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Abstract. Overfitting is considered to be one of the dominant phenom-
ena in machine learning. A recent study suggests that, just like standard
training, adversarial training(AT) also suffers from the phenomenon of
overfitting, which is named robust overfitting. It also points out that,
among all the remedies for overfitting, early stopping seems to be the
most effective way to alleviate it. In this paper, we explore the role of
data augmentation in reducing robust overfitting. Inspired by MaxUp,
we apply data augmentation to AT in a new way. The idea is to gen-
erate a set of augmented data and create adversarial examples(AEs)
based on them. Then the strongest AE is applied to perform adversar-
ial training. Combined with modern data augmentation techniques, we
can simultaneously address the robust overfitting problem and improve
the robust accuracy. Compared with previous research, our experiments
show promising results on CIFAR-10 and CIFAR-100 datasets with Pre-
actResnet18 model. Under the same condition, for l∞ attack we boost
the best robust accuracy by 1.57%–2.89% and the final robust accu-
racy by 7.51%–9.42%, for l2 attack we improve the best robust accu-
racy by 1.64%–1.74% and the final robust accuracy by 3.80%–5.99%,
respectively. Compared to other state-of-the-art models, our model also
shows better results under the same experimental conditions. All codes
for reproducing the experiments are available at https://github.com/
xcfxr/adversarial training.

Keywords: Robust overfitting · Data augmentation · Adversarial
training

1 Introduction

Despite deep neural models have made an unprecedented progress on a wide
range of computer vision tasks, they can be easily fooled by adversarial exam-
ples(AEs) [1] , which can be crafted by adding small and invisible perturbation
to original images. With such intentional changes called adversarial attack to
inputs, many models fail to provide a satisfied performance. To prevent these
attacks, a whole lot of defense methods are being proposed. Adversarial train-
ing(AT) [2], which creates AEs and then treats them as training sets, is consid-
ered as the most efficient approach against adversarial attack.
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Fig. 1. This is the robust test on accuracy between baseline [2] and our method under
the PGD10 attack. The baseline method suffers serious robust overfitting, but our
method doesn’t. Further more, our final model surpasses the best checkpoint of the
baseline, which can be achieved by early-stopping [3].

However, recently a study [3] finds something intriguing in AT. It observes
that just like standard training, AT also suffers from the phenomenon of overfit-
ting (see left picture of Fig. 1). Namely, after several epochs of training, especially
after the adjustment of learning rate, the robust test accuracy begins to decrease
while robust train accuracy still increases. Various technologies are proposed to
address the problem, among which early stopping seems to be the most effective
way to alleviate the problem, while other tricks, such as regularization effect of
data augmentation, including mixup [4] and cutout [5], seem to be ineffective.

In this paper, we use data augmentation to counter this robust overfitting
phenomenon and to achieve better robust accuracy. As shown in the right picture
of Fig. 1, throughout the whole training process, the robust test accuracy and
the robust train accuracy rises continuously.

Inspired by MaxUp [6], we apply data augmentation to adversarial training
process. In our approach, we first generate a set of augmented data and then
create adversarial examples(AEs) based on them. The AE which causes the
maximal loss is used to perform AT. While MaxUp [6] minimizes the average risk
of the worst augmented data, we use the attack method to create AEs and then
minimize the average risk of the worst AEs. Our experiments demonstrate that
combined with our approach, augmentations including mixup and cutmix can
neutralize robust overfitting partially and meanwhile achieve a better prediction
result than early stopping scheme. As shown in Fig. 2, compared with the early
stopping approach [3], our approach still produces a correct label for perturbed
image, while the baseline approach returns a false one.

Our experiments achieve promising results on the CIFAR-10 and CIFAR-
100 datasets with the PreactResnet18 model. Under the same condition, for
l∞ attack we boost the best robust accuracy by 1.57% − 2.89% and the
final robust accuracy by 7.51% − 9.42%, for l2 attack we improve the best
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Fig. 2. We show the gap between the early stopping method [3] and our method. Left
column: the original images. Middle column: the l∞ adversarial noises by applying
PGD10 for 10 iterations. We normalize the noise into [0, 255] . Right column: the gen-
erated adversarial images. We also show the predicted labels and probabilities of these
images.

robust accuracy by 1.64% − 1.74% and the final robust accuracy by 3.80% −
5.99%, respectively. All codes for reproducing the experiments are available at
https://github.com/xcfxr/adversarial training.

2 Related Work

Szegedy et al. [1] observe that deep neural models are vulnerable to impercepti-
ble perturbations. With such perturbations, vanilla images become adversarial
examples(AEs) which can successfully fool the models. The approaches of gen-
erating AE are known as an adversarial attack. Some early approaches adopt
the fast gradient sign method(FGSM) [7], which crafts AE with a single gradient
step. BIM [8] on the other hand, extends FGSM to iterative small gradient steps.
DeepFool [9] declare that changing one pixel is enough to fool the classifier [10].
Among all approaches, projected gradient decent(PGD) [2] is considered as one
of the strongest first-order attack. As a result, a lot of PGD-based work was
studied, e.g. PGD combined with momentum [11] and logit pairing [12].

To address the problem of adversarial attack, many defense-related work
have been proposed. Some defense approaches are not always effective, such as
distillation [13] and generator [14,15]. Normally, adversarial training(AT) [2] is
considered as the most successful defensive approach. AT has attracted a series of
research efforts [10,16,17], among which Trades [17] is a notable work, achieving
a trade-off between the efficiency and robust accuracy.

Recently, Rice et al. [3] demonstrate that there is a serious overfitting phe-
nomenon called robust overfitting during AT and there is no effective way as good
as early-stopping to tackle it. Another research [18] also points out that despite

https://github.com/xcfxr/adversarial_training.
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of their excellent performances on improving robustness in standard training,
data-driven augmentations do not improve robustness to lp norm bounded per-
turbations. Contrary to their finding, Rebuffi et al. [19] show that data aug-
mentation has the potential to alleviate robust overfitting. In their experiment,
although data augmentation alone cannot improve robustness, with smooth-
ing the weights by model weight averaging(WA) [20], augmentation techniques
can alleviate overfitting and achieve a significant performance improvement. In
another research, Chen et al. [21] show that schemes of learned smoothening
is supposed to be a possible way to resist robust overfitting. They smooth the
weights by WA and the logits via self-training. In the latest research, Rebuffi et
al. [19] incorporate a large number of tricks to achieve the state-of-the-art robust
accuracy.

3 Preliminaries

3.1 Notations

In this section, we use x ∈ R
W×H×C and y to denote a training image

and its label, respectively. (x′, y′) is obtained from (x, y) by data transforma-
tion.Let Dn and L denote the training dataset with N input-label pairs and
the loss function, respectively. The neural network parameterized by θ is rep-
resented as fθ. So the empirical risk minimization(ERM) can be denoted as
min

θ
E(x,y)∼Dn

[L (fθ (x) , y)]. And we use δ to represent the perturbation created

by adversarial attack and δ are limited to the range of S, where S is chosen to
be a lp-norm ball and represents a closed interval [−ε, ε](ε defines the maximum
perturbation allowed).The letter m is the hyper-parameter of our algorithm,
which represents the number of AEs generated for each sample. We denote the
accuracy rate on the adversary as “robust accuracy”, so the accuracy rate on
the training adversary and test adversary are called “robust train accuracy” and
“robust test accuracy”, respectively.

3.2 MaxUp

The key idea of MaxUp is that for each (x, y), Gong et al. [6] generates m samples
by applying data transformations, which can be Gaussian Sampling N (

x, σ2I
)

or data augmentations. In the next step, among the m data points, they choose
the one that maximizes the loss function as a new training sample. The method
can be summarized as:

MaxUp arg min
θ

E(x,y)∼Dn

[
max
i∈[m]

L (fθ (x′
i) , y′

i)
]

(1)

Gong et al. consider MaxUp as a smoothness Regularization. They define

Lmax
m (fθ (x) , y) = E

[
max
i∈[m]

L (fθ (xi))
]

Lavg
m (fθ (x) , y) = E

[
1
m

m∑

i=1

L (fθ (xi))

] (2)
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and prove the following equal equation:

Lmax
m (fθ (x) , y) = Lavg

m (fθ (x) , y) + Φ (x, θ) + O
(
σ2

)

c−
m‖∇xL (fθ (x) , y) ‖ ≤ Φ(x, θ) ≤ c+m‖∇xL (fθ (x) , y) ‖,

(3)

where c+m ≥ c−
m ≥ 0 and σ2 bounds the range of changes in x caused by trans-

formation or data augmentation.

3.3 Projected Gradient Descent

Projected Gradient Descent(PGD) [2] is a method for generating reliable first-
order adversaries. An lp PGD adversarial example would start at some random
initial perturbation δ(0), where δ(0) ∼ U (−ε, ε) . Then the perturbation will be
iteratively adjusted with the following gradient steps while projecting back onto
lp ball with radius ε. The whole process can be described as:

δ̃ = δ(t) + α · sign (∇xL (fθ (x + δ) , y))

δ(t+1) = max
(
min

(
δ̃, ε

)
,−ε

)
.

(4)

Madry et al. [2] treat these newly generated adversaries as datasets and train
the robust model to defense adversarial attack, which is known as Adversarial
training(AT).

4 Methods

4.1 Algorithm

Our approach extends MaxUp and AT as follows. For each training example
(x, y), we first use augmentation techniques to generate m augmented data X ∈
R

m×W×H×C1. Then we apply PGD-attack to those generated data points. By
adding restricted perturbation, we can create m adversarial examples(AEs).

Among the m adversarial examples, we choose the one that generates the
maximal loss in our new training dataset. In this way, we can gain new and
more complex adversarial examples as our samples. The final step is utilizing
the new generated AEs to perform adversarial training. Overall, we propose a
new way of applying data augmentations to adversarial training(AT), which can
be summed up as:

arg min
θ

E(x,y)∼Dn

[
max
i∈[m]

L (fθ (xi + δi) , yi)
]

. (5)

The complete process of our method is described in Algorithm 1. The first six
lines are about the input and output. Lines 10 to 15 specifically describe how
we create AEs and apply data augmentation into AT at the formula level.
1 In this paper, we adopt mixup [4] and cutmix [22] as our data augment approaches.
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Algorithm 1. Using Data Augmentation in Adversarial Training
1: Input:
2: training one training sample: (x, y)
3: augmentation techniques: aug (x, y)
4: attack method: attack (fθ (x) , y)
5: Output:
6: new training sample (X ′, Y ′)
7: i ← 0, loss ← 0
8: while i �= m do
9: X, Y = aug (x, y)

10: δ = attack (fθ (X) , Y )
11: if L (fθ (X + δ) , Y ) > loss then
12: X ′ ← X + δ
13: Y ′ ← Y
14: loss ← L (fθ (X + δ) , Y )
15: end if
16: i ← i + 1
17: end while
18: return X ′, Y ′

4.2 Analysis

When m is equal to 1, our algorithm degenerates into ordinary adversarial train-
ing. When m become larger, more powerful and more sophisticated adversarial
examples(AEs) can be crafted, so that both in quantity and intensity our AEs is
more dominant. A trade-off of the approach is that, although parallel computing
is possible, from the perspective of computing resources, resources consumed
and memory occupied per epoch will increase linearly as m increases. A larger
m, on the other hand, can result in a faster convergence.

Here is a plausible explanation of why our approach works. With the con-
clusion of MaxUp(3.2) and our methods, the empirical risk in the AT turns
into

E(x,y)∼Dn

[
1
m

m∑

i=1

Lavg
m (fθ (xi + δi) , yi)

cm‖∇xi
L (fθ (xi + δi) , yi) ‖ + O

(
σ2

)
]

,

(6)

where c+m ≥ cm ≥ c−
m ≥ 0. So when we perform AT with the worst AE that costs

the maximal loss, the loss function has become a combination of a loss term
which measures how well the model fits the AE, a regularization term related
to the norm of ∇x and a high-order infinitesimal term which can be ignored.
The expectation of the loss term equals the expectation with normal AT, so our
algorithm essentially adds a penalty which restricts the magnitude of ∇x in the
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process of AT. Because of the regularization term, the first step of generating
AEs(3.3) has also changed. It turns into

δ̃ = δ(t) + α · sign (∇xi
[L (fθ (xi + δi) , yi) + Φ(xi, θ)]) , (7)

where Φ(xi, θ) equals cm‖∇xi
L‖. It is clear that the sign of the gradient may

change due to the extra term Φ (x, θ), so our methods can affect the process of
making the AEs to some extent.

In summary, our approach is a crafty combination of adversarial training
and data augmentation, by making sophisticated AEs in parallel to train a more
robust model.

5 Experiments

5.1 Experimental Settings

For a complete experimental comparison, most of our experimental setups follow
the original study [3], including the weight decay, the learning schedule and
epochs of training, etc.

5.1.1 Datasets and Architecture
Our experiments are conducted across two datasets: CIFAR-10, CIFAR-100 [23].
The CIFAR-10 dataset consists of 60000 32 × 32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test
images. The CIFAR-100 dataset is just like the CIFAR-10, except it has 100
classes containing 600 images each. There are 500 training images and 100 testing
images per class. And most of the experiments are implemented on CIFAR-10.
In order to observe the whole process of the robust accuracy change and pick
the checkpoint of the best performance, after each training epoch, we output the
robust loss and robust accuracy on the test set. Because of hardware and time
costs during training, all of our experiments are based on ResNet-18 [24].

5.1.2 Attack Methods
During the adversarial training, we use PGD10 with random initialization and
the step size of attack is 2/255. We consider two mainstream types of adver-
sarial perturbation l∞ and l2, and the norm of them are 8/255 and 128/255
respectively. For evaluation, we keep the same settings as training.

5.1.3 Other Setup
We use a fairly common learning schedule: for 200 epochs, the learning rate
begins with the rate of 0.1 and decays by a factor of 10 at the 100th and 150th.
We also adopt the SGD optimizer in a common way, with a momentum of 0.9
and weight decay of 5 × 10−4. For all datasets, we set batch size as 128 for
PreActResNet-18. When applying augmentation methods like cutmix [22] and
mixup [4] in our method, we default the α to 1.
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5.2 Experimental Results

5.2.1 Across Datasets and Perturbations
Table 1 shows the improvement brought by our methods across different datasets
and perturbations. We report robust test accuracy(RA) at two periods to numer-
ically demonstrate the phenomenon. The final-RA indicates the average robust
accuracy of last five epochs, the best-RA indicates the best robust accuracy in
the whole process of training and the diff-RA equals the best-RA minus final-
RA, which can measure the degree of robust overfitting. We consider adversarial
training(AT) [2] as baseline. The overfitting shows up across all datasets and
perturbations in baseline cases, with the gap between final and best reaching as
large as 7.05%(CIFAR-10). Compared with l∞ perturbation, the overfitting of
l2 are much less serious, espeicially in the CIFAR-10, the diff-RA is only 2.72%.
We use the code provided by Rice et al. [3] to reproduce the baseline results2.

Table 1. Robust test accuracy under attack with PGD10 against l∞ with radius ε =
8/255 across CIFAR-10 and CIFAR-100. Both experiments are based on ResNet-18.
The Final equals the average robust test accuracy of last five epochs and the Best is
the checkpoint with best robustness during the whole training process. The best results
and the smallest difference between best and final are marked in bold.

Dataset Norm Radius Settings Robust test accuracy (%)

Final Best Diff.

CIFAR-10 l2 ε = 128
255

baseline 68.90 ± 0.68 71.62 2.72

Our Methods 72.70 ± 0.36 73.36 0.66

CIFAR-10 l∞ ε = 8
255

baseline 46.23 ± 0.65 53.28 7.05

Our Methods 55.65 ± 0.34 56.17 0.52

CIFAR-100 l2 ε = 128
255

baseline 37.50 ± 0.12 43.15 5.65

Our Methods 43.49 ± 0.38 44.79 1.30

CIFAR-100 l∞ ε = 8
255

baseline 21.43 ± 0.44 28.15 6.72

Our Methods 28.94 ± 0.43 29.72 0.78

With our method, both the final-RA and the best-RA are boosted a lot. For
l∞ attack, we observe the best RA is pushed higher by 1.57%–2.89%. For exam-
ple, the best robust accuracy on CIFAR-10 rises from 53.28% to 56.17%. Further,
the difference between best-RA and final-RA is reduced to only 0.52%(CIFAR-
10) and 0.78%(CIFAR-100) respectively, where the overfitting problem is almost
solved. Unlike baseline cases whose best robust accuracy is nearly the first decay
of learning rate, the checkpoint which has the best-RA in ours is close to the
end, which also means robust overfitting phenomenon is mitigated. And for l2
attack, the final-RA was boosted from 68.90% to 72.70% on CIFAR-10 and from
37.50% to 43.49% on CIFAR-100 respectively.
2 https://github.com/locuslab/robust overfitting.

https://github.com/locuslab/robust_overfitting
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Fig. 3. Results of robust test accuracy under attack of l2 and l∞ over epochs for
ResNet-18 trained on CIFAR-10, CIFAR-100. Blue/Yellow lines show the our best
model and baseline. (Color figure online)

Figure 3 further plots the robust test accuracy curves during training, from
which we can clearly observe the diminishing of robust overfitting. The train-
ing curve is robustly improved until the end without compromising training
accuracy.

5.2.2 With Different Augmentation Techniques
Table 2 demonstrates the effectiveness of our methods among various regulariza-
tion. The baseline is still adversarial training. In Rice et al.’s [3] experiments,
data augmentation mitigates overfitting to some degree at the expense of losing
accuracy, and early-stopping seems to be the best way to fight against robust
overfitting. As Rebuffi et al. [19] point out, cutmix have powerful ability to
increase the robustness of model. And in our experiment, mixup [4] mitigates
the overfitting but loses a lot of accuracy. Cutmix [22] achieves better result than
early stopping under the same conditions and helps to alleviate overfitting well.
Combined with our method, both cutmix and mixup acquire significant power.
When m is set to 4, cutmix push the final accuracy of normal AT from 46.23%
to 55.65% and best accuracy from 53.28% to 56.17%, which also surpass early
stopping and normal cutmix a lot. And with m setting to 3, mixup can also be
better than normal cutmix, let alone early stopping.
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Table 2. Robust test accuracy with different regularization methods on CIFAR-10
based on PreActResNet18 under the attack of PGD10. The perturbation type is l∞
and the radius of it is 8/255. The Final equals the average robust test accuracy of last
five epoch and the Best is the checkpoint during the whole training period. The best
results and the smallest difference between best and final are marked in bold.

Method Robust test accuracy (%)

Final Best Diff.

Baseline 46.23 ± 0.65 53.28 7.69

Early stopping 53.10 53.30 0.20

Mixup(α = 1) 49.49 ± 0.70 51.14 2.76

Cutmix(α = 1) 53.53 ± 1.33 55.00 1.47

Our methoda 55.65± 0.34 56.17 0.52

Our methodb 54.10 ± 0.53 55.73 1.63
a use cutmix and set m = 4
b use mixup and set m = 3

Figure 4 shows the whole training process of robust accuracy with different
regularizations. Though mixup doesn’t achieve as good results as other meth-
ods, all data augmentations seem to help to resist the phenomenon of robust
overfitting because the robust accuracy doesn’t decrease significantly except for
baseline. And we can also observe, without our methods, the fluctuation of robust
accuracy curve is large, which indicates that our schemes can make the training
process more smooth and stable. Near the end of training, the vibration of our
accuracy curves(green and red curves) is much smaller than others.

Fig. 4. Robust test accuracy against ε∞ = 8/255 on CIFAR-10 with different data
augmentation schemes(method1 and method2 correspond to Table 3). The model is
a ResNet-18 and the panel show the evolution of robust accuracy as training pro-
gresses(against PGD10). The jump in robust accuracy half and two-thirds through
training is due to a drop in learning rate.
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5.2.3 Ablation Study of m
We test our methods with different sizes of m and observe their performance
against l∞ attack. The experiments are based on ResNet-18 [24] and incorporate
data augmentation including mixup [4] and cutmix [22]. We vary the size in 1,
2, 3, 4. Note that when m = 1, our methods degenerate into normal adversarial
training with cutmix or mixup. Against adversarial attack, naive cutmix get
stronger performance than mixup, this rule stays the same when m increase. As
shown in Table 3, in our experiments, cutmix gets best result when m equals
4, achieving the 56.17% best-RA and 55.65% final-RA respectively. When using
mixup, we get similar excellent results when m ∈ [2, 4]. The difference is the
smallest when m is equal to 2 for both cutmix and mixup. But when m continues
to be larger, the performance begins to degrade, especially the model trained
with mixup. Combined with the conclusions in MaxUp [6], we consider the reason
is that ResNet-18 is not complex enough.

Figure 5 demonstrates the whole training process when m varies. With our
schemes, we can see both cutmix and mixup achieved great improvement. Espe-
cially when the learning rate drops for the second time, our accuracy curves
continue to rise while normal methods have not changed.

5.3 Other Attempts

Drawing on the method of Rebuffi et al. we used the synthetic dataset [18]
provided by them and the model weighted average method [20], which improved
the robust accuracy by 4.66% to 61.18%. We control the ratio of synthetic data to
original data to be 7:3, which is the same as Rebuffi et al. [19]. Here we compare
our model with other state-of-the-art methods under the same experimental
conditions. We directly used the pretrained model3 provided by the authors.

Table 3. Ablation studies on CIFAR-10 with ResNet-18 when m varies. The attack
type is l∞ with radius 8/255. Experiments are performed with cutmix and mixup
respectively and they yield the best robust test accuracy observed during training, the
final robust test error averaged over the last five epochs, and the differences between
them.

m Robust test accuracy with cutmix Robust test accuracy with mixup

Final Best Diff. Final Best Diff.

1 53.53 ± 1.33 55.00 1.47 49.49 ± 0.70 51.14 1.65

2 55.70 ± 0.24 55.70 0.53 54.05 ± 0.66 55.12 1.07

3 55.15 ± 0.50 56.10 0.95 54.10 ± 0.53 55.73 1.63

4 55.65 ± 0.34 56.52 0.87 54.01 ± 0.46 55.55 1.54

3 https://github.com/deepmind/deepmind-research/tree/master/adversarial
robustness.

https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness
https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness
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Fig. 5. Results of robust test accuracy over epochs with the changing of m. All exper-
iments are training on CIFAR-10 with PreActResNet18 against ε∞ = 8/255. The left
and right pictures represent the performance of our methods, combined with mixup
and cutmix respectively.

As shown in Table 4, under the same conditions of Res-18 and PGD-10, our
model outperforms the second model on attacked data and get a similar result
on clean data. The third method gets the best results because they use all the
100M synthetic data.

Table 4. Robust test accuracy on CIFAR-10 based on PreActResNet18 under the
attack of PGD10. The perturbation type is l∞ and the radius of it is 8 /255.We use
augmentation to denote the Rebuffi et al.’s model [19] and generation to denote Gowal’s
model [18].

Model Standard test accuracy (%) Robust test accuracy (%)

Ours 83.36 61.18

Augmentation 83.54 60.43

Generation 87.61 62.04

We have also tried other methods to prevent robust-overfitting in our exper-
iments. Like MaxUp [6] we replace the augmentation step with N (

X,σ2I
)
,

our attempt in this experiment doesn’t get desired result, it does prevent
the overfitting but loses a lot of accuracy. And inspired by the procedure of
SoftPatchup [25], we change the mix step of cutmix [22]. In original cutmix,
x̃ = M � xA + (1 − M) � xB , ỹ = λyA + (1 − λ)yB , we try the transforma-
tion of x̃ = M � xA + (1 − M) � xA ∗ λ2 + (1 − λ2) ∗ (1 − M) � XB , ỹ =
λ1yA + (1 − λ1)(λ2yA + (1 − λ2)yB), where 1 − λ1 denotes the portion of the
cut area and λ2 is sampled from the uniform distribution(0, 1). This attempt
prevents the overfitting and is better than baseline but the gap with the best
result of ours is not small. Because data augmentations help to create complex
adversaries, we try to use PGD20 to make adversarial examples during training
and PGD10 to test robustness during testing, but it doesn’t work and still suffers
overfitting.
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6 Conclusion

This paper proves that, combining with modern data augmentation techniques,
we can improve the robustness of models and alleviate robust overfitting. Com-
pared with Rebuffi et al. we propose a stronger augmentation technique and
explore the ability of it. By making more sophisticated and more strong adver-
sarial examples, our methods seem to overcome the classifier’s weakness of robust
overfitting and get a more promising result. Although it seems to work well, the
reason of robust overfitting is still hard to explain. Our future work will delve
into the causes of robust overfitting and try to give some reasonable explanation.
We will also explore other useful tricks that can improve the robustness of deep
neural models to get a more powerful and strong robust model.
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