% and 35%
higher shape-based metrics respectively. Notably, ShSM obtains a 70% average
improvement on QGG over SM for scale-free graphs.

Future work includes shape-faithful layouts based on various other layouts.
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layout of graphs. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software. Math-
ematics and Visualization, pp. 173–191. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-642-18638-7 8

29. Zheng, J.X., Pawar, S., Goodman, D.F.: Graph drawing by stochastic gradient
descent. IEEE Trans. Visual. Comput. Graphics 25(9), 2738–2748 (2018)
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Planar Confluent Orthogonal Drawings
of 4-Modal Digraphs
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Abstract. In a planar confluent orthogonal drawing (PCOD) of a
directed graph (digraph) vertices are drawn as points in the plane and
edges as orthogonal polylines starting with a vertical segment and ending
with a horizontal segment. Edges may overlap in their first or last seg-
ment, but must not intersect otherwise. PCODs can be seen as a directed
variant of Kandinsky drawings or as planar L-drawings of subdivisions
of digraphs. The maximum number of subdivision vertices in an edge
is then the split complexity. A PCOD is upward if each edge is drawn
with monotonically increasing y-coordinates and quasi-upward if no edge
starts with decreasing y-coordinates. We study the split complexity of
PCODs and (quasi-)upward PCODs for various classes of graphs.

Keywords: Directed plane graphs · Kandinsky drawings ·
L-drawings · Curve complexity · Irreducible triangulations ·
(Quasi-)upward planar

1 Introduction

We consider plane digraphs, i.e., planar directed graphs with a fixed planar embed-
ding and a fixed outer face. Directions of edges in node-link diagrams are usually
indicated by arrow heads. Since this might cause clutter at vertices with high inde-
gree, Angelini et al. [4] proposed L-drawings in which each edge is drawn with a
1-bend orthogonal polyline starting with a vertical segment at the tail. A plane
digraph can only have an L-drawing without crossings if it is 4-modal, where a
plane digraph is k-modal if in the cyclic order around a vertex there are at most
k pairs of consecutive edges that are neither both incoming nor both outgoing.
However, not every 4-modal digraph admits a planar L-drawing. This motivates
to extend the model to drawings with more than one bend per edge.

In a planar confluent orthogonal drawing (PCOD) of a digraph, vertices are
represented as points in the plane with distinct x- and y-coordinates and each
edge is represented as an orthogonal polyline starting with a vertical segment at
the tail and ending with a horizontal segment at the head. Distinct edges may
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overlap in a first or last segment, but must not intersect otherwise. For better
readability bends have distinct coordinates and are drawn with rounded corners.
A plane digraph has a PCOD if and only if it is 4-modal.
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Fig. 1. Different representations of a 4-modal irreducible triangulation. (Color figure
online)

A PCOD of a digraph G corresponds to a planar L-drawing of a subdivision
of G. The number of subdivision vertices on an edge is its split complexity. See
the red encircled vertex in Fig. 1b for the subdivision vertex. Since each edge
starts with a vertical segment and ends with a horizontal segment, the number
of bends on an edge is odd. An edge with split complexity k has 2k + 1 bends.
The split complexity of a PCOD is the maximum split complexity of any edge.
The PCOD in Fig. 1b has split complexity one. A planar L-drawing [4,17] is a
PCOD of split complexity zero. If the embedding is not fixed, then it is NP-
complete to decide whether a digraph admits a planar L-drawing [17]. Every
2-modal digraph without 2-cycles has a planar L-drawing [3].

A PCOD of a digraph corresponds to a Kandinsky drawing [21] of the under-
lying undirected graph with the only difference that edges partially overlap
instead of being drawn in parallel with a small gap. See Fig. 1c. While every sim-
ple planar graph has a Kandinsky drawing with one bend per edge [16], deciding
whether a multigraph has a Kandinsky drawing with one bend per edge [16]
or finding the minimum number of bends in a Kandinsky drawing of a plane
graph [14] is NP-hard. For the bend-minimization problem in the Kandinsky
model there are 2-approximization algorithms [5,20] and heuristics [7].

Among the results for orthogonal drawings of undirected graphs where edges
must not overlap, we mention three: With one exception, every plane graph of
maximum degree four admits an orthogonal drawing with at most two bends per
edge [11]. In a bend-minimum drawing, however, there might have to be an edge
with a linear number of bends [27]. An orthogonal drawing with the minimum
number of bends can be computed by means of a min-cost flow approach [26]
even if an upper bound on the number of bends per edge must be respected.

A PCOD is upward if each edge is drawn with monotonically increasing y-
coordinates. A digraph is upward-planar if and only if it has an upward PCOD. A
plane st-graph, i.e., a plane acyclic digraph with a single sink and a single source,
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both on the outer face, is always upward-planar; moreover, it has an upward-
planar L-drawing if and only if it admits a so-called bitonic st-ordering [17].
Since it suffices to subdivide the edges of a plane st-graph at most once in order
to obtain a digraph that admits a bitonic st-ordering [1,22], it follows that every
plane st-graph admits an upward PCOD with split complexity one. Moreover,
the minimum number of bends in an upward PCOD of a plane st-graph can
be determined in linear time. In general, a digraph admits an upward-planar
L-drawing, if and only if it is a subgraph of a plane st-graph admitting a bitonic
st-ordering [2]. Not every 2-modal tree admits an upward-planar L-drawing [2].

In a quasi-upward-planar drawing [8] edges must be strictly monotonically
increasing in y-direction in a small vicinity around the end vertices. A digraph
has a 2-modal embedding if and only if it admits a quasi-upward-planar drawing.
Every 2-modal graph without 2-cycles admits a quasi-upward planar drawing
with at most two bends per edge and the curve complexity in such drawings can
be minimized utilizing a min-cost flow approach [13]. We call a PCOD quasi-
upward if no edge starts with decreasing y-coordinates.

Our Contribution. We show that PCODs of 4-modal trees have split complexity
zero (Theorem 2), split complexity two is sufficient (Theorem 4) and sometimes
necessary (Theorem 3) for PCODs of 4-modal digraphs with parallel edges or
loops, while split complexity one suffices for 4-modal irreducible triangulations
(Theorem 5), i.e., internally triangulated 4-connected graphs with an outer face
of degree 4. Split complexity one also suffices for upward PCODs of upward-
plane digraphs (Theorem 6) and for quasi-upward PCODs of 2-modal digraphs
without 2-cycles (Theorem 7). Using an ILP, we conducted experiments that
suggest that every simple 4-modal digraph without separating 2-cycles admits a
PCOD with split complexity one (Sect. 8). Constant split complexity is not to
be expected for bend-minimum PCODs (Theorem 1).

2 Preliminaries

Two consecutive incident edges of a vertex v are a switch if both edges are
incoming or both outgoing edges of v. The drawing of a PCOD is determined by
the coordinates of the vertices and the coordinates of every second bend of an
edge. We call a bend independent if it is the second, fourth, etc. bend of an edge.
Considering a PCOD as an L-drawing of a subdivision, the independent bends
correspond to the subdivision vertices. The split complexity of an edge is the
number of its independent bends. The total number of bends equals the number
of edges plus twice the number of independent bends. The top, left, bottom, and
right side of a vertex is its North, West, South, and East port, respectively.

An st-ordering of a biconnected (undirected) graph G = (V,E) is a bijection
π : V → {1, . . . , |V |} such that π(s) = 1, π(t) = |V |, and each vertex v ∈ V \{s, t}
has neighbors u and w with π(u) < π(v) < π(w). Let now G = (V,E) be a plane
st-graph. If (v, vi), i = 1, . . . , k are the outgoing edges of a vertex v from left to
right then S(v) = 〈v1, . . . , vk〉 is the successor list of v. A bitonic st-ordering of
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u
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w

(a) PCOD
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w

(b) Orthogonal

u
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w

(c) Zig-Zag Eliminated

Fig. 2. Eliminating zig-zags.

G is a bijection π : V → {1, . . . , |V |} such that π(u) < π(v) for (u, v) ∈ E and
S(v) = 〈v1, . . . , vk〉 is bitonic for each vertex v, i.e., there is a 1 ≤ h ≤ k such
that π(vi) < π(vi+1), i = 1, . . . , h − 1 and π(vi) > π(vi+1), i = h, . . . , k − 1. The
successor list S(v) = 〈v1, . . . , vk〉 contains a valley with transitive edges (v, v�−1)
and (v, vr+1) if there is a directed v�-v�−1-path and a directed vr-vr+1-path for
some 1 < � ≤ r < k. A plane st-graph admits a bitonic st-ordering if and only if
it does not contain a valley [22].

3 Confluent Orthogonal Representation

Let Γ be a PCOD of a plane digraph G. We call a bend covered if it is contained
in the drawing of another edge. We associate an orthogonal drawing of a plane
graph GΓ with Γ as follows [3]: Replace every covered bend in Γ by a dummy
vertex. See Figs. 1d and 2b. A zig-zag is a pair of uncovered bends on an edge,
one with a left turn, and one with a right turn. E.g., on the edge (u, v) in Fig. 2a
there is a zig-zag, while on the edge (u,w) there is both a left and a right turn,
but the left turn is covered, so there is no zig-zag. Since the number of bends
in an orthogonal drawing can always be reduced by eliminating zig-zags, we will
also do so in PCODs (see Fig. 2c) and, thus, the ordering of left- and right-
turns at uncovered bends of an edge will not matter. Since planar (confluent)
orthogonal drawings can be stretched independently in x- and y-directions, it is
algorithmically often easier not to work with actual x- and y-coordinates, but
rather with the shape of the faces in terms of bends on the edges and angles at
the vertices. See also [21,26].

A confluent orthogonal representation R of a plane digraph G = (V,E) is a
set of circular lists H(f), one for each face f of G. The elements of H(f) are
tuples r = (e, v, a, s, b) associated with the edges e incident to f in counter-
clockwise order. (a) v is the end vertex of e traversed immediately before e. (b)
a ∈ {0, π

2 , π, 3π
2 , 2π} is the angle at v between e and its predecessor on f . It is a

multiple of π if and only if it describes an angle at a switch. (c) s is the number
of left turns (when traversing e starting from v) at bends in e. (d) b ∈ {L,N,R}
represents a covered bend on the segment of e incident to v, if any, with (L) a
left bend, (R) a right bend, or (N) no such bend.

Let rp be the predecessor of r in H(f). If r is not clear from the context, we
denote the entries by e[r], v[r], a[r], s[r], b[r]. Each edge is contained twice in a
confluent orthogonal representation. Let r be the (other) entry containing e[r].
A confluent orthogonal representation is feasible if it fulfills the following.
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(i) The rotation
∑

r∈H(f)(2− a[r]/π
2 + s[r]− s[r]) of a face f is −4 if f is the

outer face and 4 otherwise. (ii) The angular sum
∑

r;v[r]=v a[r] around a vertex v

is 2π. (iii) If b[r] = L or b[r] = R then s[r] ≥ 1 and if both b[r] = L and b[r] = R
then s[r] ≥ 2. This ensures that covered bends are counted by s and that covered
bends adjacent to the head or the tail of an edge must be distinct. (iv) The so
called bend-or-end property, i.e., if a[r] = 0, then b[r] = R or b[rp] = L. (v) The
total number of bends s[r] + s[r] on e[r] is odd.

s1

t1

s2

sk

tk

x1

y1

xk

...

(a) Gk

s1

x1

t1

y1

s2

x2

t2

(b) Bend-Minimum PCOD of G2

Fig. 3. Graphs with a linear number of bends in any bend-minimum PCOD. (Color
figure online)

From a Representation to a PCOD. In order to construct a PCOD from a feasible
confluent orthogonal representation R of a plane digraph G, we transform G into
a graph GR of maximum degree 4 and a feasible orthogonal representation R′

without 0 or 2π angles. Using compaction for orthogonal representations [26] on
GR then yields a PCOD or a π/2-rotation of a PCOD in linear time. The idea
for the construction of GR is analogous to the construction of GΓ from a PCOD
Γ and is as follows: Consider a vertex v ∈ V and let e1, . . . , ek be a maximum
sequence of consecutive edges around v with 0 angles. Let ri, i = 1, . . . , k be the
entry with e[ri] = ei and v[ri] = v. Due to Property iv, there is a 1 ≤ m ≤ k such
that b[rj ] = L, j < m and b[rj ] = R, m < j. We subdivide the segment of em

that is incident to v with k − 1 vertices v1, . . . , vm−1, vk, . . . , vm+1 in this order,
starting from v. We attach ej , j �= m to vj instead of v. The representation R′

is updated accordingly.
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4 Some Initial Results

Theorem 1. There is a family Gk, k > 0 of 4-modal digraphs with 14k − 3
vertices and 16k − 4 edges such that in any bend-minimum PCOD of Gk there
is an edge with split complexity at least k + 2.

Proof. Consider the digraphs Gk indicated in Fig. 3a. Let e be the red dashed
edge. Let Pk be the path s1, x1, t1, y1, . . . , sk, xk, tk of length 4k − 2 in Gk that
is drawn vertically in Fig. 3a. Consider a planar L-drawing of Gk − e in which
all edges of Pk (traversed from s1 to tk) bend to the left and the edge incident
to s1 is to the top of s1. Such a drawing for G2 is indicated in Fig. 3b. Since all
vertices of Pk are 4-modal this uniquely determines the drawing of Pk and also
of the transitive edges of Pk. In order to preserve the embedding, e can only be
inserted into the drawing with split complexity at least k + 2.

Consider a PCOD of Gk with fewer bends on e. Since all vertices are 4-modal,
the rotation of the cycle C composed of Pk and e can only be maintained, if the
number of bends on at least one edge of Pk, say (si, xi), is increased. But then
we also must increment the number of bends on an edge (si, ti) to maintain the
rotation of the face bounded by the edges (si, ti), (si, xi), (xi, ti). Thus, for each
independent bend less on e the total number of bends increases by at least 2. 	


Even though not every 2-modal tree has an upward-planar L-drawing [2],
every 4-modal tree has a planar L-drawing, despite its fixed embedding.

Theorem 2. Every 4-modal tree has a PCOD with split complexity zero. More-
over, such a drawing can be constructed in linear time.

Proof. Let T be a 4-modal tree and let v be a leaf of T . We show by induction on
the number m of edges that we can draw T as a PCOD Γα with split complexity
zero such that v is in the corner α (lower left (��), lower right (�r), upper left
(u�), upper right (ur)) of the bounding box of Γα. We give the details for Γ ��;
the other cases are analogous. If m = 1, draw v at (0, 0) and its neighbor at (1, 1).

If m > 1, let the neighbor of v be v′, and let the connected components of
T − v′ be v, T1, . . . , Tk in clockwise order around v′. See Fig. 4. Let T0 be the
subtree consisting of v only. Each tree Ti+v′, i = 0, . . . , k has at most m−1 edges
and the leaf v′; therefore, by the inductive hypothesis, we can construct PCODs
Γα

i , α ∈ {��, �r, u�, ur} of Ti +v′ with v′ in the respective corner of the bounding
box. W.l.o.g. let v be the tail of the edge connecting v and v′, see Fig. 4a. Let
1 ≤ a ≤ b ≤ c ≤ d ≤ k such that Td+1, . . . , Tk, T0, T1, . . . , Ta and Tb+1, . . . , Tc

are connected to v′ by an incoming edge and Ta+1, . . . , Tb and Tc+1, . . . , Td by
outgoing edges. Choose Γur

0 , Γ �r
1 , . . . , Γ �r

a , Γ ��
a+1, . . . , Γ

��
c , Γur

c+1, . . . , Γ
ur
k for Ti+v′,

i = 1, . . . , k. Finally, merge the drawings of the subtrees at v′.

In order to compute a confluent orthogonal representation, using dynamic
programming, only O(deg(v′)) steps are required for each vertex v′. Thus, the
total time complexity is linear. 	
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5 Multi-Graphs

Theorem 3. There are 4-modal multigraphs that need split complexity at least
two in any PCOD.

v

v′
Γ �r

a

Γ ��
b

Γ ��
c

Γ ur
d

Γ ur
k

(a) Γ ��, edge (v, v′)

v

v′
Γ �r

b

Γ ��
c

Γ ��
d

Γ ur
a

Γ u�
k

(b) Γ ��, edge (v′, v)

Fig. 4. Constructing a tree from its subtrees.

(a) Loop

(b) Parallel Edges

Fig. 5. Multigraphs with
split complexity two.

Proof. Consider the digraph containing a loop in Fig. 5a or the digraph contain-
ing two parallel edges in Fig. 5b. The incident 4-modal vertices on the one hand
and the rotation of the outer face on the other hand, imply that the loop and
one of the two parallel edges, respectively, must have split complexity two. In
the case of the loop, the angle at the vertex is convex. Since the rotation of the
outer face is −4, it follows that five concave bends on the loop are needed. In
the case of two parallel edges, the angles at the vertices in the outer face are
zero. Thus, the two edges together must have eight concave bends. Since each
edge has an odd number of bends, there must be an edge with five bends. 	


Theorem 4. Every 4-modal multigraph has a PCOD with split complexity at
most two. Moreover, such a drawing can be computed in linear time.

Proof. The approach is inspired by [11]. Subdivide each loop. Let the resulting
digraph be G. Then make the digraph biconnected maintaining its 4-modality [3].
Now compute in linear time [15] an st-ordering v1, . . . , vn of this biconnected
graph G′ (without taking into account the direction of the edges). Iteratively
add the vertices with increasing y-coordinates in the order of the st-ordering,
maintaining a column for each edge that has exactly one end vertex drawn.

Let vk be a vertex. An edge e incident to vk is incident to vk from below if e has
an end vertex that is before vk in the st-ordering. Let e1, . . . , ej be the sequence
of edges incident to vk from below as they appear from left to right. Since vk

is 4-modal, e1, . . . , ej can be divided into at most five subsequences of edges
consisting only of incoming (−) or only of outgoing (+) edges of vk. Depending
on the arrangement of these subsequences, we assign the bends around vk. E.g.,
consider the Case +− in Fig. 6b, i.e., among the edges incident to vk from below,
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(a) + (b) +− (c) + − + (d) + − +− (e) + − + − +

(f) − (g) −+ (h) − + − (i) − + −+ (j) − + − + −

Fig. 6. Drawings around vk in the proof of Theorem 4. A + represents outgoing edges
from below. A − represents incoming edges from below.

there are first some outgoing edges, followed by some incoming edges. All out-
going edges from below are attached to the South port, while all incoming edges
from below are attached to the East port. Mind that all outgoing edges except
one need two bends near vk. Consider now the edges incident to vk to later
vertices in the st-ordering. By 4-modality, there can be at most some incoming
edges, followed by some outgoing, some incoming and again some outgoing edges
in counter-clockwise order around vk. We attach them to the East, North, West,
and South port of vk, respectively. The edges from below determine the position
of vk. In our case, vk is drawn above one of the edges attached to its South port.

See Fig. 6 for the routing of the edges from below and the possible edges to
later end vertices in the other cases. For v1, we choose the assignment according
to Fig. 6a or Fig. 6f. After all vertices are placed, we remove edges that are in
G′ but not in G. If x is a vertex that was inserted into a loop, we reroute the
two incident edges near x such that the incoming edge of x has exactly one bend
near x and the outgoing edge has no bend near x. Finally, we eliminate zig-zags.

By the st-ordering, the columns of the edges incident to vk from below are
consecutive among the edges with exactly one end vertex drawn [11]. This implies
planarity if the columns for the new edges are inserted directly next to vk. For
each edge e, there are at most two bends near the tail of e and at most three
bends near the head of e. Consider now a 2-cycle (v, x), (x, v) replacing a loop
at v. Since the subdivision vertex x is incident to exactly one incoming and one
outgoing edge, it follows that near x there is no bend on (x, v) and one bend on
(v, x). If (x, v) does not have three bends near v then in total there are at most
six bends on the loop, namely the four bends near v plus one bend near x plus
the bend on x. Since the number of bends on an edge must be odd, there are
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only five. Consider now the case that (x, v) has three bends near v (Figs. 6f and
6j). If in addition (v, x) has two bends near v, then there are seven bends on
the loop. However, in this case, there is a zig-zag on (v, x) formed by the bend
near x and the second bend near v. Thus, after eliminating zig-zags, the split
complexity is at most two. 	


1

7

4

5

8

6

3

2

9

(a) Perturbed PCOD of digraph in Fig. 1a

1

2
3

4
5

6

7

8

9

(b) PCOD

Fig. 7. Perturbed PCOD and corresponding PCOD after zig-zag elimination. Red
encircled bends are due to the change of the coordinate system and not real. (Color
figure online)

6 Irreducible Triangulations

We prove that every 4-modal digraph whose underlying undirected graph is an
irreducible triangulation has a PCOD with split complexity at most one.

Motivated by the approaches in [3,12], we use rectangular duals, a contact
representation of an irreducible triangulation G = (V,E) with the following prop-
erties. The vertices v ∈ V are represented by internally disjoint axis-parallel rect-
angles R(v). Two rectangles touch if and only if the respective vertices are adja-
cent in G. Moreover, no four rectangles representing a vertex meet at the same
point and

⋃
v∈V R(v) is a rectangle. See the rectangles in Fig. 7a. A rectangular

dual for an irreducible triangulation can be computed in linear time [9,10,23,24].
Given a rectangular dual, we perturb the coordinate system such that in

each rectangle the axes correspond to the diagonals. The perturbed x-axis is the
diagonal containing the bottommost-leftmost point of the rectangle, the other
diagonal is the perturbed y-axis. A perturbed orthogonal polyline is a polyline such
that in each rectangle the segments are parallel to one of the axes. A bend of a
perturbed orthogonal polyline at the boundary of two rectangles is a real bend
if among the two incident segments one is parallel to a perturbed x-axis and the
other parallel to a perturbed y-axis. Bends inside a rectangle are always real. In
a perturbed PCOD each vertex v is drawn at the center of R(v). An edge (u, v)
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is a perturbed orthogonal polyline in R(u)∪R(v) between u and v starting with
a segment on the perturbed y-axis in R(u) and ending with a segment on the
perturbed x-axis in R(v). The drawing of (u, v) must have at least one bend
in the interior of both R(u) and R(v) and must cross the boundary of R(u)
and R(v) exactly once. Distinct edges may overlap in a first or last segment,
but must not intersect otherwise. No two bends have the same coordinates. See
Fig. 7a. The North port of v is the port above and to the left of the center of Rv.
TheWest, South, and East ports are the other ports in counter-clockwise order.

Fig. 8. Routing the edges in a perturbed PCOD. (Color figure online)

In analogy to the arguments in [3], we obtain that a perturbed PCOD yields a
confluent orthogonal representation where the number s of left turns counts only
real bends. By the next theorem, we can derive a PCOD with split complexity
one from a suitable perturbed PCOD after zig-zag elimination. See Fig. 7b.

Theorem 5. Every 4-modal irreducible triangulation has a PCOD with split
complexity at most one; and such a drawing can be computed in linear time.

Proof. Let G be an irreducible triangulation. We construct a rectangular dual
for G ignoring edge directions. Routing the edges inside any rectangle indepen-
dently, we then construct a perturbed PCOD that yields a confluent orthogonal
representation with split complexity at most one after zig-zag elimination.
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Let v be a vertex of G. For a side s of R(v) let ui, i = 1, . . . , k be the adjacent
vertices of v in counter-clockwise order such that s and R(ui) intersect in more
than a point. Let ei be the edge between v and ui. Consider the division of
〈e1, . . . , ek〉 into mono-directed classes, i.e., maximal subsequences such that any
two edges in a subsequence are either both incoming or both outgoing edges.
Let the modality mod(s) of s be the number of these subsequences. Since G is
4-modal we have mod(s) ≤ 5. Assume now that s is a side of R(v) with maximal
modality. Assume without loss of generality that s is the right side of R(v).

v

sv

su

u

s

(a) real bend on s

v

sv

su

u

(b) be(v) ≥ 3 implies . . .

v

sv

su

u

(c) . . . be(u) ≤ 2

Fig. 9. Eliminating zig-zags to reduce the number of bends per edge to three. (Color
figure online)

mod(s) = 5. If e1 is an outgoing edge of v, assign the mono-directed classes of
edges crossing s from bottom to top in this order to (i) the North port bending
three times to the left, (ii) to the West port bending twice to the left, (iii) to the
South port bending once to the left, (iv) to the East port bending once to the
right, and (v) to the North port bending twice to the right. Route the edges as
indicated in blue in Fig. 8a to s. By adding zig-zags, it is always possible to route
an edge ei between v and ui in such a way that the parts of ei in R(v) and R(ui)
meet in s. See Fig. 8b. Edges crossing other sides of Rv are all outgoing edges of
v and are assigned to the North port, bending once or twice in the direction of
the side where they leave Rv. See the purple edges in Fig. 8a. If e1 is an incoming
edge, start analogously with the West port. See Fig. 8c.

mod(s) ∈ {1, . . . , 4}. The assignment of edges to ports and the routing of the
edges are contained in the drawing of the case mod(s) = 5. See the blue edges in
the second and third row in Fig. 8. We make again sure that an edge to a side of
R(v) with modality one has at most two bends in the interior of R(v). In order
to do so, we have to take special care if mod(s) = 4 and the bottommost edge
is an outgoing edge of v. Let st and sb be the top and bottom side, respectively,
of R(v). If v is incident to an outgoing edge crossing st, we opt for the variant
in Fig. 8e and otherwise (including the case that v is incident to an incoming
edge crossing sb) for the variant in Fig. 8g. No particular care has to be taken if
mod(s) = 2 (Figs. 8l and 8m).

Let now e be an edge between two vertices u and v. We consider the number
be(u) and be(v) of bends on e in R(u) and R(v), respectively, after eliminating
zig-zags. We assume without loss of generality that be(u) ≤ be(v). Recall that
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then 1 ≤ be(u) ≤ be(v) ≤ 3. Let su and sv be the sides of R(u) and R(v),
respectively that contain the intersection s of R(u) and R(v).

We have to show that up to zig-zags there are in total at most three bends
on e. This is clear if be(u) = be(v) = 1. Assume now that be(v) ≥ 2. Since the
number of real bends on e is odd it follows that the bend on s is real if and only
if be(u) + be(v) is even. In this case the bend on s bends in opposite direction as
the next bend in R(u) and R(v) (otherwise e does not cross s). Since be(v) ≥ 2,
the real bend of e on s and the next bend of e in R(v) form a zig-zag and can be
eliminated. See Fig. 9a. Thus, if be(u) + be(v) ≤ 4 then there are at most three
bends on e after zig-zag elimination.

It remains to consider the case that be(v) = 3 and be(u) ≥ 2. This implies
mod(sv) > 1 and e is in the first or last mono-directed class among the edges
crossing sv. We assume without loss of generality that sv is the right side of Rv

and that e is in the bottommost mono-directed class. See Fig. 9b. It follows that
e is an outgoing edge of v and thus, an incoming edge of u. Since be(u) ≥ 2 it
follows that e is attached to the East port of u. Assume first that be(u) = 2.
Then the bends of e in R(u) are in opposite direction as the bends of e in R(v).
Thus, there is at least one zig-zag consisting of a bend in R(u) and a bend in
R(v). After eliminating this zig-zag there are only three bends left.

Assume now that be(u) = 3. This is only possible if mod(su) ≥ 2. Hence, R(u)
is the topmost or bottommost rectangle incident to the right of R(v). Since e is in
the bottommost class with respect to sv, it must be the bottommost one. Thus,
R(v) is the topmost neighbor to the left of R(u). Moreover, since mod(su) ≥ 2
there must be a port of u other than the East port that contains an edge e′ (red
edge in Fig. 9c) crossing su. But e′ would have to bend at least four times in the
interior of R(u), which never happens according to our construction. 	


7 (Quasi-)Upward-Planar Drawings

Theorem 6. Every upward-plane digraph admits an upward PCOD with split
complexity at most one. Moreover, for plane st-graphs both the split complexity
and the total number of bends can be minimized simultaneously in linear time.

Proof. Let G be an upward-plane digraph. Then G can be augmented to a plane
st-graph by adding edges [6]. Subdividing each edge once yields a plane st-graph
with a bitonic st-ordering [1] and, thus, with an upward-planar L-drawing [17].
This corresponds to an upward PCOD of split complexity one for G.

If G is a plane st-graph it can be decided in linear time whether G has an
upward-planar L-drawing [17], and thus, an upward PCOD of split complexity
zero. Otherwise, the minimum number of edges that has to be subdivided in
order to obtain a digraph that has a bitonic st-ordering can be computed in
linear time [1]. Thus, a PCOD with the minimum number of bends among all
upward PCODs of G with split complexity one can be computed in linear time.
Observe that the total number of bends cannot be reduced by increasing the
split complexity, since the subdivision of edges is only performed in order to
break one of the transitive edges in a valley. 	
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Theorem 7. Every 2-modal digraph without 2-cycles admits a quasi-upward
PCOD with split complexity at most one. Moreover, such a drawing can be com-
puted in linear time.

Proof. Let G be a 2-modal graph without 2-cycles. G has a planar L-drawing [3],
say Γ . Process the vertices v of G top-down in Γ . If there are edges attached to
the South port of v, we reroute them such that they are attached to the North
port. Consider first the case that at least one among the East or the West port –
say the East port – of v does not contain edges. Then we can reroute the edges
as indicated in Fig. 10b. Edges attached to the South port of v in Γ are now
attached to the North port of v and get two additional bends near their tail.

v

(a) empty East

v

(b) South to North

v

(c) East/West full

v

(d) East to West

Fig. 10. From a planar L-drawing of a 2-modal graph to a quasi-upward PCOD.

Assume now that both the East and the West port of v contain edges. Then,
by 2-modality, no edge is attached to the North port of v. Those edges incident
to the East port that bend upward are reattached to the West port without
adding any additional bend. This is possible since these edges have already been
rerouted near their other end vertex and two new bends have been inserted. So
there are enough bends for the bend-or-end property. The rotation of the faces
and the angular sum around the vertices are also maintained. The edges incident
to the East port bending downward are rerouted from their original drawing to
the West port with two new bends. See Fig. 10d. Now we can reroute the edges
attached to the South port as in the first case.

An edge attached to the South port in Γ gets at most two new bends near its
tail; an edge attached to the North port at most two new bends near its head.
Thus, in the end each edge has at most three bends, i.e., split complexity 1. 	


8 Experiments Using an ILP

Based on the definition of confluent orthogonal representations and the fact
that each 4-modal multigraph has a PCOD with split complexity at most two,
we developed an ILP to compute PCODs with minimum split complexity for
4-modal graphs. See [19] for details. Since each simple 4-modal graph without
2-cycles can be extended to a triangulated 4-modal graph [3], we first sampled
several thousand upward-planar triangulations for various numbers n ≤ 500 of
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vertices with two different methods: sampling (a) undirected triangulations uni-
formly at random [25] orienting the edges according to an st-ordering [15] and
(b) with an OGDF method [18]. Then we flipped the direction of each edge with
probability 0.5 maintaining 4-modality. Finally, we added as many 2-cycles as 4-
modality allowed. The resulting digraphs contained (34± 1

4 )n separating triangles,
roughly n 2-cycles, but no separating 2-cycles. All digraphs had split complex-
ity one.

9 Conclusion and Future Work

We examined the split complexity of PCODs of various graph classes. In par-
ticular, we have shown that every 4-modal digraph admits a PCOD with split
complexity two even if it contains loops and parallel edges and that split com-
plexity two is sometimes necessary. For simple digraphs, we made a first step, by
proving that every 4-modal irreducible triangulation admits a PCOD with split
complexity one. It still remains open whether split complexity one suffices for all
simple 4-modal digraphs. Experiments suggest that this could very well be true.
It would also be interesting to know whether the minimum split complexity or
the minimum number of bends in a PCOD or a (quasi-)upward PCOD can be
efficiently determined in the case of a given 4-modal, 2-modal, or upward-planar
embedding, respectively, as well as in the case when no embedding is given.
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Abstract. A rectangular drawing of a planar graph G is a planar draw-
ing of G in which vertices are mapped to grid points, edges are mapped
to horizontal and vertical straight-line segments, and faces are drawn as
rectangles. Sometimes this latter constraint is relaxed for the outer face.
In this paper, we study rectangular drawings in which the edges have unit
length. We show a complexity dichotomy for the problem of deciding the
existence of a unit-length rectangular drawing, depending on whether
the outer face must also be drawn as a rectangle or not. Specifically, we
prove that the problem is NP-complete for biconnected graphs when the
drawing of the outer face is not required to be a rectangle, even if the
sought drawing must respect a given planar embedding, whereas it is
polynomial-time solvable, both in the fixed and the variable embedding
settings, if the outer face is required to be drawn as a rectangle.

Keywords: Rectangular drawings · Rectilinear drawings · Matchstick
graphs · Grid graphs · SPQR-trees · Planarity

1 Introduction

Among the most celebrated aesthetic criteria in Graph Drawing we have: (i)
planarity, (ii) orthogonality of the edges, (iii) unit length of the edges, and (iv)
convexity of the faces. We focus on drawings in which all the above aesthetics
are pursued at once. Namely, we study orthogonal drawings where the edges
have length one and the faces are rectangular.

Throughout the paper, any considered graph drawing has the vertices
mapped at distinct points of the plane. Orthogonal representations are a classic
research topic in graph drawing. A rich body of literature is devoted to orthog-
onal drawings of planar [16,21,25,50] and plane [14,40,41,45,46] graphs with
the minimum number of bends in total or per edge [10,32,33]. An orthogonal
drawing with no bend is a rectilinear drawing. Several papers address rectilinear
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Fig. 1. Unit-length embedding-preserving rectangular drawings of a plane graph.

drawings of planar [13,24,26,29,37,38] and plane [20,24,43,49] graphs. When all
the faces of a rectilinear drawing have a rectangular shape the drawing is rectan-
gular. Maximum degree-3 plane graphs admitting rectangular drawings were first
characterized in [47,48]. A linear-time algorithm to find a rectangular drawing
of a maximum degree-3 plane graph, provided it exists, is described in [39] and
extended to maximum degree-3 planar graphs in [42]. Surveys on rectangular
drawings can be found in [23,35,36]. If only the internal faces are constrained to
be rectangular, then the drawing is called inner-rectangular. In [34] it is shown
that a plane graph G has an inner-rectangular drawing Γ if and only if a spe-
cial bipartite graph constructed from G has a perfect matching. Also, Γ can be
found in O(n1.5/ log n) time if G has n vertices and a “sketch” of the outer face
is prescribed, i.e., all the convex and concave outer vertices are prescribed.

Computing straight-line drawings whose edges have constrained length is
another core topic in graph drawing [1,2,4,7,12,22,44]. The graphs admit-
ting planar straight-line drawings with all edges of the same length are also
called matchstick graphs. Recognizing matchstick graphs is NP-hard for bicon-
nected [22] and triconnected [12] graphs, and in fact, even strongly ∃R-
complete [1]; see also [44].

A unit-length grid drawing maps vertices to grid points and edges to hor-
izontal or vertical segments of unit Euclidean length. A grid graph is a graph
that admits a unit-length grid drawing1. Recognizing grid graphs is NP-complete
for ternary trees of pathwidth 3 [9], for binary trees [27], and for trees of path-
width 2 [28], but solvable in polynomial time on graphs of pathwidth 1 [28]. An
exponential-time algorithm to compute, for a given weighted planar graph, a
rectilinear drawing in which the Euclidean length of each edge is equal to the
edge weight has been presented in [7].

Let G be a planar graph. The Unit-length Inner-Rectangular Draw-

ing Recognition (for short, UIR) problem asks whether a unit-length inner-
rectangular drawing of G exists. Similarly, the Unit-length Rectangular

Drawing Recognition (for short, UR) problem asks whether a unit-length

1 Note that in some literature the term “grid graph” denotes an “induced” graph, i.e.,
there is an edge between any two vertices at distance one. See, for example, [31].
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(a) (b)

Fig. 2. (a) A planar rectilinear grid drawing of a graph. (b) A unit-length rectangular
grid drawing of the same graph.

rectangular drawing of G exists. Let now H be a plane or planar embedded
(i.e., no outer face specified) graph. The Unit-length Inner-Rectangular

Drawing Recognition with Fixed Embedding (for short, UIRFE) prob-
lem asks whether a unit-length inner-rectangular embedding-preserving drawing
of H exists. Similarly, the Unit-length Rectangular Drawing Recog-

nition with Fixed Embedding (for short, URFE) problem asks whether a
unit-length rectangular embedding-preserving drawing of H exists; see Fig. 1.

Our Contribution. In Sect. 3 we show NP-completeness for the UIRFE and
UIR problems when the input graph is biconnected, which is surprising since a
biconnected graph has degrees of freedom that are more restricted than those of
a tree. In Sect. 4 we provide a linear-time algorithm for the UIRFE and URFE

problems if the drawing of the outer face is given. In Sect. 5 we first show that
the URFE problem is cubic-time solvable; the time bound becomes linear if all
internal faces of the input graph have maximum degree 6. These results hold
both when the outer face is prescribed and when it is not. Second, we show a
necessary condition for an instance of the UR problem to be positive in terms of
its SPQR-tree. Exploiting the above condition, we show that the UR problem is
cubic-time solvable; the running time becomes linear when the SPQR-tree of the
input graph satisfies special conditions. Finally, as a by-product of our research,
we provide the first polynomial-time algorithm to test whether a planar graph G
admits a rectangular drawing, for general instances of maximum degree 4.

Missing details for the proofs of the statements marked with a (�) are given
in [3].

2 Preliminaries

For basic graph drawing terminology and definitions refer, e.g., to [15,35].

Drawings and Embeddings. Two planar drawings of a connected graph are
planar equivalent if they induce the same counter-clockwise ordering of the edges
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incident to each vertex. Also, they are plane equivalent if they are planar equiv-
alent and the clockwise order of the edges along the boundaries of their outer
faces is the same. The equivalence classes of planar equivalent drawings are called
planar embeddings, whereas the equivalence classes of plane equivalent draw-
ings are called plane embeddings. A planar embedded graph is a planar graph
equipped with one of its planar embeddings. Similarly, a plane graph is a planar
graph equipped with one of its plane embeddings. Given a planar embedded
(resp. plane) graph G and a planar (resp. plane) embedding E of G, a planar
drawing Γ of G is embedding-preserving if Γ ∈ E .

In a grid drawing, vertices are mapped to points with integer coordinates
(i.e., grid points). A drawing of a graph in which all edges have unit Euclidean
length is a unit-length drawing (see Fig. 2 for an example).

Observation 1. A unit-length grid drawing is rectilinear and planar.

Observation 2. A unit-length rectangular (or inner-rectangular) drawing is
planar and it is a grid drawing, up to a rigid transformation.

The following simple property has been proved in [6, Lemma 1].

Property 1. Every cycle that admits a unit-length grid drawing has even length.

Since (inner) rectangular drawings exist only for maximum-degree-4 graphs,
in the remainder, we assume that all considered graphs satisfy this requirement.

Connectivity. A biconnected component (or block) of a graph G is a maximal
(in terms of vertices and edges) biconnected subgraph of G. A block is trivial if
it consists of a single edge and non-trivial otherwise. A split pair of G is either a
pair of adjacent vertices or a separation pair, i.e., a pair of vertices whose removal
disconnects G. The components of G with respect to a split pair {u, v} are defined
as follows. If (u, v) is an edge of G, then it is a component of G with respect
to {u, v}. Also, let G1, . . . , Gk be the connected components of G\{u, v}. The
subgraphs of G induced by V (Gi)∪{u, v}, minus the edge (u, v), are components
of G with respect to {u, v}, for i = 1, . . . , k. Due to space limitations, we refer
the reader to [3] and to [17,18] for the definition of SPQR-tree.

3 NP-Completeness of the UIRFE and UIR Problems

In this section we show NP-completeness for both the UIRFE and UIR problems
when the input graph is biconnected. We start with the following theorem.

Theorem 1. The UIRFE problem is NP-complete, even for biconnected plane
graphs whose internal faces have maximum size 6.

Let φ be a Boolean formula in conjunctive normal form with at most three
literals in each clause. We denote by Gφ the incidence graph of φ, i.e., the graph
that has a vertex for each clause of φ, a vertex for each variable of φ, and an edge
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(a) Γφ (b) Γ ∗
φ

Fig. 3. (a) The monotone rectilinear representations Γφ of Gφ. The rectangles repre-
senting variables and clauses are red, whereas the line segments and rectangles rep-
resenting the edges of φ are blue. (b) The auxiliary representation Γ ∗

φ . (Color figure
online)

(c, v) for each clause c that contains the positive literal v or the negated literal v.
The formula φ is an instance of Planar Monotone 3-SAT if Gφ is planar and
each clause of φ is either positive or negative. A positive clause contains only
positive literals, while a negative clause contains only negated literals. Hereafter,
w.l.o.g., we assume that all the clauses of φ contain exactly three literals.

A monotone rectilinear representation of Gφ is a drawing that satisfies the
following properties (refer to Fig. 3a). P1: Variables and clauses are represented
by axis-aligned rectangles with the same height. P2: The bottom sides of all
rectangles representing variables lie on the same horizontal line. P3: The rect-
angles representing positive (resp. negative) clauses lie above (resp. below) the
rectangles representing variables. P4: Edges connecting variables and clauses
are represented by vertical segments. P5: The drawing is crossing-free.

The Planar Monotone 3-SAT problem is known to be NP-complete, even
when the incidence graph Gφ of φ is provided along with a monotone rectilinear
representation Γφ of Gφ [8]. We prove Theorem 1 by showing how to construct
a plane graph Hφ that is biconnected, has internal faces of maximum size 6, and
admits a unit-length inner-rectangular drawing if and only if φ is satisfiable.
Our strategy is to modify Γφ to create a suitable auxiliary representation Γ ∗

φ

(see Fig. 3) and then to use the geometric information of Γ ∗
φ as a blueprint to

construct Hφ. Because of the lack of space, we describe in detail how to obtain
Γ ∗

φ from Γφ and how to construct Hφ in the full version [3]. We provide below a
high-level description of the logic behind the reduction.

Overview of the Reduction. The reduction is based on three main types of
gadgets. A variable v ∈ φ is modeled by means of a variable gadget, a clause c ∈ φ
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Fig. 4. The graph Hφ. Variable and clause gadgets are enclosed in light red boxes,
while transmission gadgets are enclosed in light blue boxes. (Color figure online)

by means of an (α, β)-clause gadget, and an edge (v, c) ∈ Gφ by means of a λ-
transmission gadget. We use the geometric properties of Γ ∗

φ to determine the size
and structure of each gadget, as well as how to combine the gadgets together to
form Hφ. The width and height of the rectangles representing variables, clauses,
and edges are used to construct variable gadgets and to compute the auxiliary
parameters α, β and λ, which in turn are used to construct (α, β)-clause gadgets
and λ-transmission gadgets. Finally, the incidences between the rectangles are
used to decide how to join the gadgets to construct a single connected graph.

An example of a unit-length inner-rectangular drawing of Hφ is shown in
Fig. 4; some faces of Hφ are omitted. All these missing faces are part of domino
components, which admit a constant number of unit-length inner-rectangular
drawings, see Fig. 5; some of these faces are shown filled in white or blue in Fig. 4.

The logic behind the construction is as follows. A variable gadget admits two
unit-length inner-rectangular drawings (see Fig. 6), which differ from each other
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(a) L-shape (b) C-shape (c) Stick

Fig. 5. The unit-length grid drawings of the domino components. Domino component
faces are filled blue (size 6) and white (size 4). (Color figure online)

Fig. 6. The variable gadget.

Fig. 7. In every unit-length inner-rectangular drawing of an (α, β)-clause gadget, at
least one L-shape domino component crosses the red rectangle. (Color figure online)
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on whether the domino components of the gadget stick out of the bottom or top
side of the red enclosing rectangle, and correspond to a true/false assignment
for the associated variable, respectively. The truth assignments are propagated
from variable to clause gadgets via λ-transmission gadgets. A domino component
sticking out of a variable gadget invades a transmission gadget, which causes a
domino component at the other end of the transmission gadget to be directed
towards the incident (α, β)-clause gadget. The clause gadget is designed so that
it admits a unit-length inner-rectangular drawing if and only if at least one of
the extremal domino components of its three incident transmission gadgets is
not directed towards it; this allows a domino component of the clause gadget to
invade the transmission gadget and save space inside the clause gadget; see Fig. 7.

By showing that all the unit-length inner-rectangular drawings of Hφ respect
the same plane embedding, we prove the following theorem.

Theorem 2 (�). The UIR problem is NP-complete, even for biconnected plane
graphs whose internal faces have maximum size 6.

4 An Algorithm for the UIRFE and URFE Problems
with a Prescribed Drawing of the Outer Face

Consider a connected instance of the UIRFE problem, i.e., an n-vertex con-
nected plane graph G; let E be the plane embedding prescribed for G. Let Γo be
a unit-length grid drawing of the walk bounding the outer face fo of E . W.l.o.g,
assume that the smallest x- and y- coordinates of the vertices of Γo are equal
to 0. Next, we describe an O(n)-time algorithm, called Rectangular-holes

Algorithm, to decide whether G admits a unit-length inner-rectangular draw-
ing that respects E and in which the walk bounding fo is represented by Γo.

We first check whether each internal face of E is bounded by a simple cycle
of even length, as otherwise the instance is negative by Property 1. This can
be trivially done in O(n) time. Consider the plane graph obtained from G by
removing the bridges incident to the outer face and the resulting isolated vertices.
A necessary condition for G to admit an inner-rectangular drawing is that the
resulting graph contains no trivial block. This can be tested in O(n) time [30].

The algorithm processes the internal faces of G one at a time. When a face f
is considered, the algorithm either detects that G is a negative instance or assigns
x- and y- coordinates to all the vertices of f . In the latter case, we say that f
is processed and its vertices are placed. Since the drawing of fo is prescribed, at
the beginning each vertex incident to fo is placed, while the remaining vertices
are not. Also, every internal face of E is not processed. The algorithm concludes
that the instance is negative if one of the following conditions holds: (C1) there
is a placed vertex to which the algorithm tries to assign coordinates different
from those already assigned to it, or (C2) there are two placed vertices with
the same x-coordinate and the same y-coordinate. If neither Condition C1 nor
C2 occurs, after processing all the internal faces the vertex placement provides
a unit-length inner-rectangular drawing of the input instance.

To process faces, the algorithm maintains some auxiliary data structures:
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fo

f∗L
u

(a) Graph H and face f∗

f∗ = fo

(b) Merging f∗ with fo

Fig. 8. A step of the Rectangular-holes Algorithm.

– A graph H, called the current graph, which is the subgraph of G com-
posed of the vertices and of the edges incident to non-processed (internal)
faces. Initially, we have H = G. In particular, we will maintain the invariant
that each biconnected component of H is non-trivial. We will also maintain
the outer face of the restriction EH of E to H, which we will still denote by fo.

– An array A, called the current outer-sorter, that contains Mx + 1
buckets, each implemented as a double-linked list, where Mx is the largest
x-coordinate of a vertex in Γo. The bucket A[i] contains the placed vertices of
H (i.e., those incident to the outer face of H) whose x-coordinate is equal to i.
Moreover, A is equipped with the index xmin of the first non-empty bucket.
To allow removals of vertices in O(1) time, we enrich each placed vertex with
x-coordinate i with a pointer to the corresponding list-item in the list A[i].

– A set of pointers for the edges of H: Each edge (u, v) is equipped with two
pointers �uv and �vu, that reference the faces of E lying to the left of (u, v),
when traversing such an edge from u to v and from v to u, respectively.

At each iteration the algorithm performs the following steps; see Fig. 8.
Retrieve: It retrieves an internal face f∗ with at least one vertex u with mini-
mum x-coordinate (i.e., xmin) among the placed vertices of H; such a vertex is
incident to the outer face of H. Draw: It assigns coordinates to all the vertices
incident to f∗ in such a way that f∗ is drawn as a rectangle R∗. Note that such a
drawing is unique as the left side of R∗ in any unit-length grid drawing of H with
the given drawing of fo coincides with the maximal path L containing u that is
induced by all the placed vertices of f∗ with x-coordinate equal to xmin. Merge:
It merges f∗ with fo by suitably changing the pointers of every edge incident to
f∗, and by removing each edge (u, v) with pointers �uv = �vu = fo, as well as any
resulting isolated vertex. Further, it updates A consequently. Note that, after the
merge step, the outer face fo of the new current graph H is completely drawn.
This invariant is maintained through each iteration of the algorithm. In [3], we
describe each step in detail.
The proof of the next theorem exploits the Rectangular-holes Algorithm.
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(a) Double (b) Slim double (c) Fat double (d) Degree-4 (e) Degree-6

Fig. 9. Corner faces for the proof of Theorem 4.

Theorem 3 (�). The UIRFE and URFE problems are O(n)-time solvable for
an n-vertex connected plane graph, if the drawing of the outer face is prescribed.

Since any unit-length grid drawing of a cycle with 4 or 6 vertices is a rectangle,
the previous theorem implies the following result, which contrasts with the NP-
hardness of Theorem 1, where the drawing of the outer face is not prescribed.

Corollary 1. The UIRFE problem is linear-time solvable if the drawing of the
outer face is prescribed and all internal faces have maximum degree 6.

5 Algorithms for the URFE and UR Problems

In this section we study the UR problem. Since rectangular drawings are convex,
the input graphs for the UR problem must be biconnected [19].

Fixed Embedding. We start by considering instances with either a prescribed
plane embedding (Theorem 4) or a prescribed planar embedding (Theorem 5).

Theorem 4 (�).The URFE problem is cubic-time solvable for a plane graph G
and it is linear-time solvable if all internal faces of G have maximum degree 6.

Proof (sketch). To solve the problem in cubic time, we examine the quadratically-
many drawings of the outer face fo, and invoke Theorem 3 for each of them.

Assume now that all internal faces have maximum degree 6. We efficiently
determine O(1) possible rectangular drawings of fo and then invoke Theorem 3
for each of them. If G is a 4-cycle or a 6-cycle, then the instance is trivially
positive. Refer to Fig. 9. A double corner face is a degree-4 face with three edges
incident to fo. A slim double corner face is a degree-6 face with five edges incident
to fo. A fat double corner face is a degree-6 face with four edges incident to fo.
Note that each of such faces must provide two consecutive 270◦ angles incident
to f0. Hence, if G has at least one of the above faces, the drawing of fo is
prescribed, and hence Rectangular-holes Algorithm can be invoked.

Suppose now that none of the above cases holds. A corner face is a degree-4
(degree-6) face that has two (resp. three) edges incident to fo. Each corner face
provides a 270◦ angle incident to any realization of f0 as a rectangle. Hence, there
must be exactly four corner faces in order for G to be a positive instance. These
faces can be computed in linear time, and determine O(1) possible drawings of
the outer face on which we invoke Rectangular-holes Algorithm. ��
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Fig. 10. A rectangular unit-length grid drawing of a planar graph and its pruned
SPQR-tree T ∗. S-, P -, and R-nodes are circles, rhombuses and squares, respectively.
The subgraphs corresponding to S-nodes that are leaves of T ∗ are thick.

By showing that any planar embedding has a unique candidate outer face
supporting a unit-length rectangular drawing, we get the following.

Theorem 5 (�). The URFE problem is cubic-time solvable for a planar embed-
ded graph G, and it is linear-time solvable if all but at most one face of G have
maximum degree 6.

Variable Embedding. Now, we turn our attention to instances with a variable
embedding. We start by providing some relevant properties of the graphs that
admit a rectangular (not necessarily unit-length or grid) drawing. Let G be one
such graph. To avoid degenerate cases, in what follows, we assume that G is not
a cycle (cfr. Property 1). Let Γ be a rectangular drawing of G and let Γo be
the rectangle delimiting the outer face of Γ . Refer to Fig. 10. Consider the plane
graph GΓ corresponding to Γ . Since Γ is convex, then GΓ is a subdivision of
an internally triconnected plane graph [5, Theorem 1]. That is, every separation
pair {u, v} of GΓ is such that u and v are incident to the outer face and each
connected component of GΓ \{u, v} contains a vertex incident to the outer face.

A caterpillar is a tree such that removing its leaves results in a path, called
spine. The pruned SPQR-tree of a biconnected planar graph G, denoted by T ∗, is
the tree obtained from the SPQR-tree T of G, after removing the Q-nodes of T .

Lemma 1 (�). Let G be a graph that admits a rectangular drawing. Then the
pruned SPQR-tree T ∗ of G is a caterpillar with the following properties: (i) All
its leaves are S-nodes; (ii) its spine contains no two adjacent R-nodes; (iii) its
spine contains no two adjacent nodes μ and ν, such that μ is a P -node and ν is
an R-node; (iv) each P -node μ has exactly 3 neighbors; and (v) the skeleton of
each S-node of the spine of T ∗ contains two chains of virtual edges corresponding
to Q-nodes, separated by two virtual edges each corresponding to either a P - or
an R-node.
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Proof (sketch). Let Γ be a rectangular drawing of G and let Γo be the rectangle
bounding the outer face of Γ . By inspecting Γ “from left to right”, we argue
about the structure of T ∗, which ultimately leads to prove the statement of the
lemma; refer to Fig. 10. At each point of the inspection, T ∗ will be a caterpillar
whose spine does not have a P -node as an end-point. Also, a leaf will be denoted
as active and will be used as an attachment endpoint to extend T ∗.

Let S = [{u1, v1}, {u2, v2}, . . . , {uk, vk}] be the separation pairs of G such
that both ui and vi lie on opposite sides of Γo, have degree 3, and share the same
x-coordinate, for i = 1, . . . , k, sorted in increasing order of their x-coordinate.
In [3], we provide properties of rectangular drawings that show that these pairs
are the only ones that correspond to poles of P - and R-nodes of T ∗. We set
L = {u0, v0} ◦ S ◦ {uk+1, vk+1}, where u0, uk+1, vk+1, and v0 are the vertices on
the top-left, top-right, bottom-right, and bottom-left corner of Γo.

Consider any two consecutive pairs {ui, vi} and {ui+1, vi+1}, for i = 0, . . . , k.
We can define a cycle Ci in G that contains ui, ui+1, vi+1, and vi, and that is
drawn as a rectangle in Γ . Moreover, any two cycles Ci and Ci+1 share a path
Pi+1 that is drawn as a straight-line segment in Γ . We denote by Gi the subgraph
of G induced by the vertices in the interior and along the boundary of Ci.

We skip the discussion for the consecutive pairs {u0, v0} and {u1, v1}. For
i = 1, . . . , k, consider the separation pair {ui, vi}. Let ξ be the active endpoint
of the spine. In the following, we denote by sk(μ) the skeleton of a node μ of T ∗.
Two cases are possible: ξ is either an S- or an R-node.

Suppose that Gi = Ci. If ξ is an S-node, then we introduce a P -node μi,1 in
T ∗ adjacent to ξ and to two new S-nodes μi,2 and μi,3. We have that sk(μi,1) is
a bundle of three parallel edges (ui, vi), sk(μi,2) is a cycle containing one virtual
edge for each edge of the path Pi plus a virtual edge (ui, vi), and sk(μi,3) is a
cycle consisting of a virtual edge (ui, vi), followed by one virtual edge for each
horizontal edge in the top side of Ci, followed by one virtual edge (ui+1, vi+1),
followed by one virtual edge for each horizontal edge in the bottom side of Ci.
We set S-node μ1,3 as the active node of T ∗. If ξ is an R-node, then we introduce
an S-node μi in T ∗ adjacent to ξ whose skeleton is a cycle consisting of a virtual
edge (ui, vi), followed by one virtual edge for each horizontal edge in the top
side of Ci, followed by a path P ∗ of virtual edges defined below, followed by one
virtual edge for each horizontal edge in the bottom side of Ci. If i < k, then
P ∗ consists of the single virtual edge (ui+1, vi+1); otherwise, if i = k, then P ∗

contains a virtual edge for each real edge incident to the right side of Γo. We set
the S-node μi as the active endpoint of T ∗, unless i = k.

Suppose now that Gi �= Ci. In this case, Gi is the subdivision of a triconnected
planar graph. We introduce an R-node μi in T ∗ adjacent to ξ and to the S-nodes
corresponding to the components of Gi, with respect to its split pairs, that are
simple paths. We add to sk(μi) a virtual edge for each of such paths, as well
as (ui, vi) and (ui+1, vi+1), unless i = k. We set the R-node μi as the active
endpoint of T ∗, unless i = k. ��

Consider a graph G that satisfies the conditions of Lemma 1. If the spine of
the pruned SPQR-tree of G contains at least two nodes or at least one P -node,
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Fig. 11. Four plane embeddings of a graph G that support a rectangular drawing of
G, obtained by selecting one of the plane embeddings E1 and E4 of the subgraph G0 of
G and one of the the plane embeddings E2 and E3 of the subgraph G4 of G. Only the
embeddings E1 and E2 support a unit-length rectangular drawing.

we say that G is flat ; otherwise, G is the subdivision of a triconnected planar
graph. Exploiting Lemma 1, we can prove the following; refer to Fig. 11.

Lemma 2 (�). Let G be an n-vertex graph. The following hold:

– All the unit-length rectangular drawings of G, if any, have the same plane
embedding E (up to a reflection), which can be computed in O(n) time.

– If G is flat, all the rectangular drawings of G, if any, have at most four possible
plane embeddings (up to a reflection), which can be computed in O(n) time.

The next theorem shows that the UR problem is polynomial-time solvable.
Surprisingly, the problem seems to be harder for non-flat instances.

Theorem 6 (�). Let G be a planar graph. The UR problem is cubic-time solv-
able for G. Also, if G is flat, then the UR problem is linear-time solvable.

Proof (sketch). First, we test whether G satisfies the conditions of Lemma 1,
which can clearly be done in O(n) time by computing and visiting T ∗, and
reject the instance if this test fails. Then, by Lemma 2, we compute in O(n) time
the unique candidate plane embedding E of G that may support a unit-length
rectangular drawing of G, if any, and reject the instance if such an embedding
does not exist. Let fo be the outer face of E . If the spine of T ∗ consists of a
single R-node, then E coincides with the unique planar embedding of G, and we
test for the existence of such a drawing using Lemma 5 in O(n3) time. If G is
flat, then we can show that there exists a unique candidate drawing Γo of fo.
Then, we use Theorem 3 to test in O(n) time whether a unit-length rectangular
drawing of G exists that respects E and such that fo is drawn as Γo. ��
Theorem 7 (�). Let G be an n-vertex planar graph. The problem of testing for
the existence of a rectangular drawing of G is solvable in O(n2 log3 n) time. Also,
if G is flat, then this problem is solvable in O(n log3 n) time.

Proof (sketch). Assume that G satisfies the conditions of Lemma 1. If G is flat,
then Lemma 2 guarantees the existence of only up to four plane embeddings
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of G that are candidates for a rectangular drawing of G that respects them.
Otherwise, G is the subdivision of a triconnected planar graph, and there exists
O(n) candidate plane embeddings. For each of them, we test for the existence of
a rectangular drawing respecting it by solving a max-flow problem on a linear-
size planar network with multiple sources and sinks in O(n log3 n) time [11].
Such a network can be defined following Tamassia’s [15] classic approach to test
for the existence of rectilinear drawings of plane graphs. ��

6 Conclusions and Open Problems

We studied the recognition of graphs admitting the beautiful drawings that
require unit-length and orthogonality of the edges, planarity, and convexity of
the faces. We show that, if the outer face is drawn as a rectangle, the problem
is polynomial-time solvable, while it is NP-hard if the outer face is an arbitrary
polygon (even if the input is biconnected), unless such a polygon is specified
in advance. These results hold both in the fixed-embedding and in the variable-
embedding settings. A byproduct of our results is a polynomial-time algorithm to
recognize graphs admitting a rectangular (non-necessarily unit-length) drawing.

It is worth remarking that if the input is a subdivision of a triconnected
planar graph, then our algorithms pay an extra time to handle the outer face.
Specifically, for the rectangular unit-length setting, an extra quadratic time is
used to guess a rectangular drawing of the unique candidate outer face, while,
for the general rectangular setting, an extra linear time is used to determine the
actual candidate outer face. Hence, it is appealing to study efficient algorithms
for this specific case. Further, it is interesting to determine the complexity of the
grid graph recognition problem for trees with a given embedding, even for the
case of trees that are as simple as caterpillars. Observe that the NP-hardness
results on trees in [9,27] heavily rely on the variable embedding setting.
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Abstract. Strictly-convex straight-line drawings of 3-connected planar
graphs in small area form a classical research topic in Graph Drawing.
Currently, the best-known area bound for such drawings is O(n2)×O(n2),
as shown by Bárány and Rote by means of a sophisticated technique
based on perturbing (non-strictly) convex drawings. Unfortunately, the
hidden constants in such area bound are in the 104 order.

We present a new and easy-to-implement technique that yields
strictly-convex straight-line planar drawings of 3-connected planar
graphs on an integer grid of size 2(n − 1)× (5n3 − 4n2).

Keywords: Strictly-convex drawings · Area bounds · Planar graphs

1 Introduction

Drawing planar graphs is a fundamental topic in Graph Drawing with several
important contributions over the last few decades [8,14,17,21,24]. One of the
most influential is due to de Fraysseix, Pach and Pollack [8], who back in 1988
showed that every n-vertex planar graph admits a straight-line planar drawing
on a (2n−4)× (n−2) grid, which can be computed in O(n) time [7]. Since then,
several improvements on the size of the underlying grid have been proposed in the
literature [12,15,17,18,21,25]. The best-known upper bound is (n − 2) × (n − 2)
by Chrobak and Kant [6] and by Schnyder [21], who propose two conceptually
different approaches to derive this bound. The former is an incremental drawing
algorithm inspired by [8], while the latter is based on a face counting technique.

Straight-line drawings of planar graphs have also been extensively studied
by requiring convexity [22], that is, the boundary of every face must be a con-
vex polygon. Such drawings are called convex and always exist for 3-connected
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Fig. 1. A strictly-convex drawing of a 3-connected planar graph on 7 vertices.

planar graphs [23,24]. Again the aim is to keep the size of the underlying grid
as small as possible; see [10] for a survey. Early results date back to Schnyder
and Trotter [22], Chrobak and Kant [6], Di Battista et al. [11] and Felsner [12].
The latter guarantees the existence of a convex drawing of a 3-connected planar
graph on a (f −1)× (f −1) integer grid, where f = O(n) is the number of faces.

Note that in a convex drawing three vertices on the boundary of a face can
be collinear. If this is not allowed, then the corresponding drawings are called
strictly-convex. Since an n-vertex cycle cannot be drawn strictly-convex on a
grid of size o(n3) [5], it follows that strictly-convex drawings are more demand-
ing in terms of required area. As an adaptation of the standard incremental
drawing algorithms or the face-counting methods is rather difficult, the only
approach that has been exploited so far to obtain strictly-convex drawings is to
perturb convex drawings. This idea was pioneered by Chrobak, Goodrich and
Tamassia [5], who claimed (without giving details) that every 3-connected pla-
nar graph admits a strictly-convex drawing on an O(n3) × O(n3) grid. The area
bound was improved to O(n7/3)×O(n7/3) by Rote [19] and to O(n2)×O(n2) by
Bárány and Rote [1], which is currently the best-known asymptotic upper bound.
However, as the authors mention “the constants hidden in the O-notation are
on the order of 100 for the width and on the order of 10,000 for the height. This
is far too much for applications where one wants to draw graphs on a computer
screen” [1].

Our Contribution. We continue the research on strictly-convex drawings of
3-connected planar graphs. Our contribution is a new technique that computes
strictly-convex drawings of 3-connected n-vertex planar graphs on an integer grid
of size 2(n−1)× (5n3 −4n2), as outlined in the following theorem. Although the
asymptotic area bound is the same as the one in [1], the multiplicative constants
are significantly smaller. Also, the proposed technique is elegant and can be
readily implemented to run in linear time. On the other hand, the aspect-ratio
of the produced drawings is quadratic rather than constant.

Theorem 1. Every 3-connected planar graph with n vertices admits a strictly-
convex planar straight-line drawing on an integer grid of size 2(n − 1) × (5n3 −
4n2). Also, the drawing can be computed in O(n) time.

Our technique starts with a convex drawing computed by Kant’s algorithm [17].
We rely on properties of such a drawing to show that shifting vertices upwards
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Fig. 2. In both drawings, (x, y) is above s, while (x′, y′) is below s.

by using a strictly-increasing and strictly-convex function preserves planarity; a
property of independent interest. Also, the obtained planar drawing is convex
and collinear vertices in a face, if any, are horizontally aligned. For such ver-
tices, a second shifting yields an internally strictly-convex drawing. A suitable
augmentation guarantees that the outer face is also strictly-convex.

Paper Structure. Section 2 contains basic definitions and tools. In Sect. 3,
we introduce properties of Kant’s algorithm that we leverage in our technique.
Section 4 describes our algorithm. Section 5 concludes the paper with a brief
discussion and open problems. For space reasons, some proofs are omitted (the
corresponding statements are marked with �) and can be found in [4].

2 Preliminaries

Basic Definitions. Let f : R → R be a function. If f(a) < f(b) for every pair
a, b ∈ R with a < b, then f is strictly-increasing. Function f is strictly-convex if
for all t, 0 < t < 1, and all a, b ∈ R, it holds f(ta+(1− t)b) < tf(a)+(1− t)f(b).
Consider three points (x1, y1), (x, y), (x2, y2), with x1 < x < x2 and let s be the
line-segment connecting (x1, y1) and (x2, y2). We say that (x, y) is above (resp.,
below) s if the slope of s is smaller (resp., larger) than the slope of the line-
segment connecting (x1, y1) and (x, y); see Fig. 2. The next lemma easily follows
from the chordal slope lemma [20].

Lemma 1 (�). Let (x1, y1), (x, y) and (x2, y2) be three collinear points with
x1 < x < x2 that are not horizontally aligned. If f : R → R is a strictly-convex
function, then point (x, f(y)) is below the line-segment with endpoints (x1, f(y1))
and (x2, f(y2)).

Drawings and Embeddings. We assume familiarity with basic graph draw-
ing concepts [9]. In particular, a plane graph is a graph with a prescribed planar
embedding. Unless otherwise specified, we consider drawings that are straight-
line, planar and whose vertices are on an integer grid. A drawing is convex
(strictly-convex) if the boundary of each face is a convex (strictly-convex) poly-
gon. Similarly, a drawing is internally convex (internally strictly-convex) if the
boundary of each inner face is a convex (strictly-convex) polygon. Given a draw-
ing Γ of a graph G, denote by (xu, yu) the coordinates of vertex u in Γ . For two
vertices u and v in Γ , we denote by Δuv the interior of the right triangle whose
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corners are u, v and the intersection of the vertical line though the vertex having
the lowest y-coordinate with the horizontal line through the vertex having the
highest y-coordinate (among u, v). For example, in Fig. 3a, the Δuv triangle of
the endpoints of each edge (u, v) is striped.

Canonical Order. Let G be a 3-connected plane graph with n vertices. Let
δ = (P0, . . . , Pm) be a partition of the vertices of G into paths, such that P0 =
{v1, v2}, Pm = {vn}, and edges (v1, v2) and (v1, vn) exist and belong to the outer
face. For k = 0, . . . ,m, let Gk be the subgraph induced by ∪k

i=0Pi. Let Ck be the
contour of Gk defined as follows: If k = 0, then C0 is the edge (v1, v2), while if
k > 0, then Ck is the path from v1 to v2 obtained by removing (v1, v2) from the
cycle delimiting the outer face of Gk. Partition δ is a canonical order [17] of G if
for each k = 1, . . . ,m−1 the following conditions hold: (i) Gk is biconnected and
internally 3-connected, (ii) all neighbors of Pk in Gk−1 are on Ck−1, (iii) either
Pk is a singleton (i.e., |Pk| = 1), or Pk is a chain (i.e., |Pk| > 1) and the degree
of each vertex of Pk is 2 in Gk, (iv) all vertices of Pk with 0 ≤ k < m have at
least one neighbor in Pj for some j > k. For example, a canonical order for the
graph of Fig. 1 is P0 = {v1, v2}, P1 = {v3, v4}, P2 = {v5, v6} and P3 = {v7}. A
canonical order of G can be computed in O(n) time [17].

Kant’s Algorithm. Kant [17] describes an incremental drawing algorithm that,
in linear time, computes a convex straight-line planar drawing Γ of an n-vertex
plane graph G on an integer grid of size (2n − 4) × (n − 2). The drawing Γ has
the same planar embedding as the input graph G. The algorithm is based on
a canonical order δ of G and works as follows: Initially, vertices v1 and v2 of
P0 are placed at points (0, 0) and (1, 0), respectively. For k = 1, . . . ,m, assume
that a convex drawing Γk−1 of Gk−1 has been constructed in which the edges of
contour Ck−1 are drawn with slopes 0 and ±1 (contour condition; see Fig. 3a).
Let (w1, . . . , wp) be the vertices of Ck−1 from left to right in Γk−1, where w1 = v1
and wp = v2. Each vertex v in Gk−1 has been associated with a shift-set S(v),
such that Γk−1 is stretchable, that is, for each i = 1, . . . , p the result of shifting
S(wi), . . . , S(wp) by one (or more) units to the right is a convex drawing of Gk−1.
Let Pk = {z1, . . . , zp} be the next path in δ. Let w� and wr be the leftmost and
rightmost neighbors of Pk on Ck−1 in Γk−1, where 1 ≤ � < r ≤ p. To introduce
Pk and to avoid edge-overlaps, the algorithm first identifies two so-called critical
vertices w�′ and wr′ with � ≤ �′, r′ ≤ r and then shifts (i) by one unit to the right
each vertex in

⋃p
i=�′ S(wi) and then (ii) by one unit to the right each vertex in⋃p

i=r′ S(wi). Then, z1 is placed at intersection of the line of slope +1 through
w� with the line through of slope −1 point wr; see Fig. 3b. If Pk is a chain, then
for i = 2, . . . , p, vertex zi is placed one unit to the right of zi−1 by shifting each
vertex in

⋃p
i=r′ S(wi) one unit to the right. Finally, the shift-sets of the vertices

of Pk are defined accordingly to ensure that Γk is stretchable.

3 Properties of Kant’s Algorithm

We provide properties of drawings computed by Kant’s algorithm that we lever-
age in the next section; some of these properties are indirectly mentioned also
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Fig. 3. Introducing a singleton Pk = {z1} in Γk−1 in the algorithm by Kant [17].

in [16]. To ease the presentation, we first introduce a 4-coloring for the edges of
G similar to the one by Schnyder [13,21]. We color edge (v1, v2) of G0 black.
Given a 4-coloring for Gk−1 with k = 1, . . . ,m, we extend it for Gk as follows
(see Figs. 1 and 3a). We first color the edges of Gk that do not belong to Gk−1

and are on contour Ck. Namely, the first such edge encountered in a clockwise
walk of Ck from v1 to v2 is blue, the last one is green and all remaining ones
(that is, those having both endpoints in Pk when Pk is a chain) are black. The
remaining edges of Gk not in Gk−1 are red (i.e., those that are incident to Pk

and are not part of Ck; this case only arises if Pk is a singleton by Condition (iii)
of the canonical order), which implies that Ck has no red edges.

Since a shift to introduce a path of δ in the incremental construction of Γ
can only decrease the slope of a blue edge, increase the slope of a green edge,
while the black and the red edges maintain their slope [17], we have that:

– the slope of each blue edge ranges in (0, 1],
– the slope of each black edge is 0,
– the slope of each green edge ranges in [−1, 0), and
– the slope of each red edge ranges in the complement of [−1, 1].

Since each inner face in Γ is formed when a path of δ is introduced during the
incremental construction, part of it belongs to the contour, while its remaining
part is formed by the introduced path, which gives rise to the following property.

Property 1. Let x be the leftmost vertex of an inner face g in Γ (in case of
more than one such vertices select the bottommost one). A counterclockwise walk
of g starting from x consists of the following boundary parts (see Fig. 4):

i. a (possibly empty) strictly descendant path of green edges,
ii. at most one black edge,
iii. a (possibly empty) strictly ascendant path of blue edges,
iv. a green or red edge,
v. a (possibly empty) horizontal path of black edges, and
vi. a blue or red edge.
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g
x

Fig. 4. Illustration for the shape of a face.

Boundary parts (iv)–(vi) (dotted in Fig. 4) are introduced when a path is added
during the incremental construction of Γ (which implies that at least one of
boundary parts (i)–(iii) is part of the contour and thus is non empty in g). So,
boundary parts (iv)–(vi) cannot simultaneously contain black and red edges (by
the edge-coloring and Condition (iii) of canonical order).

Property 2 (�). Each vertex w of a path Pi, with 0 < i ≤ m, has at least two
incident edges (a,w) and (b, w), such that ya ≤ yw, yb ≤ yw, and xa < xw < xb.

Property 3 (�). Every face in Γ has at most one edge drawn vertical.

Property 4 (�). Let u, v and w be three consecutive vertices encountered in
this order in a counterclockwise walk along the boundary of an inner face of Γ .
If they are collinear and the line through them has zero slope, then they are part
of a chain. If they are collinear and the line through them has positive (negative)
slope, then yu < yv < yw (yu > yv > yw). If they are not collinear, then v /∈ Δuw.

4 Algorithm Description

We now describe our approach to compute a strictly-convex drawing of a 3-
connected plane graph, assuming that its outer face has at most 5 vertices (such
a face always exists). We start with Sect. 4.1, in which we describe the properties
of what we call lifting functions and liftable drawings. A key property is that
applying a non-affine transformation to a liftable drawing by means of a lifting
function preserves planarity. As this tool might be of independent interest, we
state it as general as possible. In Sect. 4.2, we prove that drawings computed
by Kant’s algorithm are indeed liftable and that a transformation via a liftable
function makes them internally strictly-convex except for possible horizontally-
aligned paths. Up to this point, it was not needed to choose a particular lifting
function; in Sect. 4.3 we unveil our choice. We also design a second transformation
targeted to faces containing paths of horizontally-aligned vertices. The output of
this step is an internally strictly-convex drawing. The last step of the algorithm
is described in Sect. 4.4, namely a simple preprocessing in which the outer face
of the input graph, which by our assumption has at most 5 vertices, is suitably
augmented with dummy vertices, whose removal from the computed drawing
guarantees that all faces (including the outer one) are strictly-convex.
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4.1 Lifting Functions

Given a drawing Γ of a graph G and a function f : R �→ R, we refer to the draw-
ing Γf obtained by applying the transformation (xu, yu) �→ (xu, f(yu)) to Γ as
the transformed drawing of Γ with respect to f . In view of Theorem 2 below, we
focus on lifting functions and liftable drawings (see Definitions 1 and 2).

Definition 1. A function f : R �→ R is lifting if and only if (i) f is strictly-
convex and strictly-increasing; (ii) f(r) ≥ r,∀r ∈ R; (iii) r ∈ N ⇒ f(r) ∈ N.

The next property follows directly from Definition 1.

Observation 1. Let Γ be a drawing of a graph G. Given a lifting function f ,
three vertices are horizontally (vertically) aligned in Γ if and only if they are
horizontally (vertically) aligned in the transformed drawing Γf .

Definition 2. A planar straight-line grid drawing of a graph is called liftable if
for every edge (u, v) there is no vertex of G in Δuv.

Theorem 2. Let Γ be a planar straight-line grid drawing of a plane graph G. If
Γ is liftable, then its transformed drawing Γf with respect to a lifting function f
is a planar straight-line grid drawing of G with the same planar embedding as Γ .

Proof. Condition (iii) of Definition 1 trivially implies that Γf is a grid drawing.
We next prove that Γ and Γf have the same planar embedding. (Note that, if Γ is
not liftable, Γf is not necessarily planar.) Since, by Condition (ii) of Definition 1,
Γf is obtained from Γ by shifting vertices upwards, the existence in Γf of an
edge crossing or of a vertex having a circular order of its incident edges different
than the one in Γ , implies that there exist a vertex w and an edge (u, v) in G,
such that w is below (above) (u, v) in Γ and above (below) (u, v) in Γf .

We next argue that the situation described above is not possible. Consider a
vertex w and an edge (u, v) of G and let s and s′ be the line-segments representing
(u, v) in Γ and Γf . Clearly, it suffices to consider the case in which xu ≤ xw ≤ xv.
Let p and p′ be the vertical projection of w on s and s′, respectively. Also, let
yp and yp′ be the y-coordinates of p in Γ and of p′ in Γf , respectively. Suppose
yu ≤ yv; the case in which yu > yv is symmetric.

Firstly, consider the case in which w is above s, i.e., yw > yp. Since Γ is liftable,
vertex w does not belong to Δuv. Hence, yu ≤ yp ≤ yv ≤ yw. Since f is strictly-
increasing, it follows f(yu) ≤ f(yp) ≤ f(yv) ≤ f(yw). However, f(yw) > yp′

implies thatw is above s′, as desired. Secondly, consider the case inwhichw is below
s in Γ . Here, we distinguish three cases: xw = xu, xw = xv and xu < xw < xv. In
the first case, we have yw < yp = yu and yp′ = f(yu). Since f is strictly-increasing,
it holds f(yw) < f(yu) = yp′ , i.e., w is below s′, as desired. The second case is
analogous. For the third case, we know that yw < yp. Since p lies on s, by Lemma 1,
f(yp) < yp′ holds. Also, since f is strictly-increasing, it follows f(yw) < f(yp).
Thus, f(yw) < yp′ holds, i.e., w is below s′, as desired. 
�
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4.2 Application to Kant’s Drawings

We now show that applying a lifting function to a drawing computed by Kant’s
algorithm (see Sect. 3) yields a drawing with several important properties.

Lemma 2. Let Γ be a drawing of a 3-connected plane graph G computed by
Kant’s algorithm. Drawing Γ is liftable.

Proof. Consider an edge (u, v) of G and w.l.o.g. assume yu < yv in Γ . We prove
that there is no vertex w in Δuv. This is obvious when xu = xv, since Δuv = ∅.
Hence, either xu < xv or xu > xv. Consider the former case; the latter can be
treated symmetrically. Suppose for a contradiction that there exists at least one
vertex (other than u and v) in Δuv. Let w be the rightmost vertex out of those
in Δuv. Since w is in Δuv we know yu < yw < yv. Since yu = yv, it follows that
(u, v) is not the edge (v1, v2) of P0, which, in turn, implies that vertex w belongs
to a path Pi with i > 0, since yu < yw. Hence, by Property 2, w has at least two
incident edges (a,w) and (b, w), such that ya ≤ yw, yb ≤ yw, and xa < xw < xb.
Since b is to the right of w, the way we selected w implies that b does not belong
to Δuv; consequently, (w, b) crosses (u, v), contradicting the planarity of Γ . 
�
By combining Theorem 2 and Lemma 2, we conclude the following.

Theorem 3 (�). Given a 3-connected plane graph G and a lifting function f , let
Γf be the transformed drawing of a drawing Γ of G computed by Kant’s algo-
rithm. Then, Γf is internally-convex and planar with the same embedding as Γ .
Also, if two consecutive edges of an inner face of Γf form an angle π inside this
face, then these edges are horizontal.

Proof sketch. Since, by Lemma 2, Γ is liftable, by Theorem 2 Γf has the same
planar embedding as Γ . Consider a counterclockwise walk along the boundary
of an inner face g in Γ and let u, v and w be three consecutive vertices along
this walk. Let α and α′ be the angle at v formed by the edges (u, v) and (v, w)
inside g in Γ and in Γf , respectively. Since Γ is convex, α ≤ π. We claim that
α′ ≤ π and that if α′ = π, then (u, v) and (v, w) are horizontally aligned in Γf .
We prove the claim when u, v and w are collinear in Γ . By Property 3, vertices
u, v and w are not vertically aligned in Γ . If they are horizontally aligned in
Γ , then by Observation 1 they are horizontally aligned also in Γf , as desired.
Suppose now the line � through u, v and w in Γ is either of positive or of negative
slope, which by Property 4 implies that either yu < yv < yw or yu > yv > yw

holds, respectively. Then, by Lemma 1, it follows that v is below the line-segment
connecting u and w in Γf , hence α′ < π. 
�

4.3 Putting Everything Together

We are now ready to put all pieces together. Let G be a 3-connected plane graph
with n vertices. Without loss of generality, we can assume that the outer face of
G contains at most 5 vertices (which will be useful in the next subsection), since



152 M. A. Bekos et al.

Fig. 5. (a) Illustration of the procedure of shifting the vertices of a chain upwards, and
(b-c) cases that arise in the proof of Theorem 4.

such a face always exists. Let Γ be a convex drawing of G computed by Kant’s
algorithm and let f : R → R be the function f(y) = 5(n − 2)2y + y2. Clearly, f
is a lifting function. Hence, by Theorem 3, in the transformed drawing Γf , each
inner face g that is not strictly-convex contains at least three horizontally-aligned
vertices. By property 4, these vertices are part of a chain in the canonical order
δ. Hence, by Condition (iv) of canonical order, each of the vertices of this chain
has at least one neighbor placed above it. By definition of f it follows that each
of these neighbors is positioned at least 5(n − 2)2 units above the chain in Γf .
We exploit this property to turn Γf into an internally strictly-convex drawing
by shifting all vertices of each chain upwards while keeping Γf planar.

To this end, let Pk = {z1, . . . , zp} with p ≥ 2 be a chain in the canonical
order δ used to construct Γ . For i = 1, . . . , p, we shift vertex zi of Pk by (xzi

−
xz1)(xzp

−xzi
) units upwards; see Fig. 5a. It follows that if λ is the total width of

Pk in Γ (and thus also in Γf ), then each vertex in Pk is shifted by at most λ2/4
units of length upwards, which is in turn at most (n − 2)2, since the total width
of Γ is at most 2n−4, and therefore λ ≤ 2n−4. Also, note that only the internal
vertices of Pk are shifted (if any), i.e., only the vertices zi with 2 ≤ i ≤ p−1. Let
Γ̂f be the drawing obtained from Γf by applying the aforementioned procedure
to each chain, which we call the curved drawing of Γf . Clearly, Γ̂f is a grid
drawing, we can prove that it is planar and internally strictly-convex.

Theorem 4 (�). Given a 3-connected n-vertex plane graph G and the lifting
function f : R �→ R with f(y) = 5(n − 2)2y + y2, let Γf be the transformed
drawing of a drawing Γ of G computed by Kant’s algorithm. Then, the curved
drawing Γ̂f of Γf is an internally strictly-convex grid drawing of G with the same
planar embedding as Γ .

Proof sketch. Concerning the planarity of Γ̂f , consider any internal vertex of a
chain and its neighbors. At high-level, we have that the envelope through such
neighbors is a polygon whose boundary is formed by a left and a right path that
are y-monotone (see Fig. 5b). Since the vertex remains below its lowest successor
in the canonical order (see Fig. 5c), no edge crossing can be introduced. Thus,
Γ̂f is planar with the same embedding as Γf (and thus as Γ , by Theorem 3).



Strictly-Convex Drawings of 3-Connected Planar Graphs 153

Fig. 6. Illustration for the proof of Theorem 4; W denotes the width of Γf .

We next prove that Γ̂f is internally strictly-convex. Let g be an inner face
in Γ̂f . Recall that only internal chain-vertices are shifted in the transition from
Γf to Γ̂f . Hence, if g does not contain internal chain-vertices, then it is strictly-
convex by Theorem 3. Thus, we may assume that g contains at least one such
vertex z. By Property 1, z is either in the topmost chain of black edges of g, or it
is one of the (at most two) bottommost vertices of g. Consider the former, as the
latter is similar. Let Pk = {z1, . . . , zp} be the chain containing z. We argue that
any angle inside g incident to these vertices is smaller than π. By construction,
this is the case for vertices z2, . . . , zp−1. Hence, it remains to consider the angles
at z1 and zp. Since the two cases are symmetric, consider the angle at z1. Let
w� be the neighbor of z1 along Ck−1, i.e., w� is the vertex preceding z1 in a
clockwise walk of g starting from z1. We will prove that the slope of (w�, z1) is
strictly greater than the one of (z1, z2), hence the angle at z1 is less than π.

Refer to Fig. 6. By the way the vertices of Pk are shifted in the transition
from Γf to Γ̂f , it follows that the maximum of the slope of (z1, z2) is 2(n−2)−1
(i.e., achieved when Pk is of maximum x-length in Γ̂f and the x-distance of z1
and z2 in Γ̂f is 1). We next argue for the slope of the edge (w�, z1). Recall that
vertex z1 is not an interior vertex of Pk, which implies that it has not been
shifted in the transition from Γf to Γ̂f . The same, however, does not necessarily
hold for w�. As a matter of fact, this vertex may be part of a chain, i.e., when g
does not contain boundary part (i) but boundary part (ii) of Property 1. This
implies that it may have been shifted upwards by at most (n − 2)2 units in the
transition from Γf to Γ̂f . The minimum of the slope of (w�, z1) in Γf is achieved,
when (w�, z1) is of maximum x-length in Γf and of minimum y-length. Since the
former is at most 2(n − 2) − 1, while the latter is at least 5(n − 2)2, it follows
that the minimum of the slope of (w�, z1) is potentially 5(n−2)2

2(n−2)−1 in Γf . Since in

the transition from Γf to Γ̂f vertex w� may be shifted by at most (n−2)2 units,
it follows that the slope of (w�, z1) may reduce further to 5(n−2)2−(n−2)2

2(n−2)−1 , which
is its minimum value. Therefore, the slope of the edge (w�, z1) is strictly greater
than the one of (z1, z2), since the following trivially holds:

5(n − 2)2 − (n − 2)2

2(n − 2) − 1
> 2(n − 2) − 1 ⇐⇒ 2(n − 2) > 2(n − 2) − 1. 
�
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Fig. 7. Treating the outer face when its degree is five (a–b) and four (c–d).

4.4 Outer Face and Final Analysis

To complete the description of our algorithm, it remains to guarantee that
the outer face of the computed drawings is strictly-convex. To this aim, we
slightly augment the input graph G and suitably choose the canonical order to
give as input to Kant’s algorithm. Consider a planar embedding of G and let
v1, v2, . . . , vh be the vertices on the outer face (see Fig. 7a); recall that we have
assumed h ≤ 5. If h = 3, then the boundary of the outer face is a triangle and
hence strictly-convex. So, assume 4 ≤ h ≤ 5. To ease the presentation, we let
h = 5 (see Figs. 7a and 7b), as the case h = 4 is simpler (see Figs. 7c and 7d).
We proceed by adding two vertices v�

1 and v�
2 in the outer face of G and edges

(v�
1 , v

�
2), (v�

1 , v5), (v�
1 , v1), (v�

1 , v2), (v�
2 , v3), (v�

2 , v4), and (v�
2 , v5). The resulting

graph G� is still planar and 3-connected. In particular, its outer face is a 3-cycle
formed by v�

1 , v
�
2 , v5. We compute a canonical order δ� of G� with P0 = (v�

1 , v
�
2)

and Pm = {v5}. The key observation is that the second set of δ� is the chain
P1 = {v2, v3}, since it forms the inner face f� of G� with (v�

1 , v
�
2) on its boundary.

Next, we apply the algorithm supporting Theorem 4 to G� using the afore-
mentioned canonical order δ� and obtain a drawing of it that is internally strictly-
convex. We next prove that the removal of v�

1 and v�
2 from this drawing yields

a drawing of G that is strictly-convex. By Theorem 4 and by our augmentation,
it suffices to guarantee that the outer face of the obtained drawing is strictly-
convex. Consider first the inner angle at v5 of the polygon bounding the outer
face; this angle is strictly less than π, because v5 is the topmost vertex of the
drawing (and no other vertex is horizontally aligned with it). A similar argu-
ment applies for the angles at v1 and v4; in particular, after the removal of v�

1

and v�
2 , vertices v1 and v4 are the leftmost and the rightmost neighbors of v5,

respectively, and therefore they are the leftmost and the rightmost vertices in the
drawing, respectively. Concerning v2 and v3, they are horizontally aligned and,
after the removal of v�

1 and v�
2 , they are the bottommost vertices of the drawing.

Thus, their angles are also strictly less that π completing the proof of our claim.
To conclude the proof of Theorem 1, it remains to discuss the area required by
the drawing obtained as above and the time complexity to compute it.

Area Bound. The drawing Γ computed by Kant’s algorithm for G� fits on
an integer grid of size (2n� − 4) × (n� − 2), where n� = n + 2 (G� has two
more vertices than G). The transformed drawing Γf of Γ by means of the lifting
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function f : R �→ R with f(y) = 5(n� −2)2y +y2 has the same width as Γ , while
the vertices v�

1 and v�
2 have y-coordinate 0 in Γf . On the other hand, vertex v5 has

y-coordinate 5(n�−2)2(n�−2)+(n�−2)2, which is also the height of Γf . Since no
vertex of the outer face of Γf is further shifted upwards, the curved drawing Γ̂f of
Γf has the same width and height as Γf . After removing v�

1 and v�
2 , the width of

the final drawing of G is at least two units less than the one of Γ̂f , while its height
is at least 5(n�−2)2 units less. Since n� = n+2, the final drawing lies on a grid of
size ((2(n+2)−4)−2)×(5((n+2)−2)3−4((n+2)−2)2) = 2(n−1)×(5n3−4n2).

Time Complexity. Each step of our algorithm can be implemented in
O(n) time: (i) finding a planar embedding of G with a face of degree at most
5, (ii) computing G�, a canonical order of it, and applying Kant’s algorithm to
G�, (iii) computing the transformed drawing with respect to our lifting function
f and updating the position of the internal chain-vertices. This completes the
proof of Theorem 1.

5 Conclusions and Open Problems

We have provided a linear-time algorithm that computes a strictly-convex draw-
ing of a 3-connected planar graph on an integer grid of size 2(n−1)×(5n3−4n2).
Compared to the previously best-known upper bound for such drawings [1], we
largely improve the multiplicative constants by means of an arguably simpler
algorithm, which therefore has the potential to be of practical use. Along the
way, we proved tools that can be of independent interest (see in particular The-
orem 2). Some problems that stem from our research are the following:

– Can we achieve a similar area bound together with a constant aspect ratio?
– Is Ω(n4) a lower bound for the area requirement of strictly-convex drawings?
– Can we compute strictly-convex drawings in small area with good edge-vertex

resolution [2,3]?
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Abstract. A graph is rectilinear planar if it admits a planar orthogonal
drawing without bends. While testing rectilinear planarity is NP-hard
in general, it is a long-standing open problem to establish a tight upper
bound on its complexity for partial 2-trees, i.e., graphs whose biconnected
components are series-parallel. We describe a new O(n2 log2 n)-time algo-
rithm to test rectilinear planarity of partial 2-trees, which improves over
the current best bound of O(n3 log n). Moreover, for series-parallel graphs
where no two parallel-components share a pole, we are able to achieve
optimal O(n)-time complexity. Our algorithms are based on an extensive
study and a deeper understanding of the notion of orthogonal spirality,
introduced in 1998 to describe how much an orthogonal drawing of a
subgraph is rolled-up in an orthogonal drawing of the graph.

Keywords: Rectilinear planarity testing · Variable embedding ·
Series-parallel graphs · Partial 2-trees · Orthogonal drawings

1 Introduction

In an orthogonal drawing of a graph each vertex is a distinct point of the plane
and each edge is a chain of horizontal and vertical segments. Rectilinear pla-
narity testing asks whether a planar 4-graph (i.e., with vertex-degree at most
four) admits a planar orthogonal drawing without edge bends. It is a classical
subject of study in graph drawing, partly for its theoretical beauty and partly
because it is at the heart of the algorithms that compute bend-minimum orthog-
onal drawings, which find applications in several domains (see, e.g., [3,6,12,19–
21]). Rectilinear planarity testing is NP-hard [15], it belongs to the XP-class
when parameterized by treewidth [5], and it is FPT when parameterized by the
number of degree-4 vertices [10]. Polynomial-time solutions exist for restricted
versions of the problem. Namely, if the algorithm must preserve a given pla-
nar embedding, rectilinear planarity testing can be solved in subquadratic time
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for general graphs [2,14], and in linear time for planar 3-graphs [23] and for
biconnected series-parallel graphs (SP-graphs for short) [7]. When the planar
embedding is not fixed, linear-time solutions exist for (families of) planar 3-
graphs [11,17,22,25] and for outerplanar graphs [13]. A polynomial-time solu-
tion for SP-graphs has been known for a long time [4], but establishing a tight
complexity bound for rectilinear planarity testing of SP-graphs remains a long-
standing open problem.

In this paper we provide significant advances on this problem. Our main
contribution is twofold:

– We present an O(n2 log2 n)-time algorithm to test rectilinear planarity of
partial 2-trees, i.e., graphs whose biconnected components are SP-graphs.
This result improves the current best known bound of O(n3 log n) [5].

– We give an O(n)-time algorithm for those SP-graphs where no two parallel-
components share a pole. We also show a logarithmic lower bound on the
spirality that an orthogonal component of a graph in this family can take.

Our algorithms are based on an extensive study and a deeper understanding
of the notion of orthogonal spirality, introduced in 1998 to describe how much
an orthogonal drawing of a subgraph is rolled-up in an orthogonal drawing of
the graph [4]. In the concluding remarks we also mention some of the pitfalls
behind an O(n)-time algorithm for partial 2-trees. For reasons of space several
details are omitted and can be found in [9].

2 Preliminaries

A planar orthogonal drawing can be computed in linear time from a so-called
planar orthogonal representation, which describes the sequences of bends along
the edges and the angles at the vertices [24]. Hence, rectilinear planarity testing is
equivalent to asking whether a graph has a planar rectilinear representation, i.e.,
a planar orthogonal representation without bends. We study graphs that are not
simple cycles, as otherwise rectilinear planarity testing is trivial. We just use the
term “rectilinear representation” in place of “planar rectilinear representation”.

A biconnected graph G is a series-parallel graph (or SP-graph) when none of
its triconnected components is a triconnected graph. A partial 2-tree is a graph
whose biconnected components are SP-graphs. If G is an SP-graph, the SPQ-
tree T of G describes the decomposition of G into its triconnected components.
It can be computed in linear time [3,16,18] and consists of three types of nodes:
S-, P-, and Q-nodes. The degree-1 nodes of T are Q-nodes, each correspond-
ing to a distinct edge of G. If ν is an S-node (resp. a P-node) it represents a
series-component (resp. a parallel-component), denoted as skel(ν) and called the
skeleton of ν. If ν is an S-node, skel(ν) is a simple cycle of length at least three;
if ν is a P-node, skel(ν) is a bundle of at least three multiple edges. Any two
S-nodes (resp. P-nodes) are never adjacent in T . A real edge (resp. virtual edge)
in skel(ν) corresponds to a Q-node (resp. an S- or a P-node) adjacent to ν in T .
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Fig. 1. (a) An SP-graph G. (b) A rectilinear representation H of G. (c) The SPQ∗-
tree Tρ of G, where ρ corresponds to the thick chain; Q∗-nodes are small squares. The
components and the skeletons of the nodes ν, μ, φ are shown: virtual edges are dashed
and the reference edge is thicker.

We use a variant of SPQ-tree called SPQ∗-tree (refer to Fig. 1). In an SPQ∗-
tree, each degree-1 node of T is a Q∗-node, and represents a maximal chain of
edges of G starting and ending at vertices of degree larger than two and passing
through a sequence of degree-2 vertices only. If ν is an S- or a P-node, an edge
of skel(ν) corresponding to a Q∗-node μ is virtual if μ is a chain of at least two
edges, else it is a real edge.

For any given Q∗-node ρ of T , denote by Tρ the tree T rooted at ρ. The
chain of edges represented by ρ is the reference chain of G w.r.t. Tρ. If ν is
an S- or a P-node distinct from the root child of Tρ, then skel(ν) contains a
virtual edge that has a counterpart in the skeleton of its parent; this edge is the
reference edge of skel(ν). If ν is the root child, the reference edge of skel(ν) is the
edge corresponding to ρ. For any S- or P-node ν of Tρ, the end-vertices of the
reference edge of skel(ν) are the poles of ν and of skel(ν). Note that skel(ν) does
not change if we change ρ. For any S- or P-node ν of Tρ, the pertinent graph Gν,ρ

of ν is the subgraph of G formed by the union of the chains represented by the
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leaves in the subtree of Tρ rooted at ν. The poles of Gν,ρ are the poles of ν. The
pertinent graph of a Q∗-node ν (including the root) is the chain represented by ν,
and its poles are the poles of ν. Any graph Gν,ρ is also called a component of G
(w.r.t. ρ). If μ is a child of ν, Gμ,ρ a child component of ν. If H is a rectilinear
representation of G, for any node ν of Tρ, the restriction Hν,ρ of H to Gν,ρ is
a component of H (w.r.t. ρ). We use Tρ to describe all planar embeddings of G
with the reference chain on the external face; they are obtained by permuting the
edges of the skeletons of the P-nodes distinct from the reference edges. For each
P-node ν, each permutation of the edges in skel(ν) gives a different left-to-right
order of the children of ν in Tρ.

3 Rectilinear Planarity Testing of Partial 2-Trees

Let G be a partial 2-tree. We describe a rectilinear planarity testing algorithm
that visits the block-cutvertex tree (BC-tree) of G and the SPQ∗-tree of each
block of G, for all possible roots of these trees (the definition of BC-tree is recalled
in the [9]). We revisit the notion of “spirality values” for the blocks of G and
present new ideas to efficiently compute these values (Sect. 3.1). The algorithm
exploits a combination of dynamic programming techniques (Sect. 3.2).

3.1 Spirality of SP-graphs

Let G be a degree-4 SP-graph and H be a rectilinear representation of G. Let
Tρ be a rooted SPQ∗-tree of G, Hν,ρ be a component in H, and {u, v} be the
poles of ν, ordered according to some st-numbering of G, where s and t are the
poles of ρ. For each pole w ∈ {u, v}, let indegν(w) and outdegν(w) be the degree
of w inside and outside Hν,ρ, respectively. Define two (possibly coincident) alias
vertices of w, denoted by w′ and w′′, as follows: (i) if indegν(w) = 1, then
w′ = w′′ = w; (ii) if indegν(w) = outdegν(w) = 2, then w′ and w′′ are dummy
vertices, each splitting one of the two distinct edges incident to w outside Hν,ρ;
(iii) if indegν(w) > 1 and outdegν(w) = 1, then w′ = w′′ is a dummy vertex
that splits the edge incident to w outside Hν,ρ. Let Aw be the set of distinct
alias vertices of a pole w. Let Puv be any simple path from u to v inside Hν,ρ

and let u′ and v′ be the alias vertices of u and of v, respectively. The path Su′v′

obtained concatenating (u′, u), Puv, and (v, v′) is called a spine of Hν,ρ. Denote
by n(Su′v′

) the number of right turns minus the number of left turns encountered
along Su′v′

while moving from u′ to v′. The spirality σ(Hν,ρ) of Hν,ρ, introduced
in [4], is either an integer or a semi-integer number, defined as follows (see Fig. 2):
(i) If Au = {u′} and Av = {v′} then σ(Hν) = n(Su′v′

). (ii) If Au = {u′} and

Av = {v′, v′′} then σ(Hν) = n(Su′v′
)+n(Su′v′′

)
2 . (iii) If Au = {u′, u′′} and Av =

{v′} then σ(Hν) = n(Su′v′
)+n(Su′′v′

)
2 . (iv) If Au = {u′, u′′} and Av = {v′, v′′}

assume, w.l.o.g., that (u, u′) precedes (u, u′′) counterclockwise around u and that

(v, v′) precedes (v, v′′) clockwise around v; then σ(Hν) = n(Su′v′
)+n(Su′′v′′

)
2 .
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Fig. 2. A rectilinear representation H and three components w.r.t. the reference chain
from s to t. Alias vertices (white squares) and spiralities are shown.

It has been proved that the spirality of Hν,ρ does not depend on the choice
of Puv [4]. Also, a component Hν,ρ of H can always be substituted by any other
representation H ′

ν,ρ of the pertinent graph Gν,ρ with the same spirality, getting
a new valid orthogonal representation with the same set of bends on the edges of
H that are not in Hν,ρ (see [4] and also Theorem 1 in [8]). For brevity, we shall
denote by σν the spirality of a rectilinear representation of Gν,ρ. Lemmas 1 to 3
relate, for any S- or P-node ν, the spirality values for a rectilinear representation
of Gν,ρ to those of the rectilinear representations of the child components of
Gν,ρ [4]. See Fig. 3.

Lemma 1. [4] Let ν be an S-node of Tρ with children μ1, . . . , μh (h ≥ 2). Gν,ρ

has a rectilinear representation with spirality σν if and only each Gμi
(1 ≤ i ≤ h)

has a rectilinear representation with spirality σμi
, such that σν =

∑h
i=1 σμi

.

Lemma 2. [4] Let ν be a P-node of Tρ with three children μl, μc, and μr. Gν,ρ

has a rectilinear representation with spirality σν , where Gμl,ρ, Gμc,ρ, Gμr,ρ are
in this left-to-right order, if and only if there exist values σμl

, σμc
, σμr

such that:
(i) Gμl,ρ, Gμc,ρ, Gμr,ρ have rectilinear representations with spirality σμl

, σμc
,

σμr
, respectively; and (ii) σν = σμl

− 2 = σμc
= σμr

+ 2.

Let ν be a P-node of Tρ with two children, H be a rectilinear representation
of G with the reference chain on the external face. By orienting upward the
edges of H according to the st-numbering, we can naturally talk about leftmost
and rightmost incoming (outgoing) edges of every vertex. For a pole w ∈ {u, v}
of ν, the angle formed by the two leftmost (rightmost) edges incident to w
(one incoming and one outgoing) is the leftmost angle (rightmost angle) at w
in Hν,ρ. Let αl

w and αr
w be variables defined as: αl

w = 0 (αr
w = 0) if the leftmost

(rightmost) angle at w in H is 180◦, while αl
w = 1 (αr

w = 1) if this angle is 90◦.
Also let kl

w and kr
w be variables defined as: kd

w = 1 if indegμd
(w) = outdegν(w) =

1, while kd
w = 1/2 otherwise, for d ∈ {l, r}.

Lemma 3. [4] Let ν be a P-node of Tρ with two children μl and μr, and poles
u and v. Gν,ρ has a rectilinear representation with spirality σν , where Gμl,ρ and
Gμr,ρ are in this left-to-right order, if and only if there exist values σμl

, σμr
, αl

u,
αr

u, αl
v, αr

v such that: (i) Gμl,ρ and Gμr,ρ have rectilinear representations with
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Fig. 3. Illustrations for Lemmas 1 to 3 (alias vertices are small squares).

spirality σμl
and σμr

, respectively; (ii) αl
w, αr

w ∈ {0, 1}, 1 ≤ αl
w + αr

w ≤ 2 with
w ∈ {u, v}; and (iii) σν = σμl

− kl
uαl

u − kl
vαl

v = σμr
+ kr

uαr
u + kr

vαr
v.

Spirality sets. Let G be an SP-graph with n vertices, Tρ be a rooted SPQ∗-tree
of G, and ν be a node of Tρ. We say that Gν,ρ, or directly ν, admits spirality σν

in Tρ if there exists a rectilinear representation Hν,ρ with spirality σν in some
rectilinear representation H of G. The rectilinear spirality set Σν,ρ of ν in Tρ

(and of Gν,ρ) is the set of spirality values for which Gν,ρ admits a rectilinear
representation. Σν,ρ is representative of all “shapes” that Gν,ρ can take in a rec-
tilinear representation of G with the reference chain on the external face. If Gν,ρ

is not rectilinear planar, Σν,ρ is empty. If Nν is the number of vertices of Gν,ρ,
we have |Σν,ρ| = O(Nν) = O(n), as the spirality of any rectilinear representation
of Gν,ρ cannot exceed the length of the longest spine in this component. A key-
ingredient for our testing algorithm is how to efficiently compute the spirality
sets of each node in a bottom-up visit of the SPQ∗-tree of G for each possible
choice of its root. We give a core lemma regarding S-nodes.

Lemma 4. Let G be an SP-graph, T be the SPQ∗-tree of G, and ν be an S-node
of T with nν children. Let ρ1, ρ2, . . . , ρh be a sequence of Q∗-nodes of T such
that, for each child μ of ν in Tρi

, the set Σμ,ρi
is given. The set Σν,ρi

can be
computed in O(nνn log2 n) time for i = 1 and in O(n log n) time for 2 ≤ i ≤ h.

Sketch of proof: Let A and B be two sets of numbers. The Cartesian sum A+B
is the set {a + b|a ∈ A, b ∈ B}. If A and B are sets of O(n) numbers of O(n)
size, A+B can be computed in O(n log n) time (see, e.g., [1]). Even for the cases
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Fig. 4. (a) Schematic illustration of the equipped tree τ . (b) A path π from the leaf

corresponding to μ3 to the root; we have Δ
(−3)
ν,ρ1 = Σ1,2 + Σμ4,ρ1 + Σ5,6,7,8.

of negative integers or semi-integers, simple modifications allow us to apply this
technique. We extensively apply Cartesian sums between the spirality sets of
the children of ν. Indeed, based on Lemma 1, the series composition of two
components admits a set of spirality values that is the Cartesian sum of the
sets of the combined components. Since the spirality sets resulting from this
composition still contain O(n) distinct values of size O(n) and each spirality value
is either an integer or a semi-integer, we compute each Cartesian sum between
two of these sets in O(n log n) time. Let μ1, . . . , μs be the children of ν in Tρ1 ,
with s = nν .
Case i = 1. When we process ν in Tρ1 we construct the following sets: The spi-
rality set Σν,ρ1 of ν and, for each 1 ≤ j ≤ s, a set Δ

(−j)
ν,ρ1 corresponding to the

Cartesian sum of the spirality sets of all children of ν except μj . Set Δ
(−j)
ν,ρ1 will be

used to efficiently compute the spirality set of ν when μj becomes the parent of
ν in some tree Tρi

i > 1. To compute Σν,ρ1 and Δ
(−j)
ν,ρ1 we apply this procedure:

Step 1. Let d be the minimum integer such that s+ d = 2k, for an integer k > 0.
Note that d < s. If d > 0, temporarily add d dummy children μs+1, . . . , μs+d

to ν, with spirality sets Σμs+1,ρ1 = · · · = Σμs+d,ρ1 = {0}.
Step 2. Construct a complete rooted binary tree τ such that (see Fig. 4(a)): (i)
the leaves of τ correspond to μ1, . . . , μs+d, in this left-to-right order; (ii) the leaf
of τ corresponding to μj is equipped with the set Σμj ,ρi

(1 ≤ j ≤ s+d); (iii) each
internal node ψ of τ is equipped with the Cartesian sum of the two sets stored
at its children. Denote by Σj1,j2,...,jg the set stored at ψ, where μj1 , μj2 , . . . , μjg

are the leaves of the subtree rooted at ψ (ja+1 = ja + 1, for 1 ≤ a ≤ g − 1).
Hence, the root is equipped with Σ1,...,s+d = Σμ1,ρ1 + · · · + Σμs,ρ1 = Σν,ρ1 .

Step 3. For each j = 1, . . . , s, compute Δ
(−j)
ν,ρ1 as follows (see Fig. 4(b)). Let π be

the path in τ from the root to the leaf corresponding to μj , and let ψ� be the
node along π at level � of τ (ψ0 being the root). For each non-leaf node ψ�, let
φ�+1 be the sibling of ψ�+1 in τ . Δ

(−j)
ν,ρ1 is computed as the Cartesian sum of all

sets stored at the nodes φ�+1, for each non-leaf node ψ�.
About the time complexity, Step 1 takes O(s) = O(nν) time. The data struc-

ture of Step 2 is constructed in O(nνn log n) time, namely τ has O(nν) nodes; for
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each internal node of τ we execute a Cartesian sum between two sets with O(n)
numbers of size O(n), which takes O(n log n) time. To compute a single set Δ

(−j)
ν,ρ1

in Step 3, we execute O(log nν) Cartesian sums between pairs of sets (picking a
set for each level of the tree except at the root level), still spending O(n log n)
time for each sum. Hence, Δ

(−j)
ν,ρ1 is computed in O(log nν ·n log n) = O(n log2 n)

time, and all sets Δ
(−j)
ν,ρ1 are computed in O(nνn log2 n) time.

Case i > 1. Let μ be the parent of ν in Tρ1 . If μ is also the parent of ν in Tρi
, we

do not recompute Σν,ρi
, as Σν,ρi

= Σν,ρ1 . Else, μ is a child of ν in Tρi
, and one

of the children of ν in Tν,ρ1 , say μj , is the parent of ν in Tρi
. To compute Σν,ρi

we execute, in O(n log n) time, the Cartesian sum between Δ
(−j)
ν,ρ1 and Σμ,ρi

. ��

3.2 Testing Algorithm

Lemma 5. Let G be an n-vertex SP-graph. There exists an O(n2 log2 n)-time
algorithm that tests whether G is rectilinear planar and that computes a rectilin-
ear representation of G in the positive case.

Sketch of proof: We sketch here the testing phase, which elaborates on ideas
in [4] and exploits Lemma 4. Let T be the SPQ∗-tree of G and let {ρ1, . . . , ρh}
be a sequence of its Q∗-nodes. Denote by �i the length of the chain corresponding
to ρi; the spirality set of ρi consists of all integer values in the interval [−(�i −
1), (�i − 1)]. For each i = 1, . . . , h, the testing algorithm performs a post-order
visit of Tρi

. For every visited non-root node ν of Tρi
the algorithm computes the

set Σν,ρi
by combining the spirality sets of the children of ν, based on Lemmas 1–

3. If Σν,ρi
= ∅, the algorithm stops the visit, discards Tρi

, and starts visiting Tρi+1

(if i < h). If the algorithm achieves the root child ν and if Σν,ρi
�= ∅, it checks

whether G is rectilinear planar by verifying if there exists a value σν ∈ Σν,ρi
and

a value σρi
∈ Σρi,ρi

= [−(�i − 1), (�i − 1)] such that σν − σρi
= 4 (we show in [9]

that this condition is necessary and sufficient). If so, the test is positive and the
algorithm does not visit the remaining trees.

We now explain how to perform the testing algorithm in O(n2 log2 n) time.
Tree T is computed in O(n) time [3,16,18]. Let Tρi

be the currently visited tree,
and let ν be a node of Tρi

. Denote by nν the number of children of ν. If the parent
of ν in Tρi

coincides with the parent of Tρj
for some j ∈ {1, . . . , i−1}, and if Σν,ρj

was previously computed, then the algorithm does not need to compute Σν,ρi
,

because Σν,ρi
= Σν,ρj

. Hence, for each node ν, the number of computations of
its rectilinear spirality sets that are performed over all possible trees Tρi

is at
most nν + 1 = O(nν) (one for each different way of choosing the parent of ν).

If ν is a Q∗-node, Σν,ρi
is easily computed in O(1) time. If ν is a P-node with

three children, it is sufficient to check, for each of the six permutations of the
children of ν and for each value in the rectilinear spirality set of one of the three
children, whether the sets of the other two children contain the values that satisfy
condition (ii) of Lemma 2. Hence, Σν,ρi

can be computed in O(n) time. If ν is
a P-node with two children, Σν,ρi

is computed in O(n) with a similar approach,
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using Lemma 3. Since
∑

ν deg(ν) = O(n), the computation of the rectilinear
spirality sets of all P-nodes takes O(n2) time, over all Tρi

(i = 1, . . . , h).
Suppose now that ν is an S-node. By Lemma 4, in the first rooted tree for

which we are able to compute the rectilinear spirality set of ν (i.e., in the first
rooted tree for which all children of ν admit a rectilinear representation), we
spend O(nνn log2 n) time to compute such a set. For each of the other O(nν)
trees in which the parent of ν changes, we spend O(n log n) time to recom-
pute the rectilinear spirality set of ν. Thus, for each S-node ν we spend in
total O(nνn log2 n) time over all visits of Tρi

(i = 1, . . . , h), and hence, since∑
ν deg(ν) = O(n), we spend O(n2 log2 n) time over all S-nodes of the tree. ��

Theorem 1. Let G be an n-vertex partial 2-tree. There exists an O(n2 log2 n)
time algorithm that tests whether G is rectilinear planar and that computes a
rectilinear representation of G in the positive case.

Sketch of proof: Let T be the BC-tree of G, and let B1, . . . , Bq be the blocks
of G (q ≥ 2). We denote by β(Bi) the block-node of T corresponding to Bi

(1 ≤ i ≤ q) and by TBi
the tree T rooted at β(Bi). For a cutvertex c of G,

we denote by χ(c) the node of T that corresponds to c. Each TBi
describes

a class of planar embeddings of G such that, for each non-root node β(Bj)
(1 ≤ j ≤ q) with parent node χ(c), the cutvertex c lies in the external face of Bj .
We say that G is rectilinear planar with respect to TBi

if it is rectilinear planar
for some planar embedding in the class described by TBi

. To check whether
G is rectilinear planar with respect to TBi

, we have to perform a constrained
rectilinear planarity testing for every block B1, . . . , Bq so to guarantee that the
rectilinear representations of the different blocks can be merged together at the
shared cutvertices. The different types of constraints for a cutvertex c of Bj are
defined based on the degree of c in G and in Bj , as well as on the number of blocks
sharing c with Bj . The testing for Bj must consider the planar embeddings in
which none of the cutvertices is forced to be on the external face (when β(Bj)
is the root of the BC-tree) and those in which a prescribed cutvertex (the one
corresponding to the parent of β(Bj)) must be on the external face. By adapting
the technique in Lemma 5, a constrained rectilinear planarity testing for Bj can
still be executed in O(n2

Bj
log2 nBj

) over all these planar embeddings, where nBj

is the number of vertices of Bj (see [9] for details). For a block Bj , the choice
of which cutvertex-node is the parent (if any) of β(Bj) and of which cutvertex-
nodes are the children of β(Bj) is a configuration of Bj . Note that, each rooted
BC-tree defines a configuration for each block.

In a pre-processing phase, we perform the constrained rectilinear planarity
testing for each block of the BC-tree and for each configuration of this block.
Also, for each configuration of the cutvertex-nodes incident to β(Bj), we store
at β(Bj) a Boolean local label that is either true if Bj is rectilinear planar
for that configuration or false otherwise. Since each block Bj is processed in
O(n2

Bj
log2 nBj

), the pre-processing phase is executed in O(n2 log2 n) time. After
the pre-processing phase, we first visit TB1 bottom-up. For each node of TB1

(either a block-node or a cutvertex-node) we compute a Boolean cumulative
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Fig. 5. Two components that are: (a) rectilinear planar for spiralities 0 and 2, but not
1 (which requires a bend, shown as a cross); (b) rectilinear planar only for spiralities 0
and 4. In bold, an arbitrary path from the pole u to the pole v.

label that is the conjunction of those of its children; the cumulative label of a leaf
coincides with its local label. This is easily done in O(n) time for all nodes of TB1 .

After the visit of TB1 one of the following three cases holds: (i) The cumulative
label of the root is true. In this case the test is positive. (ii) There are two block-
nodes γ1 and γ2 in TB1 with cumulative label false and they are along two
distinct paths from a leaf to the root. In this case the test is negative, as for
any other TBi

(i = 2, . . . , q), at least one of the subtrees rooted at γ1 and γ2
remains unchanged. (iii) Let β(Bj) be the deepest node along the unique path
that contains of block-nodes with cumulative label false. It is sufficient to test all
rooted BC-trees whose root β(Bi) is a leaf of the subtree rooted at β(Bj). For
each of these trees we repeat the procedure above and compute the cumulative
label of a node γ of TBi

only if the subtree of γ has changed with respect to any
previous visits. For a node γ whose parent has changed, its cumulative label is
computed in O(1) time (γ has at most one child whose cumulative label is false).

Therefore: For each node γ of T of degree nγ , the cumulative label of γ is
computed in O(nγ) time for TB1 and in O(1) for TBi

(i > 1). Since each node γ
changes its parent O(nγ) times, summing up over all γ, the testing phase that
follows the pre-processing phase takes in total O(n) time. ��

4 Independent-Parallel SP-graphs

By a deeper investigation of spirality, we devise a linear-time algorithm for the
independent-parallel SP-graphs, namely those in which no two P-components
share a pole (the graph in Fig. 1(a) is an independent-parallel SP-graph). To
improve the time complexity in Lemma 5, we ask whether the components of an
independent-parallel SP-graph have spirality sets of constant size, as for the case
of planar 3-graphs [11,25]. Unfortunately, this is not the case for SP-graphs with
degree-4 vertices, even when they are independent-parallel. Namely, in Sect. 4.1
we describe an infinite family of independent-parallel SP-graphs whose rectilinear
representations require that some components have spirality Ω(log n).

Moreover, it is not obvious how to describe the spirality sets for independent-
parallel SP-graphs with degree-4 vertices in O(1) space. See for example the irreg-
ular behavior of the spirality sets of the components in Fig. 5(a) and Fig. 5(b).
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Indeed, the absence of regularity is an obstacle to the design of a succinct descrip-
tion based on whether a component is rectilinear planar for consecutive spirality
values. By carefully analyzing the spirality properties of independent-parallel
SP-graphs, in Sects. 4.2 and 4.3 we show how to overcome these difficulties and
design a linear-time rectilinear planarity testing algorithm for this graph family.

4.1 Spirality Lower Bound

Theorem 2. For infinitely many integer values of n, there exists an n-vertex
independent-parallel SP-graph for which every rectilinear representation has a
component with spirality Ω(log n).

Sketch of proof: We describe an infinite family of graphs, schematically illustrated
in Fig. 6, that have components whose spirality is not bounded by a constant
in any rectilinear representation. For any even integer N ≥ 2, we construct an
independent-parallel SP-graph G with n = O(3N ) vertices whose rectilinear rep-
resentations require a component with spirality larger than N . Namely, let L =
N
2 + 1. For k ∈ {0, . . . , L}, let Gk be the SP-graph inductively defined as follows:
(i) G0 is a chain of N + 4 vertices; (ii) G1 is a parallel composition of three copies
of G0, with coincident poles (Fig. 6(a)); (iii) for k ≥ 2, Gk is a parallel composi-
tion of three series composition, each starting and ending with an edge, and having
Gk−1 in the middle (Fig. 6(b)). Graph G is obtained by composing in a cycle two
chains p1 and p2 of length three, with two copies of GL (Fig. 6(c)). The graph GL

for N = 4 is in Fig. 6(d). In any representation of G, at least one of the G0 compo-
nents has spirality larger than N ; see Fig. 6(e). ��

4.2 Rectilinear Spirality Sets

Let G be an independent-parallel SP-graph, T be the SPQ∗-tree of G, and ρ be a
Q∗-node of T . Each pole w of a P-node ν of Tρ is such that outdegν(w) = 1; if ν is
an S-node, either indegν(w) = 1 or outdegν(w) = 1. In all cases, outdegν(w) = 1
when indegν(w) > 1. For any node ν of Tρ, denote by Σ+

ν,ρ (resp. Σ−
ν,ρ) the subset

of non-negative (resp. non-positive) values of Σν,ρ. Clearly, Σν,ρ = Σ+
ν,ρ ∪ Σ−

ν,ρ.
Note that, σν ∈ Σ+

ν,ρ if and only if −σν ∈ Σ−
ν,ρ (just flip the embedding of Gν,ρ

around its poles), thus we can restrict the study of the properties of Σν,ρ to Σ+
ν,ρ,

which we call the non-negative rectilinear spirality set of ν in Tρ (or of Gν,ρ).
The main result of this subsection is Theorem 3, which proves that if G is an

independent-parallel SP-graph, there is a limited number of possible structures
for the sets Σ+

ν,ρ (see also Fig. 7). Let m and M be two non-negative integers
such that m < M : (i) [M ] denotes the singleton {M}; (ii) [m,M ]1 denotes the
set of all integers in the interval [m,M ], i.e., {m,m+1, . . . ,M −1,M}; (iii) If m
and M have the same parity, [m,M ]2 denotes the set {m,m+2, . . . ,M −2,M}.
The proof of Theorem 3 exploits several key technical results (see [9]).
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Fig. 6. (a)–(c) The graph family of Theorem 2, where L = N
2

+ 1. (d)–(e) Graph GL

for N = 4 and a rectilinear representation of GL; the two G0 components with blue
vertices have spirality N + 2 = 6 (left) and −(N + 2) = −6 (right), respectively.

Theorem 3. Let G be a rectilinear planar independent-parallel SP-graph and let
Gν,ρ be a component of G. The non-negative rectilinear spirality set Σ+

ν,ρ of Gν,ρ

has one the following six structures: [0], [1], [1, 2]1, [0,M ]1, [0,M ]2, [1,M ]2.

4.3 Rectilinear Planarity Testing

Let G be an independent-parallel SP-graph, T be its SPQ∗-tree, and {ρ1, . . . , ρh}
be the Q∗-nodes of T . To test whether G is rectilinear planar, we exploit a similar
strategy as in Lemma 5. For each possible choice of the root ρ ∈ {ρ1, . . . , ρh},
the algorithm visits Tρ bottom-up and computes, for each visited node ν, the
non-negative spirality set Σ+

ν,ρ, based on the sets of the children of ν. Using
Theorem 3, we prove that this computation can be done in O(1) time for each
type of node, including the S-nodes which require the most expensive operations
for general SP-graphs. At the level of the root, when ν is the root child, we
prove that it is sufficient to test whether there exist two values σν ∈ Σ+

ν,ρ and
σρ ∈ Σ+

ρ,ρ, such that σν + σρ = 4 (see [9] for details). Thus we spend O(1) time
also at the root level. An O(n)-time testing algorithm over all choices of the
root ρ is achieved through the same reusability principle described in Lemma 5,
where again we can prove that updating the spirality set of each type of node
can be done in O(1) by Theorem 3.
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Fig. 7. Examples of non-negative spirality sets for each of the six structures in Theo-
rem 3: (a) [0]; (b) [1]; (c) [1, 2]1; (d) [0, 2]1; (e) [1, 3]2; (f) [0, 2]2.

Theorem 4. Let G be an n-vertex independent-parallel SP-graph. There exists
an O(n)-time algorithm that tests whether G is rectilinear planar and that com-
putes a rectilinear representation of G in the positive case.

5 Final Remarks and Open Problems

We proved that rectilinear planarity can be tested in O(n2 log2 n) time for general
partial 2-trees and in O(n) time for independent-parallel SP-graphs. Establish-
ing a tight bound on the complexity of rectilinear planarity testing algorithm
for partial 2-trees remains an open problem. A pitfall to achieve O(n)-time com-
plexity in the general case is that, in contrast with the independent-parallel
SP-graphs, the spirality set of a component may not exhibit a regular behavior.
Even extending Theorem 4 to non-biconnected partial 2-trees whose blocks are
independent-parallel is not immediate, as the constraints for the angles at the
cutvertices affect the regularity of the spirality sets.
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Fig. 8. Component that admits spiralities 0,1,3,4,5. Spirality 2 needs a bend (×).

Fig. 9. Component that admits spiralities 1,2,5; other values require bends (×).
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Abstract. We present an O(n2)-time algorithm to test whether an n-
vertex directed partial 2-tree is upward planar. This result improves upon
the previously best known algorithm, which runs in O(n4) time.

1 Introduction

A digraph is upward planar if it admits a drawing that is at the same time
planar, i.e., it has no crossings, and upward, i.e., all edges are drawn as curves
monotonically increasing in the vertical direction. Upward planarity is a natural
variant of planarity for directed graphs and finds applications in those domains
where one wants to visualize networks with a hierarchical structure.

Upward planarity is a classical research topic in Graph Drawing since the
early 90s. Garg and Tamassia have shown that recognizing upward planar
digraphs is NP-complete [13], however polynomial-time algorithms have been
proposed for various cases, including digraphs with fixed embedding [1], single-
source digraphs [2,3,16,17], outerplanar digraphs [18]. The case of directed par-
tial 2-trees, which is of central interest to this paper and includes, among others,
series-parallel digraphs, has been investigated by Didimo et al. [10] who pre-
sented an O(n4)-time testing algorithm. The parameterized complexity of the
upward planarity testing problem has also been investigated [4,5,10,15].

In this paper, we present an O(n2)-time algorithm to test upward planarity
of directed partial 2-trees, improving upon the O(n4)-time algorithm by Didimo
et al. [10]. There are two main ingredients that allow us to achieve such result.

First, following the approach in [5], our algorithm traverses the SPQ-tree of
the input digraph G while computing, for each component of G, the possible
“shapes” of its upward planar embeddings. The algorithm in [5] only works for
expanded digraphs, i.e., digraphs such that every vertex has at most one incoming
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(a) (b)

Fig. 1. Splitting a vertex in a non-expanded directed partial 2-tree (a) might result in
an expanded digraph (b) which is not a directed partial 2-tree.

or outgoing edge. Although every digraph can be made expanded while preserv-
ing its upward planarity by “splitting” its vertices [2], this modification might
not maintain that the digraph is a directed partial 2-tree; see Fig. 1. We present
a novel algorithm that is applicable to non-expanded digraphs. We propose a
new strategy to process P-nodes, which is simpler than the one of [5] and allows
us to compute some additional information that is needed by the second ingre-
dient. Further, we give a more efficient procedure than the one of [5] to process
the S-nodes; this is vital for the overall running time of our algorithm.

Second, the traversal of the SPQ-tree T of G tests the upward planarity of
G with the constraint that the edge corresponding to the root of T is incident
to the outer face. Then O(n) traversals with different choices for the root of T
can be used to test the upward planarity of G without that constraint. However,
following a recently developed strategy [11,12], in the first traversal of T we
compute some information additional to the possible shapes of the upward planar
embeddings of the components of G. A clever use of this information allows us
to handle P-nodes more efficiently in later traversals. Our testing algorithms can
be enhanced to output an upward planar drawing, if one exists, although we do
not describe the process explicitly.

Paper Organization. In Sect. 2 we give some preliminaries. In Sect. 3 we describe
the algorithm for biconnected digraphs with a prescribed edge on the outer face,
while in Sect. 4 we deal with general biconnected digraphs. Section 5 extends our
result to simply connected digraphs. Future research directions are presented in
Sect. 6. Lemmas and theorems whose proofs are omitted are marked with a (�)
and can be found in the full version of the paper [6].

2 Preliminaries

In a digraph, a switch is a source or a sink. The underlying graph of a digraph is
the undirected graph obtained by ignoring the edge directions. When we mention
connectivity of a digraph, we mean the connectivity of its underlying graph.

A planar embedding of a connected graph is an equivalence class of planar
drawings, where two drawings are equivalent if: (i) the clockwise order of the
edges incident to each vertex is the same; and (ii) the sequence of vertices and
edges along the boundary of the outer face is the same.
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Fig. 2. (a) Labels at the angles of an upward planar embedding E of a bicon-
nected directed partial 2-tree G; the missing labels are −1. (b) An SPQ-tree T of
G with respect to e∗. The restriction of E to Gσ∗ is a uv-external upward pla-
nar embedding Eσ∗ with shape description 〈0, 1, 1, 0, out, out, in, out〉. The shape
sequence of Eσ∗ is [〈0, 0, 1, 1, out, out, in, in〉, 〈0, 0, 1, 1, out, out, in, in〉, 〈−1, 1, 1, 1,
out, out, out, out〉, 〈−1, 1, 1, 1, out, out, out, out〉]. The contracted shape sequence of
Eσ∗ is [〈0, 0, 1, 1, out, out, in, in〉, 〈−1, 1, 1, 1, out, out, out, out〉].

A drawing of a digraph is upward if every edge is represented by a Jordan arc
whose y-coordinates monotonically increase from the source to the sink of the
edge. A drawing of a digraph is upward planar if it is both upward and planar.
An upward planar drawing of a graph determines an assignment of labels to the
angles of the corresponding planar embedding, where an angle α at a vertex u
in a face f of a planar embedding represents an incidence of u on f . Specifically,
α is flat and gets label 0 if the edges delimiting it are one incoming and one
outgoing at u. Otherwise, α is a switch angle; in this case, α is small (and gets
label −1) or large (and gets label 1) depending on whether the (geometric) angle
at f representing α is smaller or larger than 180◦, respectively, see Fig. 2(a). An
upward planar embedding is an equivalence class of upward planar drawings of a
digraph G, where two drawings are equivalent if they determine the same planar
embedding E for G and the same label assignment for the angles of E .

Theorem 1 ([1,10]). Let G be a digraph with planar embedding E, and λ be
a label assignment for the angles of E. Then E and λ define an upward planar
embedding of G if and only if the following hold:

(UP0) If α is a switch angle then α is small or large, otherwise it is flat.
(UP1) If v is a switch vertex, the number of small, flat and large angles incident

to v is equal to deg(v) − 1, 0, and 1, respectively.
(UP2) If v is a non-switch vertex, the number of small, flat and large angles

incident to v is equal to deg(v) − 2, 2, and 0, respectively.
(UP3) If f is an internal face (the outer face) of E, the number of small angles

in f is equal to the number of large angles in f plus 2 (resp. minus 2).

The class of partial 2-trees can be defined equivalently as the graphs with
treewidth at most two, or as the graphs that exclude K4 as a minor, or as the
subgraphs of the 2-trees. Notably, it includes the class of series-parallel graphs.
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Let G be a biconnected partial 2-tree and let e∗ be an edge of G. An SPQ-
tree T of G with respect to e∗ (see Fig. 2(b)) is a tree that describes a recursive
decomposition of G into its “components”. SPQ-trees are a specialization of
SPQR-trees [8,14]. Each node μ of T represents a subgraph Gμ of G, called the
pertinent graph of μ, and is associated with two special vertices of Gμ, called poles
of μ. The nodes of T are of three types: a Q-node μ represents an edge whose
end-vertices are the poles of μ, an S-node μ with children ν1 and ν2 represents
a series composition in which the components Gν1 and Gν2 share a pole to form
Gμ, and a P-node μ with children ν1, . . . , νk represents a parallel composition
in which the components Gν1 , . . . , Gνk

share both poles to form Gμ. The root
of T is the Q-node representing the edge e∗. By our definition, every S-node has
exactly two children that can also be S-nodes; because of this assumption, the
SPQ-tree of a biconnected partial 2-tree is not unique. However, from an SPQ-
tree T , we can obtain an SPQ-tree of G with respect to another reference edge
e∗∗ by selecting the Q-node representing e∗∗ as the new root of T (see Fig. 3).

A directed partial 2-tree is a digraph whose underlying graph is a partial 2-
tree. When talking about an SPQ-tree T of a biconnected directed partial 2-tree
G, we always refer to an SPQ-tree of its underlying graph, although the edges of
the pertinent graph of each node of T are oriented as in G. Let μ be a node of T
with poles u and v. A uv-external upward planar embedding of Gμ is an upward
planar embedding of Gμ in which u and v are incident to the outer face. In our
algorithms, when testing the upward planarity of G, choosing an edge e∗ of G
as the root of T corresponds to requiring e∗ to be incident to the outer face of
the sought upward planar embedding E of G. For each node μ of T with poles u
and v, the restriction of E to Gμ is a uv-external upward planar embedding Eμ

of Gμ. In [5], the possible “shapes” of the cycle bounding the outer face fμ of Eμ

have been described by the concept of shape description. This is the tuple 〈τl,
τr, λ(u), λ(v), ρl

u, ρr
u, ρl

v, ρr
v〉, defined as follows. Let the left outer path Pl (the

right outer path Pr) of Eμ be the path that is traversed when walking from u to
v in clockwise (resp. counterclockwise) direction along the boundary of fμ. The
value τl, called left-turn-number of Eμ, is the sum of the labels of the angles at
the vertices of Pl different from u and v in fμ; the right-turn-number τr of Eμ is
defined similarly. The values λ(u) and λ(v) are the labels of the angles at u and
v in fμ, respectively. The value ρl

u is in (out) if the edge incident to u in Pl is
incoming (outgoing) at u; the values ρr

u, ρl
v, and ρr

v are defined similarly. The
values of a shape description depend on each other, as in the following.

Observation 1 ( [5]). The shape description 〈τl, τr, λ(u), λ(v), ρl
u, ρr

u, ρl
v, ρr

v〉 of
Eμ satisfies the following properties:

(i) ρl
u and ρr

u have the same value if λ(u) ∈ {−1, 1}, while they have different
values if λ(u) = 0;

(ii) ρl
v and ρr

v have the same value if λ(v) ∈ {−1, 1}, while they have different
values if λ(v) = 0;

(iii) ρl
u and ρl

v have the same value if τl is odd, while they have different values
if τl is even;

(iv) τl + τr + λ(u) + λ(v) = 2.
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Fig. 3. Two different choices for the root of the SPQ-tree of Fig. 2. The reference edge
is shown in bold.

A set S of shape descriptions is n-universal if, for every n-vertex biconnected
directed partial 2-tree G, for every rooted SPQ-tree T of G, for every node μ of
T with poles u and v, and for every uv-external upward planar embedding Eμ of
Gμ, the shape description of Eμ belongs to S. Thus, an n-universal set is a super-
set of the feasible set Fμ of μ, that is, the set of shape descriptions s such that
Gμ admits a uv-external upward planar embedding with shape description s.
Our algorithm will determine Fμ by inspecting each shape description s in an
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n-universal set and deciding whether Gμ admits a uv-external upward planar
embedding with shape description s or not. We have the following lemmas.

Lemma 1 (�). An n-universal set S of shape descriptions with |S| ∈ O(n) can
be constructed in O(n) time.

Lemma 2 (�). Any subset F of an n-universal set can be stored in O(n) time
and space and querying whether a shape description is in F takes O(1) time.

Consider a P-node μ in an SPQ-tree T of a biconnected directed partial 2-
tree G. Let ν1, . . . , νk be the children of μ in T . Consider any uv-external upward
planar embedding Eμ of Gμ. For i = 1, . . . , k, the restriction of Eμ to Gνi

is a
uv-external upward planar embedding Eνi

of Gνi
; let σi be the shape description

of Eνi
. Assume that Eν1 , . . . , Eνk

appear in this clockwise order around u, where
the left outer path of Eν1 and the right outer path of Eνk

delimit the outer face
of Eμ. We call σ = [σ1, . . . , σk] the shape sequence of Eμ. Further, consider the
sequence S = [s1, . . . , sx] obtained from σ by identifying consecutive identical
shape descriptions. We call S the contracted shape sequence of Eμ; see Fig. 2.

3 A Prescribed Edge on the Outer Face

Let G be an n-vertex biconnected directed partial 2-tree and T be its SPQ-tree
rooted at any Q-node ρ∗, which corresponds to an edge e∗ of G. In this section,
we show an algorithm that computes the feasible set Fμ of every node μ of T .
Let u and v be the poles of μ. Note that G admits an upward planar embedding
such that e∗ is incident to the outer face if and only if the feasible set of ρ∗ is
non-empty. Hence, the algorithm could be applied repeatedly (once for each Q-
node as the root) to test the upward planarity of G; however, in Sect. 4 we devise
a more efficient way to handle multiple choices for the root of T . We first deal
with S-nodes, then with P-nodes, and finally with the root of T . For Q-nodes, it
is easy to show the following lemma.

Lemma 3 ([5]). For a non-root Q-node μ, Fμ can be computed in O(1) time.

S-nodes. We improve an algorithm from [5]. Let ν1 and ν2 be the children of μ
in T , let nμ

1 = |V (Gν1)| and nμ
2 = |V (Gν2)|, and let w be the vertex shared by

Gν1 and Gν2 . Furthermore, let nμ
3 be the number of vertices in the subgraph Hμ

of G induced by V (G) \ V (Gμ) ∪ {u, v}. Note that nμ
3 = |V (G)| − (nμ

1 + nμ
2 ) + 3.

We distinguish two cases, depending on which of nμ
1 , nμ

2 , and nμ
3 is largest.

If nμ
3 ≥ max(nμ

1 , nμ
2 ), we proceed as in [5, Lemma 6], by combining every

shape description in Fν1 with every shape description in Fν2 ; for every such
combination, the algorithm assigns the angles at w in the outer face with every
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possible label in {−1, 0, 1}. If the combination and assignment result in a shape
description s of μ (the satisfaction of the properties of Theorem 1 are checked
here), the algorithm adds s to Fμ. This allows us to compute the feasible set Fμ

of μ in time O(n + |Fν1 | · |Fν2 |), which is in O(n + nμ
1 · nμ

2 ), as |Fν1 | ∈ O(nμ
1 )

and |Fν2 | ∈ O(nμ
2 ) by Lemma 1.

The most interesting case is when, say, nμ
1 ≥ max(nμ

2 , nμ
3 ). Here, in order to

keep the overall runtime in O(n2), we cannot combine every shape description
in Fν1 with every shape description in Fν2 . Rather, we proceed as follows. Note
that every shape description in Fμ whose absolute value of the (left- or right-)
turn-number exceeds nμ

3 + 4 does not result in an upward planar embedding of
G, by Property UP3 of Theorem 1 and since the absolute value of the turn-
number of any path in any upward planar embedding of Hμ does not exceed
nμ
3 . We hence construct an (nμ

3 + 4)-universal set S in O(nμ
3 ) time by Lemma 1,

and then test whether each shape description s in S belongs to the feasible set
Fμ of μ. In order to do that, we consider every shape description s2 in Fν2

individually. There are O(1) shape descriptions in Fν1 which combined with s2
might result in s, since the turn numbers add to each other when combining the
shape descriptions in Fν1 and Fν2 , with a constant offset. Hence, by Lemma 2,
we check in O(1) time if there is a shape description s1 in Fν1 which combined
with s2 leads to s. The running time of this procedure is hence O(n + nμ

2 · nμ
3 ),

as |Fν2 | ∈ O(nμ
2 ) and |S| ∈ O(nμ

3 ) by Lemma 1. This yields the following.

Lemma 4. Let μ be an S-node of T with children ν1 and ν2. Given the feasible
sets Fν1 and Fν2 of ν1 and ν2, respectively, the feasible set Fμ of μ can be
computed in O(n + min{nμ

1 · nμ
2 , nμ

2 · nμ
3 , nμ

1 · nμ
3}) time.

P-nodes. To compute the feasible set Fμ of a P-node μ from the feasible sets
Fν1 , . . . ,Fνk

of its children, the algorithm constructs an n-universal set S in
O(n) time by Lemma 1. Then it examines every shape description s ∈ S and
decides whether it belongs to Fμ. Hence, we focus on a single shape description
s and give an algorithm that decides in O(k) time whether s belongs to Fμ.

The basic structural tool we need for our algorithm is the following lemma.
We call generating set G(s) of a shape description s the set of contracted shape
sequences that the pertinent graph of any P-node with poles u and v can have
in a uv-external upward planar embedding with shape description s.

Lemma 5 (�). For any shape description s, G(s) has size O(1) and can be
constructed in O(1) time. Also, any sequence in G(s) has O(1) length.

A contracted shape sequence S ∈ G(s) is realizable by μ if there exists a
uv-external upward planar embedding of Gμ whose contracted shape sequence
is a subsequence of S containing the first and last elements of S.

We now describe an algorithm that decides in O(k) time whether s belongs to
Fμ. Also, for each contracted shape sequence S = [s1, . . . , sx] in the generating
set G(s) of s, the algorithm computes and stores the following information:

– Three labels f1(μ, S), f2(μ, S), and f3(μ, S) which reference three distinct
children νi of μ such that s1 ∈ Fνi

.
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– Three labels l1(μ, S), l2(μ, S), and l3(μ, S) which reference three distinct
children νi of μ such that sx ∈ Fνi

.
– Two labels uf1(μ, S) and uf2(μ, S) which reference two distinct children νi

of μ such that Fνi
does not contain any shape description in S.

For each label type, if the number of children with the described properties is
smaller than the number of labels, then labels with larger indices are null. We
call the set of relevant labels for μ and S the set of labels described above.

The algorithm is as follows. First, by Lemma 5, we construct G(s) in O(1)
time. Then we consider each sequence S = [s1, . . . , sx] in G(s). By Lemma 5,
there are O(1) such sequences, each with length O(1). We decide whether S is
realizable by μ and compute the set of relevant labels for μ and S as follows.

We initialize all the labels to null and process ν1, . . . , νk one by one. For each
νi, by Lemma 2 we test in O(1) time which of the shape descriptions s1, . . . , sx

belong to Fνi
and update the labels accordingly. For example, if s1 ∈ Fνi

, then
we update fj(μ, S) = νi for the smallest j ∈ {1, 2, 3} with fj(μ, S) = null.

After processing ν1, . . . , νk, we decide whether S is realizable by μ as follows.
If uf1(μ, S) �= null, then S is not realizable by μ. Otherwise, each feasible
set Fνi

contains a shape description among s1, . . . , sx. Still, we have to check
whether Fνi

contains s1 and Fνj
contains sx, for two distinct nodes νi and νj . If

f1(μ, S) = null or l1(μ, S) = null, then S is not realizable by μ, as the feasible
set of no child contains s1 or sx, respectively. Otherwise, if f1(μ, S) �= l1(μ, S),
then S is realizable by μ, as f1(μ, S) can be assigned with s1 and l1(μ, S) with
sx. Otherwise, if f2(μ, S) �= null or l2(μ, S) �= null, then S is realizable by
μ, as f2(μ, S) can be assigned with s1 and l1(μ, S) with sx, or f1(μ, S) can be
assigned with s1 and l2(μ, S) with sx, respectively. Otherwise, S is not realizable
by μ, as s1 and sx are in the feasible set of a single child f1(μ, S) = l1(μ, S) of μ.

Finally, we have that s belongs to Fμ if and only if there exists a contracted
shape sequence S in the generating set G(s) of s which is realizable by μ.

Lemma 6 (�). Let μ be an P-node of T with children ν1, . . . , νk. Given their
feasible sets Fν1 , . . . ,Fνk

, the feasible set Fμ of μ can be computed in O(nk)
time. Further, for every shape description s in an n-universal set S and every
contracted shape sequence S in the generating set G(s) of s, the set of relevant
labels for μ and S can be computed and stored in overall O(nk) time and space.

Root. As in [5], the root ρ∗ of T is treated as a P-node with two children, whose
pertinent graphs are e∗ and the pertinent graph of the child σ∗ of ρ∗ in T .

Lemma 7 ([5]). Given the feasible set Fσ∗ , the feasible set Fρ∗ of the root ρ∗

of T can be computed in O(n) time.

4 No Prescribed Edge on the Outer Face

In this section, we show an O(n2)-time algorithm to test the upward planarity
of a biconnected directed partial 2-tree G. Let e1, . . . , em be any order of the
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edges of G. For i = 1, . . . ,m, let ρi be the Q-node of the SPQ-tree T of G
corresponding to ei and Ti be the rooted tree obtained by selecting ρi as the
root of T . For a node μ of T , distinct choices for the root of T define different
pertinent graphs Gμ of μ. Thus, we change the previous notation and denote by
Gμ→τ and Fμ→τ the pertinent graph and the feasible set of a node μ when its
parent is a node τ . We denote by Fρi

the feasible set of the root ρi of Ti.
Our algorithm performs traversals of T1, . . . , Tm. The traversal of T1 is spe-

cial; it is a bottom-up traversal using the results from Sect. 3 to compute the
feasible set Fμ→τ of every node μ with parent τ in T1, as well as auxiliary infor-
mation that is going to be used by later traversals. For i = 2, . . . , m, we perform
a top-down traversal of Ti that computes the feasible set Fμ→τ of every node
μ with parent τ in Ti. Due to the information computed by the traversal of T1,
this can be carried out in O(n) time for each P-node. Further, the traversal of
Ti visits a subtree of Ti only if that has not been visited “in the same direction”
during a traversal Tj with j < i. We start with two auxiliary lemmas.

Lemma 8 (�). Suppose that, for some i ∈ {1, . . . , m}, a node μ with parent τ
has a child νj in Ti such that Fνj→μ = ∅. Then Fμ→τ = ∅.
Lemma 9 (�). Suppose that a node μ has two neighbors νj and νk such that
Fνj→μ = Fνk→μ = ∅. Then G admits no upward planar embedding.

Bottom-up Traversal of T1. The first step of the algorithm consists of a
bottom-up traversal of T1. This step either rejects the instance (i.e., it concludes
that G admits no upward planar embedding) or computes and stores, for each
non-root node μ of T1 with parent τ , the feasible set Fμ→τ of μ, as well as the
feasible set Fρ1 of the root ρ1. Further, if μ is an S- or P-node, it also computes
the following information.

– A label p(μ) referencing the parent τ of μ in T1.
– A label uc(μ) referencing a node ν such that Fν→μ has not been computed.

Initially this is τ , and once Fτ→μ is computed, this label changes to null.
– A label b(μ) referencing any neighbor ν of μ such that Fν→μ = ∅. This label

remains null until such neighbor is found.

Finally, if μ is a P-node, for each shape description s in an n-universal set S
and each contracted shape sequence S = [s1, . . . , sx] in the generating set G(s)
of s, the algorithm computes and stores the set of relevant labels for μ and S.

The bottom-up traversal of T1 computes the feasible set Fμ→τ in O(1) time
by Lemma 3, for any Q-node μ �= ρ1 with parent τ . When an S- or P-node μ with
parent τ is visited, the algorithm stores in p(μ) and uc(μ) a reference to τ . Then
it considers b(μ). Suppose that b(μ) �= null (the label b(μ) might have been
assigned a value different from null when visiting a child of μ). By Lemma 8 we
have Fμ→τ = ∅, hence if b(τ) �= null, then by Lemma 9, the algorithm rejects
the instance, otherwise it sets b(τ) = μ and concludes the visit of μ. Suppose next
that b(μ) = null. Then we have Fνj→μ �= ∅, for every child νj of μ, thus Fμ→τ

is computed using Lemma 4 or 6, if μ is an S-node or a P-node, respectively. If
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Fμ→τ = ∅, then the algorithm checks whether b(τ) �= null (and then it rejects
the instance) or not (and then it sets b(τ) = μ). This concludes the visit of μ.
Finally, when the algorithm reaches ρ1, it checks whether b(ρ1) = null and if
the test is positive, then it concludes that Fρ1 = ∅. Otherwise, it computes Fρ1

by means of Lemma 7 and completes the traversal of T1.

Top-Down Traversal of Ti. The top-down traversal of Ti computes Fμ→τ , for
each non-root node μ with parent τ in Ti, as well as Fρi

. For each S- or P-node
μ, the labels uc(μ) and b(μ) might be updated during the traversal of Ti, while
p(μ) and the sets of relevant labels are never altered after the traversal of T1.
The traversal of Ti visits a node μ with parent τ only if Fμ→τ has not been
computed yet; this information is retrieved in O(1) time from the label uc(τ).

When the traversal visits an S- or P-node μ with parent τ and children
ν1, . . . , νk, it proceeds as follows. Note that p(μ) �= τ , as otherwise Fμ→τ would
have been already computed. Then we have p(μ) = νj∗ , for some j∗ ∈ {1, . . . , k}.

If uc(μ) = νj∗ , then before computing Fμ→τ , the algorithm descends in νj∗ in
order to compute Fνj∗→μ. Otherwise, Fνj→μ has been computed for j = 1, . . . , k.

If b(μ) = νj , for some j ∈ {1, . . . , k}, then by Lemma 8 we have Fμ→τ = ∅,
hence if b(τ) �= null and b(τ) �= μ, then the algorithm rejects the instance by
Lemma 9, otherwise it sets b(τ) = μ and concludes the visit of μ. Conversely, if
b(μ) = null or b(μ) = τ , then Fνj→μ �= ∅ for j = 1, . . . , k. The algorithm then
computes Fμ→τ , as described below. Afterwards, if uc(τ) = μ, the algorithm sets
uc(τ) = null. Further, if Fμ→τ = ∅, the algorithm checks whether b(τ) �= null

(and then rejects the instance) or not (and then sets b(τ) = μ).
The computation of Fμ→τ distinguishes the case when μ is an S-node or a

P-node. If μ is an S-node, then the computation of Fμ→τ is done by means of
Lemma 4. The running time of the procedure for the S-nodes sums up to O(n2),
over all S-nodes and all traversals of T . If μ is a P-node, then the computation
of Fμ→τ cannot be done by just applying the algorithm from Lemma 6, as
that would take Θ(n3) time for all P-nodes and all traversals of T . Instead, the
information computed when traversing T1 allows us to determine in O(1) time
whether any shape description is in Fμ→τ . This results in an O(n) time for
processing μ in Ti, which sums up to O(nk) time over all traversals of T , and
thus in a O(n2) total running time for the entire algorithm.

The algorithm determines Fμ→τ by examining each shape description s in
an n-universal set S, which has O(n) elements and is constructed in O(n) time
by Lemma 1, and deciding whether it is in Fμ→τ or not. This is done as follows.
We construct in O(1) time the generating set G(s) of s, by Lemma 5. Recall that
G(s) contains O(1) contracted shape sequences, each with length O(1). For each
sequence S = [s1, . . . , sx] in G(s), we test whether S is realizable by μ as follows.

– If uf2(μ, S) �= null, or if uf1(μ, S) �= null and uf1(μ, S) �= τ , then there
exists a child νj of μ in Ti such that Fνj→μ does not contain any shape
description in S. Then we conclude that S is not realizable by μ.

– Otherwise, we test whether Fνj∗→μ contains any shape description among
the ones in S. If not, S is not realizable by μ. Otherwise, for j = 1, . . . , k,
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Fνj→μ contains a shape description in S. However, this does not imply that
S is realizable by μ, as we need to ensure that s1 ∈ Fνj→μ and sx ∈ Fνl→μ

for two distinct children νj and νl of μ in Ti. This can be tested as follows.
We construct a bipartite graph Bμ→τ (S) in which one family has two vertices
labeled s1 and sx. The other one has a vertex for each child of μ in the
set {f1(μ, S), f2(μ, S), f3(μ, S), l1(μ, S), l2(μ, S), l3(μ, S), νj∗}. The graph
Bμ→τ (S) contains an edge between the vertex representing a child νj of μ
and a vertex representing s1 or sx if s1 or sx belongs to Fνj→μ, respectively.
We now have that s1 ∈ Fνj→μ and sx ∈ Fνl→μ for two distinct children
νj and νl of μ in Ti (and thus S is realizable by μ) if and only if Bμ→τ (S)
contains a size-2 matching, which can be tested in O(1) time.

Testing whether S is realizable by μ can be done in O(1) time, as it only
requires to check O(1) labels, to find a size-2 matching in a O(1)-size graph, and
to check O(1) times whether a shape description belongs to a feasible set. The
last operation requires O(1) time by Lemma 2. We conclude that s is in Fμ→τ

if and only if at least one contracted shape sequence S in G(s) is realizable by
μ. This concludes the description of how the algorithm handles a P-node.

Finally, Fρi
is computed in O(n) time by Lemma 7. We get the following.

Lemma 10 (�). The described algorithm runs in O(n2) time and either cor-
rectly concludes that G admits no upward planar embedding, or computes the
feasible sets Fρ1 , . . . ,Fρm

.

5 Single-Connected Graphs

In this section, we extend Lemma 10 from the biconnected case to arbitrary
partial 2-trees. To this end, we obtain a general lemma that allows us to test
upward planarity of digraphs from the feasible sets of biconnected components.

Lemma 11 (�). Let G be an n-vertex digraph. Let B1, . . . , Bt be the maximal
biconnected components of G. For i ∈ [t], let the edges of Bi be ei

1, . . . , ei
mi

,
and the respective Q-nodes in the SPQR-tree of Bi be ρi

1, . . . , ρi
mi

. There is an
algorithm that, given G and the feasible sets Fρi

j
for each i ∈ [t] and j ∈ [mi], in

time O(n2) correctly decides whether G admits an upward planar embedding.

Note that Lemma 11 holds for all digraphs, not only partial 2-trees. In fact,
it generalizes [5, Section 5], where an analogous statement has been shown for
all expanded graphs. Our main result follows from Lemmas 11 and 10.

Theorem 2 (�). Let G be an n-vertex directed partial 2-tree. It is possible to
determine whether G admits an upward planar embedding in time O(n2).

Hence, all that remains now is to prove Lemma 11. To give an intuition of the
proof, we start by guessing the root of the block-cut tree of G, which corresponds
to a biconnected component that is assumed to see the outer face in the desired
upward planar embedding of G. The core of the proof is the following lemma,
which states that leaf components can be disregarded as long as certain simple
conditions on their parent cut-vertex are met.
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Lemma 12 (�). Consider a rooted block-cut tree of a digraph G, its cut vertex
v that is adjacent to leaf blocks B1,...,B�, and the parent block P . Denote by
GP the subgraph G

[(
V (G) \ ⋃

i∈[�] Bi

)
∪ {v}

]
. Any upward planar embedding

of GP in which the root block is adjacent to the outer face, can be extended to
an embedding of G with the same property if the following conditions hold:

1. Each Bi has an upward planar embedding with v on the outer face fi.
2. If v is a non-switch vertex in P , each Bi has an upward planar embedding

with v on fi where the angle at v in fi is not small.
3. If there is j ∈ [	] such that v is a non-switch vertex in Bj, and all upward

planar embeddings of Bj with v on fj have a small angle at v in fj, then for
all i ∈ [	] s.t. i �= j and v is a non-switch vertex in Bi, Bi has an upward
planar embedding with v on fi where the angle at v in fi is flat.

Moreover, if G admits an upward planar embedding in which the root block is
adjacent to the outer face, the conditions above are necessarily satisfied.

The proof of Lemma 12 essentially boils down to a case distinction on how
the leaf blocks are attached; the cases that need to be considered are intuitively
illustrated in Fig. 4. With this, we finally have all the components necessary to
prove Theorem 2. Intuitively, the algorithm proceeds in a leaf-to-root fashion
along the block-cut tree, and at each point it checks whether the conditions of
Lemma 12 are satisfied. If they are, the algorithm removes the respective leaf
components and proceeds upwards, while otherwise we reject the instance.

Gi−1

Bi

−1

−1

v

(a)

Gi−1

Bi

−1

0

v

(b)

Gi−1

Bi

−1

0

v

(c)

Gi−1

Bi

0

0 v

(d)

Gi−1

Bi

−1

1

v

(e)

Fig. 4. Illustrations for the proof of Lemma 12.

6 Concluding Remarks

We have provided an O(n2)-time algorithm for testing the upward planarity
of n-vertex directed partial 2-trees, substantially improving on the state of the
art [10]. There are several major obstacles to overcome for improving this runtime
to linear; hence, it would be worth investigating whether the quadratic bound
is tight. Another interesting direction for future work is to see whether our new
techniques can be used to obtain quadratic algorithms for related problems, such
as computing orthogonal drawings with the minimum number of bends [7,9].
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Abstract. We present a new heuristic algorithm for computing a mini-
mum Feedback Arc Set in directed graphs. The new technique produces
solutions that are better than the ones produced by the best previously
known heuristics, often reducing the FAS size by more than 50%. It is
based on computing the PageRank score of the nodes of the directed
line graph of the input directed graph. Although the time required by
our heuristic is heavily influenced by the size of the produced line graph,
our experimental results show that it runs very fast even for very large
graphs used in graph drawing.

Keywords: Feedback arc set · Hierarchical graph drawing ·
PageRank · Line graph

1 Introduction

In a directed graph, G, a feedback arc set (FAS ) is a set of edges whose removal
leave G acyclic. The minimum FAS problem is important for visualizing directed
graphs in hierarchical style [7]. In fact, the first step of both known frameworks
for hierarchical graph drawing is to compute a minimum FAS [13,18]. Unfortu-
nately, computing a minimum FAS is NP-hard and thus many heuristics have
been presented in order to find a reasonably good solution. In this paper we
present a new heuristic that uses a different approach and produces FAS that
contain about half the number of edges of the best known heuristics. However, it
requires superlinear time, and hence it may not be suitable for very large graphs.
Finding a minimum FAS has many additional applications beyond Graph Draw-
ing, including misinformation removal, label propagation, and many application
domains motivated by Social Network Analysis [6,9,16].

A feedback arc set of a directed graph G = (V,E) is a subset of edges F
of E such that removing the edges in F from E leaves G acyclic (no directed
cycles). In other words, a FAS contains at least one edge from each cycle of G. In
hierarchical drawing algorithms the edges in a FAS are not removed, but instead
their direction is inverted. Following the terminology of [7], a set of edges whose
reversal makes the digraph acyclic is called a feedback set (FS). Notice that a
FAS is not always a FS. However, it is easy to see that every minimal cardinality
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FAS is also a FS. Hence it follows that the minimum FS problem is as hard as
the well studied minimum FAS problem which is known to be NP-hard [10,11].
Clearly, any heuristic for solving the minimum FAS problem can be applied for
solving the minimum FS problem, as discussed in [7,12].

There have been many heuristics for solving the FAS problem due to the
multitude of its applications. Two of the most important heuristics/techniques
are due to Eades, Lin & Smyth [8] and Brandenburg & Hanauer [4]. The first is
a greedy heuristic, that will be called GreedyFAS, whereas the second presents
a set of heuristics based on sorting. Simpson, Srinivasan & Thomo published an
experimental study for the FAS problem on very large graphs at web-scale (also
called webgraphs) [17]. They implemented and compared many FAS heuristics.
According to their study, the aforementioned are the most efficient heuristics,
but only GreedyFAS is suitable to run on their extra large webgraphs.

In this paper we present a new heuristic algorithm for computing a minimum
FAS in directed graphs. The new technique produces solutions that are better
than the ones produced by the best previous heuristics, sometimes even reducing
the FAS size by more than 50%. It is based on computing the PageRank score of
the nodes of a graph related to the input graph, and runs rather fast for graphs
up to 4,000 nodes. However, it is slower than GreedyFAS for webgraphs.

2 Existing Algorithms

In this section we summarize and give a brief description of two important heuris-
tics that currently give the best results for the FAS problem, according to the
new experimental study of Simpson, Srinivasan & Thomo [17]. They imple-
mented and compared many heuristics for FAS, and performed experiments on
several large and very large webgraphs. Their results show that two of the known
heuristic algorithms give the best results.

The first of the two heuristic algorithms that currently produce the best FAS
size is called GreedyFAS and it is due to Eades, Lin & Smyth [8]. In [17] two differ-
ent optimized implementations of GreedyFAS that run in O(n+m) are presented
and tested. These are the most efficient implementations in their study and are
able to run even for their extra large webgraphs. The second algorithm is SortFAS
of Brandenburg & Hanauer [4]. According to [17], SortFAS, as proposed runs in
O(n3) time but Simpson et al. present an implementation that runs in O(n2) time.

We will present experimental results that show that our new heuristic algo-
rithm performs better than both of them in terms of the size of the produced
FAS. On the other hand, it takes more time than both of them for large graphs.
However, for graphs that are typically used for visualization purposes, the run-
ning time is acceptable whereas the produced FAS size is about half.

2.1 GreedyFAS

The GreedyFAS algorithm was introduced by Eades, Lin & Smyth in 1993 [8].
It efficiently calculates an approximation to the FAS problem on a graph G.
In order to understand the algorithm, we first discuss the Linear Arrangement
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Problem (LA), which is an equivalent formulation to the FAS problem. The LA
problem produces an ordering of the nodes of a graph G for which the number of
arcs pointing backwards is minimum. The set of backwards arcs is a FAS since
removing them from G leaves the graph acyclic.

GreedyFAS calculates a feedback arc set of a graph G by first calculating
a Linear Arrangement of G. More specifically, in each iteration, the algorithm
removes all nodes of G that are sinks followed by all the nodes that are sources.
It then removes a node u for which δ(u) = d+(u)− d−(u) is a maximum, where
d+(u) denotes the out-degree of u and d−(u) denotes the in-degree of u. The
algorithm also makes use of two sequences of nodes s1 and s2. When any node
u is removed from G then it is either prepended to s2 if it’s a sink, or appended
to s1 if it’s not. The above steps are repeated until G is left with no nodes,
then the sequence s = s1s2 is returned as a linear arrangement for which the
backward arcs make up a feedback arc set. For more details see [7,12]. Using
the implementations of [17], GreedyFAS runs very fast, in O(n + m) time, and
is suitable for their extra large webgraphs. The pseudocode for GreedyFAS, as
described in [7] and [17], is presented in Algorithm 1.

Algorithm 1. GreedyFAS
Input: Directed graph G = (V, E)
Output: Linear Arrangement A
s1 ← ∅, s2 ← ∅
while G �= ∅ do

while G contains a sink do
choose a sink u
s2 ← us2
G ← G\u

while G contains a source do
choose a source u
s1 ← s1u
G ← G\u

choose a node u for which δ(u) is a maximum
s1 ← s1u
G ← G\u

return s = s1s2

2.2 SortFAS

The SortFAS algorithm was introduced in 2011 by Brandenburg & Hanauer [4].
The algorithm is an extension of the KwikSortFAS heuristic by Ailon et al. [1],
which is an approximation algorithm for the FAS problem on tournaments. With
SortFAS, Brandenburg & Hanauer extended the above heuristic to work for
general directed graphs. It uses the underlying idea that the nodes of a graph
can be sorted into a desirable Linear Arrangement based on the number of back
arcs induced.
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In the case of SortFAS, the nodes are processed in order of their ordering
(v1...vn). The algorithm goes through n iterations. In the i-th iteration, node
vi is inserted into the linear arrangement in the best position based on the first
i− 1 nodes which are already placed. The best position is the one with the least
number of back arcs induced by vi. In case of a tie the leftmost position is taken.
Using the implementation of [17], SortFAS runs in O(n2) time. The pseudocode
for SortFAS, as described in [17], is presented in Algorithm 2.

Algorithm 2. SortFAS
Input: Linear arrangement A
for each node v in A do

val ← 0, min ← 0, loc ← position of v
for each position j from loc − 1 down to − do

w ← node at position j
if arc (v, w) exists then

val ← val − 1
else if arc (w, v) exists then

val ← val + 1

if val ≤ min then
min ← val, loc ← j

insert v at position loc

3 Our Proposed Approach

Our approach is based on running the well known PageRank algorithm [5,14]
on the directed line digraph of the original directed graph. The line graph of an
undirected graph G is another graph L(G) that is constructed as follows: each
edge in G corresponds to a node in L(G) and for every two edges in G that are
adjacent to a node v an edge is placed in L(G) between the corresponding nodes.
Clearly, the number of nodes of a line graph is m and the number of edges is
proportional to the sum of squares of the degrees of the nodes in G, see [15]. If
G is a directed graph, its directed line graph (or line digraph) L(G) has one node
for each edge of G. Two nodes representing directed edges incident upon v in G
(one incoming into v, and one outgoing from v), called L(u, v), and L(v, w), are
connected by a directed edge from L(u, v) to L(v, w) in L(G). In other words,
every edge in L(G) represents a directed path in G of length two. Similarly, the
number of nodes of a line digraph is m and the number of edges is proportional to∑

u∈V [d+(u)×d−(u)]. Hence, the size of L(G) is O(m+
∑

u∈V [d+(u)×d−(u)]).
Given a digraph G = (V,E) our approach is to compute its line digraph,

L(G), run a number of iterations of PageRank on L(G) and remove the node
of highest PageRank in L(G). Our experimental results indicate that PageRank
values converge reasonably well within five iterations.

A digraph G is strongly connected if for every pair of vertices of G there is a
cycle that contains them. If G is not strongly connected, it can be decomposed
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into its strongly connected components (SCC) in linear time [19]. An SCC of
G is a subgraph that is strongly connected, and is maximal, in the sense that
no additional edges or vertices of G can be included in the subgraph without
breaking its property of being strongly connected. If each SCC is contracted
to a single vertex, the resulting graph is a directed acyclic graph (DAG). It
follows that feedback arcs can exist only within some (SCC) of G. Hence we can
apply this approach inside each SCC, using their corresponding line digraph,
and remove the appropriate edges from each SCC. This approach will avoid
performing several useless computations and thus reduce the running time of
the algorithm.

3.1 Line Graph

In order to obtain the line digraph of G, we use a DFS-based approach. First,
for each edge (u, v) of G, we create a node (u, v) in L(G) and then run the
following recursive procedure. For a node v, we mark it as visited and iterate
through each one of its outgoing edges. For each outgoing edge (v, u) of v, we
add an edge in L(G) from the prev L(G) node that was processed before the
procedure’s call to the node (v, u). Afterwards we call the same procedure for u
if it’s not visited with (v, u) as prev. If u is visited we add an edge from (v, u)
to each one of L(G)’s nodes corresponding from u. Since this technique is based
on DFS, the running time is O(n + m + |L(G)|). The pseudocode for computing
a line digraph is presented in Algorithm 3.

Algorithm 3. LineDigraph
Input: Digraph G = (V, E)
Output: Line Digraph L(G) of G
Create a line digraph L(G) with every edge of G as a node
v ← random node of G

procedure GetLineGraph(G, L(G), v, prev)
mark v as visited
for each edge e = (v, u) outgoing of v do

z ← node of L(G) representing e
create an edge in L(G) from prev to z � Given that prev is not nill
if u is not visited then

GetLineGraph(G, L(G), u, z)
else

for each node k in L(G) that originates from u do
create an edge in L(G) from z to k

3.2 PageRank

PageRank was first introduced by Brin & Page in 1998 [5,14]. It was developed
in order to determine a measure of importance of web pages in a hyperlinked
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network of web pages. The basic idea is that PageRank will assign a score of
importance to every node (web page) in the network. The underlying assumption
is that important nodes are those that receive many “recommendations” (in-
links) from other important nodes (web pages). In other words, it is a link
analysis algorithm that assigns numerical scores to the nodes of a graph in
order to measure the importance of each node in the graph. PageRank works
by counting the number and quality/importance of edges pointing to a node
and then estimate the importance of that node. We use a similar approach in
order to determine the importance of edges in a directed graph. The underlying
assumption of our technique is that the number of cycles that contain a specific
edge e will be reflected in PageRank score of e. Thus the removal of edges with
high PageRank score is likely to break the most cycles in the graph.

Given a graph with n nodes and m edges, PageRank starts by assigning an
initial score of 1/n to all the nodes of a graph. Then for a predefined number
of iterations each node divides its current score equally amongst its outgoing
edges and then passes these values to the nodes it is pointing to. If a node has
no outgoing links then it keeps its score to itself. Afterwards, each node updates
its new score to be the sum of the incoming values. It is obvious that after
enough iterations all PageRank values will inevitably gather in the sinks of the
graph. In use cases where that is a problem a damping factor is used, where
each node gets a percentage of its designated score and the rest gets passed to
all other nodes of the graph. For our use case we have no need for this damping
factor as we want the scores of the nodes to truly reflect their importance. The
number of iterations depends on the size and structure of a graph. We found
that for small and medium graphs, which is the case in the scenario for graph
visualization, about five iterations were enough for the scores of the nodes to
converge. Depending on the implementation, PageRank can run in O(k(n+m))
time, where k is the number of iterations. The pseudocode for PageRank is
presented in Algorithm 4.

Algorithm 4. PageRank
Input: Digraph G = (V, E), number of iterations k
Output: PageRank scores of G
for each node v in G do

PR(v) ← 1
|V |

for k iterations do
for each node v in G do

PR(v) ← ∑
u∈in(v)

PRold(u)
|out(u)|

return PR

3.3 PageRankFAS

Our proposed algorithm is based on the concepts of PageRank and Line
Digraphs. The idea behind PageRankFAS is that we can score the edges of
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G based on their involvement in cycles: For each strongly connected compo-
nent (s1, s2, ..., sj) of G, it computes the line digraph L(si) of the i-th strongly
connected component, to transform edges to nodes; next it runs the PageRank
algorithm on L(si) to obtain a score for each edge of si in G.

We observed that the nodes of the line digraphs with the highest PageRank
score correspond to edges that are involved in the most cycles of G. We also
observed that the nodes of the line digraphs with lower score correspond to edges
of G with low involvement in cycles. Using this knowledge, we run PageRankFAS
for a number of iterations. In each iteration, we use PageRank to calculate the
node scores of each L(si) and remove the node(s) with the highest PageRank
score, also removing the corresponding edge(s) from G. We repeat this process
until G becomes acyclic. The pseudocode is presented in Algorithm 5.

Algorithm 5. PageRankFAS
Input: Digraph G = (V, E)
Output: Feedback Arc Set of G
fas ← ∅
while G has cycles do

Let (s1, s2, ..., sj) be the strongly connected components of G
for each strongly connected component si do

Create a line digraph L(si) with every edge of si as a node
v ← random node of si
GetLineGraph(si, L(si), v, nill)
PageRank(L(si))
u ← node of L(si) with highest PageRank value
e ← edge of G corresponding to u
Add e to fas
Remove e from G

return fas

4 Experiments and Discussion

Here we report the experimental results and describe some details of our setup.
All of our algorithms are implemented in Java 8 using the WebGraph frame-
work [2,3] and tested on a single machine with Apple’s M1 processor, 8GB of
RAM and running macOS Monterey 12.
Datasets: In order to evaluate our proposed heuristic algorithm we used four
different datasets:

1. Randomly generated graphs with 100, 200, 400, 1000, 2000, 4000 nodes and
an average out-degree of 1.5, 3 and 5 each.

2. Three directed graphs from the datasets in graphdrawing.org, suitably mod-
ified in order to contain cycles (since the originals are DAGs).
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3. Randomly generated graphs with 50, 100 and 150 nodes and average out-
degrees of 1.5, 3, 5, 8, 10 and 15 each.

4. Two webgraphs from the Laboratory of Web Algorithmics1, also used in [17].

We randomly generate a total of 36 graphs using a predefined number of
nodes, average out-degree and back edge percentage, and we repeat the process
10 times. By construction, this model has the advantage that we know in advance
an upper bound to the FAS size, since the number of randomly created back edges
divided by the total number of edges, is an upper-bound to the size of a minimum
FAS. Finally, in order to avoid having abrupt results due to randomness, for each
case we run the three algorithms on 10 created graphs and report the average
numbers. This smooths out several points in our curves.

4.1 FAS with Respect to the Number of Nodes

The first set of experiments gives us an idea of how PageRankFAS performs on
graphs, with varying number of nodes in comparison to the other two algorithms.
It is noteworthy that in most cases the FAS found by PageRankFAS is less than
50% of the FAS found by GreedyFAS and SortFAS. As a matter of fact, for
large visualization graphs with 4,000 nodes and 12,000 edges the reduction in
the FAS size is almost 55% with respect to the FAS produced by GreedyFAS.
The execution time taken by PageRankFAS is less than one second for graphs
up to 1,000 nodes, which is similar to the time of the other two heuristics. For
the larger graphs, even up to 4,000 nodes the time required is less than 8 s,
whereas, the other heuristics run in about 1–2 s. The results of this experiment
are shown in Fig. 1. It is interesting to note that the performance of SortFAS is
better than the performance of GreedyFAS as the graphs become denser, and
in fact, SortFAS actually out-performs GreedyFAS when the graphs have an
average out-degree 5 and above, see Fig. 1(c).

4.2 FAS with Respect to the Number of Back Edges

The second type of experiments make use of three graphs from graphdrawing.org.
Since these graphs are directed acyclic, we randomly added back edges in differ-
ent percentages of the total number of edges. We did this in a controlled manner
in order to know in advance an upper bound of FAS. PageRankFAS gave by
far the best FAS results and GreedyFAS also produced FAS with sizes mostly
below 10%. SortFAS was not competitive in this dataset. The results are shown
in Fig. 2. The execution time taken by PageRankFAS is well below 0.15 of a
second for all graphs, which is similar to the other two heuristics.

1 https://law.di.unimi.it/datasets.php.

https://law.di.unimi.it/datasets.php
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(a) Graphs with average out-degree
1.5

(b) Graphs with average out-degree
3

(c) Graphs with average out-degree
5

Fig. 1. FAS percentage for graphs with
increasing number of nodes and three dif-
ferent average out-degrees.

(a) Graph with 50 nodes and 75

(b) Graph with 75 nodes and 86

(c) Graph with 99 nodes and 154

Fig. 2. FAS percentage for 3 types of
graphs from graphdrawing.org and for
various numbers of back edges.
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4.3 FAS with Respect to the Average Out-Degree

Motivated by the results shown in Fig. 1(c) we decided to investigate the corre-
lation between the density of a graph and its potential FAS percentage. In this
experiment, we created 18 different graphs, six of them with 50 nodes, six with
100 nodes and six with 150 nodes as follows: For each node size (i.e., 50, 100,
150) six graphs with average out-degrees 1.5, 3, 5, 8, 10 and 15. Again, as with
our previous experiments, the results reported here are the averages of 10 runs
in order to compensate for the randomness of each graph and to get smoother
curves. The results of this experiment are shown in Fig. 3.

The results of PageRankFAS are consistently better than the results of
GreedyFAS and SortFAS for all graphs. The results of GreedyFAS and Sort-
FAS are very close to each other, for the graphs with 50 nodes. Notice however
that, SortFAS outperforms GreedyFAS when the number of nodes exceeds 100
and the average out-degree exceeds five. This is aligned with the results shown
in Fig. 1(c). Furthermore, as expected, when the average out-degree increases
the FAS size clearly increases. Consequently, all techniques seem to converge at
higher percentages of FAS size. Again, PageRankFAS runs in a small fraction of
a second for all graphs, which is similar to the running times of the other two
heuristics.

4.4 PageRankFAS on Webgraphs

The experiments reported in [17] use large and extra large benchmark webgraphs.
Their smaller benchmarks are wordassociation-2011 (with 10,617 nodes, 72,172
edges, which implies an average degree 6.80) and enron (with 69,244 nodes,
276,143 edges, which implies an average degree 3.86).

The authors report that the sizes of a FAS found by GreedyFAS and Sort-
FAS for wordassociation-2011 are 18.89% and 20.17%, respectively [17]. We ran
PageRankFAS for wordassociation-2011 and obtained a FAS of size 14.85%. Sim-
ilarly, for webgraph enron they report a FAS of 12.54% and 14.16% respectively.
We ran PageRankFAS on webgraph enron and obtained a FAS of size 11.05%.
The results are shown in Fig. 4. As expected, and consistent with our experimen-
tal observations of the previous subsections, the FAS size of the denser webgraph
(wordassociation-2011) is larger than the FAS size of the sparser graph (enron),
as computed by all heuristics.

Unfortunately, the required execution time of our algorithm does not allow
us to test it on the larger webgraphs used in [17]. However, it is interesting that
there exists a FAS of smaller size for these large graphs, which, to the best of
our knowledge, was not known before.



198 V. Geladaris et al.

(a) Graphs with 50 nodes

(b) Graphs with 100 nodes

(c) Graphs with 150 nodes

Fig. 3. FAS percentage depending on
the average out-degree of three different
types of graphs.

(a) wordassociation-2011

(b) enron

Fig. 4. FAS percentage on two web-
graphs.
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5 Conclusions

We presented a heuristic algorithm for computing a FAS of minimum size based
on PageRank. Our experimental results show that the size of a FAS computed
by our heuristic algorithm is typically about 50% smaller than the sizes obtained
by the best previous heuristics. Our algorithm is more time consuming than the
best previous heuristics, but it’s running time is reasonable for graphs up to 4,000
nodes. For smaller graphs, up to 1,000 nodes, the execution time is well below
one second, which is similar to the running times of the other two heuristics.
Therefore, this is acceptable for graph drawing applications. An interesting side
result is that we found out that the FAS-size of two large graphs is significantly
less than it was known before. Since it is NP-hard to compute the minimum FAS,
the optimum solution for these webgraphs is unknown. Hence, we do not know
how close our solutions are to the optimum. It would be interesting to investigate
techniques to speedup PageRankFAS in order to make it more applicable to
larger webgraphs.
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Abstract. The problem of orienting the edges of an undirected graph
such that the resulting digraph is acyclic and has a single source s
and a single sink t has a long tradition in graph theory and is cen-
tral to many graph drawing algorithms. Such an orientation is called
an st-orientation. We address the problem of computing st-orientations
of undirected graphs with the minimum number of transitive edges. We
prove that the problem is NP-hard in the general case. For planar graphs
we describe an ILP model that is fast in practice. We experimentally
show that optimum solutions dramatically reduce the number of tran-
sitive edges with respect to unconstrained st-orientations computed via
classical st-numbering algorithms. Moreover, focusing on popular graph
drawing algorithms that apply an st-orientation as a preliminary step,
we show that reducing the number of transitive edges leads to drawings
that are much more compact.

1 Introduction

The problem of orienting the edges of an undirected graph in such a way that
the resulting digraph satisfies specific properties has a long tradition in graph
theory and represents a preliminary step of several graph drawing algorithms.
For example, Eulerian orientations require that each vertex gets equal in-degree
and out-degree; they are used to compute 3D orthogonal graph drawings [17] and
right-angle-crossing drawings [2]. Acyclic orientations require that the resulting
digraph does not contain directed cycles (i.e., it is a DAG); they can be used
as a preliminary step to compute hierarchical and upward drawings that nicely
represent an undirected graph, or a partially directed graph, so that all its edges
monotonically flow in the same direction [4,5,15,18,22,24].

Specific types of acyclic orientations that are central to many graph algo-
rithms and applications are the so called st-orientations, also known as bipolar
orientations [33], whose resulting digraphs have a single source s and a single
sink t. It is well known that an undirected graph G with prescribed vertices s
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(a) 8 transitive edges (b) 4 transitive edges

Fig. 1. Two polyline drawings of the same plane graph, computed using two different
st-orientations, with s = 6 and t = 7; transitive edges are in red. (a) An unconstrained
st-orientation with 8 transitive edges, computed through an st-numbering; (b) An st-
orientation with the minimum number (four) of transitive edges; the resulting drawing
is more compact and has shorter edges. (Color figure online)

and t admits an st-orientation if and only if G with the addition of the edge
(s, t) (if not already present) is biconnected. The digraph resulting from an st-
orientation is also called an st-graph. An st-orientation can be computed in linear
time via an st-numbering (or st-ordering) of the vertices of G [7,20], by orienting
each edge from the end-vertex with smaller number to the end-vertex with larger
number [7]. In particular, if G is planar, a planar st-orientation of G additionally
requires that s and t belong to the external face in some planar embedding of
the graph. Planar st-orientations were originally introduced in the context of
an early planarity testing algorithm [27], and are largely used in graph drawing
to compute different types of layouts, including visibility representations, poly-
line drawings, dominance drawings, and orthogonal drawings (refer to [10,26]).
Planar st-orientations and related graph layout algorithms are at the heart of
several graph drawing libraries and software (see, e.g., [8,9,25,35]). Algorithms
that compute st-orientations with specific characteristics (such as bounds on the
length of the longest path) are also proposed and experimented in the context
of visibility and orthogonal drawings [30,31].

Our paper focuses on the computation of st-orientations with a specific prop-
erty, namely we address the following problem: “Given an undirected graph G
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and two prescribed vertices s and t for which G ∪ (s, t) is biconnected, compute
an st-orientation of G such that the resulting st-graph G′ has the minimum
number of transitive edges (possibly none)”. We recall that an edge (u, v) of a
digraph G′ is transitive if there exists a directed path from u to v in G′\(u, v). An
st-orientation is non-transitive if the resulting digraph has no transitive edges;
st-graphs with no transitive edges are also known as transitively reduced st-
graphs [10,19], bipolar posets [23], or Hasse diagrams of lattices [11,32]. The
problem we study, besides being of theoretical interest, has several practical
motivations in graph drawing. We mention some of them:

– Planar st-oriented graphs without transitive edges admit compact dominance
drawings with straight-line edges, a type of upward drawings that can be com-
puted in linear time with very simple algorithms [12]; when a transitive edge
is present, one can temporarily subdivide it with a dummy vertex, which will
correspond to an edge bend in the final layout. Hence, having few transitive
edges helps to reduce bends in a dominance drawing.

– As previously mentioned, many layout algorithms for undirected planar
graphs rely on a preliminary computation of an st-orientation of the input
graph. We preliminary observed that reducing the number of transitive edges
in such an orientation has typically a positive impact on the readability of
the layout. Indeed, transitive edges often result in long curves; avoiding them
produces faces where the lengths of the left and right paths are more balanced
and leads to more compact drawings (see Fig. 1).

– Algorithms for computing upward confluent drawings of transitively reduced
DAGs are studied in [19]. Confluent drawings exploit edge bundling to create
“planar” layouts of non-planar graphs, without introducing ambiguity [14].
These algorithms can be applied to draw undirected graphs that have been
previously st-oriented without transitive edges when possible.

We also mention algorithms that compute two-page book embeddings of two-
terminal series-parallel digraphs, which either assume the absence of transitive
edges [1] or which are easier to implement if transitive edges are not present [13].

Contribution. In this paper we first prove that deciding whether a graph admits
an st-orientation without transitive edges is NP-complete. This is in contrast
with the tractability of a problem that is at the opposite of ours, namely, deciding
whether an undirected graph has an orientation such that the resulting digraph
is its own transitive closure; this problem can be solved in linear time [28].

From a practical point of view, we provide an Integer Linear Programming
(ILP) model for planar graphs, whose solution is an st-orientation with the
minimum number of transitive edges. In our setting, s and t are two prescribed
vertices that belong to the same face of the input graph in at least one of its
planar embeddings. We prove that the ILP model works very fast in practice.
Popular solvers such as CPLEX can find a solution in few seconds for graphs
up to 1000 vertices and the resulting st-orientations save on average 35% of
transitive edges (with improvements larger than 80% on some instances) with
respect to applying classical unconstrained st-orientation algorithms. Moreover,
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focusing on popular graph drawing algorithms that apply an st-orientation as a
preliminary step, we show that reducing the number of transitive edges leads to
drawings that are much more compact.

For space restrictions, some details are omitted. Full proofs and additional
material can be found in [6].

2 NP-Completeness of the General Problem

We prove that given an undirected graph G = (V,E) and two vertices s, t ∈ V ,
it is NP-complete to decide whether there exists a non-transitive st-orientation
of G. We call this problem Non-Transitive st-Orientation (NTO). To
prove the hardness of NTO we describe a reduction from the NP-complete
problem Not-All-Equal 3SAT (NAE3SAT) [34], where one has a collection
of clauses, each composed of three literals out of a set X of Boolean variables, and
is asked to determine whether there exists a truth assignment to the variables
in X so that each clause has at least one true and one false literal.

Starting from a NAE3SAT instance ϕ, we construct an instance Iϕ =
〈G, s, t〉 of NTO such that Iϕ is a yes instance of NAE3SAT if and only if
ϕ is a yes instance of NTO. Instance Iϕ has one variable gadget Vx for each
Boolean variable x and one clause gadget Cc for each clause c of ϕ. By means of
a split gadget, the truth value encoded by each variable gadget Vx is transferred
to all the clause gadgets containing either the direct literal x or its negation x.
Observe that the NAE3SAT instance is in general not “planar”, in the sense
that if you construct a graph where each variable x and each clause c is a vertex
and there is an edge between x and c if and only if a literal of x belongs to c, then
such a graph would be non-planar. The NAE3SAT problem on planar instances
is, in fact, polynomial [29]. Hence, G has to be assumed non-planar as well.

The main ingredient of the reduction is the fork gadget (Fig. 2), for which
the following lemma holds (the proof is in [6]).
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Fig. 2. (a) The fork gadget. (b)–(c) The two possible orientations of the fork gadget
in a non-transitive st-orientation of the whole graph.
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Fig. 3. The variable gadget Vx and its true (a) and false (b) orientations.

Lemma 1. Let G be an undirected graph containing a fork gadget F that does
not contain the vertices s or t. In any non-transitive st-orientation of G, the
edges e9 and e10 of F are oriented either both exiting F or both entering F .
They are oriented exiting F if and only if edge e1 is oriented entering F .

For each Boolean variable x of φ we construct a variable gadget Vx by suitably
combining two fork gadgets, denoted Fx and Fx, as follows (see Fig. 3). We
introduce two paths Px and Px of length four from s to t. The edge e1 of Fx

(of Fx, respectively) is attached to the middle vertex of path Px (of path Px,
respectively). Edge e10 of Fx is identified with edge e9 of Fx. The two edges e9
of Fx and e10 of Fx are denoted x and x, respectively. We have the following
lemma (see [6] for the proof).

Lemma 2. Let G be an undirected graph containing a variable gadget Vx. In
any non-transitive st-orientation of G the two edges of Vx denoted x and x are
one entering and one exiting Vx or vice versa.

By virtue of Lemma 2 we associate the true value of variable x with the
orientation of Vx where edge x is oriented exiting and edge x is oriented entering
Vx (see Fig. 3(a)). We call such an orientation the true orientation of Vx. Anal-
ogously, we associate the false value of variable x with the orientation of Vx

where edge x is oriented entering and edge x is oriented exiting Vx (see Fig. 3(b)).
Observe that edge x (edge x, respectively) is oriented exiting Vx when the literal
x (the literal x, respectively) is true. Otherwise edge x (edge x, respectively) is
oriented entering Vx.

The split gadget Sk is composed of a chain of k − 1 fork gadgets
F1, F2, . . . Fk−1, where, for i = 1, 2, . . . , k − 2, the edge e9 of Fi is identified
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Fig. 4. The split gadget Sk.
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Fig. 5. The clause gadget Cc for clause c = (x1 ∨ x2 ∨ x3). The configurations of the
three variable gadgets correspond to the truth values x1 = true, x2 = false, and
x3 = true. The clause is satisfied because the first literal x is true and the second and
third literals x2 and x3 are false.

with the edge e1 of Fi+1. We call input edge of Sk the edge denoted e1 of F1.
Also, we call output edges of Sk the k − 1 edges denoted e10 of the fork gad-
gets F1, F2, . . . Fk−1 and the edge e9 of Fk−1 (see Fig. 4). The next lemma is
immediate and we omit the proof.

Lemma 3. Let G be an undirected graph containing a split gadget Sk that does
not contain the vertices s or t. In any non-transitive st-orientation of G, the k
output edges of Sk are all oriented exiting Sk if the input edge of Sk is oriented
entering Sk. Otherwise, if the input edge of Sk is oriented exiting Sk the ouput
edges of Sk are all oriented entering Sk.

If the directed literal x (negated literal x, respectively) occurs in k clauses,
we attach the edge denoted x (denoted x, respectively) of Vx to a split gadget Sx,
and use the k output edges of Sx to carry the truth value of x (of x, respectively)
to the k clauses. The clause gadget Cc for a clause c = (l1 ∨ l2 ∨ l3) is simply a
vertex vc that is incident to three edges encoding the truth values of the three
literals l1, l2, and l3 (see Fig. 5). We prove the following.
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Theorem 1. NTO is NP-complete.

Sketch of proof: The reduction from an instance ϕ of NAE3SAT to an
instance Iϕ described above is performed in time linear in the size of ϕ. Also, Iϕ

is positive if and only if ϕ is positive. Indeed, in any non-transitive st-orientation
of G each vertex vc of a clause gadget Cc has at least one incoming and one out-
going edge, as well as in any truth assignment that satisfies ϕ each clause c has
at least one true and one false literal. Finally, NTO is trivially in NP, as one
can non-deterministically explore all possible orientations of the graph. ��

The analogous problem where the source and the target vertices of G are not
prescribed but can be freely choosen is also NP-complete (see [6]).

3 ILP Model for Planar Graphs

Let G be a planar graph with two prescribed vertices s and t, such that G∪(s, t)
is biconnected and such that G admits a planar embedding with s and t on the
external face. In this section we describe how to compute an st-orientation of G
with the minimum number of transitive edges by solving an ILP model.

Suppose that G′ is the plane st-graph resulting from a planar st-orientation
of G, along with a planar embedding where s and t are on the external face. It is
well known (see, e.g., [10]) that for each vertex v 	= s, t in G′, all incoming edges
of v (as well as all outgoing edges of v) appear consecutively around v. Thus, the
circular list of edges incident to v can be partitioned into two linear lists, one
containing the incoming edges of v and the other containing the outgoing edges
of v. Also, the boundary of each internal face f of G′ consists of two edge-disjoint
directed paths, called the left path and the right path of f , sharing the same end-
vertices (i.e., the same source and the same destination). It can be easily verified
that an edge e of G′ is transitive if and only if it coincides with either the left
path or the right path of some face of G′ (see also Claim 2 in [23]). Note that,
since the transitivity of e does not depend on the specific planar embedding
of G′, the aforementioned property for e holds for every planar embedding of G′.
Due to this observation, in order to compute a planar st-orientation of G with
the minimum number of transitive edges, we can focus on any arbitrarily chosen
planar embedding of G with s and t on the external face.

Let e1 and e2 be two consecutive edges encountered moving clockwise along
the boundary of a face f , and let v be the vertex of f shared by e1 and e2.
The triple (e1, v, e2) is an angle of G at v in f . Denote by deg(f) the number of
angles in f and by deg(v) the number of angles at v. As it was proved in [16],
all planar st-orientations of the plane graph G can be characterized in terms
of labelings of the angles of G. Namely, each planar st-orientation of G has a
one-to-one correspondence with an angle labeling, called an st-labeling of G, that
satisfies the following properties:

(L1) Each angle is labeled either S (small) or F (flat), except the angles at s and
at t in the external face, which are not labeled;
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Fig. 6. (a) An st-labeling of a plane graph G with prescribed nodes s and t. (b) The
corresponding st-orientation of G.

(L2) Each internal face f has 2 angles labeled S and deg(f)−2 angles labeled F;
(L3) For each vertex v 	= s, t there are deg(v) − 2 angles at v labeled S and 2

angles at v labeled F;
(L4) All angles at s and t in their incident internal faces are labeled S.

Given an st-labeling of G, the corresponding st-orientation of G is such that
for each vertex v 	= s, t, the two F angles at v separate the list of incoming edges
of v to the list of outgoing edges of v, while the two S angles in a face f separate
the left and the right path of f . See Fig. 6 for an illustration. The st-orientation
can be constructed from the st-labeling in linear time by a breadth-first-search
of G that starts from s, makes all edges of s outgoing, and progressively orients
the remaining edges of G according to the angle labels.

Thanks to the characterization above, an edge e = (u, v) of the st-graph
resulting from an st-orientation is transitive if and only if in the corresponding
st-labeling the angle at u and the angle at v in one of the two faces incident
to e (possibly in both faces) are labeled S. Based on this, we present an ILP
model that describes the possible st-labelings of G (for any arbitrary planar
embedding of G with s and t on the external face) and that minimizes the
number of transitive edges. The model aims to assign angle labels that satisfy
Properties (L1)–(L4) and counts pairs of consecutive S labels that occur in the
circular list of angles in an internal face; additional constraints are needed to
avoid that a transitive edge is counted twice when it coincides with both the left
and the right path of its two incident faces. The model, which uses a number of
variables and constraints that is linear in the size of G, is as follows.

Sets. Denote by V , E, and F the sets of vertices, edges, and faces of G, respec-
tively. Also let Fint ⊂ F be the set of internal faces of G. For each face f ∈ F ,
let V (f) and E(f) be the set of vertices and the set of edges incident to f ,
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respectively. For each vertex v ∈ V , let F (v) be the set of faces incident to v
and let Fint(v) be the set of internal faces incident to v. For each edge e ∈ E,
let F (e) be the set consisting of the two faces incident to e.
Variables. We define a binary variable xvf for each vertex v ∈ V \ {s, t} and
for each face f ∈ F (v). Also, we define the binary variables xsf (resp. xtf ) for
each face f ∈ Fint(s) (resp. f ∈ Fint(t)). If xvf = 1 (resp. xvf = 0) we assign an
S label (resp. an F label) to the angle at v in f .

For each internal face f ∈ Fint and for each edge (u, v) ∈ E(f), we define a
binary variable yuvf . An assignment yuvf = 1 indicates that both the angles at
u and at v in f are labeled S, that is, xuf = 1 and xvf = 1. As a consequence, if
yuvf = 1 edge (u, v) is transitive. Note however that the sum of all yuvf does not
always correspond to the number of transitive edges; indeed, if f and g are the
two internal faces incident to edge (u, v), it may happen that both yuvf and yuvg

are set to one, thus counting (u, v) as transitive twice. To count the number of
transitive edges without repetitions, we introduce another binary variable zuv,
for each edge (u, v) ∈ E, such that zuv = 1 if and only if (u, v) is transitive.
Objective Function and Constraints. The objective function and the set of
constraints are described by the formulas (1)–(8). The objective is to minimize
the total number of transitive edges, i.e., the sum of the variables zuv. Con-
straints 2 and 3 guarantee Properties (L2) and (L3) of the st-labeling, respec-
tively, while Constraints 4 and 5 guarantee Property (L4). Constraints 6 relate
the values of the variables yuvf to the values of xuf and xvf . Namely, they guar-
antee that yuvf = 1 if and only if both xuf and xvf are set to 1. Constraints 7
relate the values of the variables zuv to those of the variables yuvf ; they guaran-
tee that an edge (u, v) is counted as transitive (i.e., zuv = 1) if and only if in at
least one of the two faces f incident to (u, v) both the angle at u and the angle
at v are labeled S. Finally, we explicitly require that xuv and yuv are binary
variables, while we only require that each zuv is a non-negative integer; this
helps to speed-up the solver and, along with the objective function, is enough to
guarantee that each zuv takes value 0 or 1.

min
∑

(u,v)∈E

zuv (1)

∑

v∈V (f)

xvf = 2 ∀f ∈ Fint (2)

∑

f∈F (v)

xvf = deg(v) − 2 ∀v ∈ V \ {s, t} (3)

xsf = 1 ∀f ∈ Fint ∩ F (s) (4)
xtf = 1 ∀f ∈ Fint ∩ F (t) (5)

xuf + xvf ≤ yuvf + 1 ∀f ∈ Fint ∀(u, v) ∈ E(f) (6)
zuv ≥ yuvf ∀e = (u, v) ∈ E ∀f ∈ F (e) (7)

xvf ∈ {0, 1} yuvf ∈ {0, 1} zuv ∈ N (8)
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4 Experimental Analysis

We evaluated the ILP model with the solver IBM ILOG CPLEX 20.1.0.0 (using
the default setting), running on a laptop with Microsoft Windows 11 v.10.0.22000
OS, Intel Core i7-8750H 2.20 GHz CPU, and 16 GB RAM.
Instances. The experiments have been executed on a large benchmark of
instances, each instance consisting of a plane biconnected graph and two vertices
s and t on the external face. These graphs are randomly generated with the same
approach used in previous experiments in graph drawing (see, e.g., [3]). Namely,
for a given integer n > 0, we generate a plane graph with n vertices starting from
a triangle and executing a sequence of steps, each step preserving biconnectivity
and planarity. At each step the procedure randomly performs one of the two
following operations: (i) an Insert-Edge operation, which splits a face by adding
a new edge, or (ii) an Insert-Vertex operation, which subdivides an existing edge
with a new vertex. The Insert-Vertex operation is performed with a prescribed
probability piv (which is a parameter of the generation process), while the Insert-
Edge operation is performed with probability 1 − piv. For each operation, the
elements (faces, vertices, or edges) involved are randomly selected with uniform
probability distribution. To avoid multiple edges, if an Insert-Edge operation
selects two end-vertices that are already connected by an edge, we discard the
selection and repeat the step. Once the plane graph is generated, we randomly
select two vertices s and t on its external face, again with uniform probability
distribution. We generated a sample of 10 instances for each pair (n, piv), with
n ∈ {10, 20, . . . , 90, 100, 200, . . . , 900, 1000} and piv ∈ {0.2, 0.4, 0.5, 0.6, 0.8}, for
a total of 950 graphs. Note that, higher values of piv lead to sparser graphs.

See [6] for a table that reports for each sample the average, the minimum,
and the maximum density (number of edges divided by the number of vertices)
of the graphs in that sample, together with the standard deviation. On average,
for piv = 0.8 we have graphs with density of 1.23 (close to the density of a tree),
for piv = 0.5 we have graphs with density of 1.76, and for piv = 0.2 we have
graphs with density 2.53 (close to the density of maximal planar graphs).

Experimental Goals. We have three main experimental goals: (G1) Evaluate
the efficiency of our approach, i.e., the running time required by our ILP model;
(G2) Evaluate the percentage of transitive edges in the solutions of the ILP model
and how many transitive edges are saved w.r.t. applying a classical linear-time
algorithm that computes an unconstrained st-orientation of the graph [21]; (G3)
Evaluate the impact of minimizing the number of transitive edges on the area
(i.e. the area of the minimum bounding box) of polyline drawings constructed
with algorithms that compute an st-orientation as a preliminary step.

About (G1), we refer to the algorithm that solves the ILP model as OptST.
About (G2) and (G3) we used implementations available in the GDToolkit
library [9] for the following algorithms: (a) A linear-time algorithm that com-
putes an unconstrained st-orientation of the graph based on the classical st-
numbering algorithm by Even and Tarjan [21]. We refer to this algorithm as
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Fig. 7. Box-plots of the running time of OptST.

HeurST. (b) A linear-time algorithm that first computes a visibility representa-
tion of an undirected planar graph based on a given st-orientation of the graph,
and then computes from this representation a planar polyline drawing [11]. We
call DrawHeurST and DrawOptST the applications of this drawing algo-
rithm to the st-graphs obtained by HeurST and of OptST, respectively.
Experimental Results. About (G1), Fig. 7 reports the running time (in sec-
onds) of OptST, i.e., the time needed by CPLEX to solve our ILP model.
To make the charts more readable we split the results into two sets, one for the
instances with number of vertices up to 90 and the other for the larger instances.
OptST is rather fast: 75% of the instances with up to 90 vertices is solved in
less than one second and all these instances are solved in less than five sec-
onds. For the larger instances (with up to 1000 vertices), 75% of the instances
are solved in less than 10 s and all instances are solved in less than 25 s. These
results clearly indicate that our ILP model can be successfully used in several
application contexts that manage graphs with up to thousand vertices.

About (G2), Fig. 8 shows the reduction (in percentage) of the number of
transitive edges in the solutions of OptST with respect to the solutions of
HeurST. More precisely, Fig. 8(a) reports values averaged over all instances with
the same number of vertices; Fig. 8(b), Fig. 8(c), and Fig. 8(d) report the same
data, partitioning the instances by different values of piv, namely 0.8 (the sparsest
instances), 0.4-0.6 (instances of medium density), and 0.2 (the densest instances).
For each instance, denoted by trOpt and trHeur the number of transitive edges
of the solutions computed by OptST and HeurST, respectively, the reduction
percentage equals the value

(
trHeur−trOpt
max{1,trHeur} ×100

)
. Over all instances, the average

reduction is about 35%; it grows above 60% on the larger graphs if we restrict
to the sparsest instances (with improvements larger than 80% on some graphs),
while it is below 30% for the densest instances, due to the presence of many
3-cycles, for which a transitive edge cannot be avoided.

About (G3), Fig. 9 shows the percentage of instances for which DrawOptST

produces drawings that are better than those produced by DrawHeurST in
terms of area requirement (the label “better” of the legend). It can be seen
that DrawOptST computes more compact drawings for the majority of the



212 C. Binucci et al.

Fig. 8. Improvement (%) in the number of transitive edges.

instances. In particular, it is interesting to observe that this is most often the
case even for the densest instances (i.e., those for piv = 0.2), for which we have
previously seen that the average reduction of transitive edges is less evident.
For those instances for which DrawOptST computes more compact drawings
than DrawHeurST, Fig. 10 reports the average percentage of improvement in
terms of area requirement (i.e., the percentage of area reduction). The values
are mostly between 30% and 50%. To complement this data, Fig. 11 reports the
trend of the improvement (reduction) in terms of drawing area with respect to the
reduction of the transitive edges (discretized in four intervals). For the instances
with piv = 0.8 and piv = 0.2, the correlation between these two measures is quite
evident. For the instances of medium density (piv ∈ {0.4, 0.5, 0.6}), the highest
values of improvement in terms of area requirement are observed for reductions
of transitive edges between 22% and 66%. Drawings of our instances computed
by DrawHeurST and DrawOptST are reported in [6].

5 Final Remarks and Open Problems

We addressed the problem of computing st-orientations with the minimum num-
ber of transitive edges. This problem has practical applications in graph drawing,
as finding an st-orientation is at the heart of several graph drawing algorithms.
Although st-orientations without transitive edges have been studied from a com-
binatorial perspective [23], there is a lack of practical algorithms, and the com-
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Fig. 9. Instances for which DrawOptST produces drawings that are more compact
than DrawHeurST (label “better”).

plexity of deciding whether a graph can be oriented to become an st-graph
without transitive edges seems not to have been previously addressed.

We proved that this problem is NP-hard in general and we described an
ILP model for planar graphs based on characterizing planar st-graphs without
transitive edges in terms of a constrained labeling of the vertex angles inside
its faces. An extensive experimental analysis on a large set of instances shows
that our model is fast in practice, taking few seconds for graphs of thousand
vertices. It saves on average 35% of transitive edges w.r.t. a classical algorithm
that computes an unconstrained st-orientation. We also showed that for classical
layout algorithms that compute polyline drawings of planar graphs through an
st-orientation, minimizing the number of transitive edges yields more compact
drawings most of the time.
We suggest two future research directions: (i) It remains open to establish the
time complexity of the problem for planar graphs. Are there polynomial-time
algorithms that compute st-orientations with the minimum number of transitive
edges for all planar graphs or for specific subfamilies of planar graphs? (ii)
One can extend the experimental analysis to real-world graphs and design fast
heuristics, which can be compared to the optimal algorithm.
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Fig. 10. Area improvement (%) of DrawOptST w.r.t. DrawHeurST, for the
instances where DrawOptST is “better” (i.e., the “better” instances in Fig. 9).

Fig. 11. Correlation between the improvement (reduction) in terms of drawing area
and in terms of transitive edges improvement.
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Abstract. An r-quasiplanar graph is a graph drawn in the plane with
no r pairwise crossing edges. Let s ≥ 3 be an integer and r = 2s. We
prove that there is a constant C such that every r-quasiplanar graph
with n ≥ r vertices has at most n

(
Cs−1 logn

)2s−4
edges.

A graph whose vertices are continuous curves in the plane, two
being connected by an edge if and only if they intersect, is called a string
graph. We show that for every ε > 0, there exists δ > 0 such that every
string graph with n vertices, whose chromatic number is at least nε con-
tains a clique of size at least nδ. A clique of this size or a coloring using
fewer than nε colors can be found by a polynomial time algorithm in
terms of the size of the geometric representation of the set of strings.

In the process, we use, generalize, and strengthen previous results of
Lee, Tomon, and others. All of our theorems are related to geometric
variants of the following classical graph-theoretic problem of Erdős, Gal-
lai, and Rogers. Given a Kr-free graph on n vertices and an integer s < r,
at least how many vertices can we find such that the subgraph induced
by them is Ks-free?

Keywords: Quasi-planar graphs · String graphs · Graph coloring

1 Introduction

A topological graph is a graph drawn in the plane with points as vertices and edges
as continuous curves connecting some pairs of vertices. The curves are allowed
to cross, but they may not pass through vertices other than their endpoints.
If the edges are drawn as straight-line segments, then the graph is geometric.
If no r edges in a topological graph G are pairwise crossing, then G is called
r-quasiplanar.
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The following is a longstanding unsolved problem in the theory of topological
graphs; see, e.g., [5].

Conjecture 1. The number of edges of every r-quasiplanar graph of n vertices is
Or(n).

Conjecture 1 has been proved for r ≤ 4. See [1,3,4].
The intersection graph of a family of geometric objects, S, is a graph with

vertex set S, in which two vertices are joined by an edge if and only if their
intersection is nonempty. If S consists of continuous curves (or line segments) in
the plane, then their intersection graph is called a string graph (resp., a segment
graph).

A natural approach to prove Conjecture 1 is the following. Removing a small
disc around every vertex of an r-quasiplanar graph G, we are left with a family
of continuous curves S in the plane, no r of which are pairwise crossing. These
curves define a Kr-free string graph H. Suppose that the chromatic number of H
satisfies χ(H) ≤ f(r). Then each color class corresponds to the edges of a planar
subgraph of G. Thus, the size of each color class is at most 3n − 6, provided
that n ≥ 3. This would immediately imply that every r-quasiplanar graph with
n vertices has at most (3n − 6)f(r) = Or(n) edges, as required.

Surprisingly, this approach is not viable. In 2014, Pawlik, Kozik, Krawczyk,
Lasoń, Micek, Trotter, and Walczak [28] represented a class of K3-free graphs
originally constructed by Burling [6] as segment graphs whose chromatic numbers
can be arbitrarily large. Shortly after, Walczak [35] strengthened this result by
proving that there are K3-free segment graphs on n vertices in which every
independent set is of size O( n

log log n ).
Using the same approach, in order to prove Conjecture 1 for some r, it would

be sufficient to show that there is a constant g(r) with the property that the
vertex set of every Kr-free string graph can be colored by g(r) colors such that
each (string) graph induced by one of the color classes is K4-free. Indeed, the
result of Ackerman [1] cited above implies that the number of edges in each color
class is O(n). The first question to answer is the following.

Problem 1. Fix an integer r ≥ 4. Is it true that every Kr-free segment graph on
n vertices has an induced subgraph on Ωr(n) vertices which is Kr−1-free?

Building upon the work of McGuinness [26], Suk [32] showed that every Kr-
free segment graph on n vertices has a Kr−1-free induced subgraph with at least
Ωr( n

log n ) vertices. (See also [29,30].) For string graphs, in general, until now
the best known result, due to Fox and Pach [17], was weaker: they could only
guarantee the existence of an independent set and, hence, a Kr−1-free induced
subgraph, of size at least n

(log n)O(log r) .

In a different range, where r grows polynomially in n, Tomon [33] solved a
longstanding open problem by showing that there is a constant c′ > 0 such that
every string graph on n vertices has a clique or an independent set of size nc′

.
Our next theorem slightly strengthens the result of Fox and Pach [17].



Quasiplanar Graphs, String Graphs, and the Erdős-Gallai Problem 221

Theorem 1. Let s be a positive integer and r = 2s. Every Kr-free string graph
on n ≥ r vertices has an independent set of size at least n(cs/ log n)2s−2, where
c > 0 is an absolute constant.

At the beginning of Sect. 4, we show how to deduce from Theorem 1 the
following strengthening of Tomon’s above mentioned theorem [33].

Corollary 1. For any ε > 0, there is δ > 0 such that every string graph G on
n vertices has a clique of size at least nδ or its chromatic number is at most nε.
(In the latter case, obviously, G has an independent set of size at least n1−ε.)

Theorem 1 guarantees the existence of a large independent set in a Kr-free
string graph G. If, in the spirit of Problem 1, we want to find only a large
Kr−1-free induced subgraph in G, we can do better.

Theorem 2. For any n ≥ r ≥ 3, every Kr-free string graph with n vertices has
a Kr−1-free induced subgraph with at least c n

log2 n
vertices, where c > 0 is an

absolute constant.

At the expense of another logarithmic factor, we can also find an induced
subgraph with no clique of size �r/2�.
Theorem 3. For any n ≥ r ≥ 3, every Kr-free string graph with n vertices has
a K�r/2�-free induced subgraph with at least c n

log3 n
vertices, where c > 0 is an

absolute constant.

Now we return to the original motivation behind our present note: to esti-
mate from above the number of edges of an r-quasiplanar topological graph of n
vertices. As mentioned before, for r ≤ 4, Conjecture 1 is true. For any r ≥ 5, the
best previously known upper bounds were n(log n)O(log r) and O(n(log n)4r−16),
established in [17] and [27], respectively. For geometric graphs, for any fixed
r ≥ 5, Valtr [34] obtained the upper bound O(n log n). See [2] for a survey.

Using the result of Ackerman [1] as the base case of an induction argu-
ment, and exploiting several properties of string graphs established by Lee [24],
Tomon [33], and Fox and Pach [16,17], we will deduce the following improved
upper bound for the number of edges of r-quasiplanar topological graphs.

Theorem 4. Let s ≥ 3 be an integer and r = 2s. Then every r-quasiplanar
graph with n ≥ r vertices has at most n( c log n

s )2s−4 edges, where c > 0 is an
absolute constant.

Setting s = 3, for instance, we obtain that every 8-quasiplanar topological
graph on n vertices has O(n(log n)2) edges, which is better than the previously
known bound of O(n(log n)16) [1,27]. For r = δ log n, Theorem 4 immediately
implies the following.

Corollary 2. For any ε > 0 there is δ > 0 such that every topological graph
with n vertices and at least 3n1+ε edges has nδ pairwise crossing edges.
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The factor 3 in front of the term n1+ε guarantees that the graph is not planar.
Otherwise, we could not even guarantee that there is one crossing pair of edges.

In the special case where the strings are allowed to cross only a bounded
number of times, some results very similar to Theorems 1 and 4 were established
in [15].

Theorems 1, 2, 3, and Corollary 1 guarantee the existence of an independent
set or a Kp-free induced subgraph for some p > 2 in a string graph satisfying
certain conditions. All of these sets and subgraphs can be found by efficient
polynomial time algorithms in terms of the size of a geometric representation
of the underlying string graph. For example, the proof of Corollary 1 yields the
following algorithmic result.

Proposition 1. For any ε > 0 there is δ > 0 with the following property. Given
a representation of a string graph on n vertices as an intersection graph of
strings, there is a polynomial time algorithm which either properly colors the
vertices with nε colors or finds a clique of size nδ.

Erdős and Gallai [11] raised the following question. Given a pair of integers,
2 ≤ p < r, how large of a Kp-free induced subgraph must be contained in
every Kr-free graph of n vertices? For p = 2, we obtain Ramsey’s problem:
how large of an independent set must be contained in every Kr-free graph of n
vertices. The special case p = r − 1 was considered by Erdős and Rogers [12].
These problems have since been extensively studied. For many striking results,
see, e.g., [9,10,19,22,23,31,36]. Apart from our last two results listed in the
introduction, all statements in this paper can be regarded as geometric variants
of the Erdős-Gallai-Rogers problem for string graphs.

The rest of this note is organized as follows. In Sect. 2, we apply the ana-
logues of the separator theorem and the Kővári-Sós-Turán theorem for string
graphs [17,24] to establish Theorems 2 and 3. In Sect. 3, we present a simple
technical lemma (Lemma 3) and some of its consequences needed for the proof
of Theorems 1 and 4. The proofs of these two theorems and Corollary 1 are given
in Sect. 4. The last section contains some concluding remarks.

Throughout this paper, log always stands for the binary logarithm. The let-
ters c and C appearing in different theorems denote unrelated positive constants.
Whenever they are not important, we will simply omit floor and ceiling signs.

2 Separators—Proofs of Theorems 2 and 3

In this section, we prove Theorems 2 and 3. We need the separator theorem for
string graphs, due to Lee [24]. A separator in a graph G = (V,E) is a subset S of
the vertex set V such that no connected component of G\S has more than 2

3 |V |
vertices. Equivalently, S is a separator of G if there is a partition V = S∪V1∪V2

with |V1|, |V2| ≤ 2
3 |V | such that no vertex in V1 is adjacent to any vertex in V2.
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Lemma 1 ([24]). Every string graph with m edges has a separator of size at
most c1

√
m, where c1 is an absolute constant.

We now prove the following theorem which immediately implies Theorem 2.
Let us remark that the neighborhood of vertex v does not include v.

Theorem 5. There is an absolute constant c > 0 with the following property.
Every string graph G on n vertices contains an induced subgraph G′ on c n

log2 n

vertices whose every connected component is contained in the neighborhood of a
vertex or is an isolated vertex.

Proof. Let c > 0 be a sufficiently small constant to be specified later. We proceed
by induction on n. The base case when n = 1 is trivial. For the inductive step,
assume that the statement holds for all n′ < n. Let G = (V,E) be an n-vertex
string graph.

If G contains a vertex v of degree at least cn/ log2 n, then we are done by
setting G′ to be the neighborhood of v. Otherwise, we know that there are at
most cn2/ log2 n edges in G. By Lemma 1, G has a separator S ⊂ V of size
at most c1

√
cn/ log n, where c1 is the absolute constant from Lemma 1. Hence,

there is a partition V = S ∪ V1 ∪ V2 with |V1|, |V2| ≤ 2
3 |V | such that no vertex in

V1 is adjacent to any vertex in V2, and |S| ≤ c1
√

cn/ log n. By applying induction

on V1 and V2 and setting c <
(

log 3/2
c1

)2

, we obtain an induced subgraph G′ on
at least

c
|V1|

log2 |V1|
+ c

|V2|
log2 |V2|

≥ c
|V1| + |V2|
log2(2n/3)

≥ c
n − c1

√
cn

log n

log2(2n/3)

= c
n

log2 n
·

1 − c1
√

c
log n(

1 − log(3/2)
log n

)2 ≥ c
n

log2 n

vertices such that each component of G′ is contained in the neighborhood of a
vertex or is an isolated vertex.

To see that Theorem 5 implies Theorem 2, it is sufficient to notice that if G′

has a clique of size r − 1, then G has a clique of size r.
The proof of Theorem 3 is very similar to that of Theorem 2. Here, we

need the following analogue of the Kővári-Sós-Turán theorem, which can also be
deduced from Lemma 1 (see Conjecture 3.3 in [17]).

Lemma 2 ([17,24]).
Every Kt,t-free string graph on n vertices has at most c2t(log t)n edges, where

c2 is an absolute constant.

Proof of Theorem 3. Let c > 0 be a sufficiently small constant to be determined
later. We proceed by induction on n. The base case n = 1 is trivial. For the
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inductive step, assume that the statement holds for all n′ < n. Let G = (V,E)
be a Kr-free string graph on n vertices, and let c1 and c2 be the constants from
Lemmas 1 and 2, respectively.

If G has at least cc2
n2

log2 n
edges, then, by Lemma 2, G contains a complete

bipartite graph Kt,t, where t ≥ c n
log3 n

. Since G is Kr-free, one of these parts
must be K�r/2�-free, and we are done.

Otherwise, if G has fewer than cc2
n2

log2 n
edges, then, by Lemma 1, there is

a partition V = S ∪ V1 ∪ V2 with |V1|, |V2| ≤ 2
3 |V | such that no vertex in V1 is

adjacent to any vertex in V2, and |S| ≤ c1
√

cc2n/ log n. Applying the induction

hypothesis to V1 and V2, and setting c < log2(3/2)
c2c21

, we obtain a K�r/2�-free
induced subgraph G′ ⊆ G with at least

c
|V1|

log3 |V1|
+ c

|V2|
log3 |V2|

≥ c
|V1| + |V2|
log3(2n/3)

≥ c
n − c1

√
cc2n

log n

log3(2n/3)

= c
n

log3 n
·

1 − c1
√

cc2
log n(

1 − log(3/2)
log n

)3 ≥ c
n

log3 n

vertices. �

3 A Technical Lemma for String Graphs

The average degree in a graph G = (V,E) is d = 2|E|
|V | . The edge density of G

is defined as |E|
(|V |

2 ) = d
|V |−1 . We say that a graph is dense if its edge density is

larger than some positive constant (which we will conveniently specify for our
purposes).

Using Lee’s separator theorem for string graphs (Lemma 1), it is easy to
deduce the following technical lemma which states that every string graph G
has a dense induced subgraph G′ whose average degree is not much smaller than
the average degree in G.

Lemma 3. For any ε > 0, there is C = C(ε) with the following property. Every
string graph G = (V,E) with average degree d = 2|E|/|V | has an induced sub-
graph G[V ′] with average degree d′ ≥ (1 − ε)d and |V ′| ≤ Cd′.

Proof. Let G = (V,E) be a string graph with average degree d. We recursively
define a nested sequence of induced subgraphs G0 ⊃ G1 ⊃ · · · .

We begin with G0 = G, and let V0 = V , E0 = E and d0 = d. After obtaining
Gi = (Vi, Ei) with Ei = E(G[Vi]) and with average degree di = 2|Ei|/|Vi|,
we show that Gi is the desired induced subgraph if di ≥ |Vi|/C. Otherwise if
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di < |Vi|/C, we have |Ei| ≤ |Vi|2/(2C), and by Lemma 1, there is a partition
Vi = U0 ∪ U1 ∪ U2 with |U1|, |U2| ≤ 2|Vi|/3,

|U0| ≤ c1
√

|Ei| ≤ c1
|Vi|√
2C

≤ |Vi|/12,

and there are no edges from U1 to U2. The last inequality above follows from
the fact that C ≥ (12c1)2. We can assume this as we can choose C as large as
we want.

We take Gi+1 to be the induced subgraph on whichever of G[U1 ∪ U0] and
G[U2 ∪ U0] has larger average degree. As all edges of Gi are in at least one of
these two induced subgraphs and |U1 ∪ U0| + |U2 ∪ U0| = |Vi| + |U0|, the average
degree of Gi+1 satisfies

di+1 ≥ di
|Vi|

|Vi| + |U0| = di
1

1 + |U0|/|Vi|

≥ di
1

1 + c1
√|Ei|/|Vi|

≥ di
1

1 + c1
√

di/(2|Vi|)
.

As di < |Vi|/C and C can be chosen sufficiently large, the above inequal-
ity implies that di+1 ≥ 9

10di. The inequality |U0| ≤ |Vi|/12 implies that
|Vi+1| ≤ 3

4 |Vi|. These two inequalities together imply that di+1/|Vi+1| ≥ 6
5di/|Vi|.

It follows from the inequality above that

di+1 = d

i∏
j=0

dj+1/dj ≥ d

i∏
j=0

1
1 + c1

√
dj/(2|Vj |)

≥ de− ∑i
j=0 c1

√
dj/(2|Vj |),

where the last inequality uses that 1
1+x ≥ e−x for any x > 0. The sum in the

exponent is dominated by a geometric series with common ratio
√

6/5 > 1, and
its largest summand is at most c1(1/(2C))1/2, as di ≤ |Vi|/C. Hence, the sum in
the exponent is O(C−1/2). Taking C large enough, we have that di+1 ≥ (1 − ε)d
for every i for which di+1 is defined. (We can choose C = O(1/ε2) to satisfy
this.) Further, as |Vi+1| ≤ 3

4 |Vi| < |Vi| for every i for which Vi+1 is defined, after
at most |V | iterations, the above process will terminate with the desired induced
subgraph Gi.

The main result of [16] is that every dense string graph contains a dense
spanning subgraph which is an incomparability graph. Applying Lemma 3 to
this spanning subgraph with ε = 1/2, we obtain the following corollary.

Corollary 3. There is a constant c > 0 with the following property. Every string
graph with n vertices and m edges has a subgraph with at least cm

n vertices which
is an incomparability graph with edge density at least c.

Given a graph G = (V,E) and two disjoint subsets of vertices X,Y ∈ V , we
say that X is complete to Y if xy ∈ E for all x ∈ X and y ∈ Y .

The next lemma can be deduced by combining Corollary 3 above with Lem-
mas 6 and 7 of Tomon [33].



226 J. Fox et al.

Lemma 4. There is a constant c > 0 with the following property. If G = (V,E)
is a string graph with n vertices and at least αn2 edges, for some α > 0, then
there are disjoint vertex subsets X1, . . . , Xt ⊂ V for some t ≥ 2 such that

1. Xi is complete to Xj for all i �= j, and
2. |Xi| ≥ cα n

t2 for every i.

4 Back to Quasiplanar Graphs—Proofs of Theorems 1
and 4

Before turning to the proof of Theorem 1, we show how it implies Corollary 1.

Proof of Corollary 1. The most natural technique for properly coloring a graph is
by successively extracting maximum independent sets from it. Using this greedy
method and the bound in Theorem 1, for r = 2s, we obtain a proper coloring
of any Kr-free string graph on n vertices with at most ( log n

cs )2s−2 log n colors.
Indeed, each time we extract a maximum independent set, the fraction of remain-
ing vertices is at most 1 − α with α = ( cs

log n )2s−2. As 1 − α < e−α, after at most
log n

α iterations, no vertex remains.
For a given ε > 0, choose a sufficiently small δ > 0 be such that

1. 2δ log 1
cδ < ε

2 and
2. log n < nε/2 provided that nδ ≥ 2.

Consider any Knδ -free string graph G on n vertices. If nδ < 2, then G has
no edges and, hence, its chromatic number is 1 ≤ nε. Otherwise, substituting
s = δ log n, Theorem 1 yields that the chromatic number of G is at most

n2δ log 1
cδ log n < nε.

�
Now we turn to the proof of Theorem 1 which gives, for r = 2s, a lower

bound on the independence number of a Kr-free string graph on n vertices.

Proof of Theorem 1. Our proof is by double induction on s and n. Throughout
we let r = 2s. The base cases are when s = 1 (in which case we get an independent
set of size n) or n = r (in which case we get an independent set of size 1) and
are trivial. The induction hypothesis is that the theorem holds for all s′ < s and
all n′, and for s′ = s and all n′ < n. Note that we may assume that r ≤ n/4,
as otherwise the theorem holds. Let α = c′( s

log n )2, where c′ > 0 is a sufficiently
small absolute constant. Let G be a Kr-free string graph on n vertices.

If G has at most αn2 edges, applying Lemma 1, there is a vertex partition
V = V0 ∪ V1 ∪ V2 with |V0| ≤ c1α

1/2n, |V1|, |V2| ≤ 2n/3, and there are no edges
from V1 to V2. Note that |V0| ≤ n/12 so |V1|, |V2| ≥ n/4. We obtain a large
independent set in G by taking the union of large independent sets in V1 and
V2. Using the induction hypothesis applied to G[V1] and G[V2], we obtain an
independent set in G of order at least
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|V1|
(

cs

log |V1|
)2s−2

+ |V2|
(

cs

log |V2|
)2s−2

≥ (|V1| + |V2|)
(

cs

log(2n/3)

)2s−2

.

Note that |V1| + |V2| = n − |V0| ≥ n(1 − c1c
′1/2 · s

log n ). We also have

(log(2n/3))2s−2 = (log n)2s−2

(
1 − log(3/2)

log n

)2s−2

≤ (log n)2s−2

(
1 − s

2 log n

)
.

Substituting in these estimates and using c′ > 0 is sufficiently small, we
obtain an independent set of the desired size.

Suppose next that G has at least αn2 edges. By Lemma 4, there is an integer
t ≥ 2 and disjoint vertex subsets X1, . . . , Xt such that Xi is complete to Xj for
all i �= j and |Xi| ≥ 4c′′αn/t2 for i = 1, . . . , t where 0 < 4c′′ < 1 is an absolute
constant. Losing a factor at most 2 in the number of sets Xi, we may assume
t = 2p for a positive integer p < s, which implies |Xi| ≥ c′′αn/t2. As G is K2s -
free, one of these sets Xi induces a subgraph which is K2s−p -free. Let n0 = |Xi|.
Applying the induction hypothesis to G[Xi], we obtain an independent set of
size at least

n0

(
c(s − p)
log n0

)2(s−p)−2

≥ c′′c′
(

s

log n

)2

n2−2p

(
c(s − p)
log n0

)2(s−p)−2

≥ n

(
cs

log n

)2s−2

.

The last inequality holds, because after substituting log n0 ≤ log n, the ratio
of the right-hand side and the expression in the middle reduces to

(2c)2p

c′′c′

(
s

log n

)2(p−1) (
1 +

p

s − p

)2(s−p)−2

≤ (2ec)2p

c′′c′

(
s

log n

)2(p−1)

≤ 1.

At the first inequality, we used 1 + x ≤ ex with x = p
s−p . As for the second

inequality, we know that s ≤ log n, and we are free to choose the constant c > 0
as small as we wish (for instance, c = c′′c′/30 will suffice). This completes the
proof. �

A careful inspection of the proof of Theorem 1 shows that it recursively
constructs an independent set of the desired size in a Kr-free string graph in
polynomial time in terms of the size of the geometric representation of the set
of strings. Indeed, the proof itself is essentially algorithmic. In the first case,
when the string graph is relatively sparse, we apply Lee’s separator theorem
for string graphs, and take the union of large independent sets from the string
graph of the two remaining large vertex subsets after deleting the small sepa-
rator. In the second case, when the string graph is relatively dense, we apply
Lemma 4 to get in the string graph a complete multipartite subgraph with large
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parts, and we can find a large independent set in one of the parts. However, this
does require checking that results from several earlier papers each yield desir-
able structures in string graphs and incomparability graphs in polynomial time.
These results include Lee’s separator theorem for string graphs [24], the Fox-
Pach result that every dense string graph contains a dense spanning subgraph
which is an incomparability graph [16], and some extremal results of Tomon [33]
for incomparability graphs.

A set of vertices X ⊆ V in a graph G = (V,E) is said to be r-independent
if it does not induce a clique of size r, that is, if G[X] is Kr-free. In particular,
a 2-independent set is simply an independent set. Note that the proof of Theo-
rem 1 carries through to the following generalization concerning the Erdős-Gallai
problem for string graphs.

Theorem 6. Let s, q be positive integers with s > q. Every K2s-free string graph
G on n ≥ 2s vertices contains a 2q-independent set of size at least

min

((
c(s + 1 − q)

log n

)2s−2q

n,

(
c(s + 1 − q)

2s log n

)2

n

)
,

where c > 0 is an absolute constant.

Proof. (Sketch) We follow the proof of Theorem 1, making minor modifications.
The proof is by double induction on s and n, with the base cases s = q or n = 2s

being trivial. We let α = c′
(

s+1−q
log n

)2

. As in the proof of Theorem 1, if G has

at most αn2 edges, we apply the string graph separator lemma (Lemma 1). We
delete the separator, use the induction hypothesis on the resulting components,
and take the union of the 2q-independent sets in the components to get a 2q-
independent set of the desired size in G.

So, we may assume G has more than αn2 edges. By Lemma 4, there is an
integer t ≥ 2 and disjoint vertex subsets X1, . . . , Xt such that Xi is complete to
Xj for all i �= j and |Xi| ≥ 4c′′αn/t2 for i = 1, . . . , t, where c′′ > 0 is an absolute
constant. Losing a factor at most 2 in the number of sets Xi, we may assume
that t = 2p for a positive integer p < s, which implies |Xi| ≥ c′′αn/t2. As G is
K2s -free, at least one of the sets Xi induces a subgraph which is K2s−p-free.

The proof now splits into two cases, depending on whether s − p > q or not.
If s − p > q, the rest of the proof goes through as in the proof of Theorem 1. If
s − p ≤ q, then Xi is the desired 2q-independent set. Indeed, we have

|Xi| ≥ c′′αn/t2 ≥ c′′αn/22s = c′′c′
(

s + 1 − q

2s log n

)2

n ≥
(

c(s + 1 − q)
2s log n

)2

n,

for a sufficiently small absolute constant c > 0, as desired.

We complete the section by proving Theorem 4, which gives an upper bound
on the number of edges of a r-quasiplanar graph with n vertices for r = 2s a
perfect power of two.
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Proof of Theorem 4. Let s ≥ 3 be an integer and r = 2s. We have to prove that
every r-quasiplanar graph on n ≥ r vertices has at most n(C log n

s )2s−4 edges,
where C is an absolute constant.

For any r-quasiplanar graph G = (V,E) on n vertices, delete a small disk
around each vertex and consider the string graph whose vertex set consists of
the (truncated) curves in E. As G is r-quasiplanar, the resulting string graph is
K2s -free.

Applying Theorem 6 with q = 2, we obtain a subset E′ ⊂ E with

|E′| ≥ |E|
(

c(s − 1)
log |E|

)2s−4

≥ |E|
(

c(s − 1)
2 log n

)2s−4

,

for some absolute constant c > 0 such that G′ = (V,E′) is 4-quasiplanar. Accord-
ing to Ackerman’s result [1], every 4-quasiplanar graph on n vertices has at most
a linear number of edges in n, that is, we have |E′| ≤ C ′n for a suitable constant
C ′ > 0. Putting these two bounds together, we get the desired upper bound

|E| ≤ C ′n
(

2 log n

c(s − 1)

)2s−4

≤ n

(
C

log n

s

)2s−4

,

provided that C is sufficiently large.
�

5 Concluding Remarks

A. A family of graphs G is said to be hereditary if for any G ∈ G, all induced
subgraphs of G also belong to G. Obviously, the family of string graphs is hered-
itary.

The proof of Lemma 3 only uses the fact that there is a separator theorem
for string graphs. A careful inspection of the proof shows that the same result
holds, instead of string graphs, for any hereditary family of graphs G such that
every G = (V,E) ∈ G has a separator of size O(|E|α|V |1−2α), for a suitable
constant α = α(G) > 0.

Similar techniques were used in [13–15,25]. Our Lemma 3 enables us to sim-
plify some of the proofs in these papers.

B. Circle graphs are intersection graphs of chords of a circle. Gyárfás [18] proved
that every circle graph with clique number r has chromatic number at most
O(r24r). Kostochka [20], and Kostochka and Kratochv́ıl [21] improved this bound
to O(r22r) and O(2r) respectively. Recently, a breakthrough was made by Davies
and McCarty [7], who obtained the upper bound O(r2). Shortly after this, Davies
[8] further improved this bound to O(r log r), which is asymptotically best pos-
sible due to a construction of Kostochka [20]. By taking the union of the r − 2
largest color classes in a proper coloring with the minimum number of colors,
Davies’ result implies that every circle graph on n vertices with clique number
r contains an induced subgraph on Ω(n/ log r) vertices that is Kr−1-free. We
conjecture that this “naive” bound can be improved as follows.
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Conjecture 2. Every Kr-free circle graph on n vertices contains an induced sub-
graph on Ω(n) vertices which is Kr−1-free.

Acknowledgement. We are grateful to Zach Hunter for carefully reading our
manuscript and pointing out several mistakes.
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Abstract. The splitting number of a graph G = (V, E) is the mini-
mum number of vertex splits required to turn G into a planar graph,
where a vertex split removes a vertex v ∈ V , introduces two new ver-
tices v1, v2, and distributes the edges formerly incident to v among v1, v2.
The splitting number problem is known to be NP-complete for abstract
graphs and we provide a non-uniform fixed-parameter tractable (FPT)
algorithm for this problem. We then shift focus to the splitting number of
a given topological graph drawing in R

2, where the new vertices resulting
from vertex splits must be re-embedded into the existing drawing of the
remaining graph. We show NP-completeness of this embedded splitting
number problem, even for its two subproblems of (1) selecting a min-
imum subset of vertices to split and (2) for re-embedding a minimum
number of copies of a given set of vertices. For the latter problem we
present an FPT algorithm parameterized by the number of vertex splits.
This algorithm reduces to a bounded outerplanarity case and uses an
intricate dynamic program on a sphere-cut decomposition.
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However, graphs in many applications are typically non-planar and hence several
methods have been proposed to simplify their drawings and minimize crossings,
both from a practical point of view [25,27] and a theoretical one [28,36]. Draw-
ing algorithms often focus on reducing the number of visible crossings [33] or
improving crossing angles [34], aiming to achieve similar beneficial readability
properties as in crossing-free drawings of planar graphs.

One way of turning a non-planar graph into a planar one while retaining
the entire graph and not deleting any of its vertices or edges, is to apply a
sequence of vertex splitting operations, a technique which has been studied in
theory [9,12,24,28], but which is also used in practice, e.g., by biologists and
social scientists [17,18,31,37,38]. For a given graph G = (V,E) and a vertex
v ∈ V , a vertex split of v removes v from G and instead adds two non-adjacent
copies v1, v2 such that the edges formerly incident to v are distributed among
v1 and v2. Similarly, a k-split of v for k ≥ 2 creates k copies v1, . . . , vk, among
which the edges formerly incident to v are distributed. On the one hand, splitting
a vertex can resolve some of the crossings of its incident edges, but on the
other hand the number of objects in the drawing to keep track of increases.
Therefore, we aim to minimize the number of splits needed to obtain a planar
graph, which is known as the splitting number of the graph. Computing it is NP-
hard [13], but it is known for some graph classes including complete and complete
bipartite graphs [15,16,19]. A related concept is the folded covering number [24]
or equivalently the planar split thickness [12] of a graph G, which is the minimum
k such that G can be decomposed into at most k planar subgraphs by applying a
k-split to each vertex of G at most once. Eppstein et al. [12] showed that deciding
whether a graph has split thickness k is NP-complete, even for k = 2, but can be
approximated within a constant factor and is fixed-parameter tractable (FPT)
for graphs of bounded treewidth.

While previous work considered vertex splitting in the context of abstract
graphs, our focus in this paper is on vertex splitting for non-planar, topological
graph drawings in R

2. In this case we want to improve the given input drawing
by applying changes to a minimum number of split vertices, which can be freely
re-embedded, while the non-split vertices must remain at their original positions
in order to maintain layout stability [30], see Fig. 1.

The underlying algorithmic problem for vertex splitting in drawings of graphs
is two-fold: firstly, a suitable (minimum) subset of vertices to be split must be
selected, and secondly the split copies of these vertices must be re-embedded in
a crossing-free way together with a partition of the original edges of each split
vertex into a subset for each of its copies.

The former problem is closely related to the NP-complete problem Vertex

Planarization, where we want to decide whether a given graph can be made
planar by deleting at most k vertices, and to related problems of hitting graph
minors by vertex deletions. Both are very well-studied in the parameterized
complexity realm [20–22,35]. For example, it follows from results of Robertson
and Seymour [35] that Vertex Planarization can be solved in cubic time for
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(a) (b)

Fig. 1. Vertex splitting in a drawing of K5. The red and orange disks in (a) are split
once into the red and orange circles in (b). Note that an abstract K5 without drawing
has splitting number 1. (Color figure online)

fixed k and a series of papers [20,21,29] improved the dependency on the input
size to linear and the dependency on k to 2O(k log k).

The latter re-embedding problem is related to drawing extension problems,
where a subgraph is drawn and the missing vertices and edges must be inserted
in a (near-)planar way into this drawing [3,4,6,7,10,11]. In these works, however,
the incident edges of each vertex are given, while we still need to distribute them
among the copies. Furthermore, as we show in Sect. 4, it generalizes natural
problems on covering vertices by faces in planar graphs [1,2,5,23].

Contributions. In this paper we extend the investigation of the splitting num-
ber problem and its complexity from abstract graphs to graphs with a given
(non-planar) topological drawing. In Sect. 3.1, we first show that the original
splitting number problem is non-uniformly FPT when parameterized by the num-
ber of split operations using known results on minor-closed graph classes. We
then describe a polynomial-time algorithm for minimizing crossings in a given
drawing when re-embedding the copies of a single vertex, split at most k times
for a fixed integer k, in Sect. 3.2.

For the remainder of the paper we shift our focus to two basic subproblems
of vertex splitting in topological graph drawings. We distinguish the candidate
selection step, where we want to compute a set of vertices that requires the min-
imum number of splits to obtain planarity, and the re-embedding step, that asks
where each copy should be put back into the drawing and with which neighbor-
hood. We prove in Sect. 4 that both problems are NP-complete, using a reduc-
tion from vertex cover in planar cubic graphs for the candidate selection prob-
lem and showing that the re-embedding problem generalizes the NP-complete
Face Cover problem. Finally, in Sect. 5 we present an FPT algorithm for the
re-embedding problem parameterized by the number of splits. Given a partial
planar drawing and a set of vertices to split and re-embed, the algorithm first
reduces the instance to a bounded-outerplanarity case and then applies dynamic
programming on the decomposition tree of a sphere-cut decomposition of the
remaining partial drawing. We note that our reduction for showing NP-hardness
of the re-embedding problem is indeed a parameterized reduction from Face
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Cover parameterized by the solution size to the re-embedding problem param-
eterized by the number of allowed splits. Face Cover is known to be FPT in
this case [1], and hence our FPT algorithm is a generalization of that result.

Due to space constraints, missing proofs and details are found in the full
version [32].

2 Preliminaries

Let G = (V,E) be a simple graph with vertex set V (G) = V and edge set
E(G) = E. For a subset V ′ ⊂ V , G[V ′] denotes the subgraph of G induced by
V ′. The neighborhood of a vertex v ∈ V (G) is defined as NG(v). If G is clear
from the context, we omit the subscript G. A split operation applied to a vertex
v results in a graph G′ = (V ′, E′) where V ′ = V \ {v} ∪ {v̇(1), v̇(2)} and E′ is
obtained from E by distributing the edges incident to v among v̇(1), v̇(2) such
that NG(v) = NG′(v̇(1)) ∪ NG′(v̇(2)) (copies are written with a dot for clarity).
Splits with N(v̇(1)) = N(v) and N(v̇(2)) = ∅ (equivalent to moving v to v̇(1)), or
with N(v̇(1)) ∩ N(v̇(2)) �= ∅ (which is never beneficial, but can simplify proofs)
are allowed. The vertices v̇(1), v̇(2) are called split vertices or copies of v. If a
copy v̇ of a vertex v is split again, then any copy of v̇ is also called a copy of
the original vertex v and we use the notation v̇(i) for i = 1, 2, . . . to denote the
different copies of v.

Problem 1 (Splitting Number). Given a graph G = (V,E) and an integer k,
can G be transformed into a planar graph G′ by applying at most k splits to G?

Splitting Number is NP-complete, even for cubic graphs [13]. We extend
the notion of vertex splitting to drawings of graphs. Let G be a graph and let
Γ be a topological drawing of G, which maps each vertex to a point in R

2 and
each edge to a simple curve connecting the points corresponding to the incident
vertices of that edge. We still refer to the points and curves as vertices and edges,
respectively, in such a drawing. Furthermore, we assume Γ is a simple drawing,
meaning no two edges intersect more than once, no three edges intersect in one
point (except common endpoints), and adjacent edges do not cross.

Problem 2 (Embedded Splitting Number). Given a graph G = (V,E) with
a simple topological drawing Γ and an integer k, can G be transformed into a
graph G′ by applying at most k splits to G such that G′ has a planar drawing
that coincides with Γ on G[V (G) ∩ V (G′)]?

Problem 2 includes two interesting subproblems, namely an embedded vertex
deletion problem (which corresponds to selecting candidates for splitting) and a
subsequent re-embedding problem, both defined below.

Problem 3 (Embedded Vertex Deletion). Given a graph G = (V,E) with
a simple topological drawing Γ and an integer k, can we find a set S ⊂ V of at
most k vertices such that the drawing Γ restricted to G[V \ S] is planar?
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Problem 3 is closely related to the NP-complete problem Vertex Split-

ting [20,21,26,29], yet it deals with deleting vertices from an arbitrary given
drawing of a graph with crossings. One can easily see that Problem 3 is FPT,
using a bounded search tree approach, where for up to k times we select a remain-
ing crossing and branch over the four possibilities of deleting a vertex incident
to the crossing edges. The vertices split in a solution of Problem 2 necessarily
are a solution to Problem 3; otherwise some crossings would remain in Γ after
splitting and re-embedding. However, a set corresponding to a minimum-split
solution of Problem 2 is not necessarily a minimum cardinality vertex deletion
set as vertices can be split multiple times. Moreover, an optimal solution to
Problem 2 may also split vertices that are not incident to any crossed edge and
thus do not belong to an inclusion-minimal vertex deletion set. We note here
that a solution to Problem 3 solves a problem variation where rather than mini-
mizing the number of splits required to reach planarity, we instead minimize the
number of split vertices: Splitting each vertex in an inclusion-minimal vertex
deletion set its degree many times trivially results in a planar graph.

In the re-embedding problem, a graph drawing and a set of candidate vertices
to be split are given. The task is to decide how many times to split each candidate
vertex, where to re-embed each copy, and to which neighbors of the original
candidate vertex to connect each copy.

Problem 4 (Split Set Re-Embedding). Given a graph G = (V,E), a candi-
date set S ⊂ V such that G[V \S] is planar, a simple planar topological drawing
Γ of G[V \ S], and an integer k ≥ |S|, can we perform in G at most k splits
to the vertices in S, where each vertex in S is split at least once, such that the
resulting graph has a planar drawing that coincides with Γ on G[V \ S]?

We note that if no splits were allowed (k = 0) then Problem 4 would reduce
to a partial planar drawing extension problem asking to re-embed each vertex of
set S at a new position without splitting, which can be solved in linear time [3].

3 Algorithms for (Embedded) Splitting Number

Splitting Number is known to be NP-complete in non-embedded graphs [13].
In Sect. 3.1, we show that it is FPT when parameterized by the number of allowed
split operations. Indeed, we will show something more general, namely, that we
can replace planar graphs by any class of graphs that is closed under taking
minors and still get an FPT algorithm. Essentially we will show that the class
of graphs that can be made planar by at most k splitting operations is closed
under taking minors and then apply a result of Robertson and Seymour that
asserts that membership in such a class can be checked efficiently [8].

For vertex splitting in graph drawings, we consider in Sect. 3.2 the restricted
problem to split a single vertex. We show that selecting such a vertex and re-
embedding at most k copies of it, while minimizing the number of crossings, can
be done in polynomial time for constant k. For details see the full paper [32].
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3.1 A Non-uniform Algorithm for Splitting Number

We use the following terminology. Let G be a graph. A minor of G is a graph H
obtained from a subgraph of G by a series of edge contractions. Contracting an
edge uv means to remove u and v from the graph, and to add a vertex that is
adjacent to all previous neighbors of u and v. A graph class Π is minor closed
if for every graph G ∈ Π and each minor H of G we have H ∈ Π. Let Π be a
graph class and k ∈ N. We define the graph class Πk to contain each graph G
such that a graph in Π can be obtained from G by at most k vertex splits.

Theorem 1. For a minor-closed graph class Π and k ∈ N, Πk is minor closed.

The proof is given in the full paper [32] and essentially shows that whenever we
have a graph G ∈ Πk and a minor H of G, then we can retrace vertex splits in
H analogous to the splits that show that G is in Πk. By results of Robertson
and Seymour we obtain (again see [32]):

Proposition 1. Let Π be a minor-closed graph class. There is a function
f : N → N such that for every k ∈ N there is an algorithm running in f(k) · n3

time that, given a graph G with n vertices, correctly determines whether G ∈ Πk.

Since the class of planar graphs is minor closed, we obtain the following.

Corollary 1. Splitting Number is non-uniformly fixed-parameter tractable1

with respect to the number of allowed vertex splits.

3.2 Optimally Splitting a Single Vertex in a Graph Drawing

Let Γ be a drawing of a graph G = (V,E) and let v ∈ V be the single vertex
to be split k times. Chimani et al. [6] showed that inserting a single star into
an embedded graph while minimizing the number of crossings can be solved in
polynomial time by considering shortest paths between faces in the dual graph,
whose length correspond to the edges crossed in the primal. We build on their
algorithm by computing the shortest paths in the dual of the planarized sub-
drawing of Γ for G[V \ {v}] between all faces incident to N(v) and all possible
faces for re-inserting the copies of v as the center of a star. We branch over all
combinations of k faces to embed the copies, compute the nearest copy for each
neighbor and select the combination that minimizes the number of crossings.

Theorem 2. Given a drawing Γ of a graph G, a vertex v ∈ V (G), and an
integer k, we can split v into k copies such that the remaining number of crossings
is minimized in time O((|F |+ |E|) · |N(v)| · |F |k), where F and E are respectively
the sets of faces and edges of the planarization of Γ .

1 A parameterized problem is non-uniformly fixed-parameter tractable if there is a
function f : N → N and a constant c such that for every parameter value k there
is an algorithm that decides the problem and runs in f(k) · nc time on inputs with
parameter value k and length n.
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Fig. 2. The drawing Γ in black, and the vertices and edges added to obtain Γ ′ in blue.
The vertex cover highlighted in orange corresponds to the deletion set. (Color figure
online)

4 NP-Completeness of Subproblems

While it is known that SplittingNumber isNP-complete [13], in the correctness
proof of the reduction Faria et al. [13] assume that it is permissible to draw all ver-
tices, split or not, at newpositions as there is no initial drawing to be preserved.The
reduction thus does not seem to easily extend toEmbedded SplittingNumber.
Here we show the NP-completeness of each of its two subproblems.

Theorem 3. Embedded Vertex Deletion is NP-complete.

Proof. We reduce from the NP-complete Vertex Cover problem in planar
graphs [14], where given a planar graph G = (V,E) and an integer k, the task
is to decide if there is a subset V ′ ⊆ V with |V ′| ≤ k such that each edge e ∈ E
has an endpoint in V ′. Given the planar graph G from such a Vertex Cover

instance and an arbitary plane drawing Γ of G we construct an instance of
Embedded Vertex Deletion as follows. We create a drawing Γ ′ by drawing
a crossing edge e′ across each edge e of Γ such that e′ is orthogonal to e and has a
small enough positive length such that e′ intersects only e and no other crossing
edge or edge in Γ , see Fig. 2. Drawing Γ ′ can be computed in polynomial time.

Let C be a vertex cover of G with |C| = k. We claim that C is also a deletion
set that solves Embedded Vertex Deletion for Γ ′. We remove the vertices
in C from Γ ′, with their incident edges. By definition of a vertex cover, this
removes all the edges of G from Γ ′. The remaining edges in Γ ′ are the crossing
edges and they form together a (disconnected) planar drawing which shows that
C is a solution of Embedded Vertex Deletion for Γ ′.

Let D be a deletion set of Γ ′ such that |D| = k. We find a vertex cover of
size at most k for G in the following manner. Assume that D contains a vertex
w that is an endpoint of a crossing edge e that crosses the edge (u, v) of G. Since
w has degree one, deleting it only resolves the crossing between e and (u, v),
thus we can replace w in D by u (or v) and resolve the same crossing as well as
all the crossings induced by the edges incident to u (or v). Thus we can find a
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deletion set D′ of size smaller or equal to k that contains only vertices in G and
removing this deletion set from Γ ′ removes only edges from G. Since every edge
of G is crossed in Γ ′, every edge of G must have an incident vertex in D′, thus
D′ is a vertex cover for G.

Containment in NP is easy to see. Given a deletion set D, we only need to
verify that Γ ′ is planar after deleting D and its incident edges.

Next, we prove that also the re-embedding subproblem itself is NP-complete,
by showing that Face Cover is a special case of the re-embedding problem. The
problem Face Cover is defined as follows. Given a planar graph G = (V,E),
a subset D ⊆ V , and an integer k, can G be embedded in the plane, such that
at most k faces are required to cover all the vertices in D? Face Cover is
NP-complete, even when G has a unique planar embedding [5].

Theorem 4. Split Set Re-Embedding is NP-complete.

Proof. We give a parameterized reduction from Face Cover (with unique pla-
nar embedding) parameterized by the solution size to the re-embedding problem
parameterized by the number of allowed splits. We first create a graph G′ =
(V ′, E′), with a new vertex v, vertex set V ′ = V ∪{v} and E′ = E∪{dv | d ∈ D}.
Then we compute a planar drawing Γ of G corresponding to the unique embed-
ding of G. Finally, we define the candidate set S = {v} and allow for k −1 splits
in order to create up to k copies of v. Then G′, Γ , S, and k −1 form an instance
I of Split Set Re-Embedding.

In a solution of I, every vertex in D is incident to a face in Γ , in which a copy
of v was placed. Therefore, selecting these at most k faces in Γ gives a solution
for the Face Cover instance. Conversely, given a solution for the Face Cover

instance, we know that every vertex in D is incident to at least one of the at
most k faces. Therefore, placing a copy of v in every face of the Face Cover

solution yields a re-embedding of at most k copies of v, each of which can realize
all its edges to neighbors on the boundary of the face without crossings.

Finally, a planar embedding of the graph can be represented combinatorially
in polynomial space. We can also verify in polynomial time that this embedding
is planar and exactly the right connections are realized, for NP-containment.

5 Split Set Re-embedding Is Fixed-Parameter Tractable

In this section we show that Split Set Re-Embedding (SSRE) can be solved
by an FPT-algorithm, with the number k of splits as a parameter. We provide
an overview of the involved techniques and algorithms in this section and refer
to [32] for the full technical details.

Preparation. First, from the given set S of s = |S| candidate vertices (disks in
Fig. 3(a)) we choose how many copies of each candidate we will insert back into
the graph; these copies form a set S�. Vertices with neighbors in S are called
pistils (squares in Fig. 3), and faces incident to pistils are called petals. The
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Fig. 3. (a) An example graph G, (b) a planar drawing Γ of G where S has been
removed, and (c) a solution drawing Γ ∗

re. Pistils are squares, copies are circles and
vertices in S are disks.

copies in S� must be made adjacent to the corresponding pistils. Since vertices
in S can be pistils, we also determine which of their copies in S� are connected
by edges. For both of these choices, the number of copies per candidate and
the edges between copies, we branch over all options. In each of the O(2kk4)
resulting branches we apply dynamic programming to solve SSRE.

Second, we prepare the drawing Γ for the dynamic programming. A face f is
not necessarily involved in a solution, e.g., if it is not a petal: a copy embedded
in f either has no neighbors and can be re-embedded in any face, or its neighbors
are not incident with f , and this embedding induces a crossing. Therefore we
remove all vertices not incident to petals, which actually results in a drawing of
a 10k-outerplanar graph. We show this in the following way. We find for each
vertex a face path to the outerface, which is a path alternating between incident
vertices and faces. Each face visited in that path is either a petal or adjacent to
a petal (from the above reduction rule). Thus, each face in the path might either
have a copy embedded in it in the solution, or a face up to two hops away has a
copy embedded in it. If we label each face by a closest copy with respect to the
length of the face path, then one can show that no label can appear more than
five times on any shortest face path to the outerface. Since there are at most 2k
different copies (labels), we can bound the maximum distance to the outerface
by 10k. Because of the 10k-outerplanarity, we can now compute a special branch
decomposition of our adapted drawing Γ in polynomial time, a so called sphere-
cut decomposition of branchwidth 20k. A sphere-cut decomposition (λ, T ) is a
tree T and a bijection λ that maps the edges of Γ to the leaves of T (see Fig. 4).

Each edge e of T splits T into two subtrees, which induces via λ a bipartition
(Ae, Be) of E(G) into two subgraphs. We define a vertex set mid(e), which
contains all vertices that are incident to an edge in both Ae and Be. Additionally,
e also corresponds to a curve, called a noose η(e), that intersects Γ only in
mid(e). We define a root for T , and we say that for edge e, the subtree further
from the root corresponds to the drawing inside the noose η(e). Having a root
for T allows us to solve SSRE on increasingly larger subgraphs in a structured
way, starting with the leaves of T (the edges of Γ ) and continuing bottom-up to
the root (the complete drawing Γ ).
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Fig. 4. (a) A graph and (b) its sphere-cut decomposition. Each labeled leaf corresponds
to the same labeled edge of the graph. The middle set of each colored edge in the tree
corresponds to the vertices of the corresponding colored dashed noose in the graph.
(Color figure online)

Initialization. During the dynamic programming, we want to determine
whether there is a partial solution for the subgraphs of Γ that we encounter
when traversing T . For one such subgraph we describe such a partial solution
with a tuple (S′

�, (Nv̇)v̇∈S′� , Γ ′). In this tuple, the set S′
� ⊆ S� corresponds

to the embedded copies, (Nv̇) are their respective neighborhoods in Γ , and Γ ′

is the resulting drawing. However, during the dynamic programming, we need
more information to determine whether a partial solution exists. For example,
for the faces completely inside the noose η enclosing Γ ′ (processed faces) a solu-
tion must already be found, while faces intersected by η (current faces) still need
to be considered.

We store this information in a signature, which is a tuple (Sin, Cout,M,Nη).
An example of a signature is visualized in Fig. 5. The set Sin(t) ⊆ S� corresponds
to the copies embedded in processed faces, and Nη contains a set X(p) for each
pistil p on the noose, such that X(p) describes which neighbors of p are still
missing in the partial solution. The set Cout corresponds to a set of planar
graphs describing the combinatorial embedding of copies in current faces. One
such graph Cf (Fig. 6) associated with a current face f consists of a cycle, whose
vertices represent the pistils of f , and of copies embedded inside the cycle. Since
f is current, not all of its pistils are necessarily inside the noose, and M describes
which section of the cycle, and hence which pistils, should be used.

Saving a single local optimal partial solution, one that uses the smallest
number of copies, for a given noose is not sufficient. This sub-solution may result
in a no-instance when considering the rest of the graph outside the noose. We
therefore keep track of all signatures that lead to partial solutions, which we call
valid signatures. These signatures allow us to realize the required neighborhoods
for pistils inside the noose with a crossing-free drawing. The number of distinct
signatures Ns(k) depends on the number k of splits and we prove an upper bound
of 2O(k2) by counting all options for each element of a signature tuple. Since the
number of signatures is bounded by a function of our parameter k, we can safely
enumerate all signatures. We then determine which signatures are valid for each
noose in T . The number Ns(k) of signatures will be part of the leading term in
the total running time.
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Fig. 5. The information stored in a signature of the partial solution inside the orange
dashed noose: copies in Sin are used in the grey faces, blue noose vertices who have miss-
ing neighbors (outgoing edges outside the noose) are stored in Nη, in red an example
of a nesting graph for a face traversed by the noose, with four dotted edges connecting
to the cycle and the vertices described by M in green. (Color figure online)

Lemma 1. The number Ns(k) of possible signatures is upper bounded by 2O(k2).

Dynamic Programming. Finally, we give an overview of how the valid signa-
tures are found. In each branch, we perform bottom-up dynamic programming
on T . We want to find a valid signature at the root node of T , and we start from
the leaves of T . Each leaf corresponds to an edge (u1, u2) of the input graph G,
for which we consider all enumerated signatures and check if a signature is valid
and thus corresponds to a partial solution. Such a partial solution should cover
all missing neighbors of u1 and u2 not in Nη = {X(u1),X(u2)}, using for each
incident face f the subgraph of Cf ∈ Cout as specified by M .

For internal nodes of T we merge some pairs of valid child signatures corre-
sponding to two nooses η1 and η2. We merge if the partial solutions corresponding
to the child signatures can together form a partial solution for the union of the
graphs inside η1 and η2. The signature of this merged partial solution is hence
valid for the internal node when (1) faces not shared between the nooses do not
have copies in common, (2) shared faces use identical nesting graphs and (3) use
disjoint subgraphs of those nesting graphs to cover pistils, and (4) noose vertices
have exactly a prescribed set of missing neighbors. Thus we can find valid sig-
natures for all nodes of T and notably for its root. If we find a valid signature
for the root, a partial solution (S′

�, (Nv̇)v̇∈S′� , Γ ′) must exist. In Γ ′ all pistils are
covered and it is planar, as the nesting graphs are planar and they represent a
combinatorial embedding of copies that together cover all pistils. It is possible
that certain split vertices are in no nesting graph, and hence S� \ S′

� �= ∅. We
verify that the remaining copies that are pistils in S�\S′

� induce a planar graph,
which allows us to embed them in a face of Γ ′ to obtain the final drawing. The
running time for every node of T is polynomial in Ns(k), thus, over all created
branches Split Set Re-Embedding is solved in 2O(k2) · nO(1) time.
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Fig. 6. (a) A face f and copies inside the orange noose, and (b) the corresponding
nesting graph Cf with the interval described by M highlighted in grey. The two light
blue vertices represent two different copies of the same removed vertex. Copies in Cf

have no edges to copies in other nesting graphs. (Color figure online)

Theorem 5. Split Set Re-Embedding can be solved in 2O(k2) · nO(1) time,
using at most k splits on a topological drawing Γ of input graph G with n vertices.

6 Conclusions

We have introduced the embedded splitting number problem. However, fixed-
parameter tractability is only established for the Split Set Re-Embedding

subproblem. The main open problem is to investigate the parameterized com-
plexity of Embedded Splitting Number. A trivial XP-algorithm for Embed-
ded Splitting Number can provide appropriate inputs to Split Set Re-

Embedding as follows: check for any subset of up to k vertices whether removing
those vertices results in a planar input drawing, and branch on all such subsets.

Many variations of embedded splitting number are interesting for future
work. For example, rather than aiming for planarity, we can utilize vertex split-
ting for crossing minimization. Other possible extensions can adapt the splitting
operation, for example, the split operation allows both creating an additional
copy of a vertex and re-embedding it, and the cost of these two parts can differ:
simply re-embedding a vertex can be a cheaper operation.

Acknowledgments. We would like to thank an anonymous reviewer for their input
to simplify the proof of Theorem 3.
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37. Wu, H.Y., Nöllenburg, M., Sousa, F.L., Viola, I.: Metabopolis: scalable network

layout for biological pathway diagrams in urban map style. BMC Bioinform. 20(1),
1–20 (2019). https://doi.org/10.1186/s12859-019-2779-4
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Abstract. We prove that in any strongly fan-planar drawing of a
graph G the edges can be colored with at most three colors, such that
no two edges of the same color cross. This implies that the thickness of
strongly fan-planar graphs is at most three. If G is bipartite, then two
colors suffice to color the edges in this way.

Keywords: Thickness · Fan-planarity · Beyond planarity

1 Introduction

In order to visualize non-planar graphs, the research field of graph drawing beyond
planarity emerged as a generalization of drawing planar graphs by allowing cer-
tain edge-crossing patterns. Among the most popular classes of beyond-planar
graph drawings are k-planar drawings, where every edge can have at most k cross-
ings, k-quasiplanar drawings, which do not contain k mutually crossing edges,
RAC-drawings, where the edges are straight-line segments that can only cross at
right angles, fan-crossing-free drawings, where an edge is crossed by independent
edges, and fan-planar drawings, where no edge is crossed by independent edges
(see below for the full definition). Many more details and further classes can be
found in the recent survey [9] and recent book [10] about beyond-planarity.

Thickness. A different notion of non-planarity was introduced by Tutte
in 1963 [19]: the thickness of a graph is the minimum number of planar graphs
into which the edges of the graph can be partitioned. Subsequent research derived
tight bounds on the thickness of complete and complete bipartite graphs [2,4]. For
general graphs, however, it turns out to be hard to determine their thickness—
even deciding if the thickness of a given graph is two is already NP-hard [15]. More
details about thickness and related concepts can be found in [16].

The first connection between thickness and beyond-planarity was laid in 1973,
when Kainen [11] studied the relationship between the thickness of a graph and
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k-planarity. He observed that a k-planar graph G has thickness at most k + 1.
This follows from the fact that G admits by definition a drawing where every edge
crosses at most k other edges, hence the edge intersection graph (refer to Sect. 2
for a formal definition) has maximum degree k and admits a vertex coloring
using at most k + 1 colors. For other beyond-planar graph classes, however, the
thickness is not so closely related to a coloring of the edge intersection graph.
For 3-quasiplanar graphs, for instance, there exist 3-quasi-planar drawings whose
edge intersection graph cannot be colored with a bounded number of colors [18],
yet the thickness of 3-quasi-planar graphs is at most seven.

The most general tool to determine the thickness of a graph G is to compute
its arboricity, which is the minimum number of forests into which the edges
of G can be partitioned. Since a forest is planar, the arboricity is an upper
bound on the thickness, and since any planar graph has arboricity at most three,
the arboricity of G is at most three times its thickness. By the Nash-Williams
theorem [17], the arboricity of G is a(G) = maxS

mS

nS−1 , where S ranges over all
subgraphs of G with mS edges and nS vertices. For typical beyond-planar graph
classes, a subgraph of a graph is contained inside the same class, and so a linear
bound on the number of edges of graphs in the class implies a constant bound
on the thickness. This insight actually improves the result of Kainen for large
enough k, as k-planar graphs have at most 3.81

√
kn edges [1], and therefore the

thickness of k-planar graphs is O(
√

k).

Fan-Planar Graphs. We consider the class of fan-planar graphs. This class
was introduced in 2014 by Kaufmann and Ueckerdt [12] as graphs that admit a
fan-planar drawing, which they define by the requirement that for each edge e,
the edges crossing e have a common endpoint on the same side of e. This can
be formulated equivalently by two forbidden patterns, patterns (I) and (II) in
Fig. 1: one is the configuration where e is crossed by two independent edges,
the other where e is crossed by incident edges with the common endpoint on
different sides of e. Fan-planarity has evolved into a popular subject of study
with many related publications, a good overview of which can be found in the
recent survey article by Bekos and Grilli [6].

And now it get’s complicated: the recent journal version [13] of the 2014
paper [12] gives a more restricted definition of fan-planarity, where also pat-
tern (III) of Fig. 1 is forbidden. The restriction is necessary to allow the proof for
the bound 5n − 10 on the number of edges of a fan-planar graph to go through.
Patterns (II) and (III) can formally be defined as follows: if one removes the
edge e and the two edges intersecting e from the plane, we are left with two con-
nected regions called cells, a bounded cell and an unbounded cell. In pattern (II),
one endpoint of e lies in the bounded cell, in pattern (III), both endpoints lie in
the bounded cell. Both patterns are forbidden, so both endpoints of e must lie
in the unbounded cell.

To distinguish this definition from the “classic” definition, let’s call a fan-
planar drawing without pattern (III) a strongly fan-planar drawing, and a graph
with such a drawing a strongly fan-planar graph. Note that—quite unusual for a
topological drawing style—strongly fan-planar drawings are only defined in the
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Fig. 1. The three forbidden configurations in strongly fan-planar drawings.

plane, the definition does not work for drawings on the sphere! Clearly, strongly
fan-planar graphs are also fan-planar (in the “classic” sense), so most of the
literature applies to this restricted class as well.

Our Contribution. We establish the first result on the thickness of a beyond-
planar graph class that is stronger than bounds based only on the density or
arboricity of the class. We show that the edges of a simple, strongly fan-planar
drawing of a graph G can be colored with three colors, such that no two edges
of the same color cross, implying that G has thickness at most three. We also
show that if G is bipartite, then two colors suffice for the same coloring, and
therefore bipartite strongly fan-planar graphs have thickness two (and this bound
is tight unless G is planar). For comparison, the upper bound implied by density
(and therefore arboricity) of strongly fan-planar graphs is five [13] (and four
for bipartite strongly fan-planar graphs [3]). Our proof relies on a complete
characterization of chordless cycles in the intersection graph, which should be of
independent interest for the study of fan-planar drawings.

2 Preliminaries

Throughout the paper, we assume that any graph G and its corresponding draw-
ing is simple, that is, G has no self-loops or multiple edges, adjacent edges cannot
cross, any two edges are allowed to cross at most once, and crossing points of
distinct pairs of edges do not coincide. We will refer to all of these as prop-
erty (S). (Non-simple fan-planar graphs where discussed by Klemz et al. [14].)
The intersection graph I of a drawing Γ of graph G has a vertex for every edge
of G, and two vertices are connected in I if the corresponding edges cross in Γ .

Let G be a strongly fan-planar graph with a fixed, strongly fan-planar draw-
ing Γ . (Throughout the proofs, we will simply say “fan-planar” with the under-
standing that we require strong fan-planarity.) This means that none of the for-
bidden configurations shown in Fig. 1 occur. For ease of reference, we will refer
to the three forbidden patterns as properties (I), (II), and (III). If an edge e is
crossed by more than one edge, all edges crossing e share a common endpoint—
we call this point the anchor of e. Throughout the paper, we will use the letter v
to denote the anchor of the edge denoted by e, so that vi is always the anchor
of ei.
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We will discuss chordless cycles in the intersection graph I of G, that is,
cycles without diagonals. In G, a chordless cycle C corresponds to a sequence of
edges e1, . . . , ek, such that ei and ei+1 intersect, but there are no other intersec-
tions between the edges of C—we will refer to this as property (M). (Throughout
the paper, all arithmetic on indices is modulo the size of the cycle.) Fixing a
chordless cycle C, we define xi as the intersection point between ei−1 and ei. We
let ai and bi be the endpoints of ei, such that aixixi+1bi appear in this order
on ei. We will call ai the source, bi the target of ei—but keep in mind that this
orientation is only defined with respect to C. Let êi be the oriented segment of ei

from xi to xi+1—we will call êi the base of ei. If we concatenate the bases êi in
order, we obtain a closed loop that we call L. Since by (M) two bases êi, êj do
not intersect, L is a Jordan curve and partitions the plane into two regions. Since
G is fan-planar, edges ei and ei+2 share an endpoint, namely the anchor vi+1

of ei+1. We will use GC to denote the subgraph of G consisting of only the edges
of C, with the same embedding.

Fig. 2. Chordless cycles can intersect and share edges.

3 Characterizing Chordless Cycles

In this section we characterize chordless cycles in I. In the next section we then
study how chordless cycles can interact, and we will be able to break all odd
cycles simultaneously by coloring a carefully chosen set of edges with one color.
Figure 2 shows two examples of strongly fan-planar graphs whose intersection
graphs have several chordless cycles that cross and share edges. The graph on
the left has 32 distinct chordless cycles, as for each of the five red edges we
can instead traverse the blue edges “behind.” In the graph on the right, the
boundaries of the faces labeled A,B,C are loops of chordless cycles of length 11.
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There is a chordless cycle of length 9 surrounding face D, there is a chordless
cycle of length 30 surrounding all four faces, and there are three chordless cycles
of length 23 surrounding ABD, BCD, and CAD, respectively.

It is easy to see using (I) and (S) that I cannot have cycles of length three,
while cycles of length four have a unique shape, see Fig. 6(a). It remains to study
the structure of chordless cycles of length at least five.

We will call an edge ei of a chordless cycle canonical if the anchor vi of ei

is the target of ei−1 and the source of ei+1, that is, if bi−1 = vi = ai+1. If,
in addition, no other edge of C is incident to vi—that is, if vi has degree two
in GC—then ei is strictly canonical.

Figure 3 shows a sequence of canonical edges. Note that some of the endpoints
of the edges of this sequence can coincide, see Fig. 4. For a canonical edge ei, we

Fig. 3. A sequence of canonical edges.

will call the “triangle” Si with corners xi, xi+1, vi and bounded by the edges ei−1,
ei, and ei+1 the spike of ei, see the shaded region in Fig. 3.

Lemma 1. Let e1, e2, e3, e4, e5 be five consecutive canonical edges of a chordless
cycle. Then the anchors of the five edges are distinct.

Proof. Since v2 is an endpoint of e1, v2 �= v1 holds. By construction, v1 and v3
are the endpoints of e2, so v3 �= v1. If v1 = v4, then e2 and e3 share an endpoint
and intersect, a contradiction to (S). Finally, if v1 = v5, then both e2 and e4
connect v1 and v5 and are therefore identical. Using analogous arguments one
establishes the remaining inequalities. ��

Fig. 4. The anchors of canonical edges can coincide, but only after at least four distinct
anchors.

Lemma 2. Let C = (e1, . . . ek) be a chordless cycle in I with k ≥ 5. Then,
bi−1 �= bi+1 and ai−1 �= ai+1 for 1 ≤ i ≤ k.
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Proof. Suppose for a contradiction that there is an index i such that bi−1 = bi+1.
By renumbering we can assume that b1 = v2 = b3. This implies that x4 lies on
the segment x3v2, and x1 lies on the segment a1x2, see Fig. 5. Consider e4,
which contains x4 and is incident to v3. Since by (M) e4 does not cross e1, we
have v3 �= a2 as otherwise e3 forms forbidden configuration (II) with e2 and e4.
Consider the region R bounded by v2x2x3. By (M) the two boundary segments
v2x2 and x2x3 do not cross any edge of C, and the segment x3v2 only crosses e4.
It follows that e4 is incident to b2 and its other endpoint lies in R. If x5 lies
inside R, then the closed curve L has to intersect the boundary of R to return
to x1, a contradiction. So x5 lies on x4b2, and therefore b4 = b2. The same
argument now implies that b5 = b3 = b1, b6 = b4 = b2, and so on. The final
edge ek must contain x1, so it cannot be incident to b1 by (S), and so k is
even, ek is incident to b2, and xk lies on the edge ek−1 incident to b1. Since x1

lies on ek between xk and bk = b2, there are two possibilities for drawing ek,
shown dashed and dotted in Fig. 5. The dotted version violates (III) for ek−1

(with ek−2 and ek), the dashed version violates (III) for ek (with e1 and ek−1),
a contradiction.

Assume now that ai−1 = ai+1 for some i, and let C ′ = (ek, . . . , e1) be the
chordless cycle obtained by reversing C. Reversing the direction flips ai and bi

for each edge, so C ′ now has an index j such that bj−1 = bj+1, and we already
showed this cannot be the case. ��

Fig. 5. The cycle cannot be closed.

Corollary 1. Let ei be a non-canonical edge of a chordless cycle C. Then ai−1 =
vi = bi+1.

Proof. The anchor vi is a common endpoint of ei−1 and ei+1. This cannot be bi−1,
because ei is not canonical and bi−1 �= bi+1 by Lemma 2. So vi = ai−1, and
since ai−1 �= ai+1 by Lemma 2 again, we have vi = ai−1 = bi+1. ��

We say that the chordless cycle C is fully canonical if all its edges are canoni-
cal. Such cycles can be created for any k ≥ 5 by taking the corners of a regular k-
gon and connecting every other corner with an edge, see Fig. 6(b). Note that



The Thickness of Fan-Planar Graphs is At Most Three 253

Fig. 6. (a) The only possible cycle of length four, and (b) fully canonical cycles for k =
5, 8, 11.

such a fully canonical cycle corresponds to a single closed trail of length k in G
for odd k, but to two closed trails of length k/2 for even k. These closed trails
in G are not necessarily cycles, as the anchors of the edges of a fully canonical
cycle can coincide, see e.g. Fig. 2(left).

Lemma 3. A chordless cycle of length at least five has at least four consecutive
canonical edges.

Proof. Let C = (e1, . . . ek) be a chordless cycle of length k ≥ 5 such
that e1, . . . , em is a longest consecutive sequence of canonical edges in C, and
assume m < 4. We distinguish four different cases according to the value of m.

Fig. 7. (a) m = 0, (b) m = 1, (c) m = 2 and (d) m = 3.

If m = 0, that is, C does not have any canonical edge: By Corollary 1,
a1 = v2 = b3 and a2 = v3 = b4. This implies that x4 lies on the segment b3x3,
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and e4 must connect b4 = a2 with x4 without intersecting either e1 or e2, creating
forbidden configuration (II), see Fig. 7(a).

If m = 1: Since e2 and ek are not canonical, by Corollary 1 a1 = b3 and b1 =
ak−1. By (M), e3 does not cross ek, and e2 does not cross ek−1. Therefore, xk ∈
ek−1 and x3 ∈ e3 implies that we have the situation of Fig. 7(b) (by (II) and
(III)). But then e3 and ek−1 cross, so we must have k = 5. Since e4 crosses e3
and e5, e3 and e5 must have a common endpoint. By (S), e5 cannot be incident
to a1, and e3 cannot reach either endpoint of e5 without introducing a crossing
that contradicts (S).

If m = 2: Since e3 and ek are not canonical, by Corollary 1 a2 = b4 and
b1 = ak−1. Since e4 and ek have a common endpoint, they cannot cross, so k > 5.
Also ek−1 and e3 do not cross. Therefore xk ∈ ek−1 and x4 ∈ e4 implies that we
have the situation of Fig. 7(c). So e4 and ek−1 cross and we have k = 6. However,
e4, e5, e6 (and also e3, e4, e5) form forbidden configuration (II).

If m = 3: Since e4 and ek are not canonical, by Corollary 1 a3 = b5 and
b1 = ak−1, so, since e2 is canonical, we have ak−1 = b1 = a3 = b5. Since e5
and ek−1 share this endpoint, they cannot cross, so k �= 5. If k = 6, then a5 = b5,
a contradiction, so we have k ≥ 7. It follows that e5 does not cross {e1, e2, e3, ek},
and ek−1 does not cross {e1, e2, e3, e4}. Therefore xk ∈ ek−1 and x5 ∈ e5 implies
that we have the situation of Fig. 7(d). But this requires e5 and ek−1 to cross, a
contradiction to the above. ��
Theorem 1. If a chordless cycle of length k ≥ 5 is not fully canonical, then
k ≥ 9, edges e1, . . . , ek−1 are canonical, anchors v2 = vk−2 coincide so that
b1 = a3 = bk−3 = ak−1, and bk−1 and a1 are vertices of degree one in GC .

Proof. Consider a chordless cycle C = (e1, . . . , ek) of length k ≥ 5 that is not
fully canonical, and such that e1, . . . , em−1 is a longest sub-sequence of C con-
sisting of canonical edges. By Lemma 3 we have m ≥ 5. Since em is not canonical,
we have am−1 = bm+1 by Corollary 1. By definition, em+1 crosses em in xm+1,
and by (M) it crosses no other edge ei with i �= m + 2. Let R be the region
enclosed by the base êm and the edges em−1 and em+1. By (II) and (III), R
contains no endpoint of em, and so we have the situation of Fig. 8(a). The
loop L of C lies entirely in R, and only the bases êm−1, êm, êm+1 lie on the
boundary of R.

We want to show that k = m, so we assume for a contradiction that k > m.
If k = m + 1, then ek = em+1 in Fig. 8(a). Since ek is not canonical, we then
have am = b1, and e1 intersects ek = em+1 between xm+1 and bm+1 = am−1.
Since e1 cannot cross em−1 by (M), that violates either (II) or (III).

If k = m+2, then ek−1 = em+1 in Fig. 8(a), xk lies on em+1 on the boundary
of R, and êk lies (except for its endpoint xk) in the interior of R. But since ek

is not canonical, we have am+1 = b1, and since e1 does not cross the boundary
of R, it cannot contain x1 in the interior of R.

We assume next that k > m+2, which implies that êk lies in the interior of R.
Since ek is not canonical, we have ak−1 = b1. Symmetrically to the argument
above, the edge ek−1 must be such that the region R′ formed by êk, ek−1, and e1
contains no endpoint of ek, so we are in the situation of Fig. 8(b). Again, the
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Fig. 8. Proof of Theorem 1.

loop L lies in R′, with only êk−1, êk, ê1 on the boundary of R′. In particular, êm

lies in the interior of R′.
Since êm is in the interior of R′ but on the boundary of R, while êk is in

the interior of R but on the boundary of R′, the two regions cannot be nested,
and their boundaries must intersect. The boundary of R consists of em−1, êm,
and em+1, the boundary of R′ consists of ek−1, êk, and e1, so by (M) the only
possible edge crossing occurs when k = m+3, so that em+1 and ek−1 can cross.
Since two intersecting closed curves must intersect an even number of times, we
must in addition have that the vertices am−1 of R and b1 of R′ coincide, but
then em+1 and ek−1 have a common endpoint and cannot cross at all by (S).

It follows that our assumption that k > m is false, and so k = m. Relabeling
the edges in Fig. 8(a) we obtain Fig. 8(c). Since e1 is canonical, we have bm = a2,
so e2 starts in bm and enters R through e1, see Fig. 8(c). Since e2 cannot cross
either em−1 or em, its other endpoint b2 lies in the interior of R. Now it remains
to observe that since e2, . . . , ek−2 are canonical, we end up with the situation
shown in Fig. 8(d).

Since v2 = b1 = ak−1 = vk−2, Lemma1 implies that k − 2 ≥ 7, so k ≥ 9. ��
In Fig. 9 we draw again the non-canonical chordless cycle of Fig. 8(d), showing

the symmetry in the characterization. The reader may enjoy determining which
of the chordless cycles in Fig. 2 are fully canonical, and which edges are the
non-canonical ones of the other cycles.

It is easy to see that when k is odd, then the graph G contains a closed trail
of length k − 2 consisting of all edges of C except for ek−1 and e1, namely the
closed trail e2e4e6 . . . ek−3e3e5 . . . ek−2ek. In Fig. 8(d) we have k = 11, so there
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Fig. 9. A non-canonical chordless cycle.

is a closed trail of length 9. Figure 9 shows the smallest possible non-canonical
chordless cycle: here k = 9, and so there is a closed trail of length 7. We obtain
the following corollary:

Corollary 2. The edges of a strongly fan-planar drawing of a bipartite graph G
can be colored using two colors such that no edges of the same color cross. As a
consequence, a bipartite, strongly fan-planar graph has thickness at most two.

Proof. We show that I is bipartite. Assume otherwise: then I has an odd cycle,
which contains a chordless odd cycle C of length k. If C is fully canonical, then
the edges of C form an odd cycle of length k in G, so G is not bipartite. If C is not
fully canonical, then Theorem 1 implies that G has an odd cycle of length k − 2,
again a contradiction. ��

The bound on the thickness is tight: every bipartite, strongly fan-planar
graph that is not planar has thickness exactly two, an example being K3,3.

In the remainder of this section, we study the regions induced by the loop L
and the spikes Si in a little more detail, in particular how they can be crossed
by other edges, that is, edges not part of C. The edges of C intersect only in the
corners of the loop L. The loop L partitions the plane into two regions. If C is
fully canonical, then one of these regions is empty in GC—this could be either the
bounded or the unbounded region delimited by L. If C has a non-canonical edge,
then from Theorem 1 it follows that the bounded region delimited by L is empty
in GC (here it plays a role that property (III) cannot be used for drawings on a
sphere). In both cases, we will denote the region delimited by L that is empty
in GC by L as well. Adjacent to L is, for each base êi of a canonical edge ei, the
spike Si, which is itself an empty region in GC .
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Fig. 10. (a) u must lie in S2 or e = e2, and (b) e starting in v1 cannot enter S3.

Lemma 4. Let e1, e2, e3 be three consecutive canonical edges of a chordless
cycle. Let e = (v1, u) be an edge that crosses e1 in the relative interior of the
segment x2v2. Then u is contained in S2.

Proof. Traversing e from v1 to u, e enters S2 by crossing the segment x2v2, see
Fig. 10(a). Since e cannot cross e2 and cannot cross e1 again by (S), e could
leave S2 only through the segment v2x3, by crossing e3. But then v3 would have
to be an endpoint of e. By Lemma1, v3 �= v1, so u = v3, but then e = e2, a
contradiction since e2 does not intersect the relative interior of x2v2. ��
Lemma 5. Let e1, e2, e3, e4 be four consecutive canonical edges of a chordless
cycle. Let e = (v1, u) be an edge incident to v1. Then e does not enter the interior
of S3.

Proof. By (S) e cannot cross e2, so to enter S3, it would have to cross either e3
or e4, see Fig. 10(b). If e crosses e3, then it must be incident to v3, and since v3 �=
v1, that means e = (v1, v3) = e2, which does not intersect the interior of S3. If e
crosses e4, then it must be incident to v4, and since v4 �= v1, that means e =
(v1, v4). But v4 lies outside S3, so e would have to cross e4 again to reach v4, a
contradiction to (S). ��
Lemma 6. Let C be a chordless cycle of length at least five, and let e be an
edge not part of C such that e intersects the loop L of C. Then e starts in the
anchor vi of a canonical edge ei of C, passes through the spike Si, crosses the
base êi, and either (1) ends in L; or (2) crosses the base êj of another canonical
edge ej of C, then passes through Sj and terminates in vj; or (3) crosses the base
of the non-canonical edge ej of C, never enters L again, and terminates in a
vertex that is not a vertex of C. The second and third case can only happen if ei

and ej share an endpoint. In particular, (2) cannot happen when ei−1 and ei+1

are strictly canonical, and (3) implies that i ∈ {j − 2, j + 2}.
The proof can be found in the full version [8].
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4 Coloring with Three Colors

In this section we will show our main theorem:

Theorem 2. In every strongly fan-planar drawing of a graph G there is a set S
of edges such that (1) S is independent in I, that is, no two edges in S cross;
and (2) every odd cycle in I contains an edge in S.

The theorem immediately implies the following:

Corollary 3. The edges of a strongly fan-planar drawing of a graph G can be
colored using three colors such that no two edges of the same color cross. As a
consequence, a strongly fan-planar graph has thickness at most three.

Proof. Pick the set S of edges according to Theorem 2 and color them with the
first color. Then I \ S contains no odd cycle and is therefore bipartite, and can
be colored with the remaining two colors. ��
We construct the set S for the proof of Theorem 2 using the following lemma.

Lemma 7. Let C be a chordless cycle of length at least five. Then C contains
an edge ei such that

– ei−2, ei−1, ei, ei+1, ei+2 are all canonical in C;
– ei−1, ei, ei+1 are all strictly canonical in C.

Proof. If C is fully canonical and no two anchors coincide, we can pick any
edge of C as ei and are done. Otherwise, we pick a sequence of canonical
edges e1, . . . , em in C such that v1 = vm and such that the spikes S2, . . . ,Sm−1

are contained in the region bounded by L ∪ S1 ∪ Sm. (When C is not fully
canonical, then its sub-sequence e2, . . . , ek−2 has this property by Theorem 1.)

Since spikes cannot intersect (except for touching at their anchors), the coin-
ciding anchors form a bracket structure. Pick any innermost interval ej , . . . , e�

such that vj = v�. Then the anchors vj , . . . , v�−1 are all distinct. By Lemma 1,
� − j ≥ 5. We can thus pick i = j + 2 to satisfy the requirements of the lemma.

��
For each chordless odd cycle C of I, we pick an edge e as in Lemma 7 and

call it the ground edge of C. Our proof of Theorem 2 relies on the following key
lemma:

Lemma 8. Let C and C ′ be two chordless odd cycles with ground edges e and e′.
If e and e′ cross, then e is part of C ′ and e′ is part of C.

The proof can be found in the full version [8]. We can now prove our main
theorem.

Proof (of Theorem 2). Starting with S = ∅, we consider all chordless odd
cycles C in I one by one. If S does not already contain an edge of C, we add
the ground edge of C to S.

We claim that the resulting set S satisfies the conditions of the theorem.
Indeed, by construction S contains an edge of every chordless odd cycle. Since
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every odd cycle contains a chordless odd cycle as a subset, condition (2) holds.
Assume now for a contradiction that there are two edges e, e′ ∈ S such that e
and e′ cross. Let C and C ′ be the chordless odd cycles that caused e and e′ to be
added to S, and assume w.l.o.g. that e was added to S before e′. By Lemma8,
e is an edge of C ′—but that means that when considering C ′, no edge has been
added to S, a contradiction. ��

5 Open Problems

We conclude with some open problems:

1. Do these results hold for fan-planar graphs in the “classic” definition?
2. Are there actually strongly fan-planar graphs that have thickness three?
3. Are there 2-planar graphs of thickness three?
4. What is the thickness of the optimal 2-planar graphs? (These graphs have

been fully characterized [7].) It can be shown that these graph admit an edge
decomposition into a 1-planar graph and a bounded-degree planar graph [5]. If
the thickness of this graph is actually three, this would answer both previous
questions in the affirmative as the optimal 2-planar graphs are also fan-planar.

5. If there is no 2-planar graph of thickness three, what is the smallest k such
that there exists a k-planar graph of thickness three? Note that K9 is 4-planar
and requires thickness three, hence k ∈ {2, 3, 4}.

6. Are there strongly fan-planar graphs G such that every fan-planar drawing
of G requires three colors for the edges? In other words, are there strongly
fan-planar graphs where odd cycles in the intersection graph of its drawing
are unavoidable?
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Abstract. Bipartite graphs model the relationship between two disjoint
sets of objects. They have a wide range of applications and are often visu-
alized as 2-layered drawings, where each set of objects is visualized as ver-
tices (points) on one of two parallel horizontal lines and the relationships
are represented by (usually straight-line) edges between the corresponding
vertices. One of the common objectives in such drawings is to minimize the
number of crossings. This, in general, is an NP-hard problem and may still
result in drawings with so many crossings that they affect the readability
of the drawing. We consider a recent approach to remove crossings in such
visualizations by splitting vertices, where the goal is to find the minimum
number of vertices to be split to obtain a planar drawing. We show that
determining whether a planar 2-layered drawing exists after splitting at
most k vertices is fixed parameter tractable in k.

Keywords: Fixed parameter tractability · Graph drawing · Vertex
splitting

1 Introduction

Bipartite graphs are used in many applications to study complex systems and
their dynamics [20]. We can visualize a bipartite graph G = (T ∪ B,E) as a
2-layered drawing where vertices in T are placed (at integer coordinates) along
the horizontal line defined by y = 1 and vertices in B along the line below (at
integer coordinates) defined by y = 0.

A common optimization goal in graph drawing is to minimize the number of
crossings. Deciding whether a planar 2-layered drawing exists for a given graph
can be done in linear time, although most graphs, including sparse ones such
as cycles and binary trees, do not admit planar 2-layered drawings [6]. The
problem of minimizing the number of crossings in 2-layered layouts is NP-hard,
even if the maximum degree of the graph is at most four [16], or if the per-
mutation of vertices is fixed on one of the layers [6]. The latter variant of the
problem is known as One-Sided Crossing Minimization (OSCM). The minimum
number of crossings in a 2-layered drawing can be approximated within a fac-
tor of 1.47 and 1.3 + 12/(δ − 4), where δ is the minimum degree, given that
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δ > 4 [17]. Dujmović et al. [5] gave a fixed-parameter tractable (FPT) algorithm
with runtime O(1.62k · n2), which was later improved to O(1.4656k + kn2) [4].
Fernau et al. [10] reduced this problem to weighted FAST (feedback arc sets
in tournaments) obtaining a subexponential time algorithm that runs in time
2O(

√
k log k) + nO(1). Finally Kobayashi and Tamaki [14] gave a straightforward

dynamic programming algorithm on an interval graph associated with each
OSCM instance with runtime 2O(

√
k log k) + nO(1). They also showed that the

exponent O(
√

k) in their bound is asymptotically optimal under the Exponen-
tial Time Hypothesis (ETH) [11], a well-known complexity assumption which
states that, for each k ≥ 3, there is a positive constant ck such that k-SAT
cannot be solved in O(2ckn) time where n is the number of variables.

Minimizing the number of crossings in 2-layer drawings may still result in
visually complex drawings from a practical point of view [12]. Hence, we study
vertex splitting [7,8,13,15] which aims to construct planar drawings, and thus,
avoid crossings altogether. In the split operation for a vertex u we delete u from
G, add two new copies u1 and u2, and distribute the edges originally incident to
u between the two new vertices u1 and u2. There are two main variations of the
objective in vertex splitting: minimizing the number of split operations (or splits)
and minimizing the number of split vertices (each vertex can be split arbitrary
many times) to obtain a planar drawing of G. Minimizing the number of splits
is NP-hard even for cubic graphs [9]. Nickel et al. [18] extend the investigation
of the problem and its complexity from abstract graphs to drawings of graphs
where splits are performed on an underlying drawing.

Vertex splitting in bipartite graphs with 2-layered drawings has not received
much attention [2]. In several applications, such as visualizing graphs defined
on anatomical structures and cell types in the human body [19], the two vertex
sets of G play different roles and vertex splitting is allowed only on one side of
the layout. This has motivated the interest in splitting the vertices in only one
vertex partition of the bipartite graph. It has been shown that minimizing splits
in this setting is NP-hard for an arbitrary bipartite graph [3].

The other variant – minimizing the number of split vertices – has been
recently considered and was shown to be NP-hard [1]. On the positive side,
we show that the problem is FPT parameterized by the natural parameter, that
is, the number of split vertices.

Problem (Crossing Removal with k Split Vertices – CRSV(k)). Let G = (T ∪
B,E) be a bipartite graph. Decide whether there is a planar 2-layer drawing of
G after splitting at most k vertices of B.

In the next section we prove the following theorem.

Theorem 1. Given a bipartite graph G = (T ∪ B,E), the CRSV(k) problem
can be decided in time 2O(k6) · m, where m is the number of edges of G.

We prove Theorem 1 using kernelization, one of the standard techniques for
designing FPT algorithms. The goal of kernelization is to reduce the input
instance to its computationally hard part on which a slower exact algorithm
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can be applied. If the size of the reduced instance is bounded by a function of
the parameter, the problem can be solved by brute force on the reduced instance
yielding FPT runtime. Our reduction consists of two parts.

In the first part we identify and remove vertices that necessarily belong to
the solution (Step 1. below) and remove redundant vertices of the input graph G;
Step 2. below. Then we show that there is a solution for the reduced graph G′′

1 if
and only if there is a solution for the original graph G; see Claim 1. Then we prove
two structural properties about the degrees of the vertices of G′′

1 ; see Lemmas 1
and 2. These two properties allow us to bound the size of the “essential” part
(called the core) of the reduced graph G′′

1 ; see Lemma 3.
In the second part of the reduction we remove more redundant vertices of G′′

1

and identify and remove the vertices that necessarily belong to the solution. Then
we show that the resulting reduced graph G′

2 has size bounded by a polynomial
function of the parameter; see Lemma 4. Finally, we show that there is a solution
for G′

2 if and only if there is a solution for G′′
1 ; see Claim 2. The proof is concluded

by applying an exact algorithm to the graph G′
2.

2 Proof of Theorem 1

Let G = (T ∪ B,E) be a bipartite graph and k be the number of vertices that
we are allowed to split.

First Reduction Rule: Before we describe our first reduction rule, we make a
useful observation.

Observation 1. If a vertex v ∈ B has at least three neighbours of degree at least
two, it must be split in any planar 2-layered drawing of G; see Fig. 1a.

Let Btr be the set of such vertices of degree 3 or more in B (as described in
Observation 1). The first reduction rule consists of two steps described below.

1. We initialize our solution set S with the vertices in Btr, that is, S := Btr and
remove them from the graph G. Let the resulting graph be G′

1 = (T ′
1∪B′

1, E
′
1)

and k′
1 = k − |Btr|; note that T ′

1 = T1.
2. Let Ts ⊂ T ′

1 be the set of vertices v such that deg(v) = 1 and deg(u) ≥ 3,
where u is the unique neighbor of v in G′

1. Similarly, let Bs ⊂ B′
1 be the set

of vertices v such that deg(v) = 1 and deg(u) ≥ 3, where u is the unique
neighbor of v in G′

1. We remove the vertices Ts and Bs from the graph G′
1.

Let the resulting graph be G′′
1 = (T ′′

1 ∪ B′′
1 , E′′

1 ).

Let us now show the following.

Claim 1. The graph G is a Yes instance for CRSV(k) if and only if G′′
1 is a

Yes instance for CRSV(k′
1).

Proof. We first argue the “only if”direction: consider a planar 2-layered drawing
of G with at most k vertices split. According to Observation 1, each vertex in
Btr is split, moreover, none of the vertices in Bs are split because each of them
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Fig. 1. Reinserting split copies v1, v2, . . . , vdeg(v) of v ∈ Btr into a planar 2-layered
drawing of G′′

1 to get a planar 2-layered drawing of G.

Fig. 2. Reinserting w ∈ Bs and u ∈ Ts into a 2-layered drawing of G′′
1 to obtain a

2-layered drawing of G. A safe wedge v1vv2 is filled green. (Color figure online)

has degree one. Therefore, there are at most k − |Btr| vertices in B \ (Btr

⋃
Bs)

that are split. Because B′′
1 = B \ (Btr

⋃
Bs) and k′

1 = k − |Btr| there exists a
planar 2-layered drawing of G′′

1 with at most k′
1 vertices split.

For the “if” direction, consider a planar 2-layered drawing of G′′
1 with at

most k′
1 vertices split. Note that after applying Step 1. and Step 2. the vertices

in B′′
1 have degree at most two. Thus for each vertex v ∈ Btr we can reinsert

its split copies v1, v2, . . . , vdeg(v) (each reinserted vertex has degree one) without
crossings; see Fig. 1. For the same reason we can reinsert the vertices in Bs of
degree one removed at Step 2.; see Fig. 2. To see that we can reinsert each vertex
u ∈ Ts of degree one removed at Step 2. observe that we always connect it to a
vertex v ∈ B′′

1 of degree at least two, therefore, in any planar 2-layered drawing
of G′′

1 there is always a safe wedge formed by two edges vv1 and vv2 where we
can fit in the edge vu without causing any crossings; see Fig. 2. ��

Now we state two observations about the degrees of the vertices of the
graph G′′

1 .

Lemma 1. For each vertex v ∈ T ′′
1 it holds that deg(v) ≤ k′

1 + 2 if there exists
a planar 2-layered drawing of G′′

1 with at most k′
1 split vertices.

Proof. Consider for contradiction that there is a vertex v ∈ T ′′
1 that has

deg(v) = k′
1 + 3; see Fig. 3. According to Step 2. v does not have any neigh-

bors of degree one in B′′
1 , therefore, to obtain a planar 2-layered drawing of G′′

1

all but two neighbors of v must be split, that is, k′
1 + 1 vertices must be split;

contradiction. ��
To make our second observation let T ′′

1, deg(v)≥3 be the set of all the vertices
of degree at least three in T ′′

1 .
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Fig. 3. All but two neighbors of v must be split to obtain a planar 2-layered drawing
of G′′

1 because each neighbour of v has degree at least two.

Fig. 4. For each vertex in v ∈ T ′′
1, deg(v)≥3 at least one of its neighbors u ∈ B′′

1 must
be split to obtain a planar 2-layered drawing of G′′

1 because each of the neighbours of
v has degree at least two. Splitting u can resolve crossings for at most two vertices
v1, v2 ∈ T ′′

1, deg(v)≥3 because it has degree at most two.

Lemma 2. It holds that
∣
∣T ′′

1, deg(v)≥3

∣
∣ ≤ 2k′

1 if there exists a planar 2-layered
drawing of G′′

1 with at most k′
1 split vertices.

Proof. Observe that according to Step 2. no vertex in T ′′
1, deg(v)≥3 has any neigh-

bors of degree one in B′′
1 . This implies that for each vertex v in T ′′

1, deg(v)≥3 at
least one of its neighbors u ∈ B′′

1 must be split to obtain a planar 2-layered
drawing of G′′

1 ; see Fig. 4. But the degree of u is at most two, therefore, splitting
u can resolve crossings for at most two vertices v1, v2 ∈ T ′′

1, deg(v)≥3. Thus, if
|T ′′

1, deg(v)≥3| > 2k′
1, more than k′

1 vertices in B′′
1 must be split to obtain a planar

2-layered drawing of G′′
1 ; contradiction. ��

For a subset of vertices W let N(W ) denote the set of neighbors of W . From
Lemma 1 and 2 we obtain the following.

Lemma 3. The graph induced by the vertices T ′′
1, deg(v)≥3

⋃
N(T ′′

1, deg(v)≥3) has
at most 2k′

1(k
′
1 +2) vertices if there exists a planar 2-layered drawing of G′′

1 with
at most k′

1 split vertices.

Let C = T ′′
1, deg(v)≥3

⋃
N(T ′′

1, deg(v)≥3) and call the graph induced by the
vertices in C the core of G′′

1 . Now we can proceed to the second reduction rule.

Second Reduction Rule: Observe that all the vertices in (B′′
1

⋃
T ′′
1 ) \ C have

degree at most two, and therefore, induce paths or cycles in G′′
1 . Since the cycles

are not connected to the core in G′′
1 (because their vertices have degree at most

two in G′′
1) we can remove them and handle separately. We need to account for

one split vertex per each such cycle. Let E be the set of these cycles and let
k′
2 = k′

1 − |E|. In addition, let Z be the set of vertices that we split in these
cycles, S := S ⋃

Z.
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Fig. 5. Reinserting the missing part of the path p ∈ P into a planar 2-layered drawing
of G′

2 to get a planar 2-layered drawing of G′′
1 . (Color figure online)

Let P be the set of paths induced in G′′
1 by the vertices in (B′′

1

⋃
T ′′
1 ) \ C

of length at least 2k′
2 + 5. We reduce G′′

1 to G′
2 = (T ′

2 ∪ B′
2, E

′
2) by shortening

each path p ∈ P (that is, iteratively removing one of the middle vertices of p
from T ′′

1 and identifying its two neighbours in B′′
1 ) until p has at most 2k′

2 + 5
vertices. Because during shortening step the length of p decreases by two, after
the shortening process p will still have at least 2k′

2 + 3 vertices.

Claim 2. The graph G′′
1 is a Yes instance for CRSV(k′

1) if and only if G′
2 is

a Yes instance for CRSV(k′
2).

Proof. In one direction the claim is obvious, because shortening paths in a planar
2-layered drawing of the graph G′′

1 does not cause any crossings.
For the other direction, consider a planar 2-layered drawing of the graph G′

2.
To obtain from it a planar 2-layered drawing of the graph G′′

1 we need to: (1)
reinsert each of the cycles in E that we have removed from G′′

1 to obtain G′
2, and

(2) reinsert back the missing parts of the paths of P, which are made up of the
vertices from (B′′

1

⋃
T ′′
1 ) \ C. Because the cycles in E are disconnected from G′′

1

we can reinsert them anywhere in the drawing wherever there is space with one
split vertex in Z.

Let us now argue why we can reinsert the missing vertices from (B′′
1

⋃
T ′′
1 )\C

into the paths in P; we will refer to Fig. 5 for illustration. Because for any such
path p ∈ P the length of p is at least 2k′

2 + 3 there must be at least one vertex
v in B′

2 that was not split in a planar 2-layered drawing of G′
2 (see Fig. 5a), as

otherwise a planar 2-layered drawing of G′
2 cannot be constructed with at most

k′
2 splits. Therefore, there must be a safe wedge formed by the unsplit vertex

v and the two edges of the path p incident to v providing space to reinsert the
missing vertices without causing any crossings; see Fig. 5b. ��

Lemma 4. The graph G′
2 has at most O(k6) vertices.

Proof. According to Lemma 3 the core C has at most 2k′
1(k

′
1 + 2) vertices and

according to Lemma 1 the highest degree of each vertex in C is at most k′
1 + 2.

Therefore, there can be at most
(
2k′

1(k
′
1+2)
2

)
(k′

1 + 2) many paths induced by the
vertices in (B′

2

⋃
T ′
2)\C. Moreover, after applying the second reduction rule each

such path has at most 2k′
2 + 5 vertices. Thus the total number of vertices in G′

2

is at most
(
2k′

1(k
′
1+2)
2

)
(k′

1 + 2)(2k′
2 + 5) ∈ O(k6). ��
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Finally we decide CRSV(k′
2) for G′

2 by brute force. More precisely, we check
all subsets X of B′

2 such that |X| ≤ k′
2 ≤ k. For each vertex v in X we check

all ways to partition its incident edges (at most k + 2) into non-empty subsets,
this represents splitting of v. The number of such partitions is bounded by the
Bell number of order k + 2, which in turn is bounded by (k + 2)!. Then we
run a linear time algorithm to check whether a planar 2-layered drawing of the
resulting graph exists. This can be done in time 2O(k6)(k!)O(k) · m ⊂ 2O(k6) · m,
where m is the number of edges of G. If G′

2 is a yes instance for CRSV(k′
2) with

the subset of split vertices X, we update our solution set S := S ⋃
X and return

it. It is worth noting that the kernelization itself can be done in time O(m) since
we process each vertex in constant time given that we know its degree. Thus,
the kernelization does not affect the total asymptotic runtime of the algorithm.

3 Conclusion and Open Problems

We presented an FPT algorithm for the CRSV(k) problem parameterized by k.
Improving the runtime is needed for this algorithm to be useful in practice, as
the constants are very large. Another natural direction is to look for an FPT
algorithm for the other variant of the problem, that is, minimizing the number
of splits, which was recently shown to be NP-hard [1].

Problem. Crossing Removal with k Splits – CRS(k)). Let G = (T ∪ B,E) be
a bipartite graph. Decide whether there is a planar 2-layer drawing of G after
applying at most k splits to the vertices in B.

Is there an FPT algorithm for the CRS(k) problem parameterized by k? It
is not clear how to adjust the algorithm in Theorem1 as it splits every vertex
in Btr as many times as its degree, and thus, the number of splits is not bounded
by a function of the parameter k.
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Abstract. Dynamic networks reflect temporal changes occurring to the
graph’s structure and are used to model a wide variety of problems
in many application fields. We investigate the design space of dynamic
graph visualization along two major dimensions: the network structural
and temporal representation. Significant research has been conducted
evaluating the benefits and drawbacks of different structural representa-
tions for static graphs, however, few extend this comparison to a dynamic
network setting. We conduct a study where we assess the participants’
response times, accuracy, and preferences for different combinations of
the graph’s structural and temporal representations on typical dynamic
network exploration tasks, with and without support of common inter-
action methods. Our results suggest that matrices provide better sup-
port for tasks on lower-level entities and basic interactions require longer
response times while increasing accuracy. Node-link with auto animation
proved to be the quickest and most accurate combination overall, while
animation with playback control the most preferred temporal encoding.

Keywords: User study · Evaluation · Time-oriented data · Graphs
and networks

1 Introduction

The increased availability of time-dependent datasets contributed to the rise of
research interest toward dynamic network visualization, nowadays considered
a mature and thriving research field [12]. Kerracher et al. [41] define a two-
dimensional design space for dynamic network visualization: structural repre-
sentation (how the graph’s topology is represented) and temporal encoding (how
time and, consequently, the graph temporal dynamics are illustrated). This two-
dimensional design space is expressive enough to characterize the majority of
existing dynamic network visualization approaches.

There is extensive literature on studies designed to evaluate different graph
representations for typical exploration tasks on static networks. Similar studies
have been conducted for dynamic approaches, however mostly focused on node-
link diagrams coupled with different temporal encodings (see Sect. 2). This also
comes as a consequence of the limited number of dynamic network visualization
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approaches that have matrices as their base graph representation [12] (see, e.g.,
[39,53]). Therefore, empirical evidence about the performance and preference
for different dynamic network visualization approaches in our design space is
still scattered between different studies, experimental settings, procedures, and
tasks. Similarly, existing user studies in this context incorporate simple inter-
action methods to support the network exploration (see, e.g., [6,46]), however,
their effect on the participants’ experience has not been fully investigated, thus
motivating the need for broader and rigorous experimentation.

Our Contribution. In this paper we design, conduct, and discuss the results
of an experimental study aimed at assessing and comparing different dynamic
visualization approaches centered around combinations of graph representation
(node-link and adjacency matrix), temporal encoding (juxtaposition, superim-
position, animation with playback control, and auto animation), and interaction
support for offline dynamic graph visualization. We conduct a statistical analysis
of the study results and condense our findings in a concise discussion meant to
support further studies and design of dynamic network visualization techniques.

2 Related Work

We outline recent related studies conducted along the two dimensions of the
design space introduced by Kerracher et al. [41], focusing on user studies.

Structural Representations. In graph drawing literature, several studies
assess the readability, task performance, and effects of aesthetic criteria on
human cognition of different graph structural encodings (e.g., [14,25,33,45,46,
48,49,51]). Ghoniem et al. [33] evaluate, in a controlled experiment, the read-
ability of graphs when represented as node-link diagrams compared to adjacency
matrices on generic graph tasks. Their findings suggest that the ability of either
visualization to support typical exploration tasks depends on the size and density
of the network; the authors concluded how matrix-based techniques were under-
exploited, despite their proved potential with larger and denser networks. Okoe
et al. [45,46] conduct further comparative evaluations between node-link and
matrix representations on a large scale (∼ 800 participants). Their results show
that node-link diagrams better support memorability and connectivity tasks.
Matrices have quicker and more accurate results for tasks that involve finding
common neighbors and group tasks (i.e., involving clusters). Concurrently, Ren
et al. [51] conduct a large scale study (∼ 600 participants) comparing the read-
ability of node-link diagrams against two different sorting variants of matrix
representations on small to medium social networks (∼ 50 nodes). Their find-
ings do not differ significantly from the ones by Okoe et al. [46], suggesting that
node-link provided a better implicit understanding of the network, with lower
response times and higher accuracy than matrices. However, the gap between
the two tended to reduce as the size of the graph increased.



An Experimental Study on Graph Structural and Temporal Encodings 273

Temporal Encodings. One of the most studied problems concerning dynamic
network visualization, is the ability of participants to retain a “mental map” of
the graph while investigating its evolution [4–7,50]. Archambault and Purchase
investigate the effect of drawing stability on the node-link graph representa-
tion coupled with animation and small multiples [6,7]. Drawing stability proved
to have a positive effect on task performance, with animation able to improve
over timeline in low stability scenarios. Ghani et al. [32] investigate the percep-
tion of different visual graph metrics on animated node-link diagrams. Results
suggest that animation speed and target separation have the most impact on
performance for event sequencing tasks. Linhares et al. [42] compare four dif-
ferent approaches for visualization of dynamic networks, namely the Massive
Sequence View [26] (timeline-based), the Temporal Activity Map [43], and
animated node-link and matrix diagrams. While all techniques reached satis-
factory results, the animated node-link was the favorite choice of the partici-
pants. Even though matrix-based approaches are included in this study, it does
not exhaustively cover all the possible combinations of our design space. Fil-
ipov et al. [30] conduct an exploratory study comparing different combinations
of structural and temporal representations. The results suggest that tasks with
matrices were completed quicker and more accurately, the participants preferred
matrices with superimposition, and juxtaposition was among the least preferred
approaches. However, these results require further formal investigation. Over-
all, related literature shows that the perception of different temporal encodings
has been mainly investigated on node-link diagrams, with few papers focusing
on the other combinations of structural and temporal encodings. In this sense,
our paper constitutes an effort in understanding whether the differences between
node-link and matrix representations still hold in a dynamic scenario, what is the
efficacy of the temporal representations, and how effective (and how important)
is it to include interactions when designing such approaches.

3 Dynamic Graph Visualization Design Space

We refer to a dynamic graph Γ as a sequence of individual graphs each one
representing its state at a specific point in time: Γ = (G1, G2, ..., Gk); we denote
the individual Gx as a dynamic graph timeslice. We now briefly describe the
different structural and temporal encodings, along with the interactions included
in the scope of our experiment, detailing their implementation.

3.1 Network Structural Encoding

The structural dimension focuses on the challenges of laying out a graph to visu-
ally present the relationships between elements in an understandable, accurate,
and usable manner [41]. Node-Link (NL) diagrams present the relational struc-
ture of the graph using lines to connect the entities that are depicted using circles,
whose coordinates on the plane are computed using specialized algorithms. In
our study, we compute the NL layouts using the force-directed implementation of
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Fig. 1. Network structural and temporal encodings: Juxtaposition (A,D), Superimpo-
sition(B,E), and Animation with Playback Controls (C,F)

d3js [19] considering all the timeslices simultaneously instead of on a per-frame
basis. This process of aggregation [22] is simple to implement and provides a sta-
ble layout throughout the sequence of timeslices, at the expense of the quality of
individual layouts. We refer to the following for a broader discussion on dynamic
network layout algorithms [8,11,12,21,23,24,27,28,55]. Adjacency Matrices
(M) visualize the network as an n×n table. A non-zero value in the cell indicates
the presence of an edge between the nodes identified by the corresponding row
and column. In our study we order the rows and columns alphabetically accord-
ing to the node’s label. More advanced reordering methods exist [13], however,
matrix reordering is still under-investigated in a dynamic context and we decided
to exclude this aspect from the study design.

3.2 Network Temporal Encoding

In dynamic networks the temporal dimension plays an important role in the anal-
ysis process and requires special attention to enable effective exploration and
better understand the behavior of the network [44]. Superimposition (SI)
encodes the temporal dimension of the network in the same screen space by
overlaying the timeslices (see, e.g., [21,28]) or making use of explicit encoding
(see., e.g., [34,40]). In our study we represent the temporal information in SI
using colorblind-friendly color palettes [31]. In NL, we generate multiple paral-
lel edges between the nodes, one for each timeslice where the edge is present,
and color-code them individually. In M we subdivide each cell uniformly into
rectangles, each representing the existence of that edge during that timeslice,
which are colored similarly (see Fig. 1 B-E). Juxtaposition (JP) represents
the graph’s temporal dynamics as distinct layouts, each with dedicated screen
space, similar to the small multiples approach by Tufte [56] (see Fig. 1A,D). In
our study we generate one diagram per timeslice and arrange them adjacent to
each other. Animation with Playback Control (ANC) uses a time slider to
control the state of the animation and move to any of the available timeslices in



An Experimental Study on Graph Structural and Temporal Encodings 275

no particular order (see Fig. 1C,F). This enables for a more fine and controlled
exploration and analysis compared to animation, where speed and time progres-
sion is typically fixed. Auto Animation (AN) depicts the change of the graph
over time as smooth transitions between subsequent timeslices. Differently from
ANC, with AN it is not possible to skip forward or navigate backward in time
and it automatically goes over each of the timeslices in a sequence.

3.3 Interactions

The interactions we implement are meant to support the network exploration.
The following apply regardless of the temporal encoding: (i) zooming and pan-
ning (both for M and NL); (ii) hovering over a M cell highlights its corresponding
row and column; (iii) in NL, nodes can be moved by dragging in order to de-
clutter some denser areas of the drawing. Moreover, for AN only and regardless
of the structural representation, the time between consecutive timeslices can
be increased (7 sec maximum) or decreased (1 sec minimum). This selection
should not favor any specific combination of structural and temporal encoding
techniques over the others. Zooming, panning, and node rearrangement are com-
monly available in graph exploration software, like Gephi [10]. M mouse-over was
also used by Okoe et al. [46]. AN speed could also be manipulated in the study
by Archambault and Purchase [5].

4 Study Design

In this section we present the study design, including our tasks, research hypothe-
ses, stimuli, and study procedure.

4.1 Tasks and Research Hypotheses

Tasks. The tasks used in our experiment are available in Table 1.

Table 1. The test questions (trials), per task (rows) and entity type (columns).

T Low-level High-level

T1 At which time step is the relationship
between {source} and {target} intro-
duced for the first time?

At which time step does the clique
between {nodes} appear for the first
time?

T2 Sum up the changes (additions and
removals) of {node}s degree across all
time steps.

Calculate the change of the cliques size
between {nodes} across all time steps.

T3 At which time step does the node
{node} have its highest degree?

Consider the set of nodes {nodes}.
Find the size of the largest maximal
clique across all the time steps between
the given nodes.
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Rationale. We picked one task for each category of temporal feature in the
taxonomy proposed by Ahn et al. [2], namely, Individual Temporal Features (T1),
Rate of changes (T2), and Shape of changes (T3). We selected the most common
tasks referenced in the taxonomy and included in our experiment these tasks for
both low- (nodes and links) and higher-level (cliques) entities.

Table 2. The research hypotheses that were evaluated in our experiments.

H Research Hypothesis

H1 Matrices have lower response times and higher accuracy for all tasks compared to
node-link diagrams, regardless of the temporal encoding.

H2 From all temporal encoding techniques, superimposition has the lowest response
times and highest accuracy, regardless of the structural representation.

H3 Providing interaction techniques increases the response times but not the accuracy.

H4 Matrices have lower response times and higher accuracy for tasks on low-level enti-
ties and node-link diagrams have lower response times and higher accuracy for tasks
on higher-level entities, regardless of the temporal encoding.

H5 The combination of matrices with superimposition results in the lowest response
times and highest accuracy compared to other combinations of network structural
and temporal encoding.

Hypotheses. We base our research hypotheses on the proposed tasks and we
report them in Table 2.

Rationale. Hypotheses H1, H2, and H5 are derived from the results of a previ-
ous exploratory study [30] (see also Sect. 2). While the focus of this experiment is
centered around the visual encoding combinations within our design space, H3 is
intended to investigate the effects of common interactions techniques in this con-
text. We argue that they might increase the response times over visual inspection
alone, but without significant impact on accuracy. In H4 we conjecture that fol-
lowing the evolution of a cluster or clique is more difficult with M compared to NL,
as the participant must track several elements at once. We assume this would be
easier to achieve with NL as the nodes are drawn closer together.

4.2 Experiment Setting

Stimuli. We generated 24 different scale-free random [15] graphs (35 ≤ |V | ≤
45, 46 ≤ |E| ≤ 71) with the NetworkX python library [35,36]. We chose this cat-
egory of networks as they resemble real-world data examples of scientific inter-
est (e.g., the world-wide-web, authors’ co-citation networks [3]). We augmented
each graph with 4 timeslices by randomly deleting edges from the original input
graph to simulate temporal dynamics (at each subsequent timeslice the edges
were added back and a new set was selected for removal). Finally, we split the
datasets into two different types: 12 graphs with cliques and 12 without. Cliques
were artificially introduced in the graphs by choosing 5 random nodes which were
fully connected in one or more of the graph timeslices. The size of the graphs is
comparable with the majority of empirical studies on graph visualization [51,60].
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Trials. Each of the tasks is applied to all combinations of structural and tem-
poral encodings of interest in our study (see Sect. 3) resulting in 48 unique trials:
3(task types)×2(entity types)×2(network encodings)×4(temporal encodings).
The order of the trials during the study is randomized in order to mitigate learn-
ing effects. The participants take part in the online experiment by completing
the trials prepared using SurveyJS [1].

Study Design. Our experiment follows a between-subject arrangement: all
participants complete the same entire set of 48 trials on the same graphs, but
are exposed to one of two conditions, either without (Group A) or with (Group B)
the support of the interactions discussed in Sect. 3.3. Participants are assigned to
one of the two groups when they first access the online experiment, with a 75%
probability of being assigned to Group B. As only one hypothesis (H3) deals
with the group subdivision, we design the experiment to have a higher number
of participants with interaction support. For each trial we ask the participant to
provide a confidence score of their answer using a 5 point Likert scale (1 least
confident - 5 most confident). At the end of the experiment, the participants
express their thoughts in text about the encoding combinations they encountered
and rank them on a 5 point Likert scale (1 least preferred - 5 most preferred).

Participants. For our study, we enrolled students part of a graduate course
on information visualization design. To ensure that participants had a suffi-
cient level of knowledge on the topic, we gave an introductory lecture about the
visualizations and the experiment modalities. Participation was optional and its
performance did not impact the final grade of the students. The online setting
was necessary to guarantee a sufficient number of participants, while ensuring
a safe social-distancing protocol. However, this also meant giving up control on
the experiment environment.

5 Study Results

We received a total of 76 submissions from as many participants, of which we
removed 8 that were trying to game the experiment. This resulted in a final
set of 68 valid submissions that were used as the basis of our analysis. Further
details can be found in the full version [29].

5.1 Analysis Approach

For each question of our study, we collected the participants’ answers, their
corresponding response times, and confidence values. We ignored the group sub-
division (Group A and B) for hypotheses which did not focus on the presence
of interactions (all except H3, see Sect. 4.1), as ANOVA tables do not show a
statistically significant interaction effect between the independent variables for
H1, H2, H4, H5 (for more information we refer to [29]).
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We conduct our analysis as follows, supported by Python libraries for sta-
tistical analysis [37,57,58]. We consider the structural and temporal encoding,
the task type, entity type, and the groups (Group A and B) as independent
variables, the response times and accuracy are taken as dependent variables. As
the group subdivision is not even (25–75), we choose methods that are robust
against these unbalanced designs [9,18,38,59]. For each of the hypotheses, we
grouped the data according to the hypothesis and visually inspected response
times and accuracy (number of correct answers ÷ total number of answers). To
remove outliers from the data before the analysis we employed the inter-quantile
range (IQR) [52]. We set the IQR lower (q1−1.5 ·IQR) and upper (q2+1.5 ·IQR)
bounds at q1 = 0.25 and q2 = 0.75 as the outlier cut-off boundaries. This resulted
in 116 trials (or 3.43%) being detected as outliers and omitted from the analysis.

Table 3. The results of the statistical test (p-values) for each hypothesis. We mark
the cells with * if p < 0.05, ** if p < 0.01, *** if p < 0.001. If multiple comparisons
are performed, b indicates the Bonferroni correction [17].

Hypothesis Groups MWU T-Test Binomial

(NL T1) vs (M T1) 0.0104*b <0.001***b 0.0013*b

(NL T2) vs (M T2) 0.1579 <0.001***b 0.9313H1

(NL T3) vs (M T3) <0.001***b <0.001***b 0.0022**b

(SI) vs (JP) <0.001***b 0.1065 0.166

(SI) vs (ANC) 0.8662 0.1429 0.0883H2

(SI) vs (AN) 0.2766 0.7751 <0.001***b

H3 (Grp A) vs (Grp B) <0.001*** <0.001*** <0.001***

(M Low) vs (NL Low) <0.001***b 0.1392 <0.001***b

H4
(M High) vs (NL High) <0.001***b <0.001***b 0.4321

(M+SI) vs (M+JP) 0.0056** 0.2567 0.2424

(M+SI) vs (M+ANC) 0.6301 0.2989 0.0261

(M+SI) vs (M+AN) 0.2766 0.6328 0.0646

(M+SI) vs (NL+SI) 0.0038**b <0.001***b 0.449

(M+SI) vs (NL+JP) <0.001***b <0.001***b 0.1389

(M+SI) vs (NL+ANC) 0.0088 <0.001***b <0.001***b

H5

(M+SI) vs (NL+AN) 0.0331 <0.001***b <0.001***b

The task response times in our experiment are not normally distributed. To
mitigate this, we perform a Box-Cox transformation [20]. Visual inspection of
the quantile-quantile (Q-Q) plots confirmed a normal distribution of the trans-
formed data. This allows us to run parametric tests, specifically, ANOVA (see [29]
for further information about the ANOVA tables) and T-tests [9,18,38,59].
The standard ANOVA and T-tests are robust against such skewed distribu-
tions [16,47,54], therefore, we rely on them for our analysis as they both have
more statistical power than non-parametric tests and detect significant effects if
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they truly exist. In presence of statistically significant difference (p-value < 0.05),
we check, with T- and Mann-Whitney-U (MWU) tests, whether the significance
held and visually explored the corresponding box plots to come to a conclusion.
To evaluate our hypotheses on accuracy, we also perform Binomial tests to detect
statistical significance between the distributions.

5.2 Quantitative Results

Fig. 2. H1: Box plot of response times for NL and M per task.

H1. We presume based on previous work [30] that M would perform better over-
all compared to NL for all tasks. Figure 2 depicts differences in response times
between M and NL diagrams per task type. The results (see Table 3) indicate
that NL is generally faster and more accurate than M. However, when looking at
their differences per task we discover for T1 that NL is significantly faster than
M (NL: 73.49s, M: 97.93s), whereas M proves to be more accurate (NL: 74.9%,
M: 80.7%). For T2 the T-Test detects a significant difference in response times
between NL and M (NL: 133.41s, M: 194.20s), however, in terms of accuracy
they both perform similarly (NL: 52.5%, M: 52.7%). For T3 NL representations
significantly outperform M in terms of response times (NL: 107.32s, M: 175.92s)
as well as accuracy (NL: 65.7%, M: 59.4%). Summarizing, the results suggest
NL to generally have the lowest response times and higher accuracy compared
to M for the proposed tasks. Thus, our results do not support H1.

H2. We assume SI to have the lowest response times and highest accuracy out
of all the temporal encoding techniques. In our analysis, however, we do not
detect any statistical significance in the comparisons shown in Table 3, with the
only exception being JP, which has considerably lower response times than SI
(see Fig. 3). Concerning response times, JP has the lowest (118.32s), followed
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Fig. 3. H2: Box plot of response times for temporal and network representations.

by AN (127.76s), SI (129.69s), and ANC (141.35s). We also run a paired T-Test
comparing the temporal encoding approaches to check for statistical significance
between pairs out of our initial hypothesis and detect a significant difference
between JP and ANC. In terms of accuracy, we discover a significant difference
between SI (62.1%) and AN (68.6%). Whereas, between SI and JP (64.45%) or
ANC (59.13%) there is no significant difference. We conjecture these results to
be due to the graph’s size and limited number of structural changes over time,
that might favor AN as it is possible for participants to follow all changes the
during animation. Our analysis shows no evidence to support H2.

Fig. 4. H3: Box plot of response times for interaction groups per task.

H3. We conjecture that providing interactions influences the response times
but not the accuracy. Our tests detect a significant difference (see Table 3) in
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the response times between group A (no interactions; 114.76s) and group B
(interactions; 163.83s). As we initially assume, the group with interactions is
much slower in completing tasks than the group with no interactions (see Fig. 4),
however, the difference in accuracy is unexpected. The group with interactions
is significantly more accurate than the one without (group A: 58%, group B:
65%). This suggests that interactions indeed increase response times, but at
the same time provide the participants with a much better understanding of
the visualized graphs and corresponding network dynamics regardless of the
temporal encoding, therefore, leading to more accurate responses. The analysis
shows that our results support H3 in terms of response times, but not accuracy.

Fig. 5. H4: Box plot of response times for (A) single entities and (B) cliques.

H4. We formulate this hypothesis to evaluate whether the response times and
accuracy of M and NL representations is affected by the type of target entity in a
dynamic context (low-level - individual nodes and links; or higher-level - cliques),
regardless of the temporal representation. For low-level entities, we do not detect
any significant differences of the response times between network representations
(see Table 3), both NL and M diagrams perform similarly with no clear winner.
The results (see Fig. 5) for tasks on low-level entities indicate that M has lower
response times (NL: 97.08s , M: 90.24s), whereas for higher-level entities NL has
significantly lower response times (NL: 146.66s, M: 245.2s). However, in terms
of accuracy M is significantly better than NL for lower-level entities (NL: 82.1%,
M: 86.4%). For the higher-level entities, NL and M representations perform quite
similarly in terms of accuracy (NL: 42.1%, M: 41.3%) Based on these findings,
the results suggest that H4 is partially supported.

H5. Finally, we want to assess the response times and accuracy for all possible
combinations of network structural and temporal encodings. Our assumption is
that M representations with SI temporal encoding have the lowest response times
and highest accuracy. We compare M+SI to all other combinations of network
structural and temporal encodings (see Fig. 6). The results of the statistical tests
yield significant differences in response times when comparing M+SI (154.53s)
with M+JP (140.13s), NL+SI (105.25s), NL+JP (99.54s), NL+AN (108.8s),
and NL+ANC (110.97s). Between M+SI (154.53s) and M+ANC (168.87s) and
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Fig. 6. H5: Box plot of response times for temporal and network representations.

M+AN (160.62s) there is no significant difference in response times (see Table 3).
In terms of accuracy we detect statistically significant differences between M+SI
(61.1%) and NL+ANC (51.8%) and NL+AN (71.4%). Whereas, the other com-
binations do not differ enough to warrant significance: M+JP (64%), M+ANC
(66.4%), M+AN (65.5%), NL+JP (64.6%), and NL+SI (62.9%). From these
results, the most balanced combination in terms of response times and accuracy
is NL+AN followed by NL+JP. Therefore, we find no evidence supporting H5.

5.3 Qualitative Results

We collect the participants’ ratings per combination of network structural and
temporal encoding along with textual feedback pertaining to their preferences
and experience during the experiment (see Fig. 7). There are no major differ-
ences in the preferences between the SI and JP encodings; ANC is the most pre-
ferred temporal encoding when coupled with a NL base representation. The NL
representation is generally the most preferred approach, regardless of the tem-
poral encoding. In terms of the participants confidence, we observe that most
participants seemed to be fairly confident in their answers across all approaches
(see Fig. 8). Most notably, the participants were most confident with NL+JP,
followed by M+ANC, M+JP, and NL+ANC. There is general consensus that
NL+SI was a very cluttered combination, whereas for M it performed a lot bet-
ter and was easier to understand (“SI was really confusing for some of the NL
tasks but really useful for many of the M tasks”). This is presumably due to
the clutter generated by parallel edges crossings that occur in NL diagrams,
which does not affect M. As in previous studies [30], the feedback on JP out-
lines that it requires participants to split their attention between multiple views
in order to compare the temporal information. The ANC approach was preferred
by the study participants for its flexibility due to the additional controls (i.e.,
time slider). AN was not considered to be a very good temporal encoding tech-
nique with the feedback being consistent across structural representations. Some
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Fig. 7. Preferences per network and temporal encoding on a Likert scale (1–5).

participants commented that they needed to “screenshot every timestamp to look
at the different connections between the nodes” and wait to watch the whole ani-
mation from the beginning. NL+AN, therefore, appears to be the least practical
of the approaches, however, it also provides the best results. We conjecture this
to be due to the size of the graphs and the amount of structural changes occur-
ring. M+AN is the lowest rated by the participants. The general consensus for AN
is that it was difficult to keep track of the changes occurring between the nodes,
requiring the viewer to memorize node positions and labels incurring a high cogni-
tive effort to complete the tasks. Despite the aforementioned drawbacks, AN scales
better to a larger amount of timeslices compared to SI and JP. Finally, the group
with interactions had a better experience overall compared to the group without.
The majority of the members of this group explicitly requested interactions to be
implemented, supporting our findings concerning H3.

5.4 Limitations

This experiment’s limitations open potential future research directions. First,
the size of the graph was not considered. We chose small graphs as stimuli for
this study, both in the amount of nodes/links and number of timeslices. M scales
better to larger graphs than NL, while AN and ANC support a greater num-
ber of timeslices compared to SI and JP. Future studies on dynamic network
visualizations might provide evidence on the scalability of the different potential
combinations. Second, we chose simple, custom implementations for our struc-
tural and temporal encodings, disregarding more advanced solutions in literature



284 V. Filipov et al.

Fig. 8. Confidence per network and temporal encoding on a Likert scale (1–5).

(see Sect. 3). While this was done with the intention of testing the fundamental
principles of the techniques in our design space, evaluating more sophisticated
approaches might have significantly impacted the results. Finally, we focus on a
selection of tasks from a taxonomy on network evolution [2], other graph-based
taxonomies could present relevent benchmarks for the proposed techniques.

6 Conclusion

In this paper we presented an experimental study assessing the response times,
accuracy, and preferences of participants on different combinations of network
structural and temporal encodings, with and without interaction support for
the network exploration. Overall, the participants expressed a preference for
NL over M, specifically preferring the ANC temporal encoding over the other
options, despite AN being more accurate and having lower response times. We
also note that our results suggest that the use of M as base representation proved
to be more accurate for tasks on low-level entities and counting across different
temporal representations. The results of our experiment also suggest a significant
effect of interactions on participants’ performance. Therefore, as directions for
future work, we consider evaluating in more detail the influence that interactions
have on accuracy and response times for dynamic network visualization, also
considering the potential influence of the graph size on the perception of different
combinations of network and temporal encodings.
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Abstract. In a graph story the vertices enter a graph one at a time and
each vertex persists in the graph for a fixed amount of time ω, called
viewing window. At any time, the user can see only the drawing of the
graph induced by the vertices in the viewing window and this determines
a sequence of drawings. For readability, we require that all the drawings
of the sequence are planar. For preserving the user’s mental map we
require that when a vertex or an edge is drawn, it has the same drawing
for its entire life. We study the problem of drawing the entire sequence
by mapping the vertices only to ω+k given points, where k is as small as
possible. We show that: (i) The problem does not depend on the specific
set of points but only on its size; (ii) the problem is NP-hard and is FPT
when parameterized by ω+k; (iii) there are families of graph stories that
can be drawn with k = 0 for any ω, while for k = 0 and small values of ω
there are families of graph stories that can be drawn and others that
cannot; (iv) there are families of graph stories that cannot be drawn for
any fixed k and families of graph stories that require at least a certain k.
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1 Introduction

In this paper we address “graph stories”, a model introduced by Borrazzo et al.
in [5] as a framework for exploring temporal data. In a graph story the vertices
enter a graph one at a time and persist in the graph for a fixed amount of
time ω, called the size of the viewing window. At any time, the user can see only
the drawing of the graph induced by the vertices in the viewing window and
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this determines a sequence of drawings. For readability, all the drawings of the
sequence are required to be planar. For preserving the user’s mental map, when
an edge is drawn it has the same drawing for its entire life. Also, in order to
limit the constraints, we allow the edges to be represented by Jordan arcs.

Graph stories are related to a rich body of literature devoted to the visu-
alization of dynamic graphs (surveys can be found in [2,17]). One of the main
classification criteria of dynamic graph problems is whether the story is entirely
known in advance (off-line model) or not (on-line model). In this respect, our
contribution falls in the off-line model. A third intermediate category (look-ahead
model) is when a small chunk of the incoming events is known in advance to the
drawing algorithms. The events are also a classification criterion, as they may
refer to vertices, edges, or both. Finally, further constraints may regard the tim-
ings of the events, the more common being that they occur one at a time at
regular intervals and that the incoming objects have a fixed lifetime as in the
case of graph stories. In some cases, the order of the events is constrained to
correspond to a specific kind of visit of the graph.

Several results focus on dynamic trees. In [3], it is shown how to draw a tree
in O(ω3) area where the model is on-line, the incoming objects are edges that
arrive in the order of a Eulerian tour of the tree and whose straight-line drawing
persists for a fixed lifetime ω. In [10], a small look ahead on the sequence of
vertices is used in order to add one vertex at a time to the current drawing
of an infinite tree, balancing the readability of the drawings with respect to the
difference between consecutive drawings. In [23], a sequence of trees (their union,
though, may be an arbitrary graph) is completely known in advance. Vertices
and edges can move during the animation and can have arbitrary lifetime. The
purpose is to pursue aesthetic criteria commonly adopted for tree drawings [20].

Only a few results regard more complex families of graphs. For instance,
in [14], a stream of edges enter the drawing and never leave it, forming an
outerplanar graph that has to be drawn according to an on-line model, moving
the previously drawn vertices by a polylogarithmic distance. In [8] the drawings
of several families of graphs are updated as vertices and edges enter and leave
the current graph according to the on-line model.

More feebly related to our setting is the literature about dynamic pla-
narity [12,13,15,19,21], where the model is on-line and the planar embedding
of the graph is allowed to change. When the embedding has to be preserved,
instead, planarly adding a stream of edges with a fixed lifetime is NP-complete
even for the off-line model [9]. Also, related somehow to dynamic graph drawing
is geometric simultaneous embedding [4,6], which can be used to model temporal
graphs.

Coming more properly to the graph story model, Borrazzo et al. [5] address
the setting where all the drawings of the story are straight-line and planar, and
where vertices do not change their position once drawn. It is shown that graph
stories of paths and trees can be drawn on a 2ω×2ω and on an (8ω+1)×(8ω+1)
grid, respectively. Further, there exist graph stories of planar graphs that cannot
be drawn straight-line within an area that is only a function of ω.
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Contribution. We study the problem of drawing a graph story by mapping the
vertices only to ω + k given points, where k is as small as possible. We call this
a realizability problem. Our contribution is as follows. In Sect. 2 we show that
the realizability of graph stories is a topological problem, as it does not depend
on the specific set of points but only on its size. We also give a characterization
of realizable graph stories based on the concept of “compatible embeddings”. In
Sect. 3 the realizability problem is proven to be NP-complete, even for any given
constant k, and to belong to FPT when parameterized by the size ω + k of the
point set. In Sect. 4 we study the realizability of graph stories with k = 0, which
we call minimal. In particular, we show that: (i) Every minimal graph story
of an outerplanar graph is realizable; (ii) for every ω ≥ 5 there exist minimal
graph stories of series-parallel graphs that are not realizable; (iii) all minimal
graph stories with ω ≤ 5 whose graph does not contain K5 are realizable if we are
allowed to redraw at most one edge at each vertex arrival; and (iv) minimal graph
stories with ω ≤ 5 are always realizable for planar triconnected cubic graphs.
Finally, in Sect. 5 we show that there are families of graph stories that are not
realizable for any fixed k and families of graph stories that, to be realizable,
require at least a certain value for k.

Some proofs have been sketched or omitted and can be found in the full
version [11].

Preliminaries. A drawing Γ of a graph G = (V,E) maps each vertex of V to
a distinct point of the plane and each edge of E to a Jordan arc connecting its
end-vertices; Γ is planar if no two edges intersect except at common endpoints.
A planar drawing Γ of G subdivides the plane into connected regions called
faces, and the set of circular orders of the edges incident to each vertex is called
a rotation system. The unbounded face of Γ is the external face. Walking on
the (not necessarily connected) border of a face f of Γ so to keep f to the
left determines a set, called the boundary of f , of circular lists of alternating
vertices and edges. Each list describes a (not necessarily simple) cycle, which can
also consist of an isolated vertex: Each edge of G occurs either once in exactly
two circular lists of different face boundaries or twice in the circular list of one
face boundary.

Two planar drawings of G are equivalent if they have the same rotation sys-
tem, face boundaries, and external face. An equivalence class of planar drawings
of G is a planar embedding of G. Note that, if G is connected then each face
boundary consists of exactly one circular list; in this case an embedding of G is
fully specified by its rotation system and by its external face. If G is equipped
with a planar embedding φ, it is a plane graph; a planar drawing Γ of G is
embedding-preserving if Γ ∈ φ. If G′ is a subgraph of G and Γ ′ is the restriction
of Γ to G′, the planar embedding φ′ of Γ ′ is the restriction of φ to G′.

2 Graph Stories

Definition 1. A graph story is a tuple S = (G,ω, k, τ) where: (i) G = (V,E) is
an n-vertex graph; (ii) ω ≤ n is a positive integer, called the size of the viewing
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Fig. 1. A realization of a graph story S = (G, 5, 1, τ) on a set P of 6 points. The points
of P are yellow disks. For each Γi (5 ≤ i ≤ 8), vertex vi and its incident edges are red.
(Color figure online)

window ; (iii) k is a non-negative integer, called the number of extra points; and
(iv) τ = 〈v1, v2, . . . , vn〉 is a linear ordering of the vertices of G (i.e., vi ∈ V is
the vertex at position i according to τ).

Let Gi = (Vi, Ei) denote the subgraph of G induced by all vertices vj

such that max{1, i − ω + 1} ≤ j ≤ i. Observe that, if i ≤ ω then Gi con-
sists of the i vertices {v1, v2, . . . , vi}; otherwise Gi consists of the ω vertices
{vi−ω+1, vi−ω+2, . . . , vi}. In other words, Gi is the subgraph induced by vi and
by the (up to) ω − 1 vertices of G that precede vi in τ . For each i, we say that
vi enters the viewing window at time i, and for each i ∈ {ω + 1, . . . , n}, we say
that vi−ω leaves the viewing window at time i.

Definition 2. A realization of a graph story S = (G,ω, k, τ) on a set P of
ω + k points is a sequence of drawings R = 〈Γ1, Γ2, . . . , Γn〉 with the following
two properties: (R1) Γi (1 ≤ i ≤ n) is a planar drawing of Gi, where distinct
vertices of Vi are mapped to distinct points of P ; (R2) the restrictions of Γi−1

and of Γi (2 ≤ i ≤ n) to their common subgraph Gi−1 ∩ Gi are identical.

Figure 1 shows a realization of a graph story S = (G, 5, 1, τ) on a set of 6 points.
A graph story S is realizable if there exists a set P of ω+k points such that S admits
a realization on P . Since the planarity of all graphs Gi is necessary for realizability,
from now on we consider graph stories that satisfy this requirement.

Remark 1 (Edge Visibility). We assume that G only consists of visible edges, i.e.,
edges (vi, vj) such that |i − j| < ω. Indeed if |i − j| ≥ ω, (vi, vj) can be ignored,
as it never appears in a realization. Our assumption has two implications: (i) G
has vertex-degree at most 2ω − 2 (every Gi has vertex-degree at most ω − 1);
and (ii) G has bandwidth at most ω − 1 and hence pathwidth at most ω − 1 [16]
(the set of bags of this decomposition is {V1, V2, . . . , Vn}).

Remark 2 (Minimality). Clearly, if a graph story S = (G,ω, k, τ) is realizable,
every other story S ′ = (G,ω, k′, τ) with k′ > k is realizable too. Hence, a natural
scenario is when the number of extra points k is zero. We call such a story min-
imal and we denote it as S = (G,ω, τ). For a minimal graph story, Property R2
of Definition 2 implies that each vertex vi with ω + 1 ≤ i ≤ n is mapped to the
same point as vi−ω, thus the mapping of the whole realization is fully determined
by the mapping of Γω (i.e., of the first ω drawings of the realization).



Small Point-Sets Supporting Graph Stories 293

2.1 Geometry and Topology of Graph Stories

The following lemma shows that the realizability problem is in essence more a
topological problem than a geometric problem.

Lemma 1. A graph story S = (G,ω, k, τ) is realizable on a set of points P , with
|P | = ω +k, if and only if it is realizable on any set of points P ′ with |P ′| = |P |.
Proof (sketch). Let R be a realization of S on P . Starting from R, we construct
a realization R′ of S on a given arbitrary set of points P ′. Let ρ(·) be a function
that for each edge e of G gives the Jordan arc ρ(e) used by R to represent e and
let J be the codomain of ρ, i.e., the set (without repetitions) of Jordan arcs used
by R. Without loss of generality, we may assume that any two Jordan arcs c
and c′ of J have a finite intersection. This can be obtained by perturbing c or c′.

Starting from P and J , we construct a multigraph M that has a vertex wi

for each point pi ∈ P , with i = 1, 2, . . . , ω + k, and an edge (wi, wj) for each
Jordan arc c ∈ J with endpoints pi and pj . Observe that the Jordan arcs in J
also provide a (non-planar) drawing Γ (M) of M. We planarize M by replacing
crossings with dummy vertices. Further, we subdivide multiple edges of M in
order to obtain a plane graph G. By exploiting one of the algorithms described
in [1,18], we can draw G while preserving its planar embedding on the set of
points P ′ plus an arbitrary set of additional points to host the planarization and
subdivision dummy vertices, obtaining Γ (G).

Observe that a vertex v of G corresponds to a point of P , which is associated
with a vertex of G drawn on a point of P ′. Also, an edge e of G corresponds to a
Jordan arc ρ(e) in J , which is a simple path π in G. Hence, we define a function
ρ′(e) that gives, for each edge e of G, a Jordan arc that is the concatenation of
the curves used in Γ (G) to draw the path π. Finally, the Jordan arcs ρ(e) and
ρ(e′) of two edges e and e′ of G cross if and only if ρ′(e) and ρ′(e′) cross.

The other direction of the proof is obvious. �	
It is natural to ask whether for every realizable graph story where G is

planar, there exists a planar embedding of G such that each drawing of the
realization preserves this embedding. We formalize this concept and show that
this is not always the case. Let S be a story whose graph G is planar. A supporting
embedding for S is a planar embedding φ of G such that S admits a realization
〈Γ1, . . . , Γn〉 where the embedding of Γi is the restriction of φ to Gi (i = 1, . . . , n).

Lemma 2. There exists a minimal graph story S = (G,ω, τ) such that: (i) G is
planar; (ii) S is realizable; and (iii) S does not admit a supporting embedding.

Proof (sketch). We produce a minimal graph story S = (G,ω, τ) such that G
admits a single planar embedding φ (up to a flip and up to the choice of the
external face) and such that in any realization of S there is at least one embed-
ding φi of Gi that is not the restriction of φ to Gi. In this story ω = 8, G is the
graph in Fig. 2, and τ is given by the indices of the vertices of G. �	
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Fig. 2. An illustration for Lemma 2.

2.2 Characterizing Realizable Graph Stories

We now give a characterization of a realizable graph story S = (G,ω, k, τ) in
terms of a sequence of “compatible embeddings”. To this aim, we give a gener-
alization of the definition of planar embedding that associates with each face a
weight representing how many of k notable points are inside such a face.

A face-k-weighted planar embedding φ of a planar graph H is a planar embed-
ding of H together with a non-negative integer, called weight, for each face of
φ such that the sum of all weights is k. The removal of a vertex v from a face-
k-weighted planar embedding φ of H produces a face-(k + 1)-weighted planar
embedding φ−v of H \v such that the planar embedding of φ−v is the restriction
of the planar embedding of φ to H \ v and the weights of the faces are changed
as follows: (i) all the faces in common between φ and φ−v have the same weight
in φ−v as in φ, and (ii) the new face of φ−v resulting by the removal of v has a
weight that is one plus the sum of the weights of the faces of φ incident to v.

Let S be a graph story and let φi be a face-k-weighted planar embedding
of Gi, for i ∈ {ω, . . . , n}. Two face-k-weighted planar embeddings φi−1 and φi,
with i = ω + 1, . . . , n, are compatible if removing vi−ω from φi−1 produces the
same face-(k+1)-weighted planar embedding of Gi−1∩Gi as removing vi from φi.

Lemma 3. A graph story S = (G,ω, k, τ) is realizable if and only if there
exists a sequence 〈φω, φω+1, . . . , φn〉 of face-k-weighted planar embeddings for the
graphs 〈Gω, Gω+1, . . . , Gn〉, such that φi−1 and φi are compatible (ω+1 ≤ i ≤ n).

Proof (sketch). We prove here only one direction. Suppose there exists a sequence
of face-k-weighted planar embeddings 〈φω, φω+1, . . . , φn〉 such that any two con-
secutive face-k-weighted planar embeddings are compatible. Let Γω be any pla-
nar drawing of Gω and let P be the set of points of Γω corresponding to the
vertices of Gω plus k unused points arbitrarily distributed inside the faces of
Γω, according to the weights of φω. For each i = 1, . . . , ω − 1, define Γi as the
restriction of Γω to Gi. For each i = ω+1, . . . , n, by the compatibility of φi with
φi−1, the removal of vertex vi−ω from Γi yields a drawing Γ∩ of G∩ = Gi−1 ∩Gi

that has the same face-(k +1)-weighted embedding φ∩ = φi−1 \ vi−ω = φi \ vi of
G∩. We construct Γi from Γ∩ by inserting vi inside the face of Γ∩ corresponding
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to the face of φ∩ generated by the removal of vi from φi. Also, we planarly insert
each edge connecting vi to each of its neighbors according to φi, without chang-
ing the starting drawing and by leaving on each generated face f the number of
unused points that corresponds to the weight of f in φi (e.g., using the technique
in [7], where the unused points are regarded as isolated vertices). The sequence
〈Γ1, Γ2, . . . , Γn〉 satisfies Properties R1 and R2, i.e., it is a realization of S. �	

3 Realizability Testing of Graph Stories

We first prove that testing whether a graph story is realizable is NP-hard for
any given integer k ≥ 0 (Theorem 1). Then we prove the that the problem is
in FPT when parameterized by σ = ω + k (Theorem 2).

Theorem 1. For any integer k ≥ 0, testing the realizability of a graph story
S = (G,ω, k, τ) is NP-hard.

Proof (sketch). We use a reduction from the Sunflower SEFE problem, which
is defined as follows. Let G′

1, G
′
2, . . . , G

′
l be graphs on the same vertex-set such

that each edge in the union of all graphs belongs either to only one of the input
graphs or to all the input graphs. Sunflower SEFE asks whether there exists
a drawing Γ ′ of G′

1 ∪ G′
2 ∪ · · · ∪ G′

l such that two edges cross only if they do not
belong to the same graph G′

i. Sunflower SEFE is NP-hard for l ≥ 3 [22].
Starting from an instance of Sunflower SEFE with l = 3, we construct a

non-minimal graph story S = (G = (V,E), ω, k, τ) as follows; refer to Fig. 3 for
an example with k = 4. Let G′

1, G
′
2, and G′

3 be the input graphs of Sunflower

SEFE with vertex-set V ′, let E′
i be the set of edges that belong only to graph G′

i

(1 ≤ i ≤ 3), and let E′
∩ be the set of edges that belong to all the input graphs.

Without loss of generality, we can assume that |E′
1| ≥ |E′

2| ≥ |E′
3|.

We now show how we define sets V and E. For every graph G′
i (1 ≤ i ≤ 3),

we subdivide each edge e of E′
i with two vertices dA

e and dB
e and we add them

to two sets DA
i and DB

i , respectively; see dA
(u,y) and dB

(u,y) in Fig. 3(b). We add
the three edges obtained by subdividing e to a set E′′

i . If needed, we enrich sets
DA

2 , DB
2 , DA

3 , and DB
3 with isolated vertices so that all the sets DX

i have the
same cardinality ω̃ = |E′

1| (note that ω̃ = |DA
1 | = |DB

1 |), with 1 ≤ i ≤ 3 and
X ∈ {A,B}; see the green isolated vertices in Fig. 3(b). Also, we create four sets
Δj (1 ≤ j ≤ 4) of ω̃ isolated vertices δj,1, . . . , δj,ω̃; see the purple isolated vertices
in Fig. 3(b). We define V = V ′∪DA

1 ∪DB
1 ∪DA

2 ∪DB
2 ∪DA

3 ∪DB
3 ∪Δ1∪Δ2∪Δ3∪Δ4

and E = E′
∩ ∪ E′′

1 ∪ E′′
2 ∪ E′′

3 . We define ω as ω = |V ′| + 6ω̃. Finally, we suitably
define τ in such a way that the vertices of the various subsets of V appear in
the following order: 〈DA

1 ,Δ1,D
A
2 ,Δ2,D

A
3 , V ′,DB

1 ,Δ3,D
B
2 ,Δ4,D

B
3 〉.

S is constructed in O(|V ′|) time and ω ∈ O(|V ′|). We show in the full ver-
sion [11] that S is realizable if and only if {G′

1, G
′
2, G

′
3} is a yes instance of

Sunflower SEFE. Refer to Fig. 3(c) to (e) for an example. �	
Theorem 2. Let S = (G,ω, k, τ) be a graph story and let n be the number
of vertices of G. There exists an O(n · 2(4σ+1) log2 σ)-time algorithm that tests
whether S is realizable, where σ = ω + k.
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Fig. 3. (a) A drawing Γ ′ of a yes instance {G′
1, G

′
2, G

′
3} of Sunflower SEFE. The

edges of E′
∩ are black; the edges of E′

1, E′
2, and E′

3 are red, blue, and green, respectively.
(b) A drawing of graph G of the story S = (G, ω, 4, τ) constructed from the instance of
Fig. 3(a). The vertices of DA

1 (DA
2 , DA

3 , resp.) and DB
1 (DB

2 , DB
3 , resp.) are red (blue,

green, resp.); the vertices of Δi (1 ≤ i ≤ 4) are purple. The points of P are represented
as yellow disks. (Color figure online)

Proof (sketch). For each subgraph Gi (i = ω, . . . , n), let Ei = {φ1
i , φ

2
i , . . . , φ

si
i } be

the set of all planar face-k-weighted embeddings of Gi. We construct a directed
acyclic graph D as follows: (i) For each φj

i ∈ Ei (i = ω, . . . , n and j = 1, . . . , si),
D has a node vj

i corresponding to φj
i . (ii) For each pair of elements φj

i and φr
i+1

(ω ≤ i ≤ n − 1; 1 ≤ j ≤ si; 1 ≤ r ≤ si+1), D contains a directed edge (vj
i , v

r
i+1)

if and only if φj
i and φr

i+1 are compatible face-k-weighted embeddings.
Each set Ei, with i = ω, . . . , n, defines a distinct layer of vertices of D, called

layer i. By construction, each vertex of layer i can only have outgoing edges
towards vertices of layer i + 1 (if i < n) and incoming edges from vertices of
layer i − 1 (if i > ω). We finally augment D with a dummy source s connected
with outgoing edges to all vertices of layer 1 and with a dummy sink t connected
with incoming edges to all vertices of layer n. By Lemma 3, S is realizable if
and only if there is a directed path from s to t in D. The time complexity of the
algorithm is analyzed in the full version [11]. �	
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When k = 0, we have Corollary 1. Also, Theorems 1 and 2 imply Corollary 2.

Corollary 1. Let S = (G,ω, τ) be a minimal graph story and let n be the num-
ber of vertices of G. There exists an O(n ·2(4ω+1) log2 ω)-time algorithm that tests
whether S is realizable.

Corollary 2. For any integer k ≥ 0, testing the realizability of a graph story
S = (G,ω, k, τ) is NP-complete.

4 Minimal Graph Stories

We now turn our attention to minimal graph stories that can be realized for small
values of ω. If ω ≤ 4 every minimal graph story is easily realizable, independent
of G and of τ , and even if G is not a planar graph (just use any predefined planar
drawing of the complete graph K4 as a support for each Γi (i = 1, . . . , n)).
Establishing which minimal graph stories are realizable when ω ≥ 5 is more
challenging. We show that every graph story is realizable if G is outerplanar
(Theorem 3), while if G is a series-parallel graph this is not always the case, even
if ω = 5 (Lemma 4). However, we prove that stories of partial 2-trees (which
include series-parallel graphs) are always realizable for ω = 5 if we are allowed
to “reroute” at most one edge per time (a formal definition is given later); this
result is an implication of a more general result for stories with ω = 5 (Theorem
4). Lemma 4 and Theorem 4 together close the gap on the realizability of minimal
graph stories of partial 2-trees when ω = 5. Finally, for ω = 5 we prove that
every minimal graph story is realizable if G is a planar triconnected cubic graph
(Theorem 5). A graph is cubic if all its vertices have degree three.

For a story of an outerplanar graph, we show that any outerplanar embedding
is a supporting embedding (see the full version [11] for details).

Theorem 3. Every minimal graph story S = (G,ω, τ) with G outerplanar is
realizable. Also, any outerplanar embedding of G is a supporting embedding for S.

Proof. Let φ be any outerplanar embedding of G, and let φi be the restriction of
φ to Gi (1 ≤ i ≤ n). Consider any two consecutive planar embeddings φi−1 and
φi, for ω + 1 ≤ i ≤ n. Since they are restrictions of the same planar embedding
of G, then their restrictions to Gi ∩ Gi−1 determine the same set F of faces.
Also, both vi and vi−ω lie in the plane region corresponding to the external face
of F . Hence, φi−1 and φi are compatible and, by Lemma 3, S is realizable. �	

Lemma 4. For any ω ≥ 5, there exists a minimal graph story S = (G,ω, τ)
such that G is a series-parallel graph and S is not realizable.

Proof (sketch). Consider the story (G, 5, τ) in Fig. 4(a), where the vertices are
labeled with their subscript in the sequence τ = 〈v1, v2, . . . , v8〉. Graph G5 admits
one of the four embeddings in Figs. 4(b) to (e). Observe that, in all four cases either
cycle 3, 4, 5 separates 6 from 7 in G7 (Figs. 5(c) and (n)), or cycle 4, 5, 6 separates
7 from 8 in G8 (Figs. 5(g) and (k)). See the full version [11] for ω > 5. �	
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Fig. 4. (a) A minimal graph story of a series-parallel graph that is not realizable.
(b),(c),(d),(e) the four combinatorial embeddings of G5.

Since Property R2 of Definition 2 is a strict requirement, one can think of
relaxing it by allowing a partial change of the drawing of Gi−1 ∩Gi when vertex
vi enters the viewing window. Let Γ be a planar drawing of G, (u, v) be an edge
of G incident to two distinct faces f and f ′ of Γ , and p be a point of the plane
inside face f ; see Fig. 6(a). Rerouting (u, v) with respect to p consists of planarly
redrawing (u, v) such that u and v keep their positions and p lies inside f ′; see
Fig. 6(b). The obtained drawing has the same planar embedding as Γ .
An h-reroute realization of S = (G,ω, k, τ) on a set P of ω+k points (h ≥ 0) is a
sequence 〈Γ1, Γ2, . . . , Γn〉 satisfying Property R1 of Definition 2 and such that the
restriction of Γi to Gi−1 ∩Gi (2 ≤ i ≤ n) is obtained from the restriction of Γi−1

to Gi−1 ∩Gi by rerouting at most h distinct edges with respect to h points of P .
S is h-reroute realizable if it has an h-reroute realization on a set of ω+k points.

The next theorem characterizes the set of graph stories S = (G, 5, τ) that
are 1-reroute realizable. It properly includes those stories whose G is planar.

Theorem 4. Every minimal graph story S = (G, 5, τ) is 1-reroute realizable if
and only if G does not contain K5.

Proof (sketch). We only sketch here the proof of one of the two directions. Sup-
pose that G does not contain K5. Let Γ4 be a planar drawing of G4 on P . Let p
be the point of P to which no vertex of G4 is mapped, let f be the face of Γ4 that
contains p, and let N(v5) be the set of neighbors of v5 in G5. If the boundary of
f has four vertices, then v5 can be mapped to p and it can be connected to all
its neighbors without creating edge crossings, so to obtain a planar drawing Γ5

of G5. If the boundary of f has three vertices, mapping v5 to p and connecting it
to its neighbors may create an edge crossing. To avoid this crossing, it is possible
to reroute an edge of the boundary of f with respect to p such that p lies inside
a face whose boundary contains all vertices in N(v5). Such an edge always exists
because the faces of Γ4 are pairwise adjacent. More precisely, if G4 is not K4,
then there is a face f ′ of Γ4 (adjacent to f) that contains all vertices of G4. If
G4 is K4, then |N(v5)| ≤ 3, as G does not contain K5. Also, there is a face f ′

of Γ4 that contains all vertices of N(v5). In both cases, we can reroute any edge
e shared by f and f ′ so that p lies inside f ′. This procedure can be applied for
each pair of graphs Gi−1 and Gi (5 < i ≤ n): Γi is obtained by mapping vi to
the same point p of P to which vi−5 is mapped in Γi−1, by rerouting at most
one edge with respect to p. �	
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Fig. 5. Tentative realizations of the story of Fig. 4(a) starting from the embeddings of
Figs. 4(b) to (e). They all lead to a failure.

Fig. 6. Rerouting edge (u, v) with respect to point p.
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The proof of the next theorem is rather technical and can be found in
the full version [11]. It relies on constructing a non-planar embedding φ of G
(with dummy vertices replacing crossings) such that there exists a realization
〈Γ1, . . . , Γn〉 of S where the planar embedding of Γi is the restriction of φ to Gi

(i = 1, . . . , n).

Theorem 5. Every minimal graph story S = (G, 5, τ) such that G is an n-
vertex planar triconnected cubic graph is realizable. A sequence of compatible
planar embeddings for S can be found in O(n) time.

5 Lower Bounds for Non-minimal Graph Stories

The next lemma can be used to prove lower bounds on the number of extra
points required for the realizability of certain graph stories.

Lemma 5. Let S = (G,ω, k, τ) be a realizable graph story. Suppose that: (i) G
contains vertex-disjoint cycles C1, . . . , Ch such that Cj−2, Cj−1, Cj ∈ Gij , with
j = 3, . . . , h, ij−1 < ij and ij − ij−1 < ω; (ii) in all planar embeddings of Gij ,
Cj−1 separates Cj−2 from Cj. We have that σ = ω + k ∈ Ω(h).

Proof (sketch). Let R = 〈Γ1, . . . , Γn〉 be a realization of S and let σi be the total
number of points used by 〈Γ1, . . . , Γi〉. Without loss of generality, assume that
in all planar embeddings of Gij , cycle Cj is outside Cj−1, which is outside Cj−2.
Also, observe that a cycle has at least 3 vertices. We prove, by induction on j,
that the points used by R for the vertices in {C1, . . . , Ch−1} lie in the plane
region delimited by Ch and that σh ≥ 9 + 3(h − 1). See the full version [11] for
details. �	

As an example, we exploit Lemma 5 to prove the following theorem, which
generalizes [5, Theorem 1] and whose proof can be found in the full version [11].

Let n ≡ 0 mod 3. An n-vertex nested triangles graph G contains the vertices
and edges of the 3-cycle Ci = (vi−2, vi−1, vi), for i = 3, 6, . . . , n, plus the edges
(vi, vi+3), for i = 1, 2, . . . , n − 3. For n ≥ 6, G is triconnected, thus it has a
unique planar embedding (up to the choice of the external face) [24].

Theorem 6. Let S = (G, 9, k, τ) be a realizable graph story such that G is a 3h-
vertex nested triangles graph, where τ is given by the indices of the vertices of G.
Any realization of S has k ∈ Ω(n), where n = 3h is the number of vertices of G.

While Lemma 5 exploits the uniqueness of the embedding of G, the next
result provides lower bounds also for graphs that have several planar embeddings.

Theorem 7. For any ω ≥ 8, there exists a graph story S = (G,ω, k, τ) such
that G is a series-parallel graph and S is not realizable for k < �ω

2  − 3.



Small Point-Sets Supporting Graph Stories 301

Fig. 7. Illustration for Theorem 7. Case ω = 8.

Fig. 8. Illustration for Theroem 7. Case ω = 8. Drawings of G8 and G11.

Proof (sketch). We prove here the statement for ω = 8, and we show in the
full version [11] how to extend the result to any ω > 8. Consider the instance
S = (G, 8, 0, τ) in Fig. 7, where the vertices are labeled with their subscript
in the order τ = 〈v1, v2, . . . , v11〉. Graph G is a parallel composition of four
components, three of which are a series of an edge and a triangle, and the other
one is a path of length four.

Observe that, in any planar embedding of Gω = G8 at most two among
v1, v2, and v3 can be incident to the same face (see Fig. 8(a)). Graph G11 con-
tains the paths (v7, v4, v8), (v7, v5, v8), (v7, v6, v8), and (v7, v9, v10, v11, v8). Since
v9, v10, and v11 are mapped to the points where v1, v2 and v3 are mapped, respec-
tively, it is not possible to obtain a planar embedding of G11 (see Fig. 8(b)). Thus,
S does not admit a realization.

To prove that S = (G, 8, k, τ) is realizable for k ≥ �ω
2 −3 = 1, suppose that v1

and v2 are drawn on the same face f and there is an extra point p inside f . In this
case S is realizable, and G8 and G11 are drawn as in Fig. 8(c) (d). �	

6 Final Remarks and Open Problems

We conclude with some open research directions. (i) Theorem 1 implies that
the realizability testing of graph stories is paraNP-hard when parameterized
by k. On the other hand, Theorem 2 proves that the problem is in FPT when
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parameterized by ω + k. For non-minimal graph stories, it remains open to
establish the complexity of the realizability problem when parameterized by ω
alone. (ii) About minimal graph stories, we showed that for ω ≥ 5 there are
stories of series-parallel graphs that are not realizable. For k = 1, the smaller ω
for which we have a non-realizable story of a series-parallel graph is 10. What
about the realizability of series-parallel graphs for k = 1 and 5 ≤ ω ≤ 9? (iii)
Finally, is any (minimal) graph story h-reroute realizable for h being a constant
or a sublinear function of ω?
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1 Introduction

Let G = (V,E) be a graph with n vertices. We write [n] as shorthand for the
set {1, 2, . . . , n}. A storyplan S = 〈τ, {Di}i∈[n]〉 of G is a pair defined as follows.
The first element is a bijection τ : V → [n] that represents a total order of the
vertices of G. For a vertex v ∈ V , let iv = τ(v) and let jv = maxu∈N [v] τ(u),
where N [v] is the set containing v and its neighbors. The lifespan of v is the
interval [iv, jv]. We say that v appears at step iv, is visible at step i for each
i ∈ [iv, jv], and disappears at step jv + 1. Note that a vertex does not disappear
until all its neighbors have appeared. The second element of S is a sequence of
drawings {Di}i∈[n], such that: (i) each drawing Di contains all vertices visible
at step i, (ii) each drawing Di is planar, (iii) the point representing a vertex
v is the same over all drawings that contain v (i.e., it does not change during
the lifespan of v), and (iv) the curve representing an edge e is the same over all
drawings that contain e. We introduce the StoryPlan problem.

StoryPlan

Input: Graph G = (V,E)
Question: Does G admit a storyplan?

In what follows, each drawing Di of a storyplan S is called a frame of S.
Also, we denote by |Di| the number of vertices of Di, while the width of S
is w(S) = maxi∈[n] |Di| − 1 (we subtract one to align the definition with other
width parameters). If G admits a storyplan, then the framewidth of G, denoted
by fw(G), is the minimum width over all its storyplans; otherwise the framewidth
of G is conventionally set to +∞. We will observe that the framewidth of G upper
bounds its pathwidth [12], since each frame can be interpreted as a bag of a path
decomposition with the addition of conditions (ii)–(iv).

Motivation and Related Work. Testing for the existence of a storyplan
of a graph generalizes planarity and it is of theoretical interest as it combines
classical width parameters of graphs with topological properties. From a more
practical perspective, computing a storyplan (if any) of a graph G is a natural
way to gradually visualize G in a story-like or small-multiples fashion, such
that each single drawing is planar and the reader’s mental map is preserved
throughout the sequence of drawings (see, e.g., [8] for a similar approach). More
in general, the problem of visualizing graphs that change over time has motivated
a notable amount of literature in graph drawing and network visualization (see,
e.g., [2,3,6,7,15,16]). While numerous dynamic graph visualization models have
been proposed, two works are of particular interest for our research. The first one
is the work by Borrazzo et al. [6], in which the following problem is introduced.
A graph story is formed by a graph G, a total order of its vertices τ , and a
positive integer W . The problem is to find a sequence of drawings {Di}i∈[n] in
which each Di contains all vertices v such that i − W < τ(v) ≤ i, and the
position of a vertex is the same over all drawings it belongs to. Borrazzo et al.
prove that any story of a path or a tree can be drawn on a 2W × 2W and on an
(8W + 1) × (8W + 1) grid, respectively, so that all the drawings of the story are
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straight-line and planar. Note that having a fixed window of size W implies that
at most O(W · n) edges of G can be represented, in particular, any edge whose
endpoints are at distance larger than W in τ does not appear in any drawing.
Having both a fixed order and a fixed lifespan are the key differences with our
setting. In particular, unconstrained lifespans allow us to find stories in which
all edges are drawn in at least one step, while planarity still guarantees that
even large frames are readable. Besides such differences in the models, our focus
is on the complexity of the decision problem, rather than on area bounds for
specific graph families. The second work is by Da Lozzo and Rutter [7], who
introduce stream planarity. Given a graph G, a total order τ of the edges of
G, and a positive integer W , stream planarity asks for a sequence of drawings
{Di}i∈[n] in which each Di contains all edges e such that i − W < τ(e) ≤ i, and
the subdrawing of the vertices and edges shared by Di and Di−1 is the same in
both drawings. Da Lozzo and Rutter prove that there exists a constant value for
W for which the stream planarity problem is NP-complete. They also study a
variant where a backbone graph is given whose edges must stay in the drawing
at each time step; for this variant they prove that the problem is NP-complete
for all W ≥ 2 and can be solved in polynomial time when W = 1 or when
the backbone graph is biconnected. The difference of stream planarity with our
problem, besides the fact that edges are streamed rather than vertices, is again
having a fixed order and a fixed lifespan.

Contribution. The main results in this paper can be summarized as follows.

– We show that StoryPlan is NP-complete (Sect. 3.1). As we reduce from
One-In-Three 3SAT and we blow up the instance by a linear factor, it
follows that there is no algorithm that solves StoryPlan in 2o(n) time unless
ETH fails. On the other hand, such a lower bound can be complemented with
a simple algorithm running in 2O(n log n) time.

– Motivated by the above hardness, we study the parameterized complexity of
StoryPlan and describe two fixed-parameter tractable algorithms. We first
show that StoryPlan belongs to FPT when parameterized by the vertex
cover number via the existence of a kernel, whose size is however super-
polynomial (Sect. 3.2). We then prove that StoryPlan parameterized by
the feedback edge set number (i.e., the minimum number of edges whose
removal makes the graph acyclic) admits a kernel of linear size (Sect. 3.3).

– In parameterized analysis, a central parameter to consider is treewidth. In
this direction, finding a parameterized algorithm for StoryPlan appears to
be an elusive task. However, we show that for partial 3-trees, a storyplan
always exists and can be computed in linear time (Sect. 3.4).

– Finally, we initiate the study of the complexity of a variant of StoryPlan

in which the total order of the vertices is fixed in advance (but the vertex
lifespan remains unconstrained). We prove NP-completeness for this problem
via a reduction from Sunflower SEFE [14] (Sect. 4).

Some proofs are omitted and can be found in [4]; the corresponding statements
are marked (�).



On the Complexity of the Storyplan Problem 307

2 Preliminaries and Basic Results

A drawing Γ of a graph G = (V,E) is a mapping of the vertices of V to points in
the plane R2, and of the edges of E to Jordan arcs connecting their corresponding
endpoints but not passing through any other vertex. Drawing Γ is planar if no
edge is crossed. A graph is planar if it admits a planar drawing. A planar drawing
of a planar graph G subdivides the plane into topologically connected regions,
called faces. The infinite region is the outer face. A planar embedding E of G is
an equivalence class of planar drawings that define the same set of faces and the
same outer face. For any V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced
by the vertices of V ′ and by Γ [V ′] the subdrawing of Γ representing G[V ′].

Connection with Pathwidth. The next properties show some simple connec-
tions between storyplans and path decompositions [12].

Theorem 1 (�). Let G = (V,E) be a graph, then pw(G) ≤ fw(G). Also, if G is
planar then it always admits a storyplan, and in particular pw(G) = fw(G).

Since computing the pathwidth is NP-hard already for planar graphs of bounded
degree [11], the next corollary immediately follows from Theorem 1.

Corollary 1. Computing the framewidth of a graph is NP-hard for planar
graphs of bounded degree.

Analogously, computing the pathwidth of a graph is FPT in the pathwidth [5],
hence computing the framewidth of a planar graph is also FPT in the framewidth.

Complete Bipartite Graphs. It is not difficult to verify that if a graph admits
a storyplan, then it does not contain K5 as a subgraph. However, complete
bipartite graphs always admit a storyplan and such storyplans have important
properties. The next statement plays a central role in most of our proofs.

Lemma 1 (�). Let Ka,b = (A∪B,E) be a complete bipartite graph with a = |A|,
b = |B|, and 3 ≤ b ≤ a. Let S = 〈τ, {Di}i∈[a+b]〉 be a storyplan of Ka,b. Exactly
one of A and B is such that all its vertices are visible at some i ∈ [a + b].

In view of Lemma 1, we have the following definition.

Definition 1. For a complete bipartite graph Ka,b with 3 ≤ b ≤ a and a story-
plan S of Ka,b, we call fixed the partite set of Ka,b whose vertices are all visible
at some step of S, and flexible the other partite set.

3 Complexity of STORYPLAN

In this section we prove that: StoryPlan is NP-complete and cannot be solved
in 2o(n) time unless ETH fails, but there is an algorithm running in 2O(n log n)

time (Sect. 3.1); StoryPlan is in FPT parameterized by vertex cover number
or feedback edge set number (Sects. 3.2 and 3.3); graphs of treewidth at most 3
always admit a storyplan, which can be computed in linear time (Sect. 3.4).
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Fig. 1. Illustration for the reduction of Theorem 2.

3.1 Hardness

We reduce from One-In-Three 3SAT, a variant of 3SAT which asks whether
there is a satisfying assignment in which exactly one literal in each clause is true.
Let ϕ be a 3SAT formula over N variables {xi}i∈[N ] and M clauses {Ci}i∈[M ].
We construct an instance of StoryPlan, i.e., a graph G = (V,E), as follows;
refer to Fig. 1 for an illustration.

Variable Gadget. Each variable xi is represented in G by a copy K(xi) of
K3,3 (see Fig. 1(a)). Let Ai and Bi be the two partite sets of K(xi), which we
call the v-sides of K(xi). A true (false) assignment of xi will correspond to set
Ai being flexible (fixed) in a putative storyplan of G (see Definition 1).

Clause Gadget. Consider a copy of K2,2,2 = (U1 ∪ U2 ∪ U3, F ). An extended
K2,2,2 is the graph obtained from any such a copy by adding three vertices
s1, s2, s3, such that these three vertices are pairwise adjacent, and each sj is
adjacent to both vertices in Uj , for j ∈ {1, 2, 3}. In the following, s1, s2, s3 are
the special vertices of the extended K2,2,2, while the other vertices are the simple
vertices. A clause Ci is represented in G by an extended K2,2,2, denoted by K(Ci)
(see Fig. 1(b)). In particular, we call each of the three sets of vertices Uj ∪{sj} a
c-side of K(Ci). The idea is that K(Ci) admits a storyplan if and only if exactly
one c-side is flexible (each c-side will be part of a K3,3, see the wire gadget
below).

Wire Gadget. Refer to Fig. 1(c). Let xi be a variable having a literal lij in a
clause Cj . Any such variable-clause incidence is represented in G by a set of three
vertices, which we call the w-side W (lij). All vertices of W (lij) are connected to
all vertices of one of the three c-sides of K(Cj), which we call U , such that the
graph induced by W (lij) ∪ U in G contains a copy of K3,3. Also, each vertex of
W (lij) is connected to all vertices of the v-side Ai (Bi) if the literal is positive
(negative), such that the graph induced by W (lij) ∪ A (W (lij) ∪ B) in G is a
copy of K3,3. Also, note that each c-side of K(Cj) is adjacent to exactly one
w-side.
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Lemma 2 (�). If graph G admits a storyplan then ϕ admits a satisfying assign-
ment with exactly one true literal in each clause.

Proof (Sketch). Let S be a storyplan of G. For each variable gadget K(xi) we
assign the value true to xi if the v-side Ai is flexible in S. Consider any literal
lij and the wire gadget Wij . If lij is positive (negative), then Ai (Bi) and Wij

form a K3,3, hence by Lemma 1 the w-side Wij is fixed (flexible). Analogously,
if we consider the clause gadget K(Cj), the c-side connected with Wij is flexible
(fixed). Symmetrically, we assign the value false to xi if the v-side Bi is instead
flexible in S, and for any positive (negative) literal lij , the w-side Wij is flexible
(fixed), while the corresponding c-side of K(Cj) is fixed (flexible). In other words,
the value of xi propagates consistently throughout all its literals. It remains to
prove that, for any clause Cj of ϕ, precisely one literal is true. Namely, we claim
that exactly one c-side of K(Cj) is flexible, while the other two are fixed. At
high level, we rely on the fact that an extended K2,2,2 wants at least two c-sides
to be fixed, while the special vertices force at least one c-side to be flexible.

Lemma 3 (�). If the formula ϕ admits a satisfying assignment with exactly one
true literal in each clause, then graph G admits a storyplan.

Proof (Sketch). Given a satisfying assignment of ϕ with one true literal per
clause, we can compute a storyplan S = 〈τ, {Di}i∈[n]〉 of G. In what follows,
when the order of a group of vertices is not specified, any relative order is valid.

Fig. 2. Proof of Lemma 3: drawing the vertices of the fixed v-sides.

Consider a single variable gadget K(xi). If xi is true in the satisfying assign-
ment, then we let appear the three vertices of the v-side Bi of K(xi), that is, Bi

is the fixed side of K(xi). If xi is false, we do the opposite, namely we let appear
the three vertices of the v-side Ai of K(xi). This procedure is repeated for all
variables in any order. For ease of presentation, we can imagine that all the
drawn v-sides are horizontally aligned, as shown in Fig. 2. Thus, for the variable
gadgets, it remains to draw their flexible v-sides.

Consider now a wire gadget W (lij). If xi is true and lij is positive, then
W (lij) must be fixed because it forms a K3,3 with the v-side Ai of K(xi), which
is flexible. Therefore we let appear the three vertices of W (lij). Similarly, if xi is
false and lij is negative, then W (lij) must be fixed, and we let appear the three
vertices of W (lij). Again, this procedure is repeated for all wires in any order.
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Fig. 3. Proof of Lemma 3: drawing the vertices of the fixed w-sides.

For ease of presentation, we can imagine that all the drawn w-sides are arranged
along a horizontal line slightly above the variable gadgets, as shown in Fig. 3.
Thus, also for the wire gadgets, it remains to draw the flexible w-sides.

Fig. 4. Proof of Lemma 3: drawing the vertices of the flexible v-sides.

We sketch the remaining part of the proof (see [4] for a full proof). Flexible
v-sides can be drawn as in Fig. 4. Figure 5 shows how to draw a clause gadget,
ignoring the connections with the linked wire gadgets. Finally, in order to draw
the flexible w-sides and their edges, and the edges between the fixed w-sides and
the corresponding c-sides, we enclose all the wire and variable gadgets in a face
of the current clause gadget where all vertices of the linked c-side are visible.

Theorem 2 (�). The StoryPlan problem is NP-hard and it has no 2o(n) time
algorithm unless ETH fails.

The above lower bound for the running time of an algorithm solving Story-

Plan can be easily complemented with a nearly tight upper bound. The proof
of the next theorem also shows that StoryPlan belongs to NP. Namely, it gives
a nondeterministic scheme to generate a set of candidate solutions, and then it
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Fig. 5. Proof of Lemma 3: drawing a clause gadget.

shows how to check, in polynomial time, if a candidate solution is valid. However,
it intertwines such process in order to obtain a lower time complexity.

Theorem 3 (�). The StoryPlan problem is in NP. Also, given an n-vertex
graph G, there is an algorithm that solves StoryPlan on G in 2O(n log n) time.

Proof (Sketch). We first guess a total order of the vertices of G. This fixes for
each i ∈ [n] the visible vertices. Next, for each i ∈ [n], we generate the possible
planar embeddings (rather than planar drawings) of the graph induced by the
vertices visible at step i, and discard any embedding E for which there is no
planar embedding E ′ generated at step i−1 (if i > 1) such that the restrictions of
E and E ′ to the common subgraph coincide. If the algorithm returns at least one
planar embedding at step n, there is a sequence of planar embeddings in which
common subgraphs share the same embedding, hence G admits a storyplan.

3.2 Parameterization by Vertex Cover Number

A vertex cover of a graph G = (V,E) is a set C ⊆ V such that every edge of E
is incident to a vertex in C, and the vertex cover number of G is the minimum
size of a vertex cover of G. We prove the following by means of kernelization.

Theorem 4 (�). Let G = (V,E) be a graph with n vertices and vertex cover
number κ = κ(G). Deciding whether G admits a storyplan, and computing one
if any, can be done in O(22

O(κ)
+ n2) time.

Algorithm Description. Without loss of generality, we assume that the input
graph G does not contain isolated vertices, as they do not affect the existence of
a storyplan. Let C be a vertex cover of size κ = κ(G) of graph G. For U ⊆ C,
a vertex v ∈ V \ C is of type U if N(v) = U , where N(v) denotes the set
of neighbors of v in G. This defines an equivalence relation on V \ C and in
particular partitions V \ C into at most

∑κ
i=1

(
κ
i

)
= 2κ − 1 < 2κ distinct types.

Denote by VU the set of vertices of type U . We define three reduction rules.

R.1: If there exists a type U such that |U | = 1, then pick an arbitrary vertex
x ∈ VU and remove it from G.
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R.2: If there exists a type U such that |U | = 2 and |VU | > 1 , then pick an
arbitrary vertex x ∈ VU and remove it from G.

R.3: If there exists a type U such that |U | ≥ 3 and |VU | > 3 , then pick an
arbitrary vertex x ∈ VU and remove it from G .

Lemma 4 (�). Let G′ be the graph obtained from G by applying one of the
reduction rules R.1–R.3. Then G admits a storyplan if and only if G′ does.

Proof (Sketch). For the nontrivial direction, suppose that G′ admits a storyplan
S ′ = 〈τ ′, {D′}i∈[n′]〉, where n′ = n − 1. We can distinguish three cases based on
the reduction rule applied to G. Here we only prove the simplest of the three
cases, namely the case in which R.1 is applied. See Fig. 6 for an illustration. Let
x be the vertex removed from G to obtain G′ and let v be its neighbor, whose
lifespan according to τ ′ is [iv, jv]. We compute τ from τ ′ by inserting x right after
v, thus the lifespan of x in τ is [iv + 1, iv + 1]. Similarly, we compute {Di}i∈[n]

from {D′}i∈[n′] as follows. For each i ≤ iv, we set Di = D′
i. For i = iv + 1,

we draw x in D′
iv

sufficiently close to v such that edge xv can be drawn as a
straight-line segment that does not intersect any other edge. We then set Di to
be equal to the resulting drawing. For each i > iv + 1, we set Di = D′

i−1.

Fig. 6. Illustration for Case A of the proof of Lemma 4.

Based on Lemma 4, we can construct an equivalent instance of G of size
O(2κ) and use it to conclude the proof of Theorem 4 (see [4]).
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3.3 Parameterization by Feedback Edge Set

A feedback edge set of a graph G = (V,E) is a set F ⊆ E whose removal results
in an acyclic graph, and the feedback edge set number of G is the minimum size
of a feedback edge set of G. We prove the following.

Theorem 5. Let G be a graph with n vertices and feedback edge set of size
ψ = ψ(G). Deciding whether G admits a storyplan, and computing one if any,
can be done in O(2O(ψ log ψ) + n2) time.

Algorithm Description. A k-chain of G is a path with k+2 vertices and such
that its k inner vertices all have degree two. We define two reduction rules.

R.A: If there exists a vertex of degree one, then remove it from G .

R.B: If there exists a k -chain with k ≥ 3 , then remove its inner vertices
from G.

Based on the above reduction rules we can prove the following.

Lemma 5 (�). StoryPlan parameterized by feedback edge set number admits
a kernel of linear size.

To conclude the proof of Theorem 5, observe that computing a linear kernel G∗

of G, i.e., applying exhaustively the reduction rules R.A and R.B, can be done
in O(n + ψ) time. Afterwards, following the lines of the proof of Theorem 4, we
can brute-force a solution for G∗ (if any) in 2O(ψ log ψ) time, and reinsert the
missing O(n) vertices each in O(n) time (as detailed in [4, Lemma 9]).

3.4 Partial 3-trees

A k-tree has a recursive definition: A complete graph with k vertices is a k-tree;
for any k-tree H, the graph obtained from H by adding a new vertex v connected
to a clique C of H of size k is a k-tree; C is the parent clique of v. A partial k-tree
is a subgraph of a k-tree and partial k-trees are exactly the graphs of treewidth
at most k. Since 2-trees are planar, they admit a storyplan by Theroem 1. We
prove that the same holds for partial 3-trees (which may be not planar).

Theorem 6 (�). Every partial 3-tree G with n vertices admits a storyplan,
which can be computed in O(n) time.

Proof (Sketch). We shall assume that G is a (non-partial) 3-tree. Indeed, if G is
a partial 3-tree, a supergraph of G that is a 3-tree always exists by definition. We
now construct a specific tree decomposition T of G that will be used to compute
its storyplan; refer to Fig. 7. For a definition of tree decomposition see [13]. The
subgraph Cμ induced by the vertices of each bag μ of T is the subgraph associated
with μ and it is a 4-clique for each bag μ of T , except for the root ρ of T for which
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Fig. 7. (a) A 3-tree G. (b) The decomposition tree T of G. (c) The subgraph Gµ of G
associated with bag µ, highlighted in (b).

Cρ is the initial 3-cycle. The subgraph Cμ contains four 3-cliques, three of them
are active (this means that they can appear in some subgraph Cν associated
with a child ν of μ) and one is non-active. The unique 3-clique in Cρ is active.
Each bag μ of T has one child ν for each vertex v whose parent clique is an
active 3-clique of μ. The 4-clique Cν consists of the parent clique C of v, vertex
v, and the edges connecting v to C; C is non-active in ν, while the other three
3-cliques are active. For each bag μ distinct from ρ, we denote by vμ the vertex
shared by the three active 3-cliques of Cμ. We say that vμ is associated with μ.
One easily verifies that T is a tree decomposition. Also, T has n − 2 bags: the
root and a bag for each vertex of G that is not in the initial 3-cycle.
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We now associate to each bag μ a subgraph Gμ of G. For the root ρ, the
subgraph Gρ is the initial 3-cycle. For a bag μ with parent λ, the subgraph Gμ

is obtained from Gλ by connecting vμ to the vertices of its parent clique.

Property 1. Every graph Gμ is an embedded planar 3-tree such that the active
3-cliques of Cμ are internal faces of Gμ.

The proof of Property 1 is by induction on the length of the path from the
root ρ to μ in T . The graph Gρ consists of a 3-cycle, which is the unique active
3-clique and which is both an internal and an external face. The graph Gμ is
obtained by adding the vertex vμ to Gλ and connecting it to its parent clique C,
which is active in Cλ. By induction, C is an internal face of Gλ and therefore,
by placing vμ inside this face, we obtain an embedded planar 3-tree such that
the active faces of Cμ are the three faces created by the addition of vμ inside C.

Let μ �= ρ be a bag of T ; the next property follows from the definition of T .

Property 2. The neighbors of vμ distinct from those of its parent clique are all
vertices associated with bags of the subtree of T rooted at μ.

Let ρ = μ1, μ2, . . . , μn−2 be an order of the bags of T according to a preorder
visit of T . To create a storyplan of G, we define an ordering τ : v1, v2, . . . , vn of
the vertices of G such that v1, v2, and v3 are the vertices of the initial 3-cycle,
and each vi with i > 3 is the vertex associated with μi−2.

Let Gi be the graph induced by the vertices that are visible at step i, for
i ≥ 3; by Property 2 the graph Gi is a subgraph of Gμi

which, by Property
1 is an embedded planar 3-tree such that the three active 3-cliques of Cμi

are
faces of Gμi

. To simplify the description we prove that there exists a storyplan
S = 〈τ, {Di}i∈[n]〉, where each Di is a drawing of Gμi

. This implies that there
exists a storyplan where each Di is a drawing of Gi. Let μj be the parent of
μi in T ; since the order τ corresponds to a preorder of the bags of T , we have
j < i. Moreover, all bags μk with j < k < i, if any, belong to the subtrees
of μj visited before μi and for each such subtree T ′ no other bag of T ′ exists
before μj or after μi. By Property 2 all the vertices associated with the bags μk

that belong to Gμi−1 do not have any neighbor after vμi
and therefore they can

be removed. The removal of these vertices transforms Gμi−1 into Gμj
(all the

vertices associated with the bags μk for j < k < i had been added to Gμj
that

had never been changed). By Property 1 the active 3-cliques of Gμj
are faces

of Gμj
. It follows that there exists a storyplan S = 〈τ, {Di}i∈[n]〉 whose frames

Di are as follows. D1 is a planar drawing of a 3-cycle; given Di−1 of Gμi−1 , a
drawing Di of Gμi

can be computed by removing all vertices associated with the
bags μk for j < k < i, and adding vμi

inside a face of Dj .
The above storyplan can be computed in O(n) time, see [4].
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Fig. 8. Illustration for Theorem 7. (a) An instance G1, G2, G3 of Sunflower SEFE;
(b) The instance G constructed from G1, G2, G3; the subdivision vertices are circles
with a white fill while the spectators are squares.

4 Complexity with Fixed Order

In this section we study the StoryPlanFixedOrder variant of StoryPlan,
defined below. This variant is closer to the setting studied in [6] and it models
the case in which the way the graph changes over time is prescribed.

StoryPlanFixedOrder

Input: Graph G = (V,E) with n vertices, total order τ : V → [n]
Question: Does G admit a storyplan S = 〈τ, {Di}i∈[n]〉?

We prove that StoryPlanFixedOrder is NP-complete by reducing from Sun-

flower SEFE. Let G1, . . . , Gk be k graphs on the same set V of vertices. A
simultaneous embedding with fixed edges (SEFE) of G1, . . . , Gk consists of k
planar drawings Γ1, . . . , Γk of G1, . . . , Gk, respectively, such that each vertex is
mapped to the same point in every drawing and each shared edge is represented
by the same simple curve in all drawings sharing it. The SEFE problem asks
whether k input graphs on the same set of vertices admit a SEFE, and it is
NP-complete even when the pairwise intersection between any two input graphs
is the same over all pairs of graphs [1,14]. This variant is called Sunflower

SEFE, and the result in [1,14] proves NP-completeness already when k = 3.

Construction. Refer to Fig. 8 for an example. Let G1, G2, G3 be an instance of
Sunflower SEFE. Let V be the common vertex set of the three graphs, let E
be the common edge set, and let Ei be the exclusive edge set of Gi for i = 1, 2, 3.
We construct an instance 〈G, τ〉 of StoryPlanFixedOrder as follows. Graph
G contains all vertices in V and all edges in E. Also, for each edge e = uv in Ei,
it contains a vertex wi

e, called a subdivision vertex of Ei, and the edges uwi
e and

vwi
e (i.e., it contains the edge e subdivided once). Moreover, for each vertex z,

either a vertex in V or a subdivision vertex of an edge, G contains an additional
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vertex sz, called the spectator of z, and the edge zsz. To obtain the total order
τ we group the vertices of G in a set of blocks B1, . . . , B8, and we order the
blocks by increasing index, while vertices within the same block can be ordered
arbitrarily. We denote by τ−

i and τ+
i the position in τ of the first and of the last

vertex of Bi, respectively, for each i = 1, . . . , 8. Block B1 contains all vertices
in V ; for i ∈ {2, 4, 6}, block Bi contains all subdivision vertices of E i

2
, while

block Bi+1 contains all spectators of the vertices in Bi; finally B8 contains all
spectators of the vertices in B1.

Theorem 7 (�). The StoryPlanFixedOrder problem is NP-complete.

Proof (Sketch). At a high level, the total order τ is designed to show the three
graphs one by one while keeping the common edge set visible. In particular,
a spectator vertex sv forces vertex v to stay visible until sv appears, while a
subdivision vertex wi

e makes edge e visible only when Gi must be drawn.

5 Discussion and Open Problems

Our work can stimulate further research based on several possible directions.

– It would be interesting to study further parameterizations of StoryPlan. Is
StoryPlan parameterized by treewidth (pathwidth) in XP? In addition, we
note that if the total order is fixed, then an FPT algorithm in the size of the
largest frame (or the length of the longest lifespan) readily follows from the
proof of Theorem 3.

– Conditions (iii) and (iv) of the definition of a storyplan can be replaced by
the existence of a sequence of planar embeddings in which common subgraphs
keep the same embedding. This is not true if we study more geometric versions
of the problem, in which for instance edges are straight-line segments and/or
vertices are restricted on an integer grid of fixed size (as in [6]).

– Condition (ii) of storyplan can be relaxed so to only allow specific crossing
patterns [9,10], e.g., right-angle crossings or few crossings per edge.

Acknowledgement. Research in this work started at the Bertinoro Workshop on
Graph Drawing 2022.

References

1. Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and partitioned
book embedding problems. Theoret. Comput. Sci. 575, 71–89 (2015). https://doi.
org/10.1016/j.tcs.2014.11.016

2. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing
dynamic graphs. In: Borgo, R., Maciejewski, R., Viola, I. (eds.) EuroVis 2014.
Eurographics Association (2014). https://doi.org/10.2312/eurovisstar.20141174

3. Binucci, C., Brandes, U., Di Battista, G., Didimo, W., Gaertler, M., Palladino, P.,
Patrignani, M., Symvonis, A., Zweig, K.A.: Drawing trees in a streaming model.
Inf. Process. Lett. 112(11), 418–422 (2012). https://doi.org/10.1016/j.ipl.2012.02.
011

https://doi.org/10.1016/j.tcs.2014.11.016
https://doi.org/10.1016/j.tcs.2014.11.016
https://doi.org/10.2312/eurovisstar.20141174
https://doi.org/10.1016/j.ipl.2012.02.011
https://doi.org/10.1016/j.ipl.2012.02.011


318 C. Binucci et al.

4. Binucci, C., Di Giacomo, E., Lenhart, W.J., Liotta, G., Montecchiani, F.,
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Abstract. Evolving trees arise in many real-life scenarios from com-
puter file systems and dynamic call graphs, to fake news propagation and
disease spread. Most layout algorithms for static trees do not work well
in an evolving setting (e.g., they are not designed to be stable between
time steps). Dynamic graph layout algorithms are better suited to this
task, although they often introduce unnecessary edge crossings. With
this in mind we propose two methods for visualizing evolving trees that
guarantee no edge crossings, while optimizing (1) desired edge length
realization, (2) layout compactness, and (3) stability. We evaluate the
two new methods, along with five prior approaches (three static and
two dynamic), on real-world datasets using quantitative metrics: stress,
desired edge length realization, layout compactness, stability, and run-
ning time. The new methods are fully functional and available on github.
(This work was supported in part by NSF grants CCF-1740858, CCF-
1712119, and DMS-1839274.)

1 Introduction

Dynamic graph visualization is used in many fields including social networks [28],
bibliometric networks [49], software engineering [14], and pandemic modeling [7];
see the survey by Beck et al. [10]. Here we focus on a special case, evolving
trees. In evolving trees the dynamics are captured only by growth (whereas in
general dynamic graphs, nodes and edges can also disappear). While this is a
significant restriction of the general dynamic graph model, evolving trees are
common in many domains including the Tree of Life [37] and the Mathematics
Genealogy Graph [36]. An evolving tree can also model disease spread, where
nodes correspond to infected individuals and a new node v is added along with
an edge to existing node u if u infected v. Visualizing this process can help us see
how the infection spreads, the rate of infection, and to identify “super-spreaders.”

There are several methods and tools that can be used to visualize evolving
trees [2,15,16,39], however, most of them have limitations that can impact their
usability in this domain. Some represent nodes only as points ignoring labels [15,
16], which makes them less useful in real-life applications where it is important
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to see what each node represents. Others utilize the level-by-level approach for
drawing hierarchical graphs [27,41], which does not capture the underlying graph
structure well. Force-directed algorithms tend to better capture the underlying
graph structure [32], although they may introduce unnecessary edge crossings.
With this in mind, we propose two methods for drawing crossing-free evolving
trees that optimize the following desirable properties:

1. Desired edge length realization: The Euclidean distance between two
nodes u and v in the layout should realize the corresponding pre-specified edge
length l(u, v), or be uniform when no additional information is given. This
is important in several domains, e.g., when visualizing phylogenetic trees [6],
where the edge length represents evolutionary distance between two species.

2. Layout compactness: The drawing area should be proportional to the total
area needed for all the labels. A good visualization should have the labeled
graph drawn in a compact way [40]. This prevents the trivial solution of
scaling the layout until all overlaps and crossings are removed, which can
create vast empty spaces in the visualization.

3. Stability: Between time steps, nodes should move as little as possible. This
helps the viewer maintain a mental map of the graph [38]. If the graph moves
around too much, it is difficult to see where new nodes and edges are added
and we lose the context of the new node’s relation to the rest of the graph.

We propose two force-directed methods that ensure no edge crossings and
optimize desired edge length, compactness and stability. Minimizing edge cross-
ings is important in graph readability [43], and since we work with trees, a layout
without edge crossings is possible and desirable. We use two trees extracted from
Tree of Life [37] and the Mathematics Genealogy [36] projects to demonstrate the
new methods and quantitatively evaluate their performance, measuring desired
edge length realization, compactness, stability, stress, crossings, and running
time. We also evaluate the performance of five earlier methods, showing the two
proposed methods perform well overall; see Fig. 1.

2 Related Work

Dynamic graph drawing has a long history [11,47] and two broad categories:
offline and online. In the easier offline setting we assume that all the data about
the dynamics is known in advance. Algorithms for offline dynamic visualization
use different approaches including combining all time-slice instances into a single
supergraph [18–20], connecting the same node in consecutive time-slices and
optimizing them simultaneously [22–24], providing animation [4], and showing
small multiples type visualization [3]. DynNoSlice by Simonetto et al. [45] is one
of the most recent approaches for this setting and is different from the prior
methods as it does not rely on discrete time-slices.

Online dynamic graph drawing deals with the harder problem – when we do
not know in advance what changes will occur. One can optimize the current view,
given what has happened in the past, but cannot look into the future, as the
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Fig. 1. Layouts from DynNoSlice, DynaGraph, Dagre, Radial, ImPrEd, DynaCola and
DynaSafe of the same evolving math genealogy tree; each row adds six new nodes.

information is not available. Cohen et al. [15,16] and Workman et al. [51] describe
algorithms for dynamic drawing of trees that place nodes that are equidistant
from the root on the same level (same y coordinate). These algorithms do not
take edge lengths into consideration, and the hierarchical nature of the layout
can lead to exponential differences between the shortest and longest edges.

DynaDAG is an online graph drawing method for drawing dynamic directed
acyclic graphs as hierarchies [41]. This method moves nodes between adjacent
ranks based on the median sort. It was not specifically developed1 for trees
and may introduce crossings; see Fig. 2. Other approaches for online dynamic
graph drawing have maintained the horizontal and vertical position of nodes [38],
used node aging methods [29], and adapted multilevel approaches [17] (using
FM3 [31]). Online approaches have also been implemented on the GPU [25].
However, these methods do not guarantee crossing-free layouts for trees and do
not take into account desired edge lengths.

1 We have used the implementation available in the DynaGraph system: https://www.
dynagraph.org/.

https://www.dynagraph.org/
https://www.dynagraph.org/
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Fig. 2. (a) A DynaDAG layout of a tree with 100 nodes that introduces edge cross-
ings. (b) A Dagre layout of a tree with 300 nodes, with large edge length variability.
Both examples show that nodes are too close to each other if labeled. The trees
are extracted from the math genealogy dataset.

Dagre is a multi-phase algorithm for drawing directed graphs based on [27].
The initial phase finds an optimal rank assignment using the network simplex
algorithm. Then it sets the node order within ranks by an iterative heuristic
incorporating a weight function and local transpositions to reduce crossings (via
the barycenter heuristic) [33]. However, since Dagre draws graphs in a hierar-
chical structure, the edge lengths may vary arbitrarily; see Fig. 2.

The radial layout implemented in yFiles [50] displays each biconnected com-
ponent in a circular fashion2. Radial layouts were introduced by Kar et al. [34]
for static graphs. Dougrusoz et al. [21] described an interactive tool for dynamic
graph visualization based on the radial layout. Six and Tollis [46] adapted the
radial idea to circular drawings of static biconnected graphs and experimentally
showed that their layout has fewer edge crossings. Kaufmann et al. [35] extended
this model to handle dynamic graphs, providing the basis of the yFiles radial
implementation. Pavlo et al. [42] adapted the idea to make the radial layout com-
putation parallelizable. Bachmaier [5] further improved the radial layout algo-
rithm for static graphs by adapting the hierarchical approach [48] to minimize
edge crossings. Radial layout methods have more freedom than the traditional
level-by-level tree layout methods. Nevertheless, they are still constrained and
can result in unstable visualization for dynamic graphs in general and evolving
trees in particular; see Fig. 3.

Force-directed algorithms [18–20,44,45] underlie many static and dynamic
graph visualization methods. Unlike hierarchical and radial approaches, force-
directed algorithms place nodes at arbitrary positions, and so tend to generate
more compact layouts that better realize desired edge lengths. By adjusting
forces appropriately, one can also generate stable layouts by this approach. In
particular, ImPrEd, by Simonetto et al. [44], provides a force-directed approach
to improve a given initial layout, without introducing new edge crossings. To the
best of our knowledge, there are no force-directed methods for evolving trees.

2 We use this radial layout algorithm later for our experiments.
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Fig. 3. A radial layout of a 400-node evolving tree of life (a) and the layout after adding
100 nodes (b). As most of the growth occurred on the right side, it is easy to see the
instability – a lot of movement was needed to accommodate it. Also, nodes are too
close to each other if labeled.

3 Algorithms for Visualizing Evolving Trees

Here, we describe two force-directed algorithms for evolving tree visualization,
DynaCola and DynaSafe, that realize desired edge lengths without creating cross-
ings, and optimize compactness and stability. DynaCola avoids edge crossings
by creating and maintaining a “collision region” for each edge. While collision
detection/prevention is usually applied to nodes, by carefully applying it to the
edges we can prevent all edge crossings. DynaSafe prevents edge crossings with
a “safe” coordinate update at every step of the algorithm. Before updating a
coordinate, it first checks whether the update will introduce a crossing and then
limits the update magnitude to avoid the crossing.

3.1 DynaCola

DynaCola stands for Dynamic Collision, as the algorithm uses the collision forces
to prevent edge crossings. This is a force-directed algorithm, augmented with
edge-regions used to prevent crossings; the pseudocode of the algorithm can be
found in the full version [30]. Recall that we are gradually growing a tree, one
node at a time, while maintaining a crossing-free layout and optimizing desirable
properties (desired edge lengths, compactness, stability). The DynaCola force-
directed algorithm relies on the following forces and is implemented in d3.js [12]:

– A force fE for each edge, to realize the desired edge length. The strength of
this force is proportional to the difference between the edge distance in the
layout and the desired edge length.
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– A general repulsive force fR defined for all pairs of nodes and implemented
with the Barnes-Hut quad-tree data structure [8]. This helps realize the global
structure of the underlying tree.

– A collision force fC for each edge, described in details below. This force
prevents edge crossings.

– A gravitational force fG that attracts all nodes to the center of mass. This
force draws the nodes closer together and improves compactness.

To ensure that no edges cross during an update, we define a collision region
around each edge: if any edge/node moves too close to another edge, it will be
pushed away. To create a collision region for an edge e = (u, v), we can create
collision circles with diameter equal to the length of e for both u and v. Then
every point of e will be either inside the collision region of u or v. However,
the sum of all collision regions for all nodes will be unnecessarily large and the
layout will not be compact. With the help of subdivision nodes along the edges,
we can reduce the sum of all collision regions. Let e = (u, v) be an edge in the
graph. We use a set of subdivision nodes Vs = {v1, v2, · · · , vk} and replace the
edge (u, v) by a set of edges Es = {(u, v1), (v1, v2), · · · , (vk, v)}. We assign the
desired edge length of an edge in Es equal to l(u, v)/|Es|, where l(u, v) is the
desired edge length. In general, the number of subdivision nodes per edge should
be a small constant ns (by default ns = 1), since the complexity of the algorithm
increases as ns increases. Also, note that ns determines the number of bends per
edge (no bends when ns = 0, one bend when ns = 1, and so on). Note that, the
collision force does not follow any hard constraint, even after having a collision
region edge crossings may happen. If existing edges introduce crossings, then we
roll back to previous crossing-free coordinates.

When a new node is added to the tree, a new edge also is added, with one
of its endpoints already placed. To place the new node, we randomly sample a
set of 100 nearby points at a distance equal to the desired edge length, trying to
find a crossing-free position. If we cannot find such a suitable point, we gradually
reduce the distance and repeat the search until we find a crossing free position.
Once the new node has been placed, we subdivide its adjacent edge as described
above.

3.2 DynaSafe

DynaSafe stands for Dynamic Safety, as the algorithm prioritizes safe moves
and will not make a move if it introduces an edge crossing, the pseudocode of
the algorithm can be found in the full version [30]. DynaSafe is also a force-
directed algorithm, however, it differs from DynaCola as it draws straight-line
edges (rather than edges with bends). The algorithm utilizes the following forces
and is implemented in d3.js [12]

– A force fE for each edge that is similar to DynaCola.
– A stress-minimizing force fS on every pair of nodes not connected by an edge,

used to improve global structure. The desired distance is the shortest-path
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distance between the pair, and the magnitude of the force is proportional to
the difference between the realized and desired distance.

– A repulsive force that is similar to DynaCola.
– A gravitational force that is similar to DynaCola.

DynaSafe prevents edge crossings from occuring at any time by updating the
coordinates safely: if the proposed new coordinate of a node introduces crossings,
we gradually reduce the magnitude of the movement until the crossing is avoided.
To place the new node, we randomly sample a set of 100 nearby points to find
a crossing-free position for its adjacent edge. If we cannot find a crossing free
position using the sample points, we continuously reduce the edge length until
we find a crossing free position. Once the node is added, an iteration of force-
directed algorithm optimizes the layout (again without introducing crossings).

By the nature of force-directed algorithms, after one phase of force compu-
tations each node has a proposed new position. Before moving any node to its
proposed new position, we check that the move is “safe,” i.e., it does not intro-
duce a crossing. If the movement of a node introduces any crossings, then the
magnitude of the move is set to p% of the original movement. This is repeated
(if needed) at most q times, and if the crossing is still unavoidable then the node
is not moved in this phase. By default p = 0.8 and q = 12.

4 Experimental Evaluation

We evaluate DynaCola and DynaSafe, along with five earlier methods: Dyn-
NoSlice, DynaGraph, Dagre, Radial, and ImPrEd. We use two evolving trees
to visually compare the results, as well quantitatively evaluate the desired
properties.

4.1 Datasets

We use two real-world datasets to extract evolving trees for our experiments.

The Tree of Life: captures the evolutionary progression of life on Earth [37].
The underlying data is a tree structure with a natural time component. As a new
species evolves, a new node in the tree is added. The edges give the parent-child
relation of the nodes, where the parent is the original species, and the child is
the new species. We use a subset of this graph with 500 nodes. The maximum
node degree of this tree is 5, and the radius is 24.

The Mathematics Genealogy: shows advisor-advisee relationships in the
world of mathematics, stretching back to the middle ages [36]. The dataset
includes the thesis titles, students, advisors, dates, and number of descendants.
The total number of nodes is around 260,000 and is continuously updated. While
this data is not quite a tree (or even connected, or planar), we extract a subset
to create a tree with 500 nodes. The maximum node degree of this tree is 5 and
the radius is 14.
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4.2 Evaluation Metrics

We use standard metrics for each of our desired properties: desired edge length
preservation, compactness, and stability. Additionally, we compute the stress of
the drawing and the number of crossings. This gives a total of five quantitative
measures. For each of these measures we define a loss function as follows:

Desired Edge Length (DEL): To measure how close the realized edge lengths
are to the desired edge lengths, we find the mean squared error between these
two values. Given the desired edge lengths {lij : (i, j) ∈ E} and coordinates of
the nodes X in the computed layout, we evaluate with the following formula:

Desired edge length loss =

√
√
√
√

1
|E|

∑

(i,j)∈E

( ||Xi − Xj || − lij
lij

)2

(1)

This measures the root mean square of the relative error as in [1], produc-
ing a non-negative number, with 0 corresponding to a perfect realization. For
DynaCola we subdivide the edges, to compute DEL, we set the length of the
subdivided edges such that the summation of the length of the subdivided edges
is equal to the length of the original edge.

Compactness: To measure the compactness of each layout, we use the ratio
between the drawing area and the sum of the areas for all labels [9]. We assume
that a label is at most 16 characters, as we abbreviate longer labels. The sum
of the areas for all labels gives the minimum possible area needed to draw all
labels without overlaps (ignoring any space needed for edges). The area of the
actual drawing is given by the smallest bounding rectangle, once the drawing has
been scaled up until there are no overlapping labels. Once we have this scaled
drawing, we find the positions of the nodes with the largest and smallest x and
y values (Xmax,0, Xmin,0,Xmax,1 and Xmin,1). Using these values we calculate
the area of the bounding rectangle.

Compactness loss =
(Xmax,0 − Xmin,0)(Xmax,1 − Xmin,1)

∑

v∈V

label area(v)
(2)

This formula produces a non-negative number; the ideal value for this mea-
sure is 1 and corresponds to a perfect space utilization.

Stability: To measure stability, we consider how much each of the nodes moved
after adding a new node. We then sum the movements of all nodes over all
time steps. Since different algorithms use different amounts of drawing areas, we
divide the value by the drawing area to normalize the results. This measure is
similar to that used in DynNoSlice [45], but since DynNoSlice does not use time
slices, it is closer to the measure found in [13]:
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Stability loss =
∑

v∈V

∑T−1
t=1 ||Xv(t + 1) − Xv(t)||

(Xmax,0 − Xmin,0)(Xmax,1 − Xmin,1)
(3)

Here, T is the maximum time (500 in our two datasets). This formula pro-
duces a non-negative number; the ideal value is 0 and corresponds to a perfectly
stable layout (no movement of any already placed nodes).

Stress: This measure evaluates the global quality of the layout, looking at
the differences between the realized distance between any pair of nodes and the
actual distance between them. This measure is used in a variety of graph drawing
algorithms [13,26,45]:

Stress loss =

(
∑

i�=j

(

Di,j − ||Xi − Xj ||
)2

)1/2

∑

i�=j ||Xi − Xj || (4)

Here, Di,j is the shortest path distance in the graph. This formula produces a
non-negative number; the ideal value is 0 and corresponds to a perfect embedding
(that captures all graph distances by the realized Euclidean distances).

Edge Crossings: Finally, we measure the number of edge crossings in each of
the outputs. Note that our algorithms DynaSafe and DynaCola enforce “no edge
crossings” as a hard constraint. However, DynNoSlice and DynaGraph do not
have such a constraint and so can and indeed do, introduce crossings. Therefore
we include the number of edge crossings for a complete comparison.

4.3 Experimental Setup

We compare these algorithms to five previous algorithms: DynNoSlice, Dyna-
Graph, Dagre, Radial, and ImPrEd. We note that while Dagre, Radial, and
ImPrEd are not specifically designed for dynamic graphs, they can be modified
for this purpose. Specifically, we can use the layout of a tree at step i to initialize
the layout of the tree at step i + 1, add the new edge, and update the layout.

We consider the simplest case for the desired edge length by using a uniform
length of 100 for all edges. This is a necessary parameter for our algorithms
DynaCola and DynaSafe, but only needed in the other four algorithms in order
to compute the desired edge length measure. To be able to compare our methods
to the other four (that do not take desired edge length into account), we set the
desired edge length equal to the average edge length obtained in the layout. We
then normalize these values for a fair comparison.

The performance of DynNoSlice depends heavily on two parameters, τ and
δ that must be tuned. With the help of the authors, we found τ = 16 and
δ = 4 worked well for our 500-node trees. The performance of ImPrEd depends
on two parameters: repulsion force and the number of iterations. The default
values of repulsion force and the number of iterations are equal to one and 200
respectively. We have used the default values. The larger the number of iterations
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Fig. 4. Layouts obtained by the seven methods for the tree of life dataset.

is, the better the output of ImPrEd is. However, the running time increases as
the number of iterations increases. We keep the number of iterations equal to
200 since it already takes more than 4 h to compute the 500-node trees. The
performance of DynaCola depends on the number of subdivision nodes ns; we
use ns = 1 for the experiments. For the radial layout algorithm, we have used
the default settings in the yFiles [50] implementation. The other algorithms are
also used with their default settings. We have implemented our algorithms in
d3.js [12]. For other algorithms, we have used the default API. All experiments
are conducted in a machine that has macOS 11.3.1 operating system, a 2.3 GHz
8-core Intel core i9 processor, and 32 GB 2667 MHz MHz DDR4 memory.

4.4 Results

Both the visual and quantitative results indicate that the two new methods
perform well overall; see Fig. 4.
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Desired Edge Lengths: The quantitative results are shown in Table 1. We use
green to show the best results and yellow for the second best and indicate that
DynNoSlice, DynaCola, and ImPrEd perform well. For the math genealogy 500-
node tree, ImPrEd is the best. However, both DynNoSlice and ImPrEd have
significantly larger running times (measured in hours, rather than minutes or
seconds) as discussed below. Moreover, while ImPrEd does well on the math
genealogy graph, it does not do well on the tree of life graph. For the math
genealogy 500-node tree, DynaCola is the second best and DynNoSlice is third.
For the tree of life dataset, DynaCola is the best, DynNoSlice is the second best
and DynaSafe is third. DynaGraph has the worst performance – not surprising
given that it is a hierarchical layout, which is forced to use some very long edges
near the root.

Table 1. Desired edge lengths of math genealogy tree (MG) and tree of life (TOL).

Nodes DynNoSlice DynaGraph Dagre Radial ImPrEd DynaCola DynaSafe

100 MG 0.37691 1.95933 0.682568 0.653853 0.219103 0.282521 0.589865

200 MG 0.36552 1.95179 0.679827 0.640628 0.213615 0.270322 0.575430

300 MG 0.35007 1.94213 0.666440 0.63058 0.204821 0.253877 0.564747

400 MG 0.34402 1.93822 0.646479 0.619203 0.193037 0.243184 0.553141

500 MG 0.33377 1.91979 0.639766 0.592694 0.182071 0.237139 0.548756

100 TOL 0.21675 1.28710 0.448483 0.448205 0.45402 0.158071 0.411747

200 TOL 0.21972 1.37271 0.494261 0.460161 0.49120 0.166190 0.443935

300 TOL 0.23986 1.40404 0.510473 0.481034 0.52016 0.176748 0.453332

400 TOL 0.25597 1.45660 0.553543 0.510352 0.59326 0.183856 0.470334

500 TOL 0.26652 1.52650 0.581648 0.530249 0.61093 0.189373 0.485759

Compactness: The quantitative results are shown in Table 2 and indicate that
DynNoSlice outperforms the rest of the algorithms. DynaCola is second best and
DynaSafe is third. Here, Dagre has the worst performance. Although DynNoSlice
performs well, it introduces many edge crossings as discussed later. DynaCola
layouts have higher compactness than DynaSafe. The absence of stress-related
force allows placing nodes closer even if the graph theoretic distance is higher.
Consider a path, the layout will be a straight line if stress is minimized. However,
a zig-zag layout will provide better compactness.

Stability: The quantitative results are shown in Table 3 and idicate that Dyna-
Cola does best. DynaGraph is second, and DynaSafe is third. The radial layout
performs worse in this metric because it rotates the subtrees as more edges are
added.

Stress: The quantitative results are shown in Table 4. In general, DynaSafe
does much better on this measure than the rest. Again, ImPrEd performs well
for the regular-shaped math genealogy tree but does not perform well for the tree
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Table 2. Compactness of math genealogy tree (MG) and the tree of life (TOL).

Nodes DynNoSlice DynaGraph Dagre Radial ImPrEd DynaCola DynaSafe

100 MG 85.60 192.07 219.20 153.53 161.23 124.90 147.80

200 MG 87.94 196.29 224.54 162.80 161.20 130.87 153.31

300 MG 95.24 201.41 225.86 169.34 171.92 137.00 159.87

400 MG 98.89 206.48 227.74 175.07 181.20 145.47 169.68

500 MG 106.82 208.39 236.94 192.53 187.94 149.43 174.93

100 TOL 96.46 196.79 223.43 179.05 179.20 147.82 160.58

200 TOL 100.24 214.29 231.38 183.06 218.29 154.10 169.38

300 TOL 110.56 216.16 239.98 190.82 329.27 157.19 170.04

400 TOL 119.98 233.85 255.76 203.92 416.27 167.52 194.28

500 TOL 126.85 235.72 272.82 214.09 528.01 173.94 196.03

Table 3. Stability of math genealogy tree (MG) and tree of life (TOL).

Nodes DynNoSlice DynaGraph Dagre Radial ImPrEd DynaCola DynaSafe

100 MG 0.001584 0.001393 0.0016502 0.001998 0.001530 0.001348 0.001459

200 MG 0.000752 0.000447 0.0012497 0.001839 0.000598 0.000264 0.000410

300 MG 0.000577 0.000227 0.0010083 0.001450 0.000437 0.000225 0.000295

400 MG 0.000249 0.000190 0.0009504 0.001203 0.000391 0.000164 0.000216

500 MG 0.000037 0.000014 0.0007591 0.001047 0.000026 0.000011 0.000019

100 TOL 0.000437 0.000139 0.001241 0.003609 0.000491 0.000105 0.000163

200 TOL 0.000323 0.000125 0.001196 0.003408 0.008305 0.000097 0.000146

300 TOL 0.000263 0.000099 0.001163 0.003174 0.005305 0.000072 0.000106

400 TOL 0.000235 0.000073 0.001136 0.002490 0.001937 0.000064 0.000101

500 TOL 0.000199 0.000071 0.000834 0.001941 0.000810 0.000052 0.000101

of life. For the tree of life DynNoSlice is second and DynaCola third. DynaGraph
and Dagre perform the worst in this metric due to the limitations inherent in
the hierarchical layout. Note that the stress is normalized, so the numbers are
comparable.

Edge Crossings: The quantitative results are shown in Table 5. There are
five winners here – the five algorithms that prevent any edge crossings: Dyna-
Cola, DynaSafe, Radial, Dagre, and ImPrEd. DynNoSlice and DynaGraph do
introduce some crossings.

Running time: The Radial layout has the lowest running time, taking 34.93 s
and 28.03 s, respectively, to draw the 500-node math genealogy tree and tree of
life. On the other end, DynNoSlice is the slowest algorithm, taking more than
6 h to draw the 500-node trees. Both DynNoSlice and ImPrEd take significantly
longer running time compared to other algorithms. ImPrEd takes more than
four hours to draw the 500-node trees. Our two new methods are not as fast
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Table 4. Stress scores of math genealogy tree (MG) and tree of life (TOL).

Nodes DynNoSlice DynaGraph Dagre Radial ImPrEd DynaCola DynaSafe

100 MG 113.10 150.59 230.75 125.37 89.43 76.51 49.44

200 MG 161.45 186.17 250.98 172.05 120.45 151.74 68.42

300 MG 179.48 264.90 286.77 205.98 148.02 184.47 94.05

400 MG 186.68 292.66 286.83 262.09 173.92 227.98 107.56

500 MG 249.61 393.11 396.72 314.93 203.54 291.39 109.00

100 TOL 136.52 210.06 263.98 192.64 163.02 128.45 59.77

200 TOL 165.75 262.24 325.65 243.59 349.28 201.76 65.10

300 TOL 181.62 305.15 369.57 287.93 427.09 220.63 81.81

400 TOL 254.20 328.59 398.11 317.28 509.32 306.89 93.99

500 TOL 285.19 400.81 461.43 374.02 593.19 351.23 119.77

Table 5. Edge crossings of math genealogy tree (MG) and tree of life (TOL).

Nodes DynNoSlice DynaGraph Dagre Radial ImPrEd DynaCola DynaSafe

100 MG 43 8 0 0 0 0 0

200 MG 82 11 0 0 0 0 0

300 MG 168 11 0 0 0 0 0

400 MG 217 13 0 0 0 0 0

500 MG 277 13 0 0 0 0 0

100 TOL 21 0 0 0 0 0 0

200 TOL 67 0 0 0 0 0 0

300 TOL 106 0 0 0 0 0 0

400 TOL 176 0 0 0 0 0 0

500 TOL 231 0 0 0 0 0 0

as the Radial algorithm and not as slow as DynNoSlice, taking about 5 min on
the 500-node trees. Due to space limitations, we provide more details of running
time in the Appendix.

5 Discussion and Limitations

While there are many algorithms and tools for drawing static trees, only a few
can handle dynamic trees well. Among those, even fewer takes edge labels into
account while also preventing edge crossings. With this in mind, we described two
methods that give better, readable layouts for evolving trees. We compared these
two algorithms with others that have been set up for dynamic trees. With respect
to the criteria that we have put forward, our algorithms match or exceed each of
these algorithms. Fully functional prototypes and videos showing them in action
are available online https://ryngray.github.io/dynamic-trees/. Source code and all

https://ryngray.github.io/dynamic-trees/
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experimental data can be found on github https://github.com/abureyanahmed/

evolving tree.
Naturally, our work comes with several limitations that could be addressed

in future work.

Anticipating the Future: Currently, the two new methods, DynaCola and
DynaSafe perform well for evolving trees, where growth is the only type of
change. A natural question is whether these algorithms can be generalized to
the more challenging problems of online dynamic tree visualization. Answering
such question may need more precise modeling of the graph dynamics. Even
though online dynamic graph drawing assumes no knowledge about the actual
changes to the graph in the future, some prior knowledge of the graph may be
available or predictable in advance. For example, knowing the expected depth or
size of a tree or maximum degree of nodes (e.g., from domain knowledge about
the specific type of graph) may help the layout algorithm reserve enough space
for growth. In general, we anticipate that if one can model the evolving dynamics
of the graph (e.g., probabilistically), incorporating knowledge of such dynamics
into the drawing algorithm may help improve the resultant drawing; conversely,
carefully defining compatible graph dynamics for a particular drawing algorithm
will also allow us to identify the limitations of the given algorithm.

Multi-level Label Display: For simplicity, in this work we assume labels to be
always shown in the drawing in a fixed font size. In practice, however, labels may
come with different levels of importance and different desired font size. In that
case, one might prefer to see only important labels displayed first in a zoomed
out view of the graph, and later see more labels when zooming in. Incorporate
such multi-level label display into the node placement strategy seems like an
interesting and relevant problem.

Finding Desired Properties: We have proposed two different algorithms to
solve the same evolving tree visualization problem, and each is associated with
different benefits. Finding a continuous spectrum of algorithms with tunable
parameters to balance the multiple desired properties would provide more flexi-
bility. On the other hand, a careful human-subjects study may also help prioritize
existing properties of the drawing, or help identify new desired properties from
the specific tasks.

Considering More Dynamic Datasets: The datasets we considered are
evolving in nature. For example, in the math genealogy dataset, once an advisee
gets related to an advisor, the relationship remains forever. Although we consid-
ered only evolving trees, our ideas can be applied to datasets where the elements
may get deleted. Applying the algorithms on more dynamic datasets remains
future work.
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21. Doğrusöz, U., Madden, B., Madden, P.: Circular layout in the Graph Layout
toolkit. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 92–100. Springer, Hei-
delberg (1997). https://doi.org/10.1007/3-540-62495-3 40

22. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL:
Graph animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS,
vol. 2912, pp. 98–110. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24595-7 9

23. Erten, C., Kobourov, S.G., Le, V., Navabi, A.: Simultaneous graph drawing: layout
algorithms and visualization schemes. In: Liotta, G. (ed.) GD 2003. LNCS, vol.
2912, pp. 437–449. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24595-7 41

24. Forrester, D., Kobourov, S.G., Navabi, A., Wampler, K., Yee, G.V.: Graphael: a
system for generalized force-directed layouts. In: Pach, J. (ed.) GD 2004. LNCS,
vol. 3383, pp. 454–464. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31843-9 47

25. Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Trans. Vis. Comput.
Graph. 14(4), 727–740 (2008)

26. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31843-9 25

27. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing
directed graphs. IEEE Trans. Software Eng. 19(3), 214–230 (1993)

28. Gilbert, F., Simonetto, P., Zaidi, F., Jourdan, F., Bourqui, R.: Communities and
hierarchical structures in dynamic social networks: analysis and visualization. Soc.
Netw. Anal. Min. 1(2), 83–95 (2011)

29. Gorochowski, T.E., di Bernardo, M., Grierson, C.S.: Using aging to visually uncover
evolutionary processes on networks. IEEE Trans. Vis. Comput. Graph. 18(8),
1343–1352 (2011)

30. Gray, K., Li, M., Ahmed, R., Kobourov, S.: Visualizing evolving trees (2021).
https://doi.org/10.48550/ARXIV.2106.08843, https://arxiv.org/abs/2106.08843
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Abstract. Morphing edge drawing (MED), a graph drawing technique,
is a dynamic extension of partial edge drawing (PED), where partially
drawn edges (stubs) are repeatedly stretched and shrunk by morphing.
Previous experimental evaluations have shown that the reading time with
MED may be shorter than that with PED. The morphing scheduling
method limits visual clutter by avoiding crossings between stubs. How-
ever, as the number of intersections increases, the overall morphing cycle
tends to lengthen in this method, which is likely to have a negative effect
on the reading time. In this paper, improved scheduling methods are pre-
sented to address this issue. The first method shortens the duration of a
single cycle by overlapping a part of the current cycle with the succeeding
one. The second method duplicates every morph by the allowable num-
ber of times in one cycle. The third method permits a specific number
of simultaneous crossings per edge. The effective performances of these
methods are demonstrated through experimental evaluations.

Keywords: Graph drawing · Partial edge drawing · Morphing edge
drawing · Scheduling of morphing

1 Introduction

Partial edge drawing (PED) is a graph-drawing technique in which the edges are
drawn partially to avoid crossings. Morphing edge drawing (MED) is a dynamic
graph representation technique in which the stubs (partially drawn edges) are
repeatedly stretched and shrunk by morphing [6]. Experiments by Bruckdorfer
have suggested that, compared with graph drawings in which edges are drawn
as complete line segments, PED may improve the reading accuracy and increase
the reading time [2]. An experimental evaluation by Misue & Akasaka showed
that MED has the potential to reduce reading time compared to PED [6]. It is
possible that, as the stubs change with morphing, less time is needed to guess
the erased parts. The scheduling method shown by Misue & Akasaka schedules
MED morphing so that stubs do not create new crossings. In other words, in a
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situation where two edges intersect, while one stub is stretched, the other must
wait as short. Although this type of scheduling maintains the reduction of visual
clutter by PED, it forces the morphing cycle to increase as the number of nodes,
edges, and intersection points increases. Here, the morphing cycle is the total of
the morphing time of all edges. Correspondingly, the latency before morphing
used to determine whether two nodes are adjacent to each other may be longer
than the time needed for guessing.

To address this issue, three methods to shorten the morphing cycle in MED
were developed in this study, as explained below: The first method shortens
the duration of a single cycle by initiating the new morphing of some stubs
without waiting for all the stubs to regain their shortest states. In fact, in the
MED scheduling shown by Misue & Akasaka, the duration of one cycle starts
when all the stubs are in their shortest states and eventually ends when they all
return to their initial shortest states again. Here, we have exploited the idea that,
even if the morphing of some stubs begins before all the stubs return to their
shortest states, no crossing may occur, and the duration of a cycle is reduced.
In the second method, every morph is duplicated by the allowable number of
times in one cycle. In previous MED scheduling, each edge stub is stretched
and shrunk only once within each cycle. However, some stubs can be morphed
two or more times within one cycle without leading to crossing. Considering
this, multiple morphings within a single cycle can shorten the average duration
of a morphing cycle. Finally, in the third method, crossings between edges are
allowed to occur. Although graph drawings with many crossings are difficult to
read, a small number of crossings are considered to have only a limited impact
on readability [8,9]. Therefore, we developed a scheduling method that allows
up to a certain number of simultaneous crossings per edge.

The contributions of this study can be summarized as follows:

1. Three new scheduling methods were presented to shorten the morphing cycle
in MED, and

2. The effectiveness of each scheduling method is demonstrated experimentally.

2 Partial Edge Drawing and Morphing Edge Drawing

A simple undirected graph is denoted by G = (V,E) and the drawing of a graph
G is denoted by Γ (G) = (Γ (V ), Γ (E)). Γ (V ) = {Γ (v)|v ∈ V } and Γ (E) =
{Γ (e)|e ∈ E}. Herein, Γ (G) is a traditional straight-line drawing, Γ (v) of node
v ∈ V is a point located at position pv, and Γ (e) of edge e ∈ E is a line
segment connecting two nodes (points). In other words, it can be expressed as
Γ (e) = {s · pw + (1 − s) · pv|s ∈ [0, 1]}, where e = {v, w}. Drawing Γ (G) can be
referred to by the retronym complete edge drawing (CED) because it completely
draws a straight-line segment to represent an edge. The layout of graph G, that
is, Γ (G), is assumed to be provided in advance within this study. To simplify the
description in subsequent sections, Γ is omitted and e is used to replace Γ (e)
when it is clear from the context that it represents Γ (e).
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2.1 Partial Edge Drawing

The partial drawing of the edge e = {v, w} is represented by the function γe :
[0, 1]2 → 2Γ (e), as shown in Eq. (1).

γe(α, β) =

{
{s · pw + (1 − s) · pv|s ∈ [0, α] ∪ [β, 1]} for α < β

Γ (e) for α ≥ β.
(1)

The partial drawing γe(α, β) of edge e is the remainder of the entire Γ (e) mapped
to the interval [0, 1], with the part corresponding to interval (α, β) removed from
Γ (e). Each of the remaining contiguous parts is called a stub. If the part to be
deleted is not the end of edge Γ (e), that is, if 0 < α and β < 1, two stubs remain
at the two nodes incident to the edge e. We refer to them as a pair of stubs.

Given αe and βe for all edges e ∈ E and that there exists an edge e1 ∈ E
such that αe1 < βe1 , the drawing ΓPED(G) = (Γ (V ), ΓPED(E)) is called a PED,
where ΓPED(E) = {γe(αe, βe)|e ∈ E}. When the lengths of a pair of stubs are
equal, that is, when there exists a relationship αe = 1 − βe, this is called a
symmetric PED (SPED). In this case, the smaller parameter αe is called the
stub ratio. If the stub ratios for all edges are the same δ, the drawing is called
δ-symmetric homogeneous PED (δ-SHPED).

2.2 Morphing Edge Drawing

Let T be a set of times. A dynamic drawing ΓMED(G) = (Γ (V ), ΓMED(E)) ,
which is constructed using the morphing function μe : T → 2Γ (e) and defines the
partial drawing of edge e at time t ∈ T . It is called the morphing edge drawing
(MED), where ΓMED(E) = {μe|e ∈ E}. Let ρe : T → [0, 1]2 be a function that
defines the parameters of the partial edge for time t ∈ T . The function μe can
then be constructed as μe(t) = γe(ρe(t)). For all edges e ∈ E, if the function
ρe satisfies ρe(t) = (δt, 1 − δt) (where 0 ≤ δt ≤ 1/2) for ∀t ∈ T , then a SPED
is obtained at any time. MED constructed based on such function is called a
symmetric MED (SMED).

This study focuses on SMED. In one morph, each stub changes from the
shortest state (stub-ratio δ) to the longest state (stub-ratio η), remains in the
longest state for a certain time and then returns to the shortest state. The range
over which a stub stretches and shrinks is called as the morphing range. Two
paired stubs start and end morphing simultaneously.

3 Related Work

Bruckdorfer et al. have given the formulation of PED [2]. Burch et al. [5] demon-
strated the applicability of this approach to directed graphs using tapered links
to represent partially drawn edges. Schmauder et al. applied PED to weighted
graphs by coloring edges to represent their weights [10]. Information on PED is
summarized in the commentary by Nöllenburg [7].
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Bruckdorfer et al. conducted experiments comparing CED and 1/4-SHPED
with respect to graph-reading performance [3]. Although not statistically sig-
nificant, the chart visualizing the results of the experiment indicated a slightly
more accurate but longer response time for 1/4-SHPED than for CED in terms
of the graph reading task. Binucci et al. [1] conducted more detailed evaluation
experiments and found that, among the SPEDs, SHPED yielded the best read-
ing accuracy. Burch [4] examined the effects of stub orientation and length on
the graph reading accuracy and found that shorter stub lengths tend to result
in more misjudgments regarding the target nodes and that stub orientation also
affects accuracy.

MED was proposed by Misue & Akasaka [6]. The formalization of the MED
is provided herein, and evaluation experiments on the readability of the MED
indicate that the MED may be superior to the PED, in terms of the reading
time. The formalization presented in Sect. 2 is based on the one proposed by
Misue & Akasaka [6].

4 Terminology and Notation

This section describes the terminology and notations used in this paper.

4.1 Set and Set Family

The sets and functions that return a set are capitalized. Let #(A) denote the
number of elements in a finite set A, Ac denote the complement of set A, and
2A denote the power set of set A. For set A, let A#k denote the set family
created by collecting only all the subsets with k (≥ 1) elements. In other words,
A#k = {A′ ∈ 2A|#(A′) = k}.

4.2 Time Periods

Suppose that the time period is a subset of U = (−∞,∞) and can be expressed
as P =

⋃χ
i=1[ai, bi) (χ ≥ 0). In this case, bi < aj if i < j. In other words, we

assumed that the time period can be represented as a union set of noncontiguous
half-open intervals. When χ = 0, it is assumed to be empty.

4.3 Intersections and Types of Intersections

It can be assumed that the intersection point of two drawn edges can be rep-
resented by a pair of edges because the layout of the graph is assumed to be
provided in advance. Therefore, when any two sets of edges cross at the same
point, although only one point exists from the geometric perspective, the point
is considered as two different intersection points corresponding to the two edge
crossings. If edge e1 crosses another edge e2 at a point p, then, e2 is called the
opposite edge of e1 at p and is denoted by e1/p. In other words, when e1 and
e2 cross at point p, e1/p = e2 and e2/p = e1. Let I denote an entire set of
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intersection points. Furthermore, let I(e) denote a set of intersection points on
edge e.

In MED, crossings between stubs may be unavoidable, as illustrated in Fig. 1.
We refer to an intersection point as “e is always passing”, where a stub of edge
e is passing even when the stub is at its shortest state. The intersection points
at which both edges always pass are called always crossing. The intersection
points at which both edges are not always-passing are called fully avoidable,
whereas intersection points at which only one edge is always passing are called
semi-avoidable. Fully avoidable and semi-avoidable intersections are collectively
called avoidable. If semi-avoidable intersections are in the morphing range of a
stub, the morphing of the stub will always result in one or more crossings.

always-passing
intersection

intersection

node

avoidable

stub

(a) As seen from one edge

always-crossing

fully avoidable

semi-avoidable

intersection

intersection

intersection

(b) As seen from two edges

Fig. 1. Type of intersection points. The solid lines represent the state where the stubs
are shortest, and the dashed lines represent the state where the stubs are stretched.

5 Scheduling

The scheduling of a MED defines a morphing function μe : T → 2Γ (e) for all
edges e. We assumed that the change in each stub from stretching to shrinking
back to the original state with respect to the elapsed time from the start of
morphing is already defined by the function μ∗

e : R → 2Γ (e). Thus, scheduling
implies the determination of the morphing start time for each edge. Once the
start time tstart(e) has been determined, the morphing function can be defined
as μe(t) = μ∗

e(t − tstart(e)).
Given a function μ∗

e, we can determine the elapsed time after the start of
morphing to each stub state. Let τpass(e, p) denote the time it takes for the tip
of a stub of edge e to pass the intersection point p for the first time (passing
while stretching) after the onset of morphing. Let τret(e, p) denote the time it
takes for the tip of the stub of edge e to pass the intersection point p for the
second time (passing while shrinking) after the onset of morphing. Let τtrip(e)
denote the time from the start to the end of the morphing of edge e. τret(e, p)
and τtrip(e) include the time when the stub is fully stretched and the morphing
is paused. Let Ce

p (⊆ U) denote the time period when the stub of edge e passes
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through point p on e. If the morphing start time of edge e is tstart(e), then
Ce

p = [tstart(e) + τpass(e, p), tstart(e) + τret(e, p)). Let Ce
p = ∅ if the morphing

start time at edge e is undefined.
In the following sections, we first describe the algorithm proposed by Misue

& Akasaka [6] and then extend it in a step-by-step manner to accommodate
the overlapping of each cycle, duplicating morphs in one cycle, and allowance
of crossings. In this manner, we proceed with the explanation, while extend-
ing the functions. Thus, we use the numbered function names like F (1) and
F (2). Because the functions with larger numbers are extensions of the smaller-
numbered functions, only one function with the largest number needs to be
defined for implementation.

5.1 Basic Scheduling Algorithm

Here, all intersection points are assumed to be fully avoidable.
Algorithm 1 shows the algorithm proposed by Misue & Akasaka [6]. Given a

set of edges E, this algorithm determines the start time tstart(e) of morphing for
all edges e ∈ E. Let E be a morphing group consisting of edges whose morphing
timings may affect each other. The algorithm sequentially determines the start
time of morphing with respect to the edges in set E. Misue & Akasaka [6] sorted
the edges in descending order of their lengths and determined the start time of
the morphing of each edge in the order. The method examines, for an edge e,
the morphing timing of all opposite edges that intersect edge e and have already
determined their start time. It then determines the earliest time at which no
crossings occur for edge e as the morphing start time for e. Note that the first
morphing is assumed to start at time zero (t = 0).

Algorithm 1. Scheduling morphing
Input: E – Set of edges in a morphing group
Output: The start time tstart(e) of all e ∈ E, and the total morphing time ttotal
1: function scheduleParallel(E)
2: for e in sort(E) do
3: tstart(e) ← tearliest(Pfbd(e))
4: end for
5: ttotal ← maxe∈E(tstart(e) + τtrip(e))
6: end function

Function P
(1)
fbd : E → 2U provides the time period during which one or more

crossings occur when edge e ∈ E starts morphing. In other words, P
(1)
fbd(e) is

the forbidden morphing start period used by edge e to avoid crossing with its
opposite edges. The definition of function P

(1)
fbd is expressed in Eqs. (2) and (3).
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P
(1)
fbd(e) = P

(1)
crit(e) (2)

P
(1)
crit(e) =

⋃
p∈Is(e)

Se
p(Ce/p

p ) (3)

Let Is(e) = {p ∈ I(e)|tstart(e/p) has been defined}. Function Se
p : 2U → 2U

modifies a given time period by the time needed for the stub of edge e to reach
the intersection point p, extend further, and then return to that point. Se

p(∅) = ∅,
and if [a, b) ⊆ P , then [a − τret(e, p), b − τpass(e, p)) ⊆ Se

p(P ). Se
p(P ) yields the

morphing start period for edge e to pass through point p within the time period
P . In other words, if morphing does not start at time Se

p(Ce/p
p ), edge e can

avoid crossing with an opposite edge e/p at the intersection point p. Function
P

(1)
crit : E → 2U provides the union of these periods for all intersection points on

e. If the morphing start time of edge e is undefined, let Ce
p = ∅ and Se

p(∅) = ∅.
Therefore, Is(e) appearing on the right side of Eq. (3) may be replaced by I(e).

Function tearliest : 2U → U yields the minimum non-negative value not
included in the time period P . This definition can be expressed as in Eq. (4).

tearliest(P ) = min([0,∞) ∩ P c) (4)

One of the outputs from Algorithm 1, ttotal, is the total morphing time, which
denotes the cycle length when morphing is repeated.

6 Overlapping a Part of Each Cycle

Based on the schedule (that has already been determined), let tlatest (< 0) be the
time before time zero when the morphing of edge e can be started. Shortening
the cycle by ttotal − (tstart(e) + |tlatest|) will not cause the crossing of e (see
Fig. 2). In other words, the period can be shortened to tstart(e) − tlatest without
causing any crossings at edge e. Overall, the graph can shorten the cycle to the
maximum value at all edges e ∈ E. Equation (5) shows a shortened cycle length
tcycle.

0

ttotaltstart(e)

tcycle

ttrip(e)ttrip(e)
tlatest

|tlatest|
shortenable time

Fig. 2. Schematic of concept for shortening a single cycle

tcycle = max
e∈E

{tstart(e) − tlatest(P
(2)
fbd(e))}, (5)
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where tlatest(P
(2)
fbd(e)) provides the latest possible morphing start time before

time zero of edge e. Function P
(2)
fbd is an extension of P

(1)
fbd, and its definition is

given in Eqs. (6) and (7).

P
(2)
fbd(e) = P

(1)
crit(e) ∪ P

(1)
self (e) (6)

P
(1)
self (e) = [tstart(e) − τtrip(e), tstart(e) + τtrip(e)) (7)

Function P
(2)
fbd uses P

(1)
self : E → 2U in addition to P

(1)
crit. Function P

(1)
self (e) yields

the time period when morphing is prohibited to start so that it does not overlap
with its own morphing. When the start time tstart(e) of edge e is undefined,
let P

(1)
self (e) = ∅. Thus, function P

(2)
fbd can be used instead of P

(1)
fbd. Function

tlatest : 2U → U yields the negative (or zero) upper bound that is not included
in the time period P (⊆ U) given. This function is defined in Eq. (8).

tlatest(P ) = max((−∞, 0) ∩ P c) (8)

7 Duplication Within a Cycle

Each stub stretches and shrinks only once within one cycle in the schedule
obtained Algorithm. 1 or Algorithm 1 plus Eq. (5). However, some edges can
be morphed two or more times within a single cycle, without causing any cross-
ings. In other words, focusing on certain edges may further reduce the average
cycle length.

Hereafter, the start time of morphing with respect to an edge is treated as
a set and is denoted by Tstart(e). Accordingly, the definition of Is(e) is changed
to Is(e) = {p ∈ I(e)|Tstart(e/p) �= ∅}. Function Pself (e) is also extended.

Algorithm 2 presents an algorithm for scheduling multiple morphs within one
cycle. The function P

(3)
fbd : E×R≥0 → 2U , defined by Eq. (9) yields the forbidden

morphing start period of edge e ∈ E when the cycle length is c ∈ R≥0.

P
(3)
fbd(e, c) = W (c, P (1)

crit(e) ∪ P
(2)
self (e)) (9)

P
(2)
self (e) =

⋃
t∈Tstart(e)

[t − τtrip(e), t + τtrip(e)), (10)

where the function W : R≥0×2U → 2U is defined as W (c, P ) = P ∪(∪[a,b)⊆P [a+
c, b + c)). This adds one cycle length c to the time period P . If c is equal to the
ttotal obtained from Algorithm 1, the function W does not need to be applied.
However, if c is shorter than ttotal, there may be edges that morph across two
cycles; therefore, the period is extended to two cycles to determine the forbidden
morphing start period.
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Algorithm 2. Scheduling multiple morphing within a single cycle
Input: E – Set of edges in the morphing group, the start time tstart(e) of all e ∈ E,

ttotal – total morphing time, tcycle – morphing cycle length
Output: Set of start times Tstart(e) for all e ∈ E
1: function scheduleDuplication(E, tstart, ttotal, tcycle)
2: for e in E do
3: Tstart(e) ← {tstart(e)}
4: end for
5: E1 ← E
6: while E1 �= ∅ do
7: E2 ← ∅
8: for e in sort(E1) do
9: tstart2 ← tearliest(Pfbd(e, tcycle))

10: if tstart2 + τtrip(e) ≤ ttotal then
11: Tstart(e) ← Tstart(e) ∪ {tstart2}
12: E2 ← E2 ∪ {e}
13: end if
14: end for
15: E1 ← E2

16: end while
17: end function

8 Allowance of Crossings

We considered scheduling that allows for up to a certain number of crossings
(allowable crossing number) n per edge. Thus far, we proceeded with the expla-
nation assuming that there were no always-passing intersections. However, here-
after, we include always-passing intersections in our considerations.

Let the controllable crossing number be the allowable crossing number minus
the number of always-crossing intersections. When the number of always-crossing
intersections exceeded the allowable crossing number, let the controllable cross-
ing number be zero. Because we cannot control the occurrence of crossings at the
always-crossing intersections, we perform scheduling by ignoring these crossings
based on the controllable crossing number.

As crossings at semi-avoidable intersections cannot be avoided, the number of
crossings may exceed the controllable crossing number. Even in these cases, the
number of crossings should be maintained as low as possible. For example, let us
suppose two semi-avoidable intersections exist on an edge. Although crossings
at these intersections cannot be avoided, it may be possible to schedule them
such that no two crossings occur simultaneously.

Function P
(4)
fbd : E ×R≥0 ×N → 2U , which determines the forbidden morph-

ing start period of edge e when the presence of always-passing intersections is
allowed and when a certain number of crossings is allowed, can be expressed as
in Eq. (11).

P
(4)
fbd(e, c, n) = W (c, P (2)

crit(e, kn(e)) ∪ P
(2)
self (e) ∪ Popst(e, n)), (11)
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where c ∈ R≥0 represents the cycle length and is set to zero if undetermined.
The role of W is the same as that described in Sect. 7. The allowable crossing
number n ∈ N given in advance is a common condition for all the edges. However,
the controllable crossing number differs from edge to edge because the number
of always-crossing intersections differs accordingly. Therefore, let kn(e) denote
the controllable crossing number for edge e. If a stub of edge e always passes
through intersection p, let Ce

p = U , even if the morphing schedule of edge e

remains undefined. Popst : E × N → 2U is a function used to find the critical
time period of conditions for opposite edges. When no crossing is allowed, there
is no need to consider these conditions, because when no crossing occurs for the
target edge, the same condition applies to opposite edges as well. However, when
allowing crossings and setting their upper limits, conditions for the target edge
differ from those for the opposite edges. We explain the definition of the Popst

function in Sect. 8.2.

8.1 Satisfying Allowable Crossing Number for Target Edge

The critical period during which the controllable crossing number of edge e

exceeds k is represented by P
(2)
crit(e, k), as indicated in Eq. (12).

P
(2)
crit(e, k) =

{
P

(1)
cirt(e) ∪ {⋃Q∈Isa(e)#2 PcSub(e,Q)} if k = 0⋃
Q∈Is′ (e)#k+1 PcSub(e,Q) otherwise

(12)

PcSub(e,Q) =

{
∅ if O(e,Q) = U⋂

p∈Q Se
p(O(e,Q)) otherwise

(13)

O(e,Q) =
⋂

p∈Q

Ce/p
p , (14)

where Ia(e) = {p ∈ I(e)|p is avoidable}, Isa(e) = {p ∈ I(e)|p is semi-avoidable},
and Is′(e) = Is(e) ∪ {p ∈ Ia(e)|e/p always passes p}. We set Q in Eqs. (12) and
(13) as the subset of intersections on e with two or k+1 elements. O(e,Q) denotes
the period during which the stubs of the opposite edges pass simultaneously at
#(Q) points on edge e. If O(e,Q) �= ∅, then crossings may occur simultaneously
at all the intersection points in Q. To avoid this, e should not pass through
these points during the time period. PcSub(e,Q), shown in Eq. (13), represents
the critical time period when a stub of edge e starts and then passes through all
the intersection points in that time period. However, in Eq. (13), PcSub(e,Q) = ∅
when O(e,Q) = U . When the existence of always-passing intersections is allowed,
unavoidable crossings may occur. Case O(e,Q) = U represents an unavoidable
situation. This indicates that all the opposite edges at the #(Q) intersection
points in Q always pass and that simultaneous crossings with all of them are
unavoidable. Therefore, for crossings at intersection points Q, the critical time
period is ∅, and it does not affect the start time.
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8.2 Satisfying Allowable Crossing Number for Opposite Edges

The critical time period in which the number of crossings of the opposite edges of
edge e exceeds the allowable crossing number n is represented by Popst(e, n), as
indicated by Eqs. (15) and (16), where Ia1(e) = {p ∈ I(e)|p is avoidable for e}.

Popst(e, n) =
⋃

p∈Ia1(e)

Se
p(PoSub(e/p, p, n)) (15)

PoSub(e′, p, n) =

⎧⎪⎨
⎪⎩

Ce′
p if kn(e′) = 0 ∧ (p is avoidable for e′)⋃
q∈Ia(e′) X(q) if kn(e′) = 0 ∧ (p is always-passing for e′)⋃
Q∈Is′ (e′)#kn(e′)

⋂
q∈Q X(q) otherwise,

(16)

where X(q) denote the time period when a crossing occurs at point q. That
is, X(q) = Ce1

q ∩ Ce2
q when e1 and e2 = e1/q cross at point q. PoSub(e′, p, n)

represents the critical time period at intersection p with respect to an opposite
edge e′ for the allowable crossing number n, as shown in Eq. (16). The right-
hand side of Eq. (15) indicates the union of the forbidden morphing start periods
when e passes through the intersection point with the opposite edge during this
critical time period. The definition of PoSub can be divided into three cases. (1) If
kn(e′) = 0 and e′ can avoid p, then the period Ce′

p (at which e′ passes intersection
point p) is the critical time period. (2) If kn(e′) = 0 and e′ always passes through
p, then e should be allowed to pass through p, provided that all crossing time
periods at semi-avoidable intersections that are avoidable for e′ are avoided. This
implies that the critical time period is the time period of crossing occurrence at
the avoidable intersections for e′. (3) Otherwise, the critical time period is the
time period in which more than kn(e′) crossings occur simultaneously on e′.

8.3 Overlapping a Part of Each Cycle

The method proposed in Sect. 6 shortens the cycle length by determining the
possible start time of the following cycle for each edge. The possible start time
of each single edge was examined, however, the effect of shifting the start time
of all the edges was not inspected. Therefore, if the allowable crossing number
is greater than or equal to one, the method does not function properly.

Because we have not yet identified an efficient method to address this issue,
we only present a simple countermeasure. The method involves affording a tenta-
tive shortened cycle length using the method described in Sect. 6, then checking
the time period when the condition is violated, and extending the cycle length
by the amount of time when the condition is violated.

9 Evaluation of Effectiveness

We implemented the scheduling algorithm described in Algorithm 1 and Algo-
rithm 2 along with the functions in Java with JRE 16.0.2. The cycle length was
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defined as a real number (an element of R≥0) in the aforementioned explana-
tions; however, in our implementation, it was defined as an int with ms as the
unit.

Experiments were conducted to investigate the effects of each of the previ-
ously described factors: overlapping a part of each cycle, duplicating morphs in
one cycle, and allowance of crossings. We prepared complete graphs with 7–13
nodes and laid out the nodes of each graph equally spaced around a circum-
ference with a radius of 200 pixels. The speed of the tips of the stubs was 100
pixels/s and the tips were paused for 100 ms at the longest stub ratio.

The longest stub-ratio was set to η = 50% and the shortest stub-ratios δ
were set to 4%, 9%, 16%, and 25%. Always-passing intersections were included
in the case of δ = 25% with seven nodes, δ ≥ 16% with 8–10 nodes, and δ ≥ 9%
with 11–13 nodes. Furthermore, always-crossing intersections were included in
the case of δ = 25% with 10–13 nodes.

For each of these 28 combinations, morphing scheduling was performed with
or without the application of overlapping, duplication within a cycle, and by
changing the allowable crossing number from 0 to 10. In addition, considering the
effects of sort in Algorithm 1, scheduling was performed with 100 different orders
under the same conditions, including a descending order of the edge lengths and
vice versa, as well as 98 randomly sorted orders.

9.1 Overlapping a Part of Each Cycle

Here, we examined the reduction rate of the cycle length and derived it as the
ratio of the cycle length obtained by applying the proposed methods to the cycle
length obtained by the scheduling algorithm proposed by Misue & Akasaka [6].
The number of samples was 2,400 for seven nodes, 3,600 for eight nodes, and
4,400 for each of the other cases. Figure 3(a) shows the quartiles of the reduction
rates of cycle lengths. Although a certain effect is observed, it is found that
this decreases as the number of nodes increases. The median value for the seven
nodes is 0.771, but it increased to 0.910 for 13 nodes.

9.2 Duplication Within a Cycle

For example, if all the edges could morph twice within one cycle, the cycle
length would be effectively halved. Hence, we considered the reduction rate as
the number of edges to be morphed divided by the total number of morphs.
The number of samples was the same as that used for the evaluation of the
overlapping cycles. In all the cases, the overlapping a part of each cycle was not
applied.

Figure 3(b) shows the quartiles of the reduction rates. It can be observed
that the effectiveness improves as the number of nodes increases. Focusing on
the median, when the number of nodes is seven, the median is one, and there
is no reduction effect; however, when the number of nodes is 13, the median is
0.602. In other words, on an average, morphing can be performed nearly twice
within one cycle.
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(b) Duplication within a cycle

Fig. 3. Effects of overlapping a part of each cycle and duplication within a cycle

9.3 Allowance of Crossings

We examined the reduction rate of the cycle length when crossings were allowed
for each allowable crossing number. Figure 4 shows the quartiles of the reduction
rate of cycle lengths. Figure 4(a) shows the case in which all types of intersec-
tions are included, and Fig. 4(b) shows the case in which only fully avoidable
intersections are included. In both cases, the reduction effect improved as the
allowable crossing number increased. However, in some cases, the cycle becomes
longer around the allowable crossing numbers of 1 to 3. In the case of fully avoid-
able intersections, these cases are less frequent. In any case, the identification of
the factors will be our focus in future studies.
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Fig. 4. Effects of allowance of crossings
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10 Conclusion

We developed three scheduling methods to shorten the morphing cycle in MED.
The first method shortens a cycle by overlapping the end of the current cycle
with the succeeding one. The second method shortens the average duration of a
cycle by duplicating every morph by the allowable number of times in one cycle.
The third method aims at shortening the cycle length by allowing a certain
number of crossings at each edge. We incorporated these developed methods
into a program and conducted evaluation experiments on complete graphs laid
out on a circle to confirm the effectiveness of each method.
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7. Nöllenburg, M.: Crossing layout in non-planar graph drawings. In: Hong, S.-H.,
Tokuyama, T. (eds.) Beyond Planar Graphs, pp. 187–209. Springer, Singapore
(2020). https://doi.org/10.1007/978-981-15-6533-5 11

8. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 67

9. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

10. Schmauder, H., Burch, M., Weiskopf, D.: Visualizing dynamic weighted digraphs
with partial links. In: Proceedings of 6th International Conference on Information
Visualization Theory and Applications (IVAPP), pp. 123–130 (2015)

https://doi.org/10.1109/IISA.2016.7785427
https://doi.org/10.1007/978-3-642-30347-0_7
https://doi.org/10.1007/978-3-319-27261-0_47
https://doi.org/10.1109/iV.2017.43
https://doi.org/10.1007/978-3-642-25878-7_22
https://doi.org/10.1007/978-3-642-25878-7_22
https://doi.org/10.1007/978-3-030-35802-0
https://doi.org/10.1007/978-981-15-6533-5_11
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/BFb0021827


Linear Layouts



Queue Layouts of Two-Dimensional
Posets

Sergey Pupyrev(B)

Menlo Park, CA, USA

spupyrev@gmail.com

Abstract. The queue number of a poset is the queue number of its cover
graph when the vertex order is a linear extension of the poset. Heath and
Pemmaraju conjectured that every poset of width w has queue number
at most w. The conjecture has been confirmed for posets of width w = 2
and for planar posets with 0 and 1. In contrast, the conjecture has been
refused by a family of general (non-planar) posets of width w > 2.

In this paper, we study queue layouts of two-dimensional posets.
First, we construct a two-dimensional poset of width w > 2 with queue
number 2(w − 1), thereby disproving the conjecture for two-dimensional
posets. Second, we show an upper bound of w(w + 1)/2 on the queue
number of such posets, thus improving the previously best-known bound
of (w − 1)2 + 1 for every w > 3.

Keywords: Poset · Queue number · Width · Dimension · Linear
extension

1 Introduction

Let G be a simple, undirected, finite graph with vertex set V and edge set E, and
let σ be a total order of V . For a pair of distinct vertices u and v, we write u <σ v
(or simply u < v), if u precedes v in σ. We also write [v1, v2, . . . , vk] to denote
that vi precedes vi+1 for all 1 ≤ i < k; such a subsequence of σ is called a pattern.
Two edges (u, v) ∈ E and (a, b) ∈ E nest if u <σ a <σ b <σ v. A k-queue layout
of G is a total order of V and a partition of E into subsets E1, E2, . . . , Ek, called
queues, such that no two edges in the same set Ei nest. The queue number of G,
qn(G), is the minimum k such that G admits a k-queue layout. Equivalently, the
queue number is the minimum k such that there exists an order σ containing
no (k + 1)-rainbow, that is, a set of edges {(ui, vi); i = 1, 2, . . . , k + 1} forming
pattern [u1, . . . , uk+1, vk+1, . . . , v1] in σ.

Queue layouts can be studied for partially ordered sets (or simply posets).
A poset over a finite set of elements X is a transitive and asymmetric binary
relation < on X. The main idea is that given a poset, one should lay it out
respecting the relation. Two elements a, b of a poset, P = (X,<), are called
comparable if a < b or b < a, and incomparable, denoted by a ‖ b, otherwise.
Posets are visualized by their diagrams: Elements are placed as points in the
plane and whenever a < b in the poset and there is no element c with a < c < b,
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there is a curve from a to b going upwards (that is y-monotone); see Fig. 1a. Such
relations, denoted by a ≺ b, are known as cover relations; they are essential in
the sense that they are not implied by transitivity. The directed graph implicitly
defined by such a diagram is the cover graph GP of the poset P . Given a poset
P , a linear extension L of P is a total order on the elements of P such that
a <L b, whenever a <P b. Finally, the queue number of a poset P , denoted by
qn(P ), is the smallest k such that there exists a linear extension L of P for which
the resulting layout of GP contains no (k + 1)-rainbow; see Fig. 1c.

Queue layouts of posets were first studied by Heath and Pemmaraju [5], who
provided bounds on the queue number of posets in terms of their width, that
is, the maximum number of pairwise incomparable elements. In particular, they
observed that the size of a rainbow in a queue layout of a poset of width w
cannot exceed w2, and therefore, qn(P ) ≤ w2 for every poset P . Furthermore,
Heath and Pemmaraju conjectured that qn(P ) ≤ w for a width-w poset P . The
study of the conjecture received a notable attention in the recent years. Knauer,
Micek, and Ueckerdt [6] confirmed the conjecture for posets of width w = 2 and
for planar posets with 0 and 1. Later Alam et al. [1] constructed a poset of width
w ≥ 3 whose queue number is w + 1, thus refuting the conjecture for general
non-planar posets. In the same paper Alam et al. improved the upper bound by
showing that qn(P ) ≤ (w − 1)2 + 1 for all posets P of width w. Finally, Felsner,
Ueckerdt, and Wille [4] strengthened the lower bound by presenting a poset of
width w > 3 with qn(P ) ≥ w2/8.

In this short paper we refine our knowledge on queue layouts of posets by
improving the known upper and lower bounds of the queue number of two-
dimensional posets. Recall that the dimension of poset P is the least positive
integer d for which there are d linear extensions (realizers) L1, . . . , Ld of P so that
a < b in P if and only if a < b in Li for every i ∈ {1, . . . , d}. Two-dimensional
posets are described by realizers L1 and L2 and often represented by dominance
drawings in which the coordinates of the elements are their positions in L1 and
L2; see Fig. 1b. We emphasize that the existing lower bound constructions [1,4]
are not two-dimensional. Thus, Felsner et al. [4] asked whether the conjecture
of Heath and Pemmaraju holds for posets with dimension 2. Our first result
answers the question negatively.

Theorem 1. There exists a two-dimensional poset P of width w > 1 with
qn(P ) ≥ 2(w − 1).

Observe that our construction and the proof of Theorem 1 for w = 3 is
arguably much simpler than the one of Alam et al. [1], which is based on a
tedious case analysis. Thus, it can be interesting on its own right.

Next we study the upper bound on the queue number of two-dimensional
posets. Our result is the following theorem, which is an improvement over the
known (w − 1)2 + 1 bound of Alam et al. [1] for every w > 3.

Theorem 2. Let P be a two-dimensional poset with realizers L1, L2. Then there
is a layout of P in at most w(w+1)/2 queues using either L1 or L2 as the vertex
order.
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The paper is structured as follows. In Sect. 3 we prove Theorem 1 and in
Sect. 2 we prove Theorem 2. Section 4 concludes the paper with interesting
open questions.

Fig. 1. A two-dimensional poset of width 3, its dominance drawing, and a 2-queue
layout

2 An Upper Bound

Consider a two-dimensional poset P = (X,<) of width w ≥ 1 with realizers L1

and L2. In this section we study queue layouts of P using vertex orders L1 or
L2, which we call realizer-based. It is well-known that the elements of P can be
partitioned into w chains, that is, subsets of pairwise comparable elements. We
fix such a partition and treat it as a function C : X → {1, . . . , w} such that if
C(u) = C(v) and u �= v, then either u < v or v < u.

We start with a property of a linear extension of a poset, whose proof follows
directly from the absence of transitive edges in GP . Recall that ≺ indicates cover
relations of P , that is, edges of GP .

Proposition 1. A linear extension of a poset P with chain partition C does not
contain pattern [b1, b2, b3], where C(b1) = C(b2) = C(b3) and b1 ≺ b3.

The next observation, whose proof is immediate, provides a crucial property
of realizer-based linear extensions of two-dimensional posets. In fact, a poset, P ,
admits a linear extension with such a property if and only if P has dimension 2;
see for example [3] where such linear extensions are called non-separating.

Proposition 2. Consider a two-dimensional poset P with realizers L1, L2 and
chain partition C. Let [a1, b, a2] be a pattern in L1 (or L2) with C(a1) = C(a2).
Then either a1 < b or b < a2.

The next useful property in the section holds for realizer-based linear exten-
sions of two-dimensional posets.

Proposition 3. Consider a two-dimensional poset P with realizers L1, L2 and
chain partition C. Then L1 (or L2) does not contain pattern [a1, b2, a, a2, b1],
where C(a1) = C(a2) = C(a), C(b1) = C(b2), and a1 ≺ b1, b2 ≺ a2.
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Proof. For the sake of contradiction, assume that [a1, b2, a, a2, b1] is in L1, with
C(a1) = C(a2) = C(a), C(b1) = C(b2), and a1 ≺ b1, b2 ≺ a2. Notice that a1 ‖ b2,
as otherwise we have a1 < b2 < b1 and the edge (a1, b1) is transitive. Hence by
Proposition 2 applied to [a1, b2, a], b2 < a. Therefore, it holds that b2 < a < a2,
which contradicts to non-transitivity of edge (b2, a2).

Now we ready to prove the main result of the section.

Proof of Theorem 2. Assume that poset P is partitioned into w chains, and
consider a maximal rainbow, denoted T , induced by the order L1. We need to
prove that |T | ≤ w(w + 1)/2.

First observe that the rainbow, T , does not contain two distinct edges (a1, b1)
and (a2, b2) with C(a1) = C(a2) and C(b1) = C(b2). Otherwise, the former
edge nests the latter one and we have a1 < a2 ≺ b2 < b1, which violates
non-transitivity of (a1, b1). Therefore, we already have |T | ≤ w2. (This is the
argument of Heath and Pemmaraju for their original upper bound in [5])

Next we show two more configurations that are absent in T :

(i) For every pair of distinct chains, the rainbow does not contain edges (a1, b1),
(b2, a2), and (a3, a4) with C(a1) = C(a2) = C(a3) = C(a4) and C(b1) = C(b2).
For a contradiction, assume the rainbow contains the three edges. By Propo-
sition 1, edge (a3, a4) cannot cover elements a1 or a2. Thus, L1 contains
pattern [a1, b2, a3, a4, a2, b1] or [b2, a1, a3, a4, b1, a2]. Both patterns violate
Proposition 3.

(ii) For every triple of distinct chains, the rainbow does not contain edges
(a1, b1), (b2, a2), (a3, c3), and (c4, a4) with C(a1) = C(a2) = C(a3) = C(a4),
C(b1) = C(b2), and C(c3) = C(c4).
For a contradiction, assume T contains the four edges. Consider the inner-
most edge in the rainbow; without loss of generality, assume the edge is
(a1, b1). Vertex a1 is covered by two edges, (a3, c3) and (c4, a4), forming the
pattern of Proposition 3; a contradiction.

Now observe that T may contain at most w uni-colored edges (that is, (u, v)
such that C(u) = C(v)) and at most w(w − 1) bi-colored edges (that is, (u, v)
such that C(u) �= C(v)).

On the one hand, if T contains exactly w uni-colored edges and |T | > w(w +
1)/2, then it must contain at least one pair of bi-colored edges (a1, b1), (b2, a2)
with C(a1) = C(a2), C(b1) = C(b2). Together with the uni-colored edge from
chain C(a1), the triple forms the forbidden configuration (i).

On the other hand, if T contains at most w − 1 uni-colored edges and |T | >
w(w+1)/2, then T contains two pairs of bi-colored edges, as in configuration (ii);
a contradiction.

This completes the proof of the theorem. 	

Notice that the bound of Theorem 2 is worst-case optimal, as we show next.
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Fig. 2. A 2-dimensional poset of width w ≥ 1, Rw, with a realizer-based order contain-
ing a

(
w(w+1)/2

)
-rainbow, which is comprised of w thick edges that nest all edges of

Rw−1

Lemma 1. There exists a two-dimensional poset of width w ≥ 1, denoted Rw,
with realizers L1, L2 such that its layout with vertex order L1 contains a

(
w(w +

1)/2
)
-rainbow.

Proof. The poset Rw is built recursively. For w = 1, the poset consists of two
comparable elements. For w > 1, we assume that Rw−1 is constructed and
described by realizers Lw−1

1 and Lw−1
2 . The poset Rw is constructed from Rw−1

by adding 2w elements. Assume |Lw−1
1 | = n and the elements of Rw−1 are

indexed by w + 1, . . . , w + n. We set Lw
1 to the identity permutation and use

Lw
2 = Lw−1

2 ∪ (1, n + 2w, 2, n + 2w − 1, . . . , w, n + w + 1),

where ∪ denotes the concatenation of the two orders. Figure 2 illustrates the
construction. It is easy to verify that the width of the new poset is exactly w.
Observe that in the layout of Rw with order Lw

1 , edges (1, n+2w), . . . , (w, n+w+
1) form a w-rainbow and nest all edges of Rw−1. Therefore, the layout contains
a

(
w(w + 1)/2

)
-rainbow, as claimed.

We remark that Lemma 1 provides a poset whose queue layout with one of
its realizers contains a

(
w(w + 1)/2

)
-rainbow. It is straightforward to extend

the construction (by concatenating Rw with its dual) so that both realizer-
based vertex orders yield a rainbow of that size. However, the queue number of
the poset (and the proposed extension) is at most w, which is achieved with a
different, non-realizer-based, vertex order. Thus, a more delicate construction is
needed to force a larger rainbow in every linear extension of a poset.

3 A Lower Bound

In this section we provide a new counter-example to the conjecture of Heath
and Pemmaraju [5] by describing a two-dimensional poset of width w ≥ 3 whose
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Fig. 3. A counter-example to the conjecture of Heath and Pemmaraju [5]: A two-
dimensional poset, Pw, of width w ≥ 3 with queue number exceeding w

queue number exceeds w. The poset, denoted Pw, is constructed recursively. The
base case, P2, is a four-element poset with L1 = (1, 2, 3, 4) and L2 = (2, 1, 4, 3);
see Fig. 3b. The step of the construction is illustrated in Fig. 3c. Poset Pw consists
of a copy of Pw−1, a copy of the poset Rw−1 utilized in Lemma 1, the duals of
the two posets, and a chain of additional elements. Recall that the dual of a
poset, P , is the poset, P , on the same set of elements such that x < y in P if
and only if y < x in P for every pair of the elements x and y.

We now formally describe the construction. Denote by L1(P ), L2(P ) the
two realizers of a two-dimensional poset P . Let ∪ denote the concatenation of
two sequences, and let (x1, x2, . . . ) � (y1, y2, . . . ) denote the interleaving of two
equal-length sequences, that is, (x1, y1, x2, y2, . . . ). Assume that Rw−1 contains
r elements. Then we set

L1(Pw) = (x1, . . . , xr+1) ∪ b ∪ s ∪ y1 ∪ (
L1(Rw−1) � (y2, . . . , yr+1)

) ∪
L1(Pw−1) ∪ a ∪ L1(Pw−1) ∪ L1(Rw−1) ∪ t, and

L2(Pw) = s ∪ L2(Rw−1) ∪ L2(Pw−1) ∪ a ∪ L2(Pw−1) ∪
(
(x1, . . . , xr) � L2(Rw−1)

) ∪ xr+1 ∪ t ∪ b ∪ (y1, . . . , yr+1).

We refer to Fig. 3 for the illustration of the construction. Now we prove that
the constructed poset has queue number at least 2w − 2.

Proof of Theorem 1. It is easy to verify that the constructed poset, Pw, is two-
dimensional and has width exactly w. Furthermore, the poset is dual to itself,
that is, Pw = Pw with a and b being the fixed points. Thus, we may assume that
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Fig. 4. A linear extension of poset Pw for the proof of Theorem 1 in which a < b

in the linear extension corresponding to the optimal queue layout of the poset,
element a precedes b and we have s < · · · < a < b < y1 < · · · < yr+1. Next
we consider the queue layout induced by the elements s, Rw−1, Pw−1, a, and
y1, . . . , yr+1; see Fig. 4.

We prove the theorem by induction. For w = 2, the claim holds trivially.
For w > 2, we assume that qn(Pw−1) ≥ 2(w − 2) and distinguish two cases
depending on the size of the maximum rainbow, T , formed by edges (s, y1),
(v1, y2), . . . , (vr, yr+1), where vi, 1 ≤ i ≤ r are elements of Rw−1:

– if |T | ≥ 2, then qn(Pw) ≥ qn(Pw−1) + |T | ≥ 2(w − 1), as all edges of Pw−1

are nested by edges of T ;
– if |T | = 1, then the elements of Rw−1 must appear in the order induced by

L1(Rw−1), since otherwise at least two of the edges of T nest. By Lemma 1,
the edges of Rw−1 form a

(
w(w − 1)/2

)
-rainbow. The rainbow is covered by

edge (s, y1), which yields qn(Pw) ≥ (
w(w − 1)/2

)
+ 1 ≥ 2(w − 1) for w ≥ 3.

This completes the proof of Theorem 1. 	


4 Conclusions

We disproved the conjecture of Heath and Pemmaraju for two-dimensional
posets and answered a question posed by Felsner et al. [4]. A number of intriguing
problems in the area remain unsolved.

– Is it possible to get a subquadratic upper bound on the queue number of
two-dimensional posets of width w? A poset of Felsner et al. [4] that requires
w2/8 queues in every linear extension is not two-dimensional, which leaves a
hope for an asymptotically stronger result than the one given by Theorem 2.

– What is the queue number of two-dimensional posets of width 3? By
Theorem 1 and the result of Alam et al. [1], the value is either 4 or 5.

– Queue layouts of graphs are closely related to so-called track layouts, which
are connected with the existence of low-volume three-dimensional graph draw-
ings [2,7]. In particular, every t-track (undirected) graph has a (t − 1)-queue
layout, and every q-queue (undirected) graph has track number at most
4q ·4q(2q−1)(4q−1). We think it is interesting to study the relationship between
the two concepts for directed graphs and posets.
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Abstract. The page-number of a directed acyclic graph (a DAG, for
short) is the minimum k for which the DAG has a topological order and
a k-coloring of its edges such that no two edges of the same color cross,
i.e., have alternating endpoints along the topological order. In 1999,
Heath and Pemmaraju conjectured that the recognition of DAGs with
page-number 2 is NP-complete and proved that recognizing DAGs with
page-number 6 is NP-complete [SIAM J. Computing, 1999]. Binucci et
al. recently strengthened this result by proving that recognizing DAGs
with page-number k is NP-complete, for every k ≥ 3 [SoCG 2019]. In
this paper, we finally resolve Heath and Pemmaraju’s conjecture in the
affirmative. In particular, our NP-completeness result holds even for st-
planar graphs and planar posets.

Keywords: Page-number · Directed acyclic graphs · Planar posets

1 Introduction

The problem of embedding graphs in books [27] has a long history of research
with early results dating back to the 1970’s. Such embeddings are specified by
a linear order of the vertices along a line, called spine, and by a partition of the
edges into sets, called pages, such that the edges in each page are drawn crossing-
free in a half-plane delimited by the spine. The page-number of a graph is the
minimum number of pages over all its book embeddings, while the page-number
of a graph family is the maximum page-number over its members.
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An important branch of literature focuses on the page-number of planar
graphs. An upper bound of 4 was known since 1986 [30], while a matching lower
bound was only recently proposed [4,31]. Better bounds are known for several
subfamilies [14,15]. A special attention has been devoted to the planar graphs
with page-number 2 [3,8,11,13,19,21,25,28]. These have been characterized as
the subgraphs of Hamiltonian planar graphs [17] and hence are called subhamil-
tonian. Recognizing subhamiltonian graphs turns out to be NP-complete [29].

If the input graph is directed and acyclic (a DAG, for short), then the linear
vertex order of a book embedding is required to be a topological order [26].
Heath and Pemmaraju [16] showed that there exist planar DAGs whose page-
number is linear in the input size. Certain subfamilies of planar DAGs, however,
have bounded page-number [1,6,10,18], while recently it was shown that upward
planar graphs have sublinear page-number [20], improving previous bounds [12].
From an algorithmic point of view, testing whether a DAG has page-number k is
NP-complete for every fixed value of k ≥ 3 [7], linear-time solvable for k = 1 [16],
and fixed-parameter tractable with respect to the vertex cover number for every
k [6] and with respect to the treewidth for st-graphs when k = 2 [7]. In contrast to
the undirected setting, however, for k = 2 the complexity question has remained
open since 1999, when Heath and Pemmaraju posed the following conjecture.

Conjecture 1 (Heath and Pemmaraju [16]). Deciding whether a DAG has
page-number 2 is NP-complete.

Our Contribution. In this work, we settle Conjecture 1 in the positive. More
precisely, we show that testing st-planar graphs for 2-page embeddability is NP-
complete. In [2], we further show that the problem remains NP-complete for
planar posets, i.e., upward-planar graphs with no transitive edges.

2 Preliminaries

A plane embedding of a connected graph is an equivalence class of planar drawings
of the graph, where two drawings are equivalent if they define the same clockwise
order of the incident edges at each vertex and the same clockwise order of the
vertices along the outer face. The flip of a plane embedding produces a plane
embedding in which the clockwise order of the incident edges at each vertex
and the clockwise order of the vertices along the outer face is the reverse of the
original one. A drawing of a DAG is upward if each edge is represented by a curve
whose y-coordinates monotonically increase from the source to the sink, and it
is upward planar if it is both upward and planar. An upward planar embedding is
an equivalence class of upward planar drawings of a DAG, where two drawings
are equivalent if they define the same plane embedding and the same left-to-right
order of the outgoing (and incoming) edges at each vertex. A plane DAG is a
DAG together with an upward planar embedding. A DAG is st-planar if it has a
single source s and a single sink t, and admits a planar drawing with s and t on
the outer face. It is known that every st-planar graph is upward planar [9,22]. An
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Fig. 1. Curly curves represent paths and straight-lines represent edges. Edges with
no arrow are directed upward, also in subsequent figures. (a) Generalized diamond,
(b) non-transitive face, (c) rhombus, and (d)-(e) the two subhamiltonian paths of a
double ladder of even length �.

st-plane graph is an st-planar graph together with an upward planar embedding
in which s and t are incident to the outer face. As in the undirected case, a DAG
G has page-number 2 if it is subhamiltonian, i.e., it is a spanning subgraph of an
st-planar graph G that has a directed Hamiltonian st-path P [24]. In the previous
definition, if G has a prescribed plane embedding, we additionally require that
the plane embedding of G restricted to G coincides with the one of G. We say
that P is a subhamiltonian path for G, and we refer to the edges of P that are
not in G as augmenting edges. Further, G is an HP-completion of G.

A generalized diamond is an st-plane graph consisting of three directed paths
from vs to vt, one of which is the edge vsvt and appears between the other two
paths in the upward planar embedding; see Fig. 1a. A face (by face of a plane
DAG we always mean an internal face, unless otherwise specified) of a plane
DAG whose boundary consists of two directed paths is an st-face. An st-face is
transitive if one of these paths is an edge; non-transitive, otherwise (see Fig. 1b).
A rhombus is a non-transitive st-face whose boundary paths have length 2; see
Fig. 1c. From [24, Theorem 1], we obtain Property 1 which implies Property 2.

Property 1. A Hamiltonian st-plane graph contains only transitive faces and
no generalized diamond.

Property 2. Let G be a plane DAG and P be a subhamiltonian path for G. If G
contains a rhombus (vs, vl, vr, vt) with source vs and sink vt, then P contains
either the edge vlvr or the edge vrvl, i.e., vl and vr are consecutive in P .

The next property follows directly from Theorem 1 in [23] and Property 1. We
provide a full proof in [2].

Property 3 (�). Let G be a plane DAG and P be a subhamiltonian path
for G. If G contains a non-transitive face f with boundaries (vs, w, vt) and
(vs, v1, . . . , vr, vt), then the augmenting edges of P inside f are either (i) the
edge wv1, or (ii) the edge vrw, or (iii) edges viw and wvi+1 for some 1 ≤ i < r.
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3 NP-completeness

Let φ be a Boolean 3-SAT formula with n variables x1, . . . , xn and m clauses
c1, . . . , cm. A clause of φ is positive (negative) if it has only positive (negative)
literals. The incidence graph Gφ of φ is the graph that has variable vertices
x1, . . . , xn, clause vertices c1, . . . , cm, and has an edge (cj , xi) for each clause cj

containing xi or xi. Note that we use the same notation for variables (clauses)
in φ and variable vertices (clause vertices) in Gφ. If φ has clauses with less than
three literals, we introduce parallel edges in Gφ so that all clause vertices have
degree 3 in Gφ; see, e.g., the dotted edge in Fig. 4. The formula φ is an instance
of the NP-complete Planar Monotone 3-SAT problem [5], if each clause of φ
is positive or negative, and Gφ has a plane embedding Eφ to which the edges of a
cycle Cφ := x1, . . . , xn can be added that separates positive and negative clause
vertices. The problem asks whether φ is satisfiable. Next, we present our gadgets.

Double Ladder. A double ladder of even length � is defined as follows. Its vertex
set consists of two sources, s1 and s2, two sinks, t1 and t2, and vertices in
∪�

i=0{ui, vi, wi}. Its edge set consists of edges s1u0, s1v0, s2v0, s2w0, u�t1, v�t1,
v�t2, w�t2, and ∪�−1

i=0{uiui+1, viui+1, vivi+1, wivi+1, wiwi+1}.

Property 4. The double ladder has a unique upward planar embedding (up to
a flip), shown in Figs. 1d and 1e.

Proof. The embedding shown in Figs. 1d and 1e clearly is an upward planar
embedding. The underlying graph of the double ladder has four combinatorial
embeddings, which are obtained from the embedding in Figs. 1d and 1e, by
possibly flipping the path u1u0s1v0 along u1v0 and the path w�−1w�t2v� along
w�−1v�. However, such flips respectively force s1v0 and v�t2 to point downward.
Finally, since the outer face of the embedding in Figs. 1d and 1e is the only face
containing at least one source and one sink, the claim follows. ��
Property 5. Let G be a plane DAG with a subhamiltonian path P . If G con-
tains a double ladder of length �, then P contains the pattern [. . . uiviwi . . . wi+1

vi+1ui+1 . . .] or [. . . wiviui . . . ui+1vi+1wi+1 . . .] for i = 0, . . . , � − 1.

Proof. By Properties 2 and 4, ui, vi, wi are consecutive along P , for i = 0, . . . , �.
The edge uiui+1 implies that ui, vi, wi precede ui+1, vi+1, wi+1. So, it remains
to rule out patterns [. . . uiviwi . . . ui+1vi+1wi+1 . . .] and [. . . wiviui . . . wi+1vi+1

ui+1 . . .]. If P contains one of them, then edges uiui+1, vivi+1 and wiwi+1 pair-
wise cross, implying that G has page-number at least 3; a contradiction. ��
Corollary 1. There exist two subhamiltonian paths for the double ladder, shown
in Figs. 1d and 1e.

Variable Gadget: Let x ∈ {x1, . . . , xn}. The variable gadget Lx for x is the
double ladder of length 4dx, where dx is the degree of x in Gφ. To distinguish
between vertices of different variable gadgets, we denote the vertices of Lx with
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Fig. 2. The connector gadget for two variables having (a)-(b) the same truth assign-
ment, and (c)-(d) the opposite truth assignment.

the superscript x, as in Fig. 2. Vertices sx
1 , sx

2 , ux
0 are the bottom connectors

and wx
4dx

, tx1 , tx2 are the top connectors of Lx. The two subhamiltonian paths
of Corollary. 1 correspond to the truth assignments of x; Fig. 1d corresponds
to true, while Fig. 1e to false. Also, we refer to the edges of Lx that are
part of the subhamiltonian path of Fig. 1d (of Fig. 1e) as true edges (false edges,
respectively). In particular, ux

2ju
x
2j+1 and wx

2j+1w
x
2j+2 are true edges of Lx, while

ux
2j+1u

x
2j+2 and wx

2jw
x
2j+1 are false edges of Lx, for j = 0, . . . , 2dx − 1.

Connector Gadget: A connector gadget connects two variable gadgets Lx and Ly

by means of three paths from the top connectors of Lx to the bottom connectors
of Ly; see Fig. 2. These paths are: the edge tx1u

y
0, the length-2 path tx2ρx,ysy

1,
where ρx,y is a newly introduced vertex, and the edge wx

4dx
sy
2.

Property 6. Given subhamiltonian paths Px for Lx and Py for Ly, there is a
subhamiltonian path P containing Px and Py for the graph obtained by adding a
vertex ρx,y and edges tx1u

y
0, t

x
2ρx,y, ρx,ysy

1, w
x
4dx

sy
2 to Lx ∪ Ly.

Proof. Each of Px and Py is one of the two subhamiltonian paths of Corollary
1; see Fig. 1. In particular, the last vertex of Px is tx1 or tx2 , and the first vertex
of Py is sy

1 or sy
2, depending on the truth assignments for x and y, respectively,

as shown in Fig. 2. We obtain P by adding directed edges from the last vertex
of Px to ρx,y and from ρx,y to the first vertex of Py. ��
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Fig. 3. Clause gadgets for (a) a positive clause and (b) a negative clause. (Color figure
online)

Clause Gadget: Let c be a positive (negative) clause. Assume that the variables
x, y and z of c appear in this order along Cφ, when traversing Cφ from x1 towards
xn. In Eφ, the edges between x and the positive (negative) clause vertices of Gφ

appear consecutively around x. Assume that the edge (c, x) is the (i+1)-th such
edge in a clockwise (counter-clockwise) traversal of the edges around x starting
at the edge of Cφ incoming x. Similarly, define indices j and k for y and z,
respectively. Let Lx, Ly and Lz be the three variable gadgets for x, y and z.

The clause gadget Cc for c consists of an anchor vertex ac, and four edges. If
c is positive, these edges are ux

4iac, acu
z
4k+1, ux

4i+1u
y
4j and uy

4j+1u
z
4k (green in

Fig. 3a); otherwise, they are wx
4i−4ac, acw

z
4k−3, wx

4i−3w
y
4j−4 and wy

4j−3w
z
4k−4

(green in Fig. 3b). Note that Cc creates a non-transitive face fc, called anchor
face, whose boundary is delimited by the two newly-introduced edges incident
to ac and by a directed path whose edges alternate between three true edges (if
c is positive) or three false edges (if c is negative) and the two newly-introduced
edges not incident to ac; see Fig. 3. The three true (or false) edges on the bound-
ary of fc stem from Lx, Ly, and Lz. The length of the double ladders ensures
that, if x = y (which implies that j = i + 1), then vertices ux

4i+1 and uy
4j (wx

4i−3

and wy
4j−4) are not adjacent in Lx and the edge ux

4i+1u
y
4j (wx

4i−3w
y
4j−4) is well

defined; this is the reason that we do not use vertices with indices 2, 3 mod 4.

Theorem 1. Recognizing whether a DAG has page-number 2 is NP-complete,
even if the input is an st-planar graph.

Proof. The problem clearly belongs to NP, as a non-deterministic Turing
machine can guess an order of the vertices of an input graph and a partition
of its edges into two pages, and check in polynomial time whether the order is a
topological order and if so, whether any two edges in the same page cross.

Given an instance φ of Planar Monotone 3-SAT, we construct in poly-
nomial time an st-planar graph H that has page-number 2 if and only if φ is
satisfiable; see Fig. 4. We consider the variable gadgets Lx1 , . . . , Lxn

, where
x1, . . . , xn is the order of the variables along the cycle Cφ; for i = 1, . . . , n − 1,
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Fig. 4. The graph H obtained from φ = c1∧c2∧c3 with c1 = (x1∨x2∨x3), c2 = (x3∨x4),
and c3 = (x1 ∨ x2 ∨ x4). For space reasons, the variable gadgets have smaller length
and the drawing is rotated by 45◦.

we connect Lxi
with Lxi+1 using a connector gadget. For each positive (nega-

tive) clause c of φ, we add a clause gadget Cc using the true (false) edges of
the variable gadgets. This yields a plane DAG with two sources sx1

1 and sx1
2 and

two sinks txn
1 and txn

2 . We add a source s connected with outgoing edges to sx1
1

and sx1
2 , and a sink t connected with incoming edges to txn

1 and txn
2 . The con-

structed graph H is st-planar. Since the underlying graph of H is a subdivision
of a triconnected planar graph and since only one face of H contains s and t, it
follows that H has a unique upward planar embedding. We next prove that H is
subhamiltonian (and therefore has page-number 2) if and only if φ is satisfiable.

Assume first that φ is satisfiable. We show how to construct a subhamiltonian
path P for H, by exploiting a satisfying truth assignment for φ. For i = 1, . . . , n,
we have that P contains the subhamiltonian path Pi for Lxi

shown in Fig. 1d
if xi is true, and the one shown in Fig. 1e otherwise. By Property 6, there is
a subhamiltonian path P for the subgraph of H induced by the vertices of all
variable and connector gadgets, containing P1, . . . , Pn as subpaths. The path P
starts from a source of Lx1 and ends at a sink of Lxn

; hence we can extend P to
include s and t as its first and last vertices. We now extend P to a subhamiltonian
path for H by including the anchor vertex of each clause gadget. Consider a
positive clause c = (x∨y∨z) with anchor vertex ac; the case of a negative clause
is similar. As φ is satisfied, at least one of x, y and z is true; assume w.l.o.g. that
x is true. By construction, the anchor face fc of Cc is non-transitive, with the
anchor vertex ac on its left boundary, and exactly one true edge of each of Lx,
Ly, and Lz along its right boundary. Let i ≥ 0 be such that ux

4iu
x
4i+1 is the true

edge of Lx on the right boundary of fc. Since x is true, vertices ux
4i and ux

4i+1

are consecutive in P . We extend P by visiting vertex ac after ux
4i and before

ux
4i+1. This corresponds to adding two augmenting edges ux

4iac and acu
x
4i+1 of

P in the interior of fc; see the black dashed edges of Fig. 4. At the end of this
process, P is extended to a subhamiltonian path for H.
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Assume now that there exists a subhamiltonian path P for H. For each
variable gadget Lxi

, P induces a subhamiltonian path Pi for Lxi
. By Corollary

1, Pi is one of the two subhamiltonian paths of Fig. 1. We assign to xi the
value true if Pi is the path of Fig. 1d and false if Pi is the path of Fig. 1e.
We claim that this truth assignment satisfies φ. Assume, for a contradiction,
that there exists a clause c that is not satisfied. Assume that c is a positive
clause (x ∨ y ∨ z), where x, y and z are assigned false, as the other case is
analogous. Also, assume that x, y, z appear in this order in Cφ, and that the
right boundary of the anchor face fc of the clause gadget Cc contains the true
edges ux

4iu
x
4i+1, uy

4ju
y
4j+1 and uz

4kuz
4k+1 of Lx, Ly and Lz. As x, y and z are false,

the corresponding subhamiltonian paths Px, Py and Pz of Lx, Ly and Lz are the
ones of Fig. 1e. Hence, P contains the augmenting edges ux

4iv
x
4i and vx

4i+1u
x
4i+1 of

Px, uy
4jv

y
4j and vy

4j+1u
y
4j+1 of Py and uz

4kvz
4k and vz

4k+1u
z
4k+1 of Pz. By Property 3

for the non-transitive face fc, P contains either (i) the augmenting edge acu
x
4i+1,

or (ii) the augmenting edge uz
4kac, or (iii) for a pair of consecutive vertices, say u

and u′, along the right boundary of fc, the augmenting edges uac and acu
′. Cases

(i) and (ii) contradict the existence of augmenting edges vx
4i+1u

x
4i+1 and uz

4kvz
4k

of P respectively. Similarly, in case (iii) the augmenting edges of P that belong
to Px, Py, and Pz imply that u /∈ {ux

4i, u
y
4j , u

z
4k} and u′ /∈ {ux

4i+1, u
y
4j+1, u

z
4k+1}.

Hence u = ux
4i+1 and u′ = uy

4j holds, or u = uy
4j+1 and u′ = uz

4k. In both
cases, the HP-completion of H contains a generalized diamond with vs = u and
vt = u′, violating Property 1. Hence at least one of variables x, y and z must be
true, contradicting our assumption that c is not satisfied. ��
We conclude by mentioning that our NP-completeness proof can be adjusted so
that the constructed graph is a planar poset; refer to [2] for details.
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Abstract. We continue the study of linear layouts of graphs in relation
to known data structures. At a high level, given a data structure, the goal
is to find a linear order of the vertices of the graph and a partition of its
edges into pages, such that the edges in each page follow the restriction
of the given data structure in the underlying order. In this regard, the
most notable representatives are the stack and queue layouts, while there
exists some work also for deques.

In this paper, we study linear layouts of graphs that follow the restric-
tion of a restricted-input queue (rique), in which insertions occur only at
the head, and removals occur both at the head and the tail. We character-
ize the graphs admitting rique layouts with a single page and we use the
characterization to derive a corresponding testing algorithm when the
input graph is maximal planar. We finally give bounds on the number of
needed pages (so-called rique-number) of complete graphs.

Keywords: Linear layout · Restricted-input queue · Rique-number

1 Introduction

Linear graph layouts form an important methodological tool, since they provide a
key-framework for defining different graph-parameters (including the well-known
cutwidth [1], bandwidth [14] and pathwidth [34]). As a result, the corresponding
literature is rather rich; see [35]. Such layouts typically consist of an order of the
vertices of a graph and an objective over its edges that one seeks to optimize.
In the closely-related area of permutations and arrangements, back in 1973,
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Fig. 1. Different linear layouts of the complete graph K4. The data structures are
depicted in the states that corresponds to the dashed vertical line.

Pratt [32] introduced and studied several variants of linear layouts that one can
derive by leveraging different data structures to capture the order of the vertices
(e.g., stacks, queues and deques).

Formally, given k data structures D1, . . . , Dk, a graph G admits a (D1, . . . , Dk)-
layout if there is a linear order ≺ of the vertices of G and a partition of the edges
of G into k sets E1, . . . , Ek, called pages, such that for each page Ei in the
partition, each edge (u, v) of Ei is processed by the data structure Di by inserting
(u, v) to Di at u and removing it from Di at v if u ≺ v in the linear layout. If the
sequence of insertions and removals is feasible, then G is called a (D1, . . . , Dk)-
graph. We denote the class of (D1, . . . , Dk)-graphs by D1 + . . . + Dk. For a certain
data structure D, the D-number of a graph G is the smallest k such that G admits
a (D1, . . . , Dk)-layout with D = D1 = . . . = Dk. This graph parameter has been
the subject of intense research for certain data structures, as we discuss below.

1. If D is a stack (abbreviated by S), then insertions and removals only occur
at the head of D; see Fig. 1a. It is known that a non-planar graph may have
linear stack-number, e.g., the stack-number of Kn is �n/2� [13]. A central
result here is by Yannakakis, who back in 1986 showed that the stack-number
of planar graphs is at most 4 [36], a bound which was only recently shown to
be tight [11]. Certain subclasses of planar graphs, however, allow for stack-
layouts with fewer than four stacks, e.g., see [9,15,20,21,24,26,29–31,33].

2. If D is a queue (abbreviated by Q), then insertions only occur at the head and
removals only at the tail of D; see Fig. 1b. In this context, a breakthrough
by Dujmović et al. [19] states that the queue-number of planar graphs is at
most 49, improving previous results [5,16–18]. Even though this bound was
recently improved to 42 [10], the exact queue-number of planar graphs is not
yet known; the current-best lower bound is 4 [10]. Again, several subclasses
allow for layouts with significantly fewer than 42 queues, e.g., see [2,22,27,33].

3. If D is a double-ended queue or deque (abbreviated by DEQ), then insertions
and removals can occur both at the head and the tail of D; we denote the
deque-number of a graph G by deq(G). This definition implies that S+ S ⊆
DEQ ⊆ S+ S+ Q. A characterization by Auer et al. [4] (stating that a graph
has deque-number 1 if and only if it is a spanning subgraph of a planar graph
with a Hamiltonian path) implies that the first containment is strict, because
a maximal planar graph with a Hamiltonian path but not a Hamiltonian
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Fig. 2. A strongly 1-sided Hamiltonian path and the state of the RIQ that processes it
right after processing the edges incident to vi.

cycle (e.g., the Goldner-Harary graph [23]) admits a DEQ-layout, but not an
(S, S)-layout. The second containment is also strict because (S, S, Q)-graphs
can be non-planar (e.g., K6 [3]). Hence, S+ S � DEQ � S+ S+ Q holds.

OurContribution. In this work, we focus on the case where the data structure D
is a restricted-input queue or rique (abbreviated by RIQ), in which insertions occur
only at the head, and removals occur both at the head and the tail of D; see Fig. 1c.
We first characterize the graphs with rique-number 1 as those admitting a pla-
nar embedding with a so-called strongly 1-sided subhamiltonian path, that is, a
Hamiltonian path v1, . . . , vn in some plane extension of the embedding such that
each edge (vi, vj) with 1 < i < j ≤ n leaves vi on the same side of the path;
see Fig. 2. This characterization allows us to derive an inclusion relationship sim-
ilar to the one above for deques (namely, S, Q � RIQ � S+ Q; see Observation 2)
and corresponding recognition algorithms for graphs with rique-number 1 under
some assumptions (Theorem 3). Then, we focus on bounds on the rique-number of
a graph G, which we denote by riq(G). Our contribution is an edge-density bound
for the graphs with rique-number k (Thoerem 5), and a lower and an upper bound
on the rique-number of complete graphs (Therorem 6).

2 Preliminaries

We start with definitions that are central in Sect. 3. Given a rique-layout, we
call an edge (u, v) a head-edge (tail-edge), if (u, v) is removed at v from the
head (tail) of the RIQ. A strongly 1-sided Hamiltonian path of a plane graph is
a Hamiltonian path v1, . . . , vn such that each edge (vi, vj) with 1 < i < j ≤ n
leaves vi on the same side of the path, say w.l.o.g. the left one, i.e., between
(vi−1, vi) and (vi, vi+1) in clockwise order around vi (see Fig. 2). A plane graph
is strongly 1-sided Hamiltonian if it contains a strongly 1-sided Hamiltonian path.
A planar graph is strongly 1-sided Hamiltonian if it admits a planar embedding
that contains a strongly 1-sided Hamiltonian path. A planar (plane) graph G is
strongly 1-sided subhamiltonian if there exists a planar (plane) supergraph H of
G that is strongly 1-sided Hamiltonian.
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Fig. 3. An SPQR-tree, omitting the Q-nodes.

Another key-tool that we leverage in Sect. 4 is the SPQR-tree. This data
structure, introduced by Di Battista and Tamassia [6,7], compactly represents all
planar embeddings of a biconnected planar graph; see Fig. 3 for an example. It
is unique and can be computed in linear time [25]. We assume familiarity with
SPQR-trees; for a brief introduction refer to the full version of the paper [8].

3 Characterization of Graphs with Rique-Number 1

In this section, we discuss properties of graphs with rique-number 1. We first
characterize these graphs in Lemma 1 in terms of the following forbidden pattern.

P.1 Three edges 〈ea, eb, ec〉 with ea = (a, a′), eb = (b, b′) and ec = (c, c′)
form Pattern P.1 in a linear layout if and only if a ≺ b ≺ c ≺ b′ ≺
{a′, c′}; see Fig. 4.

Lemma 1. A graph has rique-number 1 if and only if it admits a linear order
avoiding Pattern P.1.

Proof. Let G be a graph with rique-number 1 and assume for a contradiction
that a linear order of it contains Pattern P.1. The edge ea is inserted into data
structure RIQ before the edge eb is inserted, but removed after eb is removed.
Hence, eb cannot be removed at the tail of RIQ, so it has to be removed at its head.
However, the edge ec is inserted after the edge eb is inserted, but also removed
after eb is removed, so eb also cannot be removed at the head; a contradiction.

Fig. 4. Forbidden Pattern P.1
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Fig. 5. Ordering of the edges around a vertex vi.

For the other direction, assume that G has rique-number greater than 1. We
will prove that every linear order of G contains Pattern P.1. Let ≺ be such an
order. Since G has rique-number greater than 1 and all insertions into a RIQ
happen on the same side, at some time b′ there is an edge eb to be removed that
is neither at the head nor at the tail of RIQ. Since eb is not at the head, there
is some other edge ec that was inserted into RIQ after eb and is still there at
time b′. Since eb is not at the tail, there is some other edge ea that was inserted
into RIQ before eb and still is there. Then, 〈ea, eb, ec〉 form Pattern P.1. 	


We are now ready to completely characterize the graphs with rique-number 1.

Theorem 1. A graph G has rique-number 1 if and only if G is planar strongly
1-sided subhamiltonian.

Proof. First, assume that G can be embedded so that it contains a strongly 1-
sided subhamiltonian path v1, . . . , vn. For a contradiction, assume further that
〈ea = (a, a′), eb = (b, b′), ec = (c, c′)〉 form Pattern P.1 in the order v1, . . . , vn.
Note that ea, eb, and ec leave a, b, and c on the left side, respectively. If eb enters
b′ from the left, then eb crosses ec as b ≺ c ≺ b′ ≺ c′. So, eb has to enter b′ from
the right. Then, however, eb crosses ea since a ≺ b ≺ b′ ≺ a′; a contradiction.
So, by Lemma 1, G has rique-number 1.

Assume now that G has rique-number 1. By Lemma 1, G admits a linear order
v1, . . . , vn avoiding Pattern P.1. W.l.o.g. we assume that G contains all edges in
{(v1, v2), . . . , (vn−1, vn)} and prove that G is strongly 1-sided Hamiltonian.

Consider a vertex vi. We order the edges around vi counter-clockwise as follows;
see Fig. 5. (i) The edge (vi, vi+1) (for i < n); (ii) the outgoing head-edges of vi,
ordered in increasing order by the index of the target vertex; (iii) the outgoing tail-
edges of vi, ordered in decreasing order by the index of the target vertex; (iv) the
incoming head-edges of vi, ordered in increasing order by the index of the source
vertex; (v) the edge (vi−1, vi) (for i > 1); (vi) the incoming tail-edges of vi, ordered
in increasing order by the index of the source vertex. This ensures that all edges
leave vi on the correct side of the Hamiltonian path. It remains to be shown that
this embedding is plane. To this end, assume that there are two edges (vi, vj) and
(vk, v�) that cross. W.l.o.g. we assume that i < k.

If (vk, v�) is a head-edge, then it leaves and enters vk and v� on the same side
of the Hamiltonian path as (vi, vj) leaves vi. Hence, (vi, vj) and (vk, v�) cross
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only if (vi, vj) also enters vj on the same side. So, (vi, vj) is also a head-edge with
i < k < j < �. However, since (vi, vj) entered RIQ at the head before (vk, v�), it
cannot leave RIQ at the head before (vk, v�); a contradiction.

If (vk, v�) is a tail-edge, then (vi, vj) leaves vi on the same side of the Hamil-
tonian path as (vk, v�) leaves vk, but (vk, v�) enters v� on the other side. If (vi, vj)
is a head-edge, then we must have i < k < j. However, since (vi, vj) entered RIQ
at the head before (vk, v�), it cannot leave RIQ at the head before (vk, v�); a
contradiction. Otherwise (vi, vj) is a tail-edge, and we must have i < k < � < j.
However, since (vi, vj) entered RIQ at the head before (vk, v�), it cannot leave
RIQ at the tail after (vk, v�); a contradiction.

It follows that no two edges cross, as desired. This concludes the proof. 	


The definition of a rique implies X ⊆ RIQ ⊆ S+ Q, where X ∈ {S, Q}. By Theo-
rem 1, both inclusions are strict, as K4 ∈ RIQ (see Fig. 1c) but it admits neither
a stack-layout (since it is not outerplanar [13]) nor a queue-layout (since any
linear order yields a 2-rainbow [28]), and K6 admits an (S, Q)-layout [3] but is
not planar and therefore K6 /∈ RIQ.

Observation 2. X � RIQ � S+ Q, where X ∈ {S, Q}

4 Recognition of Graphs with Rique-Number 1

With the characterization of Theorem 1 at hand, we now turn our focus to the
recognition problem, where we present two algorithms: (i) the first one is simple
and tests whether a plane graph is strongly 1-sided Hamiltonian, while (ii) the
second one is more elaborate and tests whether a planar graph is strongly 1-sided
Hamiltonian. Even though our algorithms do not solve the general case of testing
whether a graph has rique-number 1 (or equivalently by Theorem 1 whether it is
strongly 1-sided subhamiltonian), they can be leveraged for testing, e.g., whether
a maximal planar graph or a 3-connected planar graph has rique-number 1.

Theorem 3. Given a plane n-vertex graph G, there is an O(n2)-time algorithm
to test whether G is plane strongly 1-sided Hamiltonian.

Proof. After guessing the first edge of the path, for which there are O(n) choices,
we assume that we have computed a subpath π = v1, . . . , vi, 2 ≤ i < n of a
strongly 1-sided Hamiltonian path of G. We claim that the next vertex vi+1 is
uniquely determined by π. Consider the edges of G incident to vi in counter-
clockwise order, starting from the edge after (vi−1, vi). Let e be the first edge
in this order, whose other endpoint does not lie on π. We choose this endpoint
as vi+1. This is correct, since choosing an endpoint of an edge preceding e visits a
vertex twice, whereas choosing an endpoint of an edge succeeding e would imply
that e leaves the resulting path on the wrong side. The above argument shows
that, after guessing an initial edge, the remainder of the 1-sided Hamiltonian
path is uniquely defined, if it exists. Since a single starting edge can be tested
in O(n) time, the overall time complexity of our algorithm is O(n2). 	
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Fig. 6. (a) A block-cut tree; (b) a strongly 1-sided Hamiltonian embedding for each
block; (c) a strongly 1-sided Hamiltonian embedding for the whole graph.

Corollary 1. Given a maximal planar graph G with n vertices, there is an
O(n2)-time algorithm to test whether G has rique-number 1.

Theorem 4. Given a planar n-vertex graph G, there is an O(n4)-time algorithm
to test whether G is planar strongly 1-sided Hamiltonian.

Proof. To prove the statement, we assume that the endpoints s, t of the Hamilto-
nian path are specified as part of the input and we show that testing whether G
admits a planar embedding containing a strongly 1-sided Hamiltonian st-path
can be done in O(n2) time. In the positive case, we say that G is st-1-sided.

If G is not biconnected, then for G to be st-1-sided its block-cut tree must be
a path B1, c1, B2, . . . , ck, Bk+1, such that s ∈ B1 and t ∈ Bk+1 (or vice versa;
here k denotes the number of cutvertices of G). We set c0 = s and ck+1 = t
and claim that G is st-1-sided if and only if each block Bi is ci−1ci-1-sided
for i = 1, . . . , k + 1. The necessity is clear, we prove the sufficiency. Let Ei be a
planar embedding of Bi containing a strongly 1-sided Hamiltonian ci−1ci-path pi

for i = 1, . . . , k + 1. We modify the embedding Ei such that the first edge of pi

lies on the outer face, and combine Ei−1 and Ei in such a way that the first edge
of pi follows the last edge of pi−1 in counterclockwise order around ci. Then
the path p obtained by concatenating pi, i = 1, . . . , k + 1 is a strongly 1-sided
Hamiltonian path in the resulting embedding E of G; see Fig. 6.

Hence, we may assume that G consists of a single block. Since the case
where G consists of a single edge can be handled trivially, we focus on the case
where G is biconnected. To determine whether G is st-1-sided, we use a dynamic
program based on an SPQR-tree T of G. We root T at an edge incident to t
and for each node μ of T with poles u, v, we want to answer the following
questions: If s /∈ pert(μ), we want to know for each of the two ordered pairs of
poles (x, y) ∈ {(u, v), (v, u)} whether pert(μ) has an embedding with x, y on the
outer face such that it contains a strongly 1-sided Hamiltonian path from x to y
that starts with the edge that follows the parent edge counterclockwise around x;
in the positive case. We define the set L(μ) as those ordered pairs (x, y) where
this is the case. For a pair (x, y) ∈ L(μ), we denote by Eμ(x, y) the corresponding
embedding of pert(μ) and by Pμ(x, y) the corresponding path. If s ∈ pert(μ),
then for each x ∈ {u, v} and Y ⊆ {u, v} \ {x} we want to know whether pert(μ)
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Fig. 7. The tuples of L(μ) for a Q-node; the corresponding paths are red. (Color figure
online)

has an embedding Eμ(x, Y ) such that u, v are incident to the outer face and
there is a strongly 1-sided path Pμ(x, Y ) from s to x that visits all vertices
of pert(μ)−Y . As above, for node μ, we define L(μ) as the set of all pairs (x, Y )
where this is possible.

Consider the root r of T and let μ be its child with poles u, t. Then G is
st-1-sided if and only if and only if (t, ∅) ∈ L(μ). The necessity is clear. For the
sufficiency, observe that Pμ(t, ∅) is a strongly 1-sided st-path in the embedding
of G obtained from Eμ(t, ∅) by adding the edge ut in the outer face. We compute
the set L(μ) for each node μ of T (together with corresponding embeddings
of pert(μ) and paths) by a bottom-up traversal of T as follows. Let μ be a
node of T in this traversal with poles u, v. If μ is not a leaf in T , we denote by
μ1, . . . , μk its children, and we assume that L(μi) has already been computed
for i = 1, . . . , k. We next distinguish cases based on the type of μ.
Case 1: μ is a Q-node. If u = s = v, then L(μ) = {(u, v), (v, u)}. And
for (x, y) ∈ L(μ) the embedding Eμ(x, y) and the path Pμ(x, y) are trivial; see
Fig. 7a. Otherwise, assume w.l.o.g. s = v. Then L(μ) = {(v, {u}), (u, ∅)}. Again
for (x, Y ) ∈ L(μ), Eμ(x, Y ) and Pμ(x, Y ) can be defined trivially; see Fig. 7b.
Case 2: μ is a P-node. Assume first that s /∈ pert(μ); see Fig. 8a. We show how
to test whether (v, u) ∈ L(μ). The case of (u, v) is symmetric. First (v, u) ∈ L(μ)
requires k = 2 and that only one of the children, say μ1, is not a Q-node. If so,
(v, u) ∈ L(μ) if and only if (v, u) ∈ L(μ1). Also, Pμ(v, u) = Pμ1(v, u) and Eμ(v, u)
is obtained by embedding the edge represented by μ2 to the left of Eμ1(v, u).

Now, consider the case that s ∈ pert(μ). Assume first that s is a pole of μ; see
Fig. 8a. Then, any 1-sided path of μ unavoidably visits the other pole. In fact,
only a single child can be traversed, i.e., k = 2, and one child, say μ2, is a Q-node.
If this is not the case, L(μ) = ∅. Otherwise, L(μ) = L(μ1). For (x, Y ) ∈ L(μ1),
we set pμ(x, Y ) = pμ1(x, Y ) and we define Eμ(x, Y ) as the embedding obtained
from Eμ1(x, Y ) by putting the edge represented by μ2 to its left parallel to it.

Assume now that s is not a pole and it lies, w.l.o.g., in pert(μ1). Let (x, Y )
be a pair with x ∈ {u, v}, Y ⊆ {u, v} \ {x}. W.l.o.g. we assume x = u. The
case x = v is analogous. Then either Y = {v} or Y = ∅. If v ∈ Y (see Fig. 8b),
then (u, Y ) ∈ L(μ) if and only if (u, Y ) ∈ L(μ1) and k = 2 and μ2 is a Q-node. In
that case, we set Pμ(u, Y ) = Pμ1(u, Y ) and we define Eμ(u, Y ) as the embedding
obtained from Eμ1(x, Y ) by embedding the edge represented by μ2 to its left.
If Y = ∅ (see Fig. 8c), then we distinguish cases based on whether there is a
second child, say μ2, that is not a Q-node. If there is none, then μ2 is a Q-node
and then (u, ∅) ∈ L(μ) if and only if either (u, ∅) ∈ L(μ1) or if (v, {u}) ∈ L(μ1).
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Fig. 8. Paths P (v, u), P (u, Y ) in a P-node. The vertices in Y are black.

In these cases, we set Pμ(u, ∅) = Pμ1(u, ∅) or Pμ(u, ∅) = Pμ1(v, {u}) · (v, u).
The embedding Eμ(u, ∅) is obtained by embedding the edge represented by μ2

on the left side of Eμ1(u, ∅) or Eμ1(v, {u}), respectively. Otherwise μ2 is not
a Q-node. It is then necessary that k ≤ 3 and if μ3 exists, it must be a Q-
node. Now, (u, ∅) ∈ L(μ) if and only if (v, {u}) ∈ L(μ1) and (v, u) ∈ L(μ2).
In this case, we define Pμ(u, ∅) = Pμ1(v, {u}) · Pμ2(v, u) and the embedding
Eμ(u, ∅) is obtained by embedding Eμ2(v, u) to the left of Eμ1(v, {u}) and the
edge represented by μ3, if it exists, to the left of that.
Case 3: μ is an S-node. Let the children of μ be numbered so that v is a pole
of μ1. Further, we denote by vi the pole shared by μi and μi+1 for i = 1, . . . , k−1.
To ease the presentation, we also write v0 = v and vk+1 = u.

We start with the case that s /∈ pert(μ); see Fig. 9a. We show how to test
whether (v, u) ∈ L(μ); the case of (u, v) is analogous. Then (v, u) ∈ L(μ) if and
only if (vi−1, vi) ∈ L(μi) for i = 1, . . . , k. In that case, Pμ(v, u) is obtained
by concatenating Pμi

(vi−1, vi) for i = 1, . . . , k, while Eμ(v, u) is obtained by
merging Eμi

(vi−1, vi) for i = 1, . . . , k.
Now, consider the case that s ∈ pert(μ). Consider a pair (x, Y ) as above. We

show the case x = u, the case x = v can be handled analogously. If s = v, then
we cannot avoid visiting s, and we proceed as in the case of (v, u) where s is not
in pert(μ). Now consider the case that s is not a pole; see Figs. 9b to 9d. Let i be
the smallest index so that s belongs to pert(μi) (observe that s belongs to more
than one pertinent graphs if and only if it is a vertex of skel(μ)). If i > 2, then
L(μ) = ∅, i.e., there is no path from s to x that visits v1; see Fig. 9b. Similarly,
for i = 2 we have (u, Y ) ∈ L(μ) if and only if μ1 is a Q-node, Y = {v}, (v2, ∅) ∈
L(μ2), and (vj−1, vj) ∈ L(μj) for j = 3, . . . , k; see Fig. 9c. In this case, Pμ(x, Y )
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Fig. 9. S-node

Fig. 10. An R-node μ for the case that s is a vertex of skel(μ).

is composed by concatenating Pμ2(v2, ∅) with Pμj
(vj−1, vj) for j = 3, . . . , k,

while the embedding Eμ(x, Y ) is obtained by merging the edge representing μ1

with Eμ2(v2, ∅) with the embeddings of Eμj
(vj−1, vj) for j = 3, . . . , k If i =

1, (u, Y ) ∈ L(μ) if and only if (v1, Y ) ∈ L(μ1) and (vj−1, vj) ∈ L(μj) for
j = 2, . . . , k; see Fig. 9d. In this case Pμ(x, Y ) is composed by concatenating
Pμ1(v1, Y ) with Pμj

(vj−1, vj) for j = 2, . . . , k and the embedding E(x, Y ) is
obtained by merging the embeddings Eμ1(v1, Y ) and Eμj

(vj−1, vj) for j = 2, . . . , k
so that u and v lie on the outer face.
Case 4: μ is an R-node. If s /∈ pert(μ), then Pμ(v, u) must traverse every
vertex in pert(μ), starting with the edge e counterclockwise following the parent
edge, with all other edges of pert(μ) to the left of Pμ(v, u). Since v, u, and e lie
on a common face, Pμ(v, u) follows only this face, so skel(μ) is outerplanar; a
contradiction, as the skeleton of an R-node is triconnected.

Now, consider the case that s ∈ pert(μ). We start with the case that s is
a vertex of skel(μ); see Fig. 10. The path Pμ(u, Y ) certainly must traverse the
pertinent graphs of all children that are not Q-nodes and possibly also some
of the Q-nodes. To model this, we consider the auxiliary plane graph obtained
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Fig. 11. An R-node μ for the case that s lies in a child ν.

from skel(μ) by replacing each virtual edge that corresponds to a non-Q-node
child by a path of length 2. We now employ the algorithm from Theorem 3
for both embeddings of the auxiliary graph. We try every edge incident to s
as a possible starting edge and check when we arrive at u whether all vertices
except the vertices in Y have been visited. If this is successful, let v1, . . . , v�

be the corresponding path in skel(μ) and let μi be the child corresponding to
the virtual edge {vi, vi+1} for i = 1, . . . , � − 1. If further (vi, vi+1) ∈ L(μi)
for i = 1, . . . , � − 1, then (v, u) ∈ L(μ). In that case, Pμ(v, u) is obtained by
concatenating Pμi

(vi, vi+1) for i = 1, . . . , � − 1 and Eμ(v, u) is obtained from
the embedding of the auxiliary graph by replacing each path of length 2 that
represents a non-Q-node child μi by Eμi

(vi, vi+1). If this test is not successful we
repeat the above steps with the flipped embedding of the auxiliary graph.

Otherwise s is contained in a child ν of μ with poles u′, v′; see Fig. 11. We
consider the same auxiliary graph H as above. Let s′ be the vertex on the length-
2 path between u′ and v′ in H. We add the edge (u′, v′) to H embedded either
to the left or to the right of the path 〈u′, s′, v′〉; this way we obtain two different
embeddings of the resulting graph. We now employ the algorithm from Theorem
3 for both embeddings. Again, we try both starting edges incident to s and for
each of them, we check when we arrive at x whether all vertices except possibly
the vertices in Y have been visited. This way, we obtain up to four solutions,
depending on the starting edge and whether we use the edge (u′, v′) or not. Let
x′ ∈ {u′, v′} such that (s, x′) is the starting edge of one such solution. If the path
uses the edge (u′, v′), then we have to check whether (x′, ∅) ∈ L(ν); otherwise,
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Fig. 12. Illustration of page i in the proof of Theorem 5.

we have to check whether (x′, {u′, v′} \ {x′}) ∈ L(ν). If the check is successful,
then we compute the corresponding path Pμ(v, u) and embedding Eμ(v, u) as in
the case s /∈ pert(μ). This finishes the description of the R-node.

We conclude by mentioning that the running time stems from the fact that
in an R-node that contains s, we try O(n) starting edges for the path, where
each try takes O(n) time. Therefore, for a fixed pair of endvertices s, t testing
the existence of an embedding that is st-sided takes O(n2) time. Since there
are O(n2) pairs of endvertices to try, the overall running time is O(n4). 	


5 The Rique-number of Complete Graphs

In this section, we provide bounds on the density of graphs admitting k-page
RIQ-layouts and on the rique-number of complete graphs.

Theorem 5. Any graph G that admits a k-page RIQ-layout cannot have more
than (2n + 2)k − k2 + (n − 3) edges.

Proof. Let v1, . . . , vn be the linear order of the vertices and let E1, . . . , Ek be the
pages of a k-page RIQ-layout of G. Since, by Theorem 1, each page is a planar
graph, it has at most 3n−6 edges. Since, however, the n−1 so-called spine edges
(vi, vi+1), i = 1, . . . , n − 1 can be added as head-edges to every page, every page
has at most 2n − 5 non-spine edges. Next, we argue that there exists a k-page
RIQ-layout E′

1, . . . , E
′
k of G such that each vertex vi, 1 ≤ i ≤ k contains edges

only on pages E′
1, . . . , E

′
i. We start with E′

i = Ei, for each 1 ≤ i ≤ k.
For 1 ≤ i ≤ k, assume that the first i − 1 vertices v1, . . . , vi−1 only have

edges in E′
1, . . . , E

′
i−1 and consider the next vertex vi (see Fig. 12). If vi also

only has edges in E′
1, . . . , E

′
i−1, then the claim follows. Otherwise, let (vi, vj),

i + 1 ≤ j ≤ n be the edge with j maximal that does not lie in E′
1, . . . , E

′
i−1

and assume w.l.o.g. that (vi, vj) ∈ E′
i. By our assumption, there is no edge that

stems from v1, . . . , vi−1. Further, the edge (vi, vj) blocks any possible tail-edge
between two vertices in vi+1, . . . , vj−1 in E′

i. Hence, all tail-edges that end in a
vertex in vi+1, . . . , vj−1 in E′

i stem from vi. Thus, we can add all edges from vi

to vi+1, . . . , vj−1 to E′
i as tail-edges. Since all edges from v1, . . . , vi−1 to vi lie in

E′
1, . . . , E

′
i−1, by the choice of j, so do all edges from vi to vj+1, . . . , vn. Thus,

E′
i+1, . . . , E

′
k contain no edge of vi. Since any page E′

i, 1 ≤ i ≤ k contains edges
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Fig. 13. Illustration of page i in the upper bound of Theorem 6.

Table 1. A summary of our results on the rique-number of Kn

n 4 5–7 8–11 12–14 15–17 18–21 22 23–24 25 26–28

riq(Kn) 1 2 3 4 5 6 6 or 7 7 7 or 8 8

of at most n−i+1 vertices, it has at most 2(n−i+1)−5 = 2n−2i−3 non-spine
edges. Hence, the number of edges in E′

1, . . . , E
′
k is at most

n − 1 +
k∑

i=1

(2n − 2i − 3) = (2n − 4)k − k2 + (n − 1). 	


We are now ready to present our bounds on the rique-number of Kn.

Theorem 6. 0.2929(n − 2) ≈ (1 − 1√
2
)(n − 2) ≤ riq(Kn) ≤ �n/3� ≈ 0.3333n

Proof. Let k = riq(Kn). As Kn has n(n − 1)/2 edges, Theorem 5 implies:

(2n − 4)k − k2 + (n − 1) ≥ n(n − 1)
2

⇔ k2 − (2n − 4)k + (
n2

2
− 3n

2
+ 1) ≤ 0

The inequality above then gives the claimed lower bound as follows:

k ≥ n − 2 −
√

2
2

√
(n − 2)(n − 3) ≥ n − 2 −

√
2(n − 2)

2
= (1 − 1√

2
)(n − 2)

We now show how to compute a layout of Kn with �n/3� pages. Assume w.l.o.g.
that n is divisible by 3. Take an arbitrary stack layout of the clique on ver-
tices vn/3+1, . . . , vvn

on n/3 pages [13]. Then put on page i all edges of vertex vi

as tail-edges; see Fig. 13. 	


We conclude this section with a few more insights on the rique-number of com-
plete graphs, which we derived by adjusting a formulation of the book embedding
problem as a SAT instance [12]; for details see the full version of the paper [8].
This adjustment allowed us to obtain bounds on the rique-number of Kn for
values of n in [4, . . . , 27]; see Table 1 and Fig. 14 and 15 for page-minimal layouts
of K7 and K11.
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Fig. 14. A 2-page RIQ-layout of K7

Fig. 15. A 3-page RIQ-layout of K11

6 Conclusions and Open Problems

In this work, we continued the study of linear layouts of graphs in relation to
known data structures, in particular, in relation to the restricted-input deque.
Several problems are raised by our work: (i) the most important one is the com-
plexity of the recognition of graphs with rique-number 1, (ii) another quite nat-
ural problem is to further narrow the gap between our lower and upper bounds
on the rique-number of Kn; our experimental results indicate that there exist
room for improvement in the upper bound, (iii) for complete bipartite graphs, we
did not manage to obtain improved bounds (besides the obvious ones that one
may derive from their stack- or queue-number), (iv) another interesting question
regards the rique-number of planar graphs, which ranges between 2 and 4 (i.e.,
the upper bound by their stack-number); the same problem can be studied also
for subclasses of planar graphs (e.g., planar 3-trees).
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Abstract. A rectangular dual of a plane graph G is a contact represen-
tations of G by interior-disjoint axis-aligned rectangles such that (i) no
four rectangles share a point and (ii) the union of all rectangles is a rect-
angle. A rectangular dual gives rise to a regular edge labeling (REL),
which captures the orientations of the rectangle contacts.

We study the problem of morphing between two rectangular duals
of the same plane graph. If we require that, at any time throughout
the morph, there is a rectangular dual, then a morph exists only if the
two rectangular duals realize the same REL. Therefore, we allow inter-
mediate contact representations of non-rectangular polygons of constant
complexity. Given an n-vertex plane graph, we show how to compute
in O(n3) time a piecewise linear morph that consists of O(n2) linear
morphing steps.

Keywords: Morphing · Rectangular dual · Regular edge labeling ·
Lattice

1 Introduction

A morph between two representations (e.g., drawings) of the same graph G is
a continuous transformation from one representation to the other. Preferably, a
morph should preserve the user’s “mental map”, which means that, throughout
the transformation, as little as necessary is changed to go from the source to
target representation and that their properties are maintained [28]. For example,
during a morph between two planar drawings, each intermediate drawing should
also be planar. A linear morph moves each point along a straight-line segment at
constant speed, where different points may have different speeds or may remain
stationary. Note that a linear morph is fully defined by the source and target
representation. A piecewise linear morph consists of a sequence of linear morphs,
each of which is called a step.

Morphs are well studied for planar drawings. For example, it is known that
piecewise linear planar morphs always exist between planar straight-line draw-
ings [9] and that, for an n-vertex planar graph, O(n) steps suffice [1], which
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is worst-case optimal. Further research on morphs includes, among others, the
study of morphs of convex drawings [3,25], of orthogonal drawings [6,18], on
different surfaces [10,23], and in higher dimensions [4].

Fig. 1. A rectangular dual R for the graph G; the REL L induced by R. (Color figures
available online, though note the different arrow heads for red and blue edges.) (Color
figure online)

Less attention has been given to morphs of alternative representations of
graphs such as intersection and contact representations. A geometric intersec-
tion representation of a graph G is a mapping R that assigns to each vertex w
of G a geometric object R(w) such that two vertices u and v are adjacent in G
if and only if R(u) and R(v) intersect. In a contact representation we further
require that, for any two vertices u and v, the objects R(u) and R(v) have dis-
joint interiors. Classic examples are interval graphs [7], where the objects are
intervals of R, or coin graphs [24], where the objects are interior-disjoint disks
in the plane. Recently, Angelini et al. [2] studied morphs of right-triangle con-
tact representations of planar graphs. They showed that one can test efficiently
whether a morph exists (in which case a quadratic number of steps suffice). In
this paper, we investigate morphs between contact representations of rectangles.

Rectangular Duals. A rectangular dual of a graph G is a contact representation R
of G by axis-aligned rectangles such that (i) no four rectangles share a point and
(ii) the union of all rectangles is a rectangle; see Fig. 1. Note that G may admit
a rectangular dual only if it is planar and internally triangulated. Furthermore,
a rectangular dual can always be augmented with four additional rectangles
(one on each side) so that only these four rectangles touch the outer face of
the representation. It is customary that the four corresponding vertices on the
outer face of G are denoted by vS, vW, vN, and vE, and to require that R(vS)
is bottommost, R(vW) is leftmost, R(vN) is topmost, and R(vE) is rightmost;
see Fig. 1. The corresponding vertices are outer; the remaining ones are inner.
Similarly, the four edges between the outer vertices are outer; the others are
inner. A plane internally-triangulated graph has a representation with only four
rectangles touching the outer face if and only if its outer face is a 4-cycle and
it has no separating triangle, that is, a triangle whose removal disconnects the
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graph [25]. Such a graph is called a properly-triangulated planar (PTP) graph.
For such a graph, a rectangular dual can be computed in linear time [22].

Historically, rectangular duals have been studied due to their applications
in architecture [30], VLSI floor-planning [26,32], and cartography [17]. Morphs
between rectangular duals are of interest, e.g., due to their relation to rectangular
cartograms. Rectangular cartograms were introduced in 1934 [29] and combine
statistical and geographical information in thematic maps, where geographic
regions are represented as rectangles and scaled in proportion to some statistic.
There has been a lot of work on efficiently computing rectangular cartograms [8,
20,31], see also the recent survey [27]. A morph between rectangular cartograms
can visualize different data sets. Florisson et al. [13] implemented a method to
construct rectangular cartograms by first extending the given map with “sea tiles”
to obtain a rectangular dual, and then using a heuristic that moves maximal line
segments until the area of the rectangles gets closer to the given data. They also
used their heuristic to morph between two rectangular cartograms, but did not
discuss when exactly this works and with what time complexity.

Fig. 2. Edge order at the four outer vertices and at an inner vertex in a REL.

Regular Edge Labelings. A combinatorial view of a rectangular dual of a graph G
can be described by a coloring and orientation of the edges of G [22]. This
is similar to how so-called Schnyder woods describe contact representations of
planar graphs by triangles [14]. More precisely, a rectangular dual R gives rise
to a 2-coloring and an orientation of the inner edges of G as follows. We color an
edge {u, v} blue if the contact segment between R(u) and R(v) is a horizontal
line segment, and we color it red otherwise. We orient a blue (red) edge {u, v}
as uv if R(u) lies below (resp. left of) R(v); see Fig. 1. The resulting coloring
and orientation has the following properties Fig. 2:

(1) For each outer vertex vS, vW, vN, and vE, the incident inner edges are blue
outgoing, red outgoing, blue incoming, and red incoming, respectively.

(2) For each inner vertex, the incident edges form four clockwise (cw) ordered
non-empty blocks: blue incoming, red incoming, blue outgoing, red outgoing.

A coloring and orientation with these properties is called a regular edge label-
ing (REL) or transversal structure. We let L = (L1, L2) denote a REL, where
L1 is the set of blue edges and L2 is the set of red edges. Let L1(G) and L2(G)
denote the two subgraphs of G induced by L1 and L2, respectively. Note that
both L1(G) and L2(G) are st-graphs, that is, directed acyclic graphs with exactly
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one source and exactly one sink. Kant and He [22] introduced RELs as interme-
diate objects when constructing a rectangular dual of a PTP graph. It is well
known that every PTP graph admits a REL and thus a rectangular dual [19,22].
A rectangular dual R realizes a REL L if the REL induced by R is L.

We define the interior of a cycle to be the set of vertices and edges enclosed
by, but not on the cycle. A 4-cycle is separating if there are other vertices both
in its interior and in its exterior. A separating 4-cycle is nontrivial if its interior
contains more than one vertex; otherwise it is trivial. We call non-separating
4-cycles also empty 4-cycles. (An empty 4-cycle contains exactly one edge.)

Fig. 3. Clockwise and counterclockwise rotations between RELs that recolor and reori-
ent the edges inside an alternating 4-cycle 〈a, b, c, d〉 that is (a) empty or (b) separating.

If the edges of a cycle C alternate between red and blue, we say that C is
alternating. We can move between different RELs of a PTP graph G by swapping
the colors and reorienting the edges inside an alternating 4-cycle, see Fig. 3. This
operation, which we call a rotation and which we define formally in the long
version [11], connects all RELs of G. In fact, the RELs of G form a distributive
lattice [15,16]. A 4-cycle C of G is called rotatable if it is alternating for at least
one REL of G.

Important Related Work. Other combinatorial structures of graph representa-
tions also form lattices; see the work by Felsner and colleagues [12]. In the con-
text of morphs, Barrera-Cruz et al. [5] exploited the lattice structure of Schnyder
woods of a plane triangulation to obtain piecewise linear morphs between planar
straight-line drawings. While their morphs require O(n2) steps (compared to the
optimum of O(n)), they have the advantage that they are “visually pleasing” and
that they maintain a quadratic-size drawing area between any two steps. To this
end, Barrera-Cruz et al. showed that there is a path in the lattice of length O(n2)
between any two Schnyder woods. We show an analogous result for RELs. In
order to morph between right-triangle contact representations, Angelini et al. [2]
leveraged the lattice structure of Schnyder woods. They showed that if no sepa-
rating triangle has to be flipped (a flip is a step in the lattice) between the source
and the target Schnyder wood, then a morph with O(n2) steps exists (else, no
morph exists that uses right-triangle contact representations throughout).
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Contribution. We consider piecewise linear morphs between two rectangular
duals R and R′ of the same PTP graph G. If R and R′ realize the same REL,
then a single step suffices, but if R and R′ realize distinct RELs of G, then
no rectangular-dual preserving morph exists (Sect. 2.1). Therefore, we propose
a new type of morph where intermediate drawings are contact representations
of G using convex polygons with up to five corners (Sect. 2.2). We show how to
construct such a relaxed morph as a sequence of O(n2) steps that implement
moves in the lattice of RELs of G (Sect. 2.3). To this end, we make use of the
following two results on paths in this lattice.

Proposition 1 (�). Given an n-vertex PTP graph G, the lattice of RELs of G
has diameter O(n2).

Proposition 2 (�). Let G be an n-vertex PTP graph with RELs L and L′. In
the lattice of RELs of G, a shortest L–L′ path can be computed in O(n3) time.

We ensure that between any two morphing steps, our drawings remain on a
quadratic-size section of the integer grid – like those of Barrera-Cruz et al. [5].
In order to evaluate the intermediate representations when our drawings are
not on the integer grid, we use the measure feature resolution [21], that is, the
ratio of the length of the longest segment over the shortest distance between
two vertices or between a vertex and a non-incident segment. We show that the
feature resolution in any intermediate drawing is bounded by O(n).

Finally, we investigate executing rotations in parallel; see Sect. 3. As a result,
we can morph between any pair (R,R′) of rectangular duals of the given graph
using O(1) times the minimum number of steps needed to get from R to R′;
however, our polygons have up to eight corners.

For statements marked with “�”, a proof is available in the full version [11].

2 Morphing Between Rectangular Duals

This section concerns morphs between two rectangular duals R and R′ of a PTP
graph G that realize the same REL, adjacent RELs, and finally any two RELs.

2.1 Morphing Between Rectangular Duals Realizing the Same REL

Theorem 3. For a PTP graph G with rectangular duals R and R′ (i) if R
and R′ realize the same REL, then there is a linear morph between them; (ii)
otherwise, there is no morph between them (not even a non-linear one).

Proof. Biedl et al. [6] studied morphs of orthogonal drawings. They showed that
a single (planarity-preserving) linear morph suffices if all faces are rectangular
and all edges are parallel in the two drawings, that is, any edge is either vertical
in both drawings or horizontal in both drawings. We can apply this result to
two rectangular duals R and R′ precisely when they realize them same REL. A
linear morph between them changes the x-coordinates of vertical line segments
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and the y-coordinates of horizontal line segments but does not change their
relative order.

Now assume that R and R′ realize different RELs L and L′ of G, respectively.
Then w.l.o.g. some contact segment s changes from being horizontal in R to
being vertical in R′. Since s must always be horizontal or vertical, it has to
collapse to a point and then extend to a segment again. When s collapses, the
intermediate representation is not a rectangular dual of G since four rectangles
meet at a single point. Even worse, if a separating alternating cycle is rotated,
then its interior contracts to a point, vanishes, and reappears rotated by 90◦. ��

Fig. 4. A linear morph rotating the separating 4-cycle 〈a, b, c, d〉 emulates the rotation
in the corresponding REL; see Fig. 3. The interior of the 4-cycle turns by 90◦ without
changing its shape, while the outer contact segments move horizontally and vertically.

2.2 Morphing Between Rectangular Duals with Adjacent RELs

Let R and R′ now realize different RELs L and L′ of G, respectively. By Theo-
rem 3, any continuous transformation between R and R′ requires intermediate
representations that are not rectangular duals of G, i.e., a morph in the tra-
ditional sense is not possible. We relax the conditions on a morph such that,
in an intermediate contact representation of G, vertices can be represented by
convex polygons of constant complexity – in this section, by 5-gons. However,
we still require that these polygons form a tiling of the bounding rectangle of
the representation. We call a transformation with this property a relaxed morph.
(When we talk about linear morphing steps, we omit the adjective “relaxed”.)
The following statement describes relaxed morphs when L and L′ are adjacent,
that is, (L′,L) is an edge in the lattice of RELs of G.

Proposition 4. Let R and R′ be two rectangular duals of an n-vertex PTP
graph G realizing two adjacent RELs L and L′ of G, respectively. Then, we can
compute in O(n) time a 3-step relaxed morph between R and R′. If R and R′

have an area of at most n × n and feature resolution in O(n), then so has each
representation throughout the morph.

We assume w.l.o.g. that L′ can be obtained from L by a cw rotation of
an alternating 4-cycle C. The idea is to rotate the interior of the 4-cycle while
simultaneously moving the contact segments that form the edges of C; see Figs. 4
and 5. To ensure that, except for the vertices of C all regions remain rectangles
and that moving the contact segments of C does not change any adjacencies,
the representation needs to satisfy certain requirements. Therefore, our relaxed
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morph from R to R′ consists of three steps. First a preparatory morph from R to
a rectangular dual R1 with REL L for which C satisfies conditions stated below;
second a main morph which transforms R1 to a rectangular dual R2 whose REL
is L′, and third a clean-up morph that transforms R2 into R′.

We first describe the main morph 〈R1,R2〉 in detail, as this allows us to
also infer the conditions under which it can be executed successfully. Then we
describe the preparatory morph 〈R,R1〉, whose sole purpose is to ensure the
conditions that are required for the main morph.

Main Morph 〈R1,R2〉 to Rotate C. Let a, b, c, and d be the vertices of C in cw
order where a is the vertex with an outgoing red and outgoing blue edge in C,
i.e., it corresponds to the bottom-left rectangle of C.

Fig. 5. A linear morph that rotates the inner contact segment of an empty 4-cycle.

Assume for now that C is separating. We have the following requirements
for R1, which become apparent shortly.

(P1) The rectangle IC bounding the interior of C is a square.

Next, we consider the four maximal segments of R that contain one of the four
borders of IC , which we call border segments. Let s be the upper border segment
of IC and suppose its right endpoint lies on the left side of a rectangle R(x). Let
S be the part in the horizontal strip defined by IC that starts at IC and ends
at R(x).

(P2) The only horizontal segments that intersect S are border segments
of IC ; see Fig. 6c.

We define (P2) for the other three border segments of IC analogously. Next,
assume that C is empty. Then the rectangle IC degenerates to a segment s,
and we assume w.l.o.g. that s is horizontal. Now IC still has two vertical border
segments, but the two horizontal border segments share the segment s. Let s
have again its right endpoint on the left side of R(x). Let S be the rectangular
area of height 1 directly below s that starts at b and ends at R(x). We have the
following requirement if C is empty.

(P2’) The only horizontal segment that intersects S is s; see Fig. 7c.

There is no requirement for the left side of s and the left vertical border segment
of IC . The requirements for the right vertical border segment is (P2).
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We now describe the main morph for the case that C is a separating 4-cycle.
In this case, the interior of C forms a square in R1 by (P1). Recall that the
rotation of C from L to L′ turns the interior of C by 90◦. During the morph, we
move each corner of IC to the coordinates of the corner that follows in cw order
around IC in R1; see Fig. 4. All other points in IC are expressed as a convex
combination of the corners of IC and then move according to the movement of
the corners. Furthermore, we move all points on the left border segment of IC

that are outside the boundary of IC horizontally to the x-coordinate of the right
side of IC . We move the points on other border segments of IC analogously.

This describes a single linear morph that results in a rectangular dual R2 that
realizes the REL L′. Since IC starts out as a square by (P1), throughout the
morph, IC remains a square, and by similarity all rectangles inside IC remain
rectangles. The rectangles a, b, c, and d become convex 5-gons. Furthermore,
since outside IC the horizontal border segments of IC move an area that contains
no other horizontal segments by (P2), no contact along a vertical segment arises
or vanishes. Analogously, for the vertical border segments, no contact along a
horizontal segment arises or vanishes. Hence, we maintain the same adjacencies.

Note that, if IC would not be a square, then its corners would move at
different speeds and IC would deform to a rhombus where the inner angles are
not 90◦, and so would all the rectangles inside IC .

Next, consider the case that C is an empty 4-cycle. Recall that in this case, the
rectangle IC degenerates to a segment s and we assume that s is horizontal. Note
that R′ has a vertical contact between a and c, since we assume a cw rotation
from L to L′. We then we move the right endpoint of s vertically down by 1 and
horizontally to the x-coordinate of the left endpoint of s; see Fig. 5. We also move
all points on the border segments that contain the right endpoint of s accordingly.
The rectangles a and c become convex 5-gons. Furthermore, since outside IC only
the horizontal border segments of IC lie inside the area of height 1 below s by
(P2’), no contact along a vertical segment arises or vanishes. Analogously, due
to condition (P2) for the vertical border segments, no contact along a horizontal
segment arises or vanishes. Hence, maintaining the same adjacencies.

To show that the feature resolution remains in O(n), note that both R1 and
R2 are drawn on a n × n grid. Furthermore, the rectangles inside IC are scaled
during the morph, but since IC is a square, the whole area inside IC is scaled
by at most

√
2. The distances outside IC cannot become smaller than 1.

Lemma 5. Let R1 and R2 be two rectangular duals of an n-vertex PTP graph G
realizing two adjacent RELs L and L′ of G, respectively, such that R1 satisfies
(P1) and (P2) (or (P1) and (P2’)). Then, we can compute in O(n) time a relaxed
morph between R1 and R2. If R1 and R2 have an area of at most n × n and
feature resolution in O(n), then so has each representation throughout the morph.

Preparatory Morph 〈R,R1〉. We consider again the case where C is separating
first. To obtain R1 from R, we extend G to an auxiliary graph Ĝ that is almost
a PTP graph but that contains empty chordless 4-cycles (which are represented
by four rectangles touching in a single point). For Ĝ, we compute an auxiliary
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Fig. 6. We compute R1 via an auxiliary rectangular dual R̂1 and an auxiliary REL L̂.

Fig. 7. Preparatory morph analogous Fig. 6 for the case when C is empty.

REL L̂ where the empty chordless 4-cycles of Ĝ are colored alternatingly. We
then use the second step of the linear-time algorithm by Kant and He [22] to
compute an (almost) rectangular dual R̂1 of Ĝ that realizes L̂. By reversing
the changes applied to G to obtain Ĝ, we derive R1 from R̂1. We explain the
algorithm by Kant and He and why it also works for Ĝ in the full version [11].

We start with the changes to ensure (P2) for the upper border segment s
of IC ; it works analogously for the other border segments. Let s end to the right
again at R(x). Let Pd be the leftmost path in L2(G) from d to x. Let y1(R) and
y2(R) denote the lower and upper y-coordinate of a rectangle R, respectively.
Note that (P2) holds if for each vertex v on Pd we have y1(R1(v)) < y2(R1(a)).
Therefore, from G to Ĝ, we duplicate Pd by splitting each vertex v on Pd \ {x}
into two vertices v1 and v2; see Fig. 6. We then connect v1 and v2 with a blue
edge. Let y be the successor of d on Pd. We assign the edges cw between (and
including) dy and ad to d1, and the edges cw between ad and dy to d2. If x = y,
the edge dy is assigned to both d1 and d2; otherwise we replace dy with d1y1
and d2y2. For all other vertices v on Pd \ {d, x}, let u be the predecessor and
let w be the successor of v on Pd. We assign the edges cw between vw and uv
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to v1, and the edges cw between uv and vw to v2; furthermore, we add the
edges u1v1, v1w1, u2v2, and v2w2. As a result, there is a path from a to x in R̂1

through the “upper” copies of the vertices in Pd \ {x}, and the bottom side of
their corresponding rectangles are aligned. Hence, y1(R̂1(v1)) < y1(R̂1(v2)) =
y2(R̂1(a)) for every v ∈ Pd \ {x}, and y1(R̂1(x)) < y2(R̂1(a)). We obtain for
each v on Pd \ {x} the rectangle R1(v) by merging R̂1(v1) and R̂1(v2). This
works analogously if C is empty; see Fig. 7.

Next, we describe how to ensure (P1) in R1, i.e., that the interior IC of C is
a square. Let wC and hC be the minimum width and height, respectively, of a
rectangular dual of IC . These values can be computed in O(IC) time. Note that
because of (P2), the algorithm by Kant and He [22] will draw IC with minimum
width and height in R1: the algorithm draws every horizontal line segment as low
as possible, and because of (P2) there is no horizontal line segment to the right
of IC that forces the upper boundary segment of IC to be higher; a symmetric
argument applies to the left boundary segment of IC . Hence, if wC = hC , then
no further changes to Ĝ are required. Otherwise, if w.l.o.g. wC < hC , we add
hC − wC many buffer rectangles between IC and d as follows; see Fig. 8. Let
Δ = hC −wC . From G to Ĝ, we add vertices v1, . . . , vΔ with a red path through
them and, for i ∈ {1, . . . , Δ}, we add the blue edges avi and vic. All incoming
red edges of d in G from the interior of C become incoming red edges of v1, and
we add a red edge (vΔ, d2). In Ĝ, the minimum width and height of IC are now
the same and IC is drawn as a square in R̂1 . To obtain R1 from R̂1, we remove
the buffer rectangles and stretch all right-most rectangles of IC to y1(R1(d)).

Fig. 8. To ensure (P1), i.e., that IC is a square in R1, we extend R̂1 and L̂ further.
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Concerning the running time, note that we can both find and split the paths
for (P2) and add the extra vertices for (P1) in O(n) time. Since Ĝ and L̂ have
a size in O(n), the algorithm by Kant and He [22] also runs in O(n) time.

Finally, we show that the area of R1 is bounded by n×n. Observe that each
triangle in G corresponds to a T-junction in R and thus to an endpoint of a
maximal line segment. There are 2n − 4 triangles in G and thus n − 2 inner
maximal line segments besides the four outer ones. The algorithm by Kant and
He [22] ensures that each x- and y-coordinate inside a rectangular dual contains
a horizontal or vertical line segment, respectively. Note that R̂1 contains exactly
Δ more maximal line segments than R. These were added inside C if in IC the
number of horizontal and vertical maximal line segments differed by at least Δ.
Hence, R1 contains at most n − 2 vertical and at most n − 2 horizontal inner
maximal line segments. Thus, the area of R1 is bounded by n × n. Lastly, note
that R̂1 and R1 have the same size. Furthermore, we move points only away
from each other, so the feature resolution remains in O(n).

Lemma 6. Let R be a rectangular dual of an n-vertex PTP graph G realizing
a REL L of G. Let C be an alternating separating 4-cycle in L. Then, we can
compute in O(n) time a rectangular dual R1 of G realizing L that satisfies the
requirements (P1) and (P2). If R has an area of at most n × n and feature
resolution O(n), then so has R1 and each representation throughout the morph.

To prove Lemma 6, we do not use zig-zag moves, which were introduced for
morphing orthogonal drawings [6,18], since then we would not be able to bound
the area by n×n throughout the morph. In order to keep a bound of O(n)×O(n),
it seems that we would need a re-compactification step after each zig-zag move.
Therefore, we keep the modifications in our morph as local as possible.

Let us now consider the morph 〈R1,R2〉 again. Since R1 now satisfies (P1)
and (P2), only the inside IC of C, the four rectangles of C, and the border
segments of IC move. The target positions of these can be computed in O(n)
time. The linear morph is then defined fully by the start and target positions.
Furthermore, R2 and all intermediate representations have the same area as R1.

Proof (of Prop. 4). By Theorem 3 and Lemma 5, we can get from R via R1 and
R2 to R′ using three steps. The claims on the running time and the area follow
from Theorem 3, Lemmas 5 and 6, and the observations above. ��

2.3 Morphing Between Rectangular Duals

Combining results from the previous sections, we can now prove our main result.

Theorem 7. Let G be an n-vertex PTP graph with rectangular duals R and R′.
We can find in O(n3) time a relaxed morph between R and R′ with O(n2) steps
that executes the minimum number of rotations. If R and R′ have an area of
at most n × n and feature resolution in O(n), then so does each representation
throughout the morph.
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Proof. Let L and L′ be the RELs realized by R and R′, respectively. By Prop.
2 a shortest path between L and L′ in the lattice of RELs of G can be computed
in O(n3) time, and its length is O(n2) by Prop. 1. For each rotation along this
path, we construct a relaxed morph with a constant number of steps in O(n)
time by Prop. 4. The area and feature resolution also follow from Prop. 4. ��

3 Morphing with Parallel Rotations

We now show how to reduce the number of morphing steps by executing rotations
in parallel. We assume that all separating 4-cycles in our PTP graph G are trivial.

Consider two cw rotatable separating 4-cycles C and C ′ that share a maximal
horizontal line segment s as border segment; see Fig. 9. If C contains the left
endpoint of s, a rotation of C would move s downwards while a rotation of C ′

would move s upwards. Therefore, such a morph skews angles such that they are
not multiples of 90◦ even at vertices that are not incident to the interior of C
or C ′. To avoid such morphs, we say that C and C ′ are conflicting. For a set of
cw rotatable separating 4-cycles C for R, this gives rise to a conflict graph K(C)
with vertex set C. Note that a separating 4-cycle can be in conflict with at most
four other separating 4-cycles. Therefore, K(C) has maximum degree four.

Fig. 9. Two conflicting separating 4-cycles that share the interior segment s.

Fig. 10. When we rotate four cw alternating 4-cycles that share a vertex v in a single
relaxed morph from R to R′, then v is temporarily represented by a convex 8-gon.

Next, consider a separating 4-cycle C that shares a maximal horizontal line
segment s with an empty 4-cycle C ′; see Fig. 10. In this case, we can rotate
and translate the inner contact segment of C ′ downwards, which allows us to
simultaneously rotate C and C ′ without creating unnecessary skewed angles.
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Also note that two cw rotatable empty 4-cycles may only overlap with one edge
but may not contain an edge of the other. Hence, they are not conflicting.

To rotate a set C of alternating 4-cycles using O(1) steps, we divide C into
color classes based on K(C) and rotate one color class at a time.

Proposition 8 (�). Let R be a rectangular dual of a PTP graph G with REL L
whose separating 4-cycles are all trivial. Let C be a set of alternating 4-cycles of
R. Let L′ be the REL obtained from L by executing all rotations in C. There exists
a relaxed morph with O(1) steps from R to a rectangular dual R′ realizing L′.
The morph can be computed in linear time.

Note that there exist rectangular duals with a linear number of alternating
4-cycles – extend Fig. 10 into a grid structure. Hence, parallelization can reduce
the number of morphing steps by a linear factor. Even more, using Prop. 8, we
obtain the following approximation result.

Theorem 9 (�). Let G be a PTP graph whose separating 4-cycles are all trivial.
Let R and R′ be two rectangular duals of G, and let OPT be the minimum number
of steps in any relaxed morph between R and R′. Then we can construct in cubic
time a relaxed morph consisting of O(OPT) steps.

4 Concluding Remarks

In the parallelization step, we considered only PTP graphs whose separating 4-
cycles are trivial. It remains open how to parallelize rotations for RELs of PTP
graphs with nontrivial separating 4-cycles, in particular, to construct morphs
that execute rotations of nested 4-cycles in parallel. It would also be interesting
to guarantee area bounds for morphs with parallel rotations.

During our relaxed morphs, we allow rectangles to temporarily turn into
convex 5-gons (with four edges axis-aligned). Alternatively, one could insist that
the intermediate objects remain ortho-polygons. This would require upt to six
vertices per shape and would force not only the outer rectangles in Fig. 4 to
change their shape, but also the rectangles in the interior. We find our approach
more natural.
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Abstract. In this paper, we study visibility representations of graphs
that are embedded on a torus or a Klein bottle. Mohar and Rosenstiehl
showed that any toroidal graph has a visibility representation on a flat
torus bounded by a parallelogram, but left open the question whether
one can assume a rectangular flat torus, i.e., a flat torus bounded by a
rectangle. Independently the same question was asked by Tamassia and
Tollis. We answer this question in the positive. With the same technique,
we can also show that any graph embedded on a Klein bottle has a
visibility representation on the rectangular flat Klein bottle.

1 Introduction

Visibility representations are one of the oldest topics studied in graph draw-
ing. Introduced as horvert-drawings by Otten and Van Wijk in 1978 [21], and
independently as S-representations by Duchet, Hamidoune, Las Vergnas and
Meyniel in 1983 [10], they consist of assigning disjoint horizontal segments to
vertices and disjoint vertical segments to every edge such that for each edge
the segment ends at the two vertex-segments of its endpoints and intersects no
other vertex-segment. (Fig. 2(d) gives an example.) Later papers studied exactly
which planar graphs have such visibility representations [23,24,27] and general-
ized them to the rolling cylinder [26], Möbius band [7], projective plane [16] or
torus [20]. (There are numerous other generalizations, e.g. to higher dimensions
[4], or permitting rectangles for vertices and horizontal and vertical edges [5], or
permitting edges to go through a limited set of vertex-segments [8].)

The motivation for the current paper is the work by Mohar and Rosenstiehl
[20], who showed that any toroidal graph (i.e., a graph that can be drawn on
a torus without crossings) has a visibility representation on the flat torus, i.e.,
a parallelogram Q where opposite edges have been identified. They explicitly
stated as open problem whether the same holds for a rectangular flat torus, i.e.,
where Q must be a rectangle—their method cannot be generalized to this case.
(See also Fig. 5.) The same question was asked independently earlier by Tamassia
and Tollis [26]. This paper answers this question in the positive.
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Fig. 1. The complete graph K7 embedded on the rectangular flat torus and the
Petersen-graph embedded on the rectangular flat Klein bottle.

Theorem 1. Let G be a toroidal graph without loops. Then G has a visibility
representation on the rectangular flat torus.

There are quite a few graph drawing results for toroidal graphs; see Castelli
Aleardi et al. [2] and the references therein for increasingly better results for
straight-line drawings. Their approach is to convert the toroidal graph into a
planar graph by deleting edges, then draw this planar graph, and then reinsert
the edges. (Other papers [16,20] instead use a reduction approach, where the
graph-size is reduced while staying in the same graph class until some small
graph is reached, draw this graph, and then undo the reduction in the drawing.)
We follow the first approach (i.e., delete edges to make the graph planar), but
face a major challenge when wanting to reinsert an edge (v, w). For this, we
need the segments of v and w to be visible across the horizontal boundary of the
fundamental rectangle, and in particular, to share an x-coordinate. We achieve
this by keeping two halves of each removed edge, connecting corresponding half-
edges along paths, and then forcing these paths to be drawn along columns; the
ability to do so may be of independent interest.

2 Background

We assume familiarity with graph theory and planar graphs, see for example
Diestel’s book [9]. Throughout, let G = (V,E) be a connected graph without
loops, with |V | = n and |E| = m. A map M on a surface Σ is a 2-connected graph
G together with an embedding of G in Σ such that every face (i.e., connected
region of Σ \ M) is bounded by a simple cycle. Maps correspond naturally to
rotation systems on the underlying graphs, up to homomorphisms among the
embeddings [15]. Here a rotation system is a set of cyclic permutations ρv (for
v ∈ V ) where ρv corresponds to the clockwise cyclic order in which the edges
incident to v emanate from v in the embedding. For ease of description we often
assume that we have a map, though all algorithmic steps could be performed on
the rotation system alone.

We study surfaces that have a flat representation consisting of a fundamental
parallelogram Q in the plane with some sides identified. (We may assume that
two sides of Q are horizontal, hence Q has a left/right/top/bottom side.) A
(standing) flat cylinder is obtained by identifying the left and right side of Q
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in the same direction (bottom-to-top). (We usually omit ‘standing’ since we
will not discuss other kinds.) A flat torus is obtained from a flat cylinder by
identifying the top and bottom side in the same direction (left-to-right), while a
flat Klein bottle is obtained from a flat cylinder by identifying the top and bottom
side in opposite direction. Figures 1, 5, 6 give some examples. A rectangular flat
torus [rectangular Klein bottle] is a flat torus [flat Klein bottle] for which the
fundamental parallelogram Q is required to be a rectangle.

Flat representations carry the local geometry of the plane; in particular when
we speak of a segment or an x-interval then we specifically permit it to go across
a side of the fundamental parallelogram Q. So for example in a flat cylinder Q =
[0, w] × [0, h], an x-interval can have the form [x′, x′′] for two x-coordinates x′ <
x′′, but it can also have the form [0, x′′]∪[x′, w] for some x′′ < x′. A row/column of
Q is a horizontal/vertical line with integer coordinate that intersects the interior
of Q.

A visibility representation of a graph G is a mapping of vertices into non-
overlapping horizontal segments (called vertex-segments) and of edges of G into
non-overlapping vertical segments (called edge-segments) such that for each edge
(u, v), the associated edge-segment has its endpoints on the vertex-segments
corresponding to u and v and it does not intersect any other vertex-segment.

3 Creating Visibility Representations

We first give an outline of our approach. Quite similar to what was was done for
straight-line drawings of toroidal graphs [2], we remove a set of edges to convert
the given graph into a planar graph. In contrast to the earlier work, we keep the
edges but split each of them into two ‘half-edges’ that end at two new vertices
s, t (Sect. 3.1). We will later need to re-connect these half-edges, and to this end,
choose a ‘path-system’ that connects each pair of half-edges while keeping all the
paths non-crossing and (after duplicating some edges) edge-disjoint (Sect. 3.2).
Then we create a visibility representation on the flat cylinder for which these
paths are drawn vertically. To be able to do so we first must argue that we can
find an st-order that enumerates vertices of all paths in order (Sect. 3.3). Then
we build the visibility representation (Sect. 3.4). Removing the segments of s and
t and possibly inserting more columns gives the desired visibility representation.
Figures 2 and 3, 4 illustrate the approach for K7 and the Petersen-graph.

3.1 Making the Graph Planar

In this section we explain how to modify the input graph G to make it planar.
We assume that G has no loop and comes embedded on a flat realization Q
(either a torus or a Klein bottle). We first modify this embedding to achieve the
following: (1) Every face is bounded by a simple cycle, so the embedding is a
map. (2) No edge crosses the horizontal boundary of Q twice. (3) Parallelogram
Q is a rectangle. (4) No vertex lies on the boundary of Q. (5) Edges intersect the
boundary of Q in a finite set of points, and do not use a corner of Q. Conditions
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Fig. 2. The construction for the complete graph K7.

(1–5) can easily be achieved if arbitrary curves are allowed for edges as follows:
(1) holds after adding sufficiently many edges (which can be deleted in the
final visibility representation), (2) can be achieved by re-routing the horizontal
boundary of Q along a so-called tambourine [2], (3) holds after a shear and (4–5)
hold after locally re-routing.

Assume first that G is toroidal, so Q is a rectangular flat torus. Enumerate
the edges that intersect the bottom side of Q as (si, ti) (for i = 1, . . . , d) from left
to right, named such that part of the edge that goes upward from the bottom
side ends at si for i = 1, . . . , d. (This is feasible by condition (2) above.) Create
a new graph Gst by removing edges (si, ti) for i = 1, . . . , s, adding a new vertex
t incident to t1, . . . , td and a new vertex s incident to s1, . . . , sd. See Fig. 2(a).
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Fig. 3. The first few steps for the Petersen-graph from Fig. 1(b).

Now assume that G is embedded on a rectangular flat Klein bottle Q instead.
We construct Gst in almost the same way, but the enumeration of edges is
different. Let the edges that cross the bottom side of Q be (s1, td), . . . , (sd, t1)
from left to right, named such that the part of the edge that goes upward from
the bottom side ends at si for i = 1, . . . , d. Since the top and bottom sides of Q
are identified in opposite direction, the order of edges along the top side of Q is
(sd, t1), . . . , (s1, td) from left to right. Remove these edges and replace them by a
vertex s incident to s1, . . . , sd and a vertex t incident to t1, . . . , td. See Fig. 3(a).

In both cases, by placing t above the top side of Q and s below the bottom
side of Q, we obtain an embedding of Gst on the flat cylinder, so it is a plane
graph (i.e., drawn on the plane with a fixed embedding). The edges incident
to s lead to s1, . . . , sd (in clockwise order) and the edges incident to t lead to
t1, . . . , td (in counter-clockwise order).

Observation 1. Graph Gst is 2-connected.

Proof. Since Gst is a plane graph, 2-connectivity is equivalent to all faces being
bounded by a simple cycle. This holds for all faces of G by assumption. The only
faces of Gst that are not in G are those incident to s and t. These consist of part
of the boundary of a face of G, plus two newly added edges that both end at s
(or both end at t). So the boundary of these faces are simple cycles as well. ��

3.2 Choosing Paths

We now show how to choose a set Π of paths in Gst that satisfy some properties.
A path is called simple if no vertex repeats. Two simple edge-disjoint paths π, π′

are non-crossing if at any vertex v that is interior to both the paths only touch,
i.e., the edges of the paths appear in order π, π, π′, π′ in ρv.

Lemma 1. There exists a planar graph Ĝ (obtained by duplicating edges of Gst)
and a set of simple edge-disjoint non-crossing paths π1, . . . , πd in Ĝ such that
path πi begins with (s, si) and ends with (ti, t) for i = 1, . . . , d.
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Before giving the proof, we need to define the operation of splitting a map at
a path π (also used in Figs. 2(b) and 3(b)). Temporarily direct π from one end
to the other. Duplicate all interior vertices of π (say vertex v becomes v� and
vr) and duplicate all edges of π correspondingly. For any interior vertex v of π,
and any edge e incident to v but not on π, we re-connect e to end at v� [vr] if e
occurs before [after] the outgoing edge of π at v when enumerating ρv beginning
with the incoming edge of π on v. Splitting at π creates a new face fπ bounded
by the two copies of π.

Proof. Let π be a simple path that begins with (s, s1) and ends with (t1, t); this
exists since Gst is 2-connected. Temporarily split graph Gst at π to obtain a
planar graph G̃. The resulting new face fπ contains both s and t; for ease of
description we assume that fπ is the outer-face of G̃.

Let G̃+ be the graph obtained from G̃ by replacing any edge e that is not
incident to s or t by a multi-edge that has d + 1 copies of e. Any s-t-cut of G̃+

either consists of the edges incident to s (then it has size d+1 since (s, s1) exists
twice in G̃) or of the edges incident to t (then it likewise has size d + 1), or it
contains some edge e not incident to either s or t and so has size at least d + 1.
By the max-flow-min-cut theorem therefore G̃+ has a flow of value d+1 from s
to t; equivalently, it has d+1 edge-disjoint paths π1, . . . , πd+1 from s to t. Since s
and t are both on the outer-face we can find these paths using right-first search
[22]; this will automatically make them crossing-free.

Since the paths are crossing-free and use all edges incident to s, t, and since
s and t are on the outer-face, there is no choice which pair of edges must be the
first and last on each path. The clockwise order of edges at s (beginning after
the outer-face) is (s, sr

1), . . . , (s, sd), (s, s�
1). The counter-clockwise order of edges

at t (beginning after the outer-face) is (t, tr1), . . . , (t, td), (t, t
�
1). Therefore path

πi begins with (s, si) and end with (ti, t) for i = 2, . . . , d, while π1 and πd+1 use
the copies of s1 and t1.

To obtain Ĝ, re-combine any two vertices v� and vr that resulted from split-
ting an interior vertex v of π, and keep all edges of G̃+ except (s, s�

1) and (t�1, t).
Since these two edges were used by πd+1, they were used by no other path in
π1, . . . , πd, and we have hence obtained our desired path-system. ��

3.3 A Path-Constrained st-order

By Lemma 1, we can fix a supergraph Ĝ of Gst and a path-system Π, i.e., a set of
simple edge-disjoint non-crossing paths from s to t. To draw Ĝ, we add vertices
one-by-one, and to draw the paths in Π vertically, we require a vertex-order with
special properties.

We need some definitions. A bipolar orientation is an assignment of directions
to the edges that is acyclic and has exactly one source and one sink. An st-order
is a vertex order v1, . . . , vn such that orienting all edges from the lower-indexed to
the higher-indexed vertex gives a bipolar orientation. Vice versa, for any bipolar
orientation, enumerating the vertices in topological order gives an st-order. It
is well-known that any 2-connected graph has a bipolar orientation, even if we
fix a-priori which vertices should be the source and sink [17]; it can be found in
linear time [11].
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We say that a bipolar orientation respects a path system Π if every path in Π
is directed from s to t in the bipolar orientation. We phrase the following result
for an arbitrary graph H since it does not depend on the graph stemming from
a toroidal or Klein-bottle graph and may be of independent interest.

Lemma 2. Let H be a 2-connected plane graph with two vertices s �= t. Let Π
be a set of simple edge-disjoint crossing-free paths from s to t. Then H has a
bipolar orientation that respects Π and has source s and sink t.

Proof. Consider the graph Ĥ obtained from H by splitting H at each path in Π.
See Figs. 2(b) and 3(b). Any face of Ĥ is either a face of H (then it is a simple
cycle since H is 2-connected) or f is bounded by the two copies of some path
π ∈ Π (then it is a simple cycle since π is simple). So Ĥ is 2-connected and has
a bipolar orientation D̂ with source s and sink t.

It is well-known [24] that in D̂ any face has a unique source and sink. In any
face fπ bounded by two copies of some π ∈ Π, the unique source is s and the
unique sink is t. Therefore both copies of π are directed from s to t and undoing
the splitting gives the desired orientation. ��
Note Added in Proof: This lemma is not correct, since the created orientation
may not be acyclic. (This is unavoidable since the orientation of the paths already
may induce a directed cycle.) With a much longer argument (not given here) it
can be shown that with a suitable choice of paths (possibly after changing which
edges of G are being cut to create Gst), we can get such a bipolar orientation
for Ĝ. So the rest of the paper appears to be correct.

3.4 Path-Constrained Visibility Representations

In this section, we give an easy construction of a visibility representation on the
flat cylinder where a given path-system Π is drawn vertically. Formally, we say
that a path π lies on an exclusive column � (in a visibility representation Γ) if all
edges of π are represented by segments on �, and column � intersects no vertex-
or edge-segment except the ones that belong to vertices/edges of π.

Our approach to create visibility representations is quite different from prior
constructions [16,20,21,23,24,26,27], which either read the coordinates for the
segments directly from the orientation (using the length of the longest paths
in the primal and dual graph), or reduced the graph (or its dual) by remov-
ing an edge somewhere in the graph, creating a representation recursively, and
expanding. In contrast to this, we use here an incremental approach which resem-
bles more the incremental approaches taken for straight-line drawings [2,13] or
orthogonal drawings [3]. This uses a vertex ordering and adds the vertices to the
drawing one-by-one.

Theorem 2. Let H be a 2-connected plane graph with two vertices s, t and let
Π be a set of simple edge-disjoint non-crossing paths from s to t. Then H has
a visibility representation on the flat cylinder such that each π ∈ Π lies on an
exclusive column.
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Proof. Fix a bipolar orientation using Lemma 2 and extract an st-order
v1, . . . , vn from it; we know v1 = s and vn = t and the numbers along any
path in Π increase from s to t. For i = 1, . . . , n let Hi be the subgraph induced
by v1, . . . , vi and let the cut Ei:i+1 be the set of all edges (vh, vj) with h ≤ i < j.
There is a natural cyclic order of the edges in Ei:i+1 implied by the embedding
of H (specifically, if we contracted the vertices v1, . . . , vi into a supernode, then
the order of Ei:i+1 would be the clockwise order of edges at this supernode).
We will use induction on i to create a visibility representation of Hi on a flat
cylinder that satisfies the following for i < n:

1. Every edge e = (vh, vj), h<j in cut Ei:i+1 is associated with a column that
intersects vh and that is empty above vh.

2. The left-to-right order of columns associated with Ei:i+1 respects the cyclic
order of edges in Ei:i+1.

3. For any path π ∈ Π, the sub-path of π in Hi lies on an exclusive column, and
the same column is associated with the unique edge of π in Ei:i+1.

Figure 4(a-b) illustrates the following construction. For i = 1, we create the
desired visibility representation simply by defining a horizontal line segment
s(v1) for v1 with y-coordinate 0 and width |E1:2|, and assigning columns inter-
secting s(v1) to edges in E1:2 in the correct order.

For i > 1, assume we have created a visibility representation of Hi−1 already.
Define edge-sets E−

i := {(vh, vi) : h < i} and E+
i := {(vi, vj) : i < j}; the former

is non-empty by i > 1 since we have an st-order. It is well-known [17] that E−
i is

consecutive in the cyclic order of edges in Ei−1:i. By the invariant therefore there
exists an x-interval Xi on the flat cylinder that intersects all columns associated
with edges in E−

i in its interior and intersects no other columns associated with
Ei−1:i. Define the segment s(vi) of vi to have x-range Xi and a y-coordinate
that is higher than the one of all its neighbours in E−

i . These edges can then be
completed along their associated columns.

To associate columns with E+
i , we insert new columns as needed. First con-

sider any edge e ∈ E+
i in some path π ∈ Π. Since π begins at s and i > 1, and

since indices increase along π, some edge e′ ∈ E−
i also belongs to π. Associate

the column of e′ with e. Notice that this associates columns in the correct order,
because if multiple paths π1, . . . , πk ∈ Π all went through vi, then the counter-
clockwise order of their edges in E−

i at vi must be the same as the clockwise
order of their edges in E+

i at vi, otherwise two of these paths would cross at vi.
Now consider any edge e ∈ E+

i that does not belong to a path in Π. Assign a
ray upward from s(vi) to e, choosing rays such that all edges in E+

i use distinct
rays/columns and their order reflects the order of edges at vi. By stretching
horizontal segments as needed, we can re-assign coordinates so that all inserted
rays lie on integer coordinates, hence become new columns. This gives the desired
visibility representation of Hi. ��
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Fig. 4. Creating visibility representations.

3.5 Putting it All Together

We now have all ingredients to prove our main result (Theorem 1): Any toroidal
graph G without loops has a visibility representation on the rectangular flat
torus. See Fig. 2 for the entire process.

Proof. Add edges to G until all its faces are simple cycles. As described in Sub-
sects. 3.1-3.4, split G at edges (si, ti) (for i = 1, . . . , d) to obtain Gst, find a
supergraph Ĝ with a path-system Π where path πi begins with (s, si) and ends
with (ti, t), find an orientation that respects Π, and find a visibility represen-
tation Γ of Ĝ on the flat cylinder Q such that πi is drawn along an exclusive
column �i. Remove the segments that represent s and t and complete (si, ti)
along column �i. After re-interpreting Q as a rectangular flat torus this gives the
desired visibility representation of G after deleting all added edges. ��

With a bit more care when reconnecting edges, the same approach also works
for Klein-bottle graphs.

Theorem 3. Let G be a graph without loops embedded on the Klein bottle. Then
G has a visibility representation on the rectangular flat Klein bottle.

Proof. Exactly as in the previous proof, create a visibility representation Γ of
Ĝ on the flat cylinder Q such that πi is drawn along an exclusive column �i.
Remove the segments that represent s and t and extend (si, s) and (ti, t) along
�i until they reach the horizontal boundary of Q.

We are not quite done yet, because we must ensure that column �i ‘lines
up’ with column �d+1−i (for i = 1, . . . , �d/2	) so that edges (si, td+1−i) and
(sd+1−1, ti) are connected correctly when interpreting Q as the flat Klein bottle.
This is easily achieved by inserting columns. Namely, assume Q has x-range
[0, w] and let x(�) denote the x-coordinate of column �. For i = 1, . . . , �d/2	,
while x(�i) < w−x(�d+1−i), insert an empty column to the left of �i, and while
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x(�i) > w−x(�d+1−i), insert an empty column to the right of �d+1−i See Fig. 4(c).
This maintains distances of �1, . . . , �i−1 to the left boundary and distances of
�d+2−i, . . . , �d to the right boundary of Q. So performing this for i = 1, . . . , �d/2	
gives the desired visibility representation on the flat Klein bottle. ��

We note here that our visibility representations exactly respect the given
embedding. Under this restriction, the condition ‘no loops’ cannot be avoided.
(This was essentially observed by Mohar and Rosenstiehl [20] already.) Namely,
let M0 be a graph with a single vertex v and two loops �1, �2 such that
ρv = 〈�1, �2, �1, �2〉. This is toroidal, but has no visibility representation on the
rectangular flat torus that respects the embedding since the rotation scheme at
v in such an embedding is necessarily �1, �1, �2, �2.

Fig. 5. (a) Graph M0. (b) The only possible visibility representation on a rectangular
flat torus. (c) An embedding-preserving visibility on the flat torus.

3.6 Grid-Size

We can give a bound on the grid-size of Theorem 1, assuming that the input is
already a map (i.e., all faces are simple cycles). We say that a visibility represen-
tation has grid-size w × h if the fundamental rectangle Q intersects w columns
and h rows, not counting the boundaries of Q. In our current approach, the visi-
bility representation Γst of Gst uses significantly more area than it needs to since
we may duplicate quite a few edges of Gst to obtain the path system (see also
the discussion below). However, as for all visibility representations, one should
apply compaction steps (similar as for VLSI design [18]) to reduce the size of
the drawing. We claim that after doing this, the visibility representation Γ of a
toroidal graph G has grid-size at most (m − n) × n.

To see this, observe that we need at most n rows, since assigning row i to
vertex vi will certainly place it high enough and the rows for s, t can be deleted
during compaction. As for the number of columns, each column must contain at
least one edge, else it could have been deleted. Furthermore, we used a bipolar
orientation of Ĝ, which means that every vertex other than s and t has both
an incoming and an outgoing edge. Since Ĝ is obtained from Gst by duplicating
edges, the same holds in Gst. Vertices s and t are removed in the final visibility
representation (but their incident edges remain and are re-combined). With the
standard compaction steps, therefore at least one column at each vertex v is
used for two edges incident to v. It follows that each vertex saves at least one
column, hence the number of columns is m − n.
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3.7 Run-time

Following the steps of our algorithm, it is very clear that our visibility repre-
sentations can be found in polynomial time. In fact, the drawing in Theorem 2
can be found in linear time with standard-approaches: do not explicitly main-
tain the x-coordinates, but store the drawing implicitly by computing x-spans of
vertex-segments and x-offsets of edge-segments from the left endpoints of their
lower endpoints. The final drawing can then be computed with one pass over
the entire graph after all vertices have been placed.

Unfortunately finding the drawings in Theorems 1 and 3 may take superlinear
time since the supergraph Ĝ may have many extra edges. If Gst has Ω(n) disjoint
edge-cuts that separate s and t, then each of the |Π| paths must duplicate an
edge in each edge-cut, leading to Ω(m + |Π|n) edges for Ĝ. One can show that
|Π| ∈ O(

√
n) can be achieved, because any toroidal graph has a non-contractible

cycle of length O(
√

n) [1], and we can use such a cycle in the dual graph to find
an embedding where O(

√
n) edges cross the horizontal side and hence necessitate

a path in Π. With this choice we get |Ĝ| ∈ O(n1.5) and run-time O(n1.5).
Reducing this to linear time seems not implausible: we need the paths in

Π only to steer us towards placing edges in the visibility representation at a
suitable place, and it may be possible to encode this in a smaller data structure
that permits linear run-time. This remains for future work.

4 Other Drawing Styles

We close the paper by discussing how our results do (or do not) imply results in
some other graph drawing styles that are closely related to visibility represen-
tations. The first drawing style that we consider are orthogonal point-drawings,
where vertices are represented by points and every edge is a polygonal curve
between its endpoints that uses only horizontal and vertical segments and does
not intersect other edges or vertices. (These can only exist if the graph has
maximum degree at most four.)

Theorem 4. Every toroidal graph with maximum degree four has an orthogo-
nal point-drawing on the rectangular flat torus. Every Klein-bottle graph with
maximum degree four has an orthogonal point-drawing on the flat Klein bottle.

Proof. Tamassia and Tollis [25] showed how to create orthogonal point-drawings
by starting with a visibility representation and replacing vertex-segments locally
by points and polygonal curves that connect to the edge-segments. The exact
same transformations can be applied to any visibility representation that lies on a
flat representation, so using it with Theorem 1 and Theorem 3 (after subdividing
loops, if any) gives the desired orthogonal point-drawings. ��

Two other related drawing styles are grid contact and tessellation represen-
tations. A bipartite graph has a vertex-partition V = W ∪ B such that there are
no edges within W or within B. In a grid contact representation of a bipartite
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graph, the vertices of W and B are assigned to horizontal and vertical segments,
respectively, with all segments disjoint except that any segment of one kind may
touch at both of its ends an interior point of a segment of the other kind, and
such a common point occurs only if the two vertices are adjacent. See Fig. 6(b).
It is well-known [12] that every planar bipartite graph has a grid contact repre-
sentation in the plane, and Mohar and Rosenstiehl [20] showed that any toroidal
bipartite graph has a grid contact representation on the flat (not necessarily
rectangular) torus. A tessellation representation of a graph G is a grid contact
representation of the bipartite graph whose vertices are the faces and vertices of
G and whose edges are the incidences between them.1 See Fig. 6(c).

Fig. 6. (a) A set of segments that is a grid contact representation of K4,4 (shown in
(b)) or a tessellation representation of the graph in (c).

Mohar and Rosenstiehl constructed tessellation representations of toroidal
graphs (on a flat torus), from which their results on grid contact representations
and visibility representations follow easily. They must permit a non-rectangular
flat torus because they reduce their graph to M0 (or another single-vertex graph
with loops), which cannot be represented on a rectangular flat torus. But does
it help to have no loops?

Conjecture 1. Every toroidal graph without loops has a tessellation representa-
tion on the rectangular flat torus.

Conjecture 2. Every bipartite toroidal graph without loops has a grid contact
representation on the rectangular flat torus.

At first sight one might think that Theorem 1 implies Conjecture 1, because
Mohar and Rosenstiehl [20] show that a visibility representation can be converted
to a tessellation representation. Alas, their definition of “visibility representa-
tion” uses the ‘strong’ model where all visibilities must lead to an edge, hence
faces are triangles, and this is vital in their proof. On the positive side, their
proof does not affect the shape of the flat representation, so using it one can
show that Conjecture 1 holds for toroidal graphs where all faces are triangles.

1 In contrast to earlier work [20], we use here weak models, where not all adjacencies
that could be added must exist.



416 T. Biedl

Finally we are interested in segment intersection representations, i.e., every
vertex is assigned to a segment (of arbitrary slope) on the flat torus, with seg-
ments intersecting if and only if the vertices are adjacent. Such representations
exist for all planar graphs [6], and one proof of this proceeds by representing
a planar graph as the intersection-graph of L-shaped curves in the plane [14]
and then converting the L-shaped curves into segments [19]. The corresponding
questions on the flat torus appear to be open even if we drop ‘rectangular’:

Question 1. Does every simple toroidal graph have a segment intersection rep-
resentation on the flat torus?

Question 2. Is every simple toroidal graph the intersection-graph of L-shaped
curves on the flat torus?

Question 3. If a graph is the intersection-graph of L-shaped curves on the flat
torus, then is it also the intersection-graph of segments on the flat torus?

Finally all these questions could be asked also for graphs embedded on the
Klein bottle (or other surfaces, such as the projective plane).
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2. Aleardi, L.C., Devillers, O., Fusy, É.: Canonical ordering for graphs on the cylinder,
with applications to periodic straight-line drawings on the flat cyclinder and torus.
J. Comput. Geom. 9(1), 391–429 (2018). https://doi.org/10.20382/jocg.v9i1a14

3. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Com-
put. Geom.: Theor. Appl. 9, 159–180 (1998). https://doi.org/10.1016/S0925-
7721(97)00026-6

4. Bose, P., Everett, H., Fekete, S., Houle, M., Lubiw, A., Meijer, H., et al.: A visibility
representation for graphs in three dimensions. J. Graph Algorithms Appl. 2(3), 1–
16 (1998). https://doi.org/10.7155/jgaa.00006

5. Bose, P., Dean, A., Hutchinson, J., Shermer, T.: On rectangle visibility graphs. In:
North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 25–44. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-62495-3 35
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Abstract. A mixed graph has a set of vertices, a set of undirected edges,
and a set of directed arcs. A proper coloring of a mixed graph G is a
function c that assigns to each vertex in G a positive integer such that,
for each edge {u, v} in G, c(u) �= c(v) and, for each arc (u, v) in G,
c(u) < c(v). For a mixed graph G, the chromatic number χ(G) is the
smallest number of colors in any proper coloring of G. A directional
interval graph is a mixed graph whose vertices correspond to intervals on
the real line. Such a graph has an edge between every two intervals where
one is contained in the other and an arc between every two overlapping
intervals, directed towards the interval that starts and ends to the right.

Coloring such graphs has applications in routing edges in layered
orthogonal graph drawing according to the Sugiyama framework; the
colors correspond to the tracks for routing the edges. We show how to
recognize directional interval graphs, and how to compute their chro-
matic number efficiently. On the other hand, for mixed interval graphs,
i.e., graphs where two intersecting intervals can be connected by an edge
or by an arc in either direction arbitrarily, we prove that computing the
chromatic number is NP-hard.

Keywords: Mixed graphs · Mixed interval graphs · Directed interval
graphs · Recognition · Proper coloring

1 Introduction

A mixed graph is a graph that contains both undirected edges and directed arcs.
Formally, a mixed graph G is a tuple (V,E,A) where V = V (G) is the set of
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vertices, E = E(G) is the set of edges, and A = A(G) is the set of arcs. We
require that any two vertices are connected by at most one edge or arc. For a
mixed graph G, let U(G) = (V (G), E′) denote the underlying undirected graph,
where E′ = E(G) ∪ {{u, v} : (u, v) ∈ A(G) or (v, u) ∈ A(G)}.

A proper coloring of a mixed graph G is a function c that assigns a positive
integer to every vertex in G, satisfying c(u) �= c(v) for every edge {u, v} in G,
and c(u) < c(v) for every arc (u, v) in G. It is easy to see that a mixed graph
admits a proper coloring if and only if the arcs of G do not induce a directed
circuit. For a mixed graph G with no directed circuit, we define the chromatic
number χ(G) as the smallest number of colors in any proper coloring of G.

The concept of mixed graphs was introduced by Sotskov and Tanaev [17] and
reintroduced by Hansen, Kuplinsky, and de Werra [9] in the context of proper
colorings of mixed graphs. Coloring of mixed graphs was used to model problems
in scheduling with precedence constraints [16]. It is NP-hard in general, and it
was considered for some restricted graph classes, e.g., when the underlying graph
is a tree, a series-parallel graph, a graph of bounded tree-width, or a bipartite
graph [5,6,15]. Mixed graphs have also been studied in the context of (quasi-)
upward planar drawings [2–4], and extensions of partial orientations [1,10].

Let I be a set of closed non-degenerate intervals on the real line. The inter-
section graph of I is the graph with vertex set I where two vertices are adjacent
if the corresponding intervals intersect. An interval graph is a graph G that is
isomorphic to the intersection graph of some set I of intervals. We call I an
interval representation of G, and for a vertex v in G, we write I(v) to denote
the interval that represents v. A mixed interval graph is a mixed graph G whose
underlying graph U(G) is an interval graph.

For a set I of closed non-degenerate intervals on the real line, the directional
intersection graph of I is a mixed graph G with vertex set I where, for every
two vertices u = [lu, ru], v = [lv, rv] with u starting to the left of v, i.e., lu � lv,
exactly one of the following conditions holds:

u and v are disjoint, i.e., ru < lv ⇐⇒ u and v are independent in G,

u and v overlap, i.e., lu < lv � ru < rv ⇐⇒ arc (u, v) is in G,

u contains v, i.e., rv � ru ⇐⇒ edge {u, v} is in G.

A directional interval graph is a mixed graph G that is isomorphic to the direc-
tional intersection graph of some set I of intervals. We call I a directional rep-
resentation of G. Similarly to interval graphs, a directional interval graph may
have several different directional representations. As there is no directed circuit
in a directional interval graph G, χ(G) is well defined. Observe that the end-
points in any directional representation can be perturbed so that every endpoint
is unique, and the modified intervals represent the same graph.

Further, we generalize directional interval graphs and directional representa-
tions to bidirectional interval graphs and bidirectional representations. There, we
assume that we have two types of intervals, which we call left-going and right-
going. For left-going intervals, the edges and arcs are defined as in directional
intersection graphs. For right-going intervals, the symmetric definition applies,
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Fig. 1. Separate greedy assignment of left-going and right-going edges to tracks.

that is, we have an arc (u, v) if and only if lv < lu � rv < ru. Moreover, there is
an edge for every pair of a left-going and a right-going interval that intersect.

Interval graphs are a classic subject of algorithmic graph theory whose appli-
cations range from scheduling problems to analysis of genomes [7]. Many prob-
lems that are NP-hard for general graphs can be solved efficiently for interval
graphs. In particular, the chromatic number of (undirected) interval graphs [7]
and directed acyclic graphs [9] can be computed in linear time.

In this paper we combine the research directions of coloring geometric inter-
section graphs and of coloring mixed graphs, by studying the coloring of mixed
interval graphs. Our research is also motivated by the following application.

A subproblem that occurs when drawing layered graphs according to the
Sugiyama framework [18] is the edge routing step. This step is applied to every
pair of consecutive layers. Zink et al. [19] formalize this for orthogonal edges
as follows. Given a set of points on two horizontal lines (corresponding to the
vertices on two consecutive layers) and a perfect matching between the points
on the lower and those on the upper line, connect the matched pairs of points
by x- and y-monotone rectilinear paths. Since we can assume that no two points
have the same x-coordinate, each pair of points can be connected by a path that
consists of three axis-aligned line segments; a vertical, a horizontal, and another
vertical one; see Fig. 1. We refer to the interval that corresponds to the vertical
projection of an edge to the x-axis as the span of that edge. We direct all edges
upward. This allows us to classify the edges into left- vs. right-going.

Now the task is to map the horizontal pieces to horizontal “tracks” between
the two layers such that no two such pieces overlap and no two edges cross
twice. This implies that any two edges whose spans intersect must be mapped
to different tracks. If there is a left-going edge e whose span overlaps that of
another left-going edge e′ that lies further to the left (see Fig. 1), then e must be
mapped to a higher track than e′ to avoid crossings. The symmetric statement
holds for pairs of right-going edges. The aim is to minimize the number of tracks
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in order to get a compact layered drawing of the original graph. This corresponds
to minimizing the number of colors in a proper coloring of a bidirectional interval
graph. Zink et al. solve this combinatorial problem heuristically. They greedily
construct two colorings (of left-going edges and of right-going edges) and combine
the colorings by assigning separate tracks to the two directions; see Fig. 1.

Our Contribution. We first show that the above-mentioned greedy algorithm
of Zink et al. [19] colors directional interval graphs with the minimum number
of colors; see Sect. 2. This yields a simple 2-approximation algorithm for the
bidirectional case. Then, we prove that computing the chromatic number of
a mixed interval graph is NP-hard; see Sect. 3. This result extends to proper
interval graphs; see our full version [8]. Finally, we present an efficient algorithm
that recognizes directional interval graphs; see Sect. 4. Our algorithm is based
on PQ-trees and the recognition of two-dimensional posets. It can construct a
directional interval representation of a yes-instance in quadratic time.

Proofs of statements with a “�” are available in our full version [8] on arXiv.

2 Coloring Directional Interval Graphs

We prove that the greedy algorithm of Zink et al. [19] computes an optimal col-
oring for a given directional interval representation of G. If we are not given a
representation (i.e., a set of intervals) but only the graph, we obtain a representa-
tion in quadratic time by Theorem 3. The greedy algorithm proceeds analogously
to the classic greedy coloring algorithm for (undirected) interval graphs. Also our
optimality proof follows, on a high level, the strategy of relating the coloring to
a large clique. In our setting, however, the underlying geometry is more intri-
cate, which makes the optimality proof as well as a fast implementation more
involved. The algorithm works as follows; see Fig. 1 (left) for an example.

Greedy Algorithm. Iterate over the given intervals in increasing order
of their left endpoints. For each interval v, assign v the smallest available
color c(v). A color k is available for v if, for any interval u that has already
been colored, k �= c(u) if u contains v and k > c(u) if u overlaps v.

A naive implementation of the greedy algorithm runs in quadratic time. Using
augmented binary search trees, we can speed it up to optimal O(n log n) time.

Lemma 1 (�). The greedy algorithm can be implemented to color n intervals
in O(n log n) time, which is optimal assuming the comparison-based model.

Next we show that the greedy algorithm computes an optimal proper color-
ing. This also yields a simple 2-approximation for the bidirectional case.

Theorem 1. Given a directional representation of a directional interval
graph G, the greedy algorithm computes a proper coloring of G with χ(G) many
colors.
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Proof. The transitive closure G+ of G is the graph that we obtain by exhaustively
adding transitive arcs, i.e., if there are arcs (u, v) and (v, w), we add the arc
(u,w) if absent. Clearly, no pair of adjacent intervals in the underlying undirected
graph U(G+) of G+ can have the same color in a proper coloring of G. Therefore,
ω(U(G+)) � χ(G) where ω(U(G+)) denotes the size of a largest clique in U(G+).
We show below that the greedy algorithm computes a coloring with at most
ω(U(G+)) many colors, which must therefore be optimal. For v ∈ V let Iin(v)
be the set of intervals having an arc to v in G.
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Fig. 2. A staircase and its intermediate intervals, which form a clique in U(G+).

Let c be the coloring computed by our greedy coloring algorithm. Since we
always pick an available color, c is a proper coloring. To prove optimality of c,
we show the existence of a clique in U(G+) of cardinality cmax = maxv∈V c(v).

Consider an interval v0 = [l0, r0] of color cmax. Among Iin(v0), let v1 be the
unique interval with the largest color (all intervals in Iin(v0) have different colors
as they share the point l0). We call v1 the step below v0. We repeat this argument
to find the step v2 below v1 and so on. For some t � 0, there is a vt without
a step below it, namely where Iin(vt) = ∅. We call the sequence v0, v1, . . . , vt

a staircase and each of its intervals a step; see Fig. 2. Clearly, (vj , vi) is an arc
of G+ for 0 � i < j � t. In particular, the staircase is a clique of size t + 1 in
U(G+). Next we argue about the intervals with colors in-between the steps.

For a step vi = [li, ri], i ∈ {0, . . . , t}, let Si denote the set of intervals that
contain the point li and have a color x ∈ {c(vi+1) + 1, c(vi+1) + 2, . . . , c(vi)};
see Fig. 2. Note that vi ∈ Si and, by the definition of steps, each interval in Si

contains vi. Observe that |Si| = c(vi)−c(vi+1), as otherwise the greedy algorithm
would have assigned a smaller color to vi. It follows that cmax =

∑t
i=0 |Si|.

We claim that S =
⋃t

i=0 Si is a clique in U(G+). Let u ∈ Si, v ∈ Sl such
that u ∩ v = ∅ (otherwise they are clearly adjacent in U(G+)). Assume without
loss of generality that i < l. Let j, k be the largest and smallest index so that vj ∩
u �= ∅ and vk ∩ v �= ∅, respectively. Observe that u ∩ v = ∅, u ∩ vi+1 �= ∅,
and v ∩ vl−1 �= ∅ imply i < j < l and i < k < l. Since u does not intersect vj+1,



Coloring Mixed and Directional Interval Graphs 423

it overlaps with vj , i.e., G contains the arc (vj , u) and likewise, since v does not
intersect vk−1, it overlaps with vk, i.e., G contains the arc (v, vk).

If j < k, then G+ contains (v, vk) and (vk, vj), and therefore (v, vj). If j � k,
then vj is adjacent to both u and v, and since u, v are disjoint, vj overlaps with u
and v, i.e., G contains (v, vj). In either case, the presence of (v, vj) and (vj , u)
implies that G+ contains (v, u). It follows that S forms a clique in U(G+).

Corollary 1 (�). There is an O(n log n)-time algorithm that, given a bidirec-
tional interval representation, computes a 2-approximation of an optimal proper
coloring of the corresponding bidirectional interval graph.

3 Coloring Mixed Interval Graphs

In this section, we show that computing the chromatic number of a mixed interval
graph is NP-hard. Recall that the chromatic number can be computed efficiently
for interval graphs [7], directed acyclic graphs [9], and directional interval graphs
(Theorem 1). In other words, coloring interval graphs becomes NP-hard only if
edges and arcs are combined in a non-directional way.

Theorem 2. Given a mixed interval graph G and a number k, it is NP-complete
to decide whether G admits a proper coloring with at most k colors.

Proof. Containment in NP is clear since a specific coloring with k colors serves
as a certificate of polynomial size. We prove NP-hardness by a polynomial-time
reduction from 3-SAT. The high-level idea is as follows. We are given a 3-SAT

formula Φ with variables v1, v2, . . . , vn, and clauses c1, c2, . . . , cm, where each
clause contains at most three literals. A literal is a variable or a negated variable –
we refer to them as a positive or a negative occurrence of that variable. From Φ,
we construct in polynomial time a mixed interval graph GΦ with the property
that Φ is satisfiable if and only if GΦ admits a proper coloring with 6n colors.

To prove that GΦ is a mixed interval graph, we present an interval represen-
tation of U(GΦ) and specify which pairs of intersecting intervals are connected
by a directed arc, assuming that all other pairs of intersecting intervals are con-
nected by an edge. The graph GΦ has the property that the color of many of
the intervals is fixed in every proper coloring with 6n colors. In our figures, the
x-dimension corresponds to the real line that contains the interval, whereas we
indicate its color by its position in the y-dimension – thus, we also refer to a color
as a layer. In this model, our reduction has the property that Φ is satisfiable if
and only if the intervals of GΦ admit a drawing that fits into 6n layers.

Our construction consists of a frame and n variable gadgets and m clause
gadgets. Each variable gadget is contained in a horizontal strip of height 6 that
spans the whole construction, and each clause gadget is contained in a vertical
strip of width 4 and height 6n. The strips of the variable gadgets are pairwise
disjoint, and likewise the strips of the clause gadgets are pairwise disjoint.
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Frame. See Fig. 3c. The frame consists of six intervals f1
i , f2

i , . . . , f6
i for each of

the variables vi, i = 1, . . . , n. All of these intervals start at position 0 and extend
from the left into the construction. The intervals f2

i , f4
i , f6

i end at position 1. The
intervals f1

i and f5
i extend to the very right of the construction. Interval f3

i ends
at position 3. Further, there are arcs (f j

i , f j+1
i ) for j = 1, . . . , 5 and (f6

i , f1
i+1)

for i = 1, . . . , n − 1. This structure guarantees that any proper coloring with
colors {1, 2, . . . , 6n} assigns color 6(i − 1) + j to interval f j

i .

Variable Gadget. See Figs. 3a and 3b. For each variable vi, i = 1, . . . , n, we have
two intervals vfalse

i and vtrue
i , which start at position 2 and extend to the very

right of the construction. Moreover, they both have an incoming arc from f1
i

and an outgoing arc to f5
i . This guarantees that they are drawn in the layers

of f2
i and f4

i , however their ordering can be chosen freely. We say that vi is set
to true if vtrue

i is below vfalse
i , and vi is set to false otherwise.

Fig. 3. A variable gadget for a variable vi.

For each occurrence of vi in a clause cj , j = 1, . . . , m, we create an interval oj
i

within the clause gadget of cj . There is an arc (vtrue
i , oj

i ) for a positive occurrence
and an arc (vfalse

i , oj
i ) for a negative occurrence as well as an arc (oj

i , f
1
i+1) if i < n.

This structure guarantees that oj
i is drawn either in the same layer as f3

i or
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as f6
i . However, drawing oj

i in the layer of f3
i (which lies between vtrue

i and vfalse
i )

is possible if and only if the chosen truth assignment of vi satisfies cj .

Clause Gadget. See Fig. 4. Our clause gadget starts at position 4j, relative to
which we describe the following positions. Consider a fixed clause cj that contains
variables vi, vk, v�. We create an interval sj of length 3 starting at position 1.
The key idea is that sj can be drawn in the layer of f6

i , f6
k or f6

� , but only if oj
i ,

oj
k or oj

� , each of which has length 1 and starts at position 3, is not drawn there.
This is possible iff the corresponding variable satisfies the clause.

To ensure that sj does not occupy any other layer, we block all the
other layers. More precisely, for each variable vz with z /∈ {i, k, �}, we create

Fig. 4. A clause gadget for a clause cj = vi ∨ ¬vk ∨ v�, where z /∈ {i, k, �}.
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dummy intervals dj
z, e

j
z of length 3 starting at position 1 that have arcs from f1

z

and to f1
z+1. These arcs force dj

z, e
j
z to be drawn in the layers of f3

z and f6
z , thereby

ensuring that sj is not placed in any layer associated with the variable z.
Similarly, for each z ∈ {i, k, �}, we create a blocker bj

z of length 1 starting at
position 1 that has arcs from f1

z and to f5
z . This fixes bj

z to the layer of f3
z (since

the layers of f2
z and f4

z are occupied by vtrue
z and vfalse

z ), thereby ensuring that,
among all layers associated with vz, sj can only be drawn in the layer of f6

z .

Correctness. Consider for each clause cj with variables vi, vk, and v� the corre-
sponding clause gadget. To achieve a total height of at most 6n, sj needs to be
drawn in the same layer as some interval of the frame. Due to the presence of
the dummy intervals, the only available layers are the ones of f6

z for z ∈ {i, k, �}.
However, the layer of f6

z is only free if oj
z is not there, which is the case if and

only if oj
z is drawn in the layer of f3

z . By construction, this is possible if and only
if the variable vz is in the state that satisfies clause j. Otherwise we need an
extra (6n+1)-th layer. Both situations are illustrated in Fig. 4. Hence, 6n layers
are sufficient if and only if the variable gadgets represent a truth assignment
that satisfies all the clauses of Φ. The mixed interval graph GΦ has polynomial
size and can be constructed in polynomial time.

A proper interval graph is an interval graph that admits an interval represen-
tation of the underlying graph in which none of the intervals properly contains
another interval. We can slightly adjust the reduction presented in the proof of
Theorem 2 to make GΦ a mixed proper interval graph.

Corollary 2 (�). Given a mixed proper interval graph G and a number k, it is
NP-complete to decide whether G admits a proper coloring with at most k colors.

4 Recognizing Directional Interval Graphs

In this section we present a recognition algorithm for directional interval graphs.
Given a mixed graph G, our algorithm decides whether G is a directional interval
graph, and additionally if the answer is yes, it constructs a set of intervals repre-
senting G. The algorithm works in two phases. The first phase carefully selects
a rotation of the PQ-tree of U(G). This fixes the order of maximal cliques in
the interval representation of U(G). In the second phase, the endpoints of the
intervals are perturbed so that the edges and arcs in G are represented correctly.
This is achieved by checking that an auxiliary poset is two-dimensional.

PQ-trees of interval graphs [13] and realizers of two-dimensional posets [14]
can be constructed in linear time. Our algorithm runs in quadratic time, but we
suspect that a more involved implementation can achieve linear running time.

For a set of pairwise intersecting intervals on the real line, let the clique point
be the leftmost point on the real line that lies in all the intervals. Given an inter-
val representation of an interval graph G, we get a linear order of the maximal
cliques of G by their clique points from left to right. Booth and Lueker [13]
showed that a graph G is an interval graph if and only if the maximal cliques
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of G admit a consecutive arrangement, i.e., a linear order such that, for each ver-
tex v, all the maximal cliques containing v occur consecutively in the order. They
have also introduced a data structure called PQ-tree that encodes all possible
consecutive arrangements of G. We present our algorithm in terms of modified
PQ-trees (MPQ-trees, for short) as described by Korte and Möhring [11,12].
We briefly describe MPQ-trees in the next few paragraphs; see [12] for a proper
introduction.

An MPQ-tree T of an interval graph G is a rooted, ordered tree with two
types of nodes: P-nodes and Q-nodes, joined by links. Each node can have any
number of children and a set of consecutive links joining a Q-node x with children
is called a segment of x. Further, each vertex v in G is assigned either to one
of the P-nodes, or to a segment of some Q-node. Based on this assignment, we
store v in the links of T . If v is assigned to a P-node x, we store v in the link
just above x in T (adding a dummy link above the root of T ). If v is assigned
to a segment of a Q-node x, we store v in each link of the segment. For a link
{x, y}, let Sxy denote the set of vertices stored in {x, y}. We say that v is above
(below, resp.) a node x if v is stored in any of the links on the upward path (in
any of the links on some downward path, resp.) from x in T . We write AT

x (BT
x ,

resp.) for the set of all vertices in G that are above (below, resp.) node x.
The frontier of T is the sequence of the sets AT

x , where x goes through all
leaves in T in the order of T . Given an MPQ-tree T , one can obtain another
MPQ-tree, which is called a rotation of T , by arbitrarily permuting the order of
the children of P-nodes and by reversing the orders of the children of some Q-
nodes. The defining property of the MPQ-tree T of a graph G is that each leaf x
of T corresponds to a maximal clique AT

x of G and the frontiers of rotations of T
correspond bijectively to the consecutive arrangements of G. Observe that any
two vertices adjacent in G are stored in links that are connected by an upward
path in T . We say that T agrees with an interval representation I of G if the
order of the maximal cliques of G given by their clique points in I from left to
right is the same as in the frontier of T . We assume the following properties of
the MPQ-tree (see [12], Lemma 2.2):

– For a P-node x with children y1, . . . , yk, for every i = 1, . . . , k, there is at
least one vertex stored in link {x, yi} or below yi, i.e., Sxyi

∪ BT
yi

�= ∅.
– For a Q-node x with children y1, . . . , yk, we have k � 3. Further, for Si = Sxyi

,
we have:

• S1 ∩ Sk = ∅, BT
y1

�= ∅, BT
yk

�= ∅, S1 � S2, Sk � Sk−1,
• (Si ∩ Si+1) \ S1 �= ∅, (Si−1 ∩ Si) \ Sk �= ∅, for i = 2, . . . , k − 1.

A partially ordered set, or a poset for short, is a transitive directed acyclic
graph. A poset P is total if, for every pair of vertices u and v, there is either an
arc (u, v) or an arc (v, u) in P . We can conveniently represent a total poset P
by a linear order of its vertices v1 < v2 < · · · < vn meaning that there is an arc
(vi, vj) for each 1 � i < j � n. A poset P is two-dimensional if the arc set of P
is the intersection of the arc sets of two total posets on the same set of vertices
as P . McConnell and Spinrad [14] gave a linear-time algorithm that, given a
directed graph D as input, decides whether D is a two-dimensional poset. If the
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answer is yes, the algorithm also constructs a realizer, that is, (in this case) two
linear orders (R1, R2) on the vertex set of D such that

arc (u, v) is in D ⇐⇒ [(u < v in R1) ∧ (u < v in R2)].

The main result of this section is the following theorem.

Theorem 3 (�). There is an algorithm that, given a mixed graph G, decides
whether G is a directional interval graph. The algorithm runs in O

(|V (G)|2)
time and produces a directional representation of G if G admits one.

The algorithm runs in two phases that we introduce in separate lemmas.

Lemma 2 (Rotating PQ-trees). There is an algorithm that, given a direc-
tional interval graph G, constructs an MPQ-tree T that agrees with some direc-
tional representation of G.

Proof. Given a mixed graph G, if G is a directional interval graph, then clearly
U(G) is an interval graph and we can construct an MPQ-tree T of U(G) in
linear time using the algorithm by Korte and Möhring [12]. We call a rotation
of T directional if it agrees with some directional representation of G. As we
assume G to be a directional interval graph, there is at least one directional
rotation T̃ of T , and our goal is to find some directional rotation of T . Our
algorithm decides the rotation of each node in T independently.

Rotating Q-nodes. Let y1, . . . , yk be the children of a Q-node x in T . We are
to decide whether to reverse the order of the children of x. Let Si = Sxyi

,
let � = max {i : S1 ∩ Si �= ∅}, and let u ∈ S1 ∩ S�. We have � < k, and there
is some vertex v ∈ (S� ∩ S�+1) \ S1. This implies that u and v are assigned to
overlapping segments of x. Thus, the intervals representing u and v overlap in
every interval representation of U(G). Hence, u and v are connected by an arc
in G, and the direction of this arc determines the only possible rotation of x in
any directional rotation of T , e.g., if (u, v) is an arc in G and the segment of u
is to the right of the segment of v, then reverse the order of the children of x.

Rotating P-nodes. Let y1, . . . , yk be the children of a P-node x in T . For each
i = 1, . . . , k, let Bi = Sxyi

∪ BT
yi

, and let B =
⋃k

i=1 Bi. The properties of the
MPQ-tree give us that (i) every vertex in AT

x is adjacent in U(G) to every vertex
in B, (ii) none of the Bi is empty, and (iii) for any two vertices bi ∈ Bi, bj ∈ Bj

with i �= j, we have that bi and bj are independent in G.
Assume that there is an arc (bi, a) directed from some bi ∈ Bi to some

a ∈ AT
x . We claim that any rotation T ′ of T that does not put yi as the first

child of x is not directional. Assume the contrary. Let yj , j �= i be the first
child of x in T ′, let I be a directional representation that agrees with T ′, and
let bj be some vertex in Bj . The left endpoint of I(a) is to the right of the left
endpoint of I(bi) as (bi, a) is an arc. The right endpoint of I(bj) is to the left
of the left endpoint of I(bi) as T ′ puts yj before yi. Thus, I(bj) and I(a) are
disjoint, a contradiction.
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Similarly, there are directed arcs from AT
x to at most one set of type Bi. If

there are any, the corresponding child yi is in the last position in every directional
rotation of T . Our algorithm rotates the child yi (yj) with an arc from Bi to AT

x

(from AT
x to Bj) to the first (last) position, should such children exist, and leaves

the other children as they are in T . It remains to show that the resulting rotation
of T is directional; see the appendix of our full version [8].

Lemma 3 (Perturbing Endpoints). There is an algorithm that, given an
MPQ-tree T that agrees with some directional representation of a graph G, con-
structs a directional representation I of G such that T agrees with I.
Proof. The frontier of T yields a fixed order of maximal cliques C1, . . . , Ck of G.
Given this order, we construct the following auxiliary poset D. First, we add two
independent chains of length k+1 each: vertices a1, . . . , ak+1 with arcs (ai, aj) for
1 � i < j � k+1, and vertices b1, . . . , bk+1 with arcs (bi, bj) for 1 � i < j � k+1.
Then, for each vertex v in G, let lc(v) and rc(v) denote the indices of the leftmost
and of the rightmost clique in which v is present, respectively. Now we add to D
vertex v plus, for 1 � i � lc(v), the arc (ai, v) and, for 1 � i � rc(v), the arc
(bi, v). Further, for each arc (u, v) in G, we add (u, v) to D. Lastly, for any two
vertices u and v that are independent in G and that fulfill rc(u) < lc(v), we add
an arc (u, v) to D. We claim that G is a directional interval graph if and only
if D is a two-dimensional poset.

First assume that G is a directional interval graph and fix a directional
interval representation of G whose intervals all have distinct endpoints. For i =
1, . . . , k, let Li be the sequence of all the vertices v in G for which lc(v) = i,
in the order of their left endpoints. Similarly, let Ri be the sequence of all the
vertices v in G for which rc(v) = i, in the order of their right endpoints. The
following two linear orders L and R of the vertices of D yield a realizer of D:

L = b1 < b2 < . . . < bk < a1 < L1 < a2 < L2 < . . . < ak < Lk < ak+1,
R = a1 < a2 < . . . < ak < b1 < R1 < b2 < L2 < . . . < bk < Rk < bk+1.

Now, for the other direction, assume that we have a two-dimensional realizer
of D. As bk+1 and a1 are independent in D, we have that bk+1 < a1 in exactly
one of the orders in the realizer. We call this order L, and the other one R.
As ak+1 and b1 are independent in D and b1 < bk+1 < a1 < ak+1 in L, we
have that ak+1 < b1 in R. For each i = 1, . . . , k, define Li as the sequence of
vertices in G appearing between ai and ai+1 in the order L. Similarly, let Ri

be the sequence of vertices in G appearing between bi and bi+1 in the order R.
Observe that, for every vertex v, we have that alc(v) < v in D and that alc(v)+1

and v are independent in D. As alc(v)+1 � ak+1 < b1 � brc(v) < v in R, we have
v < alc(v)+1 in L. Thus, v is in Llc(v) and, by a similar argument, v is in Rrc(v).

Now we are ready to construct a directional interval representation I of G.
For each i = 1, . . . , k, we select |Li| different real points in (i − 1

2 , i) and |Ri|
different real points in (i, i+ 1

2 ). For a vertex v that appears on the i-th position
in Llc(v) and on the j-th position in Rrc(v), we choose the i-th point in (lc(v) −
1
2 , lc(v)) as the left endpoint, and the j-th point in (rc(v), rc(v)+ 1

2 ) as the right
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endpoint. Such a set of intervals is a directional interval representation of G.
First, observe that any two intervals intersect if and only if they have a common
clique. Next, if there is an arc (u, v) in G, then the arc (u, v) is also in D, u < v
holds both in L and in R, the corresponding intervals overlap, and I(u) starts
and ends to the left of I(v). Last, if there is an edge {u, v} in G, then u and v
are independent in D, u < v in one of the orders in the realizer, and v < u in
the other. Thus, one of the intervals I(u) and I(v) must contain the other.

Theorem 3 follows easily from Lemmas 2 and 3; see in our full version [8].

5 Open Problems

Can we recognize directional interval graphs in linear time? Can we recognize
bidirectional interval graphs in polynomial time? Can we color bidirectional
interval graphs optimally, or at least find α-approximate solutions with α < 2?
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Abstract. An obstacle representation of a graph G consists of a set of
polygonal obstacles and a drawing of G as a visibility graph with respect
to the obstacles: vertices are mapped to points and edges to straight-line
segments such that each edge avoids all obstacles whereas each non-
edge intersects at least one obstacle. Obstacle representations have been
investigated quite intensely over the last few years. Here we focus on
outside-obstacle representations (OORs) that use only one obstacle in
the outer face of the drawing. It is known that every outerplanar graph
admits such a representation [Alpert, Koch, Laison; DCG 2010].

We strengthen this result by showing that every (partial) 2-tree has an
OOR. We also consider restricted versions of OORs where the vertices of
the graph lie on a convex polygon or a regular polygon. We characterize
when the complement of a tree and when a complete graph minus a
simple cycle admits a convex OOR. We construct regular OORs for all
(partial) outerpaths, cactus graphs, and grids.

Keywords: Obstacle representation · Visibility graph · Outside
obstacle

1 Introduction

Recognizing graphs that have a certain type of geometric representation is a
well-established field of research dealing with, e.g., geometric intersection graphs,
visibility graphs, and graphs admitting certain contact representations. Given a
set C of obstacles (here, simple polygons without holes) and a set P of points
in the plane, the visibility graph GC(P ) has a vertex for each point in P and an
edge pq for any two points p and q in P that can see each other, that is, the line
segment pq connecting p and q does not intersect any obstacle in C. An obstacle
representation of a graph G consists of a set C of obstacles in the plane and a
mapping of the vertices of G to a set P of points such that G = GC(P ). The
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mapping defines a straight-line drawing Γ of GC(P ). We planarize Γ by replacing
all intersection points by dummy vertices. The outer face of the resulting planar
drawing is a closed polygonal chain ΠΓ where vertices and edges can occur
several times. We call the complement of the closure of ΠΓ the outer face of Γ.
We differentiate between two types of obstacles: outside obstacles lie in the outer
face of the drawing, and inside obstacles lie in the complement of the outer face;
see Fig. 1a.

Fig. 1. Inside- and outside-obstacle representations (IORs and OORs). (Color figures
are available online.)

Every graph trivially admits an obstacle representation: take an arbitrary
straight-line drawing without collinear vertices and “fill” each face with an obsta-
cle. This, however, can lead to a large number of obstacles, which motivates the
optimization problem of finding an obstacle representation with the minimum
number of obstacles. For a graph G, the obstacle number obs(G) is the smallest
number of obstacles that suffice to represent G as a visibility graph.

In this paper, we focus on outside obstacle representations (OORs), that is,
obstacle representations with a single outside obstacle and without any inside
obstacles. For such a representation, it suffices to specify the positions of the ver-
tices; the outside obstacle is simply the whole outer face of the representation.
In an OOR every non-edge must thus intersect the outer face. We also consider
three special types: In a convex OOR, the vertices must be in convex position;
in a circular OOR, the vertices must lie on a circle; and in a regular OOR, the
vertices must form a regular n-gon.

In general, the class of graphs representable by outside obstacles is not closed
under taking subgraphs, but the situation is different for graphs admitting a
reducible OOR, meaning that all of its edges are incident to the outer face:

Observation 1. If a graph G admits a reducible OOR, then every subgraph of G
also admits such a representation.
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Previous Work. Alpert et al. [1] introduced the notion of the obstacle number of
a graph in 2010. They also introduced inside obstacle representations, i.e., rep-
resentations without an outside obstacle. They characterized the class of graphs
that have an inside obstacle representation with a single convex obstacle and
showed that every outerplanar graph has an OOR. Chaplick et al. [5] proved
that the class of graphs with an inside obstacle representation is incomparable
with the class of graphs with an OOR. They showed that any graph with at most
seven vertices has an OOR, which does not hold for a specific 8-vertex graph.

Alpert et al. [1] further showed that obs(K∗
m,n) ≤ 2 for any m ≤ n, where

K∗
m,n is the complete bipartite graph Km,n minus a matching of size m. They

also proved that obs(K∗
5,7) = 2. Pach and Sarıöz [10] showed that obs(K∗

5,5) =
2. Berman et al. [4] suggested some necessary conditions for a graph to have
obstacle number 1. They gave a SAT formula that they used to find a planar
10-vertex graph (with treewidth 4) that has no 1-obstacle representation.

Obviously, any n-vertex graph has obstacle number O(n2). Balko et al. [3]
improved this to O(n log n). On the other hand, Balko et al. [2] showed that there
are n-vertex graphs whose obstacle number is Ω(n/ log log n), improving previous
lower bounds, e.g., [1,6]. They also showed that, when restricting obstacles to
convex polygons, for some n-vertex graphs, even Ω(n) obstacles are needed.
Furthermore, they showed that computing the obstacle number of a graph G is
fixed-parameter tractable in the vertex cover number of G.

Our Contribution. We first strengthen the result of Alpert et al. [1] regard-
ing OORs of outerplanar graphs by showing that every (partial) 2-tree admits a
reducible OOR with all vertices on the outer face; see Sect. 2. Equivalently, every
graph of treewidth at most two, which includes outerplanar and series-parallel
graphs, admits such a representation. Then we establish two combinatorial con-
ditions for convex OORs (see Sect. 3). In particular, we introduce a necessary
condition that can be used to show that a given graph does not admit a convex
OOR as, e.g., the graph in Fig. 1b. We apply these conditions to characterize
when the complement of a tree and when a complete graph minus a simple cycle
admits a convex OOR. We construct regular reducible OORs for all outerpaths,
grids, and cacti; see Sect. 4. The result for grids strengthens an observation by
Dujmović and Morin [6, Fig. 1], who showed that grids have (outside) obstacle
number 1.

The complete proofs of our claims are in the full version [7].

Notation. For a graph G, let V (G) be the vertex set of G, and let E(G) be the
edge set of G. Arranging the vertices of G in circular order σ = 〈v1, . . . , vn〉, we
write, for i �= j, [vi, vj) to refer to the sequence 〈vi, vi+1, . . . , vj−1〉, where indices
are interpreted modulo n. Sequences (vi, vj) and [vi, vj ] are defined analogously.

2 Outside-Obstacle Representations for Partial 2-Trees

The graph class of 2-trees is recursively defined as follows: K3 is a 2-tree. Further,
any graph is a 2-tree if it is obtained from a 2-tree G by introducing a new
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vertex x and making x adjacent to the endpoints of some edge uv in G. We say
that x is stacked on uv. The edges xu and xv are called the parent edges of x.

Theorem 1. Every 2-tree admits a reducible OOR with all vertices on the outer
face.

Proof sketch. Every 2-tree T can be constructed through the following iterative
procedure: (1) Start with one edge, called the base edge and mark its vertices
as inactive. Stack any number of vertices onto the base edge and mark them
as active. During the entire procedure, every present vertex is marked either as
active or inactive. Moreover, once a vertex is inactive, it remains inactive for the
remainder of the construction. (2) Pick one active vertex v and stack any number
of vertices onto each of its two parent edges. All the new vertices are marked
as active and v as inactive. (3) If there are active vertices remaining, repeat
step (2). We construct a drawing of T by geometrically implementing this itera-
tive procedure, so that after every step of the algorithm the present part of the
graph is realized as a straight-line drawing satisfying the following invariants:

(i) Each vertex v not incident to the base edge is associated with an open
circular arc Cv that lies completely in the outer face and whose endpoints
belong to the two parent edges of v. Moreover, v is located at the center
of Cv and the parent edges of v are below v.

(ii) Each non-edge intersects the circular arc of at least one of its incident
vertices.

(iii) For each active vertex v, the region Rv enclosed by Cv and the two par-
ent edges of v is empty, meaning that Rv is not intersected by any edges,
vertices, or circular arcs.

(iv) Every vertex is incident to the outer face.

It is easy to see that once the procedure terminates with a drawing that satisfies
invariants (i)–(iv), we obtain the desired representation (in particular, invari-
ants (i) and (ii) together imply that each non-edge intersects the outer face).

Construction. To carry out step (1), we draw the base edge horizontally and
place the stacked vertices on a common horizontal line above the base edge,
see Fig. 2a. Circular arcs that satisfy the invariants are now easy to define.
Suppose we have obtained a drawing Γ of the graph obtained after step (1)
and some number of iterations of step (2) such that Γ is equipped with a set
of circular arcs satisfying the invariants (i)–(iv). We describe how to carry out
another iteration of step (2) while maintaining the invariants. Let v be an active
vertex. By invariant (i), both parent edges of v are below v. Let e� and er be
the left and right parent edge, respectively. Let �1, �2, . . . , �i and r1, r2, . . . , rj

be the vertices stacked onto e� and er, respectively. We refer to �1, �2, . . . , �i

and r1, r2, . . . , rj as the new vertices; the vertices of Γ are called old. We place
all the new vertices on a common horizontal line h that intersects Rv above v,
see Fig. 2b. The vertices �1, �2, . . . , �i are placed inside Rv, to the right of the
line e� extending e�. Symmetrically, r1, r2, . . . , rj are placed inside Rv, to the left
of the line er extending er.
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Fig. 2. Construction steps in the proof of Theorem 1.

We place �1, �2, . . . , �i close enough to e� and r1, r2, . . . , rj close enough
to er such that the following properties are satisfied: (a) None of the parent
edges of the new vertices intersect Cv. (b) For each new vertex, the unbounded
open cone obtained by extending its parent edges to the bottom does not contain
any vertices.

Each of the old vertices retains its circular arc from Γ. By invariants (i)
and (iii) for Γ, it is easy to define circular arcs for the new vertices that satisfy
invariant (i). Using invariants (i)–(iv) for Γ and properties (a) and (b), it can be
shown that all invariants are satisfied. ��

3 Convex Outside Obstacle Representations

We start with a sufficient condition. Suppose that we have a convex OOR Γ
of a graph G. Let σ be the clockwise circular order of the vertices of G along
the convex hull. If all neighbors of a vertex v of G are consecutive in σ, we say
that v has the consecutive-neighbors property, which implies that all non-edges
incident to v are consecutive around v and trivially intersect the outer face in
the immediate vicinity of v; see Fig. 3a.

Lemma 1 (Consecutive-neighbors property). A graph G admits a convex
OOR with circular vertex order σ if there is a subset V ′ of V (G) that covers
all non-edges of G and each vertex of V ′ has the consecutive-neighbors property
with respect to σ.

Next, we derive a necessary condition. For any two consecutive vertices v
and v′ in σ that are not adjacent in G, we say that the line segment g = vv′ is
a gap. Then the gap region of g is the inner face of Γ + vv′ incident to g; see
the gray region in Fig. 3b. We consider the gap region to be open, but add to it
the relative interior of the line segment vv′, so that the non-edge vv′ intersects
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Fig. 3. Examples for the consecutive-neighbors property (CNP) and a candidate gap.

its own gap region. Observe that each non-edge ē = xy that intersects the outer
face has to intersect some gap region in an OOR. Suppose that g lies between x
and y with respect to σ, that is, [v, v′] ⊆ [x, y]. We say that g is a candidate gap
for ē if there is no edge that connects a vertex in [x, v] and a vertex in [v′, y].
Note that ē can only intersect gap regions of candidate gaps.

Lemma 2 (Gap condition). A graph G admits a convex OOR with circular
vertex order σ only if there exists a candidate gap with respect to σ for each
non-edge of G.

It remains an open problem whether the gap condition is also sufficient.
Nonetheless, we can use the gap condition for no-certificates. To this end, we
derived a SAT formula from the following expression, which checks the gap
condition for every non-edge of a graph G:

∧

xy/∈E(G)

⎡

⎣
∨

v∈[x,y)

⎛

⎝
∧

u∈[x,v],w∈(v,y]

uw /∈ E(G)

⎞

⎠ ∨
∨

v∈[y,x)

⎛

⎝
∧

u∈[y,v],w∈(v,x]

uw /∈ E(G)

⎞

⎠

⎤

⎦

We have used this formula to test whether all connected cubic graphs with up
to 16 vertices admit convex OORs. The only counterexample we found was the
Petersen graph. The so-called Blanusa snarks, the Pappus graph, the dodeca-
hedron, and the generalized Peterson graph G(11, 2) satisfy the gap condition.
The latter three graphs do admit convex OORs [8].

The smallest graph (and the only 6-vertex graph) that does not satisfy the
gap condition is the wheel graph W6 [7, Prop. 1]. Hence, W6 does not admit a
convex OOR, but it does admit a (non-convex) OOR; see Fig. 1b.

In the following, we consider “dense” graphs, namely the complements of
trees. For any graph G, let Ḡ = (V (G), Ē(G)) with Ē(G) = {uv | uv �∈ E(G)}
be the complement of G. A caterpillar is a tree where all vertices are within
distance at most 1 of a central path.

Theorem 2. For any tree T , the graph T̄ has a convex OOR if and only if T
is a caterpillar.

Proof sketch. First, we show that for every caterpillar C, the graph C̄ has a
circular OOR. To this end, we arrange the vertices of the central path P on a
circle in the order given by P . Then, for each vertex of P , we insert its leaves as
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Fig. 4. Graph classes that admit reducible regular OORs (see Theorem 4).

an interval next to it. The result is a circular OOR since every non-edge of C̄
intersects the outer face in the vicinity of the incident path vertex (or vertices).
Second, we show that if T is a tree that is not a caterpillar, then for any circular
vertex order, there exists at least one non-edge of T̄ that is a diagonal of a
quadrilateral formed by edges of T̄ . ��

Another class of dense graphs consists of complete graphs from which we
remove the edge set of a simple (not necessarily Hamiltonian) cycle. Using
Lemma 2, we can prove the following theorem similarly as Theorem 2.

Theorem 3. Let 3 ≤ k ≤ n. Then the graph Gn,k = Kn − E(Ck), where Ck is
a simple k-cycle, admits a convex OOR if and only if k ∈ {3, 4, n}.

4 Regular Outside Obstacle Representations

This section deals with regular OORs. A cactus is a connected graph where
every edge is contained in at most one simple cycle. An outerpath is a graph that
admits an outerpath drawing, i.e., an outerplanar drawing whose weak dual is a
path. A grid is the Cartesian product Pk�P� of two simple paths Pk, P�.

Theorem 4. The following graphs have reducible regular OORs:
1. every cactus; 2. every grid; 3. every outerpath.

Proof sketch. For cacti, we use a decomposition into blocks (i.e., maximal 2-
connected subgraphs or bridges). We start with an arbitrary block and insert its
child blocks as intervals next to the corresponding cut vertices etc.; see Fig. 4a.
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For a grid, we lay out each horizontal path in a separate arc, in a zig-zag manner.
Then we add the vertical edges accordingly; see Fig. 4b. Our strategy for (max-
imal) outerpaths relies on a specific stacking order. We start with a triangle.
Then we always place the next inner edge (black in Fig. 4c) such that it avoids
the empty arc that corresponds to the previous inner edge. ��

Every graph with up to six vertices – except for the graph in Fig. 1b – and
every outerplanar graph with up to seven vertices admits a regular OOR (see [7,
Prop. 1] and [9], respectively). The 8-vertex outerplanar graph in Fig. 1c (and
only it [9]), however, does not admit any regular OOR [7, Prop. 2].

Our representations for cacti, outerpaths, and complements of caterpillars
depend only on the vertex order. Hence, given such a graph with n vertices,
every cocircular point set of size n is universal, i.e., can be used for an OOR.

5 Open Problems

(1) What is the complexity of deciding whether a given graph admits an OOR?
(2) Is the gap condition sufficient, i.e., does every graph with a circular vertex
order satisfying the gap condition admit a convex OOR? (3) Does every graph
that admits a convex OOR also admit a circular OOR? (4) Does every outer-
planar graph admit a (reducible) convex OOR? (5) Does every connected cubic
graph except the Peterson graph admit a convex OOR?
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Abstract. In this article, we study the cell-structure of simple arrange-
ments of pairwise intersecting pseudocircles. The focus will be on two
problems from Grünbaum’s monograph from the 1970’s.

First, we discuss the maximum number of digons or touching points.
Grünbaum conjectured that there are at most 2n−2 digon cells or equiv-
alently at most 2n−2 touchings. Agarwal et al. (2004) verified the conjec-
ture for cylindrical arrangements. We show that the conjecture holds for
any arrangement which contains three pseudocircles that pairwise form a
touching. The proof makes use of the result for cylindrical arrangements.
Moreover, we construct non-cylindrical arrangements which attain the
maximum of 2n − 2 touchings and have no triple of pairwise touching
pseudocircles.

Second, we discuss the minimum number of triangular cells (triangles)
in arrangements without digons and touchings. Felsner and Scheucher
(2017) showed that there exist arrangements with only � 16

11
n� triangles,

which disproved a conjecture of Grünbaum. Here we provide a construc-
tion with only � 4

3
n� triangles. A corresponding lower bound was obtained

by Snoeyink and Hershberger (1991).

Keywords: Arrangement of pseudocircles · Touching · Empty lense ·
Cylindrical arrangement · Arrangement of pseudoparabolas ·
Grünbaum’s conjecture

1 Introduction

An arrangement A of pairwise intersecting pseudocircles is a collection of n(A)
simple closed curves on the sphere or plane such that any two of the curves
either touch in a single point or intersect in exactly two points where they cross.
Throughout this article, we consider all arrangements to be simple, that is, no
three pseudocircles meet in a common point. An arrangement A partitions the
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Fig. 1. An illustration of the construction by Grünbaum [6, Figure 3.28]: an arrange-
ment of n ≥ 4 pairwise intersecting pseudocircles with exactly 2n − 2 digons. Digons
are highlighted gray. (Color figure online)

plane into cells. A cell with exactly k crossings on its boundary is a k-cell, 2-
cells are also called digons and 3-cells are triangles. The number of k-cells of an
arrangement A is denoted as pk(A).

The study of cells in arrangements started about 100 years ago when Levi [7]
showed that, in an arrangement of at least three pseudolines in the projective
plane, every pseudoline is incident to at least three triangles. In the 1970’s,
Grünbaum [6] intensively investigated arrangements of pseudolines and initiated
the study of arrangements of pseudocircles.

1.1 Digons and Touchings

Concerning digons in arrangements of pairwise intersecting pseudocircles, Grün-
baum [6] presented a construction with 2n − 2 digons (depicted in Fig. 1) and
conjectured that these arrangements have the maximum number of digons1.

Conjecture 1 (Grünbaum’s digon conjecture [6, Conjecture 3.6]). Every simple
arrangement A of n pairwise intersecting pseudocircles has at most 2n−2 digons,
i.e., p2 ≤ 2n − 2.

It was shown by Agarwal et al. [1, Corollary 2.12] that Conjecture 1 holds for
simple cylindrical arrangements. An intersecting arrangement of pseudocircles is
cylindrical if there is a pair of cells which are separated by each pseudocircle of
the arrangement. More specifically, they showed that the number of touchings
in an intersecting arrangement of n pseudo-parabolas is at most 2n − 4 [1, The-
orem 2.4]. An intersecting arrangement of pseudoparabolas is a collection of infi-
nite x-monotone curves, called pseudoparabolas, where each pair of them either
have a single touching or intersect in exactly two points where they cross. Every
cylindrical arrangement of pseudocircles can be represented as an arrangement
1 Originally the conjecture was stated as to include non-simple arrangements which
are non-trivial, i.e., non-simple arrangements with at least 3 crossing points.
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Fig. 2. Contracting some of the digons to touchings.

of pseudoparabolas and vice versa. From an arrangement of pseudoparabolas one
can directly obtain a drawing of an arrangement of pseudocircles on the lateral
surface of a cylinder so that the pseudocircles wrap around the cylinder. The
two separating cells correspond to the top and the bottom of the cylinder.

Agarwal et al. [1, Theorem 2.13] showed for intersecting arrangements of
pseudocircles that the number of digons is at most linear in n. The proof is
based on the fact that every arrangement of intersecting pseudocircles can be
stabbed by constantly many points. That is, there exists an absolute constant k,
called the stabbing number2, such that for every arrangement of n pseudocircles
in the plane there exists a set of k points with the property that each pseudocir-
cle contains at least one of the points in its interior [1, Corollary 2.8]. Therefore,
the arrangement can be decomposed into constantly many cylindrical subar-
rangements. The linear upper bound then follows from the fact that each pair
of subarrangements contributes at most linearly many digons. In [5] we verified
Grünbaum’s digon conjecture for up to 7 pseudocircles.

Here we show that Grünbaum’s digon conjecture (Conjecture 1) holds for
arrangements which contain three pseudocircles that pairwise form a digon.
Before we state the result as a theorem, let us introduce some notation. For
an arrangement A of pseudocircles and any selection of its digons, we can per-
form a perturbation so that the selected digons become touching points. Figure 2
gives an illustration. It is therefore sufficient to find an upper bound on the num-
ber of touchings to prove Grünbaum’s digon conjecture. We define the touching
graph T (A) to have the pseudocircles of A as vertices, and two vertices form an
edge if the two corresponding pseudocircles touch.

Theorem 1. Let A be a simple arrangement of n pairwise intersecting pseudo-
circles. If the touching graph T (A) contains a triangle, then there are at most
2n − 2 touchings, i.e., p2 ≤ 2n − 2.

Theorem 1 in particular shows that Grünbaum’s construction with 2n − 2
touchings is maximal for arrangements with triangles in the touching graph.
However, the maximum number of touchings in general arrangements remains
unknown. In Sect. 3 we construct a family of arrangements of n pseudocircles

2 In the literature, the stabbing number is also referred to as piercing number or
transversal number.
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which have exactly 2n − 2 touchings and a triangle free touching graph. This
family witnesses that the conjectured upper bound (Conjecture 1) can also be
achieved in the cases not covered by Theorem 1.

Proposition 1. For n ∈ {11, 14, 15} and n ≥ 17 there exists a simple arrange-
ment An of n pairwise intersecting pseudocircles with no triangle in the touching
graph T (An) and with exactly p2(An) = 2n − 2 touchings.

1.2 Triangles in Digon-Free Arrangements

In this context we assume that all arrangements are digon- and touching-free. It
was shown by Levi [7] that every arrangement of n pseudolines in the projective
plane contains at least n triangles. Since arrangements of pseudolines are in
correspondence with arrangements of great-pseudocircles (see e.g. [4, Section 4]),
it follows directly that an arrangement of n great-pseudocircles contains at least
2n triangles, i.e., p3 ≥ 2n.

Grünbaum conjectured that every digon-free intersecting arrangement on n
pseudocircles contains at least 2n−4 triangles [6, Conjecture 3.7]. Snoeyink and
Hershberger [10] proved a sweeping lemma for arrangements of pseudocircles.
Using this powerful tool, they concluded that in every digon-free intersecting
arrangement every pseudocircle has two triangles on each of its two sides (interior
and exterior). This immediately implies the lower bound p3(A) ≥ 4n/3; see
Sect. 4.2 in [10].

In [5] we constructed an infinite family of digon-free arrangements with p3 <
16
11n which shows that Grünbaum’s conjecture is wrong and verified that the
lower bound p3 ≥ 4n/3 by Snoeyink and Hershberger is tight for 6 ≤ n ≤ 14.
Here we show that their bound is tight for all n ≥ 6:

Theorem 2. For every n ≥ 6, there exists a simple digon-free arrangement An

of n pairwise intersecting pseudocircles with p3(An) = � 4
3n� triangles. Moreover,

these arrangements are cylindrical.

All arrangements constructed in Sect. 4 contain a specific arrangement A6

(depicted on the left of Fig. 11) as a subarrangement. This remarkable arrange-
ment has been studied as the arrangement N Δ

6 in [4] where it was shown that N Δ
6

is non-circularizable, i.e., N Δ
6 cannot be represented by an arrangement of proper

circles. As a consequence, all arrangements constructed in Sect. 4 are as well
non-circularizable. In fact, all known counter-examples to Grünbaum’s triangle
conjecture contain N Δ

6 and are therefore non-circularizable. Hence, Grünbaum’s
conjecture may still be true when restricted to arrangements of proper circles.

Conjecture 2 (Weak Grünbaum triangle conjecture, [5, Conjecture 2.2]). Every
simple digon-free arrangement A of n pairwise intersecting circles has at least
2n − 4 triangles.
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1.3 Related Work and Discussion

In the proof of Theorem 1 we make use of a triangle (K3) in the touching graph to
bound the number of digons in the arrangement. It would be interesting whether
other subgraphs like C4 or K3,3 can also be used to bound the number of digons.

The focus of this article is on arrangements of pairwise intersecting pseudo-
circles. For the setting of arrangements, where pseudocircles do not necessarily
pairwise intersect, a classical construction of Erdős [3] gives arrangements of n
unit circles with Ω(n1+c/ log log n) touchings. An upper bound of O(n3/2+ε) on the
number of digons in circle arrangements was shown by Aronov and Sharir [2].
The precise asymptotics, however, remain unknown. Moreover, we are not aware
of an upper bound for pseudocircles.

Problem 1. Determine the maximum number of touchings among all simple
arrangements of n circles and pseudocircles, respectively.

It is also worth noting that, for the very restrictive setting of arrangements of n
pairwise intersecting unit-circles, Pinchasi showed an upper bound of p2 ≤ n+3
[8, Lemma 3.4 and Corollary 3.10].

Concerning arrangements with digons, the number of triangles behaves dif-
ferent than in digon-free arrangements. While our best lower bound so far is
p3 ≥ 2n/3, we managed to verify that p3 ≥ n − 1 is a tight lower bound for
3 ≤ n ≤ 7 using a computer-assisted exhaustive enumeration [5]. It remains
open, whether p3 ≥ n − 1 is a tight lower bound for every n ≥ 3.

Conjecture 3 ([5, Conjecture 2.10]). Every simple arrangement of n ≥ 3 pairwise
intersecting pseudocircles has at least n − 1 triangles, i.e., p3 ≥ n − 1.

Concerning the maximum number of triangles in intersecting arrangements,
in [5] we have shown an upper bound p3 ≤ 4

3

(
n
2

)
+ O(n) which is optimal up

to a linear error term. In fact, while 4
3

(
n
2

)
is an upper bound for arrangements

of great-pseudocircles, we managed to find an intersecting arrangement with no
digons, no touchings, and 4

3

(
n
2

)
+ 1 triangles. However, since we are not aware

of an infinite family of such arrangements, it remains an interesting question to
determine the exact maximum number of triangles.

Problem 2. Determine the maximum number of triangles among all simple
arrangements of n pairwise intersecting pseudocircles.

2 Proof of Theorem 1

Since the touching graph T (A) contains a triangle, there are three pseudocircles
in A that pairwise touch. Let K be the subarrangement induced by these three
pseudocircles and let � and �′ denote the two open triangle cells in K. We
label the three touching points, which are also the corners of � and �′, as
a, b, c. Furthermore, we label the three boundary arcs of � (resp. �′) as α, β, γ
(resp. α′, β′, γ′), as shown in Fig. 3(a).
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Fig. 3. (a) An illustration of the subarrangement K. (b) and (c), respectively, illustrate
an additional pseudocircle C (red). The pc-arcs inside � and �′, respectively, are
highlighted. (Color figure online)

Assume that all digons in A are contracted to touchings. The intersection of
a pseudocircle C ∈ A\K with �∪�′ results in three connected segments, which
we denote as the three pc-arcs of C, see Figs. 3(b) and 3(c). Note that two of
the pc-arcs induced by C may share an endpoint if C forms a touching with one
of the pseudocircles from K; Fig. 5 shows such a touching.

Each pc-arc in � connects two of α, β or γ while a pc-arc in �′ connects two
of α′, β′ and γ′. Depending on the boundary arcs on which they start and end,
they belong to one of the types αβ, βγ, αγ, α′β′, β′γ′ or α′γ′.

Claim 1. If two pc-arcs inside � (resp. �′) have a touching or cross twice,
then they are of the same type.

Proof. We prove the claim for �; the argument for �′ is the same. Suppose
towards a contradiction that two distinct pseudocircles C,C ′ from A\K contain
pc-arcs A ⊂ C ∩ � and A′ ⊂ C ′ ∩ � of different types that have a touching or
cross twice. For simplicity, consider only the arrangement induced by the five
pseudocircles K∪{C,C ′}. By symmetry we may assume that A is of type αγ and
A′ is of type αβ. We may further assume that A and A′ have a touching, since
otherwise, if they cross twice, they form a digon and we can contract it. This
allows us to distinguish four cases which are depicted in Fig. 4 (up to further
possible contractions of digons formed between C and the pseudocircles of K).

Case 1: C separates a from b and c.
Case 2: C separates b from a and c.
Case 3: C separates c from a and b.
Case 4: C does not separate a, b, c.

In the next paragraph we show that in neither case, it is possible to extend the
arc A′ to a pseudocircle C ′ intersecting the three pseudocircles of K. This is a
contradiction.

Extend A′ starting from its endpoint on α. The only way to reach
γ or γ′, avoiding an invalid, additional intersection with C, is via the
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Fig. 4. (a)–(d) illustrate Cases 1–4 from the proof of Claim 1. The pseudocircles C and
C′ are highlighted blue and red, respectively. The pc-arcs A and A′ are emphasized.
(Color figure online)

pseudocircle β ∪ β′. But the other endpoint of A′ already lies on β, so
either the pseudocircle extending A′ has at least three intersections with
β ∪ β′ or it misses γ ∪ γ′. Both are prohibited in an intersecting arrangement
extending K. This completes the proof of Claim 1. �

Next we transform A into another intersecting arrangement A′ by redrawing
the pc-arcs within � and �′ such that the pairwise intersections and touchings
are preserved and all crossings and touchings of each arc type are concentrated in
a narrow region as depicted in Fig. 5. First we apply an appropriate homeomor-
phism on the drawing so that � becomes a proper triangle (�′ will be treated in
an analogous manner). For the arc type αβ we place a small rectangular region
Rαβ within � that lies close to the vertex c. We now redraw all pc-arcs of type
αβ so that

– all crossings and touchings between pc-arcs of type αβ lie inside Rαβ ,
– every pc-arc of type αβ intersects Rαβ on opposite sites, and
– for every pc-arc of type αβ, the removal of Rαβ leaves two straight line seg-

ments which connect Rαβ to α and β (i.e., the boundary segments of �).
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Fig. 5. Concentrate all crossings and touchings of one arc type in a narrow region.
The narrow regions are indicated by dashed rectangles.

We proceed analogously for the arc types αγ and βγ. By Claim 1 touchings and
double crossings only occur between pc-arcs of the same type and therefore lie
in the rectangular regions. Since the rectangular regions are placed close enough
to the vertices a, b, c of the triangle �, no additional intersections or touching
points are introduced and we obtain an arrangement A′ of pseudocircles with
the same intersections and touchings as A. The combinatorics of the resulting
arrangement A′ may however differ from A since the transformation typically
changes the intersection orders of the pseudocircles. We conclude:

Observation. The transformation preserves the incidence relation between any
pair of pc-arcs, that is, two pc-arcs in A are disjoint/cross in one point/cross
in two points/touch if and only if the two corresponding pc-arcs in A′ are dis-
joint/cross in one point/cross in two points/touch.

This implies that A′ is indeed again an arrangement of n(A′) = n(A) pair-
wise intersecting pseudocircles with identical touching graph T (A′) = T (A). In
particular, the number of touchings is preserved.

Claim 2. The arrangement induced by A′ \ K is cylindrical.

Proof. For each pseudocircle C ∈ A′ \ K, the intersection

C ∩ (� ∪ �′) = (C ∩ �) ∪ (C ∩ �′)

consists of three pc-arcs, and each of these three pc-arcs is of a different type.
The first arc is of type αβ or α′β′ (depending on whether it is inside � or �′),
the second is of type βγ or β′γ′, and the third is of type αγ or α′γ′.

Now we redraw A′ on a cylinder as illustrated in Fig. 6. Since all crossings
and touchings of the arc type are within a small region, all pseudocircles from
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Fig. 6. A cylindrical drawing of A′ \ K.

Fig. 7. Replace each of the three pseudocircles of K by two new pseudocircles so that
the entire arrangement is now cylindrical. The green (resp. red and blue) pseudocircle
from Fig. 6 is replaced by a new green and a new darkgreen (resp. red and darkred,
and blue and darkblue) pseudocircle. On the left: the touching graph T (A′′) of the
arrangement. (Color figure online)

A′ \ K wrap around the cylinder, and hence the arrangement induced by A′ \ K
is cylindrical. This completes the proof of Claim 2. �

Next we replace the three pseudocircles of K by six pseudocircles as illustrated
in Fig. 7, so that the resulting arrangement A′′ is cylindrical. Each of the three
touching points a, b, c in K is replaced by two new touching points and altogether
we obtain touchings a′, a′′, b′, b′′, c′, c′′. Hence, when transforming A into A′′, the
number of pseudocircles is increased by 3 and the number of touchings is also
increased by 3.

Agarwal et al. [1] proved the p2 ≤ 2n − 2 upper bound on the number of
touchings in cylindrical arrangements of n pairwise intersecting pseudocircles
by bounding the number of touchings in an arrangement of pairwise intersecting
pseudoparabolas. They show that their touching graph is planar and bipartite [1,
Theorem 2.4]. In fact, the drawing of A′′ in Fig. 7 can be seen as an intersecting
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arrangement of pseudoparabolas. We review the ideas of their proof to verify the
following claim.

Claim 3. T (A′′) is planar, bipartite, and has at most 2n − 5 edges.

Proof. Label the pseudoparabolas with starting segments sorted from top to
bottom as P1, . . . , Pn. In the touching graph T (A′′), we label the corresponding
vertices as 1, . . . , n.

Bipartiteness: The bipartition comes from the fact that the digons incident to
a fixed pseudoparabola Pj are either all from below or all from above. Suppose
that a pseudoparabola Pj has a touching from above with Pi and from below
with Pk. It follows that Pi is above Pj everywhere and Pk is below Pj everywhere.
Hence, Pi and Pk are separated by Pj and cannot intersect – this contradicts
the assumption that the pseudocircles are pairwise intersecting.

We now further observe that the uppermost pseudoparabola P1 and the low-
ermost pseudoparabola Pn belong to distinct parts of the bipartition, because P1

has all touchings below (i.e. with parabolas of greater index); Pn has all touch-
ings above (i.e. with parabolas of smaller index). Hence, the touching graph
remains bipartite after adding the edge {1, n}.

Planarity: For the planarity of T (A′′), Agarwal et al. [1] create a particular
drawing: The vertices are drawn on a vertical line and each edge e = {u, v} is
drawn as y-monotone curve according to the following drawing rule: For each w
with u < w < v, we route e to the left of w if the pseudoparabola Pw intersects
Pu before Pv, and to right otherwise. It is then shown that in the so-obtained
drawing D, each pair of independent edges has an even number of intersections.
Hence, the Hanani–Tutte theorem (cf. Sect. 3 in [9]) implies that T (A′′) is planar.

Notice that {1, n} is not an edge in T (A′′), since by construction, the lower-
most and uppermost pseudocircles do not touch. We further observe that, since
all edges in D are drawn as y-monotone curves, the entire drawing lies in a box
which is bounded from above by vertex 1 and from below by vertex n. Hence,
we can draw an additional edge from 1 to n which is routed entirely outside
of the box and does not intersect any other edge. Again, by the Hanani–Tutte
theorem, we have planarity. Since any planar bipartite graph on n vertices has
at most 2n − 4 edges, we conclude that T (A′′) has at most 2n − 5 edges. This
completes the proof of Claim 3. �

We are now ready to finalize the proof of Theorem 1. From Claim 3 we obtain
that p2(A) + 3 = p2(A′′) ≤ 2(n + 3) − 5, and therefore p2(A) ≤ 2n − 2. This
completes the argument.

3 Proof of Proposition 1

The proof of Proposition 1 is based on the blossom operation, which allows
to dissolve certain triangles in the touching graph. We will apply the blossom
operation to arrangements whose touching graphs are wheel graphs to obtain
arrangements with the desired properties.
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Fig. 8. An illustration of the blossom operation applied on the pseudocircle v of an
arrangement.
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Fig. 9. Blossom operation applied on v: Modification of the touching graph.

The Blossom Operation. Let A be an arrangement of pairwise intersecting pseu-
docircles, let v be a pseudocircle in A, and let w1, . . . , wd be the pseudocircles
in A which form touchings with v in this particular circular order along v. As
illustrated in Fig. 8, the blossom operation relaxes the touchings between v and
w1, . . . , wd to digons and inserts d new pseudocircles v′

1, . . . , v
′
d inside and very

close to v so that

– v′
1, . . . , v

′
d form a cylindrical arrangement,

– v touches v′
1, . . . , v

′
d, and

– wi touches v′
i−1 and v′

i (indices modulo d).

Since the new pseudocircles v′
1, . . . , v

′
d are added in an ε-small area close to v,

it is ensured that each v′
i intersects all other pseudocircles. Hence, the obtained

arrangement is again an arrangement of pairwise intersecting pseudocircles.
Figure 9 shows the effect of the blossom operation on the touching graph.

Note that in these graph drawings the circular orders of the edges incident to



452 S. Felsner et al.

Fig. 10. (a) An arrangement A of 6 pseudocircles, (b) its cylindrical representation,
(c) its touching graph T (A), and (d) the touching graph T (A′) after applying the
blossom operation to v.

a vertex coincide with the orders in which the touchings appear on the corre-
sponding pseudocircle.

The blossom operation increases the number of pseudocircles n(A) by d while
it increases the number of touchings p2(A) by 2d. Hence, when applied to an
arrangement A with exactly p2(A) = 2n(A)−2 touchings, the blossom operation
yields again an arrangement A′ with p2(A′) = 2n(A′) − 2 touchings.

Moreover, the blossom operation can be used to eliminate certain triangles in
the touching graph. Assume wi and wj have a common touching, so v, wi, wj form
a triangle in the touching graph. Then the blossom operation on v destroys this
triangle without creating a new one if and only if, along the pseudocircle v, the
two touchings with wi and wj are not consecutive. In Fig. 9 a triangle {v, w1, w2}
would result in the new triangle {v′

1, w1, w2}, while a triangle {v, w1, w3} would
not yield a new triangle.

Using the blossom operation, we are now able to prove Proposition 1.
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Fig. 11. Digon- and touching-free intersecting arrangements of n = 6, 7, 8 pseudocircles
with 8, 10, 11 triangles, respectively. Each of the three arrangements is cylindrical, the
common interior is marked with a cross. Triangular cells are highlighted gray. [5, Fig. 2]
(Color figure online)

Proof (of Proposition 1). Let n′ ≥ 11 be an integer with n′ ≡ 3 (mod 4). Then
n = n′+1

2 is an even integer with n ≥ 6. As illustrated in Fig. 10(a) and Fig. 10(b),
we can construct an arrangement A of n pseudocircles with p2 = 2n−2 touchings
such that the touching graph T (A) is the wheel graph Wn.

In this construction the central pseudocircle v has a touching with each of the
pseudocircles w1, . . . , wn−1 and each wi touches v, wi+n/2, and wi−n/2 (indices
modulo n − 1); see Fig. 10(c).

All triangles in T (A) contain the central vertex v and for each such triangle
{v, wi, wj}, the touchings of the pseudocircles wi and wj with the pseudocircle v
are not consecutive on v. Therefore, applying the blossom operation to v elim-
inates all triangles and the resulting arrangement A′ of n′ = 2n − 1 pairwise
intersecting pseudocircles has p2(A′) = 2n′ − 2 touchings and a triangle-free
touching graph T (A′); see Fig. 10(d). This completes the argument for n′ ≥ 11
with n ≡ 3 (mod 4).

To give a construction for n′′ = 14 and for all integers n′′ ≥ 17, note that the
blossom operation can be applied to pseudocircles with exactly three touchings.
The constructed examples with n ≡ 3 (mod 4) have pseudocircles with three
touchings and the blossom operation applied to such a pseudocircle preserves
the property.

Since n′′ = 14 and every integer n′′ ≥ 17 can be written as n′ + 3k with
n′ ∈ {11, 15, 19} and k ∈ N∪{0} we obtain arrangements A′′ of n′′ pseudocircles
with p2(A′′) = 2n′′ − 2 touchings. This completes the proof of Proposition 1. �

4 Proof of Theorem 2

We denote by A6, A7, and A8 the three arrangements shown in Fig. 11. These
three arrangements on 6, 7, and 8 pseudocircles, respectively, are digon- and
touching-free and contain 8, 10, and 11 triangles, respectively. In each of the
three arrangements, there is a pseudocircle C and four incident triangles which
are alternatingly inside and outside of C in the cyclic order around C. In fact,
this alternation property holds for each pseudocircle of these three arrangements.
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Fig. 12. Replacing one pseudocircle with the alternation property (i.e., four triangles
on alternating sides) by a particular arrangement of four pseudocircles.

Fig. 13. Extending the Krupp arrangement (left) to the arrangement A6 (right).

To recursively construct An for n ≥ 9, we replace a pseudocircle C with the
alternation property from An−3 by a particular arrangement of four pseudocir-
cles as depicted in Fig. 12.

With this replacement we destroy 4 triangles incident to C in the original
arrangement, and in total the four new pseudocircles are incident to eight new
triangles. Hence, we have p3(An) = p3(An−3) + 4 = � 4

3 (n − 3)� + 4 = � 4
3n�.

Moreover, the so-obtained arrangement is cylindrical as the cell marked with
the cross lies inside each pseudocircle, and for each of the four new pseudocircles,
there are four new triangles (among the eight new triangles) that lie on alter-
nating sides. This allow us to recurse by using one of the four new pseudocircles
in the role of C for the next iteration. This completes the proof.

It is worth noting that A6 can be created with the same construction as
illustrated in Fig. 13 by extending the Krupp arrangement of three pseudocircles,
in which all cells are triangles.
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Abstract. This report describes the 29th Annual Graph Drawing Con-
test, held in conjunction with the 30th International Symposium on
Graph Drawing and Network Visualization (GD’22) in Tokyo, Japan.
Due to the continuing global COVID-19 pandemic, the conference and
thus also the contest was held in a hybrid format, with both on-site
and online participants. The mission of the Graph Drawing Contest is
to monitor and challenge the current state of the art in graph-drawing
technology.

1 Introduction

Following the tradition of the past years, the Graph Drawing Contest was divided
into two parts: the creative topics and the live challenge.

Creative topics were comprised by two data sets. The first data set was the
Opera Network : The data represent a collection of opera performances that took
place across Europe between 1775 and 1833. The second data set showed a an
Aesthetic Experience Network : The data set represents 8 networks that model
an aesthetic experience of the viewers when observing artworks. The data sets
were published about half a year in advance, and contestants submitted their
visualizations before the conference started.

The live challenge took place during the conference in a format similar to a
typical programming contest. Teams were presented with a collection of challenge
graphs and had one hour to submit their highest scoring drawings. This year’s
topic was similar to last year’s: minimize edge-length ratio in a planar polyline
drawing graph with vertex locations restricted to a grid and a maximum number
of bends per edge allowed.

Overall, we received 26 submissions: 9 submissions for the creative topics and
17 submissions for the live challenge (10 manual and 7 automatic).

2 Creative Topics

The general goal of the creative topics was to model each data set as a graph and
visualize it with complete artistic freedom, and with the aim of communicating
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Angelini and R. von Hanxleden (Eds.): GD 2022, LNCS 13764, pp. 459–470, 2023.
https://doi.org/10.1007/978-3-031-22203-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22203-0_33&domain=pdf
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as much information as possible from the provided data in the most readable
and clear way.

We received 8 submissions for the first topic, and 1 for the second. Submis-
sions were evaluated according to four criteria:

(i) Readability and clarity of the visualization,
(ii) aesthetic quality,
(iii) novelty of the visualization concept, and
(iv) design quality.

We noticed overall that it is a complex combination of several aspects that make
a submission stand out. These aspects include but are not limited to the under-
standing of the structure of the data, investigation of the additional data sources,
applying intuitive and powerful data visual metaphors, careful design choices,
combining automatically created visualizations with post-processing by hand, as
well as keeping the visualization, especially the text labels, readable. For each
topic, we selected the top five submissions before the conference, which were
printed on large poster boards and presented at the Graph Drawing Sympo-
sium. We also made all the submissions available on the contest website in the
form of a virtual poster exhibition. During the conference, we presented these
submissions and announced the winners. For a complete list of submissions, refer
to http://www.graphdrawing.org/gdcontest/contest2022/results.html. Eight of
the submissions were accompanied by an online tool, which are linked on the
web page.

2.1 Opera Networks

The data represents a collection of opera performances that took place across
Europe between 1775 and 1833.

Each row corresponds to a performance and contains the following informa-
tion:

– The performance title (title)
– The librettist’s name (libertist)
– The composer’s name (composer)
– The performance year (performance year)
– The city in which the performance tool place (placename)
– rism id - unique identifier corresponding to the performance that gives a

possibility to extract more information about the performance from RISM
database

The data was extracted from the RISM database1 and was offered by Frans
Wiering2 – professor of Utrecht University studying Musicology.

1 https://opac.rism.info/main-menu-/kachelmenu/help.
2 https://www.uu.nl/medewerkers/FWiering.

http://www.graphdrawing.org/gdcontest/contest2022/results.html
https://opac.rism.info/main-menu-/kachelmenu/help
https://www.uu.nl/medewerkers/FWiering
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There are several possibilities on how a network can be extracted from this
data. We left it to the participants to decide how and whether to model this data
set as a network. The possible research questions that can drive this modeling
were pointed by Frans Wiering and are as follows:

– How performances travelled geographically and in time?
– How Italian/Viennese operas travelled to Europe?
– Which operas stayed at same place and which went over Europe?
– Are there patterns in collaborations among composers and libertists, also over

time?

3rd Place: Joshua Rutschmann, Marc Seelmann, Patrizia Lenhart,
Tim Scholl, Mike Fu, Vincent Lafragola, and Sarah Altenkrüger (Uni-
versität Tübingen). The contest committee likes this layout for its simplicity
and easy readability of the data captured by the visualization. Representing the
composer to librettist relations via a small graph is a choice that nicely inserts
this information into the visualization without adding a lot of visual complexity.
Also, the choice of laying out the visualization in the style of an opera seat-
ing arrangement leads to a pleasingly looking picture that invites exploration of
the data. Clustering the geographic information by countries is a good choice,
though the colors do not necessarily support the easy identification of geographic
areas. The provided online tool adds the missing information like opera names
as easy-to-read hover items.

Tool: http://operanetwork.cs.uni-tuebingen.de/

http://operanetwork.cs.uni-tuebingen.de/
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2nd Place: Richard Brath (Uncharted Software). The committee finds
this visualization to be not only pleasant to look at, but also provoking to explore
the data. It allows for an easy exploration and analysis of many aspects of the
data. Most notably, the south-to-north pattern of the operas over time is very
clearly visible, achieved via the color-scheme and the choice of layout. Also,
the choice of repeating librettists at both sides of the visualization supports well
the tracking of composer-librettist and opera-librettist relations which otherwise
might have been hard to follow. However, finding all occurrences of a single
location is somewhat difficult: the lines connecting them are hard to follow due
to the majority being near vertical and the color scheme is a bit too subtle for
this purpose.

Tool: https://codepen.io/Rbrath/full/ZEoYepb

Winner: Thomas Depian, Michael Huber, and Wilhelm Wanecek (TU
Wien). The committee finds this visualization to be mesmerizing and beautiful
to look at. At the same time it also well supports analyzing and answering most
questions posted with the challenge. The well thought-out space-central view
makes locating the opera-city relation straightforward and the metro-style layout
provides a familiar way of tracing the movement of an opera over time. The
legend explains the visualization in a good fashion and the small bundled graph
supports well the identification of composer-librettist relations. The committee
also appreciates that various algorithmic tools were used to create this drawing.
Finally, the online version of this visualization adds the ability to highlight the
path any opera took through time and space. The only downside is that the
temporal information is more difficult to assess and compare between cities.

https://codepen.io/Rbrath/full/ZEoYepb
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Tool: https://opera-network.netlify.app

In our Opera Network, we grouped performances by their operas, which
we identified by the triple title, composer, and librettist. On a map of
Europe, cities comprised of concentric rings, each representing a perfor-
mance, were positioned close to their actual location using a force-based
layout. Then, performances within the same group were chronologically
connected on directed paths running along the edges of a generalized
Voronoi diagram. For this, the crossing-optimal path bundling algorithm
by Pupyrev et al. (2016) was used, followed by optimizations to make the
paths more homogeneous. Finally, we assigned colors by mixing a base
color for each composer with a shade of grey for each librettist, visualized
with the composer-librettist collaborations in a chord diagram. On top,
to make the data exploration easier, our interactive version allows high-
lighting the paths of performances individually or by composer/librettist.
Thomas Depian

https://opera-network.netlify.app


464 P. Kindermann et al.

2.2 Aesthetic Experience Network

The data set represents 8 networks that model an aesthetic experience of the
viewers when observing artworks. The analyzed artworks are 8 paintings by Klee,
Kandinsky, Mortensen, Miro and Winter:

Artist Title Year
Paul Klee Zeichen in Gelb / Sign in Yellow 1937
Paul Klee Blick aus Rot / Be aware of Red 1937
Wassily Kandinsky Regungen / Impulses 1928
Wassily Kandinsky Untitled 1934
Richard Mortensen velsesstykker / Mortensen Pink 1922
Richard Mortensen velsesstykker / Mortensen Orange 1922
Joan Mirò Untitled 1961
Fritz Winter Siebdruck 6 / Silkscreen 6 1950

Each of the 14 nodes represents one of the two polarities of an aesthetic
effect: (i) positive – negative; (ii) active – passive; (iii) still – lively; (iv) sad –
happy; (v) peaceful – aggressive; (vi) hard – soft; (vii) cold – warm; (viii) light
– heavy; (ix) rough – smooth; (x) spiritual – bodily; (xi) feminine – masculine;
(xii) cautious – intrusive; (xiii) like – dislike; (xiv) interesting – uninteresting.

The edges are weighted by conditional dependence relations among aesthetic
effects: If two aesthetic effects are connected in the resulting graph, they are
dependent after controlling for all other symptoms. Thus, a negative dependency
between A and B indicates a positive dependency between A and the opposite of
B. This data is a result of the research presented in the paper Associating With
Art: A Network Model of Aesthetic Effects by Specker et al. [1] and the full set
of collected data is available online3. When sharing the data for the challenge,
the authors of the paper said they are curious “how to visualize this data set for
an art historical audience or other audience that does not know about network
theory.”
3 https://osf.io/zqxbm/.

https://osf.io/zqxbm/
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Winner: Axel Kuckuk, Henry Förster, and Sarah Gester (Universität
Tübingen). The contest committee liked that the layout is easy to read and
clearly displays the individual as well as the aggregated data. Taking a rather
minimalistic approach with well-separated sub-figures, the authors create a visu-
alization that conveys well the overall data at a glance for each piece of art. The
committee also liked the meta-level of representing this particular data set about
art again as a piece or as pieces of art hanging in an exhibition.



466 P. Kindermann et al.

3 Live Challenge

The live challenge took place during the conference and lasted exactly one hour.
During this hour, local participants of the conference could take part in the man-
ual category (in which they could attempt to draw the graphs using a supplied
tool: http://graphdrawing.org/gdcontest/tool/), or in the automatic category
(in which they could use their own software to draw the graphs). Because of the
global COVID-19 pandemic, we allowed everybody in both categories to partic-
ipate remotely. To coordinate the contest, give a brief introduction, answering
questions, and giving participants the possibility to form teams, we were kindly
provided with both a room in the conference building, and a the Zoom stream for
the conference; furthermore, participants could also meet and follow the contest
via a dedicated room in gather.town.

The challenge focused on minimizing the planar polyline edge-length ratio
on a fixed grid. The planar edge-length ratio of a straight-line drawing is defined
as the ratio between the length of longest edge and minimal Euclidean distance
between two neighboring vertices. This slightly changed from last year to allow
for better scores to more correspond to nicer drawings. There has been recent
attention to this topic with several publications. The planar polyline edge-length
ratio is a generalization of the planar edge-length ratio where edges do not have
to be straight-line segments, but can be polylines with a maximum number of
bends per edge defined by the input.

The input graphs were planar undirected graphs. For the manual category,
each graph came already with a planar drawing.

The results were judged solely with respect to the edge-length ratio; other
aesthetic criteria were not taken into account. This allows an objective way to
evaluate each drawing.

3.1 The Graphs

In the manual category, participants were presented with six graphs. These were
arranged from small to large and chosen to contain different types of graph
structures. In the automatic category, participants had to draw the same six
graphs as in the manual category, and in addition another seven larger graphs.
Again, the graphs were constructed to have different structure.

For illustration, we include the third graph, which was given a seemingly
random graph with initial ratio 22, but that can be drawn with uniform edge
lengths, except for one edge. The best manual solution we received (by team
kuneri nashi), and the best automatic solution we received (by team OMEGA)
are given below.

http://graphdrawing.org/gdcontest/tool/
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Provided drawing

edge-length ratio 22

Best manual solution
kuneri nashi
edge-length ratio 1.12

Best automatic solution
OMEGA
edge-length ratio 1.21

For the complete set of graphs and submissions, refer to the contest website at
http://www.graphdrawing.org/gdcontest/contest2022/results.html. The graphs
are still available for exploration and solving Graph Drawing Contest Submission
System: https://graphdrawingcontest.appspot.com.

Similarly to the past years, the committee observed that manual (human)
drawings of graphs often display a deeper understanding of the underlying graph
structure than automatic and therefore gain in readability. However, excepting
the instance above, the automatic techniques by OMEGA managed to outper-
form the manual solutions when measured purely on edge-length ratio. For the
larger graphs, we gave ample space to ensure that finding some embedding would
be feasible in the given time. This allowed for most techniques to solve most
instances. However, the fourth instance of the larger graphs was still restricted
in grid size, though it was given an initial embedding. Nonetheless, only OMEGA
managed to roughly halve the initial edge-length ratio, suggesting that working
in such a confined space is still challenging, even with a given embedding.

3.2 Results: Manual Category

Below we present the full list of scores for all teams. The numbers listed are the
edge-length ratios of the drawings; the horizontal bars visualize the correspond-
ing scores.

http://www.graphdrawing.org/gdcontest/contest2022/results.html
https://graphdrawingcontest.appspot.com
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Third place: New keyboard, who dis?, consisting of Anáıs Villedieu, Jules
Wulms, and Soeren Nickel.
Second place: kuneri nashi, consisting of Felix Klesen and Johannes Zink
Winner: Martin Gronemann Memorial Team, consisting of Fouli Argyriou
and Henry Förster.

3.3 Results: Automatic Category

In the following we present the full list of scores for all teams that participated
in the automatic category. The numbers listed are the edge-length ratios of the
drawings; the horizontal bars visualize the corresponding scores.
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Third place: Golden Ratio, consisting of Andreas Krystallidis, Leonid
Darovskikh, and Manuel Bacher.
Second place: TUW-ELR1, consisting of lexander Dobler, Oliver Pilizar, and
Sebastian Uhl.
Winner: OMEGA, consisting of Laurent Moalic, Dominique Schmitt, and Julien
Bianchetti.
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Introduction. Force-directed layout algorithms are commonly used to compute
aesthetically-pleasing visualizations of networks and reveal communities in the
associated networks. For undirected networks, the forces on the nodes are often
modeled with springs or electric charges [1–3, 8]. For directed networks, one
can apply this algorithm ignoring the directions of the edges. However, edge
directions are crucial to understand the hierarchical structure or directed paths
in a directed network. Therefore, Sugiyama and Misue [7] proposed a magnetic
spring model that in addition to having the spring forces, would contain magnetic
forces that act at the two ends of an edge (Fig. 1(a)). Given a magnetic field over
the plane (e.g., a linear field or a polar field), the magnetic forces attempt to
rotate the edge to align its orientation to the direction of the magnetic field line
(Fig. 1(b)–(c)) to reveal the directionality in the network.

Our Contribution. We propose a modification to the magnetic-spring idea by
removing the fixed magnetic field and adding polar fields that are anchored at
some user-specified nodes. In other words, the chosen nodes act as polar fields
that can move along with the nodes (Fig. 1(d)) unless the users choose to pin
them at a fixed location. The goal for exploring such a model is to visualize the
hierarchical structure around the selected nodes in a directed network. For exam-
ple, consider selecting some classes in a class dependency network of a software
system as poles. Then one can expect our visualization to reveal the hierarchy
of dependencies around each selected class and to visualize the influences of the
selected classes over the whole network.

(b) (c) (d)(a)

m

θ

Fm

Fm

Fig. 1. (a) Magnetic forces acting on an edge. (b)–(c) A network drawn with a linear
and a polar magnetic field, respectively. (d) Our approach, where two nodes are selected

as poles (orange and green disks). An edge
−−−→
(v, w) is colored by the color of a pole p if

the vertex w is closer to p than any other poles. (Color figure online)
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Fig. 2. (top) Drawing GD’01 using linear field, with our approach, and with fixed
poles. (bottom) Dependency network for software Lucene. (left) Force layout with pole
separation—relevant subnetworks are colored. (mid) Changes after adding magnetic
force. (right) Revealed hierarchies after adding pole gravity.

Our experimental results with real-life datasets show the effectiveness of the
proposed method in visualizing node-specific hierarchies in directed networks.

Our Methods and Experiments. We augment the force layout approach with
pole separation forces that create space around the selected nodes, pole gravity
forces that pull the colored subnetwork closer to the pole, and magnetic forces
that align the directed edges towards the poles. Figure 2(top-left) depicts a visu-
alization generated by Sugiyama and Misue’s [6] approach with a linear field for
the GD’01 dataset (i.e., citation network among GD papers), where 10 nodes
are selected for investigation. Figure 2(top-mid) shows the visualization of our
method with both pole separation and pole gravity forces activated. Figure 2(top-
right) shows the visualization for the same technique but with the poles pinned
at the corners of a regular polygon. While Sugiyama and Misue’s [6] approach
shows the overall directionality of the network, the influence of individual poles
is less cluttered in our approach. The poles are some papers from GD’94 and
GD’95. The pinned poles version reveals the temporal hierarchy near the poles.
However, the pinned position of the poles creates some long edges between the
pole pairs (GD95-254, GD-419) and (GD96-101, GD96-113), which is improved
when the poles move freely (Fig. 2(top-mid)). Figure 2(bottom) depicts a soft-
ware dependency network [4, 5], where the separation force helps discern the
poles easily but it is not enough to separate different subnetworks as they may
be densely connected with each other. With pole gravity and magnetic forces we
can better see the hierarchy around the poles.

Although our work shows potential, we envision to make our system interac-
tive and to investigate edge bundling techniques to better visualize the hierar-
chical structure around the nodes.
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Introduction. Planar graph drawings tend to be aesthetically pleasing [1]. Pla-
nar graphs and their drawings have been extensively studied in graph drawing
literature [2] and can be generated efficiently [2, 3]. However, there are no practi-
cal layout algorithms for the graphs that are nearly planar. Thus, force directed
algorithms [4] often fail at detecting the planar substructure in such graphs. The
attempts to formalize near-planarity (1-planar [5], RAC [6] and quasi-planar [7])
lead to NP-hard recognition problems [8, 9].

Due to the fact that the formalization of near-planarity immediately leads to
NP-hard problems, we turn our attention towards Neural Networks (NNs). NNs
have already been used for graph layout evaluation [10, 11], discrimination [12]
and more relevantly for graph layout generation [13–15].

Our far-reaching goal is to investigate whether NNs are capable of producing
drawings of nearly planar graphs that clearly depict large planar substructures.
Such NNs are expected to be able to produce near-planar drawings of planar
graphs. Therefore, as a first step towards our goal, we investigate whether NNs
are successful in producing planar drawings of planar graphs. Additionally, we
briefly explore the effectiveness of the model in generalizing beyond planarity.

Method. We refer the reader to the full version [16] for the details of the exper-
iments. We reuse the LSTM model and Procrustes Statistic1 (PS) loss function
(LF) of Wang et al. [15, 17], who showed the model to be successful in pro-
ducing planar drawings of grids and stars. Note that the PS LF ensures that
coordinate-based patterns can be learned.

Since drawings with less stress are shown to correlate with positive prefer-
ences [18], additional experiments are also conducted using a supervised stress2

(SuS) LF. We expect the SuS LF to be more capable than the PS LF when
randomness is introduced to node coordinates.

We train 8 models on 8 different graph classes and layouts: Grids, Grids with
all diagonals (Gridsd), Grids with random diagonals (Gridsrd), Delaunay Trian-
gulations, 2-star caterpillar (Caterp2), 3-star caterpillar (Caterp3), randomized
radial trees (RRTrees) and randomized Stress Majorization trees (RSMTrees).
The number of graphs in a dataset (72–1000) and the graph sizes (18–625 nodes)

1 PS LF calculates the differences between original and predicted node coordinates,
after a series of transformations.

2 Differences between original and predicted pairwise stress values, for each node pair,
are computed.
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Table 1. Averaged performance of conventional techniques and model with SuS LF
on multiple instances of different graph classes. Stress s is in 1e+7, bolded entries
indicate interesting differences.

FD SM

Graph class LF QM QM QM QM QM QM QM QM QM

Train Test SuS nc s ar nc s ar nc s ar

Grids Grids 1.54 6.30 4.62 0.36 15.90 6.18 0.50 0.61 4.88 0.93

Gridsd Gridsd 3.27 303 9.76 0.23 417 12.40 0.19 426 9.55 0.73

Gridsrd Gridsrd 2.60 3.31 4.24 0.21 27.5 6.10 0.26 3.04 4.82 0.57

Grids Gridsrd 12.80 194 4.65 0.0028 27.5 6.10 0.26 3.04 4.82 0.57

Gridsd Gridsrd 55.40 489 3.02 0.0046 27.5 6.10 0.26 3.04 4.82 0.57

Delaunay Delaunay 21.80 200 3.25 0.0086 59.40 3.57 0.026 90 3.10 0.038

Caterp2 Caterp2 39.80 0 4.64 0.051 0 4.24 0.090 0 5.39 0.15

Caterp3 Caterp3 34.50 0.14 3.48 0.089 0.39 3.75 0.061 0 3.98 0.067

RR Trees RR Trees 50.00 51.30 6.41 0.0054 3.87 5.13 0.052 30.90 5.63 0.13

RSM Trees RSM Trees 27.30 55.90 5.63 0.0036 3.68 5.28 0.048 32.80 5.66 0.13

vary, depending on the graph class. Moreover, the testing datasets are comprised
of multiple instances of similar sized graphs, as to make valid averaged-out com-
parisons. We evaluate the performance by visually inspecting the layouts and
computing three quality metrics: the number of crossings (nc), the stress (s)
and the angular resolution [19] (ar). The quality metrics values are compared
with two conventional layout techniques: ForceAtlas2 [20, 21] (FD) and Stress
Majorization [22] (SM).

Results. Table 1 showcases the results of the experiments with the SuS LF. On
average, the models trained with the SuS LF outperform the models trained
with the PS LF. Additionally, the model trained on Grids with the SuS LF
outperforms the FD algorithm, in terms of number of crossings (nc) and stress
(s). The model trained on Caterp3 shows a better angular resolution (ar) and
stress than the FD and SM layouts. On average, the models trained with SuS
show better stress scores than the conventional FD and SM techniques. How-
ever, w.r.t. the ar and the nc the results tend to worsen. Moreover, when some
randomness is introduced to the training data (RRTrees & RSMTrees), the
models have difficulties generalizing, produce sub-optimal layouts and have unfa-
vorable QM results. When it comes to generalizing beyond planarity, a model
trained on Grids and tested on Gridsrd shows poor results.

To conclude, our results indicate that planar graph classes can be learned
by a Neural Network, and the produced planar drawings can score better than
those produced by conventional techniques. We note that the loss function and
the presence of randomness in graph data can have major effects on the model’s
learning capabilities. In the future, the combination of multiple loss functions
should be explored as well as different Neural Network architectures.
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1 Introduction

Edge bundling facilitates the understanding of the main flow of edges by trans-
forming them into a bundled state based on certain rules. Various approaches
exist, including methods based on the hierarchical structure of the graph [3],
geometry [1], and force-directed models [4, 12] (see [17]). Some studies that have
been published in recent years consider edge bundling itself mathematically, such
as the proposal of faithfulness, which is a graph information fidelity metric [8],
and metrics for quantitatively evaluating edge bundling from the viewpoint of
structural aesthetics [9, 10]. There is also a tendency to regard edge bundling
as an optimization problem. For example, it can be solved as an optimization
problem for the combination of bundled edges [2] and sometimes as a control
point placement problem for edges [11].

In this paper, we propose a new edge bundling method based on the idea
of viewing edge bundling as the minimization of edge drawing cost. Here, we
consider that the edge drawing cost consists of the density of the surrounding
edges. A higher density improves the quality of edge bundling; thus, we consider
that drawing regions with low edge density incurs a drawing cost. In other words,
the edge path that passes through the highest-density region possible, i.e., the
edge path with the lowest edge drawing cost, is considered to naturally form a
bundle. This edge drawing cost is created from a density map that consists of a
group of regions divided by grid of 2D/3D graph layouts.

One of the methods similar to this proposed approach is Winding Roads [6].
This method is based on grid, such as the density map used in this proposal,
and summarizes the routes on that grid. In that case, the paths on the grids are
considered based on the shortest path information between each node. However,
unlike this study, the problem does not consider edge density. Another promi-
nent model that considers edge density is kernel density estimation-based edge
bundling (KDEEB) [5]. KDEEB deforms edges by repeatedly generating a den-
sity map by using kernel density estimation and moving the edge component
points according to the gradient of the density map. In contrast, the proposed
method creates a real-valued density map with the number of edges calculated for
each fixed region of the graph and performs edge bundling by using pathfinding
methods.
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Fig. 1. Comparison result (FDEB, KDEEB, and proposed method for US Airline

2 Implementation and Case Study

The pipeline simply consists of the following steps;

1. Input the graph structure and graph layout
2. Create an edge drawing cost map
3. Run pathfinding to minimize the cumulative edge drawing cost for each edge
4. Post-processing

The density map is created from the edge density on the cells of a grid from
the graph layout information divided based on grid size s. Then, to express the
edge drawing cost, the density within each cell is subtracted from the maximum
density on all cells. Considering that the cost increases with each pass through
each cell, a path is found such that the search cost from the node source to
the target is low so that the final cumulative cost is low. Although multiple
edge bundling results may be obtained due to the possibility of finding multiple
final paths, the edge bundling candidates are prioritized based on quantitative
indicators and other factors. Finally, post-processing such as smoothing and
visual encoding is performed.

One feature of this pipeline is that it is relatively easy to implement because
the pathfinding can be solved as an edge bundling, and the computational cost
can be easily estimated based on the number of cells of a grid. In addition,
because the pathfinding method and edge drawing cost can be defined inde-
pendently, it can be applied to directed and undirected graphs by changing the
edge drawing cost map, for example, and a faster pathfinding algorithm can be
selected. In addition, unlike image-based techniques such as KDEEB, where the
result depends on the layout size, the bundling granularity can be adjusted by
adjusting the grid size according to the size of the layout.

We compared and verified the proposed method with force-directed edge
bundling (FDEB) [4], KDEEB, which are representative edge bundling methods,
and the proposed method with Dijkstra’s and A* algorithm (Fig. 1). From the
results, we could find the differences among methods. The graphs generated by
the proposed method tend to be more linear than other methods, although it
depends on the post-processing. Also, if only one candidate is produced, then,
outputting at high speed is possible even without a GPU. Comparisons with
different grid sizes show that the bundled thickness varies with the size of the
grid, and that too large a grid size results in a large collapse. Moreover, there
is room for improvement as the proposed method may not work well for graphs
with homogeneous densities.
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1 Introduction

Intersection representations of graphs map vertices to copies of geometric objects
in the plane. Two such objects intersect if and only if their vertices are connected
with an edge. We introduce and study a representation model, which uses an
underlying intersection representation (in our case a unit-disk intersection rep-
resentation D) and an additional set of objects, which prevent edges, which in
our case is a set W of points (called witnesses). The graph G corresponding to
a witness unit disk representation (wUDR) R = (D,W ) is the graph implied by
D without all edges between two vertices u, v, if the intersection of the disks
corresponding to u and v contains a witness w ∈ W (see example figure below).

Definition 1. The unit disk witness number w(G) of a graph G is the minimum
number of witnesses k, s.t., there exists a wUDR R = (D,W ), s.t., |W | = k. For
a graph class G we define w(G) as the maximum unit disk witness number over
all graphs G ∈ G.

Intersection representations using rectangles [8], L-shapes [9] and curves [7]
have, among others, all been the focus of previous research. Intersection repre-
sentations with disks have received special attention. It is well-known that the
graphs admitting an intersection representation with pairwise interior-disjoint
disks (also called a contact representation) are exactly the planar graphs [11],

This project was started during a research visit at the university of Perugia.
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while recognition of graphs that can be represented with overlapping disks is
∃R-hard [13]. Recognizing graphs that can be represented by unit-disk inter-
section representations is NP-hard for planar graphs [6] and even outerplanar
graphs [5]. wUDR are also related to relative neighborhood graphs [10] and prox-
imity drawings [14], where other vertices can be considered to “interfere” with
edges. Witness proximity drawings that adopt proximity regions different from
unit disks have been studied in [1–4, 12].

2 Contributions

Computing the Graph. Given a wUDR with n disks, w witnesses, we can use
a left to right sweepline algorithm, which uses the left- and rightmost points
of every disk, as well as the intersections between disks (of which there can be
Θ(n2) many) as events and keeps track of all disks containing regions, which are
intersected by the sweepline.

Theorem 1. A graph G can be computed from its wUDR in time O(n2 log n).

Stars, Unit Interval and Complete k-partite Graphs. We present upper/lower
bounds on the unit disk witness numbers of the class of stars, unit interval
bigraphs1 and complete k-partite graphs.

Theorem 2. For a star S, w(S) = 0 if n < 7, and w(G) = 1 otherwise.

Proof (Sketch). If n < 7, S is a unit disk graph, otherwise we place the disks
of vertices of degree 1 s.t. there is a region contained in all disks, but not in the
disk of the center vertex. In this region we can place a single witness.

Theorem 3. For a unit interval bigraph B, w(B) ≤ 2.

Proof. Given B (together with its unit interval bigraph representation I), we
can scale I to a width of 2, offset all intervals of one color vertically s.t. intervals
which only shared one endpoint have a distance of 2 between their centers, place
all disks of vertices at the centers of their intervals and remove all overlap of
disks of vertices of one color with one witness each.

Theorem 4. There are complete k-partite graphs, which require k witnesses and
k witnesses are always sufficient for any complete k-partite graphs.

Proof (Sketch). Any graph whose partitions have more than 6 vertices require
one witness per partition. It can be shown via construction that this is always
sufficient.

1 Graphs, that admit a representation where every vertex is represented by a red or
blue unit interval on the real line and two vertices are connected if their intervals
intersect and are of different color.
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Trees. Finally we provide a construction method for a wUDR for a given tree T
with height h, which uses h − 1 witnesses.

Theorem 5. For a tree T , w(T ) ≤ h− 1 and a wUDR with h− 1 witnesses can
be constructed in polynomial time.

Proof (Sketch). Let T be a tree of height h, in which every vertex (except the
ones on level h + 1) has n children. The proof uses the fact that any tree T
on n vertices is an induced sub-graph of T and that the class of graphs that
have a wUDR with c witnesses for any constant c is hereditary. We provide a
construction method for T , placing all disks of the same layer almost on top
of each other all containing a single witness. These layers are then stacked to
create the correct inter-layer connections. Finally we only actually place the disks
corresponding to vertices of T .
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PAOHVis [2, 5] displays hypergraphs [1, 3] in a matrix where rows repre-
sent nodes (dots) and columns represent hyperedges (vertical lines). We pro-
pose extensions to PAOHVis for leveraging repeated hyperedges in non-simple
hypergraphs, and displaying multiple node attributes. This is accomplished
through two aggregation functions: count-based, which targets low-level detail,
and binary, for high-level overview. In doing so, we introduce a domain-agnostic
framework for consolidating hypergraphs by one or more categorical node
attributes.

Preliminary results indicate that these enhancements provide a clearer pic-
ture of overall patterns and distributions of hypergraph data. Consider Fig. 1,
which illustrates the different aggregation levels applied to a fictional co-author-
ship dataset. There are 12 nodes (people) and 17 hyperedges (papers), 13 of
which are distinct. Nodes are coloured and subsequently consolidated by the
gender of the author. The legend summarises node/category frequencies for the
respective hypergraph. Additional categorical node attributes (e.g. affiliation,
position and field) can be displayed and aggregated at the same time, provided
these are mapped to different visual channels (e.g. shape, outline and texture).
Unless they are strongly correlated, aggregating a larger number of attributes
greatly reduces the number of identical hyperedges, resulting in a less compact
visualisation. Thus, it may be more fruitful to aggregate hypergraphs by each
attribute in turn, rather than attempting to visualise all attributes at once.

Count-Based Aggregation. This kind of aggregation shows, for each hyper-
edge, the exact number of nodes per category. Hyperedges with the correspond-
ing number of nodes in each category (e.g. all papers authored by exactly two
men and one woman) are combined. The original size of each hyperedge is pre-
served and nodes are stacked as tightly as possible, from the top row downwards,
in descending order of overall category frequency. This layout facilitates com-
parisons of hyperedge size, which can be difficult to assess in non-aggregated
hypergraphs. The original nodes (people) can no longer be reliably identified,
since the same node in a repeated hyperedge may represent a different person
across separate instances.

Count-based aggregation is useful for tasks relating to category frequency and
overall set size. The middle panel of Fig. 1. shows that all papers have between
two and four authors, which was not so apparent in the non-aggregated chart
(left panel), due to the different line lengths. It is also easier to see that papers
tend to have more male than female authors, but that the paper with the most
authors of the same gender is written by four women (and no men).
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Fig. 1. Different levels of aggregation for a single node attribute (gender).

Binary Aggregation. Hypergraphs can be further aggregated by collapsing
each category with multiple occurrences in a hyperedge into a single node. The
bar chart then shows the number of hyperedges that contain at least one node
from precisely the corresponding categories. While this has been partially imple-
mented in PAOHVis, it is not currently possible to consolidate identical hyper-
edges, which is essential for obtaining a quick overview of hypergraphs that are
very dense, especially since (certain) hyperedges are likely to elicit higher counts,
given the smaller number of possible category combinations. If an attribute has
more than two categories, the data can be aggregated even further, so that all
hyperedges are flattened into pairwise combinations.

Binary aggregation helps analysts to see how many distinct categories tend
to occur in a hyperedge (e.g. do all categories occur together or only some?)
and whether particular combinations of categories are dominant. The right-most
panel of Fig. 1 shows that, while papers tend to have more male authors, there
are more papers authored solely by women (four) than by men (two).

In conclusion, building on PAOHVis, we advocate the consolidation of any
repeated hyperedges and the encoding of their frequency in an aligned bar chart
above each hyperedge. The result is visually similar to UpSet [4] but function-
ally different, with bar height denoting hyperedge multiplicity rather than set
intersection size. This economises horizontal space, while also drawing attention
to the distribution of recurrent hyperedges, especially when sorted by frequency.

Aggregation by node attributes is useful in situations where it is less impor-
tant to know precisely which entities occur in relationships and more important
to understand what kinds of entities they tend to be (e.g. to investigate a possible
gender bias or to see how many papers have female-only or male-only authors).
As the level of aggregation increases, more information about the original nodes
and hyperedges is lost, in order to reveal more general patterns. It may be ben-
eficial to view all levels of aggregation in conjunction, rather than in isolation.
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