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Abstract. The paper studies a robust adaptive fast terminal sliding mode con-
troller (FTSMC) based on a radial basis function neural network (RBF NN) for
a dual-arm robot manipulator system that coordinates the motion of the general
object. First, kinematics, a general dynamic model of the system consisting of
manipulators and the object, is inferred about the position and direction of the
object as the states of the derived model. Second, an FTSMCmethod is designed,
followed by the construction of two RBF systems: one approximates uncertain-
ties and external disturbances, and the other estimates the force applied to the
object according to the object’s uncertainty model. Next, the Lyapunov theory is
employed to demonstrate the stability of the closed-loop system and derive the
adaptation laws for RBF NN. Finally, simulation results of the dual-arm robot
system with three degrees of freedom (3-DOF) manipulators are presented to
illustrate the effectiveness of the proposed method.

Keywords: Dual-arm robotic · Fast terminal sliding mode controller (FTSMC) ·
Radial basis function (RBF) neural network

1 Introduction

Nowadays, dual-arm robot manipulator robots are increasingly being applied in many
different fields. Challenges in cooperative control include synchronizing position and
controlling the force applied to an object. If too much force is applied to the object may
deform its shape, or if the robot does not follow the predetermined path well, it can
endanger the operator due to sudden movements. Therefore, it is necessary to design
an efficient controller for this system to control position, orientation, and force with an
uncertain dynamic model.

The problem of control under the kinematic uncertainty of the system has been
solved by proposing the application of advanced control theories such as the sliding
mode control in [1, 2] designed a controller for the robot to improve trajectory tracking
quality. An adaptive controller for a dual-robot to hold an object with an unknown center
of mass andmoment of inertia has been proposed in [3]. A hybrid adaptive controller has
been proposed in [4] to improve the efficiency of motion tracking and force adjustment
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when a cooperative dual-arm robot grasps an unknown object. In [5], a non-chattering
robust sliding controller enhanced by a fuzzy logic unit to track the desired trajectory
with high accuracy and safely transport the object. In addition, terminal sliding mode
control (TSMC) is proposed by [6, 7] to improve the design of the sliding surface and
lead to the tracking errors converging to zero in a finite time. In [8, 9] the authors present
fast terminal sliding mode control (FTSMC) for nonlinear systems and demonstrate the
convergent feature of the controller superior to the conventional sliding mode control.

An adaptive hybrid position/force controller using fuzzy backstepping has been pro-
posed in [10], the fuzzy logic approximation properties are used to estimate the unknown
dynamics of the system. The controller ensures that and the tracking errors of both posi-
tion and force converge to the desired small value by selecting the appropriate design
parameters. In [11] proposed an adaptive neuron force/position controller, the controller
achieves the desired trajectories of the object and internal force tracking. A feedfor-
ward neural network is used to learn the unknown dynamics of the system with updated
law based on Lyapunov stability analysis. Some research for the combined dual-arm
robot system has solved two problems simultaneously: uncertain dynamic and uncer-
tain environment. The neuron impedance controller has been proposed in [12] with two
control loops, a position control loop and a force control loop to guarantee the desired
trajectory and cooperation force. Several other powerful approximation techniques are
based on differential equations or polynomials to estimate the uncertainty dynamic and
disturbances of amulti-manipulators systemmoving an object [13, 14]. The robust adap-
tive controller proposed in [15] to deal with the problem of uncertain base coordinates,
uncertainty model, and external disturbance, using the RBF neural network to estimate
all kinds of these uncertainties.

Inspired by the analysis of previous studies mentioned above, in this paper, we focus
on developing a generalized model for the dual-arm robot manipulator. Besides, an
adaptive fast terminal sliding mode control is based on two neural networks to deal with
nonlinear elements, uncertainties, and external disturbances. Finally, simulation results
and conclusions are made to verify and show the achievements of this paper.

2 Dynamics of the Dual-Arm Robot–Object System

A dual-robot system under this study is illustrated in Fig. 1. The system consists of two
manipulators arranged sort by duality, each arm is a robot with n degrees of freedom.

The coordinate frames are defined as follows:

{OXY}: The reference coordinate frame, located at the origin of the first robot arm;
{ovxvyv}: An object frame, located at the mass center of the object.

Ei (i = 1 − 2) is the contact of the end-effector of the arm-robot ith with surface
of the object; z = [rTovO, φT

ovO
]T denotes the position rovO = [x, y, z]T vector and

orientation φovO = [ψ, ϕ, θ ]T vector of the object frame concerning the reference
coordinate frame; zEiov = [rTEiov , φT

Eiov
]T denotes the position and orientation vector of

the object frame concerning Ei frame.
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Fig. 1. Model of a dual-arm robot holding an object

The position and orientation of the object is determined through the homogenous
transformation matrices of the corresponding coordinate frames and represented as
follows:

Tov
O = TEi

O .Tov
Ei

. (1)

From Eq. (1), the kinematic relationship between the object and the joint angles
of the manipulators are built. From there, the relationship between the object’s motion
velocity and the joint’s velocity is obtained [11]

ż = Ai q̇i; z̈ = Ai q̈ + Ȧi q̇

That means

q̇ = A.ż; q̈ = A.z̈ + Bż, (2)

where A = [(A−1
1 )T , (A−1

2 )T ]T ; B = [(−A−1
1 Ȧ1A

−1
1 )T , (−A−1

2 Ȧ2A
−1
2 )T ]T .

The dynamic of the dual-arm can be formulated as in [10]

H (q) q̈ + C(q, q̇) q̇ + G(q) + τ d + JTB (q)F = τ , (3)

where q = [qT1 , qT2 ]T is the joint angle (2n × 1) vector; τ = [τT
1 , τT

2 ]T
denotes the torque (2n × 1) vector applied to the joints; τ d = [τT

d1, τT
d2]T

denotes bounded unknown disturbances; F = [FT
1 , FT

2 ]T is the vector of
forces/moments on the object exerted by the manipulators at the end-effector; JB(q) =
blockdiag[J1(q1), J2(q2)] represents the Jacobian analytical matrix of the manipulators;
H (q) = blockdiag[H1(q1), H2(q2)], Hi(qi) is the inertia matrix of the ith manipula-
tor C(q, q̇) = blockdiag[C1(q1, q̇1), C2(q2, q̇2)] denotes the matrix of Coriolis and
centrifugal; G(q) = [GT

1 (q1), GT
2 (q2)]T denotes the gravity vector.

The dynamic of the object also can be written in the following form [11]:

Hz z̈ + Cz(z, ż) ż + gz = Fz, (4)
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where Hz, Cz, gz have the same meaning for the object as Eq. (3); Fz denotes the
force/moment vector applied at the center of the object by the two manipulators.

Sumof force/moment applied at the object is expressed through the force andmoment
at the contact point generated by the manipulators at the end-effector: Fz = E F , where
E is the grasp matrix at the contact point, so:

F = E+ Fz, (5)

where E+ = ET (E ET )−1 is the pseudo-inverse of grasp-matrix E.

3 Fast Terminal Sliding Mode Controller Design

First of all, we define a reference velocity of the object by

żr = żd + γep + βe
m
n
p , (6)

where γ = diag(γ1, γ2, γ3, γ4, γ5, γ6),β = diag(β1, β2, β3, β4, β5, β6),m, n (m > n)
are positive odd numbers, and 1 < m

n < 2. The desired force is generated by an estimated
reference model of the object as follows

Fd
z = Ĥz z̈r + Ĉz(z, żr)żr + ĝz (7)

The reference model of the object is estimated by using RBFNN

Hz z̈r + Cz(z, żr)żr + gz = W∗T
0 φ0(x) + ε0, (8)

where ε0 is the approximate error, so

Ĥz z̈r + Ĉz(z, żr)żr + ĝz = Ŵ
T
0 φ0(x)

The tracking errors are defined ep = [
ep1 ep2 ep3 ep4 ep5 ep6

]T = zd − z.
The error between actual and reference velocities is given by.

s0 = ż − żr = −ėp − γep − βe
m
n
p (9)

Consider that s0 = 0, we have:

ėp + γep + βe
m
n
p = 0 or ėpk + γkepk + βke

m
n
pk = 0 (10)

in which k = 1 ÷ 6. Let uk = e
1
n
pk then epk = unk substitute this into (10) leads to

nun−1
k u̇k = −γku

n
k − βku

m
k (11)

Divide both sides by umk into (11) leads to

nun−m−1
k

duk
dtk

= −γku
n
m
k − βk (12)
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Integral of both sides into (12) leads to
∫ tk

0
dtk =

∫ 0

epk (0)
n
un−m−1
k duk

−γku
n
m
k − βk

(13)

Thus,

tk = n

(n − m)γk

(
ln

(
−γke

1−m
n

pk (0) + βk

)
− ln βk

)
(14)

The desired force applied to the object is updated based on the estimates of the
dynamic parameters of the object. The desired force at contact points should satisfy the
relation given in (5)

Fd = E+Fd
z (15)

3.1 Design Control Law

Define the reference velocity of the ith robot: q̇r .
The error between actual and reference velocities is given:

s = q̇ − q̇r = A s0 (16)

The dynamic of the dual-arm robot in Eq. (3), the matrices H (q), C(q), and vector
G(q) contain all the parameters of the manipulators such as length, mass, and moment
of inertia v.v. It is difficult to determine exact parameters due to errors in measurement,
and environment v.v. Therefore, it is assumed that the components in Eq. (3) are written:
H (q) = H0(q) + 	H (q), C(q, q̇) = C0(q, q̇) + 	C(q, q̇), G(q) = G0(q) + 	G(q),
whereH0(q), C0(q, q̇) andG0(q) are nominal values and	H (q), 	C(q, q̇) and	G(q)
are the component uncertainty of the dynamics model. So The dynamic of the dual-arm
robot in Eq. (3) can be rewritten:

H (q) ṡ = τ − JTB (q)F − f0(q, q̇r, q̈r) − C(q, q̇) s − (	f (q, q̇, q̈) + τ d ), (17)

where f0(q, q̇r, q̈r) = H0q̈r + C0q̇r + G0, 	f (q, q̇, q̈) = 	H q̈ + 	C q̇ + 	G
The dynamic uncertainty and disturbances components are estimated using RBFNN.

D = 	f (q, q̇, q̈) + τ d = W∗Tφ(x) + ε, (18)

where ε is the error approximation, so D̂ is the estimation of the function D,

D̂ = Ŵ
T
φ(x) (19)

So Eq. (17) as:

H (q) ṡ + C(q, q̇) s + W ∗Tφ(x) + ε = τ − JTB (q)F − f0(q, q̇r, q̈r) (20)

Now, position control and force control without the measurement of force at contact
points is proposed:

τ = f0(q, q̇r, q̈r) + Ŵφ(x) + JTB F
d − K1(A s0) − K2sgn(s) − K3sgn(s0) (21)



A Neural Network-Based Fast Terminal Sliding 47

3.2 Update Law for NN Weighs

Let an estimated error the dynamics of the object following is then obtained:

(
Hz z̈ + Cz ż + gz

) −
(
Ĥz z̈r + Ĉz żr + ĝz

)
= Fz − Fd

z (22)

substitute Eqs. (8), (9) into (22) as:

Hz ṡ0 + Czs0 + W̃
T
0 φ0(x) + ε0 = Fz − Fd

z (23)

The system is considered stable according to the Lyapunov stability principle, the
candidate for the Lyapunov function can be selected as

V = 1

2
sTH s + 1

2
tr(W̃ T Γ −1W̃ ) + 1

2
sT0Hzs0 + 1

2
tr(W̃ T

0 Γ −1
0 W̃0) (24)

The following lemmas as [11].

Lemma 1 ATJTB = E and ATJTB E
+ = I , where I is the identity matrix.

The time derivative (24) of the Lyapunov function becomes:

V̇ = sTH ṡ + 1

2
sT Ḣ s + tr(W̃ T Γ −1 ˙̃W ) + sT0Hz ṡ0 + 1

2
sT0 Ḣzs0 + tr(W̃ T

0 Γ −1
0

˙̃W0)

Using Eqs. (20) and (23) and thematric Ḣ−2C and Ḣz−2Cz are skew-symmetric, so
sT (Ḣ − 2C)s = 0 and sT0 (Ḣz − 2Cz)s0 = 0. Using Eqs. (15), (16) and due to properties
of matrices sT0 A

T = (A s0)T , and using Lemma 1, the derivative of the Lyapunov is
determined as follows:

V̇ ≤ −(A s0)TKsA s0 −
∥∥∥sT

∥∥∥(K2sgn(A s0) − ‖ε‖) − (A s0)T W̃ Tφ(x)

+ tr(W̃ T Γ −1 ˙̃W ) −
∥∥
∥sT0

∥∥
∥(K3sgn(s0) − ‖ε0‖) − sT0 A

TJTB E
+(Fz − Fd

z )

+ sT0 (Fz − Fd
z ) − sT0 W̃

T
0 φ0(x) + tr(W̃ T

0 Γ −1
0

˙̃W0) (25)

According to the Lyapunov stability principle, the condition for stability of closed
dynamics is V̇ ≤ 0 then

tr(W̃ T Γ −1 ˙̃W ) − (A s0)T W̃ Tφ(x) = 0

and

tr(W̃ T
0 Γ −1

0
˙̃W0) − sT0 W̃

T
0 φ0(x) = 0

So, the updated law for the weights of the neural network may have the form:

˙̂W = −Γ φ(x) (A s0)T

˙̂W0 = −Γ0φ0(x) sT0 (26)
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Now, the derivative of the Lyapunov function is as follows:

V̇ ≤ −(A s0)TKsA s0 −
∥∥∥sT

∥∥∥(K2sgn(A s0) − ‖ε‖) −
∥∥∥sT0

∥∥∥(K3sgn(s0) − ‖ε0‖) (27)

If K2 and K3 are selected, K2 > ‖ε‖; K3 > ‖ε0‖ then V̇ ≤ 0.
It is possible to prove that the dynamic system is stable under the control input (21)

combined with the updated law (26). According to the Lyapunov stability principle, the
system is stable.

4 Simulation Results

In this section, numerical simulation tests are carried out to illustrate the effectiveness
of the proposed method. The dual-arm robot is specified, with each arm being a 3-DOF
manipulator that works in 2D space to preserve the computational time. The desired
position and rotation angle of the object are set out with initial and terminal values as
follows:

x0 = 0.54 (m); y0 = 1.4(m); θ0 = 0 (rad)

xf = 1.2 (m); yf = 1.9 (m); θf = 0.349(rad)

To ensure smooth motion, the quintic polynomial curve is employed to construct
reference trajectories from the initial pose to the terminal pose. Choosing the execution
time Tf = 2.0592 (s), the desired path is given by:

xd = 0.54 + 0.756t3 − 0.5508t4 + 0.107t5

yd = 1.4 + 0.5728t3 − 0.4173t4 + 0.0811t5

θd = 0.3999t3 − 0.2913t4 + 0.0566t5

The parameters for proposed controller are chosen as.
Ks = diag([100, 100, 100, 100, 100, 100]); γ = diag([300, 600, 600]); β =

diag([100, 100, 150]) For the RBF system, the number of neurons in hidden layer is
1000, the center andwidth ofGaussian function are linspace(−2, 2, 1000) and 30 respec-
tively, the adaptive gains are Γ = 200; Γ0 = 200. Since it is difficult to obtain accurate
system parameters, we assume the uncertainty accounts for 30% of total dynamicmodel.
Furthermore, the external noises acting on each arm are presented in Fig. 2. To clearly
show the advantages of the proposed method, the comparisons in terms of tracking
performance between the FTSMC controller and FTSMC integrated with the RBF neu-
ral network are implemented. From a qualitative perspective, Figs. 3 and 4 show the
object’s trajectory on the x-axis and y-axis, respectively. The rotation angle of the object
is presented in Fig. 5. The blue line, green line, and red dash line indicate the tracking
error of the NN-FTSMC, original FTSMC, and the reference path respectively. Although
the FTSMC method expresses robustness against disturbances, its performance is still
adversely impacted, leading to large errors in tracking trajectories, especially on the x
and y axis. On the other hand, with the support of the RBF approximation, the effects of
disturbances are compensated and adapted in the control signal. Therefore, the system
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can ensure both robust and adaptive properties. The tracking errors of the NN-FTSMC
are much lesser than the original FTSMC. It can be seen more specific in quantitative
results using the root mean square error (RMSE) metrics on tracking errors in x, y-axis,
and rotation angle as in Table 1. As compared to the original FTSMC controller, the
tracking errors of NN-FTSMC are improved significantly, with 75.7% on the x-axis,
59.01% on the y-axis, and 68.62% in the rotation angle.

Fig. 2. External disturbances

Fig. 3. The trajectory of the object in x-axis

Fig. 4. The trajectory of the object in y-axis

The total forces and moments acting on the center of the object are also illustrated in
Fig. 6. It can be seen that the sum of the forces and moments applied to the object at the
balance position is zero, which means the object is held stable at the balance position.
The sign function is substituted by the saturation function to alleviate the chattering
phenomenon; hence, the control inputs are applicable in real systems.
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Fig. 5. The rotation angle of the object

Table 1. RMSE comparison

Tracking error NN-FTSMC FTSMC Improvement (%)

x 0.003 (m) 0.0122 (m) 75.7

y 0.0042 (m) 0.0102 (m) 59.01

θ 0.0177 (rad) 0.0564 (rad) 68.62

Fig. 6. Total forces and moments acting on the center of the object

5 Conclusion

This paper proposed a robust adaptive controller based on a neural network to control a
dual-arm robot manipulator manipulating a rigid object with uncertainties and external
disturbances. Since in practice, it is difficult to accurately determine the parameters of
the dynamic model of the system, so using two NN algorithms to estimate the model
uncertainty of the dual-arm robot, the external disturbance, and the applied force. The
stability of the closed-loop control system is proven stable according to the Lyapunov
stability theory. The online adaptive learning law is suggested to ensure a stable systemby
using theLyapunovprinciple. The simulation results onMatlab/Simulink have confirmed
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the stability, robust, fast response, the trajectory of the object convergence with the
error to zero, and the guaranteeing object holding stable at the balanced position of the
proposed controller.
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