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Abstract. A bridge crane, or 3D crane, is a classic research subject in the control
field and is considered a typical example in the group of underactuated systems.
This control problem is relatively fascinating and poses significant challenges
when the number of control signals is larger than that of state variables to be
controlled. Specifically, the task of the control algorithm is not only to ensure the
correct tracking with the desired trajectory but also to reduce and quickly extin-
guish unwanted oscillations. In this study, we develop a controller for the system
with a vertical-oscillation quenching capability, a problem that was rarely men-
tioned in previous studies. Based on the positive definite and the skewed symmetric
characteristics of the matrices of the mathematical model, a controller is designed
to guarantee the stability of the system according to Lyapunov criteria. Paralleling
the convergence of the tracking errors, the horizontal and vertical oscillations of
the cargo are suppressed. Simulation results are given at the end of the paper to
investigate the effectiveness and feasibility of the entire study.

Keywords: 3D crane · Overhead crane · Underactuated system · Energy-based
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1 Introduction

3D crane is considered an underactuated system [1–4], which has attracted the attention
of numerous researchers over the past two decades [5, 6]. Most of the previous studies
focused on precisely controlling the trajectory and suppressing the oscillations of the
cargo being swing angles [7, 8]; whilst, the vertical vibration originating from the elas-
ticity of cable and steel structure is barely noticeable. The vertical oscillations, although
much smaller than the horizontal oscillations, have a significant negative impact on the
energy consumption and the life of the structure.

In some previous studies [9, 10], we proposed some control solutions with a new
model of a 6-degree-of-freedom crane and gave relatively positive results. In this study,
based on the newly built 6-degrees-of-freedom model, we will develop a simpler con-
troller, energy-based coupling control (EBC), to reduce computational resources and re-
experience the special characteristics of the dynamic model built based on the theory of
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Lagrangian dynamics. Comparisonswith classical PID controllers are alsomade through
simulation results. Eventually, the effectiveness of the whole work will be evaluated.

2 Dynamic Model

The physical model of an under-actuated indoor bridge crane is illustrated in Fig. 1.
Here, the six DOFs corresponds to six generalized coordinates, specifically the trolley
position along the girder x(t), the angle of the hoist cable ϕd (t), the displacement of the
bridge along the rail y(t), the swing motions of the cargo in the Oxz and Oyz planes, and
the vertical oscillation. Here, the angle of the angle ϕd (t)will determine the height of the
cargo.Moreover, the first three generalized coordinates, x(t), y(t), ϕd (t), are considered
as actuated states, and the last three, θx(t), θy(t), δ(t), are un-actuated.

a. Coordinate system in three-dimensional space

b. Sketch of physical model in Oxz plane

Fig. 1. Physical model of a bridge cran.
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The system consists of three masses: the cargo, the trolley with hoist, and the bridge,
which are denoted asmc,mt , andmb, respectively. And we set the non-negative function
E as the entire energy of the system. Depending on the particular working conditions and
type of handled cargo, the carrying equipment is adjusted and its mass can be significant.
In these cases, both the masses of the cargo and the lifting equipment are related to mc.
Here, �δ denotes the initial elongation, ke refers to the equivalent elastic coefficient.
Jd , and rd represent the moment of inertia and radius of the payload-hoisting drum.
bm, bb, bt and br represent the damping factors of the hoisting mechanism, bridge,
trolley, and insidewire rope, respectively. τ1, τ2, and τ3 are active control inputs generated
by the trolley, bridge moving, and payload-lifting mechanisms, respectively.

The physical features of the indoor bridge crane are characterized for full-state

variables χ s = [
x(t) y(t) ϕ(t) θx(t) θy(t) δ(t)

]T
.

The system dynamics are provided in matrix form as [9]:

M(χ s)χ̈ s+Bχ̇ s+C(χ s, χ̇ s)χ̇ s+G(χ s) = U, (1)

where χ̇ s = [
ẋ ẏ ϕ̇ θ̇x θ̇y δ̇

]T
and χ̈ s = [

ẍ ÿ ϕ̈ θ̈x θ̈y δ̈
]T

are the first-order and second-
order time derivatives of the system states, respectively; the input vector U is U =
[
Us 0 0 0

]T
with Us = [

τ1 τ2 τ3
]T
; the mass matrix M(χ s) = MT (χ s) is positive

definite (PD); C(χ s, χ̇ s) represents a Coriolis and centrifugal matrix; B is a damping
coefficient matrix; and G(χ s) denotes a gravity vector.

3 Controller Design

The system dynamic can be divided into actuated and un-actuated parts by decoupling
as

M11(χ s)χ̈S1+M12(χ s)χ̈S2+B11χ̇a+C11(χ s, χ̇ s)χ̇S1+C12(χ s, χ̇ s)χ̇S2+G1(χ s) = Us, (2)

M21(χ s)χ̈S1+M22(χ s)χ̈S2+B22χ̇S2+C21(χ s, χ̇ s)χ̇S1

+C22(χ s, χ̇ s)χ̇S2+G2(χ s) = 0, (3)

where χS1 = [
x y ϕ

]T
, χ̇S1 = [

ẋ ẏ ϕ̇
]T
, and χ̈S1 = [

ẍ ÿ ϕ̈
]T

are the vectors of the

actuated states; χS2 = [
θx θy δ

]T
, χ̇S2 = [

θ̇x θ̇y δ̇
]T
, and χ̈S2 = [

θ̈x θ̈y δ̈
]T

are the
vectors belonging to the un-actuated parts; and the block matrices M11(χ s), M12(χ s),
M21(χ s), M22(χ s), B11, B22, C11(χ s, χ̇ s), C12(χ s, χ̇ s), C21(χ s, χ̇ s), C22(χ s, χ̇ s),
G1(χ s), and G2(χ s) are also given in [9].

The mass matrix M(χS) is positive definite, then we have

χ̈S = M−1(χS)
(
U − Bχ̇S − C(χS, χ̇S)χS − G(χS)

)
. (4)

Also, M(χS) > 0, χT
SM(χS)χS > 0, M−1

11 (χS) = (
det

(
M11(χS)

))−1Mphk3(χS),
and Mphk3(χS) > 0 is the measurable auxiliary term
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Let

χ̈S1 = (
det(M(χS))

)−1
(Wa+PaUS), (5)

where

Wa = −Mphk3(χS)Bχ̇S − Mphk3(χS)C(χS, χ̇S)χS − Mphk3(χS)G(χS), (6)

and

Pa = Mphk3(χS). (7)

The mission of the controller is to force the system states χ s to their target points

χST = [
xT yT ϕT θxT θyT δT

]T
.

Define the tracking error being e(t) = χS1 − χS1T , where χS1T = [
xT yT ϕT

]T
.

The controller of the system is computed as follow

US =
{
−kDχ̇S1 − kpe − kpP−1

a Wa − 1

2
kp

[
d

dt

(
det(M(χS))P

−1
a

)]
χ̇S1

}(
ke+kp

)−1

(8)

where, kD, ke, kp are the positive controller coefficients.
Selecting the Lyapunov function as

V2(t) = 1

2
kpeTe + keE + 1

2
kpχ̇

T
S1

(
det(M(χS))P

−1
a

)
χ̇S1, (9)

where, E is the entire energy of the system
Its first-order derivative with respect to time is

V̇2(t) = d

dt

{
1

2
kpeTe + 1

2
kpχ̇

T
S1

(
det(M(χS))P

−1
a

)
χ̇S1

}
+ keĖ

= ke

{
χ̇T
SM(χS)χ̇S+

1

2
χ̇T
S Ṁ(χS)χ̇S+χ̇T

SG(χS)

}
+ kpχ̇

T
S1e

+ 1

2
kpχ̇

T
S1

[
d

dt

(
det(M)P−1

a

)]
χ̇S1 + kpχ̇

T
S1

(
det(M(χS))P

−1
a

)
χ̇S1. (10)

With assumption that the influence of the dampers is smaller in the system, then

V̇2(t) =ke

⎧
⎨

⎩

χ̇T
SM(χS )M−1(χS )

(
U − C(χS , χ̇S )χS − G(χS )

)

+1

2
χ̇T
S Ṁ(χS )χ̇S + χ̇T

SG(χS )

⎫
⎬

⎭
+ kpχ̇

T
S1e

+ 1

2
kpχ̇

T
S1

[
d

dt

(
det (M)P−1

a

)]
χ̇S1 + kpχ̇

T
S1

(
det (M(χS ))P−1

a

)
χ̇S1

= ke

{
χ̇T
S

(
−C(χS , χ̇S )χ̇ − G(χS ) + U + 1

2
Ṁ(χS )χ̇S

)
+ χ̇T

S G(χS )

}
+ kpχ̇

T
S1e

+ 1

2
kpχ̇

T
S

[
d

dt

(
det (M )P−1

a

)]
χ̇S1 + kpχ̇

T
S1

(
det (M(χS ))P−1

a

)
χ̇S1 (11)
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The matrix Mc(χS, χ̇S) = Ṁ(χS)−2C(χS, χ̇S) is the skew symmetric matrix.
Thus, we have

V̇2(t) = χ̇T
S keU + χ̇T

S1

⎧
⎪⎨

⎪⎩

+kp
(
det(M)χS ))P−1

a

)
χ̇S1 + 1

2
kp

[
d

dt

(
det(M(χS ))P−1

a

)]
χ̇S1

+kpe

⎫
⎪⎬

⎪⎭
(12)

V̇2(t) = χ̇T
S1

⎧
⎪⎪⎨

⎪⎪⎩

keUS + kp
(
det(M(χS))P

−1
a

) 1

det(M(χS))
(Wa+PaUS)

+1

2
kp

[
d

dt

(
det(M(χS))P

−1
a

)]
χ̇S1 + kpe

⎫
⎪⎪⎬

⎪⎪⎭
. (13)

Then, the function V̇2(t) is computed as V̇2(t) = −kDχ̇T
S1χ̇S1 based on control

law (8). Furthermore, V̇2(t) = −kD
∥∥χ̇S1

∥∥2
2 ≤ 0, (kD > 0), V2(t) < V2(0), and the

function V2(t) is stable in the sense of Lyapunov and convert to zero since t → ∞, or
lim
t→∞V2(t) = lim

t→∞
[
keE + 1

2kpe
Te + 1

2kpχ̇
T
S1

(
det(M(χS))P

−1
a

)
χ̇S1

] = 0. It is inferred

that lim
t→∞ e(t) = 0, lim

t→∞E(t) = 0, lim
t→∞ cosβm(t) = 1. Eventually, χS1 is compelled to

χS1T = [
ϕlT ϕrT βrT γrT

]T
, and χS2 is converged to zero.

4 Simulation Implementation

The system parameters are obtained from a real crane system provided as:mc = 5,000 kg,
mb = 2,316.5 kg, mt = 371.9 kg, rd = 0.31 m, Jd = 180 kg m2, bt = 310 Nm/s, bb =
350 Nm/s, bm = 170 Nm/s, br = 260 Nm/s, g = 9.81 m/s2, ke = 300,000 N/m, �δ =
0.01 m.

In order to clearly display the efficiency of the EBCcontroller, simulations are carried
out for the EBC controller (shown by the solid purple line) and compared with the PID
controller (shown by thes green dashed line). The simulation results are provided in
Figs. 2–3.

Different from almost previous studies, the simulations were carried out with the
parameters taken according to a real working crane with high lifting capacity and load.
To ensure that the motors operate without overload as well as reduce the impact, the
speed of the cargo movement in all directions should not exceed 0.6 m/s.

In Fig. 1, it can be seen that it takes about 18–25 s to drive the cargo to reach its
desired position according to the spatial coordinates when using the EBC controller. In
all three directions, these times are shorter than the PID control by more or less 5 s.
Furthermore, the cargo movement speeds in the EBC case are maintained at a stable
level (solid purple line), which can be compared with the PID controller (green dashed),
as shown in Fig. 2b, d, f.

The superiority of the EBCcontroller ismore evidentwhen observing the oscillations
in Fig. 3. Obviously, the amplitude of oscillation of the cargo when controlled by PID is
larger, and it remains for more than 30 s. Meanwhile, the oscillation only appears with
a small amplitude at the beginning and minimizes approximately 0 degrees during the
movement until the end.

With the use of the EBC controller, not only is the cargo towed to its correct trajectory
withminimized oscillations, but the travel speed is also limited to appropriate thresholds.
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Fig. 2. Control the position of cargo

Fig. 3. The system’s vibrations
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5 Conclusion

This study proposed a control issue for a new model of the 3D crane with 6 degrees of
freedom, including the cargo’s vertical vibration. Based on the computational model’s
decoupling and the mathematical model’s special properties built on the basis of the
Lagrangian theory dynamics, a controller based on the energy functions and the Lya-
punov stability criterion was developed. The efficiency of the algorithmwas investigated
through simulations and comparisons with traditional PID controllers. The study results
will be the premise to perform experiments on practical systems in the future.
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