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Preface

The 18th International Conference on Advanced DataMining and Applications (ADMA
2022) was held in Brisbane, Australia, during November 28–30, 2022. Researchers and
practitioners from around the world came together at this leading international forum
to share innovative ideas, original research findings, case study results, and experienced
insights into advanced data mining and its applications. With the ever-growing impor-
tance of appropriate methods in these data-rich times, ADMA has become a flagship
conference in this field.

ADMA 2022 received a total of 198 submissions. After a rigorous single-blind
review process 192 reviewers, 76 regular papers were accepted to be published in the
proceedings, 39 were selected to be delivered as oral presentations at the conference
and 37 were selected as poster presentations. This corresponds to a full oral paper
acceptance rate of 19.6%. The Program Committee (PC), composed of international
experts in relevant fields, did a thorough and professional job of reviewing the papers
submitted to ADMA 2022, and each paper was reviewed by at least three PC members.
With the growing importance of data in this digital age, papers accepted in ADMA 2022
covered a wide range of research topics in the field of data mining, including machine
learning, text mining, graph mining, predictive data analytics, recommender systems,
query processing, analytics-based applications, and privacy and security analytics. It is
worth mentioning that, firstly, ADMA 2022 organized a physical event, allowing for
in-person gatherings and networking, secondly, a special inclusive workshop has been
organized to enhance the experience of women non-binary and gender non-conforming
in the data mining community.

We thank the PC members for completing the review process and providing valu-
able comments within tight schedules. The high-quality program would not have been
possible without the expertise and dedication of our PC members. Moreover, we would
like to take this valuable opportunity to thank all authors who submitted technical papers
and contributed to the tradition of excellence at ADMA. We firmly believe that many
colleagues will find the papers in this proceedings exciting and beneficial for advancing
their research. We would like to thank Microsoft for providing the CMT system that
is free to use for conference organization, Springer for the long-term, support and the
University of Queensland andARCTraining Centre for Information Resilience (CIRES)
sponsorship of the conference.

We are grateful for the guidance of the steering committee members, Osmar R.
Zaiane, Jianxin Li, andGuodongLong.With their leadership and support, the conference
run smoothly.We alsowould like to acknowledge the support of the othermembers of the
organizing committee. All of themhelped tomakeADMA2022 a success.We appreciate
local arrangements from the local co-chairs, GuangdongBai andHenryNguyen, the time
and effort of the publication co-chairs, Taotao Cai, Shirui Pan and Tao Shen, the effort
in advertising the conference by the publicity co-chairs, Ji Zhang, Philippe Fournier-
Viger and Grigorios Loukides, the effort on managing the Tutorial sessions by tutorial
co-chairs, Tianyi Zhou and Can Wang, We would like to give very special thanks to the
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web chair, Shaofei Shen, Hao Yang and Ruiqing Li, for creating a beautiful website and
maintaining the information. We also thank KathleenWilliamson for her contribution to
managing the registration system and financial matters. Finally, we would like to thank
all the other co-chairs who have contributed to the conference.

November 2022 Xue Li
Lina Yao

Weitong Chen
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Abstract. This paper investigates the feasibility of problem-solution
phrases extraction from scientific publications using neural network
approaches. Bidirectional Long Short-Term Memory with Conditional
Random Fields (Bi-LSTM-CRFs) and Bidirectional Encoder Represen-
tations from Transformers (BERT) were evaluated on two datasets,
one of which was created by University of Cambridge Computer Lab-
oratory containing 1000 positive examples of problems and solutions
(UCCL1000) with the corresponding phrases annotated. The F1-scores
computed on the UCCL1000 dataset indicate that BERT is an effective
approach to extract solution phrases (with an F1-score of 97%) and prob-
lem phrases (with an F1-score of 83%). To test the model’s robustness
on a different corpus with a different annotation scheme, a dataset con-
sisting of 488 problem-solution samples from the Conference on Neural
Information Processing Systems (NIPS488) was collected and annotated
by human readers. Both Bi-LSTM-CRFs and BERT performances were
dramatically lower for NIPS488 in comparison with UCCL1000.

Keywords: Text mining · Problem-solution extraction · NLP

1 Introduction

The discovery of original and new scientific ideas is a key phase of research
innovation. This process usually starts with a literature review. Apart from
researchers who are working in academia, scientists from industry and govern-
ment also need to keep track of new trends. Given increasing publication rates,
and the diversification of the literature into ever more specialized fields it is
becoming increasingly challenging for both academic and industry researchers
to decide how to most productively spend their time on selecting the important
parts of a text. It is also difficult for government officers to pick up the most use-
ful pieces of information that are available. The main goal of an abstract includes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 3–14, 2022.
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distilling the main purpose of the corresponding paper. A paper’s novel ideas are
embedded in its abstract along with the problems it is solving and these can be
extracted using pattern recognition. Mining scientific ideas by manually extract-
ing them from a large body of literature tends to be massively time consuming.
People can easily get lost in thousands of abstracts. Scientists in academia are
trying to discover state-of-the-art methods for specific problems within their
research area and are hoping to invent novel methods that are better than the
existing ones; while, researchers in industry are looking for practical solutions
that can be implemented and are working effectively in real scenarios. Instruc-
tors who are assessing essays online need an assistant that can automatically
analyze essays [1].

In order to perform idea mining from text, a functional idea definition is crucial.
Liu et al. [2] explored idea definition from a technical perspective, where ideas were
represented by <problem, solution> pairs. How to extract the important infor-
mation automatically from the text and make it structured is becoming increas-
ingly important. In this paper, for the first time (to the best of our knowledge), two
machine learning methods were compared to extract problem-solution phrases.

2 Related Work

A variety of methods for idea mining from text have been experimented by
researchers. Thorleuchter et al. [3] introduced an approach for extracting ideas
from unstructured text based on the length and the term weights of stop and
non-stop words. The extracted ideas are represented by the retrieved words
using text patterns, which are built around each targeted term in the new text.
The represented words should occur on the left and right side of the non-stop
words. The outputs using this method are a list of words and therefore the
relations between the extracted words are lost, which makes the pattern less
understandable. Some researchers investigated idea mining from the perspective
of text classification rather than idea extraction. Christensen et al. [4] focused
on classifying online community texts into Idea Text and Non-Idea Text using
a supervised learning approach. They concluded that it is possible to auto-
matically identify ideas written as text in online communities, however, their
study did not provide methods for extracting ideas from text. Liu et al. [2]
explored idea definition from a technical perspective, where ideas were repre-
sented by <problem, solution> pairs. It’s stated in the paper [5] that the most
important parts of the abstract are the document problem and problem solu-
tion. Liu et al. [2] used a part-of-speech tagging technique to extract noun-
phrases from scientific publication abstracts. A rule based method was adopted
to classify the noun-phrases into problems and solutions. Although <problem,
solution> pairs embody an effective definition of ideas, the representation of
problems and solutions is not easy to define. While the primary concepts are
predominantly carried by the noun-phrases, simply using noun-phrases to rep-
resent problems and solutions is not enough. For example, from the sentence
researchers have developed a computational method to predict the function of
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unknown yeast genes, simply using the noun phrase yeast genes to represent
the research problem is not as clear as using a span of consecutive text
predict the function of unknown yeast genes. In order to make the expression
of the <problem, solution> more comprehensible and understandable, a span of
consecutive text to represent problems and solutions are worth study. Heffernan
and Teufel [6] created a new corpus containing ground truth for problem-solution
strings. They also present an automatic classifier to make a binary decision about
problemhood and solutionhood of a given phrase. The classifier was based on
supervised machine learning methods that intake a set of 8 features. However,
their experiments were focusing on distinguishing problems from non-problems
and solutions from non-solutions. Moreover, the 8 features being used were hand-
crafted, which is time consuming. This paper will utilize the annotated corpus
by Heffernan and Teufel [6] for the task of problem-solution phrases extraction
from a given sentence using neural networks.

2.1 Problem Formation

Considering a single-labeled sentence T represented as an ordered set of N words,
where T = 〈w1, w2, . . . , wN 〉, then the functional definitions used to extract our
representation of problem-solution phrases are as follows:

Problem-phrase: is an ordered subset of the text determined to be a problem
extracted from T :

φ = 〈wp1, wp2, . . . , wpn〉. (1)

Solution-phrase: is an ordered subset of the text determined to be a Solution
extracted from T :

ψ = 〈ws1, ws2, . . . , wsn〉. (2)

Our goal is to extract φ or ψ given T .
As stated in the paper [7], the ground truth for problem-solution strings

were defined to be at most one sentence long. The parsed dependencies were
examined and some target words such as problem and solution were used as the
seeds to identify subject position. Then, the syntactic arguments were chosen
as the candidate Problem-Solution phrase. Semantically similar words of the
target words were used to increase the variations. Examples of problem-solution
phrases are shown in Fig. 1.

Fig. 1. An example of annotated problem phrase was highlighted in yellow shown on
the top. An example of annotated solution phrase was highlighted in green shown on
the bottom. (Color figure online)
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3 Methodology

Detecting Problem-Solution phrases is a form of Named Entity Recognition
(NER) [8] since only parts of the sentence are considered as the target to be
tagged. In order to detect Problem-Solution phrases, a classification scheme is
determined based on the IO [9] format. Here, I is a token inside a chunk and
O is a token outside a chunk. Although IO format cannot distinguish between
adjacent chunks of the same named entity, it’s suitable for our study due to our
problem formation: the prediction is based on a single sentence with a single
label. The goal of detecting Problem-Solution phrases is to correctly label every
word in a sentence as one of the three categories: outside of the chunk (O), inside
of the problem (I-P) or inside of the solution (I-S). Therefore, the three classes
to be predicted are I-P, I-S and O.

3.1 Models for Extracting Problem-Solution Phrases

Existing models for sequence labeling are linear statistical models, such as Max-
imum Entropy Markov models (MEMMs) [10] and Conditional Random Fields
(CRFs) [11]. Research findings have shown that the model combining bidirec-
tional LSTM (Bi-LSTM) networks and CRF is robust and it can produce accu-
rate tagging performance without resorting to word embedding [12,13]. Con-
sidering that the task belongs to the tagging problem category and the words
surrounding the problem-solution tags have certain patterns, it is hypothesized
that using Bi-LSTM-CRF to detect problem-solution phrases can give better
results.

Bidirectional LSTM. Long Short-term Memory Networks (LSTM) [14] belong
to recurrent neural network (RNN) [15]. LSTM networks are good at learning
long-term dependencies. The LSTM had the ability to erase and add information
to the cell states and it has regulated gates.

Bidirectional LSTM and CRF tagging (Bi-LSTM-CRFs). Bi-LSTM-CRFs [12]
were explored in this study since the advantages of Bi-LSTM-CRFs are: (1) Bi-
LSTM takes into account the information from both of the left and right side
of the current word; (2) instead of predicting the label of the individual word
independently, CRF has the transition matrix connecting the context with the
current word. Research findings proved that Bi-LSTM-CRFs have achieved state-
of-the-art performance in the task of NER [16]. While most literature focuses on
extracting a relatively short span of text such as Location, Person, Organization
etc., this study investigates how good Bi-LSTM-CRFs is to extract a longer span
of text.

The workflow of utilizing bidirectional LSTM networks (bi-LSTMs) and con-
ditional random fields (CRFs) to extract problem-solution phrases closely follows
the steps described in the paper [12].

The widely used transformer based model BERT [17] was also explored on
the two datasets.
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4 Experiment

4.1 Dataset UCCL1000

UCCL1000 dataset was created by Heffernan and Teufel [7] on a subset of
the ACL anthology1 released in March 2016 containing 22,878 publications. A
random subset of 2,500 papers was selected across the entire ACL timeline.
Only documents having abstracts were considered. A ground truth for problem-
solution strings was defined on the corpus. The annotated samples were inde-
pendently validated for correctness by two annotators (the two authors of this
paper). Correctness was defined by two criteria, which were detailed in the paper
Heffernan and Teufel [7].

From the annotated sentences that passed the quality test for both inde-
pendent assessors, 500 samples of positive problems, 500 samples of negative
problems, 500 samples of positive solutions and 500 samples of negative solu-
tions were randomly selected. The resulting 1000 positive samples (500 positive
problems and 500 positive solutions) were used in this study.

4.2 Dataset NIPS488

In order to evaluate the neural networks performance on a different corpus with
a different annotation scheme, a human annotated dataset is needed. Compared
with the contents of a paper, abstracts have fewer licensing issues, resulting in
more easily accessible data. Therefore, it’s a good decision to obtain problem-
solution phrases from the abstracts. A guiding principle underlying the annota-
tion scheme was proposed: keep the sequence as short as possible, while retaining
enough information to distinguish the novel contribution of the paper. Four hun-
dred and fifty abstracts were obtained and analysed2 from the Proceedings of
the Neural Information Processing Systems conference (NIPS).

Guidance for Annotation. The annotation task was conducted using the abstract
of the corpus. The annotation rules were as follows:

– A Problem (Solution) sequence might be a word, a list of words or an entire
sentence. However, the sequence should not be separated by other words.

– For each abstract, only one problem and one solution were expected to be
identified. If there was more than one problem (or solution) in an abstract, the
most important one was chosen. When there are multiple Problem-Solution
phrases in a paper, then the main problem (or solution) should be the one
that is most related to the title.

– The chosen sequence should reflect the novelty of the paper.
– The chosen sequence should be as short as possible.
– The distance between the chosen sequence and the root of the sentence should

be as close as possible.3

1 https://aclanthology.org/.
2 Publication years: 2008–2016.
3 The distance could be measured by the depth level on the parsed dependency tree.

https://aclanthology.org/
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– If no Problem-Solution phrase were identified, the abstract was excluded from
the analysis.

The annotations were collected by seven computer science researchers, who man-
ually highlighted Problem-Solution phrases on printed abstracts with coloured
highlighter pens. Four-hundred and fifty abstracts were examined, out of which
there were 244 abstracts having the problem-solution phrases clearly stated. An
example of a human annotated problem/solution phrases is shown in Examples
of problem-solution phrases were shown in Fig. 2.

Fig. 2. An example of human annotated abstract. The problem (solution) phrases were
highlighted in yellow (blue). (Color figure online)

4.3 Dataset Summary

UCCL1000 dataset contains 7920O (Outside), 7389 I-S and 6792 I-P entities.
NIPS488 contains 6797O (Outside), 2120 I-S and 1946 I-P entities. In compari-
son, NIPS488 is imbalanced and smaller.

4.4 Text Preprocessing

After basic text preprocessing such as noise removal, the next step is to make
the raw text structured, which includes sentence segmentation, tokenization and
token-label assignment.

Take the first sentence shown in Fig. 2 for example, let x1 represent the
span of text The paper presents and evaluates the power of parallel search for
exact MAP inference in graphical models and y1 represent their labels. Part of
the output of the first step is shown in Table 1.

The second step is to build dictionaries for tokens and tags respectively by
converting tokens and tags to numerical values. An uncased tokenizing mecha-
nism was adopted, meaning that all the letters were converted into lower-cased
letters. The reason to use an uncased tokenized model is that the problem-
solution statements are usually case-insensitive. Each token was assigned with
a unique integer, also known as index, such that a sentence was represented by
a list of integers. The tokens in the pre-trained embeddings were merged to the
token dictionary.

After the second step, the sentences in Fig. 2 were converted to a list of lists:
[[6965, ..., 139], [15, ..., 1]], where each list represented a sentence. Similarly, each
tag was represented by a unique index:

y = [0, 1, 2] (3)
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Table 1. An example of outputs after the first step of text preprocessing. The words
in the second column were excerpted from the first sentence shown in Fig. 2.

Sentence ID Word Tag

Sentence:1 For O
Sentence:1 Exact I-P
Sentence:1 Map I-P
Sentence:1 Inference I-P
Sentence:1 In I-P
Sentence:1 Graphical I-P
Sentence:1 Models I-P

4.5 Input Representations

Before training the models, all unique token indexes should be converted to
meaningful input features. There are several options to represent the features,
such as using one-hot-vector [18] and word embeddings [19]. Muneeb et al. [20]
pointed out two major drawbacks with one-hot-vector representations: first, the
length of the vector is huge and second, there is no notion of similarity between
words. Word embeddings [19] have proved to be an effective representation in
some NLP tasks, such as sentence classification [21] and sentiment detection
[22]. In comparison with randomly initialized word embeddings, pre-trained ones
carry semantic information. A lot of researchers found that a good initialization
of the input layer can improve the performance of models significantly [13].
Chung et al. [23] explained that the learned vectors contain semantic informa-
tion pertaining to the underlying spoken words, and are close to other vectors in
the embedding space if their corresponding underlying spoken words are seman-
tically similar. Song et al. [24] found out that pre-trained embeddings are more
effective than randomized ones. Cases et al. [25] also demonstrated that pre-
trained word2vec embeddings significantly outperformed random one as long as
the network is properly configured.

Word embeddings are learned from raw text. A projection matrix is derived
using unsupervised learning, which means, the values in the matrix are learned
by maximizing the likelihood that words are predicted from their context. Each
word can be represented by the corresponding row in the matrix, which is called
word vector or word embedding. The dimensionality of the word vectors deter-
mines the size of the input layer. Although some researchers claimed [26] that
the dimension of the word vectors should be chosen based on corpus statistics
as well as NLP tasks, the empirical dimension is usually set between 50 to 300.
Chung et al. [23] found out that increasing the embedding size does not always
result in improved performance for their experiment of learning word embed-
dings from speech and they further emphasised that word embeddings of 50
dimensions are able to capture enough semantic information of the words, as the
best result was obtained by them. Bairong et al. [27] investigated the different
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embedding vector sizes for the End-to-End Conversation Modeling task. In this
experiment, pre-trained word embeddings were used as the input features. The
word embedding dimension was set to 300. A vectorized representation of the
input data is needed for training the models. Sequences with variable length
need transformation to make sure each sequence has the same length. A post-
sequence truncation method was adopted in this study, where the values were
removed from the end of the sequence if it was larger then maxlen, which was
set to 75/128 for Bi-LSTM-CRF/BERT respectively.

4.6 Training and Evaluation

Training Bi-LSTM-CRF and BERT. BI-LSTM-CRF models were trained for
each dataset separately. Word embedding vectors trained on GoogleNews were
used to initialize the embedding layer since it outperforms randomly initialized
embedding vectors in the embedding layer. The hidden unit size in the BiLSTM
network was set to 50 because researchers found that model performance is not
sensitive to hidden layer sizes [12] and 50 units were shown to be a good option
[28]. The recurrent dropout rate was set to 0.1. Default parameters for the CRF
layer were adopted4. Each model was trained for 20 epochs with batch size 32.
The Embedding layer and BiLSTM network implementations were based on
keras library5.

BERT models were trained for 20 epochs using Huggingface Bert-base-
uncased pretrained model6. Comparisons were done between 32 (train), 32 (val-
idation) and 4 (train), 2 (validation) batch sizes, which were named as BS32-32
and BS4-2 respectively.

Evaluation. k-fold cross-validation is a popular form of model validation [29].
Typically, researchers perform k-fold cross-validation using k = 5 or k = 10,
as these values have been shown empirically to yield test error rate estimates
that suffer neither from excessively high bias nor from very high variance [30].
Therefore, 5-fold cross-validation was adopted in this study.

F1-scores were reported in this study since the F1-score is a widely used
measurement for most NER systems [31]. Because this study focused on extract-
ing problem-solution phrases, the evaluation emphasised F1-scores for problem-
solution entity recognition. In addition to F1-scores, precision and recall were
reported.

4.7 Result Analysis

The results are shown in Table 2. The F1-scores for problem-solution phrase
extraction on UCCL1000 dataset were 0.68/0.91 using Bi-LSTM-CRFs (BLC)

4 https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/layers/
crf.py.

5 https://keras.io/api/.
6 https://huggingface.co/bert-base-uncased.

https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/layers/crf.py
https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/layers/crf.py
https://keras.io/api/
https://huggingface.co/bert-base-uncased
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and 0.83/0.97 using BERT. However, the results on NIPS488 dataset are very
low. Batch size strategy comparison indicated that B4-2 outperforms B32-32 on
NIPS488 dataset.

Table 2. Results (Precision/Recall/F1-score) generated by the model Bi-LSTM-CRFs
(BLC) and BERT. UCCL1000 and NIPS488 indicated the corresponding dataset that
the experiments were carried out on. 33–33 and 4–2 indicated the batch-sizes for train
and validation (train-validation) datasets.

Tag-Model Precision/Recall/F1(UCCL1000) Precision/Recall/F1(NIPS488)

P-BLC32-32 0.64/0.72/0.68 0.09/0.12/0.10
P-BERT32-32 0.79/0.85/0.82 0.15/0.26/0.18
P-BERT4-2 0.81/0.85/0.83 0.17/0.29/0.22
S-BLC32-32 0.89/0.94/0.91 0.06/0.08/0.07
S-BERT32-32 0.97/0.98/0.97 0.10/0.18/0.13
S-BERT4-2 0.95/0.98/0.97 0.14/0.23/0.17

Examples of error analysis on UCCL1000 and NIPS488 datasets are shown
in Figs. 3 and 4 respectively.

Fig. 3. An example of problem phrase extraction error analysis on UCCL1000 dataset.
The predicted problem phrases indicated that extra words were recognized as part of
the problem entities but the ground truth showed that only the words in the clause are
considered to be correct in this particular case.
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Fig. 4. An example of solution phrase extraction error analysis on NIPS488 dataset.
The word for was wrongly detected as part of the solution phrases.

5 Discussion

A problem for training and evaluation in experiments of this nature is that it
is difficult to enforce consistent annotation rules due to the differing subjective
perceptions of the annotators. For the NIPS488 dataset, some of the annotators
highlighted the problem (solution) explanations stated in a clause, rather than
selecting the actual problem (solution) names. One of the biggest challenges when
extracting only one main problem-solution phrase from an abstract is dealing
with multiple problem-solution phrases that exist in the same abstract. This
challenge might be the reason that the model could not achieve good result on
the NIPS488 dataset.

6 Future Work

In the future, several aspects could be improved:

Adding a Sentence Classification Stage. To overcome the challenge caused by
the second rule in the Guidance for annotation, labeling each sentence with
one of the labels: main-problem, main-solution, main-ps (the examined sentence
contains both main problem and main solution), non-main-ps (the examined
sentence is neither main problem nor main solution sentence) before extracting
problem-solution phases could be useful. Seventy nine abstracts were obtained
from the Journal of Machine Learning Research (JMLR79). Each sentence was
annotated with one of the labels described above. The annotation was done by
one computer science researcher.

Annotation Tool for Collecting More Data. In the future, it is possible to use
crowd sourcing techniques to get the same abstracts annotated by many different
people. Many more annotations from authors should be collected.

Novel Idea Computation. Potential useful ideas can be discovered by analyzing
the problem-solution phrases that are not seen together in one abstract. Using a
similar method in the paper [2], it is possible to accelerate the ideation process
using a collaborative filtering algorithm, where problem phrases are considered
as users and solution phrases as the items to be recommended.



Towards Idea Mining: Problem-Solution Phrase Extraction from Text 13

7 Conclusion

The idea to extract problem-solution phrases from a given sentence using neural
network techniques is new, to the best of our knowledge. With high quality
dataset, the model Bi-LSTM-CRFs can spot meaningful patterns in text, which
is intriguing and potentially valuable. It is hoped in the future, the work may
contribute to novel idea computation and information retrieval (IR) in such
a way that based on users’ problems, the IR system can retrieve the papers
that contain the solutions that can potentially solve these problems. However,
although this work is promising, it needs to be repeated with larger high quality
datasets.
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Abstract. Emails are the most popular and efficient communication method that
makes them vulnerable to misuse. Federated learning (FL) provides a decentral-
ized machine learning (ML) model, where a central server coordinates clients that
collaboratively train a shared ML model. This paper proposes Federated Phishing
Filtering (FPF) technique based on federated learning, natural language process-
ing, and deep learning. FL for intelligent algorithms fuses trained models of ML
algorithms frommultiple sites for collective learning. This approach improvesML
performance by utilizing large collective training data sets across the corporate
client base, resulting in higher phishing email detection accuracy. FPF techniques
preserve email privacy using local feature extraction on client email servers. Thus,
the contents of emails do not need to be transmitted across the network or stored on
third-party servers. We have applied FL and Natural Language Processing (NLP)
for email phishing detection. This technique provides four trainingmodes that per-
form FLwithout sharing email content. Our research categorizes emails as benign,
spam, and phishing. Empirical evaluations with publicly available datasets show
that accuracy is improved by the use of our Federated Deep Learning model.

Keywords: Spam detection · Phishing detection · Federated learning · Model
averaging · Deep learning · Privacy-preserving · TF/IDF · Incremental learning

1 Introduction

Emails are a common and effective communication tool, which makes them susceptible
to misuse. Among the cyberattacks propagating through email, phishing emails exploit
users for financial gain. Phishing is “a scalable act of deception whereby impersonation
is used to obtain information from a target” [1]. Phishing emails can be used for fraud
involving the spoofing of reputable companies, creating a plausible premise, collect-
ing information, linking to websites that gather information, hiding links or hostnames,
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switching ports, and having incorrect sender address [2]. While spam emails may con-
tain malicious software, illegal advertising, and fraud schemes. The business sector is
increasingly a major victim of ransomware, and phishing attacks. While safety pre-
cautions are taken, humans often fail to recognize such attacks, resulting in substantial
financial losses. This paper presents a new approach to combat phishing campaigns,
by federating the knowledge of these phishing campaigns for all of the organization’s
clients. For example, banks have millions of net banking customers, which could share
their phishing email data with banks to implement effective phishing filtering schemes.
As FL extracts features using the customer’s computer, the privacy of banking customers
is protected.

FLprovides a decentralizedMLmodel,where a central server coordinates clients that
collaboratively train a shared ML model [3]. FL allows corporations to improve client
email systems’ security by creating a collective phishing detection model utilizing email
intelligence from a large customer base. Although various spam detection techniques are
already proposed, these techniques mostly use conventional ML approaches for spam
categorization and are not using FL models in real-time environments. The key tasks
undertaken by the proposed methodology include: Email classification in a real-time
FL environment. The accurate classification of client emails requires preparation of
the training model using the selected features from client emails. As this is a real-time
system, there is a need for real-timemodel retraining using the new email data. Customer
input is used to highlight undetected phishing emails. One of the strategies proposed in
this paper is to fuze the trained models of all the clients. So there is a need for data fusion
when the training data size is known and unknown.

This paper’s objective is to classify emails and feature extraction has been performed
using NLP techniques to reveal the distinct inherent structural characteristics that are
commonly present in the emails of various categories. ML techniques will explore and
enhance the capability of deep neural networks with FL for spam email detection and
classification. As a result, users will be better protected against financial fraud resulting
from email-based malware.

2 Related Work

Phishing and spam detection remain a huge challenge for the email systems despite ML-
based approaches’ development. Key prior works are presented below to give context to
this paper’s contribution.

[4] propose spam detection and there are two variants of the proposed technique:
one is the “Basic MailRank”, which computes a global reputation score for each email
address, whereas in the ‘Personalized MailRank’ the score of each email address is
different for each MailRank user. MailRank is highly resistant to spam attacks and
performs well for sparse networks. Chi-Yao et al. [5] offered Incremental SVM model
for spam detection on dynamic social networks. The authors’ technique is an incremental
work to efficiently retrain the SVMmodel. The technique was evaluated on a live data set
from a university email server and proved to be efficient and effective. A text clustering-
based spam detection system was developed by [6]. This spam detection technique uses
text clustering based on a vector space model. Results have shown that the technique is
effective in spam detection for unsupervised clustering.
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Another spam detection is proposed by Damiani et al. [7], which is an open digest-
based technique for spam detection. Its main purpose was to overcome digest-based
spam detection issues. Research by Mohammad et al. [8] has streamlined the important
features that influence phishing prediction. Spam identification based on the header
features of emails is proposed by [9]. B. et al. [10] have proposed a spam detection
technique, however it’s a binary classifier and they have not considered email header
features.

Verma et al. [11] highlight that NLP is challenging and there is very limited research
on NLP for phishing detection. One of the attempts was by [12], however, authors
have focused on features like stopwords, words, punctuation, and counts of stopwords.
Seymour & Tully [13] highlight that NLP is used to extract patterns from raw-text and
recurring patterns can be identified from phishing emails so NPL can be helpful in
phishing detection.

Mehta et al. [14] highlight concept drift (CD) challenges that arise when ML is
used. Gepperth & Hammer [15] indicate that when data samples’ temporal structure is
considered, changes occur over time. [16] Zliobaitementions that CD refers to a problem
of non-stationary learning over time or changes in the data distribution over time.

3 Federated Phishing Filter (FPF)

The detection and categorization ofmalicious emails requires an effective feature extrac-
tion mechanism. In this paper, the relevance and importance of the extracted features
have been investigated for the development of an accurate phishing filtering system.
Once the features are extracted and selected, then a multi-class classifier is trained using
a deep learning algorithm for the real-time FL environment.

Since emails are textual, the text in the email contains inherent ambiguity, but the rich
structure of natural languages can provide meaningful features for better classification.
Hence, NLP is a good candidate for email feature extraction. In this research, we consider
email headers, links, and attachments in addition to email body text.

3.1 Natural Language Processing

To map the selected features to the input data format for the training of a ML model, we
use the Term-Frequency Inverse Document Frequency (TF/IDF) vectorization technique
[17]. The email body is first summarized in this technique before converting to a TF/IDF
vector. TF/IDF can be explained with Eq. 1 [18].

wij = tfij × log(
N

df i
) (1)

where tf ij = the number of occurrences of i in j, dfi is the number of documents containing
i, and N is the total number of the documents in the corpus. TF/IDF score in Eq. (1), can
be explained with an example. Consider an email that contains 1,000 words, where the
word “money” appears 3 times. The term frequency (TF) for “money” is then (3/1000)
= 0.003. Now, in 10,000 emails, the word “money" appears in 1,000 of them. Therefore,
the inverse document frequency (IDF) is calculated as log (10,000/1000) = 1. Thus, the
TF-IDF weight is the product of these quantities is 0.003 * 1 = 0.12, and is used as a
feature.
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3.2 Deep Learning Model for Spam Categorization

Heaton et al. [19] explains that Deep learning is a branch of ML in which an Artificial
Neural Network (ANN) learns from a huge volume of data. Deep learning does not
require careful engineering anddomainknowledge toperform feature extraction, because
it automatically extracts important features from the raw data [20].

3.3 Spam Detection and Categorization Model

Our proposed model applies NLP to email body data and uses TF/IDF to perform the
feature extraction and encoding. The deep learning spam detection and categorization
model has been trained in four different ways to achieve a high spam detection accuracy.
Our proposed model is explained in Fig. 1.

Fig. 1. Proposed model

3.4 Federated Learning

Unlike traditional ML, an FL approach generates a shared model based on decentralized
training of user data. FL allows users’ localmodels to learn from the shared and federated
prediction model while retaining the training data locally, thus avoiding the need for
centralized training [21]. Figure 2 shows a generic FL environment diagram.
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Fig. 2. Federated learning

FL provides a decentralized collective ML model [33]. Update to model weights in
FL can be expressed with Eq. 2.

θ ← θ −
∑K

i=1

ni
N
Hi (2)

where θ are the weights of the model and k are the selected federated users and N =∑K
i=1 ni is the total number of data points used in this iteration.
In this paper, Differential Privacy (DP) has been used to preserve the data of partic-

ipating clients. DP in ML fits a model without knowing details of an individual’s data.
A learning algorithm computes an estimate in each of T iterations. The data used to
compute the estimate is sampled using a probability q. The sensitivity of the estimate is
bounded by a constant d, and noise sampled from N (0, σ2, δ2) is added to the estimate
in each iteration. To compute the weights of the next iteration, the estimate is subtracted
from the current weights. Then, constants c1, c2 exist so that the algorithm is (ε, δ)−
differentially private for any ε < c1q2T and δ > 0 if noise is added. FL is differentially
private and can be expressed with Eq. 3.

σ < c2
q
√
Tlog( 1

δ
)

ε
(3)

3.5 Federated Training Models

We have proposed four different models for the FPF. Any of these training scenarios
may be used, depending on the availability of the data samples or pre-trained models.

Training from Server Model (TSM): This model assumes a pre-trained model. All
federated users provide their extracted features data to the server. At initialization, FPF
uses pre-trained model, then retrains incrementally during steady-state operation, using
the federated users’ data.

Training from New Data (TND): IN TND, all federated users provide their extracted
features to the server, and the FPF consolidates the user’s features and then trains the
users’ models.
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In Re-Training with Incremental Learning (TIL) model, federated users provide
their pre-trainedmodels and newdata. The system re-trains usermodelswith incremental
learning. [21] highlights that incremental learning is required in interactive scenarios
where training examples are given based on human input over time.

In Model Averaging (MA) method, federated users are not required to supply their
data. Instead, they provide their pre-trained models, and the federation system calculates
the mean of the pre-trained models.

3.6 Federated Averaging (FA)

In addition to being suitable for environments with sensitive data, FA helps to minimize
client-to-server and server-to-client communication cost. Users train the generic neural
network model with an FA algorithm, and the trained weights are sent back to the server.
To return the final weights, the server then takes the average of the updates. A typical
FA diagram is shown in Fig. 3.

Fig. 3. Federated averaging

3.7 Federated Averaging Strategies

FA uses the averaging equation provided by [35] in Eq. 4.

f (w) =
∑K

k=1

nk

n
(Fk(w)) (4)

where

Fk(w) = 1

nk

∑

i ∈ Pk
fi(w) (5)

If the partition Pk was formed by distributing the training examples over the clients
uniformly at random, then we would have EPk[Fk(w)] = f (w), where the expectation
is over the set of examples assigned to a fixed client k. Two federated model averaging
strategies were developed in this research. The Weighted Average Strategy (WAS) is
based on the training model dataset size, while the Equal Weighting Strategy (EWS) is
independent of the dataset size on which model was training.
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3.8 Equal Weighting (EWS)

Using EWS, models are averaged regardless of the dataset size on which the model was
trained. This strategy can be used, if the training dataset size is unknown or, a model is
trained with the datasets of the same size. In this strategy, there are no extra over-heads
to calculate a weighted score based on the training model size. It is less time-consuming
and more ideal for models of the same size datasets. Model averaging in EWS can be
explained in Eq. 6.

avgew =
∫ N

k
avg(l ∈ ym) (6)

where f is an average weighting function for a given federated networkN for k federated
users for all layers l on federated users models m.

3.9 Weighted Average (WAS)

With the use of the WAS, models are averaged with a weight based on the size of the
training dataset. The model averaged by this strategy has higher accuracy as compared
to the model averaged by EWS strategy. Model averaging in was can be explained in
Eq. 7.

avgwa =
∫ N

k
avg�(l ∈ ym) (7)

where f is a weighting average function, for a given federated network N for k federated
users for all layers l on federated users models, m. � is a weight score, which can be
further explained with Eq. 8.

� = sm∑
Dt

(8)

whereDt is the total training data size of all the models, and sm is the size of a particular
model m.

3.10 Datasets

The publicly available Ham/Spam & Phishing datasets from CEAS2008, Spam Assas-
sin, Jose Phishing, and Untroubled.org, data-sources were used in this research. These
datasets were combined to avoid class imbalance problems. Two datasets were prepared
from the combined dataset for the empirical evaluation. One dataset was prepared using
email header fields only (Dataset-H), while the other dataset was developed using a
combination of email headers field and NLP features of email contents (Dataset-NLP).
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4 Empirical Evaluation

An empirical evaluation of the deep learning model was performed using the datasets
described in Sect. 3.8. As the characteristics of phishing emails change over time, phish-
ing detection systems need to be trained with new features on an ongoing basis. This
is the concept which underpins our proposed approach in developing an FPF. We have
validated our models using average accuracy.

A loss function in supervised learning quantities how close a prediction of a model
is to the correct answer yi. The full loss for a prediction function f is given by Eq. 9.

L = 1

n

∑n

i=1
loss

(∫
(xi), yi

)
(9)

where
∫
(xi) is prediction function for a correct answer yi.

The templates of Spam and Phishing emails are thought to change over time. In
real-time systems, it’s natural that due to changing dynamics of the environment of a
system, the relationship between inputs and outputs changes, and this CD phenomena
can be captured in form of datasets. In this paper, it is anticipated that there will be CD in
the federated phishing detection system, so experiments have been conducted to study
the phenomena.

In the CD experiment, the FPF was trained on Dataset1, and then testing was per-
formed on a dataset created by mixing an increasing amount of a second independent
dataset (Dataset2). This experiment aims to investigate the ability of the FPF to perform
well in the presence of CD in the test dataset. Dataset1 was created from CEAS2008
Ham and Spam data; and the Jose phishing dataset. Dataset2 was created from the Spam
Assassin Ham and Spam dataset, and the Jose phishing dataset.

The CD experiment investigates the response of federated ML to a test dataset that
is changing over time. In conventional ML, this CD may result in reduced classification
accuracy. In this experiment, Data1 provides a baseline dataset. An independent dataset
(Dataset 2) is progressively mixed with Dataset 1 to simulate CD in the test dataset.
Table 1 shows the split of the datasets used for training purposes.

Table 1. Data splits for concept drift study

Data split Dataset 1 Dataset 2

No split 100 (CEAS2008) 0

Split1 90 10

Split2 80 20

Split3 70 30

Split4 60 40

Split5 50 50
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The testing results, shown in Fig. 4 show an initial decrease in detection accuracy
when the initial Dataset2 data is added to the test dataset, but there is an improvement in
accuracy with continual re-training with increasing portions of data2 in the test dataset.
The results also shows that the FPF performs well in CD.

Fig. 4. Results with concept drift

4.1 Comparison of EWS and AWS Averaging Strategies

This section provides a comparison of the EWS and AWS averaging strategies. First,
the four models described in Sect. 3.5 have been trained on various datasets, containing
samples of sizes: 2k, 5k, 6k, 7k, and 10k. Then these four trained models were averaged
with two EWS and WAS strategies. Finally, testing was performed using both the EWS
and the AWS models is shown in Fig. 5.

Fig. 5. Accuracy comparison with equal & weighted averaging
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Results in Fig. 5 show that if models are trained on different datasets sizes, thenmod-
els averaging with a weighted average gave better results. Further, we have identified that
federated users benefit from the collective intelligence of all the users. To demonstrate
this, phishing email detection accuracy studies have been conducted on four federated
users and one non-federated user. Studies used dataset-H and the results in Fig. 6 show
that the accuracy for federated users is higher than that of non-federated users except
for user1. This experiment was done to compare the classification accuracy of federated
and non-federated using the same dataset (dataset-H).

Fig. 6. Accuracy comparison (non-fed user vs federated users)

It is hypothesized, that the higher number of users in the federation will result in a
higher collective intelligence for FL systems. As a result the accuracy of spam email
detection should be higher.Accuracy studieswere conducted for five individual federated
users to demonstrate the claim. For the experimental purpose, a network of 5 and 10
federated users was prepared and accuracy was measured between these two sets of
federated users using dataset-H (headers only data). Accuracy results in Fig. 7 depict
that the system accuracy of 10 federated users is higher than that of 5 federated users.
Although, there is a slight decrease of accuracy for one federated user, the accuracy of all
other federated users (from the set of 10 federated users) is higher (with an improvement
of more than 5%).
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Fig. 7. Trendline showing accuracy increase with fed user count

4.2 Features Performance Comparison

Emails’ header features have beenused inMLpreviously. This section improves the spam
email detection accuracy with the addition of NLP features to the header features. NLP
features were extracted using TF/IDF vectorization technique. Accuracy was calculated
using datasets containing NLP (dataset-NLP) features and non-NLP data (Headers only
data dataset-H). Average accuracy was calculated for 5 federated users. Accuracy results
in Fig. 8, show that accuracy with NLP data (dataset-NLP) is higher as compared with
the accuracy of headers only data (dataset-H).

Fig. 8. Classification Accuracy - Email Header Vs Body Features
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5 Conclusion and Future Work

The research conducted in this project was carried out on a limited number of federated
users, and we have assumed that all federated users have the same number of features
in their datasets. In future work, evaluation can be performed using a larger number of
federated users with different features. Another future work is to develop other strategies
for model averaging, including a weighting score of the class count in the trainingmodel.
Other could be the weighting of True Positive (TF) classes. This research has shown
that the addition of more features with the application of natural language processing
has increased the accuracy. In this research word embedding implementation of TF/IDF
was used. Future work should include an evaluation of additional word embedding
techniques.

Although many of the techniques for spam detection have been developed, most of
these techniques donot classifymulti-class labelleddata.Also, traditionalML techniques
use strategies include that do not work in highly secure environments. These techniques
are not used in our real-time/FL environments. Our proposed innovative approach uses
NLP for FL and deep learning, which not only detects spam but also categorizes the
spam. Our proposed technique trains and average the model for federated users without
sharing the extracted features. We developed two strategies for model averaging in the
FL environment. The proposed technique can train themodel in four different ways using
FL without sharing actual email data. Empirical evaluations have shown that with the
proposed technique, accuracy is improved and federated user’s data privacy is preserved.
The developed technique can also cope with CD and multi-class data in real-time.
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Abstract. Password guessing describes the process of finding a pass-
word for a secured system. Use cases include password recovery, IT
forensics and measuring password strength. Commonly used tools for
password guessing work with passwords leaks and use these lists for can-
didate generation based on handcrafted or inferred rules. These methods
are often limited in their capability of producing entirely novel pass-
words, based on vocabulary not included in the given password lists.
However, there are often semantic similarities between words and phrases
of the given lists that are highly relevant for guessing the actual used
passwords. In this paper, we propose SePass, a novel method that uti-
lizes word embeddings to discover and exploit these semantic similarities.
We compare SePass to a number of competitors and illustrate that our
method not only is on par with these competitors, but also generates a
significant higher amount of entirely novel password candidates. Using
SePass in combination with existing methods, such as PCFG, improves
the number of correctly guessed passwords considerably.

Keywords: Password guessing · Password cracking · Semantic word
embeddings · Similarity search · Nearest neighbors · Law enforcement ·
Nlp

1 Introduction

Password-protected devices such as notebooks, tablets, smartphones or secure
hard drives are ubiquitous and, thus, can be central to criminal investigations.
In such cases, gaining access to these devices might lead to crucial evidence and
may help preventing further crime.

Up until today, passwords are still the primary mechanism to protect a user’s
private information, even though additional measures, such as two-factor authen-
tication, are steadily added. A huge benefit of passwords is that they do not
involve additional devices or resources and are safe if the underlying passwords
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have enough entropy. In that case the possible search space is plainly too large
to be attacked using brute force search, at least in any reasonable time frame.

Compared to application scenarios, such as internet forums or online
accounts, mobile device users need to type in their password to unlock their
device frequently and need to be able to remember them. Using password man-
agers or similar tools is usually not practicable to unlock the devices themselves.
This typically encourages users to utilize passwords which consist of or resemble
real words and are usually relevant to their everyday life, their culture or social
environment with little to no modification. Nevertheless, guessing passwords in
this context remains a significant challenge.

The most common approach to password guessing is a deductive approach: it
uses dictionaries based on previous leaks, e.g., the rockyou leak [4,5], potentially
combined with some proven set of rules, e.g., provided by tools like hashcat [13],
to derive password candidates. This is often enough to guess a certain amount
of passwords but it is obviously bounded by the limits of the deductive model,
i.e., by the dictionary and the rule set.

This limitation cannot be overcome by extending the model, e.g., by using
a more general purpose dictionary or onthologies, which significantly enlarges
the search space or performing a brute force attack, which in turn renounces a
focused strategy to traverse the search space for generating promising candidates.

In contrast, a data-driven approach is more promising since it predicts can-
didates without being limited by predefined terms or rules. Recently, machine
learning methods using statistical models (e.g. [17]) or deep learning (e.g. [9])
have reported promising results for password guessing in general.

However, these methods may be typically too generic in specific applications
and, thus, fail to incorporate the hidden semantics of typical passwords found
in leaks. Even though these methods may be able to guess passwords that are
based on vocabulary not included in the training set (i.e., the leaked lists).

For example, when analyzing famous leaks, it becomes evident that one
domain for passwords are the names of luxury brands. But, even if a leak
already contains brand names such as Armani and Chanel none of the exist-
ing tools would propose a password based on Burberry because this term would
be syntactically too different from the previous two passwords – though being
an obvious candidate. Furthermore, these predictions can usually not be tried
out in any practical time frame.

In order to address this shortcoming a method is needed that is able to
extend the vocabulary used for the predictions, i.e., new terms not seen in the
training set. We propose SePass, a method to generate passwords based on
the vocabulary of an existing password list by semantically extending the given
vocabulary using word embeddings. Focused leaks, most prominently the rock-
you leak, often trainingshow semantic similarities between words and phrases.
Our proposed method SePass uses pretrained word embeddings to suggest addi-
tional, semantically similar words. These plain words could potentially be the
basis for passwords used by people belonging to the same peer-group. We refer
to these words as base words.

Real passwords are built from such base words but usually follow certain
rules of modification or have additional characters added, i.e., prefixes/postfixes
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to base words and/or combinations of multiple base words. By applying extracted
password mangling rules to newly generated base words from our word embed-
ding, we can extend the given list with additional passwords candidates exclu-
sively found by SePass. We empirically show in our experiments that this will
generate password candidates that are not produced by other methods. More
importantly Sepass provides a new foundation on which existing or future meth-
ods can be built upon. Our experiments show, that SePass improves the predic-
tion accuracy when combined with other existing methods. To summarize, the
contributions of our paper are:

– We provide SePass, – to the best of our knowledge – the first method for
password generation that unravels the hidden semantics in a password list by
using word embeddings and, thus, is capable to semantically extend a given
set of passwords.

– We present a working prototype implementation of a tool that addresses the
creation of password candidates for people belonging to the same peer-group.

– We conduct an experimental study under realistic constraints comparing SeP-
ass with several state-of-the-art password generation methods.

– Our experiments show that using our proposed method as an augmentation to
already existing password guessing methods, will improve both, the precision
(number of correctly guessed passwords) and the effective time consumption
(i.e. the number of guesses needed).

2 Related Work

Password guessing denotes the task of exactly matching an unknown string of
characters used as a password for any kind of security system. Use cases include
password recovery, IT forensics and measuring password strength. More gener-
ally, guessing a password is achieved by sequentially trying out password candi-
dates until the correct one, then called a hit, is found. To be precise, passwords
are generally not stored in clear text but rather as hash values. This requires
that the true password must be recovered and is not readily available and there-
fore also limits the damage done by possible leaks. The used hash functions,
such as Sha512, PBKDF2 or scrypt, vary greatly in complexity but generally
try to ensure that deriving the hash value from a given password always takes
considerable time even on the most modern and specialized hardware. For the
remainder of this paper, we only consider the basic problem of guessing the
correct password. Hence, the concrete hash function is not relevant and is not
further considered.

Password guessing methods differ by the way password candidates are gen-
erated. The most common methods for password guessing are brute force and
dictionary attacks. A brute force attack consists of trying out all possible combi-
nations of possible characters from a chosen alphabet to generate a password of
a certain length. While brute forcing is the only method that guarantees a hit,
it also evidently becomes unfeasible with increasing password length. Dictionary
attacks on the other hand depend on lists of possible passwords, which are often
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times collected or designed by experts. Another common source of dictionaries
are data breaches and passwords leaks, e.g. the rockyou leak consisting of more
than 14 million password from the eponymous forum in 2009 [5].

While the methods mentioned above excel at generating vast amounts of
password candidates they do not consider the plausibility of these passwords.
In contrast, statistical password guessing methods utilize statistics based on
existing password lists to focus on probable password candidates.

Assuming that human-created passwords are unlikely to be random combi-
nations of characters, but rather follow a natural distribution stemming from
the mother language of the user, password generation can be seen as a natural
language processing (NLP) problem. Therefore statistical methods can be used
to model the letter or character distribution of existing password lists and then
sample new passwords. These kinds of methods aim for a high accuracy at a
smaller amount of generated password candidates.

A method based on Markov modelling was introduced by Narayan et al.
in 2005 [12]. The authors model the password distribution using a markovian
assumption. Markov based NLP models predict which characters are likely to
follow another character. Markov models intended for password guessing usually
considers the last n − 1 characters, so called n-gram Markov model. Then they
modify sampled passwords by applying predefined regular expressions, i.e. the
mangling rules. Currently Hashcat and JTR include such markovian models as
an additional attack mode.

Building on Narayan et al.’s method, Dürmuth et al. introduced OMEN [6],
which specifically sorts the generated password candidates in order of decreas-
ing probability, something the original method was not capable of. A more gen-
eral improvement of markovian models using neural networks was introduced by
Melchier et al. [10]. Weir et al. [17] introduce a method that learns word mangling
rules from existing password lists based on probabilistic context-free grammars
(PCFG), a method stemming from NLP. They learn template structures of pass-
words by finding common and frequent patterns in clear text password leaks. For
example, ‘L4D8S1’ would describe all passwords consisting of 4 lowercase letters
followed by 8 digits and a single special character.

A semantic extension of Weir et al.’s PCFG was introduced as Semantic
Password Guesser by Veras et al. [14]. They combine PCFGs with Wordnet [11]
to enhance their grammars with semantic meaning. Their structures then use
overarching semantic categories of words, i.e. umbrella terms instead of defin-
ing characters and numbers. These can then be used to describe the string of
characters that is supposed to be placed at a certain part of a generated pass-
word candidate. An example base structure would be ‘[sport][city][special]’ and
a password generated from this could be ‘footballhamburg?’.

The semantic password generator is the most related approach to our method,
but there are two major differences: First, they do not generate candidates based
on words not present in the training data. Second, because their method is based
on a hierarchical tree structure, they only consider a single context per base word.
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For example, while the word “apple” would probably be categorized as a “fruit”,
it is also semantically similar to “tech companies”.

In a further study from 2021 [15] the authors updated their method and
investigated the semantic differences of commonly used password leaks. They
found that semantic patterns found in some leaks correspond to the context of
these leaks, i.e. the demographics of users of a forum or the general subject of
the website the passwords were leaked from.

More recently, deep learning methods were introduced in order to depend
less on strong assumptions about the word mangling rules that form passwords.
These methods often use deep generative models and are trained on password
lists to model the probabilistic space of passwords and can generate new pass-
words directly without applying rules.

An example of a deep generative model for password guessing is Pass-
wordGAN [9]. This method uses a generative adversarial network, specifically a
Wasserstein GAN [8] to generate large amounts of password candidates. In the
course of their research, the authors found that the amount of candidates that
need to be generated to reach similar or better results is significantly larger than
those needed for statistical methods.

A review of other deep generative model architectures for password guessing
was compiled by Biesner et al. in 2020 [2].

Fig. 1. Graphical illustration of the five steps of generating new password candidates.

3 Semantic Password Guessing

In this section, we describe our method and the procedures used to generate
and sort a new candidate list for password guessing based on a well focused
password list stemming from a specific peer group. The main focus of our method
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lies on the semantic context of the base words extracted from the given list.
Deploying word embeddings, we derive new base words that are semantically
similar. In this context, a base word is a substring of characters that is included
in a password and has some kind of semantic meaning and cannot be broken
down without losing its meaning. For example, the German city name “Berlin”
would be considered a base word for passwords like “berlin123”, “BeRl1naudi”
as well as simply “Berlin”.

3.1 Generation of New Password Candidates

Under the assumption that base words used by a specific clientele or distinct
group of people are semantically similar, we use pretrained word embedding
models to exploit these semantic similarities. These models enable us to find
similar words to expand the given password list with previously unseen vocabu-
lary. Word embeddings are a popular method from natural language processing
and allow for words and other character strings to be mapped into a high dimen-
sional vector space in order to be used in downstream tasks [1,16].

The goal is that semantically similar words are placed closely together accord-
ing to some distance or similarity measure. For example, as euclidean distance is
known for its adverse behavior in high dimensions, the cosine similarity is a pop-
ular choice when working with these high dimensional vectors. To obtain such a
vector space, large-scale text corpora are processed. The resulting embedding is
a vectorized representation of every single word in the training’s corpora, where
we can assume that semantically similar words are also similar in the vector
space.

For the current version of SePass we use state of the art pretrained word
embedding models from the FastText [3] toolkit. These models are available in
157 different languages [7] and are light-weight, extensive and publicly available1.
We use the 10 most relevant European languages based on general usage and
leaks that we analyzed. Those languages are: English, German, French, Italian,
Spanish, Portuguese, Turkish, Dutch, Finnish.

In addition to finding new base words using word embeddings, we need to
generate actual password candidates from these novel base words using a set
of word mangling rules. These rules are simple functions that transform a base
word in a step-by-step manner into a password candidate. Examples for such
functions can be adding, removing or replacing certain characters as well as
changing single characters to upper or lower case and much more2. The rule
set [PREPEND(x), APPEND(123), LOWER(), REPLACE(s, $)] for example
would transform the input word Password into xpa$$word123.

The following five steps, also summarized in Fig. 1, describe how the proposed
method takes a list of known passwords and generates additional candidates and
rule sets for each word embedding.

1 https://fasttext.cc/docs/en/crawl-vectors.html.
2 https://hashcat.net/wiki/doku.php?id=rule based attack.

https://fasttext.cc/docs/en/crawl-vectors.html
https://hashcat.net/wiki/doku.php?id=rule_based_attack
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Step 1: Extraction of the Base Words Using a given word list P of known pass-
words, we extract base words from each password p, such that the list of base
words for p is of minimal length and covers as many of the password as possi-
ble. This is done in two steps using the vocabulary V of a pretrained embedding
model e. First, a decomposition into sub-words of p belonging to V is determined
recursively. Hereby, the best decomposition is characterized by a minimum num-
ber of unused letters in p. In case of a tie, we prefer the solution with less base
words. For example, for the password ‘blueberry123a’ the solution [‘blueberry’,
‘123’] wins against the solution [‘blue’, ‘berry’, ‘123’], each with a single unused
character (‘a’) in the password. If no base words were detected for p, we addi-
tionally try to find non-obvious base words using the existing rulegen algorithm
from PACK3. For example, to find the base words of passwords containing so
called leet speak, i.e. replacements of characters with similar looking numbers
such as ‘passw0rd’4.

Step 2: Decomposition into Segments. For every password p, for which base
words were found in Step 1, the password is split into multiple segments. Each
segment contains exactly one base word. With the exception of the last segment
of p, segments contain only the unmatched letters to the left of the base word.
For example, the password berlin?audi123 would be split into the segments
berlin and ?audi123.

Step 3: Extraction of a Rule Set. Using existing methods from rulegen, based on
all passwords in the source list P , a set of word mangling rules is derived such
that all individual segments (from Step 2) can be created from the extracted
base words (from Step 1). This is achieved by using the Levenshtein distance
between the base words and the corresponding segments, e.g. Levenshtein dis-
tance (bberlin, berlin) = 1. We finally sort these rules by their occurrence
frequency in P .

Step 4: Semantic Expansion. This fourth step is the cornerstone of our method
and also where it deviates the most when compared to previous work. Using a
pretrained word embedding – or embeddings if multiple languages or corpora are
used – we collect for each base word in the source password list the k most similar
words in the vocabulary of the word embedding using a k-nearest neighbor query.
Note, that k is not a hyperparameter. Instead k is calculated based on the number
of password candidates that are intended to be generated.

Given, the number of pretrained models |E|, the intended number of password
candidates n overall, the intended number of password candidates for a single
embedding ne = n

|E| , the number of rules generated in Step 3 |R|, the hyper
parameter relevant ruleset ratio rr, and the list of extracted base words BWold,
we first calculate the amount of base words we want to mangle

3 https://github.com/iphelix/pack.
4 https://github.com/hashcat/hashcat/blob/master/rules/unix-ninja-leetspeak.rule.

https://github.com/iphelix/pack
https://github.com/hashcat/hashcat/blob/master/rules/unix-ninja-leetspeak.rule
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|BW| =
ne

rr · |R| (1)

and then

k =
|BW|

|BWold| (2)

Step 5: Generating New Password Candidates. Finally, by applying every rule
from R to every word of the expanded base words list, we create the final list of
new password candidates.

3.2 Sorting of the Password Candidates

Depending on the chosen initial word list and the parameters for the embedding,
the newly generated list can grow in size considerably. This requires sorting the
candidates based on the likeliness of being a real password – especially in cases
where the time to guess a password is limited and does not allow trying out
a large number of passwords. When executing the five steps described above,
the candidate additionally is paired with a password score pws. The higher this
score, the more suitable a candidate is considered to be. In accordance with the
candidate being a combination of a base word and a rule, the password score is
also made up of a word score ws and a rule score rs as shown in Eq. 3. The value
of the rule score is simply determined by the relative occurrence of the specific
rule in the total set of rules. The word score is calculated with the help of the
embedding model. For every original base word we calculate how often a specific
word w is present in the k-neighbors by using the same methods mentioned
above. The sum of all these distances of the base words BW to w is used as word
score for w. The formula for the calculation of the word score is shown in Eq. 4.

pws = ws · rs (3)

ws(w) =
|BWold|∑

i=0

{
CosΘ(BWi, w), if w ∈ knn(BWi)
0, otherwise

(4)

4 Test Bed

In order to evaluate SePass and compare it with the current state-of-the-art, we
performed a series of experiments. We primarily evaluate the use case of gen-
erating a list of novel password candidates from a relatively small training set,
i.e., a highly focused leak, for example originating from a darknet or an extrem-
ist forum. As mentioned in Sect. 2, most other methods are based on learning
candidates from large general password leaks and then testing the generated
candidate lists on other smaller leaks. To capture the characteristics of this real
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application scenario, we opt for a different evaluation scheme, where we only use
a small password list, which we split into a train and a test sets. We trained and
evaluated all models on a compute server running Ubuntu 20.04.3 LTS with 62
GB of RAM and an AMD Ryzen 7 3700X 8-Core Processor.

4.1 Data Sets

We conducted all our experiments on two different datasets: a small real world list
which is not yet widely available and is therefore only used for evaluation purposes
and – for reproducibility purposes – we generated a second synthetic list which is a
small excerpt of rockyou [5]. This synthetic list shares statistical similarities with
the first list w.r.t. average length of the passwords, used languages and used rules.
Both lists have the same length of entries, i.e., 66.490 passwords.

4.2 Compared Methods

We compared SePass to the following password prediction methods that offer
publicly available code repositories and represent the different existing paradigms
of password guessing.

Hashcat Best64. As a baseline we used hashcat with a basic rule set consisting
of 64 word mangling rules that were created in a competition held by the
community of hashcat5. These handcrafted rules are very simple instructions,
such as appending single digits or letters, reversing the order of the password
or replacing certain characters, for example, e with 3 or i with 1.

OMEN. In order to represent the various markovian methods we utilized the
original implementation of OMEN6. OMEN is one of the best performing
probabilistic password guessers, meaning it uses candidate occurrence fre-
quencies to output the most likely passwords. It was written in C, making it
extremely fast compared with its competitors.

PCFG. We picked Probabilistic Context-Free Grammars (PCFG) as a repre-
sentative method based on statistical modeling. We used the pcfg cracker
repository7, which was developed by one of the authors of the original publi-
cation [17]. As the authors mention in the notes on their repository, the tool
is actually aimed at a similar use case as ours.

Semantic PCFG. We chose this method because it is aimed at using semantic
connections between words and, as such, follows a related concept to our
approach. The authors have published their code on a git repository8.

PassGan. We chose PassGan [9] as one of the most well-known deep learning
approaches for password generation. While we could not find a code repository
from the original authors, we used a re-implementation9 which contains a
pretrained version of PassGan.

5 https://github.com/hashcat/hashcat/blob/master/rules/best64.rule.
6 https://github.com/RUB-SysSec/OMEN/blob/master/README.md.
7 https://github.com/lakiw/pcfg cracker.
8 https://github.com/vialab/semantic-guesser.
9 https://github.com/brannondorsey/PassGAN.

https://github.com/hashcat/hashcat/blob/master/rules/best64.rule
https://github.com/RUB-SysSec/OMEN/blob/master/README.md
https://github.com/lakiw/pcfg_cracker
https://github.com/vialab/semantic-guesser
https://github.com/brannondorsey/PassGAN
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4.3 Experimental Set-Up and Evaluation Metric

We evaluated the accuracy of the competitors by splitting both our real and
synthetic password lists into a training and a test set. The test sets each contain
a random sample of 20% of the full lists. We applied each method to the training
sets and generated a password candidate list each. We then compared these lists
to our test sets. For PassGan we did not train the model ourselves, but instead
opted for the pretrained version that is included in the repository and was trained
on rockyou [4], because our training sets would be magnitudes too small for
PassGAN to be reasonably trained on. Still, this is a more than fair comparison,
since both our training and test sets heavily overlap with the rockyou leak. We
used the trained models to generate a list of 50 million password candidates to
simulate a guessing attack on our test lists.

As usual in related work, our evaluation metric is the percentage of hits on
the test set after n guesses, called hits@n which is defined as

hits@n =
|P 0...n

m ∩ Ptest|
|Ptest| ,

where Pm denotes the set of password candidates generated by a single method m
and Ptest denotes the attacked test set. We report the results of the competitors
for n = 50 million minus the number of duplicates in Table 1. In addition, we also
report the hits@n value of the competitors in Figs. 2a and 2b, which illustrate
how quickly the corresponding methods may be able to successfully finish the
attack.

Table 1. Prediction accuracy (hits@n) and number of unique passwords generated
after duplicate removal.

Method Hits@n in %
on synthetic data

Hits@n in %
on real world data

# of unique
candidates generated

Ours 36.59 34.90 50 · 106

hashcat-Best64 17.15 3, 199, 660

OMEN 32.35 50 · 106

PCFG 36.52 39.39 50 · 106

Semantic PCFG 20.22 24, 903, 549

PassGAN 15.27 24, 761, 815

Ours + PCFG 44.25 45.33 50 · 106

5 Results and Discussion

In this section, we compare the results for the test bed and present further
experiments performed to derive more insights into the strengths and weaknesses
of the individual methods.
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(a) synthetic data (b) real data

Fig. 2. Percentage of hits (hits@n) with increasing number of guesses n

5.1 Accuracy Results

For reproduction purposes, the implementation of the experiments on the syn-
thetic data set is publicly available10. We decided to only use the methods for
the real data set that performed best on the synthetic list. Table 1 displays the
hits@n results. In Figs. 2a and 2b the hits@n are plotted as functions over n
guesses, i.e., the effective time consumptions.

Hashcat Best64. The hashcat Best64 rules seem to be a fitting baseline: while the
method only produces a small number of unique candidates (e.g. 3.2 million on
our synthetic data, i.e., the amount of passwords times 64 rules) a huge number
of these are hits (17.5% correct guesses on the test set – see Table 1). Considering
this method is based on applying fairly simple rules to mangle the base words
from the training set, we can conclude that at least 17.5% of the passwords in our
test set are rather trivially constructed. The graphs in Fig. 2a seem to indicate
that our method, OMEN and PCFG are able to guess these trivial passwords at
a faster rate then hashcat, while Semantic PCFG and PassGAN are slower, but
do or will eventually surpass this threshold as well.

PassGAN. PassGan performs the worst of all methods tested on the synthetic
data set, as seen in Fig. 2a. This is of particular interest since the pretrained
PassGan model was expected to have an advantage on our synthetic data set
since PassGan was trained on the rockyou leak and our synthetic data set consists
of mostly passwords found in rockyou. This might be explained by the fact that
PassGan and similar GPU based methods are designed to generate exorbitantly
huge amounts of guesses. Therefore, as the authors state in the PassGAN paper,
it might take a lot more guesses before it catches up with the other methods.
Combined with the amount of duplicates this method produces, we have to
concede that PassGAN does not fit our use case, which is extrapolating from a
small, focused vocabulary. Another explanation might be, that it does not guess

10 https://github.com/Knuust/SePass.

https://github.com/Knuust/SePass
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passwords that stem purely from rockyou and it might even be at a disadvantage
since it was not trained on our specific data set. And lastly, we used a 3rd
party reimplementation of PassGan, since no implementation from the authors
is available, which might perform differently than originally presented. Therefore,
as a consequence of the poor performance and not being suitable for our use case,
we exclude PassGAN from experiments on the real dataset.

Semantic PCFG. The Semantic PCFG password guesser seems to be performing
better than PassGAN, but not as well as the original PCFG. This is surprising
since the semantic PCFG method is based upon the original PCFG method. We
assume the reason for this performance is comparable to the problems found
with PassGAN.

SePass, OMEN and PCFG. The best performing methods are OMEN, PCFG
and our own method SePass. They all result in a similar percentage of hits at
50 million guesses, with our method SePass and PCFG coming out on top as
seen in Table 1 and Fig. 2a. As mentioned earlier this was to be expected since
all three methods aim at a similar use case of giving more weight to accuracy in
less guesses rather than generating a large amount of password candidates in a
short time. One advantage specifically concerning the implementation of PCFG
and OMEN is that both actually come with a few a priori rules, similiar to the
Best64 concept. For example, these rules include adding commonly used dates
and keyboard walks (qwerty, etc.). These are applied additionally to enhance the
base words and therefore lead to an enhanced performance for both OMEN and
PCFG. PCFG and OMEN perform similar in Fig. 2a. This can also be explained
by the fact that the PCFG implementation is based on the OMEN repository.

Considering these results, we only ran our method and the best other method,
i.e., PCFG, on the real data set. The results can be found in Table 1 and Fig. 2b.
It is evident, that when testing on this real world data set, PCFG outperforms
SePass by a small percentage. To show that our method still provides additional
benefit, we conducted an additional test, where we combined both lists proposed
by SePass and PCFG.

Combination. We combined both lists by zipping them together, i.e. by taking
the first element of each, then the second, etc., which results in a list with double
the length. Then we cut this down to 50 million guesses in order to compare
them to the other methods. We can observe that the combination does indeed
perform even better than the individual methods on both the synthetic and the
real dataset and are able to crack almost 50% of each test set. This is expected
since our method adds the capability of using novel base words but can not
generate the same amount of candidates using the mangling rules and the base
words from the training set as PCFG does in 50 million guesses. This leads us
to the conclusion that for a future version of our tool we should build upon the
mangling rules of PCFG or other competitors and combine those with the novel
base words found using our proposed approach.
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5.2 Unseen Base Words

The main motivation behind our work was that existing methods, while very
good at applying mangling rules to base words and creating passwords from
existing lists, are generally not able to guess completely new base words without
either using very specific handcrafted dictionaries or, at least partially, brute
forcing passwords. We therefore investigated if and how well competitors find
such new base words. Formally, given a vocabulary universe V , we are looking for
base words Bnew ⊆ V consisting of all words that are included in the passwords
from the test set Btest, but can not be found in the corresponding training set,
Btrain, i.e., Bnew = Btest − Btrain.

Firstly, in order to generate an extensive vocabulary universe, we collected
the union of all vocabularies from the 10 language embedding models that we
used in our method. This resulted in a set of exactly 12, 953, 300 unique base
words. This is about 7 million words less than expected because while each
model has a vocabulary of 2 million words, often times languages overlap and
use the same terms. Because the models were trained on very large internet cor-
pora the vocabularies can also include artifacts, e.g. very long words or numbers
and special characters that can include outliers and errors. In order to investi-
gate only natural words for the following experiments on novel base words, we
removed everything from these vocabularies that includes any digits or other
special characters.

Next, we searched for each word found in our vocabulary universe V in both
the train and test set in both our password lists. We then subtracted the list
of base words found in the train set from the ones found in the test set. This
resulted in 13, 428 novel base words, i.e. a set of base words that are used only
in the test set but cannot be found in the training set.

Afterwards, we checked how many of these test base words can be found by
our method and PCFG. We therefore look at the set of hits for each method,
i.e. the intersection between the list of password candidates and the test set. We
then search for each base word in these two sets and build the intersection with
the set of base words contained in Btest. We found that SePass found 2, 439 more
novel base words than PCFG (which is almost 6 times more).

This demonstrates that SePass is able to extrapolate from the base words
and significantly outperforms PCFG in this regard. On the other hand PCFG
is also able to find a few novel base words. When taking a closer look at the
new words that PCFG found, we can see that these often are random combina-
tions of existing words or predetermined rules, for example qwertyuiop which
is explicitly included in the PCFG repository as a keyboard walk. In order
to validate the performance of SePass, we found the corresponding passwords
these novel base words were used for. This resulted in a list of 5, 296 passwords,
which consequently contain base words that are not included in the train set.
The amount of passwords is lower than the amount of novel base words, since a
password can include multiple base words.

We then calculated the percentage of novel passwords found by each method.
The result is collected in a bar diagram in Fig. 3 for both the synthetic dataset
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(a) % guessed on synthetic data (b) % guessed on synthetic data

Fig. 3. Bar plots showing the percentages of passwords found in the synthetic (left)
and real (right) test set, that include base words not found in the train set for each
method. The filled part of each bar shows the percentage found exclusively by the
corresponding method.

(a) and the real one (b). While the edge of each bar shows the percentage of
passwords found, the filled areas represent the passwords this method found
exclusively.

This means we see our expectations about SePass confirmed. Looking at the
synthetic dataset, not only did SePass guess more of these novel passwords over-
all, SePass also finds significantly more novel passwords than any other method.
Additionally, while PCFG performed better on the real dataset overall, SePass
guesses 6 times more exclusive novel passwords on this dataset as well. In gen-
eral, we can see that our method performs similarly well to related methods and
is able to guess a significant amount of unique passwords.

6 Conclusion

We introduced SePass, a novel password guessing algorithm. The foundation of
SePass are word embeddings which are used to identify new base words given
the vocabulary extracted from a list of passwords. After that, we applied the
rules extracted from the passwords list to the found base words to generate
password candidates that are semantically related to those found in the original
passwords list. SePass compares favourably with the known methods used in
this application field. It distinguishes itself from existing methods by being able
to exclusively generate more passwords containing novel base words than any
other method tested. We therefore conclude, that our tool, especially when used
in combination with other methods like PCFG, can reach a high percentage of
correctly guessed passwords, surpassing their individual scores.



42 M. Hünemörder et al.

References
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Abstract. Multi-hop reading comprehension requires the aggregation of
multiple evidence facts to answer complex natural language questions,
and the answer should be avoided when there is no answer. Training
a model that can handle such difficult tasks requires a large number
of data sets to support, but the labeling of data sets is very expensive
and time-consuming, so it is very important to explore reading com-
prehension models suitable for low data, and external data related to
large-scale tasks. It will also effectively improve the performance of the
model. This paper proposes a two-stage model with dynamically context-
enhanced method for multi-hop reading comprehension tasks under low
data called DeMRC. The first stage sentence filtering model filters the
top k sentences that are strongly related to the question, and the second
stage answer prediction model dynamically constructs the training set
every time during training to expand the data set, and uses sentences
selected by sentence filtering model as input to reduce the interference
of irrelevant sentences to the model during inference. In addition, the
self-training method is used to pseudo-label the external data and use it
as an auxiliary data set to improve the performance of the model. We
conducted experiments on the multi-hop reading comprehension data
set of the Chinese “CAIL 2020” Judicial Artificial Intelligence Challenge
Reading Comprehension Track and English cross-document level data set
called HotpotQA, which are 3.5% and 21.3% higher than the powerful
baseline model, showing the effectiveness of the method.

Keywords: Data augmentation · Machine reading comprehension ·
Self training · Multi-hot QA

1 Introduction

Machine reading comprehension tasks require machines to answer questions
through a given context and can be used in areas such as search engines and
intelligent assistants, to provide users with high-quality consulting services. With
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advances in large-scale pre-trained language models, some machine reading com-
prehension models have shown significant performance improvements on single-
hop machine reading comprehension data sets [1], but these models still lack
the ability to reason across multiple sentences [2]. Recent proposals of multi-
hop reading comprehension data sets such as WIKIHOP [3] and HotpotQA [4]
require models to be able to reason across multiple disjunctive sentences or doc-
uments. There are a number of works based on it, all use pre-trained models [5,6]
as feature extractors, then fine-tuned on a specific reading comprehension task.
This approach requires a large amount of data driven in the training process.
However, the process of labeling data in the real world is very time-consuming
and laborious, and in some domains there are not enough samples for labeling.

Focusing on multi-hop reading comprehension tasks in the low-dataset case,
this paper presents a dynamically context-enhanced multi-hop reading compre-
hension(DeMRC) approach on the Chinese CAIL 2020 reading comprehension
data set1 (see Fig. 1), and validates the method on HotpotQA data set, a cross-
document English multi-hop reading comprehension data set.

In our model, the input is dynamically updated to generate different con-
textual statements so as to perform contextual enhancement during training,
and the inference process directly uses the sentences filtered by the sentence fil-
tering model. In addition, the prediction of the supporting sentences no longer
uses the graph neural network to learn the correlation between sentences, but
is based on the improved Transformer mechanism. The reading comprehension
task proposed in CAIL 20192 is different from CAIL 2020 in that there is no
supporting sentence prediction subtask. We increase the generalization ability
of the model by learning external knowledge by using it as a external data set
through self-training.

The contributions of this paper can be summarized as follows:

1. We propose a dynamically context-enhanced multi-hop reading comprehen-
sion model (DeMRC) for low data on Chinese CAIL 2020 reading compre-
hension data set. The labeled data is better utilized for dynamic contextual
enhancement, and a sentence filtering model is designed to ensure the consis-
tency in the training and inference process.

2. We use unlabeled data sets from the same domain as external data sets and
generate pseudo-labels on DeMRC model using a self-training approach for
data augmentation, enhancing the generalization ability of the model.

3. The method is validated on the English data set HotpotQA and compared
with other classical models on this data set to demonstrate the effectiveness
and generality.

1 http://cail.cipsc.org.cn/instruction.html .
2 http://cail.cipsc.org.cn:2019/ .

http://cail.cipsc.org.cn/instruction.html
http://cail.cipsc.org.cn:2019/
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Fig. 1. A sample from CAIL 2020 reading comprehension data set. The input is a
question and a legal decision document, the output is answer and supporting sentences.

2 Related Work

Early reading comprehension systems were small and had domain-specific limi-
tations that did not allow for good applications, when the main approaches to
address reading comprehension were rule-based or machine learning based which
did not have good performance. With the superior performance of deep learning
in contextual information acquisition and large benchmark data sets were pro-
posed such as SQuAD [1], CNN & Daily Mail [7], many reading comprehension
models were generated [5,8], and neural machine reading comprehension systems
became the current research hotspots in academia and industry.

The proposed multi-hop reading comprehension data sets such as WIKIHOP
[3] and HotpotQA [4] require that reading comprehension systems can perform
answer inference across multiple sentences or documents, while HotpotQA [4]
also expects models to provide supporting sentences that participate in answer
inference to increase the interpretability of the model. Most approaches rely on
graph neural networks to obtain the interrelationships between sentences [9,10].
Tu et al. [11] extended the entity graph to a heterogeneous graph by introducing
document nodes and query nodes. However, C2Freader [12] demonstrated that
graph structure is not necessary for multi-hop inference and that removing the
entire graph structure does not have bad effects, and we did not use graph
structures in the design of our model.

The original machine reading comprehension task assumes that the answer is
always in the given context, however, this does not correspond to reality. 50,000
unanswerable questions were added to SQuAD 2.0, and the paper [13] sets an
answer threshold to determine whether a question is answerable; tan et al. [14]
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add a padding position to the original passage and reject to give an answer when
the model predicted that position; SAE [9] use a multi-task learning approach
to extract answers. Our model alse use multi-task learning approach by adding
an answer type prediction subject and setting it as a “yes/no/unknown/span”
four-class task.

Most current multi-hop reading comprehension tasks are supported by large
amounts of data, and the low-data case has rarely been studied. CAIL 2020
reading comprehension track (See footnotee 1) presents a multi-hop reading
comprehension task for the low-data case, where direct use of previous read-
ing comprehension models does not yield good results. Data augmentation is
a good alternative for the low-data case. However, current data augmentation
methods in the text domain focus on text classification tasks. EDA [15] pro-
duces good results when the amount of text is low. Back-translation [16] based
approaches tend to have good performance in multiple tasks, but require calls to
API tools and the translation process is not efficient. In addition, textual mixed
data augmentation [17], pre-training based contextual information enhancement
[18,19], and text generation [20] have been used in classification tasks, but no
paper has demonstrated significant results in reading comprehension tasks. Slid-
ing window [21], as a means of data augmentation for reading comprehension
tasks, does not guarantee that all supporting sentences are within the window,
and it is not suitable for multi-hop cases. The paper [22] used pseudo-labeling
of unlabeled data to expand the data set on the computer vision task with
good results, and this paper extends it to the multi-hop reading comprehension
domain by pseudo-labeling the supporting sentences to increase the data set.

3 Methodology

Our proposed dynamically context-enhanced model (DeMRC) under low data
is a two-stage model. The first stage is a sentence filtering model to ensure
consistency of DeMRC’s input in the training and inference process. The second
stage is an answer prediction model, which is trained with multi-task learning to
complete the work of supporting sentence prediction as well as answer prediction.
We use the supporting sentence superset as the input to DeMRC model, and
there is a difference between the training and inference process. In the training
process we propose a dynamically context-enhanced method to random generate
it, the process does not require the involvement of the first-stage model. The
sentences selected by the first-stage model are used as superset of the supporting
sentences during inference to ensure consistency in the training and inference.
Meanwhile, we use self-training method to introduce external data to expand the
data set for optimization, and the overall flow of the model is shown in Fig. 2.
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Fig. 2. Diagram of the proposed DeMRC model. We first train the sentence filtering
model and the answer prediction model separately on the labeled data, followed by
data augmentation using the self-training method of pseudo-labeling the unlabeled
data, and finally the inference process of the model.

3.1 Sentence Filtering Model

The superset of supporting sentences in DeMRC is explicitly constructed from
two parts, supporting sentences and other sentences. However, supporting sen-
tences are unknown during model inference, which will lead to inconsistency in
the input of the answer prediction model during training and inference. Mean-
while, the documents of CAIL 2020 reading comprehension data set are all legal
judgment documents, considering that the legal documents are too long to be
directly input to the model, and the interference of irrelevant document state-
ments may increase the difficulty of model learning and reduce the model per-
formance.

We designed a sentence filtering model (see Fig. 3) to reduce the interference
information passed to the downstream answer prediction model by selecting the
top k most relevant sentences from the sentences of the legal decision document.
For each data, we divide the document into sentences. For every sentence, we
generate an input to feed through BERT [5] by concatenating “[CLS]” + ques-
tion + “[SEP]” + sentence + “[SEP]”. Then we use the vector [CLS] for each
question/sentence pair as the global information. Then all vectors are stitched
together and the linear layer is interacted for sentence features after first using
the sigmoid function to obtain the probability distribution and then using the
binary cross entropy for sequence labeling classification:
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L = − 1
n

n∑

i=1

t∑

c=1

yiclog(pic) (1)

where c denotes the class information, t is the number of classes, which corre-
sponds to {0, 1} two classes in this model, and n denotes the number of sentences.
The k sentences with the largest correlation scores are taken for further inference
process of the answer.

Fig. 3. Diagram of sentence filtering model.

3.2 Answer Prediction Model

The answer prediction model (see Fig. 4) is built based on the idea of multi-
task learning and consists of three subtasks: answer category prediction, answer
extraction, and supporting sentence prediction, which are learned as a 4-class
classification, extraction, and 2-class classification task, respectively.

3.2.1 Input Layer
Since all sentences of the documents other than the supporting sentences are
noisy for answering the questions, we propose a dynamically context-enhanced
method to expand the data set. Specifically, the contexts of each document in
the training phase are composed of the supporting sentences and a part of the
sentences dynamically randomly selected from the remaining sentences. This
dynamically expands the data set by obtaining a supporting sentence superset
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Fig. 4. Diagram of answer prediction model.

of different sentences each time. The sentences screened by the filtering model
are directly used as the supporting sentence superset in the inference phase of
the model to ensure the consistency to the answer prediction model during model
training and inference. We use the superset as input.

3.2.2 Encoding Layer
The model takes the question and sentence splicing as input, where Question
denotes the question, Contexti denotes the i-th sentence of input, then obtains
the overall feature vector cls and the features of the question Q ∈ Rm×d, the
sentence C ∈ Rl×d, where d is the output dimension of the pre-trained model,
m is the sentence length, and l is the length sum of all sentences.

cls,Q,C = RoBERTa([CLS] + Question + ... + Contexti + ... + [SEP ]) (2)

Since the features encoded by the pre-trained model are more concerned with
the connection between Q and C, in order to explore their respective internal
information, this paper recodes them using Transformer to obtain the recoded
question feature Q′ and the context feature C ′:

Q′, C ′ = Transformer(Q,C) (3)
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3.2.3 Answer Prediction
The answer prediction part first performs the answer category prediction,
directly using the cls for the 4-class classification with a weight penalty τ for
each class. If the answer is in the context then extracted from the document. The
extraction task first further finds the contextual information using bi-directional
attention (BiDAF-Attention) [8], get the contextual vector C1 with the question
features, and reduces the dimension of Q′ based on an attentive pooling mech-
anism. Then it is weighted and summed in each dimension of C1 together with
cls, and the output is changed to 2-dimensions using a MLP to predict the start
and end position of the answer separately:

ŷtype = softmax(Linear(cls)/τ) ∈ R1×4 (4)

C1 = BiDAF − Attention(C ′, Q′) (5)

Q1 = softmax(w1 · (tanh(w2 · Q′))) × Q′ ∈ R1×d (6)

C2 = Norm(w3 · cls + w4 · Q1 + w3 · C1) ∈ Rl timesd (7)

ŷans = MLP (C2) ∈ Rl times2 (8)

where w1,w2,w3 and w4 are the weights, tanh is the activation function, and
Norm is the normalization operation. Since the answers may have errors such
as end position before start position, maximum value not in the sentence, exceed-
ing the maximum answer length limit, etc., we take a candidate value in each
dimension when taking the final answer, then match each start and end position
pair, add the pairs that matche the answer to the candidate answer, and take
the one with the maximum score as the final answer.

3.2.4 Supporting Sentence Prediction
Multi-hop inference requires reasoning across multiple sentences. The current
mainstream practices all use graph neural networks to construct the connections
between sentences or entities, but the graph construction process is complex and
requires a lot of prior knowledge.

The paper [11] points out that both graph structure and adjacency matrix
are task-related prior knowledge, while Transformer [23] itself is able to learn
the relationship between sentences, so we use an improved Transformer based
on the paper [24,25] to recode the sentence vector to construct the relationship
of them (see Fig. 5). The first improvement is to increase the dimension between
q and k, which can increase the representation of information when computing
attention and alleviate the low-rank problem of original self-attention [24]. The
second is that the individual heads of the original Transformer [23] are isolated
from each other, and we use a parameter matrix to superimpose the information



DeMRC: Dynamically Enhanced Multi-hop Reading Comprehension Model 51

Fig. 5. Diagram of contextual features.

of each sentence obtained from the recoding downscaling, performing a fusion of
features between sentences, so that the information can be better expressed.

SFeature = W · AttentionPooling(C ′, cls,Q′) (9)

ŷsf = sigmoid(Linear(SFeature)) (10)

The weight W is initialized to the same constant matrix so that the initial
phase of learning has the same attention for each sentence. Then the contextual
features obtained by fusion are converted to the output ŷsf ∈ Rn×1 using a fully
connected layer, those above a threshold value are judged as support sentences.

3.2.5 Loss Function
The loss function L is composed of three loss functions for the answer, span, and
supporting sentence prediction:

L = α · CE(ŷtype, ytype) + β · BCE(ŷsf , ysf ) + Lans (11)

Lans =
1
2
(CE(ŷans[:, 0], ystart) + CE(ŷans[:, 1], yend)) (12)

CE denotes the cross-entropy loss, and BCE denotes the cross-entropy loss.
Lansdenotes the loss function of the answer, the start and end position are
calculated cross-entropy loss separately, take the average value and add to the
whole loss calculation. Since the learning difficulty of each task is different, two
weights α and β are added to control the different subtasks.

3.3 Self-training Augmentation Based on External Data

Compared to labeled data, domain-related and task-related unlabeled data are
much less difficult to obtain, and these data often contain knowledge that can
help the model learn. Self-training augmentation is a method to expand the data
set using external unlabeled data (see Fig. 6):

The inputs are the labeled data set D1 and the external data set D2 without
support sentence labels, using D1 to train n teacher models T = {t1, t2, ..., ti,
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Fig. 6. Diagram of Self training.

..., tn}, and use the teacher model T to jointly generate the pseudo-labeled data
set D′

2 on D2. Then use D1 to train n student models S = {s1, s2, ..., si, ..., sn}
with D′

2, and return the student model S to the teacher T , to iterate this pro-
cess to generate new pseudo-labeled data to train students, enhancing the task
information of the model by continuous iteration. The student uses the same
size network as the teacher, and the teacher does not add noise to make the gen-
erated pseudo-labeled more quasi-group. However, the learning process of the
student increases the learning difficulty of the student model by adding dropout
to the model to add noise, encouraging the student to surpass the teacher.

4 Experiments

4.1 Data Set

CAIL 2020 (See footnotee 1) reading comprehension data set is a Chinese judi-
cial domain data set with a training set of about 5100 samples, covering three
domains: civil, criminal, and administrative. It has a validation set and a test
set of about 1900 and 2600 samples. The external data set CJRC, proposed
by CAIL 2019 (See footnotee 2), contains two domains, criminal and civil, with
40,000 questions in the training set and about 5,000 questions each in the valida-
tion and test sets. HotpotQA [4] is an english document-level multi-hop reading
comprehension data set containing about 110,000 question-answer pairs. Both
the validation and test sets contain 7405 samples, each containing 10 unrelated
documents. Since the usage scenario in this paper is low data, we only use about
10% of the randomly selected labeled data in the training, and remove the sup-
porting sentence labels from the remaining as external data set.

Both data sets have two tasks: answer prediction and supporting sentence
prediction. The models are evaluated based on F1 scores of the two tasks, while
using joint F1 scores on these two tasks as the overall performance metrics.
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Table 1. Results of different Model on the CAIL 2020 and HotpotQA, where “DeMRC”
denotes the structure of our model, “−dl” denotes the removal of the dynamically
context-enhanced mechanism, and “+sl” denotes the inclusion of the self-training.

Data set Model F1ans F1sup F1joint

CAIL 2020 Baseline 0.759 0.64 0.516

DeMRC,-dl 0.768 0.654 0.529

DeMRC 0.76 0.671 0.536

DeMRC,+sl 0.786 0.669 0.551

HotpotQA Baseline 0.650 0.617 0.415

DeMRC,-dl 0.668 0.828 0.563

DeMRC 0.76 0.671 0.536

DeMRC,+sl 0.786 0.669 0.551

4.2 Implementation Details

The experiments use the multi-task learning answer prediction model encoded by
the BERT model as the baseline model (Baseline). Since the test set is closed, we
divide the whole training set into 5 folds and experiment using cross-validation.

On CAIL 2020 reading comprehension data set, we use Chinese BERT [26]
to encode the question sentence pairs in the sentence filtering stage, and uses
the Chinese pre-trained RoBERTa [6] model in the answer prediction model, and
HotpotQA data set uses BERT [5] base for encoding. Adam optimizer is used by
default, and the warm up strategy is used, the weight decay parameter weight
delay is set to 0.01. To prevent overfitting, the training process is stopped early
if the model does not improve for 5 epochs in the validation set.

5 Results

The final results are shown in Table 1. Compared with the baseline model, our
model can bring 3.5% and 21.3% improvement, respectively, mainly in the sup-
porting sentence prediction.

Since the maximum number of supporting sentences per sample in CAIL
2020 is 8, and there are at most 47 sentences per document, we set k to 15 in the
experiment to ensure that all support sentences are recalled, with an accuracy
of 98.5%. In contrast, for HotpotQA, splicing the sentences of all documents
would result in many sentences not being in the supporting sentences, so the
final F1joint value is only 41.5%. The data set has only two documents per
problem, and the correlation between the documents is weak, so we use a filtering
model to filter out the candidate documents to reduce the interference from
irrelevant paragraphs, which has the same structure as the sentence filtering
model mentioned in Sect. 3.1, except that the input becomes each document
and the N most relevant documents to the problem are obtained. To be able
to input all relevant documents into the answer prediction model, we take N
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Table 2. Comparative experimental results of the HotpotQA data set.

Model F1ans F1sup F1joint

DFGN 0.568 0.775 0.467

HGN 0.539 0.534 0.440

SAE 0.626 0.820 0.538

DeMRC 0.672 0.844 0.577

Table 3. Results of contextual feature fusion. C indicates no feature fusion; CLS +C
approach expands the CLS to the same dimension as the contextual features, then
adds them together; Q + C uses bidirectional attention [8] to learn the interaction
between questions and sentences.

Fusion Method EMans F1ans EMsup F1sup EMjoint F1joint

C 0.677 0.775 0.480 0.658 0.377 0.539

CLS + C 0.676 0.776 0.482 0.660 0.378 0.540

Q + C 0.677 0.778 0.483 0.666 0.376 0.543

CLS + Q + C 0.678 0.780 0.480 0.668 0.374 0.547

to be 3, and the filtering model achieves 100% accuracy. After that, our model
without the dynamic filtering mechanism (DeMRC,-dl) improved by 14.8% over
the benchmark.

After adding dynamic filtering, our model better learns the true combina-
tion of supporting sentences under different noise, and the F1joint improves
by 0.7% and 1.4% on the two data sets, respectively. Self-training technique
improved F1joint of the model by another 1.5% and 5.1%, respectively, and
showed larger improvements in each subtask. The improvement of F1joint was
more pronounced in the HotpotQA data set due to the larger number of external
data sets. On the other hand, in order to demonstrate that our model is more
suitable for low-data case, we compare it with other classical models of Hot-
potQA, such as SAE [9]. We replace the training set in the official open source
code with 10% of the data in the training set used, and keep the other parts of
the original model unchanged.

Table 2 shows the results on HotpotQA. The DeMRC model proposed in this
paper achieves a large improvement in all metrics with low data and surpasses
the best performing SAE [9] model, with a 3.9% improvement in the F1joint.
Obviously, the methods of filtering irrelevant documents can effectively improve
the performance of the supporting sentence subtask and simplify the training
process, which is especially suitable for low-data case. For the extraction subtask
in answer prediction model, how context is acquired is crucial. In this paper, we
disentangle the acquisition of contextual features in 3.2.3, explore which feature
fusion mechanisms have a greater impact on it, conduct experiments on the
CAIL 2020 reading comprehension data set, and use the EM(Exact Match) [1]
as an auxiliary indicator.
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Table 3 shows the results of contextual feature fusion. The experiments were
performed on a single-fold model. It can be seen that the improvement is weak
after incorporating only CLS, because the linear layer gives different weights to
the global features at each contextual location, but it does not bring substantial
improvement; while the acquisition of the answer relies heavily on the question
term, so the incorporation of the question vector into the original contextual
features achieves a 0.4% improvement; Incorporating both question and global
features into the context, CLS + Q + C, is more effective than adding the other
two components separately.

Table 4. Experimental results of self-training, where s1 denotes one iteration and sn
denotes and multiple iterations. “All” indicates that all external data were used and
“4000” indicates that 4000 data randomly and dynamically screened each time.

Num EMans F1ans EMsup F1sup EMjoint F1joint

sn All 0.667 0.773 0.454 0.663 0.357 0.541

4000 0.668 0.767 0.470 0.666 0.370 0.537

s1 All 0.657 0.762 0.450 0.660 0.345 0.535

4000 0.683 0.786 0.481 0.669 0.376 0.551

We conducted self-training experiments. As shown in Table 4, the multiple
iterations approach re-labeled the data from the 6th epoch onwards. The one-
iteration approach learns the student model only once. When training with all
pseudo-labeled data sets with the same number of training epochs, the multiple
iterations achieved a significant advantage, but the results were much worse than
one iteration after each dynamic screening of 4000 data, because the student
model was not sufficiently trained to cause the subsequent teacher model to tag
the unlabeled data with the wrong pseudo labeling. However, it is very time-
consuming to fully train student with a large amount of data each time, so it
is a good choice to randomly and dynamically filter some labeled data into the
training set in one iteration, which not only saves time but also makes the model
have better generalization ability.

6 Conclusion

In this paper, we take the multi-hop reading comprehension with low data as
main research problem, and study the problem of model overfitting due to insuf-
ficient data from two perspectives: maximizing the utilization of the data set
itself and augmentation using external knowledge. The input of training process
is dynamically adjusted to allow the model to learn under different noisy inter-
ference, and the inference process uses a sentence filtering model to reduce the
interference. We also expand the data set by pseudo-labeling external data to
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increase the generalization ability of the model. Experiments show the effective-
ness of our model for multi-hop reading comprehension tasks with low data. We
believe our model can be generalized to other natural language tasks, such as
named entity recognition and recommend system.
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Abstract. Language expressions without empathy can neither effec-
tively convey the expresser’s concern and goodwill, but also have a neg-
ative effect on the emotional and mental health of the recipients of the
information. Compared to harsh or aggressive expressions, expressions
with a high empathetic level can produce positive emotions. Unfortu-
nately, non-empathetic expressions are generated daily without inten-
tion, causing negative feelings. Existing work has achieved certain suc-
cess on style transfer, however, there are still limitations in language
style selection. This paper addresses this challenge by using a corpus
with multiple language styles. To this end, we employ ESTD to transfer
a lower-empathetic expression to a higher-empathic expression. Exper-
imental results on empathy style transfer task shows that our model
outperforms some currently available baseline methods.

Keywords: Text style transfer · Transformer · Natural language
processing · Empathy

1 Introduction

During the COVID-19 epidemic, nearly all the countries in the world have been
in a state of physical isolation and blockade for a long time. This results in
more communication happening via written expression on social media. Written
expressions that lack empathy can easily create emotional stress for the person
who receives such information. While long-term stress and negative emotions can
seriously affect people’s mental health. Empathy is a relatively broad concept,
which refers specifically to a person’s cognitive and emotional response to the
experiences of others [5]. Showing empathy, either in written expression or oral
expression plays a crucial role in relieving people from mental health issues; using
the appropriate level of empathy in a conversation is an essential way of friendly
and inclusive communication [24].

Usually, the definition of empathy is vague [9]. There are two main reasons
for the lack of a precise human definition of empathy and related phenomena.
First, as Shamasundar et al. [29] point out, empathy is highly related to the
process of interpersonal interaction, which involves a wide range of information
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 58–72, 2022.
https://doi.org/10.1007/978-3-031-22137-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22137-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-22137-8_5


ESTD: Empathy Style Transformer with Discriminative Mechanism 59

transfer in emotional, cognitive, and other domains. Therefore, the definition
perspective is broad and multifaceted. Second, the specific degree of empathy is
determined by the person’s environment, experience, and state of mind, which
means that empathy differs in each individual’s perception.

Many previous works that focus on the text style transfer and text rewrit-
ting [7,13,33,39,40]. Notably, Sharma et al. first identified empathy style transfer
as a major task [30]. Inspired by Sharma et al. [31], the criterion for discriminat-
ing the empathy level of a text proposed will be adopted in this work. Besides
that, the main task is text style transfer. Figure 1 is a simple example showing
that the rewritten sentence is highly semantically similar to the original one.
Given an utterance, (“Stop it, right now!”), we would like to transform it by
converting it to (“It’s okay to feel stuck. I’m here to help you.”). This makes the
original sentence more compassionate while showing more understanding and
encouragement. On the other hand, the rewritten sentence should show more
empathy by understanding the message and experience of the text while ensur-
ing that the rewritten sentence is semantically equivalent to the original one.

Fig. 1. Overview of the empathy rephrasing task. This task entails converting the
original utterance that does not have an empathic or a low empathy level into a sentence
with a high empathic expression. Given an utterance with low empathy, the task is to
rewrite the original sentence to have a higher empathy level. Any samples in this paper
were paraphrased to allow for anonymity [18].

As mentioned before, empathy is a complex and ambiguous concept. We must
understand what has been conveyed in the original statement and how to make
corresponding changes. Secondly, we must ensure that the rewritten sentences
maintain the same semantic meaning as the original sentences. Meanwhile, com-
mon confusion needs to be considered from various aspects, such as language
fluency and perplexity. In real situations, we can not rewrite each sentence sim-
ilarly. Rewriting each low-sympathy sentence as (“I am sorry to hear that.”)
cannot be applied in all cases. Finally, unlike traditional text style transfer,
empathic style transfer is often much more complex than word-level substitu-
tions. Traditional text style transfer tasks are usually based on the interchange
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of positive or negative words [4,13,33]. In brief, based on the original sentence,
the original style of words is replaced using the opposite tag words. In this way,
it can achieve the goal of style transfer. For example, to rewrite a negative sen-
tence (e.g., “It is bad.”) to a sentence with positive semantics, we only need
to replace (“bad”) to (“good”). However, this approach cannot be applied to
the empathic expression transformation. Take the example above; substituting
a word can change the semantics of a sentence dramatically [11].

To address the above challenges, we proposed ESTD, a new empathy trans-
former with a discriminative mechanism. Empathy Transformer, as a generator,
takes an utterance as input and generates an utterance with a higher empathy
level. In addition, we discriminated the generated sentences and gave an empa-
thy level to the output utterance by our discriminant model. We computed the
cosine similarity between the generated sentences and the original sentences. The
aim is to ensure that the generated sentences do not deviate from the original
meaning.

Our experiments demonstrate that the proposed model outperforms existing
baseline methods in the task of empathic transfer in terms of perplexity, empathy
level, and cosine similarity. We believe our method and findings are a crucial step
in establishing a friendly and inclusive online communication environment while
furthering the development of a mental health platform. This work is one of
the artificial intelligence’s critical roles in human mental health [23]. The main
contributions of this work include:

– We propose a transformer-based empathic expression converter with a dis-
criminative mechanism (ESTD).

– ESTD is conceptually easy to understand and empirically powerful. ESTD
improved the empathy level than other baseline models (+0.16 absolute
improvement). It also reduces the perplexity of the generated text (1.15 abso-
lute reductions) compared to other baseline models.

– ESTD is the first model to focus on the empathic expression style transfer
task in the absence of contextual information. While training processes are
via using supervised learning methods based on the parallel corpus.

2 Related Work

2.1 NLP for Online Mental Health Assistance

Overall, our work is highly relevant to existing research on online psychological
help for NLP. These works are mainly applied in online psychological counseling,
intelligent chatbots, and online psychological assistance platforms [1]. Relevant
researchers have helped to establish a sound online communication platform to
some extent by building assisted chat features, such as conversational agents and
intelligent chatbots. Among them, AI with strong empathy may be particularly
useful in mental health conversation applications [19].

In this work, we mainly focus on achieving empathic dialogue agents in men-
tal health communication. While empathy is a crucial concept in mental health
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support [3]. We improve the empathic expression of models like those in conver-
sational agents by using a transformer-based approach.

2.2 Text Style Transfer

Most existing work on textual style transfer has focused on some common linguis-
tic styles. Such as Politeness Transfer [17], Sentiment Transfer [13,33], Formality
Transfer [26], and Gender & Political Slant Transfer [27]. However, empathic dia-
logue rewriting has not received significant attention. Noteworthy, Sharma et al.
first proposed a reinforcement learning-based model for rewriting empathic dia-
logue [30]. In real-world scenarios, upstream conversations cannot be supported
in all cases. In highly active conversations, we cannot rely on historical informa-
tion and translate it accordingly. Therefore, we will train the model based on a
parallel corpus to accomplish the text style transfer task, aiming to make the
model more adaptable.

2.3 Discriminatory Mechanism

To address the challenge of discerning levels of empathy, we incorporate a dis-
criminative mechanism. This method is inspired by the GAN (Generative Adver-
sarial Network) [8]. The discriminator network separates the candidates created
by the generator from the actual data distribution. In contrast, the generative
network learns to map from the latent space to the desired data distribution.
The generative network’s training objective is to increase the discriminator net-
work’s error rate. In our approach, the primary function of the discriminator is
to perform empathy-level analysis on the generated sentences [8,15].

In our approach, we use the pre-trained discriminator. In the training stage
of the generator, the improvement of the empathy level is used as one of the
optimization goals.

3 Methodology

Given parallel samples of sentences X1 = {x1
1, . . . , x

1
n} and X2 = {x2

1, . . . , x
2
n}

from original utterances and target utterances respectively. The goal of our task
is to effectively generate samples with high levels of empathy, which is X̂1 =
{x̂1

1, . . . , x̂
1
m} depends on X1.

We proposed an approach with two-step. The first step is pre-training the
discriminator, a BERT-based discriminator model whose main task is to compute
the empathy level of the sentences generated by the former while gradually
transforming the sentences by the generator to approach the high empathy level.
The goal of the discriminator is to compute the corresponding empathy scores
Stotal based on the input sentences. Secondly, we take the original utterance as
input and generate the output x̂1

i through the generator, which is the empathy
transformer. Based on the output x̂1

i , we use the discriminator that has been
pre-trained to calculate its corresponding empathy level Si

total. Our empathy
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transformer aims to efficiently convert the original sentences to higher empathy
levels while maintaining semantic similarity by calculating the cosine similarity
between original and rewritten sentences.

The model allows us to complete the transfer expression conversion without
upstream history information, which significantly differs from previous work [30].
As mentioned before (Sect. 1), other similar text style transfer tasks focus more
on addition and deletion [13]. However, we cannot achieve a transfer in empathy
expression by simply adding and deleting.

3.1 Empathic Expression Calculation

In previous work, Sharma et al. developed a text-based framework for measuring
empathic expression [31]. It contains three main communication mechanisms:
Interpretations, Emotional Reactions, and Explorations. For each mechanism,
there are three corresponding assessment scores:

– 0: There is no expression.
– 1: There is a relatively weak expression.
– 2: Strong emotional expression.

Table 1. The training samples after filtering. The original utterance represents sen-
tences with a low level of empathy, and the target utterance represents sentences with
a certain level of empathy.

Communication mechanisms Weak expression Strong expression

Interpretations It’s really tough I’m going through this too, and it’s really, really bad

Emotional reactions You can do it I believe in you! You can do it!

Explorations What’s going on? What happened? what can I do for you? Are you okay?

Table 1 shows some realistic sentences which illustrate the specific rank differ-
ences between weak expression and strong expression. There is a clear difference
between the different levels of expression. Strong expressions are more likely to
highlight the specific manifestations of the corresponding communication mech-
anisms than weak expressions.

Interpretations. Interpretation plays an essential linking role in perception,
judgment, and communication [22]. Perfect dialogue and communication are
generally based on clear and insightful interpretations [37].

Emotional Reactions. A person’s emotional response plays an essential role
in the development and maintenance of communication [14]. Emotional reac-
tions mainly include expressions of concern, care, and deep feelings about the
experiences or situations.
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Explorations. Exploration implies a deeper exploration of the underlying
meaning expressed by the utterance. In human communication, exploration usu-
ally refers to expressing curiosity and concern in an appropriate way [2].

3.2 ESTD Framework

This section will introduce the structure of our model and the objective functions
of the empathy transformer and empathy level discriminator. We pre-trained
the empathy rating model based on the empathy evaluation criteria proposed
by Sharma et al. [31], and the corresponding corpus1. We train the ESTD based
on the Blended Skill Talk dataset2.

Empathy Transformer. Figure 2 shows the overall structure of our proposed
method. We were given an input utterance x1

i with embedding and adding posi-
tional encoding. Aiming to allow Transformer [38] to retain information about
the position of words by adding an encoding of the relative position of words
in the sentence. The positional encode is represented by the sine and cosine
formula [10].

−→p (i)
t = g(t)(i) :=

{
sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1
(1)

where t is the desired position in the input sentence x1
i ,

−→p (i)
t ∈ R

d is the corre-
sponding encoding, and d is the dimension. Meanwhile, ωk = 1

100002k/d .
After the positional encoding, we generate the corresponding empathic

expressions by a Transformer-based generator. As mentioned in Sect. 1, we
accomplish our task objectives by fusing multiple loss functions. In the part
of Empathy Transformer, we first calculate the CrossEntropyLoss3 Lg of the
output and target utterance. The loss function is defined as follows:

Lg = −ωx2
i
log

exp(x1
i,x2

i
)∑C

c=1 exp(xi,c)
· 1{x2

i �= ignore index} (2)

where C is the number of classes. Second, we calculate the Cosine Similarity [34]
Θg between the generated sentence and the original sentence by

Θg =
x1

i · x̂1
i

‖x1
i ‖‖x̂1

i ‖
. (3)

aiming to ensure that the semantics of generated sentences do not deviate from
the original semantics.

1 https://github.com/behavioral-data/Empathy-Mental-Health/tree/master/
dataset.

2 https://parl.ai/projects/bst/.
3 https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html.

https://github.com/behavioral-data/Empathy-Mental-Health/tree/master/dataset
https://github.com/behavioral-data/Empathy-Mental-Health/tree/master/dataset
https://parl.ai/projects/bst/
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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Fig. 2. The overall structure of ESTD. The model consists of two parts: an empathy
transformer and a discriminator. The empathy transformer converts the input sentence
x1
i into an output sentence x̂1

i with a certain empathy level. The discriminator is pre-
trained to judge the empathy level of the output sentence x̂1

i . Especially, the final
loss function is a fusion of three loss functions, which are Lg Ld, and Θg individually.
The final generated sentence is semantically similar to the original sentence and has a
certain level of empathy.

Empathy Level Discriminator. We fine-tuned the discriminant model based
on BERT (bert-base-cased). Depending on the expression mechanism, we inte-
grate three sub-models (Mip, Mer and Mex, individually) into the discrim-
inator. For each sub-model, a linear layer with ReLU [20] is added to the
based BERT model for classification, and each sub-model can be written as:
word emb(d, 768) − 768 − 3.

The sentences generated by the empathy transformer are passed through a
discriminator to obtain three empathy ratings, corresponding to different expres-
sion mechanisms [Interpretations (IP), Emotional Reactions (ER), and Explo-
rations (EX)]. Each sub-model will have an output of the empathy level of
the sentence (Sip, Ser and Sex). The final output value of the discriminator
is obtained by linearly summing these three values. It can be expressed as

Stotal = Sip + Ser + Sex. (4)

Since we expect the rewritten sentences to tend to have the highest empa-
thy level, which is equal to minimizing the difference between the maximum
value (Smax = 6) and the current value (Stotal). The goal of this stage can be
expressed as

arg min
Stotal

f(Stotal) = {Stotal | f(Stotal) = Smax − Stotal}. (5)

We use the Mean Squared Error (MSE) as the loss function of this part to achieve
this goal. For ease of representation, here we set Stotal equal to Si.

Ld =
1
n

n∑
i=1

(Si − Smax)2. (6)
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Finally, we have discriminator loss objective (Ld) given by Eq. 6. In the final
training process, we only need to optimize these objectives simultaneously to
accomplish the empathic expression transfer task. By this way, the final loss
function of ESTD is

Lt = wgLg + wdLd + wθ(1 − Θg). (7)

where wg, wd and wθ are the weights of each loss function. Here, we set wg = 0.7,
wd = 0.25 and wθ = 0.05 individually.

4 Experiments and Results

In this section, we present details about the datasets and experiments (including
the comparison with the baseline method and the final results of our method).
The source code is available on GitHub4.

4.1 Datasets

This section introduces the dataset used for the empathic expression transfor-
mation task. Also include some introduction to data pre-processing.

Mental Health Subreddits. The dataset was sourced from a sub-community
of Reddit (reddit.com). Sharma et al. [32] performed in-domain pre-training on
this publicly accessible dataset and annotated it as a subset of 10k interactions
on empathy [31]. We counted the various data in the dataset. The number of
dialogues corresponding to different scores in different expression mechanisms
was calculated separately. Figure 3 shows the data visualization of statistics.
We mainly use this dataset to pre-train the empathy rank classifier. To this
end, we developed classifiers based on BERT (bert-base-cased)5. This model is

Fig. 3. Visualization of the distribution of empathy scores in Mental Health Sub-
reddits, with three different colored bars corresponding to each of the three expression
mechanisms. (Color figure online)

4 https://github.com/masonzmz/ESTD.
5 https://github.com/google-research/bert.

https://www.reddit.com/
https://github.com/masonzmz/ESTD
https://github.com/google-research/bert
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primarily for fine-tuning downstream tasks that use entire sentences (which may
be masked) to make decisions, such as sequence classification, tag classification,
or question and answer [6]. In this task, we use that to focus on different empathy
scales, including three models (all with over 82% classification accuracy and
over 81% F1 score, see Table 4), corresponding to Interpretations, Emotional
Reactions, and Explorations, which will eventually focus on the pre-warm-up
training of the discriminant model.

Blended Skill Talk Dataset. Smith et al. present a multi-task training dataset
for various forms of multiple conversational skills [35], called Blended Skill Talk6.
The dataset includes multitasking with the ConvAI27, Empathetic Dialogues8

and Wizard of Wikipedia9 datasets in their blend-debiased (topicifier) versions.
We constructed multiple parallel corpora for the multiple dialogue styles

contained in this dataset. We need to reduce the bias due to the content of the
dialogues since responses to upstream conversations in this dataset may have
different meanings between different styles of responses. We first filtered the
generated corpus for cosine similarity, aiming to filter out pairs that contain two
utterances with too much difference. We train empathy expression transforma-
tion models based on this corpus.

In filtering the text data, we start by embedding the text using Sentence-
BERT10, which is a modification of the pre-trained BERT that uses siamese and
ternary network structures to derive semantically meaningful sentence embed-
dings that can be compared by cosine similarity [28]. The final dimension of each
sentence is 768. We determine whether two sentences have the same meaning by
calculating each pair’s cosine similarity between the original and target utterance
to have enough training data and enough similarity between the two utterances
in the pair. Finally, we will choose those pairs with similarities greater than 0.5
as the experimental data. Table 2 shows some example sentences after filtering
the original data.

Table 2. The training samples after filtering. The original utterance represents sen-
tences with low level of empathy, and the target utterance represents sentences with
certain level of empathy.

Source dataset Original utterance Target utterance

Blended Skill Talk [35] I never learned much about

graphic design but love art

I always wish i was good at

design have tried, but i am

pretty garbage, haha!

I agree. Another thing we can

do to fix the world we live in

Yes, that is all we can do.

Keep trying to do better in

life, and help others

What else do you do for fun!! Haha finally meet someone

who is like me, game on,

buddy

6 https://parl.ai/.
7 https://github.com/aliannejadi/ClariQ.
8 https://github.com/facebookresearch/EmpatheticDialogues.
9 https://parl.ai/projects/wizard of wikipedia/.

10 https://www.sbert.net/docs/pretrained models.html.

https://parl.ai/
https://github.com/aliannejadi/ClariQ
https://github.com/facebookresearch/EmpatheticDialogues
https://parl.ai/projects/wizard_of_wikipedia/
https://www.sbert.net/docs/pretrained_models.html
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4.2 Baselines

We compare our systems against four baseline methods. Seq2Seq and Seq2Seq-
Attn were evaluated under the same setting as the reference shows. Especially,
we use the same dataset to train the GPT-2 fine-tuning and BART.

– Seq2Seq [36] Consists of an encoder and a decoder that converts a sequence
to another sequence.

– Seq2Seq-Attn [38] Same as Seq2Seq, but with Attention mechanism. The
attention mechanism is part of the neural network. It determines which source
parts are more important.

– GPT-2 Fine-Tuning [25] Generative Pre-trained Transformer 2, a large
text processing model.

– BART [12] is a autoencoder for pretraining sequence-to-sequence models.

4.3 Evaluation Metrics

Following the previous work [30], we use automatic metrics for the evaluation of
our method. We mainly use the following metrics

– Empathy changing. It is mainly used to measure the degree of change in
the empathy scale. We use the framework developed by Sharma et al. [31] to
complete the measurement of this metric, where the value varies of empathy
changing over the range of [−6, 6].

– Similarity. Since one of the goals of our task is to ensure as much as possible
that the meaning of the rewritten sentence does not deviate from the meaning
of the original sentence. So we use Cosine Similarity as a measure for this
metric.

– Perplexity. Following the previous work [16,30]. We used a pre-trained
model to calculate this metric. The pre-trained model is GPT-2 language
model.

– BLEU. We use the target utterance in the dataset as the ground truth while
using the BLUE metric to compare with the output of the model [21].

4.4 Ablation Study

We conduct ablation studies on ESTD to empirically examine the contribution
of its main mechanisms/components, including the use of Discriminator, the use
of Θg, and only training the generator without Discriminator and Θg.

Without Discriminator. We analyze the specific differences in performance
between the model using discriminators and not discriminators.

Without Θg . We train the model without Cosine Similarity Loss. The loss
function of the empathy transformer is changed in this experimental condition
to Lt = Lg + Ld.

Without Discriminator and Θg . In the training process, we eliminate the
discriminator and loss function. To investigate the model’s performance without
these two components, we train the model without both discriminator and Θg.
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4.5 Results

Baseline Results. The baseline experiments’ results are shown in Table 3.
By comparison, ESTD was found to have a significant advantage in terms of
empathy level improvement (0.16 more than the next best approach, GPT-2
fine-tuning) while generating sentences with relatively low perplexity (1.15 less
than the next best approach, GPT-2 fine-tuning). BART outperformed other
baseline models, including ESTD, in terms of text similarity and BLEU score.
However, its empathy changing was only −0.1712. While having relatively poor
perplexity. The relatively low performance of ESTD in text similarity may be due
to the bias of the training process toward the improvement of empathy scores.
The inability to optimize each goal simultaneously is also a significant drawback
of ESTD.

Table 3. Performance of ESTD and comparisons with other baseline methods on
the set of automatic metrics. We can see that ESTD outperformed all other baseline
models regarding empathy rating improvement. It also has the lowest perplexity level.
However, it was inferior to BART in the utterance similarity and BLEU scores.

Model Empathy changing Similarity Perplexity BLEU

ESTD 0.2560 0.4387 9.5158 0.1046

Seq2Seq −0.3521 0.2078 15.9682 0.0047

Seq2Seq-Attn −0.3155 0.2547 14.3699 0.0051

GPT-2 fine-tuning 0.1006 0.4276 10.6703 0.0532

BART −0.1712 0.6550 13.9249 0.1392

Besides, Table 4 shows the classification accuracy and F1 score of our dis-
criminator in different expression mechanisms.

Table 4. Accuracy and F1 score of discriminators in different expression mechanisms.

Expression mechanisms Accuracy F1 score

Interpretations 0.8467 0.8513

Emotional reactions 0.9160 0.9097

Explorations 0.8284 0.8120
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Ablation Results. Table 5 reports results on ablated versions of ESTD. When
only discriminator and Θg were used to compare with GPT-2 fine-tuning, the
absolute increase of empathy change was +0.1554. Furthermore, although adding
Θg can improve the model’s overall performance to some extent, the improve-
ment is not apparent. Besides, in the absence of the discriminator component,
the output sentence of the model has the highest cosine similarity to the origi-
nal sentence. But the empathy change is only 0.1222. Similarly, without the Θg

component, ESTD only had an empathy change of 0.1912. Despite having the
best BLEU score, 0.1125.

Table 5. The results of the ablation experiment. It can be seen that both discriminator
and Θg play an essential role in the transformation of empathic expressions.

Model Empathy changing Similarity Perplexity BLEU

ESTD 0.2560 0.4387 9.5158 0.1046

w/o Discriminator 0.1222 0.4553 10.3686 0.0561

w/o Θg 0.1912 0.4301 9.6619 0.1125

w/o Discriminator & Θg −0.22954 0.4489 13.5586 0.1098

Table 6. The table shows the empathic rewriting of the sentences using different
models. Where the So is the empathy level of the original utterance and Sr is the
empathy level of the rewritten utterance.

Original utterance So Model Rewritten Utterance Sr

Well, you better figure out how to fix it 0 ESTD I’am sorry to hear that. It will be

tough time

2

Seq2Seq museums is is what not 0

Seq2Seq-Attn Museums live any work through

month chemo sushi in reason

about cat, if hospital not

1

GPT-2 fine tuning Well, you better figure out how to

fix it. This is a change you made

1

BART Stress over it. You cannot change

anything at this point

0

Oh, just a nail? You are a nice person 1 ESTD I’am sorry to hear that. How do

you feel?

4

Seq2Seq museums is of not believe never

family sea

0

Seq2Seq-Attn Cat have learning worry believe

thailand sea

0

GPT-2 fine tuning You are a nice person 1

BART Oh, sorry 0

Some here would love to go 2 ESTD I like to get my free time too. You

can to me, lol

3

Seq2Seq cat have start be sea chemo s 0

Seq2Seq-Attn museums again family sea reason

thailand most sea

0

GPT-2 fine tuning Some here would love to go to blue

moon resort

0

BART Sounds pretty nice! Where are you

going to?

0
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Qualitative Examples. We present examples of rewriting from ESTD and
baseline methods in Table 6. ESTD works by transferring the original utterance
to a new utterance with a higher empathy level while maintaining the original
semantics. For example, given a sentence “well, u better figure out how to fix it.”,
the model can understand the underlying meaning in the original sentence and
give a reasonable rewrite. The final rewritten sentence is “I am sorry to hear
that. it will be tough time.”.

5 Conclusion

Rewriting human-expressed sentences or dialogues through artificial intelligence
may be an effective way to help provide inclusive expressions. We proposed
a new method for converting non-empathetic or low-empathetic utterances to
other utterances with appropriate levels of empathy. Our approach can help cre-
ate a friendly and inclusive online environment by making human expressions
more empathetic. Extensive experiments demonstrate that our model can effec-
tively make sentences more empathetic, and the results outperform some existing
baseline methods.

A potential problem due to the use of parallel corpora is the lack of rich
content in the generated utterances. To solve this problem, a possible future
work is to use unsupervised learning methods for this task.
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Abstract. IT general controls in a company are essential, and improper controls
pose a significant risk to the company. One of those appropriate controls is the
management and verification of daily logs. Companies utilize text-based logs (e.g.,
keystroke and application information) to monitor user behavior. However, some
systems may only record PC screenshot image logs to prioritize stable operation.
Therefore, we focus on PC screenshot image logs. Previous studies have attempted
to analyze screenshot images as a classification problem or semi-supervised clus-
tering. However, the number of tasks is indefinite, and the creation of training
data and daily log checks is very costly. This paper proposes an efficient method
for checking logs: detecting user action transitions using screenshot images. The
proposedmethod detects user behavior transitions by grouping image and text fea-
tures obtained from screenshot images based on their similarity without learning
or labeling.We show that the proposedmethod can detect user behavior transitions
with a reproduction rate of over 98% and reduces the total number of logs checked
by auditors to about 1/4.

Keywords: Screenshot segmentation ·Multi-modal features · Similarity · Audit
system · User behavior analytics

1 Introduction

In recent years, risks such as information leakage due to inappropriate use of IT equip-
ment by people have become important. In order to prevent such risks, IT general con-
trols have become indispensable for companies. Inappropriate IT general controls are
essential because they risk lowering corporate value and jeopardizing the company’s
existence. In general, information leakage and inappropriate use of equipment can be
prevented to some extent by monitoring operations. Understanding user behavior on a
PC is necessary, generally referred to as user behavior analytics (short as UBA).

There are two main types of operation logs: one is text logs (keystrokes, file access,
active windows, running applications, Etc.). For example, UBA software typically uses
text logs (application startup times, keystrokes, file operations, Etc.) to analyze business
operations, improve employee productivity, and detect unauthorized operations. Another
type of log is the screenshot image log on a PC. Image logs are more intuitive and easier
to understand than text logs. Intuitive comprehensibility is an essential factor in ensuring
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reproducibility and traceability of operations. It is recommended that operation logs be
checked daily as per PCI DSS [1]. Figure 1 shows an image of the flow in which auditors
check employee operation log data accumulated daily.

Text logs can record user operations in detail, which can be analyzed to identify
inappropriate operations and productivity. However, some companies may not want to
install unnecessary software (applications to obtain operation text logs) to ensure the
reliable operation of essential systems. Such companies often use RDP (RemoteDesktop
Protocol) or other means to record only screen operation logs. The goal of our study
is to analyze user behavior limited to such situations where only images on the PC are
available.

While screen operation logs are intuitive and easy to understand, the cost of checking
them is high. Prior studies on screen screenshots have used CNNs for classification
[2] or a combination of Active Learning and clustering for grouping [3]. It can be
assumed that thesemethods can be used to perform daily log checks efficiently. However,
information systems grow with the size of the business and the number of employees,
and daily checking logs are very costly. Considering the modern business environment,
it is unlikely that the type of work performed daily will remain the same. It would be
inefficient to create and train data every time the work increases or decreases. To reduce
the cost of daily checks, it would be practical to check logs by focusing on user behavior
transitions instead of looking at all logs.

In this paper, we propose a detection method for user behavior transitions using
image and text features obtained from screenshot image logs. It is taking advantage of
the fact that operations on a PC change their display content when the operation target
changes (e.g., opening a new window, scrolling, etc.). Focusing on user behavior is
expected to effectively eliminate user stasis (reading information on the screen, taking
a break, etc.), which are areas that do not need to be checked. Using this method shows
that it can reduce the number of points to be reviewed by 70%, with a recall of at least
95% for the collected data range.

The contributions of this research are as follows.

• We propose a new method for image-based UBA.
• Wepropose amethod for detecting user operation transitions based on the similarity of
image and text features.We apply it to a new data collection, time-series PC screenshot
image logs.

• We evaluate the detection results of user operation transitions based on the similarity
of image and text features.

• We also discuss lessons learned from this study and directions for future research.
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2 Related Work

2.1 Image Classification and Clustering

In [2], an image classification task, CNN is used to classify PC screenshot images.
The method classifies models pre-trained on MIT’s Places205CNN dataset into 14 class
labels with a classification accuracy of 0.624. Our dataset is also similar in terms of data
since it targets PC screenshots.

Another study [3] attempts semi-supervised clustering with image and text features,
albeit on smartphone screenshot images. The labeling is being done in combination
with active learning to evaluate performance. Image features are obtained with HOG
(Histogram of Gradients) [4]. Text features are applied to text acquired by OCR and
vectorized using GloVe’s 300-dimensional word embedding using Wikipedia 2014 and
Gigaword 5.

Fig. 1. An image of the flow in which the auditor checks employee operation log data stored
daily. Based on the stored logs, the auditor works daily to check whether there is any irregularity
or mishandling of the operations.

2.2 Search and Operation Automation

In [5], a system called Sikuli Search is proposed. It uses text describing images, image
features extracted by SIFT [6] from screenshot images, and text read byOCR to construct
a search system. This system makes it possible to search screenshot images and GUI
elements (buttons, application icons, etc.) and is being studied to automate operations
by combining it with other functions.



76 Y. Ohkawa and T. Nakanishi

Fig. 2. The proposed method detects user behavior transition on a pc, using vectorized features
images and text from pc screenshots. Image and text features are extracted from PC screenshots
and grouped by similarity to detect user operation transitions.

2.3 User Behavior Analytics

In [7], foreground windows on a PC are considered user-operated windows. The types
of open applications and operation times are output as text logs for time-series analysis
and visualization.

Related studies use HOG or SIFT to extract image features and do not use pre-
trained deep learning models. The number of classes is fixed or exploratory, and there
is no mention of labeling or training costs. Also, user behavior transitions are treated
as general information since they are output in text logs. Our research focuses not on
class classification solutions but on image-based user behavior transitions that can be
performed without costly labeling tasks or learning processes.
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3 Detection Method of User Behavior Transition

3.1 Overview

Our proposed system extracts image and text features from pc screenshot images and
groups them using time series and the same operation pattern. Grouped text and image
features are used to determine user behavior transitions at pc operation. The proposed
method is illustrated in Fig. 2. The proposed method consists of a feature extraction
function, a time-series grouping function, a time-series feature grouping function, and
a user behavior transition detection function.

Fig. 3. Drawing of feature extractor; resized to 700× 700 and input to the pre-trained model, the
output is flattened and used as the image features.

Fig. 4. It is assumed that (a) and (b) have no change and thus have high feature similarity, while
(b) and (c) have low similarity due to changes in the image and text features caused by the Explorer
is opened.

3.2 Feature Extraction

The feature extraction function consists of image feature extraction and text feature
extraction. The image feature extraction realizes to use of a pre-trained feature extractor
model, and the text extraction realizes to use of TF-IDF.

Image Feature Extraction
A pre-trained feature extractor is used to extract features from screenshot images. Using
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a pre-trained feature extractor avoids the cost of creating training data. This paper uses a
ResNetV2 [8] feature extractor pre-trained on the Imagenet dataset [9]. Pre-processing
of the screenshot images is resizing (700 × 700) and normalization. A drawing of the
feature extractor is shown in Fig. 3.

Text Feature Extraction
The Tesseract OCR engine [10] extracts text from screenshots. The only preprocessing
of the text excludes text less than 4 in length. Since the text output by OCR is not
necessarily accurate, we do not exclude stop words, which is done in general natural
language processing. Many texts were not outputting accurately as far as the human eye
could see because exact accuracy is difficult to calculate from the data, we had prepared.
TF-IDF to convert features the top 500 vocabulary words in the preprocessed text in
order of word frequency.

3.3 Time-Series Grouping Function

The screen and the text are expected to changewhen the operation target is switched. This
function detects such changes using the extracted image and text features and groups
similar features. In this paper, cosine similarity is used to compute this similarity. As
shown in Fig. 4, (a) and (b) have high feature similarity due to no change, while (b) and
(c) are inferred to have low similarity due to changes in image and text features caused
by opening the Explorer. The features grouped in a time series are called time-series
features.

similarity
(
xi, xj

) = xi · xj
|xi||xj| (1)

Fig. 5. (a) and (b) are expected to be the same time-series features, although they are far apart in
time series, so they are subject to grouping.
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3.4 Time-Series Features Grouping Function

Since we expect the same time-series features to appear several times over time, we
propose a function to detect and group the patterns. Calculate the average vector of each
time series feature, calculate the cosine similarity, and group those with high similarity.
As shown in Fig. 5, although (a) and (b) are far apart in time series, they are expected to
be the same time series feature and thus should be included in the grouping.

3.5 User Behavior Transition Detection Function

This function determines user behavior transitions after grouping image and text fea-
tures—the point at which the group switches is defined as the transition of user behavior.
Since the group switching point is detected for each image and text feature value, the
point where they overlap is considered the user behavior transition point. Figure 6 shows
a sample illustration of determining user operation transitions.

Fig. 6. This is a sample illustration of determining user operation transitions. The point at which
the image and text feature groups are switched simultaneously is defined as the point of user
operation transition.

Fig. 7. Data for each monitor on 2021/12/01 were labeled and visualized.
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4 Experiment

4.1 Our Dataset

We first looked into the publicly available data sets but found only text logs of operation
logs and no image data sets. We collected five days of screenshot images recorded
approximately once every 10 s on one employee’s PC. The subject employee’s primary
job was customer management and software sales management. Since the employee was
working on two monitors, the number of screenshot images was twice as large as when
working on one monitor. Each screenshot image was labeled with an operational state to
measure the accuracy of detecting user behavior transitions. Labels were given by one
person with a visual check. Details of the labels are shown in Table 1. Figure 7 visualizes
the labeled data in time series for each monitor on 2021/12/01. Figure 8 visualizes all
labeled data. Table 2 shows the number of screenshot images per date, the number of
user action transitions, and the average.

Table 1. List of classified label names. List of classified label names. The label was determined
by looking at the before/after a relationship if multiple windows were open.

Desktop Sales Management
System

Black Screen Workflow
Applications

Lock Screen Windows cmd.exe

Attendance management
software

Windows Task
Manager

Customer management
system

Windows Explorer

Microsoft Excel Visual Basic for
Applications

Microsoft Word Software license
publishing system

Microsoft PowerPoint Text Editor

Microsoft Outlook Screen not labelable
in transition

Microsoft Teams PDF

Web browsing
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Table 2. Summarize the date and number of data collected, the number of user action transitions,
and the data size. Operation transitions for which the label has changed shall be user action
transitions. All image sizes are 1920 × 1080.

Record date Number of
screenshot
images

Number of
user behavior
transitions

Data size

2021/12/01 8880 825 1038 MB

2021/12/02 7802 618 1132 MB

2021/12/03 9487 653 1233 MB

2021/12/06 9257 620 1265 MB

2021/12/07 9280 711 1352 MB

Average 8941.2 685.4 1204 MB

4.2 Experiment Results

We attempted to detect user behavior transitions with three features: image, text, and
image and text features. The similarity thresholds for each function are shown in Table 3.
Image feature extraction took an average of 1.5 s per image, and OCR processing took
an average of 3 s per image. Detecting operational transitions took 16.6 s per day of data
processing. Figure 9 (a) is an example of visualizing the results of grouping by image
features. The number of groups created is 1391. Figure 9 (b) is an example of visualizing
the results of grouping by text features. The number of groups created is 386. Table 4
shows the average accuracy, recall, and F-score of the user behavior transitions detection
method.

Table 3. Similarity threshold for each function.

Image time-series grouping function 0.9

Image time-series features grouping function 0.9

Text time-series grouping function 0.6

Text time-series features grouping function 0.6
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Fig. 8. Visualization of all labeled data.

Table 4. The user behavior transitions detection method’s average accuracy, recall, and F-score.

Precision Recall F score

Only image features 0.302 0.986 0.461

Only text features 0.403 0.885 0.550

Image and text features 0.459 0.882 0.601

Table 5. The average number of transitions of detected operations when using each feature.

The actual number
of screenshots

Image features Text features Image and text
features

Number of user
behavior transitions

8941 2259 1501 1307

Fig. 9. (a) Example of visualizing the results of grouping by image features. The number of
groups created is 1391. (b) Example of visualizing the results of grouping by text features. The
number of groups created is 386.

4.3 Discussion

Image and text features are shown to be capable of detecting user behavior transitions
in screenshots. This information on operational transitions will allow users to efficiently
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check the screen parts related to the screen changes. Table 5 shows the actual number of
screens and the number of operations detected. Using each feature reduces the number
of screenshot images that need to be checked.

Data Generalization
The data used in this experiment were 5-day records from a single user. Future work
will include the generalization of the data. By incorporating data from different users,
different work styles, tasks, operating systems, and software will be added to the data.
Also, tasks should change fluidly, even for the same user.

Active Window Detection
Figure 10 (a) and (b) are examples of low image and text similarity. In (a) and (b), the
same Explorer is opened, but the position of the Explorer and the text of the hidden
desktop icon affect the similarity. As mentioned in previous studies, a way to reduce
these effects is to detect active windows, as shown in (c). The features extracted by active

Fig. 10. In (a) and (b), we just moved the Explorer, but the similarity differs for both image
and text features. The similarity of the image features reacts strongly to changes in the object’s
position, while the text features respond to changes in the displayed text information. One possible
solution is to be able to detect windows, as in (c).
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window detection are expected to be robust to position and will not need to deal with
hidden text.

User Behavior Search System and New User Behavior Detection
In this experiment, user behavior transitions were detected, but the extracted features
may be used for retrieval. The search function could support an efficient search of the
target scene in the event of an incident or an incorrect operation.

In addition, the daily accumulation of features and the measurement of similarity
may be used to detect new user behavior.

5 Conclusion

In this paper, we used to image and text features obtained from PC screenshot images to
detect user operation transitions. It was found that the detection using only image features
could detect with a recall rate of 98% or higher, reducing the overall confirmation cost to
about 1/4. The recall rate is essential for daily operations because we want to detect user
action transitions without omissions. Therefore, the method using only image features
is optimal. The image and text features obtained from screenshot images can be used
for searching user behavior and detecting new behavior. Future research can expand the
areas where they can contribute to system operation.

In addition to researching utilization methods, we would like to increase the number
of target users and the total amount of data and conduct correlation analysis in the future.
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Abstract. Convolutional neural networks (CNN) have become some of
the most powerful tools for image reconstruction problems thanks to
the availability of very large data sets. Implementations of deep residual
structures, adversarial generation networks and attention mechanisms
have made great accomplishment. However, the good performance from
complex and deep network architecture is not guaranteed when the train-
ing data set is small and not well preventative for the entire population.
There are many real-world image reconstruction tasks where large and
diverse training data is unavailable, such as problems in the physical
sciences and engineering for which the data set generation process is
complicated and large data sets are expensive to construct. For example,
herein we discuss the application of deep-learning to challenging prob-
lems in material science. Inspired by compressive sensing and ensemble
learning, we propose a method using ensemble image super-resolution
CNNs in transform domains to overcome the challenges of small train-
ing data in image reconstruction problems. Ensemble methods provide
a more robust approach when CNNs are trained with less representative
data. Transform domains could support the CNNs with multiple sparse
representations of the original image data which enrich the information
so that the CNNs can be sufficiently trained even using small data sets.
Particularly, we report here a successful application of CNN ensembles to
the reconstruction of areal density maps of carbon nano-tube sheet mate-
rials. We show that applying the ensemble CNNs in transform domains
can reveal finer details in the material texture and help to improve the
quality control capabilities for carbon nano-tube sheet production with
only a small collection of training data.

Keywords: Image reconstruction · Ensemble · Transform domain

1 Introduction

Convolutional neural networks (CNN) are popular techniques for high-resolution
image reconstruction. The availability of large numbers of training images in the
past few years has lead to the development of deep imaging neural network mod-
els. Following the breakthrough of single image super-resolution CNN (SRCNN)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 89–102, 2022.
https://doi.org/10.1007/978-3-031-22137-8_7
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made by Dong et al. [1], numerous studies have been developed to improve the
reconstruction quality. In particular, studies on deep residual neural networks,
such as SRResNet [2], EDSR [3] and RCAN [4] provided benchmark results with
the help of deep architectures and sufficient amounts of training data. However,
in real-world applications, there are many cases where only a small collection of
training data is available. For example, computerized tomography (CT) medical
image reconstructions [5] and X-ray reconstructions are usually limited to the
small training data from subject samples. Image super-resolution seeks to invert
a compressive model which maps (theoretical) high-resolution images to low-
resolution images, such as a camera or other imaging device. Such compressive
models can be complex and diverse according to the application field. Previ-
ous studies focus on compressive models such as interpolation techniques using
nearest neighbors and bicubic splines and Poisson noise, as they make compar-
isons with training data sets from benchmark database. As a result, some of
the leading benchmark methods may not have stable performance in real-world
applications.

Inspired by the classical approach of compressive sensing, transform domains
are widely used for signal reconstruction [6]. Using bases in which signals can be
sparsely represented, the high-resolution signal can be reconstructed with only
a small number of nonzero coefficients in the sparse representation domain [6].
In particular, the connection between low-resolution images and high-resolution
images can often be clearly represented in some transform domain where, for
example, the spatial redundancy in the original image is reduced in the fre-
quency domain. Fourier domain and higher-order wavelet sparsifying transform
domains are both competitive choices for image processing problems [7]. Reduc-
ing memory requirements and computational cost compared with other types of
Fourier transformations, the DCT is one of the most popular selections in the
Fourier family as it considers only the real part of the expansion [8] and many
algorithms were developed in the DCT domain before the recent breakthroughs
in image super-resolution neural networks [9–11]. Wavelet transformations have
also drawn substantial interest over many years, and have been adapted into
image super-resolution neural networks to improve performance [12,13].

Reflecting on the success of both CNN and transform domains, we are
inspired to extend current CNN based super-resolution techniques by leveraging
appropriate sparse representations. We propose an ensemble CNN in multiple
representation domains called EnsemNet. In particular, we demonstrate how our
proposed technique improves the stability over strong base-line techniques for
visual imagery with diverse compressive models, with a focus on the ability of
our approach to function even in the presence of small data sets. While image
processing of visual imagery is often done in the presence of large sets of training
data, there are many important image processing problems that do not benefit
from such large collections of training data. To that end, we also demonstrate
the effectiveness of our techniques on an important problem in material manu-
facturing, namely the analysis of nano-scale material density maps arising from
beta-particle transmission imaging.
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1.1 Contribution

Herein we demonstrate how an ensemble model achieves a robust optimal result
for various types of compressive models from small training data sets with the
help of different transform domains. Bechmark algorithims SRResNet [2], EDSR
[3] and RCAN [4] are utilized as basic image processors. We propose an ensemble
CNN which assembles multiple basic image processors in different representation
domains for an optimal combined result. We call this ensemble sparse model
EnsemNet. Taking advantages from multiple representation domains, our model
stands apart from previous algorithms by adapting different small training sets.
The advantage of our model is demonstrated through the comparison among
individual image super-resolution CNNs in single transform domains and the
ensemble model. Our work is novel in three ways.

– First, our method provides a general solution for the image super-resolution
problem on diverse and complex compressive models in real-world applica-
tions.

– Second, the optimal performance is stable over different selections of small
training data sets.

– Third, based upon advantageous properties of sparsifying transform domains,
our ensemble model combines the results from different domains to provide a
robust solution from insufficient training data sets.

2 Foundational Work and Background

2.1 Sparse Representations

Inspired by the classical signal processing technique compressive sensing, we use
sparse representations to enrich the training data. In compressive sensing theory,
the compressed signal ys is a linear projection of the original signal yt [6]. With
a certain sparse domain and the prior knowledge of the sensing matrix R, the
system

ys = Ryt (1)

Fig. 1. Reprocessing wavelet representatives. A 2-level wavelet transformation gives
four detail sub-matrices. The multi-channel representative is obtained by folding the
detail sub-matrix.
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can be solved with a small number of nonzero coefficients. One can represent the
linear system as

yt = Ψω,RΨω = ys, (2)

where ω is the sparse representation of the original signal in basis Ψ . Problem
(2) is computationally equivalent to a convex optimization problem. The sparse
domain can be easily found by Fourier and wavelet transformations [14]. How-
ever, the prior knowledge of the sensing matrix is a restriction to the solutions. In
contrast, single image super-resolution CNN (SRCNN) [1] solves the problem in
a supervised fashion based on external example images without any requirement
on prior knowledge. Moreover, studies on sparse representation [15,16] show that
the signal sparsity can help to achieve improved results for image reconstruc-
tion neural networks. Taking the advantage of signal sparsity, we adapt image
super-resolution CNNs to transform domains.

In addition to the limited information from the original space domain, the
algorithms could extract more representing features from the sparse representa-
tions and therefore achieve an improved ensemble reconstruction. Specifically, we
use the DCT Fourier domain and the db6 wavelet domain [17,18]. To prevent the
algorithm from extracting features across different wavelet detail sub-matrices,
a multi-channel wavelet representation is used, as illustrated in Fig. 1. In partic-
ular, four wavelet detail sub-matrices obtained from 2-level wavelet transforma-
tions have been folded into a 4-channel image representation. In this way, the
convolutional kernel would not be applied across different detail sub-matrices
which would degrade the algorithm effectiveness.

2.2 Miralon Areal Density Maps

In addition to our study of standard visual imagery, our proposed techniques is
also demonstrated on the application of reconstructing beta transmission areal
density maps of carbon nanotube material sheets called Miralon. Carbon nan-
otubes are seamless cylindrical hollow fibers, as shown in Fig. 2. The nature of its
hexagonal pattern and the strong bond between carbon atoms provide carbon
fiber materials impressive properties including strength, thermal and electrical
conductivity, high-temperature resistance and so on. Miralon sheets are built
with extremely long carbon nanotubes that are recognized as a state-of-the-art
carbon fiber material. It provides sustainable and effective solutions to some of
the toughest industry challenges involving the aerospace, energy, and electronics
domains. Therefore, the quality control of Miralon sheets is crucial. To inspect
the density variation in a Miralon sheet, a Mahlo QMS-12 Qualiscan Beta Trans-
mission System1, as shown in Fig. 3, is designed to generate the areal density
map which illustrates the general texture of a Miralon sheet. The emitter releases
beta particles while the sensing head moves over the surface. The number of par-
ticles which pass through the sheet and reach the receiver in each 20 ms window
is converted into a compressive model. The areal density map shown in Fig. 4
1 https://www.mahlo.com/en/products/process-control/details/traversing-quality-

control-qualiscan-qms.html.

https://www.mahlo.com/en/products/process-control/details/traversing-quality-control-qualiscan-qms.html
https://www.mahlo.com/en/products/process-control/details/traversing-quality-control-qualiscan-qms.html
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gives the texture of a Miralon areal density map. However, there is a lack of
accuracy for fine details of the uneven distribution of material in the Miralon
sheet. The zoom-in window in Fig. 4 shows a defective spot on the Miralon sheet.
It is hard to observe and measure the shape and the area of the spot from the
original areal density map.

Fig. 2. Schematic structure of a carbon nanotube and the Miralon material under
a microscope. The cylindrical hollow structured fiber gives Miralon material various
properties, i.e. strong, lightweight and conductive. Electrons help the long fibers stick
together naturally and form a tangled network.

As opposed to classic problems in image super resolution, this problem is
a small sample problem. As the ground truth are generated from destruction
tests, we have a limited number of samples to study. We need to ensure that the
model is capable of capturing the compressive model from small training data
sets. In addition, the unknown compressive model is complex. The behavior
of beta particles, the spreading distribution from the emitter head, and the
mathematical conversion in the equipment are all unknown. The measurement
is clearly more complex than interpolation methods that are used in studies
of regular visual imagery. With the help of the proposed algorithm, a high-
resolution areal density map can be reconstructed, which successfully reveals
finer patterns in the Miralon sheets.

3 Proposed Method

The ensemble algorithm, which we call EnsemNet, adapts the contents from the
limited training data then decides the best way to combine the reconstructions
from different domains to provide an optimal solution. The architecture is illus-
trated in Fig. 5. We parallel two algorithms on the space domain and the trans-
form domain to generate two high-resolution reconstructions respectively. The
algorithm then makes the ensemble in the original image domain. The ensemble
method adds the two reconstructions element-wisely. Finally, with an extra con-
volutional layer for feature reconstruction and additional adjustment of the com-
bination, an output is obtained. In this architecture, all the feature extraction
convolutional layers use 3× 3 kernels, and all the feature reconstruction convo-
lutional layers use 1× 1 kernels. The ensemble itself works on the combination
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Fig. 3. Beta transmission equipment for measuring the Miralon sheet. As the sensing
head moves over the surface, the emitter releases beta particles. The number of particles
which reach the receiver in each 20 ms window is converted into a measurement.

Fig. 4. Beta transmission areal density map of a Miralon sheet. The transmission
sensor measures the material density with a low sampling rate. The original image is
insufficient to identify variation and defects at the level needed.

and final feature reconstruction, it influences the training of individual algo-
rithms by optimizing the ensemble based on different training sets and diverse
compressive models. The element-wisely addition sufficiently provides a better
result than simply using convolutional feature extraction from previous layers.
Moreover, the performance of EnsemNet highly depends on the performances of
its individual components. We try several candidates on different domains for
algorithm 1 and algorithm 2 which are described in Fig. 5. The best performing
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EnsemNet has better results than performing its individual components alone.
For example, the EnsemNet with a SRResNet on the space domain as algorithm
1 and a EDSR on the wavelet domain as algorithm 2 should have improved result
than SRResNet and EDSR. The best setting of EnsemNet will be found from
experiments on regular visual imagery, and then applied to the Miralon sheet
application.

Fig. 5. The architecture for the ensemble method in both the space domain and the
wavelet transform domain. Two algorithms are performed on the space representation
and the multi-channel wavelet representation separately. Then the outcomes are com-
bined by element-wise addition. Finally, the output is refined by an extra convolutional
layer.

4 Experimental Results

In this section we show several experiments that were conducted to demonstrate
the effectiveness of ensemble CNNs. We make comparisons among individual
benchmark deep residual neural networks and ensemble CNNs over different
combinations of individual algorithms. The efficiency of our best performing
EnsemNet is indicated through experiments on multiple small data sets and
different measurements.2

4.1 Training Details

Our target is to obtain an algorithm which performs stably well with small num-
bers of image signal for complex compressive models. The well-trained model
should be able to accommodate both different small training data sets and
diverse compressive models, then stably deliver a high-resolution image with
improved reconstruction quality. The ground truths of high-resolution images
are used as labels in the neural network. Mean square error (MSE) and Peak
Signal-to-Noise Ratio (PSNR) are used as the metric. PSNR in decibels (dB) is
defined as

PSNR = 10 · log10

(
I2

MSE

)
, (3)

2 Code for all experiments can be found on github.com at https://github.com/
innanliu426/EnsemNet.git.

https://github.com/innanliu426/EnsemNet.git
https://github.com/innanliu426/EnsemNet.git
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where I is the maximum pixel value of the data type [19], and

MSE = min
1

2N

N∑
i=1

‖f(xi) − xi‖22. (4)

f represents the operation of the neural network and xi represents the input.
We use 8-bit images with I = 255. The experiments are performed in YCbCr
format and the reconstruction is evaluated on Y channel.

We use standard benchmark image data sets as training and testing data.
Training data are from the DIV2K data set [20]. Drawn from the 800 high-
resolution images, we obtain four data sets with the size of 1, 2, 3 and 5 images
respectively. Testing results are compared on data sets Set5 and Set14 which
consist of natural scenes. In previous studies, cubic interpolation is often cho-
sen to be the standard compressive model. We believe it is more faithful to
consider more measurements. To present the complexity and diversity of com-
pressive models in real world applications, four down-scaling procedures with
super-resolution factors of 4 are carried out with different interpolation methods,
Gaussian blur models and Gaussian pyramid degradation, as shown in Table 1.
We use packages OpenCV and scikit-image in Python to implement the measure-
ments. A 100 × 100 image would be reconstructed to 400 × 400. Each of the four
down-scaling procedures consist of multiple measurements. Suppose we have a
400 × 400 high-resolution image. In down-scaling procedure No. 1, the image is
compressed into 200 × 200 with linear interpolation first. Then, a Gaussian blur
is added to smooth the image. Finally, the image is compressed into 100× 100
with nearest interpolation.

To make full use of the limited training data, we extract small overlapping
patches from the low-resolution image. The sizes for low-resolution patches are
12 × 12. Each patch is rotated in 90◦, 180◦ and 270◦ to enlarge the size of the
training data set. The number of training patches are 100, 150, 200 and 250
for the four data sets respectively. Another validation set of 100 patches are
randomly drawn from the DIV2K data set to train the models. We use the MSE
loss function as our experiment suggests that other popular loss functions do not

Table 1. 4 compressive versions with multiple down-scaling measurements. Lanczos:
Lanczos interpolation; Cubic: cubic interpolation; Nearest: nearest interpolation; Lin-
ear: linear interpolation; Gaussian: Gaussian Pyramid; GB: Gaussian Blur.

Compressive versions Down-scaling measurements

1 Linear x2 + GB + Nearest x2

2 Lanczos x2 + Nearest x2 + GB

3 Gaussian x4 + GB

4 Gaussian x2 + GB + Gaussian x2 + GB
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Fig. 6. Areal density maps and the ground truth for the patterned shim-stock.

help to train models well with the sparse representatives in transform domains.
Other specific settings include Adadelta optimizer [21], 32 batch-size and 1000
maximum epochs. We use a 3.20 GHz Intel core i7-8700 CPU and 64 GB memory
to run the implementations.

For areal density maps, a ground truth condition was designed using pat-
terned shim-stock of uniform areal density. As shown in Fig. 6, geometric figures
of different dimensions and orientations were laser-cut into the patterned shim-
stock. Then, using the same parameters used for Miralon sheets, an areal density
map was generated. Due to the cost of laser-cutting, we have only 2 training
shim-stock areal density maps. The size of the low-resolution areal density map
is 50× 140 pixels. The high-resolution ground truth of the geometric figures can
be easily rescaled. We rescale it into 200 × 560 pixels for training models with
super-resolution factors equal to 4.

SRResNet [2], EDSR [3] and RCAN [4] are implemented as basic models.
For individual algorithms, we apply EDSR on DCT domain, both SRResNet
and EDSR on the space domain and RCAN on the Wavelet domain. Apply-
ing the architecture in Fig. 5, three combinations of ensemble algorithms are
implemented on both the space domain and the Wavelet domain, as illustrated
in Table 2. Packages SciPy and PyWavelets in Python are used to implement
the transformations. The shape of the multi-channel wavelet representation is
adjusted with zero-padding.

Table 2. Implemented models and the corresponding domains for the three settings
of EnsemNet.

Names Algorithm 1 Algorithm 2

EnsemNet1 EDSR - Wavelet domain EDSR - DCT domain

EnsemNet2 RCAN - Wavelet domain SRResNet - space domain

EnsemNet3 EDSR - Wavelet domain SRResNet - space domain
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4.2 Reconstruction Quality on Testing Images

Four experiments on two testing data sets are conducted to compare the per-
formances for each training data set. The performance of all algorithms varies
from different compressive versions and data sets. They depend on the ran-
domly drawn small training image as well as the ’unknown’ compressive models.
To compare the stability of performances in different circumstances, we evaluate
the algorithms with their comprehensive performances. For each training data set
with each compression version, the testing PSNR (in dB) values from the seven
algorithms are ranked from the highest to the lowest. Then an average ranking
for each algorithm is obtained over the four training data sets. Table 3 shows the
ranking result obtained from the testing PSNR values from Table 4. For exam-
ple, the testing PSNR values from ENsemNet3 for compressive version 1 on Set5,
rank 2, 1, 1 and 3 for training data sets of size 100, 150, 200 and 250 respectively.
Therefore, the overall average ranking for ENsemNet3 on compressive version
1 is 1.75. The rankings is also reflected in Fig. 7. For individual algorithms,
EDSR on the original space domain has the most competing results on different
small training sets. In two of the eight cases, SRResNet slightly outperforms
EDSR. Moreover, individual algorithms have frequent gradient explosion while
training with the extreme small data sets, which demonstrate the instability of
performance in circumstances of this study. For ensemble algorithms, we find
EnsemNet3, which combines a EDSR in the wavelet domain and a SRResNet
in the space domain, has the most stable performance. This ensemble algorithm
delivers a robust outstanding result in all the cases from different small training
data sets on diverse and complex compressive models.

4.3 Application of Miralon Areal Density Maps

We implement the version of EnsemNet3 to the application of beta transmis-
sion areal density maps for Miralon sheets. The measurement parameters of
the beta transmission Mahlo system is assumed to be fixed. If the setting of

Table 3. Average rankings for testing PSNR (in dB) values. For each training data
set with each compression version, the seven algorithms are ranked from the highest
PSNR to the lowest PSNR. An average ranking for each algorithm is then obtained
with the performances from all the four training data sets.

Models Compressive version 1 Compressive version 2 Compressive version 3 Compressive version 4

Set5 Set14 Set5 Set14 Set5 Set14 Set5 Set14

EDSR-DCT 7 7 5.75 5.75 6.5 6.5 7 6.75

EDSR 2.5 2 2.25 2.75 3 3.25 2 2.25

SRResNet 2.25 3.25 3.75 3.75 3.75 3.75 2.25 2.25

RCAN-WVT 5 5 5 4.5 5.25 4.75 5.25 5.25

EnsemNet1 5.75 5.75 5.25 5.25 5.25 5 5.75 6

EnsemNet2 3.5 3.25 4 4 2.5 2.25 4 3.5

EnsemNet3 1.75 1.5 2 2 1.75 2.25 1.75 2
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Fig. 7. Average rankings of testing PSNR from the four training sets over the four
down-scale procedures and the two testing data sets.

Table 4. Testing PSNR (in dB) with different models for different training data sets.
The performance of all algorithms varies from different compressive versions and data
sets. Table 3 shows the summary of these results. This table is provided for completeness
as one can see the averages in Table 3 demonstrate that EnsemNet3 has the most stable
performance on different training data sets and diverse compressive models. (Data Size:
# of training patches, CV: Compressive Versions)

Data Size CV Test Set EDSR-DCT EDSR SRRes-Net RCAN-WVT Ensem-Net1 Ensem-Net2 Ensem-Net3

100 1 Set5 22.474 22.788 22.752 22.742 22.681 22.831 22.816

Set14 20.975 21.157 21.149 21.126 21.114 21.198 21.190

2 Set5 22.345 23.105 22.073 22.976 22.631 22.926 22.978

Set14 20.869 21.169 20.633 21.188 21.009 21.116 21.207

3 Set5 21.759 21.103 23.226 19.279 22.269 24.118 23.335

Set14 20.976 20.375 22.099 20.558 21.541 22.437 22.043

4 Set5 21.753 23.988 24.147 23.479 22.778 23.610 24.162

Set14 20.586 22.234 22.331 21.881 21.368 21.940 22.317

150 1 Set5 22.597 22.863 22.870 22.785 22.643 22.772 22.870

Set14 21.086 21.225 21.211 21.172 21.096 21.168 21.222

2 Set5 22.142 23.015 22.625 22.600 22.477 22.736 22.783

Set14 20.725 21.158 20.936 20.982 20.901 21.043 21.023

3 Set5 23.987 25.680 24.879 24.669 24.745 25.072 25.337

Set14 22.256 23.352 22.976 22.627 22.724 23.107 23.180

4 Set5 24.476 26.078 25.610 25.096 24.869 25.422 25.486

Set14 22.608 23.693 23.396 23.025 22.882 23.335 23.352

200 1 Set5 22.520 22.869 22.849 22.620 22.700 22.839 23.041

Set14 21.042 21.249 21.233 21.071 21.118 21.201 21.373

2 Set5 22.951 22.822 23.166 22.661 22.858 22.851 23.194

Set14 21.150 20.995 21.188 20.956 21.096 20.966 21.199

3 Set5 24.808 25.462 25.221 25.557 25.180 25.571 25.578

Set14 22.718 23.134 22.968 23.223 22.994 23.270 23.223

4 Set5 24.864 25.959 25.811 25.515 25.392 25.755 25.842

Set14 22.798 23.615 23.416 23.295 22.793 23.432 23.456

250 1 Set5 22.656 22.952 22.969 22.830 22.703 22.914 22.936

Set14 21.104 21.304 21.297 21.206 21.165 21.297 21.323

2 Set5 22.934 23.459 23.440 23.212 23.045 23.261 23.410

Set14 21.167 21.464 21.489 21.304 21.237 21.321 21.436

3 Set5 23.991 25.917 25.583 25.214 25.055 25.323 25.656

Set14 22.351 23.507 23.378 23.083 22.955 23.261 23.442

4 Set5 23.617 24.805 24.895 24.136 24.327 24.703 25.088

Set14 21.988 22.843 22.939 22.426 22.491 22.845 23.062
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the beta transmission sensor is adjusted, i.e. sensor speed, viewable range, etc.,
then the model needs to be trained for the new setting before applying to the
manufacturing batches. First, we train the algorithm on the shim stock data
set. Then, we apply the model on the areal density map of a recently manufac-
tured Miralon sheet. Figure 8 shows the reconstruction result from EnsemNet3.
Additional details about defects and areal density variation are revealed in the
high-resolution reconstructed density maps. Taking the zoomed section from the
sheet in Fig. 8 as examples, the shape and the area of defective spots can be dis-
covered more precisely from the super-resolution reconstruction. This indicates
that our method is practical for the application.

Fig. 8. Reconstructed beta transmission areal density maps by the proposed algorithm
for Miralon sheets from the production line. Details for uneven density distribution are
recovered.

5 Conclusion

In this work, EnsemNet is proposed to overcome the challenge of small train-
ing data for the image super-resolution problem. Instead of suffering unstable
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performance on limited data and complex ’unknown’ compressive models, our
proposed ensemble method leverages the advantage from wavelet sparsifying
transform domains. A general solution is provided for various types of applica-
tions. The advantages of using EnsemNet is illustrated through experiments on
both regular testing images and the Miralon density maps for different complex
compressive models. Overall, EnsemNet provides a more robust and efficient
solution for the image super-resolution problem with small training data sets
and diverse compressive models.
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Abstract. Facial recognition is one of the problems that has been
focused for a long time. In this paper, we consider the 3D face data set,
and explore its facial recognition task considering automatic architecture
finding. We present the approach to customize MobileNet architecture
and automatically find a good architecture variant for the 3D face recog-
nition task. The main concept is based on the split input and lengthening
the network by the layer replication. The evaluation is done by using the
dataset generated by the GAN model with style transfer to augment
the makeup faces. The results show that the found modified model from
our automatic finding approach yields the more cost-effective model, i.e.,
with a 0.005% increase in size compared to baseline 3D Mobilenet and
0.01% compared to a simple Mobilenet while the found model has 12%
more accuracy compared to the 3D MobileNetV2 and 11% compared to
the traditional MobileNetV2.

Keywords: 3D Face recognition · MobileNetV2 · Deep learning ·
Convolution Neural Network

1 Introduction

Nowadays, common machine learning models have been used in an everyday life,
such as face recognition, handwriting recognition, etc. These are basic tasks for
many applications. There is still continuous development of the machine learning
models for these tasks to increase the ability to predict various situations and
purposes.

For this research, we consider the enhancement of the face recognition task.
Current face recognition models such as FaceNet [8], rely on 2D images and
usually work on limited constraints such as lights and face poses.

To overcome these challenges, 3D facial recognition systems have been devel-
oped. By adding such depth information, 3D face recognition has a high level of
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accuracy and reliability, being more robust to face variation due to the different
factors [10].

As technology development grows, many small chips can be placed inside
a small device. For example, mobile phones are equipped with a 3D camera,
making it possible to extract more features from images. However, using the
small models on the edge device is challenging. The model needs to be optimized
for accuracy while considering the model size constraint. In this research, we
are interested in finding a small deep learning model with high accuracy. In
particular, we focus on the 3D face recognition task.

A normal face-based recognition system consists of an input unit, prepro-
cessing unit and face detection unit, and the last one is a recognition unit. An
input unit refers to the 2D or 3D camera. The preprocessing unit will preprocess
the capture frame, such as detecting faces, cropping and aligning the facial area
to eliminate the irrelevance of information and improve the feature extraction.
Then, the recognition unit performs the recognition task at last.

A neural network search has been a trend for finding the efficient neural net-
work structure. For example, Neural Architecture Search (NAS) [14] has been
proposed to automatically tune deep neural networks, but existing search algo-
rithms usually have expensive computational resources. In this research, we find
a proper strategy for searching for suitable models while considering the accuracy
and model size for the 3D face recognition task.

Our strategy is as follows: first, we consider the state-of-the-art models of
image recognition task, namely MobilenetV2 [7], ResNet [3] and VGG [9] to
be baseline models. We first examine the performance of these models for 2D
face recognition compared to the 3D face recognition. Then, we consider the
MobileNetV2 as a baseline for 3D tasks and attempt to modify it to increase the
performance while considering the small model size.

2 Backgrounds

This section highlights the literature reviews and necessary basic models used
in the paper.

2.1 Related Works

Deep Learning Method. In 2017, the deep learning method was used in
3D face recognition. Donghyun [4] proposed a deep convolution neural network
using VGG convolutional network and 3D augmentation techniques for a 3D
face recognition task. In this research, the VGG network was used to extract
the feature map from 3d facial cloud points and the augmentation techniques
in the research are Pose variation, Random patch and Expression generation.
This research generated the transformation matrices for the 3D point cloud. The
random patch is the augmentation that puts eight 18× 18 size patches on the 2D
depth map to prevent overfitting to specific regions of the face. The expression
generation augmentation creates the expression in the input to make more data.
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In 2018, Ying Cai [1] proposed 3 methods for 3D face recognition: using a fast
3D scan preprocessing method then, using a fast Principal Component Analysis
(PCA) pose correction and performing nose-tip refining on the raw 3D points
cloud to be in the correct position. Then, the 3D scan is projected to a range
image and normalized in scale with only three facial landmarks that can make
the 3D face recognition easier to apply in real-world scenarios. In addition, this
research combined multiple data augmentation techniques such as rotation in
3D space, shearing, zooming and resolution augmentation. The deep learning
models were built from 4 deep neural networks. This model can achieve a higher
accuracy. In 2019, Zheng, Siming, et al. [13] proposed the 3D texture-based face
recognition system using fine-tuned deep residual networks. This system contains
four main parts: the first is 3D face detection, the second is face alignment, and
third is the facial feature extraction and recognition. In face detection and face
alignment, the Dlib tool was used to detect and align faces. Dlib can extract 68
key points of the face in real-time to obtain the position and posture of the face.
The histogram of orientation gradient (HOG) was used to extract the feature of
the 3D faces. The main idea of the HOG algorithm is to describe the texture
of the detected face by the gradient or distribution of edge direction which can
represent the local texture. The deep learning model in this work was based
on the ResNet model. In their experiments, four pooling layers with adaptive
average pooling have been reconstructed using the new architecture.

2.2 Convolutional Neural Network (CNN)

CNN is usually used for image recognition tasks. It takes image pixels as inputs,
and the output is a vector of classes. Each layer processes the portion of the
inputs (not all) by using some filters. This simulates humans’ vision as it looks at
sub-areas and tries to visual features in the sub-areas. For an image problem, the
features are such as lines, curves, patterns, and textures. Looking into this small
area is done by filters, a mathematical matrix to calculate convolutions. Each
sub-feature of the image is applied to the filter for the following computation
in the next layer. The early layers in the CNN process image feature directly
while the later layers gather the features into abstracted features, called high-
level features. The high-level features are used for classification at last. There
are state of the art models that are based on CNN, considered in this paper,
MobilenetV2, VGG, ResNet and GAN models.

MobilenetV2. It is a convolutional neural network architecture that performs
well on mobile devices. It is designed based on an inverted residual structure
where the residual connections are between the bottleneck layers. The interme-
diate expansion layer uses lightweight depthwise convolutions to filter features
as a source of non-linearity (the image was shown in Fig. 1). As a whole, the
architecture of MobileNetV2 contains the initial fully convolution layer with 32
filters, followed by 19 residual bottleneck layers.
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Fig. 1. The structure of the Inverted residual and the infrastructure of the Mobilenet
architecture.

VGG. is a convolution neural net (CNN) architecture which won the ILSVR
(Imagenet) competition in 2014. It is considered to be one of the most excellent
vision model architectures to date. The most unique thing about VGG16 is that
instead of having a large number of hyper-parameter they focused on having
convolution layers of a 3× 3 filter with a stride 1 with the same padding and max
pooling layer of 2× 2 with stride 2. It utlizes this arrangement of convolution and
max pooling layers consistently throughout the whole architecture. In the last
part, it has 2 fully connected layers followed by softmax for output classification.
This network has 16 weighted layers which contain about 138 million parameters.

ResNet. Residual Network (ResNet) is a specific type of neural network that
was introduced in 2015 by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun in their paper “Deep Residual Learning for Image Recognition”. The ResNet
models were extremely successful since it won 1st place in many competitions
such as ILSVRC 2015, COCO 2015 etc. It replaced VGG-16 layers in Faster
R-CNN with ResNet-101. The accuracy improvement of 28% was obtained. The
fundamental of ResNet architecture is Residual connection (shown in Fig. 2).

Fig. 2. Structure of the Residual network.

GAN. A generative adversarial network (GAN) is a machine learning model in
which two neural networks compete with each other to become more accurate
in their predictions. The network learns to generate from a training distribution
through a 2-player game Generator and Discriminator. The generator’s task is to
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generate the images and the Discriminator’s task is to identify/score generated
images from the generator. During the training process, the generator tries to
fool the discriminator by the real-looking images, while the discriminator tries
to censor the images. In this work, we use a style transfer called CPM (Color-
Pattern Makeup Transfer) [6] based on BeautyGAN this model can transfer the
makeup feature to another image (shown in Fig. 3)

Fig. 3. Result from CPM model (left image is makeup style, right image is the result
after applied makeup style transfer.)

3 Methodology

We present the whole methodology of experiments, starting from data gathering,
preprocessing, and then model refinement process.

3.1 Data Gathering

The facial dataset in this research given by the Institute of Computing Technol-
ogy, Chinese Academy of Sciences, and University of Chinese contains 403,067
pairs of face images of 1,208 people.

3.2 Preprocessing

For the face recognition model, the size of the face image is resized to 224× 224
and the face in the image is detected and aligned using MTCNN.

Transforming 2D to 3D Data. In this research, to add more local data we
added the 2D faces of Thai people into the data set. The 2D dataset is converted
the 3D images using PRNet [2]. PRNet is the Position Map Regression Network
to map the image input to 3D cloud-point position. Thus, PRNet was used to
generate Depth images from 2D face images (shown in Fig. 4)

Image Augmentation. The random horizontal flipping was done to increase
the variety of the data and improve the training performance.
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Fig. 4. Result from PRnet.

3.3 Model Overview

In this section, we explain the models that were used in our research. We first
focus on the input layer of the deep learning model.

The RGB Input Layer. The RGB input is the normal input layer for normal
image data. The image data contains 3 color channels; thus, we have to create
a CNN layers with 3-input channels.

The RGBD Input Layer. Since we consider the depth of the face, the RGB
images and the depth images are concatenated. The inputs of the model become
4 channels: RGB and depth channels. The images are shown in Fig. 5.

Fig. 5. RGBD input.

The RGB+D Input Layer. Another way is to consider the depth channel
separately. RGB and depth are considered separately as inputs to the models,
called the RGB+D input layer. Figure 6 shows this example.

Extended MobilNetV2 Structure. Our research focuses on MobileNetV2
model. The architecture of this model is based on an inverted residual structure.
An Inverted Residual Block follows a narrow-wide-narrow structure. In some
layers, e.g. 3rd, 5th, 8th, 13th and 15th layers, the dimension of the input and
output are the same. Hence, we can duplicate at these layers. For example, in
the third invert residual block, the input size and output size are [24, 56, 56], we
can duplicate the 3rd layers as in Fig. 7.

In addition, using this technique, we can transfer the weights from the old
model to the modified model according to the order of the referenced layer. For
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Fig. 6. RGB+D input.

example, if we duplicate the 3rd layer, we can transfer the weights from other
layers except the 3rd layer to reduce the training time. From the experiments,
using this technique with early stopping can reduce the training time to 70%
compared to not using the weight transfer.

Fig. 7. Example of extended structure.

3.4 Metrics

The metric used in this evaluation is accuracy calculated by the number the
correct predictions divided by the number of total images. In addition, we use
the CPM model to create the augmented makeup images to evaluate the model
accuracy (an example of augmenting style was shown in Fig. 8). The model
evaluated using the augmented makeup images yields the good results. This
shows the more possibility of using in the real situation when people wear makeup
in their everyday lives.

Accuracy =
Correct

Total
× 100 (1)

Score =
Accuracy0 +

∑n
i=1 Accuracyi

n
(2)

for i is augment number i and Accuracy0 represent Accuracy on evaluate
dataset.
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Fig. 8. Examples of augmented style.

3.5 Training Configuration

Cross entropy loss [12] is used as a loss function and decoder. SGD is used for
optimization. We assume the batch size is 16, the learning rate is 0.0001, and
the total number of training epochs is 50. In addition, the early stopping and
learning rate scheduler is used to reduce the training time.

The experiments were run on the Kasetsart university AI Server with 2
NVIDIA v100 GPUs, and 256 GB memory.

3.6 Automatic Model Finding

In this section, we explain how we find the best modified MobileNetV2 model.
Our modified model can be extended in any of 5 Invert Residual layers [3rd,
5th, 8th, 13th, 15th], for example, if we replicate the third and fifth layers, the
configuration will be [3, 5] (same as [5,3]) or we double third and fifth layers,
the configuration will be [3, 3, 5].

The following summarizes our approach.

1. Train model with a single layer replication e.g. [3], [5], [8], [13], or [15]. Note
that [3] means the replication of 3rd layer.

2. Use the best accuracy for the single-layer replication. For example [15], the
model is best at the single replication for the 15th layer.
(a) Add 15 to the configuration list, for example ([15,3], [15,5], ... ,[15,15] ).
(b) Create the models from the above configuration list.
(c) Transfer model weights from model([15]) to the new model.

3. Train the models.
4. Consider the model with the best accuracy. For example, model no.35, where

the model configuration is ([15,13]).
(a) Add 13 to the configuration list, for example ([15, 13, 3], [15, 13, 5], ... ,

[15, 13, 15] )
(b) Again, create the above models and transfer the model weights from pre-

vious model([15, 13]) to the new model.

The exploration process continues until the accuracy does not improve more
than the given threshold. In our experiments, we use 0.0001.

By using weight transferring with early stopping the training time was
reduced to 73% (e.g. training epoch reduce from 36 epoch to 23 epoch). The
result shown in Table 1.
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Table 1. Training time between standard training and our strategy

Model Epoch Time elapsed

Normal 2D 36 2555min

Our strategy 3D 23 1685min

0

3 5 8 13 15

3 5 8 13

3 5 8 13 15

15

4 Experimental Results

The experiments are considered on the following cases. 1) We compare the per-
formance of 2D face model and 3D face models on various baseline models. 2) We
compare how the depth should be added as input between RGBD and RGB+D
on the baseline models. 3) We consider MobileNetV2 considering RGB+D apply-
ing automatic layer replications.

4.1 Comparison Between 2D and 3D Face Recognition Models

We first show that 3D face recognition can perform better than 2D face recog-
nition although they both use the same initial data.

The difference between the 2D and 3D face recognition models in this part
is the depth of the first layer. In the 2D face recognition model, the depth of the
first layer is 3 to handle RGB data and in the 3D face recognition model, the
depth is 4 to handle the depth information which is added from the 2D model
(shown in Fig. 9).

From Table 2, the results show that 3D face recognition models perform
slightly better than 2D face recognition models.
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Fig. 9. RGB input and RGBD input.

Table 2. 2D and 3D Face recognition models.

Model Loss Acc

MobilenetV2 2D 0.78 82.25%

MobilenetV2 3D 0.71 83.88%

Resnet 2D 0.63 88.43%

Resnet 3D 0.59 89.40%

VGG 2D 0.4 91.81%

VGG 3D 0.43 91.02%

4.2 Comparison Between RGBD and RGB+D Face Recognition
Models

We modify the input layer from RGBD to RGB+D in order to extract more
features from the dataset.

Table 3. Comparison between RGBD and RGB+D for 3D faces.

Model Loss Best accuracy

MobilenetV2 3D 0.71 83.88%

SpMobilenetV2 3D 0.33 92.26%

Resnet 3D 0.59 89.40%

SpResnet 3D 0.26 94.03%

VGG 3D 0.43 91.02%

SpVGG 3D 0.97 78.95%

From Table 3, the results show that the performance increases significantly in
MobilenetV2 and ResNet. In MobileNetV2, the accuracy increases around 10%,
in ResNet model, the accuracy increases 5%.

However, in VGG, the accuracy drops 13%. In overall, we conclude that the
RBB+D input layer can achieve better accuracy.
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4.3 Comparison Between Baseline MobileNetV2 and RGB+D
MobileNetV2 with Layer Replication

After performing the above layer replication exploration, we found the best
model with configuration ([15, 15]) which has a triple fifteenth invert of the resid-
ual layer (the model was shown in Fig. 10). The exploration algorithm stopped at
3 layers of exploration when the accuracy is not further improved. In this exper-
iment, we also compare our derived model with EfficientNet [11]. EfficientNet
that we used is Efficientnet B0 has the parameter around 5 million parameters
while ours is around 3 million.

Table 4. Comparison among baseline models.

Model Eval dataset Aug 1 Aug 2 Aug 3 Aug 4 Avg

MobilenetV2 82.25% 78.72% 75.63% 77.84% 77.22% 78.33%

ResNet50 88.43% 58.41% 54.20% 58.74% 56.88% 63.33%

VGG 91.81% 74.76% 70.34% 73.81% 71.53% 76.45%

SpMobilenetV2 92.26% 69.55% 63.87% 69.65% 67.15% 72.50%

SpResNet50 94.03% 75.70% 69.28% 75.83% 72.53% 77.47%

SpVGG 78.95% 67.59% 61.69% 67.52% 69.32% 69.01%

SpMobilenetV2 [15] 93.86% 89.47% 87.33% 89.41% 88.52% 89.72%

SpMobilenetV2 [15, 15] 94.37% 89.20% 87.60% 89.10% 88.84% 89.82%

EfficientNet 84.72% 76.10% 74.10% 75.93% 75.73% 77.34%

EfficientNet 3D 85.46% 77.69% 74.41% 77.07% 75.88% 85.46%

Sp EfficientNet 76.48% 66.13% 59.90% 62.86% 76.48% 65.65%

From Table 4, the results show that the explored model can achieve the best
accuracy on the evaluation dataset compared with other models. In addition, in
the augment dataset our explored model also yields higher accuracy.

4.4 Comparison Between Our Baseline Model and EffiencientNet
on CelebA Dataset

Table 5. RGB+D MobileNetV2 with layer replication and EfficientNet.

Model Accuracy Parameter

SpMobilenetV2 22.89% 3249024

SpEfficienctnet 8.95% 5545100

In this experiment, we use the CelebA face dataset [5] which has 10,177 identities.
In this part, we keep the class which has the identities images less than 30
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images to reduce the training time. After the pre-processing, there are 800 classes
(identities) for training. The results are shown in Table 5. The results shows that
our model has better accuracy utilizing a small number of image datasets.

Fig. 10. Architecture of RGB+D MobileNetV2 with layer replication

5 Conclusion and Future Work

We explore the variety of optimizing the CNN for the 3D face recognition task.
The optimization approaches replace the input layer by using the separate RGB
input and depth to extract more features and replicating more inverted residual
blocks. We also propose the exploration scheme to modify MobileNetV2 layers
with prior knowledge transfer which can reduce training time by around 70%.
The experiments show that achieved model can yield better accuracy about 8–
12% higher than that of the baseline in the evaluation dataset and 10% higher
in the augmenting makeup dataset.

In the future, we will use another model extraction to segment the model into
small blocks, for example, ResNet or VGG to find a better model architecture.
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Abstract. In the last years, online learning saw a surge in relevance,
along with interest in the automation of the learning process. Variety
and amount of practice exercises are of particular importance, since they
limit the amount of practice a student can have. In this paper, we pro-
pose the use of generative adversarial networks (GANs) to produce scat-
ter plots, for students’ training on data profiling tasks in data-driven
courses. Our results show that progressively grown GANs (ProGANs)
generate scatter plots with little tuning and display an adequate level
of randomness, diversity, and quality. These properties show promise in
allowing for diversity of exercises created from the generated plots.

Keywords: Generative adversarial networks · MOOCs · Learning
resources

1 Introduction

Online learning, and Massive Open Online Courses (MOOCs) in particular, have
seen a recent rapid increase in usage, bringing about a set of new opportunities
to enhance education [17]. Among its major challenges is the ability to auto-
matically personalize the learning process, in particular by recommending the
most adequate learning resources for each student. The abundance of practice
exercises is one of the keys to the success of this personalization, by allowing
students to practice as many times as needed, over different questions along
time. Approaches for the automatic production of practice exercises are scarce,
and, to our knowledge, there has been no proposal to address the generation of
exercises around the analysis of data charts (such as scatter plots, histograms,
box plots, etc. used in data profiling tasks), as often explored in subjects like
data science.

Exploring the advances on the area of image classification and generation
brought by deep learning research, in this paper we propose a methodology
to train generative adversarial networks (GANs) for automatically generating
scatter plots.

The rest of the paper is organized as follows: next (Sect. 2), we overview
how GANs work and explain their fundamentals; after this, in Sect. 3, we briefly

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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discuss the progress done on the automatic generation of questions, from textual
to visual-based ones. In Sect. 4, we present the methodology to generate the
charts, followed by its validation in Sect. 5. The paper concludes in Sect. 6 with
a critical analysis of the results obtained and some guidelines for future work.

2 Generative Adversarial Networks

Generative modeling has traditionally been addressed by approaches based on
maximum likelihood estimation [2]. Though images are very high-dimensional,
it is common that they are supported by low-dimensional manifolds. Such is the
case also for the models trying to learn the distribution underlying some set of
training images, which output high-dimensional samples (images) but are sup-
ported by low-dimensional manifolds [3]. Consequently, it is very likely that the
model and real data distributions are disjoint, which means that the Kullback-
Leibler divergence (KLD) between them is undefined. Since maximum likelihood
estimation is equivalent to minimizing the KLD between the model and real dis-
tributions, it becomes very hard to train models under the former. Variational
autoencoders [11] address this issue by adding noise terms, which “stretch” the
distribution over the space and cause the distributions not to be disjoint. How-
ever, it is well known that noise tends to decrease the quality of generated images,
making it an inappropriate solution to this problem. Furthermore, a theoretical
analysis on different measures of distance between distribution illustrates how
the KLD favors placing a lot of probability mass in non-data regions, which
would cause the model to generate atypical (low-fidelity) samples [23].

Generative Adversarial Networks (GANs) are a framework proposed by
Goodfellow et al. [7] in 2014, in which maximum likelihood estimation is replaced
with an adversarial training regime that approximately minimizes the Jensen-
Shannon divergence (JSD). In particular, two models engage in a minimax game,
where one of the models creates samples (for simplicity, images) that the other
model tries to recognize as being fake. One such model is the generator G,
which takes as input some noise vector z ∼ Pz where Pz is a well known dis-
tribution (e.g., the standard uniform distribution) and yields a “fake” sample
G(z). The discriminator model D, given some input x, outputs a prediction
D(x) for whether x is real (i.e., belonging to the real distribution Pr) or fake
(i.e., generated by G). We can then write the GAN framework as

min
G

max
D

V (D,G) = Ex∼Pr
[log(D(x))] + Ez∼Pz

[log(1 − D(G(z)))]. (1)

For image generation tasks, G and D are usually convolutional neural net-
works due to their ability to deal with this kind of data. Indeed, since the intro-
duction of the deep convolutional GAN architecture [20] in 2015, GANs used in
image generation tasks almost always use convolutional networks [9,14,27].

The JSD had been proposed to place a lot of probability mass under one
or only a few modes of the data [23], which makes sense given that one of the
biggest issues with GANs is mode collapse, whereby they only produce samples
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from a small subset of the modes of the data. Furthermore, since the supports of
Pr and Pθ (the model distribution) are disjoint or lie low dimensional manifolds,
training under the JSD is unstable [2].

The Wasserstein GAN [3] (WGAN) was introduced in 2017 and proposed the
use of the Earth Mover distance (EMD) (also known as Wasserstein-1 distance)
as an alternative to the JSD. The EMD is given by the following objective
function:

W (Pr,Pθ) = inf
γ∈∏

(Pr,Pθ)
E(x,y)∼γ [‖x − y‖] , (2)

where Pθ is the distribution represented by a model with parameters θ. How-
ever, the infimum in Eq. 2 is computationally intractable. From the Kantorovich-
Rubinstein [24] duality, we have:

W (Pr,Pθ) = sup
‖f‖L≤1

Ex∼Pr
[f(x)] − Ex∼Pθ

[f(x)] , (3)

where the supremum is over all 1-Lipschitz f . Instead of a discriminator D
that predicts whether a sample is real or fake, the WGAN has a critic C that
outputs a score of “realness” of a given sample. We can therefore write Eq. 3 in
the previously introduced GAN notation

W (Pr,Pθ) = sup
‖C‖L≤1

Ex∼Pr
[C(x)] − Ez∼Pz

[C(G(z))] . (4)

Intuitively, this objective function tries to maximize the interval between
scores for real images x and generated images G(z).

WGAN uses weight clipping on the critic (e.g., to the [-0.01, 0.01] range) as
a means to enforce the 1-Lipschitz constraint. However, they note that weight
clipping is a terrible way to enforce this constraint [3].

Follow-up work introduced a WGAN with a gradient penalty (WGAN-GP)
[8] as an alternative to weight clipping, and obtained better results in many
relevant tasks. The WGAN loss with the gradient penalty term is

WGP (Pr,Pθ) = W (Pr,Pθ) + λEx̂∼Px̂

[
(‖∇x̂C(x̂)‖2 − 1)2

]
, (5)

where x̂ = εx + (1 − ε)G(z), z ∼ Pz, ε ∼ U [0, 1], W is the WGAN loss (Eq. 4),
and WGP is the newly introduced Wasserstein loss with gradient penalty. The
gradient penalty can be seen as penalizing gradients whose norm becomes larger
than 1, thus enforcing the 1-Lipschitz constraint.

Finally, progressively grown GANs (ProGAN) [10] introduced a new train-
ing method for GANs which increased training speed and stabilized it. As the
name implies, both the generator and the discriminator (or critic, in the case of
WGAN) are trained progressively: starting from a low resolution of 4 × 4, both
models are trained until reasonable convergence, and then another layer (with
resolution 8 × 8) is added, doubling the resolution. This is done over and over,
with impressive results having been attained up to a 1024 × 1024 resolution.

The motivation behind growing the networks progressively is that they are
first allowed to learn coarse information about the image distribution, and then
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pay attention to increasingly finer details. Furthermore, new layers are intro-
duced smoothly into each network via a scaling mechanism which starts by not
letting them contribute much to the output at first, but then increasing their
weight as the model trains. This is so that new layers don’t greatly disturb the
already well-trained lower resolution layers.

3 Related Work

Massive Open Online Courses (MOOCs) have been around for a few years under
other names [17], but The New York Times called 2012 “The Year of the MOOC”
[19]. It saw platforms such as Coursera, Udacity, and edX become mainstream,
and associate with education institutions such as universities, which will remain
the focus of the discussion herein.

The growth of these platforms was accompanied by that of online learning in
general: blended learning, which combines face-to-face with online education, has
seen an increase in popularity, particularly in higher education [6]. Furthermore,
as of 2013, around 70% of education institutions in the U.S.A. claimed that online
learning was fundamental to their long-term strategy [1]. Finally, the COVID-19
pandemic has forced a widespread temporary adoption of full online learning [5].

All these factors continuously contribute to the adoption of MOOCs by edu-
cation institutions, which now face a different paradigm in providing courses.
While a discussion of the challenges of online learning is beyond the scope of
this document, it is relevant that the informatization of learning systems intro-
duces the opportunity to leverage automated tools to improve the quality of
online courses.

Indeed, along the years, several have been the challenges faced by the devel-
opment of MOOCs, either in their creation or in supporting their operation.
Among these, personalization has been one of the most researched [15], aiming
for creating a learning experience as unique as possible for each student. How-
ever, personalization demands the existence of a diversity of learning resources
that are difficult to create manually, in particular evaluations items, like textual
questions or more complex exercises. As noted by Kurdi et al. [12], the need of
providing a “continuous supply” of these resources led to a new research field in
automatic question generation.

Unlike other fields such as educational data mining and learning analytics,
automatic question generation hasn’t received much attention, and its results
have been seldom deployed in applications [13]. In the last few years however,
advances in NLP (natural language processing) techniques brought new and
more powerful tools that have been explored in this context. Their usage in the
automatic generation of sentences has been considerably successful, allowing for
the creation of different types of textual questions, such as fill-in-the-blank, word
formation, multiple choice, and error correction questions [18,25].

Despite the promising application of NLP in this context, in formal domains,
such as maths, physics, and engineering in general, questions are more than
sentences - often they involve the existence of diagrams, charts and even more
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complex images. The work by Singhal and Henz [22] is a good example of this,
where the goal was to produce geometry questions, or the work by Moura Santos
on the automatic generation of Markov chains [21]. More recently, GANs have
been applied to image generation, mostly for training purposes in the medical
domain to help students recognize real images [4,26].

These examples show the diversity of situations we may face in generating
visual-based questions. Indeed, these can vary from simple diagrams to real
images. While the former are simple enough to be accomplished by parameterized
solutions, the latter are nowadays possibly generated through GANs. However,
to our knowledge, the generation of data charts has not been addressed before,
and it is our main goal.

In particular, we will attempt to train GANs that are capable of producing
scatter plots that display an adequate level of randomness, diversity, and quality.
In the 2D scenario, a scatter plot is a type of plot that uses dots to represent
values for two variables (i.e., a 2-tuple) in a given dataset. This would allow for
the creation of an arbitrary amount of scatter plots that exhibit specific features
to varying degrees, which bears direct relevance to the task of automatically
generating learning resources.

4 Methodology

Data charts however, have a particularity: they depend on an external element
- the data being plotted. Indeed, synthetic data generation has been the usual
approach to generate examples for training purposes, either for machine learning
algorithms or for humans. However, it has long been shown that these datasets
are not good enough to train those algorithms, since they are rough approxima-
tions to real data. And if they are not good enough to train algorithms, they
shouldn’t be accepted to train humans. Furthermore, the synthetic data gen-
eration has to be parametrized, which limits the kinds of datasets generated,
defeating the main purpose of generating practice exercises - to expose students
to some diversity of situations. Now, if datasets become too similar, the answer
for a given question becomes fixed, and consequently students learn it by heart,
instead of analysing the data to conclude the answer.

Taking advantage of the advances on the field of image generation, we pro-
pose a methodology to train GANs for generating data charts. The generated
charts will then be used to support the production of visual-based questions. By
applying GANs, we expect to gain variability, due to their freedom on creation
and ability to capture the common features among the set of training images,
making free variations of them. Indeed, the more different the charts used for
training are, the more distinct we expect the produced charts to be.

Let’s consider a data chart to be composed by a set of elements, namely axes
(two or three), titles, legend, plot area and gridlines. Scatter plots, bar charts,
pie charts and boxplots are examples of these kinds of data charts.

It is important to note that those elements are not atomic. An axis is com-
posed by a set of ticks, usually equidistant, the corresponding tick labels, its title
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and unit label. Titles by their side are strings of characters, representing mean-
ingful sentences or isolated words; likewise for the legend, which includes some
meaningful identifiers and their corresponding visual elements. Plot areas are
rectangles or parallelepipeds, depending on the number of existing axes, which
contain all the data points. Gridlines are lines that are parallel to each axes,
and that cross them in some specific ticks. Following these definitions, it is clear
that data charts do not correspond to random images, but to heavily constrained
ones, which should put additional challenges to the use of GANs. The proposed
methodology is illustrated in Fig. 1.

Fig. 1. Tool pipeline.

The raw datasets correspond to the data to be used as a “seed” to generate
the synthetic data charts. It should consist of a collection of datasets, as diverse
and large as possible. From these datasets, we will generate the set of data charts
to be used as training set for the GAN, which is accomplished in the first step
in the methodology - the dataset preprocessing. The importance of this step
lies in the simplification of the learning process, choosing the the type of data
charts to generate, and their required elements.

In this step, we separate different types of data (numerical real versus cate-
gorical, for example), since the resulting data charts follow different constraints.
While real values spread continuously in the plot area, categorical ones are con-
fined to specific places in the area. Now, if we use both kinds of charts to train
the GAN, it is not able to distinguish between them, possibly generating con-
tinuous distributions for categorical variables. As such, we keep only continuous
numerical variables for each dataset.

In terms of visual elements, we also choose to use the more basic ones, avoid-
ing semantically demanding elements like titles, legends, and labels. Additionally,
all data shall be scaled to a common range, so that the tick values are fixed and
can thus be learned by the GAN. We thus keep only the axes, ticks, and tick
values (with all variables being scalled to the [0, 100] range) on each scatter plot.

After choosing the data and elements to use, it is then time to produce
the corresponding data charts. In order to maximize the variety of data charts
to train the GAN, we discard all variables whose correlation coefficient is larger
than 0.99 for each dataset considered. In this manner, by ignoring pairs of highly
correlated variables, we increase the variability of the charts used for training,
avoiding any undesired bias into the model. From the selected variables we then
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created the data charts, following a common format. The image resolution of
128 × 128 (with 3 channels for RGB) is chosen in advance and fixed for all
training charts.

In sum, we propose to train a GAN that can generate scatter plots with
enough variability and fidelity to be used as tools in the automatic generation of
learning resources. In order to qualitatively assess image diversity and quality,
we rely on the assessment of domain experts: teachers in data science.

5 Results

We collected 14 datasets from the ones available in the UCI ML repository, in
order to validate our proposal. From them, we selected all numerical variables,
avoided titles and gridlines, and followed the constraints described before: cor-
relation threshold set to 0.99 and scaled all variables to the [0, 100] range. From
these, we produced 11,552 two-dimensional scatter plots as 128 × 128 images
(with 3 channels for RGB), which were used to train a ProGAN. Examples of
real plots used in training can be seen in Fig. 2.

Fig. 2. Original scatter plots (with ticks and tick labels)

In these examples, we are able to see some of the diversity shown. Most of
the charts show heavy dense data, but four of them almost only occupy two
orthogonal lines. Then we identify different levels of correlation between the
variables, either positive and negative, or entirely nonexistent.

Figure 3 shows the synthetic scatter plots generated by our ProGAN, trained
for 3 d over the original scatter plots described, but without ticks and tick labels.

Fig. 3. Scatter plots without ticks, generated by the ProGAN
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The results are quite interesting, presenting a diversity similar to the original
ones, with different levels of correlation and different patterns of dispersion along
the axis. From the sixteen plots shown, only the 7th one in the first row doesn’t
pass a human validation.

The plots in Fig. 4 were produced by a ProGAN which was trained on plots
with both ticks and tick labels for 3 days and 6 h.

Fig. 4. Intermediate scatter plots with ticks and tick labels, generated by a ProGAN
(training not complete)

Again, the plots show impressive results, being able to generate perfect axes
with their ticks and tick labels. Indeed, it is now clear that beside being able
to generate images where all data elements are represented inside the plot area,
axes may also be learnt perfectly, when the data is previously scaled.

It is important to mention that the existence of more plots with blurred data
points (3 in 16), is due to unfinished training of the GAN.

All the generated artificial samples result from passing noise vectors (sam-
pled from the standard normal distribution) through two different ProGANs.
Due to computational infrastructure limitations, we were not able to make use
of the original accompanying code in the ProGAN paper [10]. Instead, we used a
PyTorch implementation of the same model developed by Facebook Research1.
We trained the models on an NVIDIA Tesla T4 using all the default hyperpa-
rameters, which match those in the paper and its original implementation.

6 Conclusion

The need of online learning personalization and continuous supply of learning
resources demands the automatic generation of learning resources; questions
in particular. Despite the promising advances in textual questions generation
through NLP tools, the results on visual-based questions are far from satisfac-
tory.

In this paper, we propose to train GANs on data charts created from publicly
available datasets to generate synthetic ones. We obtained good quality samples

1 The code can be found at a GitHub repository.

https://github.com/facebookresearch/pytorch_GAN_zoo
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with no hyperparameter tuning and a modest training time of about three days
on an NVIDIA Tesla T4.

Interesting future work includes conditioning the GAN on features of the data
(cf. CGAN [16]) so that the user may have explicit control over several features of
the generated plots. Doing so could allow the user to generate plots with certain
general properties (e.g., data point dispersion, correlation, relative location in
the plot) while maintaining sample diversity. The successful implementation of
such a model could thus be a useful tool for educators in data-driven subject
MOOCs.
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Abstract. It is challenging to mine semantic links among multi-sourced
data. Knowledge graphs can capture the semantics of data to sup-
port implicit links (cross-data sources) to be inferred through reason-
ing, known as the link prediction task. However, existing link prediction
approaches are limited in their adaptability to data changes and can-
not provide explanations for the predictions. In this work, we introduce
a framework for semantic link mining through knowledge graphs and
rule-based link prediction. In particular, rules representing higher-order
patterns in the data are automatically mined and updated according to
the dynamics of the data. We present a practical use case and a sys-
tem for the semantic link mining of aviation data from multiple online
sources. Besides, we evaluate our system by comparing it with several
link prediction models to demonstrate the effectiveness of our approach
in both static and dynamic link prediction and explanation.

1 Introduction

It is challenging to establish semantic connections among data from multiple
sources to provide uniform access [5]. Knowledge graphs (KGs) offer a promising
semantic link mining solution by extracting objects across data sources as entities
and describing semantic links between them. A KG is usually modelled as a set of
triples (subject, relation, object). For instance, (737-800, isAircraftOf, AirFrance)
states that entity 737-800 is linked to the entity AirFrance with the relation
isAircraftOf. Implicit semantic links across data sources can be discovered via
reasoning, known as the link prediction task. The objective of link prediction is to
validate whether a pair of entities are connected via a given relation. For example,
a link prediction task (737-800, isAircraftOf, ?) asks which airlines have 737-800 in
their fleet. A rich body of research has been dedicated to accurate link prediction
in large KGs, including approaches based on embedding models [1,7,15,17] and
those based on rules [8,10,11].

While existing link prediction models show strong performance on standard
benchmarks, they are still inadequate in mining semantic links in real-life appli-
cations. First, real-life data are often highly incomplete, especially cross-links
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between data sources. Existing models often require a significant amount of
initial links to train. Also, data from many sources are dynamic due to various
changes, which poses significant challenges to the current link prediction models.
Existing models are developed for static data and thus cannot be directly applied
or conveniently adapted when the data change. In particular, embedding-based
models have difficulty when new entities and links are dynamically added. More-
over, in real-life applications, it is often necessary to explain the predicted links
so that human experts can approve or disapprove them. Link prediction models
adopting a black-box approach suffer from the lack of explainability; that is,
they cannot provide human-comprehensible explanations to the predicted links.

Rules provide a natural and yet explainable approach to link prediction in
knowledge graphs as rules are easily comprehensible to humans. Also, rules reveal
higher-order patterns in the data, and they can be applied directly to new enti-
ties, such as new flights and persons. Consider a logic rule

0.7 : isAircraftOf(X,Y ) ← isAircraftOf(X,A), hasAlliance(Y,A).

If the triple (737-800, isAircraftOf,AirFrance) is in the knowledge graph and Qan-
tas is an alliance partner of Air France, then there is a good chance that Qantas
has aeroplanes 737–800, that is, (737-800, isAircraftOf,Qantas). Recent advance-
ment in rule-based methods also shows promising accuracy in link prediction
on commonly used benchmarks [12]. Yet we are unaware of any attempts to
combine KGs with rule mining and reasoning for mining semantic links over
multi-sourced data, and neither has rule-based link prediction for dynamic data
been explored.

In this paper, we introduce a framework for semantic link mining through
rule mining and reasoning in KGs. The core of our framework is an incremental
rule mining method over dynamic data, which can refine the mined rules when
data changes. We demonstrate our framework through the integration of avia-
tion data by constructing a KG with the guidance of an ontology. Finally, we
evaluate our rule-based link prediction method in comparison with commonly
used models and demonstrate its benefits, especially in link prediction under a
dynamic setting. The main contributions in the paper are as follows.

– We introduce a framework for semantic link mining, which supports rule-
based link prediction and explanation. In particular, rules are mined auto-
matically from the integrated data and rule reasoning are used for link pre-
diction.

– We present a concrete KG contracted by integrating aviation-related data
from online resources and demonstrate a use case of querying such data,
including predicted links and explanations.

– We present experimental evaluations of our rule-based link prediction by com-
paring it with embedding-based models and inductive neural models. The
evaluation shows the competitiveness of our method, besides its clear and
unique advantage of explainability.
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Source code for our system, the dataset, and experiment setting details are
all available at https://drive.google.com/file/d/1-jeJ1ahLaZAkKZvGgKVzhy
j4QWp yyTY/view?usp=sharing.

2 Related Work

In this section, we summarise major existing research works closely related to
the paper.

2.1 Knowledge Graph Link Prediction

KGs have shown to be a promising approach for interlinking data and cap-
turing semantic connections. Link prediction is the task of predicting missing
links between entities in KGs and is one of the major reasoning tasks studied
for KGs. Existing approaches include embedding-based [1,7,15,17] and rule-
based [8,10,11] ones. The embedding-based methods encode entities and rela-
tions in KGs as low-dimensional latent representations, such as vectors and
matrices, called embeddings [16]. While most existing link prediction methods
are embedding-based and show high accuracy on standard benchmarks, their
major limitations are the lack of adaptability and explainability. In particular,
the embedding-based models are trained for KGs with fixed entities and relations
and cannot effectively handle changes. Once a KG is updated, embedding-based
models need to be retrained, which is often highly time and resource-consuming.
To address such a limitation, inductive neural models [13] are proposed to han-
dle new (called unseen) entities introduced after the models are trained by
encoding subgraph patterns instead of individual entities. Nevertheless, neither
embedding-based nor inductive neural models themselves can provide human
comprehensible explanations to the predictions made.

On the other hand, rule-based approaches [8,10,11] mine logic rules from
KGs and apply rule-based reasoning for link prediction. Rules and rule-based
reasoning have the clear advantage of being comprehensible to humans, and as
rules capture higher-order knowledge, they can be directly applied to previously
unseen entities in the KG. Recent advancement in rule mining [10,11] allows
significant amounts of high-quality rules to be mined from large-scale KGs, and
their performance in link prediction is comparable with major embedding-based
models, often with significantly better efficiency. Yet, to the best knowledge, logic
rule mining and reasoning have not been applied in semantic link mining, and
existing rule learners have not been evaluated on real-life datasets that involve
data dynamics. In this work, we present a rule-based approach for link prediction
over dynamic integrated data.

2.2 Semantic Data Integration

Semantic data integration [5] refers to the integration of multi-sourced and het-
erogeneous data by establishing links between the entities across the original

https://drive.google.com/file/d/1-jeJ1ahLaZAkKZvGgKVzhyj4QWp_yyTY/view?usp=sharing
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datasets to provide a single interface to process the data. KGs offer a promising
solution to semantic data integration [6] by representing entities of interest as
vertices and their semantic links as edges in a graph, which supports a single
interface to access and explore the data. KGs have been increasingly adopted
in the industry to integrate business-related data, provide a virtual schema to
browse and query data, and use reasoning to answer user queries [4,9]. Also,
ontology-based data access (OBDA) approaches [3] have been developed to inte-
grate relational data from multiple sources. These approaches often require man-
ually developed knowledge bases such as ontologies to capture the domain knowl-
edge and to provide reasoning capability, and they focus on the query answering
task.

Our framework is different in the following aspects. First, while we use a
manually developed ontology to guide the auto-construction of the KG, the rea-
soning is not only based on the ontology. Instead, we use automated rule mining
to extract high-level knowledge as logic rules for reasoning, which makes it pos-
sible to capture the high-order effects of data changes. Also, our framework
allows users to query both explicit facts and implicit links through link predic-
tion. Moreover, by combining rule mining and reasoning in link prediction, our
framework provides adaptability and explainability.

3 Preliminaries

A knowledge graph (KG) consists of a set of entities E as its vertices and its
edges are directed and labelled with a set of relations P. An entity e ∈ E is an
object such as a place, a person, etc., and link between two entities is a triple
(e, p, e′), which means that the entity e ∈ E is related to another entity e′ ∈ E
via the relation p ∈ P. Following the convention in knowledge representation,
we can also denote such a triple as a fact p(e, e′).

A probabilistic rule (or simply a rule) r is of the form

α : H ← B1, B2, . . . , Bn,

where H and each Bi (1 ≤ i ≤ n) is of the form p(X,Y ) with p ∈ P being a
relation and X,Y being variables, and α is a number between 0 and 1. Intuitively,
the rule r reads that if B1, B2, . . . , Bn hold, then H holds with a confidence of
α. H is the head of the rule and the set of atoms {B1, B2, . . . , Bn} is the body
of the rule.

The confidence degree of a rule is usually defined as the number of instances
that make the body valid, divided by those instances that make both the body
and the head valid. In particular, for a rule r with its head being p(X,Y ),
#(e, e′) : head(r, e, e′) is the number of pairs of entities e, e′ ∈ E making the
head of r valid, i.e., fact p(e, e′) is in the KG. Similarly, #(e, e′) : body(r, e, e′)
is the number of pairs of entities making the body of r valid, i.e., there is a way
of substituting variables in the body of r with entities in E such that (i) all the
facts in the body of r (after substitution) hold in the KG, and (ii) X and Y are
substituted with e and e′ respectively. And #(e, e′) : head(r, e, e′)∧ body(r, e, e′)
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is the number of pairs of entities making both the head and body of r valid at
the same time. The confidence degree of a rule r is defined as follows:

#(e, e′) : head(r, e, e′) ∧ body(r, e, e′)
#(e, e′) : body(r, e, e′)

The link prediction task is to predict, given the subject (or object) e ∈ E and
the relation p ∈ P in a triple (e, p, ?) (resp., (?, p, e)), the missing object (resp.,
subject). Unlike embedding-based approaches that rank the possible entities e′

via scoring functions, a rule-based approach tries to derive plausible facts p(e, e′)
by applying the mined rules to the existing facts in the KG. For a rule r with
its head H = p(X,Y ), the derived facts are p(e, e′) for e, e′ ∈ E such that there
exist a way to substituting the variables in the rule so that X and Y are replaced
with e and e′, respectively, and all the facts obtained from the body of r occur
in the KG. The ranking of the derived fact is obtained from the confidence of
the rules deriving it.

4 Our Approach

In this section, we describe our approach for semantic link mining with rule-based
link prediction.

4.1 Our Framework

Fig. 1. Our framework for semantic link mining and link prediction.

Figure 1 shows an overview of our framework. There are two major components in
our approach, one is the KG-based integration module, and the other is the rule-
based link prediction module. In the KG-based integration module, we integrate
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heterogeneous data from multiple sources by mapping them into a KG. As a
result, the KG provides a uniform way to access information from multiple data
sources and also connects the data for querying. To guide the data mapping, we
use an ontology manually developed for the related domains.

The links between data sources in the KG are still incomplete due to the
data sizes and their complex semantic connections. Hence, in the rule-based link
prediction module, we mine logic rules to capture higher-order knowledge stored
in the KG, which can be considered as metadata. The rules are automatically
mined using a rule learner. Such rules can be applied to infer new links with the
confidence degrees of the rules propagated to the inferred links. The confidence
degrees can be used to rank the inferred links for humans to decide whether such
links should be added to the KG. When new data are added to the system, they
can be integrated through the mapping to expand the existing KG. Rules can
be updated accordingly, and the inferred links can be re-evaluated, or new links
can be inferred.

4.2 KG-Based Integration

Unlike conventional data integration approaches that design an extended schema
to cater to all the data attributes, our approach uses a KG, which does not
require a rigid schema, to integrate the data by treating objects of interest such
as aircraft, airports, flights, events and organisations as entities. Entities are
linked by relations manually selected from the data sources.

The mapping of data objects from the sources to entities and relations in
the KG is based on the Extract, Transform and Load (ETL) pipeline approach,
which has been widely applied in semantic data applications. Major challenges
in developing such an ETL pipeline include identifying important data objects
as entities of interest, discovering correlations between entities from different
sources, and establishing meaningful relations between entities while maintaining
the integrity and quality of all data.

To address such challenges, our approach adopts ontology-based data access
(OBDA) techniques to guide the ETL process. The ontology provides a virtual
schema for integrating multiple data sources to build our final KG. The instances
of each class in the ontology schema become the entities in the KG. Similarly,
object properties between classes in the ontology schema correspond to the rela-
tions and data properties become entity attributes in the KG. With the emerging
requirements for FAIR data, an ontology also provides a foundation for integrat-
ing data based on the linked open data principles by enabling the development
of common vocabularies.

4.3 Rule-Based Link Prediction

The semantically integrated data can be used to infer missing links through link
prediction. We are interested in cross-source link prediction, for example, the
link prediction task (737-800, isAircraftOf, ?), which requires aircraft data and
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airline data to be combined. In what follows, we describe our rule-based link
prediction module.

To achieve this, we first mine rules across data sources by exploring the paths
in the integrated data. For example, to mine the following rule for predicting
links about the relation isAircraftOf:

isAircraftOf(X,Y ) ← isAircraftOf(X,A), hasAlliance(A, Y ),

we explore paths where aircraft entities X (e.g., from FAA) are connected to
some airline entities A (e.g., from openflights.org) through relation isAircraftOf,
which in turn are connected with some other airline entities Y via relation
hasAlliance. Hence, we essentially want to extract a sequence of relations like
(Aircraft, hasAlliance). Formally, a relation path is a sequence of relations (p1, p2,
. . ., pn) in the KG.

Path-based rule mining has been used in [10], where paths are examined
locally independent of other paths and thus lack a global view of potentially
more plausible paths. Unlike [10], we use a vector representation of paths to
efficiently evaluate large numbers of paths together before assessing the rules
corresponding to individual paths.

To efficiently assess whether a relation path has a significant number of
instances in the data, instead of retrieving all its instances using a SPARQL
query, which is relatively inefficient, we use a lightweight check for rapid evalua-
tion as below. For each relation p ∈ P, let dom(p) = {e ∈ E | p(e, e′) in the KG}
and ran(p) = {e ∈ E | p(e′, e) in the KG}. Intuitively, for a relation path
(p1, p2, . . . , pn) that forms the body of a rule

p(X0,Xn) ← p1(X0,X1), p2(X1,X2), . . . , pn(Xn−1,Xn),

there should be a significant number of entities exist in the following sets

– dom(p) ∩ dom(p1) (in the place of X0),
– ran(p) ∩ ran(pn) (in the place of Xn), and
– ran(pi) ∩ dom(pi+1) (in the place of Xi for 1 ≤ i < n).

We use one-hot encodings for dom(p) and ran(p) as a computational method
to obtain statistics on entity distributions over relations. Let pdom (resp., pran)
be a vector of length |E|, such that the scalar at position i is 1

|dom(p)| (resp.,
1

|ran(p)| ) if ei ∈ dom(p) (resp., ei ∈ ran(p)), and 0 otherwise, for 1 ≤ i ≤ |E|. We
use the following scoring function to filter relation paths.

fpath(r) = sim(pdom
1 ,pdom) + sim(pran

n ,pran)+

sim(pran
1 ,pdom

2 ) + ... + sim(pran
n−1,p

dom
n ),

where sim(·, ·) is defined by the Frobenius norm, i.e. sim(v1,v2) = exp(−‖v1 −
v2‖)F . Paths with high scores form candidate rules, which are validated through
their confidence degrees.

When the data change, if the change involves only a small amount of data,
the mined rules may still be valid. As rules are naturally inductive, they can be
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applied directly to new entities introduced. For example, if a new triple is added
(DeltaAirlines, hasAlliance, AirFrance) with a new entity DeltaAirlines, sup-
posing a triple (737-800, isAircraftOf, AirFrance) is in the data, the aforemen-
tioned rule can be directly applied to the new entity and derive a new link
(737-800, isAircraftOf, DeltaAirlines).

If a considerable amount of data are involved in the change, the mined rules
should be updated to reflect the higher-order impact of such a change. Our one-
hot encodings can be utilised to update mined rules. In particular, when new
data is added, or some existing data is deleted, such changes are reflected in
the KG through our integration pipeline. Then, the one-hot encodings pdom and
pran can be efficiently updated for each relation p involved in the changes. Then,
the following changes will be made to update the mined rules. For each relation
paths (p1, p2, . . . , pn) where a significant change occur to the one-hot encodings
of a relation pi (1 ≤ i ≤ n),

– if the path corresponds to previously mined rules then it is reassessed using
the scoring function;

– if the path had a high score but the confidence of its corresponding rule fell
slightly below the threshold, then the path may be reassessed; and

– if the path can be obtained from the above paths by replacing relation pi−1

or pi+1, then the path may be reassessed.

These operations will update rules and their confidence degrees based on the
data changes, allowing higher-order changes in the data to be reflected in the
rule model.

For link prediction such as (737-800, isAircraftOf, ?), our rule parser translates
the query and all the related rules into SPARQL queries to retrieve entities from
the data, as the subject or objection in the place of the question mark. The
translated SPARQL query of the first rule above would be as follows.

SELECT DISTINCT ?Y
WHERE {

?X rdf:type ai4dm:Aircraft .
?A rdf:type ai4dm:Airline .
?X airgraph:isAircraftOf ?A .
?Y rdf:type ai4dm:Airline .
?A airgraph:hasAlliance ?Y .
FILTER( ?X = ’737-800’ )

}

The retrieved answers are attached with the same confidence degrees as the
rules used to infer them and are ranked by their confidence degrees. Our system
will display the answers ordered by their confidence degrees together with the
rules as an explanation of the predictions. These answers can be evaluated by
human experts and added to the KG if their validity is confirmed.
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5 An Application Case

In this section, we present a practical use case by integrating aviation-related
data from four major sources: Federal Aviation Administration (FAA)1, ourair-
ports.com2, openflights.org3, and DBpedia4. FAA is a transport agency in
the USA that aggregates aircraft and airport data around the world. Ourair-
ports.com is a free online portal for users to explore world airports. It comprises
information on airports and runways. Openflights.org is an online service for
logging and sharing flight data, which provides information on flight routes, ori-
gin, and destination airport information. DBpedia is a large KG, which contains
structured general knowledge extracted from Wikipedia. It describes general
concepts and entities related to airlines, airports, and aircraft.

Fig. 2. Key classes and relations in our ontology expressed in an ER model.

The data from the above sources contain complementary information. For
example, there are a rich collection of aircraft data in the FAA database, which
is not contained in the other data sources. Hence, integrating the data from these
sources allows us to build connections between airports and aircraft. To express
such semantic links are cross data sources, relations are extracted from the ontol-
ogy. For example, the relation isAircraftOf connects entities about aircraft in the

1 https://www.faa.gov/data research/.
2 https://ourairports.com/.
3 https://openflights.org/data.html.
4 https://www.dbpedia.org/.

https://www.faa.gov/data_research/
https://ourairports.com/
https://openflights.org/data.html
https://www.dbpedia.org/
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FAA database with those about airlines in the openflights.org database, and the
relation targetAirport connects entities in ourairports.com and openflights.org.

Our ontology provides a collection of key classes and their relations (a.k.a.
object properties), including 32 classes and 82 relations. Some key classes and
relations in the ontology schema are shown in Fig. 2.

Initially, a total of 59K entities and 77K triples are extracted through the
ETL process. The distribution of the entities in several major classes is shown
in Table 1. We refer to this KG as AirGraph. Note that as a proof of concept
and for the ease of data cleaning, the KG contains only a fragment of all the
information from the original data sources, while the framework allows further
data to be added.

Table 1. Entities distributions.

Classes Entities Classes Entities Classes Entities

Flight 42491 Aircraft 521 Institution 36

Airport 9131 Country 246 Airline 13

Region 3958 Person 54 Organisation 10

Runway 3171 Event 38

6 Evaluation

We have conducted two sets of experiments to evaluate the performance of our
rule-based link prediction module in both static and dynamic settings. For the
static setting, we used two commonly used benchmarks and a static version of
AirGraph and used an incremental version of AirGraph for the dynamic setting.
Statistics of the four datasets are shown in Table 2. In particular, FB15K237 [14]
and WN18RR [7] are widely used benchmarking datasets obtained from respec-
tively Freebase and WordNet.

Table 2. Statistics of datasets.

KG #Entity #Relation #Triple

FB15K237 14541 237 310116

WN18RR 40943 11 89969

AirGraph 21685 23 59619

For rule mining, we used both our own rule learner and an efficient rule learner
AnyBURL [10]. AnyBURL is an anytime rule learner that can be configured with
a very short training time, hence can be efficiently retrained for online prediction
over dynamic data. We are particularly interested in the time efficiency of rule-
based link prediction, whether our module can be used for online processing
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where predictions need to be made within a matter of minutes. We also evaluate
the accuracy of our rule-based link prediction in comparison with some baselines.

We compare our module with embedding-based models TransE [1], Dis-
Mult [17], ComplEX [15], and ConvE [7], which cover a range of geometric,
matrix factorization, and deep learning models [12]. We also compare with an
inductive neural model GraIL [13], which is particularly designed for dynamic
setting where new entities are introduced after the model is trained. GraIL is
inspired by the inductive capability of rules and is based on graph neural net-
works (GNN), but it cannot generate explicit rules.

Our experiments are designed to validate the following statements.

– In the static setting, the accuracy of our rule-based link prediction module is
superior than the compared embedding-based models.

– The time efficiency of our module is superior than the embedding-based mod-
els, and significantly better than GraIL.

– In the dynamic setting, the accuracy of our module is still compared to the
inductive neural models, with the clear advantage of explainability.

The experiments were conducted on a machine with 2 CPU, 16G RAM, and
1 GeForce GTX1605 GPU.

6.1 Static Link Prediction

In the first set of experiments, we evaluate the accuracy of our module in link
prediction on FB15K237 and WN18RR. The predictions are measured using fil-
tered Mean Reciprocal Rank (MRR), Hits@1, and Hits@10, where a higher value
indicates better performance. These quality measurements are commonly used
in the literature. In particular, each prediction is ranked by its confidence score,
and MRR is the average number of the reciprocal ranks of correctly predicted
entities. Hits@1 and Hits@10 are the proportions of correctly predicted entities
that are ranked number one and among the top ten, respectively. Table 3 shows
the results, with those for embedding-based models for FB15K237 and WN18RR
obtained from [2], and those for AnyBURL are from [10]. The best results are
highlighted in bold, and the second best ones are underlined.

Table 3. Performance of link prediction on FB15K237 and WN18RR.

Models FB15K237 WN18RR

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

RESCAL 35.6 26.3 54.1 46.7 43.9 51.7

TransE 31.3 22.1 49.7 22.8 5.3 52.0

DistMult 34.3 25.0 53.1 45.2 41.3 53.0

CompIEx 34.8 25.3 53.6 47.5 43.8 54.7

ConvE 33.9 24.8 52.1 44.2 41.1 50.4

AnyBURL 31.0 23.3 48.6 47.0 44.1 55.2

Ours 33.7 26.7 52.0 48.3 44.8 54.1
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In the next set of experiments, we evaluate both the accuracy and time
efficiency of the models on the statistic version of AirGraph, which includes a core
fragment of the data we collected. We separate the dataset into approximately
70% train, 10% validate, and 20% test. Our module mines rules from and applies
rules on the train data to predict links in the test. For AnyBURL, as it is an
anytime rule learner, we set a time limit according to the time our rule learner
took (11 min). Table 4 summarises the results, and the time is in minutes.

Table 4. Performance of link prediction on static AirGraph.

Models Time MRR Hits@1 Hits@10

TransE 15.03 0.10 0.07 0.17

DistMult 16.67 0.10 0.07 0.16

ComplEX 34.09 0.12 0.09 0.19

ConvE 16.18 0.14 0.10 0.20

GraIL 378.20 0.48 0.37 0.68

AnyBURL 11.00 0.10 0.11 0.17

Ours 10.52 0.22 0.18 0.30

Compared to well-established KGs, our AirGraph is highly incomplete
regarding the inter-source links, which affects the overall prediction accuracy.
Our module demonstrates superior accuracy and time efficiency compared to
the evaluated embedding-based models. The accuracy of our rule learner is also
better than AnyBURL configured with the same rule mining time as ours. The
accuracy of GraIL is outstanding, likely due to its powerful GNN-based model,
yet it is also extremely time-consuming to train. GraIL took over 5 h for training
and prediction, which is 30 times more than ours. Please note that our goal is
not to compete with deep neural models like GraIL on the prediction accuracy,
as the advantages of our rule-based module are in its explainability and time
efficiency. For decision-critical applications where explainability is desired and
for time-critical applications, our rule-based module would be more suitable.

Our rule learner extracted a totally 373 rules with lengths up to 3, and we
show some examples of the rules and their confidence.

0.36 : isAircraftOf(X,Y ) ← hasAircraft(A,X), isFlightOf(A, Y ).
0.39 : isAircraftOf(X,Y ) ← hasAircraft(A,X), hasOrigin(A,B), hasBase(Y,B).
0.50 : hasAlliance(X,Y ) ← isSubsidaryOf(X,A), foundedBy(A,B),

hasEmployer(B, Y ).
0.50 : isSubsidaryOf(X,Y ) ← hasEmployer(A,X), foundedBy(Y,A).
0.60 : isRegionOf(X,Y ) ← hasHeadquarter(A,X), hasCountry(A, Y ).
0.67 : hasNationality(X,Y ) ← hasEmployer(X,A), hasFocusRegion(A,B),

isRegionOf(Y,B).
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The rules are intuitive, for example, the first rule says an aircraft X is likely to
be in the fleet of an airline Y if a flight A from the airline Y uses the aircraft.
The final rule tells a person X has a nationality Y if X is employed by an
organisation A that has a focus region B where country Y is part of.

6.2 Dynamic Link Prediction

As discussed before, data changes often pose significant challenges in link pre-
diction. Hence, in the second set of experiments, we compare our module with
GraIL in a dynamic setting. In particular, we consider the scenario where data
arrive and are integrated into AirGraph in batches.

We separate the initial train data that consist of around 25% of the triples
used in the previous section. Based on a common assumption of inductive neural
models, the initial train data contain all the relations, while only new entities
(i.e., unseen entities in [13]) will be introduced later. All the models are trained
once on the initial train data. Then, new data arrive in 4 batches, each consisting
of roughly the same number of triples as in the initial train data. Each batch is
divided into approximately 70% train, 10% validate, and 20% test, similar to the
data division as in [13]. When a new batch arrives, say batch n (n = 1, 2, 3, 4),
all the models make predictions with access to train and validate in the current
and previous batches, i.e., batches i for all 1 ≤ i ≤ n. Such a setting is based on
the following considerations: (1) retraining the models may not be possible for
online prediction, (2) GraIL and our rule-based module can apply the trained
models on new data to make predictions about unseen entities.

Moreover, as AnyBURL is the only model that can be retained within a
minute, we include a version of it with retraining on each batch (marked with

Table 5. Performance of link prediction on dynamic AirGraph.

Batch Models Time MRR Hits@1 Hits@10

1 GraIL 28.00 0.078 0.044 0.076

AnyBURL 0.03 0.009 0.010 0.019

AnyBURL∗ 0.83 0.039 0.043 0.068

Ours 0.58 0.156 0.131 0.199

2 GraIL 57.00 0.193 0.133 0.232

AnyBURL 0.05 0.025 0.028 0.041

AnyBURL∗ 0.83 0.061 0.067 0.101

Ours 1.17 0.197 0.167 0.257

3 GraIL 124.00 0.280 0.197 0.402

AnyBURL 0.07 0.040 0.045 0.073

AnyBURL∗ 0.83 0.078 0.087 0.133

Ours 1.89 0.220 0.188 0.288

4 GraIL 220.00 0.329 0.235 0.496

AnyBURL 0.08 0.059 0.064 0.099

AnyBURL∗ 0.83 0.099 0.108 0.167

Ours 2.83 0.225 0.191 0.296
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an ∗). Our rule learner took 2.53 min to train, and AnyBURL was given 10 min
for the initial training and 50 s for each retraining. The results are shown in
Table 5. The times are for link prediction only, except for AnyBURL∗ whose
times include retraining. Times are in minutes.

From Table 5, our rule-based module outperforms GraIL and AnyBURL on
the first two batches, which shows our path-based rule mining method is capa-
ble of mining quality rules from medium-sized data. As more batches arrive, the
accuracy of all the models increases as more data becomes accessible. The accu-
racy of GraIL increases rapidly and outperforms ours in the final two batches.
Yet GraIL also took significant amount of time for link prediction even after it is
trained. For the first batch with relatively small amount of data, it already took
28 min, making it unsuitable for online predictions. For time-critical applica-
tions, our rule-based module would have a clear advantage in its time efficiency.
It is worth noting that the accuracy of our rule learner outperforms AnyBURL∗,
which is allowed to retrain on each batch. This shows the effectiveness of our
dynamic rule update method, because unlike AnyBURL∗ that explores paths
from scratch each time when it is retrained, our rule update method reassesses
and refines previously seen paths.

7 Conclusion

In this paper, we have introduced a semantic link-mining framework using knowl-
edge graphs and rules. In particular, semantic connections between data from
different sources are captured through links in knowledge graphs. Rules are
automatically extracted from knowledge graphs and applied in prediction to
discover missing links. A major benefit of our rule-based link prediction app-
roach is that rules involved in the reasoning process can be used to provide
human-comprehensible explanations for the predictions. Another advantage of
our framework is link prediction over dynamic data by incrementally refining
the mined rules based on data changes.

We demonstrate our framework’s usefulness through an application case and
experimental evaluation. In particular, we developed a prototype system based
on the semantic integration of aviation data from four online sources. It demon-
strates the use case of link prediction and explanation in an aviation information
system. Moreover, we conducted experimental evaluations on our rule-based link
prediction in static and dynamic settings. The evaluation shows that our app-
roach has a good balance in time efficiency and prediction accuracy, both of
which are desired for real-life online prediction.

This paper can be extended with the following research directions: First, it
is worth further exploring incremental learning to boost the time efficiency of
the system and reduce its response time. The gain in time efficiency may also
allow a more accurate inference approach in an online setting. Moreover, the
framework can be extended for event handling and predictions by adopting data
stream processing techniques and frameworks.
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Abstract. Urban drainage pipeline plays a crucial role in the construction ofmod-
ern cities, and Closed Circuit Television (CCTV) is one of the most commonly
used technologies for pipeline inspection. However, CCTV is only in charge of
reflecting the pipeline’s status with videos and images. Identifying and evaluat-
ing pipeline defects still require professional knowledge and the participation of
experienced practitioners. Therefore, intelligent approaches designed to improve
the effectiveness and efficiency of pipeline inspection are deadly expected in prac-
tice. To address this issue, this paper presents a knowledge-driven approach with
a prototype software tool. More specifically, one domain ontology is defined to
formalize the required knowledge of pipeline defects identification, e.g., the types
and classifications of pipeline defects. Furthermore, a set of reasoning rules for
deducing pipeline defects and relevant defects parameters are designed to work
with the proposed domain ontology. To verify the validity of our proposed domain
ontology and reasoning rules, we conducted one industrial case study based on
original images of pipeline defects provided by Nanjing BeiKong Enterprises
Water Group Co., Ltd. Results show that defects in the selected pipeline images
can be inferred correctly, which indicates that our proposed method can assist the
automatic identification of pipeline defects.

Keywords: Pipeline defects identification · Knowledge model · Domain
ontology · Semantic reasoning

1 Introduction

With the continuous increase of the urban population and the continuous development of
the urban scale, the scale of urban underground pipelines has also continued to expand
[1]. Urban drainage pipeline is one of the most important infrastructures in urban under-
ground network management, just like the blood vessels and meridians, which is closely
related to the normal operation of the city [2]. Due to the fact that the urbanization devel-
opment in the early stage has not been fully integrated with the actual situation, it has led
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W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 142–156, 2022.
https://doi.org/10.1007/978-3-031-22137-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22137-8_11&domain=pdf
http://orcid.org/0000-0002-5432-3812
https://doi.org/10.1007/978-3-031-22137-8_11


Information Mining from Images of Pipeline 143

to various problems such as imperfect urban drainage systems, and backward pipeline
maintenance, resulting in the frequent occurrence of drainage pipeline accidents in later
use [1, 3].

At present, Closed Circuit Television (CCTV) inspection has been utilized to detect
underground drainage pipelines, which has a wide range of applications [4]. The internal
structure of the pipeline and its condition are recorded in real-time, and the inspection
videos are uploaded to the external monitor. Then, the relevant inspector can check
the cause and location of the defects according to the images formed deep inside the
pipeline. Although CCTV inspection can intuitively reflect the condition of the pipeline
through images or videos, the defect identification of these pipeline images or videos
still requires the participation of experienced personnel, and such manual interpretation
of inspection images or videos is time-consuming and labor-intensive [4, 5]. In addi-
tion, different inspectors may have different understandings of the defects, resulting in
the discriminative results may be subjective and error-prone [5]. Therefore, transform-
ing the process of manual defect identification into computer processing is particularly
important.

However, pipeline defects identification (PDI) is a knowledge-intensive task, which
affects by various types of information such as inspection data, safety specifications,
pipeline regulations, and practitioners’ experience, and this kind of knowledge mainly
exists in unstructured forms. Therefore, knowledge formalization is to play a significant
role in the field of PDI, which can promote knowledge sharing and reuse [6].

Ontology, a knowledge representation technique, can be used to represent knowledge
of a specific domain because of its explicit and rich semantics [7]. By defining concepts
and various relationships among concepts, it can convert regulatory knowledge of textual
documents into a specific and understandable format, which has been widely used in
knowledge representation due to its benefits on knowledge management [8]. Since the
process ofmanual interpretation for PDI is time-consuming and error-prone, a knowledge
model combined with semantic reasoning is developed to formalize PDI knowledge in
this paper. Consequently, images of pipelines can be transformed as instances of the
constructed ontology model for defects reasoning based on the pre-defined reasoning
rules. Specifically, the defect type, the defect grade, the defect score and other relevant
parameters of pipeline images can be inferred with the constructed ontology model.

Overall, the two main contributions of this paper are as follows:

1) Integrating pipeline regulations, safety specifications, and practitioners’ experience,
we construct the domain ontology of PDI to formalize this unstructured knowledge
into a machine-readable format, which promotes domain knowledge sharing, reuse,
and expansion.

2) Combined with semantic reasoning, we define a series of reasoning rules to link the
pipeline defect images from the industry with the constructed ontology model to
realize the defect identification from pipeline images.

This paper is organized as follows. The related work is given in Sect. 2. A gen-
eral overview of the PDI ontology construction is illustrated in Sect. 3. Section 4 con-
ducts a case study demonstrating the validity of the constructed ontology model. Some
concluding remarks and future work are given in Sect. 5.
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2 Related Work

2.1 Pipeline Defects Identification

In recent years, the rapid growth of computing power has promoted the development
of deep learning technology, and one of its important applications is object detection
[12]. In the field of PDI, there are various deep learning algorithms applied for defects
detection, such as faster R-CNN [9], single-shot detector [10], You Only Look Once
(YOLO) [11], etc. Yin et al. [12] used CCTV video as the input data and YOLOv3
deep learning algorithm as the object detector to extract the defect feature information
of pipeline images in the video for model training, and finally to detect the pipeline
defects information in the video automatically. Cheng et al. [13] proposed a method of
pipeline defects inspection based on a region-based convolutional neural network (faster
R-CNN), using the collected 3000 CCTV images to train the detection model, and the
trainedmodel can be used to automatically identify pipeline defects images. Kumar et al.
[14] evaluated the accuracy and speed of three object detection models based on Single
Shot multi-box Detector (SSD), YOLOv3, and faster R-CNN deep learning algorithms
by identifying root intrusion and sediment defects in pipeline CCTV images.

The above-mentioned deep learning based solutions for identifying pipeline defects
are efficient, but they still have limitations. First of all, the automatic identification of
pipeline defects by deep learning models is un-interpretable and cannot quantify the
severity of the detected pipeline defects. In other words, deep learning models can only
identify the types of pipeline defects, but not the level of pipeline defects. In addition, a
pipeline image may contain two or more types of defects, and the above deep learning
models cannot identify multiple defects simultaneously.

2.2 Ontology for Knowledge Formalization

Ontology, based on the ability to formalize domain knowledge with explicit and rich
semantics, has recently played a crucial role in various areas, such as the semantic
web, risk identification, and knowledge management [15]. For instance, considering
that hazard identification in the process of metro construction is a knowledge-intensive
task, Wu et al. [7] used a domain ontology (SRI-Onto) to facilitate safety knowledge
management. In stark contrast, Lu et al. [16] formalized metro accident knowledge into
domain ontology for knowledge retrieval and reasoning. Domain ontology can not only
link different knowledge information together for convenient sharing and reuse but also
support consistency checking and semantic reasoning. Zhong et al. [17] realized the
formalization and reasoning of risk knowledge by combining the construction process
of the knowledge reuse method with ontology and semantic reasoning.
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Overall, the aforementioned studies formalized the domain knowledge into ontology
with different research purposes, which indicates that ontology can represent knowledge
formally and explicitlywith its knowledge interoperability and reasoning ability. In terms
of no existing ontology applied in the field of PDI, our proposed ontology model of PDI
will further promote ontology applications.

3 PDI Ontology Construction

The purpose of constructing ontology is to transform domain knowledge into a machine-
readable format for computer processing, which is convenient for knowledge sharing and
reuse [15]. Moreover, concepts and their semantic relationships in PDI can be intuitively
represented in the form of classes and properties of the ontology [18]. Protégé is an
open-source ontology building tool with an intuitive user interface and numerous plug-
ins that enables developers to create and edit domain ontologies [19]. The process of
constructing PDI ontology is based on the latest version of Protégé 5.0 and is explained
in the following subsections.

3.1 Knowledge Resource

The PDI knowledge was mainly obtained from the textual regulatory document
<<Technical Regulations for Testing and Evaluation of Urban Drainage Pipelines (CJJ
181–2012) > >, which includes pictures, tables, and relevant pipeline evaluation for-
mulas. Part of the knowledge was obtained from the published academic articles in the
digital library. The remaining small part of knowledge was pulled from the public inter-
net platform such as Baidu Baike, Baidu library, and Wikipedia, as a supplement to the
above knowledge. In addition, some details involved in technical regulations are filtered
out through knowledge preprocessing, mainly by manual method relying on the relevant
practitioners’ experience.

3.2 Ontology Development for PDI

The most common modeling method for domain ontology is the seven-step method [21]
proposed by Stanford University. Combining the above seven-step method, we simplify
it into four procedures to construct the ontology model based on the ontology editing
tool Protégé, which is more suitable for our ontology construction process. These four
procedures are: 1) Determine the meta-ontology model; 2) Determine the knowledge
hierarchy; 3) Define the object and data properties of the class and create instances; 4)
Consistency checking.

Determine the Meta-ontology Model. This step is to determine the scope of the PDI
ontology thatwe construct. Since there is no existing ontology in the field of PDI,we need
to construct the domain ontology from scratch. Through the learning of <<Technical
Regulations for Testing andEvaluation ofUrbanDrainagePipelines (CJJ 181–2012)>>,
we focus the meta-ontology on the scope of pipeline evaluation and pipeline defects,
which is the core content of PDI.
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Fig. 1. Core classes of PDI

Determine the Class Hierarchy. We need to list the important terminologies of PDI,
namely, the core concepts in the domain of pipeline evaluation and pipeline defects. In
terms of pipeline defects, important terms include structural defects, functional defects,
defect grade, defect score, defect influence parameters, etc.

After identifying the important terminologies in the domain of PDI, we need to
divide the hierarchy of knowledge, which plays a key role in knowledge representation.
There are a total of 6 top-level classes: Pipe, PipeType, Pipe_defects, Phenomenon,
SoilProperty, and Region, among them, including 40 subclasses, as shown in Fig. 1.

Define the Object and Data Properties of the Classes and Create Instances.
The class hierarchy cannot completely present sufficient information on PDI. Based
on the core concepts, we defined the object properties between classes as their relations
and the data properties as properties of classes. There are a total of 27 essential object
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and data properties defined in PDI ontology, including Domain and Range information,
which are presented in Table 1 and Table 2.

Table 1. Part of the defined object properties

Object Property Domain Range Characteristic

pty_hasPhenomenon Pipe Phenomenon Functional

pty_hasDefects Pipe Pipe_defects Functional

pty_hasSoilproperty Pipe Soilproperty Functional

pty_locatedIn Pipe Region Functional

pty_Belongto Pipe PipeType Functional

pty_cause Phenomenon Pipe_defects Inverse Functional

pty_causeBy Pipe_defects Phenomenon Inverse Functional

Table 2. Part of the defined data properties

Data Property Domain Range Characteristic

pty_grade Pipe int Functional

pty_score Pipe double Functional

pty_diameter Pipe double Functional

pty_disjointDistance cls_pipeInterface double Functional

pty_thicknessofTubewall cls_Tubewall double Functional

After determining the class hierarchy, the object and data properties are added to the
corresponding classes. The instantiation of the class is followed, that is, the creation of
instances, which plays a key role in coding SWRL rules and is essential for reaching
knowledge sharing and semantic interoperability [15]. Some of the instances are listed
in Table 3.

Table 3. Part of the instances

Class Instance

Phenomenon ind_Finecracks, ind_Les60ofCirCover, ind_slightshedding

Region ind_CentralCommercialArea, ind_trafficTrunkArea, ind_RoadArea

Soilproperty ind_redClay, ind_collapsedLoess, ind_muckySoil, ind_littlesoilSqueeze

PipeType ind_bey1500mm, ind_In1000to1500mm, ind_Les600mm

Pipe defects ind_liehen, ind_liekou, ind_posui, ind_tanta
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3.3 Reasoning Rules for PDI

PDI is a knowledge-intensive task, which concerns a large number of conceptual def-
initions and detailed descriptions. In this paper, SWRL rules are used to formalize the
various definitions and descriptions into corresponding reasoning rules owing to their
powerful deductive reasoning abilities based on OWL concepts [22].

Each SWRL rule consists of an antecedent and consequent part, both of which
are formed by the conjunction of atoms. When the antecedent part is satisfied, the
consequent part will be triggered to execute reasoning [22]. In brief, the SWRL rules
can be interpreted as: if all the atoms in the premises are true, then the conclusion is true.
Table 4 shows part of SWRL rules corresponding to the regulations.

Table 4. Part of the SWRL rules corresponding to the regulations

No Regulations SWRL rules

1 If the deformation range of the pipe is
15%–25% of the pipe diameter, the
corresponding defect grade is 3, and the
defect score is 5

Pipe(?p) ^ pty_deformArea(?p, ?area) ^
pty_diameter(?p, ?d) ^ swrlb:multiply(?d1,
?d, 0.15) ^ swrlb:greaterThan(?area, ?d1) ^
swrlb:multiply(?d2, ?d, 0.25)^
swrlb:lessThanOrEqual(?area, ?d2) ->
pty_hasDefects(?p, ind_yanzhongBX) ^
pty_gradeBX(?p, 3) ^ pty_scoreBX(?p, 5.0)

2 If the area where the pipeline is located is a
central business area with Class A civil
construction projects attached, then the
regional importance parameter K of the
pipeline is 10

Pipe(?p) ^ pty_locatedIn(?p,
ind_CentralCommercialArea) -
>pty_has_K(?p, 10)

3 If the soil quality of the soil layer where the
pipeline is located is red clay, the soil
quality influence parameter T of the
pipeline is 8

Pipe(?p) ^ pty_hasSoilproperty(?p,
ind_redClay) ->pty_has_T(?p, 8)

4 If the diameter of the pipeline is greater
than 1000 mm and less than or equal to
1500 mm, then the pipeline importance
parameter E of the pipeline is 6

Pipe(?p) ^ pty_diameter(?p, ?d) ^
swrlb:greaterThan(?d, 1000) ^
swrlb:lessThanOrEqual(?d, 1500) ->
pty_Belongto(?p, ind_In1000to1500mm) ^
pty_has_E(?p, 6)

Those starting with “pty_” represent object or data properties of a class, such
as pty_locatedIn and pty_hasSoilproperty are object properties between classes, and
pty_diameter, pty_deformArea are data properties, and those starting with “ind_” repre-
sent an instance of a class, such as ind_CentralCommercialArea is the instance of class
Region.

The SWRL specifications contain some built-in functions or predicates, which can
be used to calculate addition, subtraction, multiplication, and division, and can also
reflect themagnitude relationship through value comparison, such as the predicate swrlb:
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greaterThan(?d, 1000) is used to represent whether or not the variable “?d” is greater
than 1000 and if this relationship holds, it will return true.

4 Case Study

To validate the validity of the PDI ontology model, we selected some pipeline images
with common defect types which contain the original labels of defect type and relevant
attribute information, such as pipe diameter, the phenomenon description of the image
defects, and defect parameters, provided by Nanjing Beikong Enterprises Water Group
Co., Ltd. The relevant attribute information is saved in an XLSX file, which will be
mapped into the constructed ontologymodel to generate corresponding image instances.
Then, the pre-defined SWRL rules will be executed in an inference engine to recognize
the image defect types and the relevant defect parameters. Finally, the reasoning results
are compared with the original defect type labels and defect parameters of the selected
images to validate the validity of the ontology model. The above process is shown in
Fig. 2.

Fig. 2. The process of ontology validation

4.1 Selected Pipeline Images with Common Defect Types

The image datasets provided by Nanjing Beikong Enterprises Water Group Co., Ltd. are
categorized as two groupes, namely structural defects and functional defects. Among all
defects, there are 10 structural defects and 6 functional defects, with a total of 16 sub-
categories. Functional defects can be repairedmanually in the process of pipeline inspec-
tion, such as residual walls, dam roots, obstacles, etc. After discussing with the pipeline
experts, in our study, four most common structural defects (i.e., Rupture, Deformation,
Dislocation and Disjointed), are determined as the main source of our selection.
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Because one image cannot reflect the overall defect condition of the pipeline, we
select a set of defect images from different perspectives of the same pipeline, which are
shown in Table 5.

Table 5. The selected pipeline images

Image1. BX_4 Image2. CK_4, PL_3 Image3. PL_3, BX_2 image4. PL_4

Image5. PL_4, 

BX_1, CK_4

Image6. TJ_3, BX_1 Image7. TJ_4

The original defect labels and relevant defect parameters of selected images are listed
in Table 6.

Table 6. The original defect labels and relevant defect parameters

Defect images Original defect
labels

Pipeline
importance
parameters E

Regional
importance
parameters

Soil importance
parameters T

Image1 BX_4 3 6 8

Image2 CK_4, PL_3 3 6 8

Image3 PL_3, BX_2 3 6 8

Image4 PL_4 3 6 8

Image5 PL_4, BX_1,
CK_4

3 6 8

Image6 TJ_3, BX_1 3 6 8

Image7 TJ_4 3 6 8
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The capital letter abbreviations: “PL”, “BX”, “CK” and “TJ” represent Rupture,
Deformation, Dislocation, and Disjointed respectively and PL_4 means the grade of
Rupture is 4. Since the images are derived from the same pipeline, the value of Pipeline
Importance Parameters E, Regional Importance Parameters K, and Soil Importance
Parameter T are all the same.

4.2 The Attribute Information of Pipeline Images

Since Protégé 5.0 provides a plug-in for mapping entities stored in the spreadsheet to the
ontologymodel, the attribute informationwill be saved in theXLSXform. In addition, the
keywords describing the pipeline defect images in theXLSXfile should correspond to the
concepts (classes, properties, and instances) defined above in the constructed ontology
model, so as to facilitate the mapping of the attribute information to the ontology model.
The attribute information is shown in Table 7.

Table 7. The attribute information of defect images

Class Instance Diameter(mm) DefromArea
(mm)

LateralDeviofNozzle
(mm)

ThicknessofTubewall
(mm)

DisjointDistance
(mm)

Pipe Image1 1000 764 0 30 0

Image2 1000 0 68 30 0

Image3 1000 124 0 30 0

Image4 1000 0 0 30 0

Image5 1000 36 73 30 0

Image6 1000 47 0 30 39

Image7 1000 0 0 30 62

Images 1 to 7 come from different parts of the same pipeline, and the pipeline is
located in the area of the main road, and the corresponding soil property is red clay, so
the values of “soil”s and |“traffic” in columns 3 and 4 of the XLSX file are “ind_traffic”
and “ind_redClay” respectively, which are not shown due to the limited space of the
table.

4.3 Mapping Rules for Images Instantiation in PDI Ontology

Two mapping rules are created for image instantiation in PDI ontology, which is saved
in the JSON format and shown as follows.
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Mapping rules 1:
{

"Collections":[

{

"sheetName":"Attribute information", 

"startColumn":"B",

"endColumn":"B",

"startRow":"2", 

"endRow":"8",

"comment":"",

"rule":"Individual: @B*\nTypes: @A2\n Facts: pty_hasSoilproperty @C*,

pty_locatedIn @D*, pty_diameter @F*, pty_deformArea

@G*,\npty_haslateralDeviofNozzle @H*, pty_thicknessOfTubewall @I*,

pty_disjointDistance @J*",

"active":true

}

]

}
Mapping rules 2: 
{

"Collections":[ 

{

"sheetName":"Attribute information", 

"startColumn":"B",

"endColumn":"B", 

"startRow":"3","

endRow":"6",

"comment":"",

"rule":"Individual:@B*\nTypes: @A2\n Facts: pty_hasPhenomenon @E*",

"active":true

}

]

}

After executing the above mapping rules, the mapping results are shown in Fig. 3.
Image instances from 1 to 7 correspond to the selected 7 defect images. The right half
shows themapping results of object and data properties, which correspond to the attribute
information in the above XLSX file.
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Fig. 3. The mapping results

4.4 Knowledge Reasoning

The pre-defined SWRL rules can be executed in an inference engine named Drools,
which consists of a fact base, a rule base, and an execution engine [22]. Drools can be
used to conduct knowledge reasoning in Protégé after mapping the attribute information
into instances in the ontology model. After executing the pre-defined SWRL rules, the
defect type, defect grade, defect score, and relevant defect parameters are automatically
inferred, which is shown in Fig. 4.

Fig. 4. The reasoning results

Take image5 as an example, the reasoning results show that image5 has three defect
types: ind_zhongdaCK, ind_qingduBX, ind_tanta, and the corresponding defect grades
are pty_gradeCK, pty_gradeBX, pty_gradePL, with the value of 4, 1 and 4, respectively.
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The pty_has_E, pty_has_K, and pty_has_T correspond to Pipeline Importance Param-
eters E, Regional Importance Parameters K, and Soil Importance Parameters T, which
are consistent with the original defect parameters. For the rest images, same patterns are
observed, i.e., the reasoning results are all the same as original defect labels and we do
not discuss the details here due to the space limitation.

Based on the above results, we conclude that the defect types and relevant defect
parameters can be inferred correctly by pre-defined SWRL rules and it is straightforward
to verify the validity of the proposed ontology model.

4.5 Discussion

Although the constructed ontology model combined with semantic reasoning can infer
defect types and relevant defect parameters automatically, there are still some open
issues.

First, the attribute XLSX file is created manually, which is not intelligent, and how to
automatically extract the attribute information from pipeline images and map it into the
ontology model needs further research. Second, only images of common defect types in
different parts of the same pipeline are selected to verify the constructed ontologymodel.
More complex scenes involving various defect types in different pipelines should also be
considered. Third, the SWRL rules encoded in this paper are a finite set, mainly encoding
the definitions of different types of pipeline defects, and more safety regulations should
be transformed into corresponding SWRL rules into satisfy the requirement of PDI in
various scenes.

5 Conclusion

This paper proposes an ontology model of PDI combined with semantic reasoning to
automatically infer the defect types and defect parameters of the pipeline, formalizing
the PDI knowledge into the machine-readable format for computer processing, which is
more intelligent and objective in comparison with the traditional manual identification
of pipeline defects. Specifically, the concepts of PDI knowledge and their semantic
relationships can be represented intuitively in the form of classes and properties of
ontology, supporting consistency checking and reasoning.Then, the attribute information
of defect images is imported into the ontology model through the mapping rules, and the
defect types and relevant defect parameters of the pipeline are inferred based on the pre-
defined SWRL rules. Finally, the reasoning results are compared with the original labels
of defect types anddefect parameters to verify the validity of the ontologymodel.Overall,
the constructed ontology model incorporates the knowledge of pipeline regulations and
the experience of technicians, which facilitates knowledge sharing and reuse. Importing
the attribute information of images into the ontology model can recognize the defect
types and the relevant defect parameters, avoiding the ambiguity of PDI caused by
artificial subjectivity, and saving human resources. Since the attribute file of defect
images is still created manually, we intend to combine deep learning techniques with the
ontology model in future research. The deep learning model can automatically extract
attribute information of defect images after training and then import it into the ontology
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model for knowledge reasoning. Relying on the development of deep learning and image
recognition technologies, an automatic defect identification of pipeline images could be
realized.
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Abstract. In recent years, technology has continued to rapidly evolve,
resulting in the generation of high-dimensional data streams. Combin-
ing the streaming scenario and high dimensionality is a particularly
complex task specifically for outlier detection. This is due to the data
stream’s unique properties, such as restricted space and time, and con-
cept drift, in addition to the influence of the curse of dimensionality in
high-dimensional space. Typically, interesting knowledge including out-
liers resides in low-dimensional subspaces of the full feature space. Find-
ing these subspaces is considered an NP-Hard problem and requires care-
ful attention, especially in the context of data streams. To address these
issues, we proposed BGSSA (Binary Gravitational Subspace Search Algo-
rithm), a novel metaheuristic-based subspace search method for outliers
in high dimensional data streams. The idea behind is to adapt the binary
GSA algorithm by producing the top best solutions instead of a single
one in the original method to find, for each streaming window, relevant
subspaces composed of independent features, where outlier detection will
be performed. The relevance of a subspace is evaluated by the contrast
measure. Experiments on real and synthetic datasets confirm the feasibil-
ity of our solution as well as its performance improvement in comparison
with the main approaches studied in the literature.

Keywords: Outlier detection · Data streams · High dimensional
data · Subspace

1 Introduction

Outlier detection has received special attention in many research areas due to
its importance. It seeks irregular patterns, showing high deviation in contrast to
regular ones in data sets. This paper focuses on the problem of outlier detection
in high-dimensional data streams which are being used in a variety of fields,
including network intrusion detection [20], fault detection and prevention [24],
and so on. The data tend to be infinite, evolving, and arriving continuously at a
rapid rate with a large number of features. Examples include sensors in industrial
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 157–169, 2022.
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settings, online financial transactions, etc. In this situation, detecting outliers
becomes more difficult. It must cope with data streams non-stationary in which
the underlying distribution changes over time [18]. In addition to respecting
resource constraints while providing good accuracy. Further, as the irrelevant
features mislead the mining process and increase the computing burden, it is
essential to reduce the feature space by keeping only interesting ones. One silent
characteristic of high dimensional data is that outliers are often embedded in
low dimensional subsets (subspaces) [1]. Motivated by this fact, we opt for the
outlier detection in subspaces instead of the full feature space.

In a d-dimensional space, there exist 2d −1 possible subspaces growing expo-
nentially with increasing dimensionality [16]. Thus, searching for relevant sub-
spaces for outlier detection is an NP-hard problem [5]. Due to the combinatorial
explosion, an exhaustive search through subspaces is not a scalable strategy,
especially in the data stream setting. Therefore, it is essential to provide a scal-
able and appropriate method that, while accommodating data stream limita-
tions, finds subspaces containing relevant information. This relevance may be
dependent or independent of the mining task, i.e. outlier detection in our con-
text. In the first case, it is limited to and closely tied to an outlier criterion. In
the second case, it only considers the features and the relation between them.
The obtained subspaces often contain interesting information useful for a mul-
titude of tasks. Dependency estimators like mutual information [7] and contrast
[6] are some measures of relevance in this context. Different works have been
proposed based on these measures [6,9,10]. Yet, the literature in the context of
the data stream is still scarce. A multivariate dependency estimator that meets
various desirable properties for data streams, like efficiency and robustness, was
recently proposed in [4]. So, we decided to use the suggested contrast. As a search
strategy, we used the Binary Gravitational Search Algorithm (Binary GSA) [13].
It is a metaheuristic-based approach that provides good results with low com-
putational cost. Hence, it can be very effective in solving this problem. Binary
GSA utilizes the concept of the law of gravity to find the near-optimal solution.
To our knowledge, we are the first to use GSA in this context. We proposed an
adapted version of Binary GSA over windowed data streams. We adjusted the
algorithm to output, in every window, the set of optimal solutions represented
by subspaces instead of a single one. As well, to keep track of subspace relevance,
we customized the initial population generation by providing a portion of the
best subspaces from the previous window (except the initial window). To pro-
cess the stream and respond to its changing nature, we used a non-overlapping
sliding window model. Overall, our main contributions are: 1) Formalizing the
subspace search problem as a mono-objective optimization function. 2) Propos-
ing an adapted version of Binary GSA producing the best solutions set instead
of a single one. 3)Proposing BGSSA approach (Binary Gravitational Subspace
Search Algorithm) to find high contrast subspaces using the adapted Binary
GSA. 4) Using BGSSA in outlier detection problem. 5) Testing BGSSA on real
and synthetic data sets. All of this is applied on high-dimensional data streams.

The rest of this paper is structured as follows: Sect. 2 presents the main
related works. Section 3 introduces the problem formulation. Section 4 explains
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our methodology and the proposed algorithms. Section 5 examines our proposed
solutions experimentally. Section 6 concludes the work and gives some outlooks.

2 Related Work

Recently, numerous studies have been conducted for outlier detection in high
dimensional data streams [5,14,23,24]. They are broadly categorized into full
and subspace-based methods. The former assumes the same relevance of all
features for outlier detection. Thus, the algorithms may be biased by irrelevant
features downgrading their outlierness estimation. The latter addresses this issue
by limiting the use of the original feature set to subsets. Feature selection and
extraction [17,20,21] are powerful in reducing the dimensionality to only one
subspace and are commonly used as a pre-processing step. Nonetheless, they
cannot deal with outliers masked into different subsets of attributes. Multiple
subspace-based methods overcome this problem by finding outliers in subspaces
obtained in a deterministic or random way. Random methods operate on ran-
domly generated subspaces [8,11,14] and avoid the costly subspace search strat-
egy. The random subspace generation may include many irrelevant features into
subspaces while omitting relevant ones notably when irrelevant features are the
dominants.

In contrast to random methods, deterministic ones sacrifice speed for accu-
racy. They search for relevant subspaces satisfying a search criterion and then
compute outlier scores in those subspaces. In sparse subspace-based methods,
low-density subspaces are identified, indicating the presence of outliers. They
usually rely on density estimation-based measures to characterize the sparseness
of subspaces, such as KNN in ABSAD-SW [24] and the sparsity coefficient in
SPOT [23]. Sparse subspace-based methods are task-specific since they find sub-
spaces specific to outlier detection. Relative subspace methods seek subspaces
composed of meaningful attributes and thus they are general and used for a
multitude of tasks. HPC-StreamMiner [19] and SGMRD [5] have been proposed
in this context. They seek subspaces composed of independent features using the
concept of contrast representing the deviation between the marginal and condi-
tional density distributions. In [19], the high contrast subspaces are progressively
searched with time and their ranking is incrementally updated to keep track of
data changes. SGRMD leveraged a Hill climbing greedy heuristic with novel mul-
tivariate quality estimators. As well, it proposed a monitoring technique based
on bandit theory to update the results of subspace search over time. It tries to
find optimal subspaces for each dimension instead of the full feature space. Ran-
dom subspace methods lack accuracy while the deterministic one suffers from the
resource burden. Consequently, it’s crucial to develop a method that provides
a compromise between efficiency and effectiveness which is the goal of our app-
roach. We proposed an adapted BGSA algorithm over windowed data streams
to find the high contrast subspaces from the original feature space, where outlier
detection will be performed. Our subspace search strategy is deterministic, and
we look for relative and general subspaces.
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3 Problem Formulation

Given an incoming infinite sequence of high dimensional stream items: DS =
〈X1, t1〉, 〈X2, t2〉, 〈X3, t3〉, ..., 〈X∞, t∞〉. Each data object Xi = (x1

i , ..., x
d
i ) is a

d-dimensional vector. d is the dimensionality of the full data space represented
by the feature set F = {f1, ..., fd}. i is the number of data points arriving at
time t. xd

i is the value of the feature d for data object i. To deal with the data
stream, we used a non-overlapping sliding window structure W of size ws due to
its generality and efficiency. The stream is split into fixed size windows and the
algorithm always operates on the latest window. At any time point t, we only
consider the latest ws data in the window W [t − ws + 1, t].

In high dimensional settings, outliers are often embedded in lower dimen-
sional subspaces. Therefore, we opt to detect outliers in subspaces instead of
the full-feature space. A subspace S ⊆ F is a non-empty subset of the full data
space with dimensionality d’ < d. The objective is to decide for each data point
Xn ∈ DS if it is an outlier or not at any time t. The scoring of Xn should be
done before Xn+1 and within the available memory. Our general aim is a two-
step processing: Subspace search and outlier scoring. In the subspace search,
we seek to find the best set of relevant subspaces denoted by RS. The rele-
vance of subspaces S ∈ F is assessed using the contrast denoted by C(S). A
high contrast projection rs ⊆ RS is a selection of dimensions showing a data
distribution with a high dependency. This dependency leads to clear clustered
structures vs individual outliers. To compute the contrast C(S) of a subspace S,
we adopted the MCDE dependency estimator [4]. It treats the attributes in F as
random variables. MCDE quantifies the contrast of an attribute set as the aver-
age discrepancy between marginal and conditional distributions estimated via
a statistical test τ and approximated via M Monte Carlo simulations (see Ref.
[4]). In our case, we instantiated the contrast with a two-sample Kolmogorov-
Smirnov (KSP) test [15]. It is non-parametric and widely used in testing the
equality of two continuous one-dimensional probability distributions. An index
structure I containing the ordered values per feature is employed to facilitate
the subspace slicing operation used for conditional distribution estimation.

The maximum number of subspaces is set to Q, a user-defined parameter.
The number of features in each subspace is in [2,

√
d] range. In real-data sets,

the implicit dimensionality usually does not grow much faster than
√

d with
increasing dimensionality d [2]. As well, the minimum number of features is set
to 2, since in one-dimensional subspace the notion of dependence cannot exist.
Furthermore, RS must contain unique subspaces. A relevant subspace rsi must
differ from subspace rsj for all subspaces in RS. It is formally expressed as
follows:

RS = argmaxSi∈FC(Si)

Subject to

|RS| = Qand|rs| = [2,
√
d]∀rs ∈ RS

rsi �= rsj∀rsi, rsj ∈ RS

(1)

Once the relevant subspaces are identified, the points are scored using an outlier
detection algorithm in each such subspace. In our case, we used LOF algorithm
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[3]. Then, the scores of each point sc(Xn)rs in various subspaces rs ⊆ RS are
computed and averaged to provide a unified score sc(Xn) of each point. Xn will
be labeled as outlier if its score sc(Xn)rs is lower than a predefined threshold β.

4 Binary Gravitational Subspace Search for Outlier
Detection in High Dimensional Data Streams

Our solution finds relevant subspaces, where outlier detection will be performed
while coping with NP-hardness of subspace search. We adapted the binary GSA
algorithm to find subspaces with high contrast. Further, we used the popular
density-based LOF outlier detector [3] to detect outliers within these subspaces.
As a processing unit, we employed a non-overlapping sliding window structure.

4.1 Subspace Search with Adapted Binary GSA

Binary GSA: GSA is a successful swarm-based metaheuristic algorithm
inspired by Newton’s law of gravity [12]. In GSA, a swarm is a collection of
physical particles (search agents), each with a mass representing the solution’s
fitness value. The fitness is the performance of the solutions (contrast measure
in our case). The agents attract each other based on the gravitational force.
This force pushes lighter objects (lower mass) towards heavier objects (higher
mass). The heavier objects representing better solutions will move slower than
the lighter ones. GSA was designed to search spaces of real-valued vectors. The
search space in binary optimization problems is modeled as a hypercube, with
an agent’s location updated by altering one or more bits of its position vector.
GSA in binary format was proposed first by [13]. A transfer function bounded
within interval [0,1] is needed to convert a continuous algorithm into its binary
version.

Adapted BGSA for Subspace Search: In our context, a solution consists
of a subspace S. All solutions are represented by binary strings with fixed and
equal length d, where d is the number features F. Each bit in the individual will
take 0 or 1 indicating whether or not its corresponding feature is selected for a
particular subspace. To find the set of relevant subspaces RS, BGSA is applied
with a slight modification in the output. The regular BGSA returns a single best
solution. Yet, in our approach, we return the set of best solutions represented
by subspaces. To find this set, the algorithm first initializes a population. In
first window, this population consists of N randomly generated candidate solu-
tions. For the subsequent windows, it will be customized by adding a portion
ts of the best subspaces subspacew obtained in the previous window. The inclu-
sion of this set permits enhancing and refining the subspace search with time.
Thereafter, at each iteration it of BGSA, we assess the different combinations of
subspaces basing on their fitness. For each solution, the fitness is evaluated by
calculating its corresponding contrast value using the MCDE estimator. There-
after, the whole population is sorted in ascending order of fitness. Subsequently,
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the specific parameters related to the BGSA, such as the acceleration, velocity,
and position of each agent are updated. At each iteration, the topQ subspaces
in each population are stored in a temporary list. In the end, the topQ sub-
spaces with high fitness among all subspaces are returned as the best subspaces.
Figure 1 illustrates the flowchart of the proposed adapted Binary GSA, where
our modifications compared to the original Binary GSA are highlighted in gray.

Fig. 1. Flow chart of Adapted BGSA

4.2 Solution Overview

In this section, we will give an overview of our approach basing on the algo-
rithm pseudo-code illustrated in Algorithm 1. The algorithm takes as input a
stream DS with n-d-dimensional features and the global parameters for the dif-
ferent components. At the beginning, “Subspaces” and “outliers” sets are empty.
“Subspaces” is the best subspace base and “outliers” is the outlier base. The first
phase is the algorithm initialization, where the first window W1 will be created
and treated. First, the index structure I used for contrast calculation will be
created (Line 10). Then, the adapted binary GSA will be applied for the first
time to find the topQ subspaces (Line 15). The subspaces found will be used for
outlier detection (Line 16). Thereafter, this window will be cleared and a new
window will be created and treated. At this time, the new window is employed
and a model update is performed to deal with possible changes in the data distri-
bution. The model update consists of updating the index structure according to
the new inputs. Further, a portion ts of the obtained subspaces in the previous
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Algorithm 1. BGSSA
1: Data: DS: data stream, Q: top subspaces, ts: the size of subspaces added in the initial population,

ws: Window size, binarygsa params: Binary GSA related parameters, contrast params: Contrast
calculation related parameters

2: Result: set of outliers and top Q subspaces
3: Begin
4: Subspaces← ∅

5: Outliers← ∅

6: i←1
7: while (DS.hasData() ) do
8: Wi ← createwindow(ws)
9: if (i=1) then
10: I ← CreateIndexstructure(W1)
11: Subspaceswi−1 ← ∅

12: else
13: I ← UpdateIndexstructure(Wi)
14: end if
15: Subspacesi ← AdapatedBGSA(Wi, binarygsa param, contrast params, Subspaceswi−1)
16: Outliersi ← OutlierDetection(Subspacesi, )
17: Clearwindow(Wi)
18: i←i+1
19: end while
20: END

window will be added to GSA’s initial population to ensure the continuity of the
process. In the first window, this set is empty (Line 11). The relevance of these
subspaces will be re-evaluated and hence they will be discarded if they are not
relevant. These steps will be repeated for every window until the stream ends.

5 Experimental Study and Results Analysis

5.1 Experimentation Setting

The performance of our method is evaluated through experiments on synthetic
and real datasets described in Table 1. KDDcup991 and Activity2 are frequently
used real data with outlier ground truth. We selected data similar to [14]. For
the synthetic data sets, we used the datasets generated in [5]; Synth10, Synth20,
and Synth50 as they satisfy our requirements. Furthermore, we compared our
solution with LOF [3] adapted to the stream setting (LOF-Stream), SGRMD
[5], and xStream [8] algorithms. These approaches were used with the configu-
ration recommended by their authors. Except for approaches using LOF, such
as ours, LOF-stream, and SGRMD, we repeat the calculation with parameter
K={1, 5, 10, 20, 50, 100} and report the best result in terms of effectiveness. We
average every result from 5 runs. To assess the effectiveness, we used the AUC
and average precision (AP). AUC describes how well outliers are ranked rela-
tively to inliers. AP indicates whether the model can correctly identify inliers.
To measure efficiency, we used the processing time in seconds. We performed
additional comparisons in terms of outlier scoring and subspace searching time

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
2 https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
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for our algorithm and SGMRD. We also implemented them in python to effec-
tively assess the time. As for xStream and LOF-stream, we used the PySAD
framework implementation [22]. All the experiments were conducted on a laptop
Intel (R) Core(TM) i7 CPU @2.80 GHz, 8 GB RAM, Windows 10 (Professional).

Table 1. Datasets

Dataset Dimension Instances Outlier percentage

Real datasets

Kddcup99 38 25000 7.12

Activity 51 22253 10

Synthetics datasets

Synth10 10 10000 0.86

Synth20 20 10000 0.88

Synth50 50 10000 0.81

5.2 Results and Analysis

During the experimentation, we relied on different scenarios to evaluate the
performance of our approach. First, we assessed the impact of the parameters
on the performance. We set the number of BGSA iterations nbiter to 10 S, after
obtaining the best parameter setting giving a trade-off between efficiency and
effectiveness, we compared our approach with the chosen competitors.

Results of the Proposed Approach: In this experiment, we assessed the
efficiency and effectiveness of our approach under different parameter settings.
First, for every dataset, we fixed the window size to 1000, population size pop
and topQ subspaces to d/2. Additionally, we set the dependency estimators’
parameters to the value recommended in [5]. We only varied K to obtain the
value giving the best effectiveness. In the next scenario, we used the best K value
for each dataset and varied pop and topQ according to these combinations:{(topQ
= d, pop = d/2), (topQ = d/2, pop = d), (topQ = pop = d)}. We set the upper
bound for both parameters to the size of the original space as they should not
exceed it. Further, we set the lower bound to half the search space.

Efficiency Results: From the performed evaluation, we noticed that our process-
ing time increases with dimensionality, population size pop, topQ subspaces, and
K value. This is evident since the increase in these values implies more search
space. The subspace search and scoring time make up the approach’s processing
time. Figure 2 describes the subspace search time of the three synthetic datasets.
They are sufficient to reveal the impact of these parameters on the processing
time. We can see that; the dimensionality has the biggest impact on the time con-
sumption comparing the other parameters followed by the population size. Yet,
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the topQ parameter has less impact. As for the scoring time, it increases with
increasing K values, and it is also affected by the topQ subspaces where outliers
will be detected since the latter vary with the number of dimensionalities.

Fig. 2. Our approach search time with different parameter settings

Effectiveness Results: Figure 3 resumes the AUC of the different datasets with
varying dimensionality, pop and topQ values in the best K setting. As we can see,
the ability of the algorithm to correctly detect outliers decreases with increasing
dimensionality and this is an artifact of the curse of dimensionality for the three
synthetic datasets. Yet, it showed the best performance with Activity dataset
having 50 dimensions and the worst performance with KDDcup99 dataset hav-
ing 38 dimensions. Concerning the AP, our algorithm performs well across all
datasets, with values between 0,96 and 0,99. As for the pop and topQ parame-
ters, we noticed that they do not have a big impact on the results as the AUC
and AP vary slightly from case to case. According to the obtained results, the
scenario where pop and topQ are equal to d/2 gives a trade-off between effi-
ciency and effectiveness. In this setting, we have the lowest processing time and
an acceptable AUC. For this reason, we choose this configuration to compare
our algorithm with other competitors.

Fig. 3. AUC of our approach with different parameter settings

Comparison with the Competitors: We first compared our algorithm with
the closely related approach SGMRD. It finds the optimal subspace set com-
posed of the best subspace per dimension. The subspace relevance is assessed
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using the deviation between the marginal and conditional distribution of every
dimension compared to the other features in the subspace. Contrary, in our
case the subspace relevance is the average deviation of random features in the
subspace. Both approaches use statistical tests to test this deviation. In our
experiments, we chose the Kolmogorov-Smirnov test. SGRMD adopts different
monitoring strategies to obtain the set of subspaces in every window slide. We
chose the MPT strategy recommended by the authors [5]. We first compared
the subspace search strategies. As shown in Fig. 4, our strategy is faster than
the one used in SGRMD, although it performs the search only when the window
slides for specific features. This difference is also clear in the scoring time since
we select the top d/2 subspaces instead of d subspaces in SGRMD. All of this
has led to a decrease in the whole processing time compared to SGMRD. As
well, SGMRD requires a further monitoring and decision time corresponding to
the time required for subspace update and selection. As for the effectiveness, we
noticed comparable performance. Yet, we outperform SGMRD in the data with
the lowest dimensionality (synth10) and Activity dataset. On his side, SGMRD
slightly outperforms our approach in the other datasets. The increase ranges
between 0,01% and 0,03% for the AUC. Considering the other approaches, they
outperform our approach in terms of processing time (see Fig. 5). Yet, this comes
with a noticeable performance degradation in terms of effectiveness. This is typ-
ical, especially for the random subspace-based method xStream which avoid
the costly subspace search strategies. All of this is illustrated in Fig. 6. Accord-
ing to the performed experimentation, we can say that our approach presents
good results in terms of both efficiency and effectiveness. The use of BGSA per-
mits exploring the feature space efficiently. Yet, it requires critical parameter
tuning especially pop, nbiter, and topQ which has a great impact on the per-
formance. During the experimentation, we noticed that the combination (pop =
d/2 and topQ = d/2) gives the best compromise between time and accuracy.
However, this needs to be validated for other datasets. Furthermore, we need
to focus more on the concept drift handling. Overall, our approach outperforms
the closely related work SGMRD, as it is faster by 2 orders of magnitude and
gives comparable results in terms of effectiveness.

Fig. 4. SGRMD vs our approach search time
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Fig. 5. Processing time of the approaches

Fig. 6. Effectiveness of the approaches

6 Conclusion and Future Works

The availability of high-dimensional data streams from various domains as well
as the great importance of outlier detection, demands the development of tools
capable of detecting outliers. In this work, we have proposed an approach for
outlier detection within relevant subspaces obtained by using an adapted binary
GSA algorithm. Different from typical general subspace search methods [5,6,19],
where subspace search is performed separably from the downstream task. Our
approach keeps the notion of generality in the subspaces definition and couples
the subspace search with outlier detection in every window. Therefore, it still be
used with any task by replacing the outlier detection algorithm. We have com-
pared our solution to SGRMD, xStream, and LOF-stream in terms of efficiency
and effectiveness. Results revealed that our solution has good performance and
outperforms its competitors in terms of effectiveness. In the future, we intend to
improve the current algorithm by using other stream processing structures, and
different statistical tests, as well as handling the concept drift more efficiently.
Furthermore, proposing a new approach based on deep learning that will take
into account the various questions that we have dealt with in this study.
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9. Nguyen, H.V., Müller, E., Böhm, K.: 4s: Scalable subspace search scheme over-
coming traditional apriori processing. In: 2013 IEEE International Conference on
Big Data, pp. 359–367. IEEE (2013)

10. Nguyen, H.V., Müller, E., Vreeken, J., Keller, F., Böhm, K.: CMI: an information-
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Abstract. Classification of time series signals has become an important
construct and has many practical applications. With existing classifiers,
we may be able to classify signals accurately; however, that accuracy
may decline if using a reduced number of attributes. Transforming the
data and then undertaking a dimensionality reduction may improve the
quality of the data analysis, decrease the time required for classification
and simplify models. We propose an approach, which chooses suitable
wavelets to transform the data, then combines the output from these
transformations to construct a dataset by applying ensemble classifiers.
We demonstrate this on different data sets across different classifiers and
use different evaluation methods. Our experimental results demonstrate
the effectiveness of the proposed technique, compared to the approaches
that use either raw signal data or a single wavelet transform.

Keywords: Signal classification · Energy distribution · Wavelets ·
Ensembles

1 Introduction

Classification is a methodology that determines categories within a collection
of data, which then allows the analysis of large data sets. Using decision tree
induction for classification has become a common approach in machine learning.
Decision trees attempt to allot symbolic decisions to new samples and provide
a visual representation of the derived rule set. Automatic rule induction sys-
tems for inducing classification rules have already proved valuable as tools for
assisting in knowledge acquisition for expert systems [1]. If a labelled dataset
is implemented to train algorithms that classify the data, this is considered an
instance of supervised learning.

In most research, a signal is related to the main topic of interest. It is com-
mon to apply wavelet transforms to that signal. Wavelets may be used to reduce
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 173–186, 2022.
https://doi.org/10.1007/978-3-031-22137-8_13
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noise1 in time series data, with the aim to provide better classification per-
formance which may be achieved after conducting a wavelet transform on the
original data, also compression using wavelets speeds up the classification process
[2]. Wavelet coefficients in preference to raw data has been previously mentioned
[3], where a single wavelet filter was used. Using wavelet transformed data to
select various frequency levels within the signal, enabling reduction or elimina-
tion of specific inherent frequencies (and noise), to then undertake classification
has proved successful [4]. Multiple Wavelets have been previously used [5,6] and
applied to noise reduction as well as Image and ECG data compression. However
finding a close to optimal wavelet filter (or filters) to use which provides a close
to the best representation of the underlying data, is not a trivial task.

In this paper a method is presented which first determines a manner to select
suitable wavelets, then implements and combines these selected wavelets to not
only transform but reduce the dimension of the data by using subset of the
available wavelet coefficients and yet still maintains or improve upon classifica-
tion accuracy when using decision trees as classifiers. This paper built upon and
results from previous work [5] where an approach using multi-wavelet decomposi-
tion to construct a set of attributes composed of the full set of wavelet coefficients
derived from different wavelet filters to enable noisy signal classification.

From the wavelet transforms the smooth components resulting from multiple
wavelets are utilised to provide the attributes used for the classification process.
This is demonstrated by Classification across three different sets of signals2,
where classifiers are applied to both raw and transformed signals. It is shown
that accuracy may be improved or even maintained with reduced elements in
the attribute space by using wavelets, and even further enhanced by multiple
wavelet transformed data combined with decision tree ensembles.

2 Wavelets

Wavelets are linear transforms, see Definition 1, that can be used to segment the
data into separate non overlapping frequency bandwidths. They have advantages
where the signal has discontinuities and sharp spikes. Wavelets have been applied
in various areas such as image compression, turbulence, human vision, radar
and digital signal processing [7]. A wavelet transform is the representation of a
function by wavelet coefficients.

Definition 1. Linear Transform
A linear transformation is a transformation T : Rn → Rm satisfying

T (u + v) = T (u) + T (v)
T (cu) = cT (u)

for all vectors u, v in Rn and all scalars c.
1 Noise here includes missing or misclassification of values as well as other induced

random fluctuations in the data.
2 We designate these signals as raw or unmodified Data.
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By sampling a wavelet discretely then applying that filter to the raw data,
the result is a Discrete Wavelet Transform, (DWT). The DWT allows analysis
(decompose) of a time series, segmented into coefficients W, from which its
possible to synthesise (reconstruct) the original series [8]. The DWT in principle
provides more information than the time series raw data points in classification
because the DWT locates where the signal energies are concentrated in the
frequency domain [3]. Following is an overview of the DWT and the Multiple
Discrete Wavelet transform (MDWT), adapted from [5].

2.1 DWT

Let a sequence X1,X2, . . . , Xn represent a time series of n elements, denoted
as {Xt : t = 1, . . . , n} where n = 2J : J ∈ Z

+, Xt ∈ R, the discrete wavelet
transform is a linear transform which decomposes Xt into J levels giving n DWT
coefficients; the wavelet coefficients are obtained by premultiplying X by W.

W = WX (1)

– W is a vector of DWT coefficients (jth component is Wj)
– W is n × n orthonormal transform matrix; i.e.,

WTW = In, where In is n × n identity matrix
– inverse of W is its transpose, =⇒ WWT = In

∴ WTW = WTWX = X

W is partitioned into J + 1 subvectors

W = [W1,W2, . . . ,Wj , . . . ,WJ ,VJ ] (2)

– Wj has n/2j elements3

– VJ has one element4

conversely the synthesis equation for the DWT is:

X = WTW =
[
WT

1 ,WT
2 , . . . ,WT

J ,VT
J

]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

W1

W2

.

.

.

WJ

VJ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3)

Equation 3 leads to additive decomposition which expresses X as the sum of
J + 1 vectors, each of which is associated with a particular scale Tj

X =
J∑

j=1

WT
j Wj + VT

J VJ ≡
J∑

j=1

Dj + SJ (4)

3 note:
∑J

j=1
n
2j

= n
2

+ n
4

+ · · · + 2 + 1 = 2J − 1 = n − 1.
4 Decomposing Xt : n = 2J , to level J0 : 1 ≤ J0 ≤ J then VJ0 has n/2J0 elements.
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– Dj ≡ WT
j Wj is portion of synthesis due to scale Tj , called the j th ’detail’

– SJ ≡ VT
J VJ is a vector called the ’smooth’ of the Jth order [8].

Remark 1. If the DWT is used to decompose Xt to only the first level, then
from Eq. 4 the transformed signal consists of n

2 detail coefficients and n
2 smooth

coefficients. Similarly, decomposition to second level, 3n
4 detail coefficients and n

4
smooth coefficients. (provided signal length n, is a factor of 2 or 4 respectively.)

2.2 MDWT

To construct a Multiple Discrete Wavelet Transform from a time series {Xt : t =
1, . . . , n} use the DWT to deconstruct the signal to level J0 : J0 ∈ Z

+, Xt ∈ R,
choose N different DWT filters and apply to Xt sequentially. From Eq. 4 this
results in:

N∑

i=1

⎡

⎣
J0∑

j=1

Dij + SiJ0

⎤

⎦ (5)

giving a sequence of vectors, where each DWTi is Di1,Di2, . . . ,DiJ0 , SiJ0 (which
consists of the wavelet coefficients resulting from level Jo decomposition). If we
choose only the smooth coefficients si,k ∈ SiJ0 : 1 ≤ k ≤ n

2J0 then

MDWT = s1,1, s1,2, . . . , s1, n

2Jo
, s2,1, s2,2, . . . , s2, n

2Jo
, . . . , sN,1, sN,2, . . . , sN, n

2J0

(6)

Remark 2. This has N
2J0 times as many elements as in Xt.

2.3 Energy Distribution

Define the energy within a signal Xt as the squared norm ||X||2, see Definition 2,
then it is possible to derive the energy distribution in the signal via a normalised
partial energy sequence; NPES [8].

For a signal {Xt : t = 1, . . . , n} if we reorder by squared magnitude such
that,

|x(1)|2 ≥ |x(2)|2 ≥ · · · ≥ |x(n)|2.
This enables us to compute the NPES5, : n ≥ M

CM ≡
∑M

j=1 |x(j)|2∑n
j=1 |x(j)|2

=
energy in largest M terms

total energy in signal
(7)

and similarly for a NPES of wavelet6 coefficients.

5 Which permits construction of a plot of cumulative energy% in the signal (or repre-
sentation of), against the number of data points, see Fig. 2.

6 As the DWT is an orthonormal transform, the energy in the transform (consisting
of all J + 1 subvectors) equates to the energy in the signal.
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Definition 2. Vector Norm
Given an n-dimensional vector X = x1, x2, . . . , xn

The vector norm ||X||p for p = 1, 2, . . . is defined as

||X||p ≡
{

∑

i

|xi|p
}1/p

3 Proposed Technique

Presented here is a method,“Multi-Wavelet Compression Signal Classification”,
(MWCSC) which utilises wavelet transforms of the signal data, First we intro-
duce the methodology of the main concepts followed by the advantages provided,
then a succinct overview of the steps required to implement this technique.

• From the dataset used, consider the different classes within the signal data.
Using wavelet transforms of these classes, map the distribution of the original
signal energy/information against the corresponding representation provided
by the wavelet coefficients. Use the NPES, see Sect. 2.3, to select a group of
suitable wavelet filters to transform the data. NPES is an existing methodol-
ogy that enables us to choose wavelets that may better represent the distri-
bution of energy in the signal. The aim is to use the NPES to provide a sparse
representation of the original data, i.e. many coefficients have low values.

• From multiple wavelets, construct a Multiple Discrete Wavelet transform,
(MDWT, see Sect. 2.2). The rationale for using multiple wavelets in the trans-
form is, to include wavelets that are either symmetric, have short support,
provide higher accuracy and are orthogonal. No single wavelet may provide
all such properties simultaneously [9].

The MDWT provides the wavelet coefficients used to form the attributes on
which the classification methods derive their rule set from. For a transform con-
sisting of a single wavelet, one would obtain the same number of data points (here
wavelet coefficients) as provided in the original signal. Here only the smooth
wavelet coefficients SJ , see Eq. 4, are chosen. This enables reduction in the num-
ber of coefficients used to form the attributes for classification.

• At the first level of wavelet decomposition, the MDWT consisting of N
wavelets (smooth coefficients only at J = 1), then from Eq. 5 we would have
N
2 times the number of original data points, which could be considered as
attributes. Similarly at the second level of decomposition, MDWT consisting
of N wavelets contains N

4 time the number of original data points.

Similarly by reducing the overall number of attributes we may speed up
the classification process [2]. Our method enables us reduce the overall num-
ber of attributes yet still maintain or even improve classification accuracy.
For evaluation of classification we utilise a different method for each dataset
chosen, to highlight the results of this approach regardless of the manner used
for grading the results.
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3.1 Advantages

Our methodology does require some additional computation, however

• The NPES identifies suitable wavelets to use,
• By using only smooth coefficients from the wavelet transform, it is possible

reduce the number of attributes required for the classification process
• Using multiple wavelets increases accuracy.

While the construction of the MDWT is not a complicated procedure, the results
obtained by using only the smooth coefficients highlight that the extra compu-
tation is worthwhile, providing us with similar levels of accuracy yet reducing
number of required attributes, (a form of data reduction or compression).

We are providing a set of attributes for the classifiers where a considerable
amount of energy in the signal is then represented by a smaller of number of
components. The classification methods combined with MDWT tend to return
smaller sets of decision rules (or smaller less complex trees) to arrive at their
final rule set [5]. Using our MDWT compared to a single wavelet transform,
see Sects. 4.2 to 4.4, the gain in classification accuracy when used with single
decision tree methods is apparent and even more so when used with ensem-
ble classification methods, The software used in construction and application is
freely available on-line : R [10], the R package WMTSA [11] and WEKA [12].

3.2 Steps in the Proposed Technique: MWCSC

Step 1 Wavelet Selection .
From a set of Time series

{Xti : t = 1, . . . , n, i = 1, . . . ,K}

which has a distinct number of classes, compare the energy distribution of each
of the signal classes as represented by varied wavelet transforms, using the NPES
described in Sect. 2.3.

Step 2 Discrete Wavelet Transforms
For each single time series Xti take the DWT of the signal using a different

wavelet filter (as determined by the NPES in Step 1 ) for each of the transforms
and extract the wavelet smooth coefficients SJ0 . Use the same decomposition
level for each DWT.

Step 3 DataSet Construction via MDWT
3a. Construct a new data series, (MDWT, see Sect. 2.1) placing each of the

individual vectors of the wavelet smooth coefficients (resulting from each DWT,
with level of decomposition = J0) in a continuous sequence, one after each other,
see Eq. 6.

3b. For each each of these MDWT, stack each transformed signal, to form a
data array or matrix as depicted in Table 1.
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Table 1. Array of transformed data as developed by MDWT

MDWT(Xt1): s1,11 , s1,21 , . . . , s1, n

2J0 1
, s2,11 , . . . , s2, n

2J0 1
, . . . , sN,11 , . . . , sN, n

2J0 1

MDWT(Xt2): s1,12 , s1,22 , . . . , s1, n

2J0 2
, s2,12 , . . . , s2, n

2J0 2
, . . . , sN,12 , . . . , sN, n

2J0 2
...

...
...

...

MDWT(XtK ): s1,1K , s1,2K , . . . , s1, n

2J0 K

, s2,1K , . . . , s2, n

2J0 K

, . . . , sN,1K , . . . , sN, n

2J0 K

Step 4 Build a Classifier
Using the new data as generated in previous steps, apply ensemble classifiers.7

to the transformed data.

4 Experimental Results

The data used was sourced from the UCR time series archive [13]. Here we simply
chose three data sets, each of different length and number of records, see Table 2.
These data sets exhibit widely different levels of smoothness8 when compared to
each other. We also use 5 Tree based classifiers from WEKA.

4.1 Classification Methods Used

We utilise the following tree based classifiers9.

• J48 a decision tree is an extension of ID3. Some additional features of J48;
accounting for missing values, decision trees pruning, continuous attribute
value ranges and derivation of rules [14].

• Random Forest* Class for constructing a forest of random trees. [15].
• ForestPA* Decision forest algorithm Forest PA, using bootstrap samples

and penalised attributes [16].
• SysFor* Decision forest algorithm SysFor, a systematically developed forest

of multiple decision trees [17].
• SimpleCart Classification and Regression Tree, Class implementing minimal

cost-complexity pruning [18].

7 We also applied single Decision tree classifiers to the MDWT data as a baseline to
compare with ensemble classifiers.

8 Smoothness defined here as: standard deviation of the of first differences of a time
series elements. i.e. standard deviation of (XS) : XS = x1−x2, x2−x3, . . . , xn−1−xn.

9 For the Ensemble Classifiers* throughout our experiment we set number of trees
used to 100, no fine tuning of parameters was undertaken.
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Table 2. Dataset descriptions

Data name Test set Training set No.of classes Length

ArrowHead 35 176 3 251

Mallet 2345 55 8 1024

FordA 1320 3601 2 500

4.2 Arrowhead Data

The first dataset consists of profiles of Arrowheads where we utilise the profiles
as time series. The dataset has three classes, see Fig. 1, we combined the test
and training sets together to give 211 records This enabled us to use Ten-fold
Cross-Validation with WEKA for evaluation.

Fig. 1. Profile of each Arrowhead class

Following the MWSCS procedure, initially we applied various wavelet filters
to each of the arrowhead classes to plot the NPES. Given the 251 data points
in length, the wavelet transform deconstructing the signal to the first level,
provided us with 125 detail and 125 smooth coefficients but also an “Extra” class
of coefficients, how this class is calculated and implemented in the transform, by
the chosen software is fully described in [8, Chap 4.11].

These additional coefficients are simply untransformed data. For this dataset
as the “Extra” coefficients contain considerable signal energy/information, they
are combined with the smooth coefficients in constructing our new data. For



Signal Classification via Wavelets 181

Fig. 2. NPES of each Arrowhead Class using Wavelet Transforms

each transformed signal, the Extra coefficients contain an average of 1.41% of
signal energy per transformed signal at level 1 and 3.45% at level 2.

The NPES of samples taken from each Arrowhead class highlight suitable
wavelet filters to represent the energy in a smaller number of data points as
shown in Fig. 2. Little difference is apparent between the wavelet filters shown,
however the filters s16 and d12 represent the energy slightly more efficiently than
d4. Hence we use these wavelet filters to transform our signal data and build
our transformed dataset, this however provides no compression in the signal
representation as we will still have same number of wavelet coefficients as data
points in the original signal.

By selecting only the smooth coefficients10 at the respective level we are able
to reduce the number of attributes within our data and maintain classification
accuracy as shown in Table 3. Here classification accuracy is defined as the
number of correctly Classified Instances with respect to the dataset’s Class labels
which are initially provided within the original data.11

4.2.1 Arrowhead Results
Table 3 demonstrates the benefits of the wavelet transforms, s16 wavelet filter
performs slightly better than d412 for the ensemble classifiers, The use of the
smooth coefficients resulting from s16 (and when combined with d12 ), maintain
accuracy while using reduced numbers of attributes.
10 In this instance we also include the Extra coefficients as they represent considerable

signal energy.
11 Using Accuracy % here is a suitable metric, as the dataset is reasonably balanced

i.e. Class 1 has 81 records, Class 2 and 3 have 65 records each.
12 As indicated by the NPES, Fig. 2.
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Using the smooth wavelet coefficients and including the Extra coefficients,
where these Extra coefficients contain considerable signal energy, still provide
considerable accuracy, especially when using the ensemble classifiers.

Table 3 Description:

• Classifier The first column is the list of tree based classifiers used, see
Sect. 4.1

• Raw data results from classifying original data, being 251 units in length
• Wavelet d4 results from data transformed using Wavelet filter d4, signal

decomposed to four levels, 248 units in length
• Wavelet s16 results from data transformed using using Wavelet filter s16,

signal decomposed to four levels, 248 units in length
• Wavelet s16 S1 + Extra results from data transformed using s16 using only

the smooth level 1 and Extra coefficients, 126 units in length
• Wavelet s16 d12 combined S2 results from data transformed using s16 and

d12 filters, combining the smooth level 2 coefficients from both transforms to
form a new data series , 62 + 62 = 124 units in length. A MDWT, see
Sect. 2.2

• Wavelet s16 d12 combined S2 + Extras results from data transformed
using s16 and d12 wavelet filters, combining the smooth level 2 and Extra
coefficients from both transforms to form a new data series , 64 + 64 = 128
units in length, again a MDWT.

Table 3. Classification of arrowhead data, cross validation 10-fold

Classifier Classification accuracy%

Raw data Wavelet d4 Wavelet s16 Wavelet s16 Waves s16 d12 Waves s16 d12

4 levels 4 levels S1 + Extra combined S2 comb. S2 + Extra

J48 75.35 76.03 74.41 79.14 77.72 72.72

Rforest 86.25 84.36 86.25 90.05 89.1 89.57

ForestPA 80.09 79.14 81.51 79.62 82.46 83.88

SysFor 82.46 81.52 81.99 83.41 84.36 84.36

SimpleCart 73.46 73.93 72.51 70.14 70.61 70.61

4.3 Mallat Data

From the UCR dataset, Mallat Curve data, 8 distinct classes of 1024 units in
length, see Fig. 3. We combined the data, both testing and training sets to have
a larger set containing 2400 records, eight classes of 300 records each.

Following the MWCSC procedure as with the Arrowhead data, using the
NPES to determine suitable wavelets to represent the signal energy, we apply
the classifiers to the wavelet transformed data. This time we use 20% of data for
training and 80% for testing, (the actual records in these sets were chosen by
WEKA).
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Fig. 3. Mallat data

4.3.1. Mallat Data, Results
Table 4 highlights results from the Classifiers. The original data is 1024 unit
long, hence the full wavelet transform also 1024 units long. Using the smooth
wavelet coefficients from S1 results 512 units in length, similarly S2 results in
256 units and S3, 128 units.

Using the various levels of decomposition, increasing the effective compres-
sion of the signal transform we note that accuracy is maintained, especially with
the ensemble classifiers. However when we combine the two S3 levels (a MDWT)
from different wavelets (as determined by the NPES), then the ensemble classi-
fiers maintain considerable accuracy, given the reduced transformed signal size,
S3×2 = 128 + 128 = 256 units. A small accuracy gain over the single wavelet
transforms using S2 or S3.

Table 4. Classification of Mallat data, 20% training, 80% testing

Classifier Classification accuracy%

Raw data Wavelet s16 Wavelet s16 Wavelet s16 Wavelet s16 Waves s16 d8

10 levels S1 S2 S3 combined S3

J48 98.88 94.48 97.29 95.99 95.67 94.74

Rforest 97.18 98.85 98.33 98.01 98.07 98.25

ForestPA 96.61 97.34 97.39 97.23 97.81 97.86

SysFor 95.52 95.93 96.15 94.63 95.15 95.36

SimpleCart 95.57 95.0 96.3 95.93 94.17 94.53

4.4 Ford Data

From the UCR dataset, Ford data, 2 distinct classes of 500 units in length. here
the classification problem is to diagnose whether a specific symption exists or
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not in an automotive subsystem. We use the original training and test sets as
provided in the UCI data and follow the MWCSC. The test set, had 681 records
in one class and 629 in the other.

NPES determined wavelet filters d16 and s20 as suitable. Results in Table 5
shows that accuracy is maintained even at higher levels of compression,(or
attribute reduction). Using the smooth components at level 1, S1 results in 250
units, using S2 provides 125 units, S3 gives 62 units and S3 + Extra coefficient
gives 63 units in length. Very little gain is evident in this last transform as only
a minor levels of signal energy is contained within the Extra coefficients at the
3rd level.13

Table 5. Classification of Ford data, 3601 training records, 1320 testing records

Classifier Classification accuracy%

Raw data Wavelet d16 Wavelet d16 Wavelet d16 Waves d16 s20 Waves d16 s20

S1 S2 S3 combined S3 comb. S3 + Extra

J48 56.13 58.03 56.44 52.42 58.71 58.18

Rforest 73.25 72.95 71.37 73.41 74.2 75.53

ForestPA 74.24 75.91 74.17 74.69 74.09 74.92

SysFor 62.27 59.17 59.59 63.79 64.47 60.38

SimpleCart 58.18 58.11 56.37 59.02 59.92 59.15

Remark 3. For the single tree method J48, It would appear that our choice of
specific wavelets within the MDWT might not be crucial as no evidence of con-
sistent additional gain between the two MDWT variations. However the choice
of additional attributes (as provided by the MDWT) to train upon would seem
to provide some minor gain over using a single Wavelet transform.

5 Conclusion

It has been shown previously that wavelets may be used for signal compression
with little loss of accuracy [2]. Our MWCSC methodology utilizing the NPES
and MDWT provides us with a method to determine suitable wavelets as well
as add additional information to the attribute space. This enables us to use
transformed data sets with smaller dimensions than the original data yet still
provide similar or enhanced accuracy. From the NPES graphic (Fig. 2), we note
that wavelet d4 is not as efficient at energy representation as wavelet s16, for
the arrowhead dataset. This is similarly represented in Table 3 by comparing
classification results, across the various classifiers of raw data as well as the data
transformed by the d4 or the s16 wavelet filters.

Construction of the MDWT from suitable wavelets enhances the accuracy
while offering an effective data reduction or compressed representation of the
13 The average energy/information provided by the Extra coefficients at level S3, per

transformed signal is only 0.5% hence little if at all any gain in accuracy is achieved
by including the Extra coefficients at this level.
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signal to which the classifiers may be applied. Inclusion of “Extra” coefficients
into the construction of the MDWT, where such coefficients contain considerable
signal energy, adds additional accuracy for little extra computation, as they are
an included class in the transform calculation where {Xt : t = 1, . . . , n}, n �=
2J : J ∈ Z

+.
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Abstract. Random Forest is one of the most popular decision forest
building algorithms that uses decision trees as the base classifier. Deci-
sion trees for Random Forest are formed from the records of a training
data set. This makes the decision trees almost equally biased towards the
training data set. In reality, testing data set can be significantly different
from the training data set. Thus, to reduce the bias of decision trees
and hence of Random Forest, we introduce a random weight for each of
the decision trees. We present experimental results on four widely used
data sets from the UCI Machine Learning Repository. The experimen-
tal results indicate that the proposed technique can reduce the bias of
Random Forest to become less sensitive to noisy data.

Keywords: Bias · Decision tree · Random Forest

1 Introduction

At the moment, our “Digital Universe” is experiencing an unprecedented growth.
More data was generated in the last two years than in the entire human history
before that [1]. Nowadays, sophisticated computer hardware technologies enable
us to store the generated data. This huge pool of stored data can be regarded as
a valuable resource if they can be analyzed effectively and automatically. Data
mining is collection of automated tasks to identify valid, novel, potentially useful
and ultimately understandable patterns in data [2]. Classification and clustering
are two widely used data mining tasks that are applied for knowledge discovery
and pattern understanding.

Conventionally, classification is tasked to generate a model (commonly known
as the classifier) that maps a set of non-class attributes to a predefined class
attribute from an existing data set [3]. In this paper, we consider a data set
D as a two-dimensional table where rows are records R = R1, R2, ..., Rn and
columns are attributes A = A1, A2, ..., Am, C. We also consider that a data set
can have two types of attributes; numerical (such as Salary) and categorical (such
as Designation). Among all attributes, one categorical attribute is chosen to be
the class attribute (C) and the rest are considered to be non-class attributes.

There are different types of classifiers including Decision Trees [4,5], Bayesian
Classifiers [6], Artificial Neural Networks [7,8], and Support Vector Machines [9].
Among these classifiers, decision trees are quite popular as they can be easily
interpreted into more reasonable logic rules to help infer valuable knowledge [10].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 187–195, 2022.
https://doi.org/10.1007/978-3-031-22137-8_14
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There are many decision tree induction algorithms such as CART [4], C4.5
[11,12], SLIQ [13], SPRINT [14] and ComboSplit [15]. Most of these algorithms
follow the structure of Hunt’s algorithm [3]. According to Hunt’s algorithm, a
decision tree is induced in a recursive manner from the training data set, e.g. the
data set where all records are labeled with class values. The induction process
starts by selecting every non-class attributes to divide the training data set D
into a disjoint set of horizontal segments/partitions [11,12,16]. If the non-class
attribute Ai is categorical with k different domain values i.e. Ai = ai1, ai2, ..., aik
(domain values of an attribute are the set of all possible values for the attribute)
then D is divided (split) into k segments D1,D2, ...,Dk, where all records of
a segment Dj have the same value aij , and the records belonging to different
segments have different values [11,12,17]. However, if the splitting attribute is
numerical Ai = [l, u] (l is the lower limit and u is the upper limit of the domain
values of Ai) then the data set is typically divided into two segments; D1, and
D2. All records in segment D1 have values of Ai “lower than or equal to” a
splitting point p and the records in the other segment D2 have values higher
than the splitting point p, where l ≤ p < u [11,12,18].

The reason behind this splitting is to create a comparatively purer class
distribution in the succeeding partitions/segments than the class distribution
within D . Therefore, for a numerical non-class attribute, all possible split points
(i.e. all values between l and u present in the data set) are used to find out the
split point that gives the best distribution of class values. Finally, the splitting
attribute that gives the purest class distribution among all splitting attributes is
selected as the test attribute. The process of selecting the test attribute continues
recursively in each subsequent data segment Di until either every partition gets
the purest class distribution or a stopping criterion is satisfied. By “purest class
distribution” we mean the presence of a single class value ci ∈ C for all records.

In recent years, ensembles of classifiers have been studied rigorously by the
research community in exploration for more accurate classification models [19–
21]. One of the most interesting finding of these ongoing research is that ensemble
methods work better with unstable classifiers such as a decision tree [3,22,23].
Decision forest is an ensemble of decision trees where an individual decision tree
acts as the base classifier and the classification is performed by taking a vote
based on predictions made by each decision tree of the decision forest [3,24].

Though decision trees are unstable yet they are entirely formed from the
training data set. This phenomenon makes every decision tree extremely biased
towards the training data set and consequently enables each decision tree to
have remarkable classification performance on the examples of the training data
set. In reality, testing data sets can be significantly different from the training
data set. Thus, a classification model that is highly biased towards the training
data set may not perform well on testing data sets. In literature, Geurts et al.
[25] proposed “Extremely Randomized Trees” to make the forest more general
and receptive to the testing data set. In [25], the authors proposed to select a
random number of attributes (between 1 to the total number of attributes) and
then a random cut point for each of the selected attributes i.e. independently



On Reducing the Bias of Random Forest 189

from the target training data set. Among these attributes with their random
cut points, the attribute having the highest test value is selected as the splitting
attribute. In this way, the bias towards the training data set is desensitized. One
significant problem of the Extremely Randomized Trees algorithm [25] is that it
can be applied only on those data sets that have all-numerical attributes. This
makes the application domain of the Extremely Randomized Trees algorithm
[25] considerably smaller.

Random Forest [26] is a popular state-of-the-art decision forest building algo-
rithm that is essentially a combination of Bagging [27] and Random Subspace
[28] algorithms. Bagging generates new training data set Di iteratively where
the records of Di are chosen randomly from the original training data set D .
Di contains the same number of records as in D . Thus, some records from D
can be chosen multiple times and some records may not be chosen at all. This
approach of generating a new training data set is known as bootstrap sampling.
On an average, 63.2% of the original records are present in a bootstrap sample
and the rest 36.8% are repeated [29,30]. The Random Subspace algorithm is
then applied on each bootstrap sample Di(i = 1, 2, ..., k) in order to generate T
number of decision trees for the forest.

The Random Subspace algorithm randomly draws a subspace f from the
entire attribute space m in order to determine the test attribute. Attributes in
f can either be drawn at the node level or at the decision tree (in short, tree)
level. When drawn at the node level, attributes in f may differ from one node to
another in a tree; however when drawn at the tree level, attributes in f remain
the same for a tree. In the simplest form of Random Forest, attributes in f
are selected randomly at the node level and the size of f is chosen to be |f | =
int(log2 |m |)+1 [26]. The Random Forest algorithm can be applied on every type
of data sets such as all-numerical, all-categorical and mixed (both numerical and
categorical) data sets. Even though the Random Forest algorithm generates trees
from the bootstrap samples (Di), the trees may still show almost equal biasness
towards the training data set (D) as the records of Dis are necessarily the subset
of that of D . Hence, in order to make Random Forest less biased towards training
data sets and more robust on significantly different/noisy testing data sets, we
propose the following technique.

2 The Proposed Technique

The proposed technique is very straightforward. We first generate trees using
the Random Forest algorithm. Then we assign weights for each of the trees. In
order to assign a weight for a tree, we first generate a random number from a
uniform distribution in the interval of [0.00, 1.00]. For example, if the number
0.25 is generated randomly from the uniform distribution [0.00, 1.00], we assign
0.25 as the weight of the tree.
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We use these weights to classify a new record of a testing data set whose class
value is unknown. Original Random Forest generally uses Majority Voting [22,26]
for computing the classification result. In Majority Voting, each base learner
(tree) determines the class value of a new record. Then the class value from the
highest number of base learners (trees) is determined to be the classification
result of the ensemble (Random Forest).

In the proposed technique, in order to obtain the classification result for the
Random Forest, we use the associated weight of the trees. For example, if a
tree with weight 0.25 predicts a class value c1 for a new record, we consider the
weight of the tree as the value of the vote for c1. If another tree with weight
0.35 predicts c1, then the total vote-value for c1 will be (0.25 + 0.35) = 0.60.
In this way, the class value with the highest vote-value is determined to be the
classification result.

3 Experimental Results

We analyze the impact of the modified Majority Voting on reducing the bias of
Random Forest. In this process, we select four widely used data sets that are
publicly available from the UCI Machine Learning Repository [31]. The data
sets used in the experimentation are listed in Table 1. We generate 100 trees for
every decision forest since the number is considered to be large enough to ensure
convergence of the ensemble effect [22,32]. All the results reported in this paper
are obtained using 10-fold Cross Validation (10-CV) [16,33] for every data set.
The best results are distinguished through bold-face.

Table 1. Description of the Data Sets

Data set name Non class attributes Records Distinct class values

Car Evaluation 6 1728 4

Glass Identification 9 214 6

Pima Indians Diabetes 8 768 2

Statlog Vehicle 18 846 4

Classification accuracy is one of the most important performance indicators
of any classifier [34,35]. In this paper, we inject 0%, 10%, 20% and 30% noise
in all the data sets used and analyze the impact on classification accuracy for
both the original Random Forest (O RF) and the Random Forest with Random-
Weight Trees (RF RWT). Next, we report the average classification accuracy for
all data sets with all noise levels in Figs. 1, 2, 3, and 4.
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To be more conclusive in comparison between O RF and RF RWT, we put
aggregated classification accuracy for all noise levels in Table 2. From Table 2, it
is evident that the introduction of random weighs on trees helps Random Forest
to reduce the bias and become less sensitive to noisy data.

Fig. 1. Classification accuracy for different noise levels on Car Evaluation data set

Fig. 2. Classification accuracy for different noise levels on Glass Identification data set
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Fig. 3. Classification accuracy for different noise levels on Pima Indians Diabetes data
set

Fig. 4. Classification accuracy for different noise levels on Statlog Vehicle data set

Table 2. Aggregated classification accuracy for different noise levels

Noise Level O RF RF RWT

0% Noise 78.85% 78.62%

10% Noise 76.32% 77.18%

20% Noise 75.23% 76.14%

30% Noise 73.02% 74.38%
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4 Conclusion

In this paper, we have proposed a new technique to reduce the bias of Random
Forest to become less sensitive to noisy data. The results reported in this paper
show great potential of the proposed technique. In future, we intend to extend
our work by including more decision forest algorithms such as Bagging [27],
Random Subspace [28], Forest CERN [34], Forest PA [35] and BDF [36]. We
shall also include more data sets in experimental paradigm.
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Abstract. In the article recommendation, text information as the main
body of the recommendation is rich in semantic content. Especially for
content-based recommendation methods, whether an accurate and con-
cise feature representation can be extracted from existing text informa-
tion is the key to the effective recommendation. Since the long-term use of
content-based recommendation methods to generate personalized result
sets can make the recommendation variety too homogeneous, the col-
laborative filtering recommendation method compensates for the above
problem by finding other preferred articles of similar users for the rec-
ommendation. In this paper, we propose a collaborative filtering recom-
mendation method that incorporates user profiles. This method designs
a user portrait labeling system for the article recommendation scenario.
Moreover, it uses relevant text processing techniques to extract multi-
dimensional user features, which can alleviate the cold start and matrix
sparsity problems when performing collaborative filtering recommenda-
tions. Finally, we tested our scheme with the MIND Data Set and ana-
lyzed the advantages of our scheme.

Keywords: Recommendation system · Collaborative filtering · User
profiles · Article recommendation

1 Introduction

The recommendation system reduces the user’s product exploration time by pro-
viding personalized interests based on user preferences and past behavior pat-
terns, thus greatly improving the user experience. Recommendation systems are
usually classified into seven types: collaborative filtering based, knowledge based,
content based, demographics-based, context aware based, and hybird based [1].
The collaborative filtering-based method has been widely applied in recommen-
dation systems that can produce recommendations based on past interactions
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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between users and items. In article recommendation systems, the general prac-
tice of user-based collaborative filtering is to obtain a collection of articles with
user behavior records, generate a user-article feature matrix, find similar users
of a specific user, and recall other users’ preferences. User profiling effectively
describes user characteristics and is increasingly used in collaborative filtering-
based recommendation systems. It can accurately abstract the essential charac-
teristics of users through the labeling of multidimensional information of users. A
good user profile model represents the user characteristics needed in a recommen-
dation scenario with the most accurate dimensions to improve the effectiveness
of recommendations. Therefore, it has gradually become one of the core tasks of
the recommendation system and has received widespread attention.

In the innovation of the user profile construction method in recommendation
systems, [10] proposed a user profile construction method based on the stack-
ing model. [5] proposed a text feature extraction method for constructing user
profiles. In this method, a new topic model algorithm, LDA-RCC, is designed
for the matrix sparsity problem that the traditional LDA topic model is easy
to produce. [2] proposed a multidimensional user profile construction method
based on text clustering, automatically constructing the profile and reflecting
users’ interesting topics. In [6], scholars exploited external criteria to calculate
the similarity between items and users. [3] proposed a graphical deep collabo-
rative filtering (GraphDCF) algorithm for providing personalized mutual fund
recommendations. Scholars can model different latent relationships among cus-
tomers with similar shopping habits in this scheme. [8] attempted to extract an
appropriate number of negative cases from missing cells in a user-item interac-
tion matrix instead of considering all missing values as negative cases to solve the
One-Class Collaborative Filtering problem. [4] introduced a personalized news
recommendation framework that would improve the accuracy of news article
recommendations. However, these studies do not consider both cold-start and
user sparsity simultaneously. In this paper, we propose a collaborative filtering
recommendation method that incorporates user profiles. We construct user pro-
files from multiple dimensions and rely on the basic information features of users
to address the cold start problem. Moreover, the topic model performs deeper
feature extraction of the user, and the text content is fully utilized to enrich the
user profile features, which avoids the matrix sparsity problem commonly found
in collaborative filtering. Finally, the users are reasonably grouped by using the
multidimensional feature similarity calculation method and the improved clus-
tering algorithm to alleviate the problem of excessive computation caused by
searching the whole user set.

2 Proposed Method

The specific methodological process of the proposed model includes user profile
labeling system, user profile construction and similarity calculation, user clus-
tering, and collaborative filtering to generate result sets.
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2.1 User Profile Labeling System

The user profile is the labeling of user-related information. The premise of the
user profile is to establish a profile labeling system. User profile labels can gen-
erally be divided into static and dynamic information labels from the attributes.
Static information tags refer to the basic attribute information of users, includ-
ing gender, age, and marital status. In order to further alleviate the cold start
problem of new users, the system will collect the user’s interest tags during the
registration of new users to further enrich the initial user profile.

Dynamic information tags refer to the feature tags mined through users’
behaviors. Based on the scenario of article recommendation, the dynamic infor-
mation tags are divided into two dimensions: preferred article information and
reading habits. Preferred articles are obtained based on relevant user behaviors,
including browsing, retweeting, commenting, and like records; reading habits
include reading frequency and reading time. Reading habit is chosen as a dimen-
sion of user profile because having the same reading habit may reflect their same
resting habits and other implied information, and similar users tend to pay more
attention to the same content. The structure of a user profile labeling system is
shown in Fig. 1.

Fig. 1. User profile labeling system structure

2.2 User Profile Construction and Similarity Calculation

A comprehensive user profile model can more accurately describe users’ char-
acteristics and interest preferences. This method takes the articles on user-
generated behaviors as the basic information of the portrait. It proposes a
multi-feature fusion user portrait model, which is represented explicitly as
P = {B, T,R,HT}. The first dimension B = {Ge,Ag,Ma,Ho} represents the
basic information characteristics of the user, which are the user’s gender, age,
marital status, and interests. The second dimension T is a collection of articles
based on user-generated behaviors to extract user topic distribution features.
The third and fourth dimensions, R and HR, represent users’ reading frequency
and reading time in one day, respectively. The construction methods of the pro-
posed model are as follows.
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(1) Similarity calculation of basic information of users. The basic informa-
tion of users in this method includes gender, age, marital status, and initial
interests, because this information is helpful for the accuracy of personalized
recommendations. However, it is not easy to measure the user similarity based
on these dimensions directly, so in this method, the user label information of
each dimension is pre-normalized and constructed. Finally, we characterize the
basic information of users in vectorized form.

Firstly, the gender dimension is only male and female. Age can be divided into
different age groups. Marital status can be divided into two categories: married
status and unmarried status. Finally, the interest dimension is collected when
new users register and can be multi-selected.

In order to facilitate the similarity calculation of basic user information, the
features of each dimension are represented using a binary sequence. The gender
feature is set as a flag bit. If it is male, it is set to 1. Otherwise, it is set to 0; the
age group is set to 6 flag bits, in which age group it is set to 1 and the rest to 0;
the marital status is set to two flag bits, one of them is set to 1 and the other
to 0; the interests are assigned to 8 flag bits, the interest position is 1, and the
rest is set to 0. The final binary representation of the user’s basic information
is obtained. Then the binary Jaccard similarity calculation method is used to
calculate the similarity of users and is shown in Eq. 1.

BSim (Ui, Uj) =
∑l

i=1 (BiΛBj)
∑l

i=1 (Bi ∨ Bj)
(1)

The binary Bi and Bj are the representations of the user Ui and Uj respec-
tively. The binary l represents the sequence length. The final similarity result is
in the interval [0, 1]. And the similarity matrix BS is obtained by calculating
the similarity of basic information among all users in turn.

(2) Similarity calculation of users based on topic model
A user-article feature matrix is usually constructed in the traditional collab-

orative filtering method, with 1 if the user acts on the article and 0 if not. Then
the binary sequence similarity between each user is calculated for comparison.
However, this approach does not use the feature information of the article to
characterize the user and calculate the similarity but only represents the user’s
interest sequence in the form of 0, 1. The similar results obtained in this way are
often not comprehensive and accurate. Therefore, a topic model is used to char-
acterize users and compare their similarities. The flowchart is shown in Fig. 2.

Step 1: Collect the data set Du = {du,1, du,2...du,n} of articles in which user
Ui have generated operational behaviors in the last week, where du,k represents
the k-th article in which users have recently generated behaviors.

Step 2: Subject the articles used as the training corpus to text pre-processing.
The specific process includes designing, stopping words, and Chinese word sep-
aration.

Step 3:

– Use the articles in the corpus for LDA topic model training.
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Fig. 2. User topic feature extraction

– Use the total number of classified articles in the article corpus m as the
number of topics parameter.

– Obtain the topic model of the training set after the training.

Step 4:

– Input the articles in the article collection Du as the validation set into the
trained topic model in Step 3.

– Obtain a topic distribution vector Td = (pd,i, pd,i, ...pd,k..., pd,m) for each arti-
cle, where pd,k denotes the probability that article d belongs to topic k.

– Use this vector to characterize each article.

Step 5: Get the user’s dimensional topic portrait matrix from the topic distri-
bution of all articles in the set. SS denotes the common feature of topic features
of all articles in the set.

Step 6: Apply the time decay mechanism to weight each article, as shown in
Eq. 2. Then sum up the topic vector of each article to find the mean value to
obtain the topic-based user feature vector, calculated as shown in Eq. 3, where
n means there are n preferred articles.

TW = e−λ(t−t0) (2)

Fu =
1
n

n∑

i=1

Ti ∗ TWi (3)

(3) User reading frequency calculation As a form of dynamic user behav-
ior, reading frequency can effectively reflect the user’s reading habits. Therefore,
using reading frequency as a one-dimensional user profile can effectively differ-
entiate users and help personalized recommendations. The calculation method
of reading frequency R is shown in Eq. 4.

R =
1
k

k∑

l=1

Rl (4)

where k denotes the total number of days with reading behavior, and Rl denotes
the number of articles read by users on the l-th day. This formula can calculate
the average number of reading by users.
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(4) Users’ reading time statistics As a kind of behavioral information, reading
time can also reflect users’ reading habits. The time of day is divided in this
method to facilitate the measurement of a person’s reading time distribution, as
shown in Table 1. In order to obtain the vector of reading time distribution, we
obtain the set of articles Du = {du,1, du,2...du,n} in which users generate reading
behaviors and classify the articles according to the time division in Table 1. Then
we can calculate the reading quantity RN of each time and the vector of reading
time distribution based on the distribution of reading quantity. The formula is
shown in Eq. 5.

RT =
RN

∑k
i=1 RNi

(5)

Table 1. Time division table

Time Label

00:00:00–04:59:59 Midnight
05:00:00–07:59:59 Early morning
08:00:00–10:59:59 Morning
11:00:00–12:59:59 Noon
13:00:00–17:59:59 Afternoon
18:00:00–21:59:59 Evening
22:00:00–23:59:59 Night

(5) Multi-dimensional similarity calculation For a user profile P =
{B, T,R,HR} with four-dimensional features, the basic information B’s sim-
ilarity matrix BS can be obtained from Eq. 1. And for the remaining three-
dimensional features PT = {T,R,HR}, we can calculate the common similarity
directly by using the cosine similarity calculation method. For example, for users
Ui and Uj , the user profile PTi and PTj can be expressed as vectors. The cal-
culation method is shown in Eq. 6.

Sim (PTi, PTj) =
PTi · PTj

‖PTi‖ · ‖PTj‖ (6)

We can get the n × n-dimensional user similarity matrix PTS and add the
basic information similarity matrixBS and PTS of the same n× n-dimensional
to get the end-user similarity matrix US.

2.3 User Clustering

Since the article data is constantly updated and the volume of data will become
larger, the amount of computation will also increase rapidly. The general clus-
tering method clusters an object after it belongs to one class, but a user can
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have many different features and belong to multiple classes for user clustering.
Therefore, in this method, an ordered clustering method is used to cluster users,
which results in the same user existing in different user groups. The flowchart is
shown in Fig. 3.

Fig. 3. User clustering

Step 1: Set the initial user class capacity C as 0, the set of users to be
clustered as U , and the number of clusters as m.

Step 2: Determine whether the set of users U is empty. If it is empty, end the
main clustering step and go to step 6. If it is not empty, get the user similarity
matrix US calculated in the previous subsection, get the most similar pair of
users (ui, uj) and similarity value Max. It is then setting the corresponding
position of the original matrix to 0.

Step 3: Determine whether the current is the first time clustering. If it is the
first time, skip to step 4. If it is not the first time clustering, then skip to step 5.

Step 4: Determine whether the total number of clusters is equal to the set
number of clusters m. If not, creating a new class, adding the current two users
to the new class and deleting both from the user set U . If the number of clusters
has been reached, selecting the one containing the least number of users from
all existing clusters to add new users. When it finishes, skip to step 2.

Step 5: Iterate through the categories ci in the set C. If a user ui or uj

belonging to the category, add another user to the category group directly. Then
add the user to the group, delete it in the set U , and jump out of the traversal
loop to step 2. After traversing all categories, it is found that neither user belongs
to either category, then skip to step 4.
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Step 6: After all users have been traversed determine whether the current
number of clusters reaches the set m value. If it reaches it, end directly; if not,
go to step 7.

Step 7: Sort the users by the decreasing number of users in the user class,
traverse the sorted user group for group partitioning. After partition, back to
step 6 to judge until the m value is reached, end the clustering process, and get
the clustering matrix CM , where indicates whether the i-th group contains the
user information of the j-th user, 1 is included, 0 is not included.

Since the pair of users with the highest similarity is selected each time in
the clustering process, there are cases where the same user appears in different
groups simultaneously. In addition, since the similarity value is decreasing, for a
particular user in a group, his right neighbor is more similar to him than his left
neighbor, i.e., the similarity gap between neighboring users in the whole group
is decreasing, which provides convenience for finding nearest neighbor users in
subsequent collaborative filtering.

2.4 Collaborative Filtering

The candidate set generation for the collaborative filtering method can be per-
formed based on the user clustering matrix obtained in the previous subsection,
as shown in Fig. 4.

Fig. 4. Collaborative filtering result generation

Step 1: Obtain the user clustering information matrix CM . Then filtering
the user groups containing user Ui from the clustered user groups for the recom-
mended users Ui.

Step 2: Iterate through the group of the user Ui and finding all users on the
left side to obtain the set of similar users.

Step 3: Obtain the set of preferences SU = {SU1, SU2...SUn} of these users,
where SUn denotes the set of preferred articles of the n-th similar user.
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Step 4: The articles in the obtained set SU are weighted using the previously
obtained user similarity matrix SM for the current recommended user Ui, as
shown in Eq. 7. The articles are sorted in descending order based on the weights.

SUn = SM (Ui, Un) ∗ SUn (7)

Step 5: Set the article hotness threshold. The specific method is to first
calculate the current time to the previous week of the article heat score, heat
weight distribution as shown in Table 2. Here the reading as the main weighting
behavior is to avoid recommending to the user the current more popular and
more people have read the article. The calculation method is shown in Eq. 8.
After calculating the hotness score of each article in the recent week, the first
10% of articles with higher hotness are not recommended, and the hotness value
of the first 10% is the hotness threshold.

Table 2. Heat weight distribution

Operations Symbols Weights

Read OPre 0.4
Comment OPco 0.2
Favor OPfa 0.2
Forward OPfo 0.2

P = OPre ∗ RE + OPfa ∗ FA + OPco ∗ CO + OPfo ∗ TR (8)

Step 6: According to the hotness threshold and the similarity ranking result
obtained in Step 4, a fixed number of articles are recalled in order.

3 Performance Analysis

This method combines traditional collaborative filtering recommendation meth-
ods with user profile information to alleviate the cold start and matrix spar-
sity problems prevalent in traditional methods and improve the recommenda-
tion effectiveness. In order to ensure the feasibility of this method, this section
conducts a experimental design and analyzes the compared results with the
recommendation method proposed in [4]. The experimental environment and
implementation of the experimental method are presented below.

3.1 Experimental Method

This experiment still uses the news article recommendation dataset MIND pro-
vided by Microsoft [9]. This information dimension is temporarily ignored in
the experiment due to the difficulty of obtaining user demographic information.
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Only the user’s behavior records and article information data are used for the
experimental analysis.

The LDA model provided by the Gensim library in Python [7] is used to
train the topic model in the experiments. For the feature information of user
reading habit dimension, the reading time in the user behavior record needs to
be parsed to get the feature vector of user reading frequency and reading time
point. The final obtained user portrait feature vectors are compared for similarity
and clustered and combined with collaborative filtering for the recommendation.

When performing collaborative filtering, we need to determine how many
users are selected as nearest neighbors to get the associated preference articles,
so we need to set the number of nearest neighbors. In this experiment, the
number of clusters is set to 11, the recall set is set to 35, and the number of
nearest neighbors is set to 20, 25, 30, 35, 40, 45, and 50, respectively.

3.2 Experimental Result

In this experiment, several experiments were conducted for different numbers of
recall sets to obtain the experimental results of the recommended scheme and
the comparison scheme proposed in this paper, to calculate the precision and
recall of the results, and finally to evaluate the effectiveness of the method with
the calculated F-measure and AUC values. The number of articles specifically
recalled in the experiment was set between 20 and 50, and a total of seven
experiments were conducted. The comparison of the F-measure and AUC values
obtained from the experiments is shown in Fig. 5 and 6.

Fig. 5. F-measure comparison chart
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Fig. 6. AUC comparison chart

By analyzing the above figures, we can find that the collaborative filtering
recommendation method proposed in this paper is better than the collaborative
filtering recommendation method in [4] in terms of F-measure and AUC values
for different numbers of recalls. And the experiments show that the F-measure
value, which integrates the recommendation accuracy and recall rate, will start
to fall down after the number of recalls increases to a certain upper limit, and
this method falls down more slowly compared with the comparison method,
so this method has stronger stability for different numbers of recalls. And the
experimental results from the AUC values show that the present method is more
accurate for the prediction of positive and negative samples. Therefore, it can
be proved that the collaborative filtering recommendation method proposed in
this subsection incorporating user profiles has better results.

4 Conclusion

In this paper, we analyze the cold start and matrix sparsity problems of the
traditional collaborative filtering method for the recommendation. We propose
a collaborative filtering recommendation method with integrated user profiles.
Then the results are verified by designing simulation experiments, which prove
that the method has a better recommendation effect.
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Abstract. K-Means clustering algorithm does not offer a clear method-
ology to determine the appropriate number of clusters; it does not have
a built-in mechanism for K selection. In this paper, we present a new
metric for clustering quality and describe its use for K selection. The
proposed metric, based on the locations of the centroids, as well as the
desired properties of the clusters, is developed in two stages. In the initial
stage, we take into account the full covariance matrix of the clustering
variables, thereby making it mathematically similar to a reduced χ2. We
then extend it to account for how well the clustering results comply with
the underlying assumptions of the K-Means algorithm (namely, balanced
clusters in terms of variance and membership), and define our final met-
ric (MC). We demonstrate, using synthetic and real data sets, how well
our metric performs in determining the right number of clusters to form.
We also present detailed comparisons with existing quality indexes for
automatic determination of the number of clusters.

Keywords: K-Means clustering · Quality metrics · K selection
problem · Number of clusters

1 Introduction

K-Means clustering [15] is conceptually simple and easily explained and under-
stood. Practically, however, one of the difficulties that we face in using the algo-
rithm is that we cannot clearly and objectively articulate why one clustering
output is better than another one for a given data set. We lack a quality mea-
sure. Because of the lack of a quality measure, we face difficulties when it comes
to selecting the optimal number of clusters to form.

In this paper, we propose a new quality metric that can be easily computed
during (or after) K-Means clustering and argue from basic principles that it
accurately captures the validity of the clustering run. We will study its perfor-
mance in determining the optimal number of clusters to form on a wide range
of synthetic data as well as some real data sets. We will demonstrate that it
compares favourably against the current metrics, several of which are reviewed
in [4].
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2 Related Work

We have several quality indexes and statistics in the literature, which are fre-
quently used to automatically determine the right number of clusters (K). The
ones we will consider in the article for comparison are:

– Variance Ratio Criterion [5]: VRC
– Akaike Information Criterion [3]: AIC
– Bayesian Information Criterion [24]: BIC
– Silhouette Width [23]: Sil. Wid.
– Gap Statistic [26]: Gap
– Evaluation Function [20]: f(K)

In addition to these “classic” quality indexes, we have several other candi-
dates, some of which are algorithms specifically designed to determine the right
K automatically. A recent study [10] introduces the Projected Gaussian (PG-
Means) method, which performs a K-Means clustering for all Ks in the range of
interest and projects both the data and model to a linear subspace. It then looks
for a good fit between the model and data using the Kolmogorov-Smirnov (KS)
test. PG-Means runs with ten sets of random starting seeds, which our studies
indicate may be too small to ensure convergence.

X-Means [19], originally developed to address the scalability issue of K-
Means, also helps determine the right K. An extension [16] of X-Means is found
in the literature, designed to automatically determine K through progressive
iterations and merging of clusters based on a BIC stopping rule. This method,
however, does not give an index, which is needed for other purposes such as
feature selection.

G-Means [14] is a method to repeatedly perform K-Means with increasing K
until statical tests show that the resulting clusters are Gaussian within a specified
confidence level. This method again does not provide a quality metric. Other
attempts to determine K include a visual assessment of clustering tendency
[18], again with no overall quality metric.

A recent comparative study [13] argues that relying on any single internal
metric or index is unwise, while noting that the WB index [28] (based on sum of
squares similar to VRC) seems to perform best. Our index, also loosely based
on sum of squares, seems to work well both in synthetic and real data sets.

One of the more recent studies that define quality metrics or indexes is a
probabilistic approach [6] on external validation of fuzzy clustering, where one
data point may belong to multiple clusters. Our approach also uses within-
standard deviations, and applies only to K-Means clustering, which is distinctly
non-fuzzy. Another approach [12] introduces a cluster-level similarity index called
the centroid index, focusing on the overall clustering output to quantify the
clustering quality. An external quality measure that can apply to many different
clustering algorithms, it is not directly comparable to our internal metric focusing
on K-Means. Lastly, in a paper proposal [27], a new separation measure, (termed
“dual center”) is developed, based on which a validity index is proposed for fuzzy
clustering. It is not, however, employed for K selection.
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3 New Quality Metrics

To develop the metric proposed in this article, we will start from the standard
(z) scores of the centroid locations and combine them into a metric. We will then
generalize it using the full covariance matrix of the clustering variables (grouped
by cluster) to define a reduced χ2 metric. At the second stage, we will extend the
χ2 metric to incorporate extra information about how well the clusters conform
to the implicit assumptions in the K-Means algorithm and come up with the
proposed metric, MC .

Given the centroids (�μk) and the population mean (�μ), we can compute the
significance of the difference between them for each variable as,

zkj
=

δkj

σ
(c)
kj

=
δkj

σkj√
nk

=
√

nk(μj − μkj
)

σkj

(1)

where δ stands for the difference and σ(c) for the within-cluster standard devi-
ation. Since the kth cluster has nk members, the standard error is σ(c) divided
by

√
nk. In order to interpret the squared sum as a weighted average, we divide

it by the number of observations n, so that each term in the sum has a weight
of nk/n, the fraction of the observations belonging to the cluster, and call it our
quality Score.
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1
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3.1 Reduced χ2
R Metric

The generalized version of the distance to be used in the presence of correlations
is the Mahalanobis Distance [17], DM (�μk, �μ) corresponding to the K cluster
centroids. The square of each one (denoted by D2

M (�μk, �μ)) is a random variable
which follows a χ2 distribution with a parameter (or degrees of freedom, DoF)
p−1, where p is the number of clustering variables. We can combine these Maha-
lanobis distances in quadrature using the same weightage as in the definition of
Score.

χ2
R =

1
K(p − 1)

K∑

k=1

D2
M (�μk, �μ)

n

=
1

nK(p − 1)

K∑

k=1

nk(�μk − �μ)Σ−1
k (�μk − �μ)ᵀ

(3)

The sum of the squares of the K Mahalanobis distances, being the sum of K
random variables, each with a χ2 (of DoF = p − 1) distribution, is another χ2

random variable of DoF = K(p − 1).
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Since K(p − 1) is actually the number of degrees of freedom, χ2
R can be

thought of as the reduced χ2 per cluster, but with an extra (constant) scaling
factor of n. This scaling, being constant, does not impact the usage of χ2

R in
determining the right K. We call this reduced and scaled χ2

R our “Reduced χ2
R

Metric.”

3.2 Implicit Assumptions in K-Means Algorithm

The K-Means algorithm works best when the data set has spherical clusters of
roughly equal sizes. The clusters are expected to be similar in terms of member-
ship, density and variance. If this assumption is violated, the K-Means algorithm
is likely to give unreliable results. Furthermore, if one cluster has significantly
smaller variance or number of members, it tends to “scavenge” observations
belonging to other clusters. This is because the cluster boundaries are perpen-
dicular bisectors and the statistical fluctuations in the observations always favor
the tighter or smaller cluster. The soft requirement of balanced clusters in terms
of membership and variance forms an implicit assumption in the algorithm.

3.3 Covariant Metric (MC )

Since the metric is a reduced χ2, it may be possible extend it to include compo-
nents that quantify these assumptions in the K-Means algorithm. We will show
how the cluster membership (or frequency) and the cluster standard deviation
are compared against their expected or ideal values, and a standard score for
each is generated, to be combined with χ2

R. We will call the extended metric the
Covariant Metric (MC) because it is built on the covariance matrix of the data.
We emphasize that it is weighted by nk/n and therefore does not numerically
equal standard score or the reduced χ2, and it incorporates the components
described below in a heuristic way.

Cluster Frequency. Since we have n observations and K clusters, the “ideal”
frequency for each cluster is n̂k = n/K. Assuming Poisson statistics, we can
argue that the expected error on each frequency is

√
n/K. Since we have K

measurements of the frequencies, we gain another factor of
√

K in its standard
error, giving us σnk

=
√

n
K . and combine the individual z-scores in quadrature to

come up with a measure of how far away our clustering result is from the ideal,
in terms of the membership frequency.

Mnk
=

K∑

k=1

(
nk − n̂k

σnk

)2

(4)

Mnk
is a standardized measure of how different the clusters are in terms of their

frequency. Ideally, we would like to have Mnk
as close to zero as possible.
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Cluster Variance. Once the clustering is done, we have the sum of squared
errors SSE. If the clusters have the same variance, then SSE should be shared
among them in proportion to the frequency.

SSEk =
nk − 1
n − K

SSE (5)

SSEk is the sum of the squared errors of the observations to their respective
centroids. The expected “ideal” variance, therefore, is this sum divided by nk−1.

Ŝ2
k =

SSEk

nk − 1
=

SSE
n − K

(6)

The actual variances of the clusters are estimated during the clustering pro-
cess, and is reported in terms of within standard deviations, but aggregated over
all variables. Ignoring the cases where nk = 1,

S2
k =

1
nk − 1

n;gi=k∑

i=1

p∑

j=1

(xij − μkj
)2 (7)

The standard error in the variance is obtained by recognizing that the sample
variance (when multiplied by (nk −1)/σ2

S2
k
) is a χ2 distribution of nk −1 degrees

of freedom, which itself has a variance of 2(nk −1). Therefore, the standard error
of the variance is [2]

σS2
k

= S2
k

√
2

nk − 1
(8)

Again, we have an “ideal” variance and a measured one, and we can compute
the significance of the difference between them (using the standard errors)and
combine their significances to come up with a measure of how the cluster vari-
ances compare to the ideal equal variance.

MS2
k

=
K∑

k=1

(
S2

k − Ŝk2

σS2
k

)2

(9)

In an ideal clustering solution, we will expect to have very small MS2
k
.

Extending the χ2
R Metric. Now that we have the two new components encap-

sulating the uniformity among the clusters in terms of frequency and variance,
we can extend our χ2

R with them to obtain the Covariant Metric (MC) as follows.

MC =
χ2

R

Mnk
+ MS2

k

(10)

where Mnk
and MS2

k
are defined above in Eqs. (4) and (9) above. We divide by

the sum of these two measures corresponding to the frequencies and variances
of the clusters because the overall quality of the K-Means clustering is inversely
proportional to them. In other words, if we have two clustering solutions with
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identical χ2
R, but different values for Mnk

and MS2
k
, we have to choose the

one with the lower Mnk
and MS2

k
. Note, however, that a more general way to

combine them would as a linear combination, w1Mnk
+ w2MS2

k
, where w1 and

w2 are relative weights whose values are not known a priori.

3.4 Quantifying Index Performance

Since we will be comparing multiple indexes with our metric, we may get the
same right K from several of them. It would then be fair to ask how we quantify
the performance of various indexes. For the first five out of the seven indexes
listed earlier (namely VRC, AIC, BIC, Sil. Wid. and DB), the selection of K
is based on a maximum or a minimum. The Gap statistic and the f(K) index
do not determine K by looking for a maximum or minimum in their variation.

For the Gap statistic, the best K recommended by this approach is the
smallest number of clusters that shows a decrease, while all values of K such
that f(K) < 0.85 are potential candidates as the right K.

The significance of K selection may be quantified using the concept of curva-
ture: the higher the curvature, the more prominent the minimum or maximum
signifying the right K. For a continuous function of a single variable, the cur-
vature is proportional to the second derivative. For a discrete function h(K)
(where K is an integer), we define a new quantity Γ , similar to the three-point
computation of the second derivative for a continuous functions.

Γ =
∣∣∣∣
h(K + 1) − 2h(K) + h(K − 1)

h(K + 1) + h(K − 1)

∣∣∣∣ (11)

The index with the largest Γ value has the most clearly defined peak, signifying
the right K.

4 Experiments on Synthetic Data

4.1 Data Generation

We use the R package clusterGeneration [21], which can generate clus-
ters of specified sizes in spaces of prescribed number of variables. In
clusterGeneration, we can also specify the separation among the clusters,
using a separation index [22]. We will use various values for these three and
other parameters as described below.

Number of Clusters (G): We generate synthetic data sets with different num-
bers of clusters: G ∈ {5, 10, 15, 20}

Number of Variables (p): We use the values p ∈ {2, 4, 8, 16, 32} for this
parameter

Separation Index (J∗): This parameter controls how well separated the clus-
ters are, and we use the value J∗ = 0.34 (for cleanly separated clusters), since
we are defining and studying the metric for a data set well suited for K-Means
clustering.
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Since we are studying the metric for a data set perfectly suited for K-Means clus-
tering, we focus on these 20 data sets for detailed analysis, we use the following
values for the other parameters in the generation of the synthetic data.

– Number of noisy variables = 0
– Number of outliers = 0
– Equal cluster membership (of 10p) for all clusters
– Cluster uniformity (= Range for variances of the covariance matrix) = [1, 10],

which generates a reasonable variability.

4.2 Analysis of Synthetic Data

With the synthetic data, we first compute our metrics MC , χ2
R, and seven

indexes (VRC, AIC, BIC, Sil. Wid., DB, Gap and f(K)) discussed ear-
lier. For each run of the K-Means clustering algorithm, we use 100 random sets
of initial seeds from which the best run (based on the sum of squared errors)
is chosen. It is important to have large number of starting seeds because of the
sensitivity of K-Means to initial conditions, especially when we have large num-
ber of clusters and relatively small number of variables [25]. For smaller number
of starting seeds, we do see a large fraction of K-Means attempts failing to con-
verge. We also set a generous limit on the maximum number of iterations of
1000 and repeat the whole analysis multiple times and ensure that the results
reported are stable.

4.3 Results and Discussion

First, we focus on the fraction of the times we can detect the right number of
clusters using the metrics MC , χ2

R, VRC, AIC, BIC, Sil. Wid., DB, Gap
and f(K). We define this fraction as the accuracy of the metric and scan for
the right K in G

2 < K < 2G. We run the analysis on all our 60 synthetic data
sets (20 for each J∗ value), and report the average accuracy for our metric and
a variety of indexes in Table 1. Also reported are the average Γ values when
the right K is detected. Since we are developing a metric that will work best
for data sets that are particularly suited for K-Means clustering, the column to
consider in Table 1 is for well-separated clusters (J∗ = 0.34). We can see that
MC performs very well with extremely well-defined peaks (Γ ≈ 28). Although
the Variance Ratio Criterion (VRC) and the Davies-Bouldin index (DB) also
detect the right K, the significance of the peak for VRC or the minimum for
DB is at much smaller levels (Γ ≈ 0.1 − 0.2).

VRC, DB and Gap perform better than MC when the clusters are gener-
ated with more overlaps, by reducing the value of J∗ to 0.01, when the clusters
are expected to be more realistic. However, their performance in the real data
is poorer than out metric. Also of note is that both AIC and BIC perform
very poorly in the synthetic data, as well as in the real data. (The comparisons
of the performances of the metrics in real data is summarized in Table 2 in a
subsequent section.)
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Fig. 1. Examples of MC (top row) and VRC (bottom row) for different K, when
realistic clusters (J∗ = 0.01) are used.

A comparison of the shapes of MC and VRC can be found in Fig. 1, where
we see that MC typically has a sharper peak. In the real data, MC seems to
perform even better in detecting the right number of classes.

Table 1 shows that MC performs better than χ2
R, both in terms of the accu-

racy and the sharpness of the peak. We can therefore conclude that our extension
of the χ2 by incorporating the scores corresponding to ideal cluster frequency
and within-standard deviation does add value to the metric.

5 Experiments on Real Data

We also perform our experiments in four different real data sets, where we detect
the optimal number of clusters automatically using MC , and compare it to what
is known about the data sets independently. In these experiments, we assume
that the classes in the data sets form spherical clusters, easily separated by the
K-Means algorithm, and, as a consequence, that the ideal number of clusters
is the number of classes. If this assumption does not hold true for the data
set under consideration, our metric will not work. Indeed, the definition of our
metrics would also be invalid in that case.
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5.1 Variable Selection

Since we are testing our metrics on labeled data sets, we can directly compute the
purity of the clusters by counting the number of correctly assigned observations.
We assume that the ideal number of clusters (ideal K) is the number of distinct
values of the label. After selecting the best variables based on purity, we will
iterate over various values of K and expect to see a clear peak for the Covariant
metric when plotted against various K values. Note that we will use the same
“best” variables for all other indexes to which we compare our Covariant metric.
Therefore, there is no unfair advantage or biases in using the selected variables
in favor of our metrics. The four data sets used are briefly described below.

5.2 Data Sets

Iris Data Set. The classic Iris data set [11] contains 150 flower measurements
along four variables (Sepal Length, Sepal Width, Petal Length and Petal Width)
from three different iris species (Setosa, Versicolor and Virgnica). Each species
has 50 data points in the data set. Since there are three species, we know,
beforehand, that the ideal number of clusters should be three. We select the
variables Petal Length and Petal Width as the variables (based on the highest
purity) to use when looking for the best K.

We can now look at how the Covariant metric (MC) varies when we cluster
with different Ks. The dependence is shown in Fig. 2a. We can see that the ideal
K = 3 clearly shows up as a peak in both distributions, much more clearly
in MC .

Table 1. Accuracy and Γ of various metrics

Metric Well-separated Medium Realistic

(J∗ = 0.34) (J∗ = 0.21) (J∗ = 0.01)

MC 100.0% (28.6) 90.0% (18.0) 45.0% (7.0)

χ2
R 45.0% (0.1) 65.0% (0.1) 35.0% (0.1)

VRC 100.0% (0.2) 100.0% (0.2) 60.0% (0.1)

AIC 0.0% (−) 0.0% (−) 0.0% (−)

BIC 0.0% (−) 0.0% (−) 0.0% (−)

Sil. Wid. 95.0% (0.1) 75.0% (0.1) 65.0% (0.1)

DB 100.0% (0.2) 85.0% (0.2) 85.0% (0.1)

Gap 55.0% 70.0% 70.0%

f (K) 20.0% 25.0% 30.0%

Accuracy of K selection: the fraction of the times when
the reconstructed number of clusters is the same as
the generated number (K = G). The numbers between
parentheses are the mean Γ (averaged when K = G).
Note thatGap and f (K) do not detect the ideal K using
maximum or minimum, and therefore Γ is not reported.
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Fig. 2. Using our quality metrics to select the optimal number of clusters in various
data set. The Covariant Metric MC shows clear peaks at the known number of clusters
(K = 3 for the Iris, Wine and Seeds, and K = 2 for the Young Adults).

Young Adults Data Set. We collected anonymous data from our students.
The data set has 127 observations of four numeric variables (Height, Weight, Age
and HairLength) and a label (M or F for male or female). Note that in Singapore,
male university students are expected to be about 2 to 3 years older than their
female classmates because of their military service obligation. Therefore, we may
expect the Age variable to have some differentiating power while clustering the
data. Following the same procedure as in the iris data set, we select Weight and
HairLength as the best variables to use, for the best possible purity of 98.4%.

A blind K-Means clustering (with K = 2) using the four numeric variables
is likely to segment the Young Adults data into male and female students. The
ideal number of clusters is indeed two. In Fig. 2b, we have plotted MC as a
function of K, and it shows a clear peak at K = 2.

The Wine Data Set. The publicly available Wine data set [1], from the UCI
Machine Learning Repository [9], has 12 attributes, making the combinatorial
problem of selecting the best variables for K-Means clustering challenging with
over 8000 possible combinations. From among the multiple variable combina-
tions, we select the combination of Alcohol, Ash, Flavanoids and OD280 OD315
based on the highest purity of 90.5%. The Wine data set also has three classes,
and Fig. 2c shows that the Covariant metric (MC) has a clear peak at K = 3.
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The Seeds Data Set. The publicly available Seeds data set [7] (again from the
UCI Machine Learning Repository) contains three classes of wheat seeds with 70
observations each. It has seven attributes, giving us 120 different combinations
of variables to choose from. From these combinations, we select Area, Perimeter,
Compactness and Asymmetry based on the highest purity of 90.0% that we can
get. KSelection-Seeds shows that the Covariant metric (MC) has a clear peak
at K = 3, as expected.

6 Comparison with Other Indexes

Table 2. Performance comparison of our proposed metric and other indexes

Data Set (Standardized)

Index Iris YA Wine Seeds

G 3 2 3 3

MC 3 (1.15) 2 (65.92) 3 (2.32) 3 (13.30)

VRC 10 (0.01) 2 (0.27) 3 (0.14) 3 (0.10)

AIC 4 (0.04) 7 (0.02) 10 (0.00) 12 (−)

BIC 3 (0.24) 4 (0.07) 7 (0.01) 7 (0.01)

Sil. Wid. 2 (0.10) 2 (0.21) 3 (0.07) 2 (0.07)

DB 2 (0.38) 2 (0.12) 3 (0.08) 2 (0.01)

Gap 3 2 4 3

f(K) 2 2 2 2

Data Set (Raw)

Index Iris YA Wine Seeds

G 3 2 3 3

MC 3 (2.51) 2 (16.83) 3 (1.52) 3 (3.69)

VRC 10 (0.03) 2 (0.08) 3 (0.25) 3 (0.11)

AIC 5 (0.04) 12 (−) 6 (0.01) 12 (−)

BIC 4 (0.05) 12 (−) 3 (0.17) 9 (0.01)

Sil. Wid. 2 (0.16) 2 (0.12) 3 (0.16) 2 (0.09)

DB 2 (0.41) 2 (0.20) 3 (0.22) 2 (0.10)

Gap 5 3 3 3

f(K) 2 2 2 2

The top row is G, the number of classes in our data
sets. When an index predicts the right K, it is high-
lighted in bold. (Γ is reported between parentheses. It
cannot be calculated at the end of the range K = 12.)
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Some of the indexes to which we are comparing our metric may perform dif-
ferently when the data set is standardized (such that all variables zero mean
and unit standard deviation). For this reason, we study the performance of the
indexes and our metric on both standardized data sets as well as the raw ones.
Our proposed metric, however, does not require the data set to be standardized.
In fact, since our metric takes into account the full covariance matrix on a per-
cluster basis, it can be argued that it should perform as well or better in the raw
data set.

We can see from Table 2 that our metric MC performs very well on standard-
ized data sets, detecting the right K in all four data sets, while the other indexes
seem to struggle. Of the seven other indexes considered, the VRC index seems
to perform best with three right predictions. However, its significance measure
(Γ ) is low. When run on the data sets without any normalization, MC continues
to perform well, as we can see in Table 2. The other indexes seem to perform
marginally worse on the raw data sets than on the standardized ones.

Note that the sharpness of the peaks representing the right value of K, as
measured by Γ is significantly higher for the Covariant metric MC , both in
the standardized as well as the raw data sets (Table 2), when compared to any
other index. The significance of the peaks (Γ ) for our metric improves with
standardization for three data sets, while decreases for the other one, which
is consistent with our expectation that standardization should not affect its
performance.

7 Limitations

The main motivation behind this work, in addition to pure academic interest,
is to automate K-Means clustering such that it can be deployed in situations
where automatic insight generation is desired. (For example, consider customer
segmentation for marketing purposes where new customers are continually added
to the database.) Since the impetus behind this work is automated processing,
we have not attempted to prepare the data in any fashion.

The mathematical validity of the Covariant Metric (MC), being a ratio of
two entities that may be thought of as χ2, is not yet fully established. It is similar
to the odds ratio calculation commonly used in the data science community, but
on shakier theoretical footing. It is hoped that other researchers may be able to
find a more theoretically sound way of combining the components (defined in
Eq. (4) and (9)) into a better metric than the one in Eq. (10). We can see from
our results that there is information in the Covariant Metric when it comes to
K selection (Fig. 2).

We may be able to use the significance of the peak, Γ as defined in Eq. (11),
either directly or in combination with the peak value of MC in order to select
the right K. We have not explored this idea further due to the uncertainty in
the mathematical foundation of such an approach. Again, other researchers may
be able to come up with theoretically defensible methods of using Γ .

Lastly, in defining our Covariant Metric, we implicitly assumed the need
for a balanced data set (in which distinct classes occur with roughly the same
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frequency, and with similar within-standard deviation), which may prove to be
impractical in unattended deployments. While it is easy to see that the K-Means
algorithm works best with balanced data sets, the usability of the Covariant
Metric is limited to K-Means because of this assumption.

8 Conclusion

In this paper, we proposed a new quality metric for K-Means clustering and
benchmarked it against existing indexes. From our comparative studies on syn-
thetic data, we see that the Variance Ratio Criterion [5] (VRC) works remark-
ably well, followed closely by the Davies-Bouldin index [8] (DB). Our own index
MC proposed in this article came in third when tested on synthetic data, but
easily outperformed both VRC and DB in real data. Besides, the significance
of the peak indicating the right K was substantially larger for MC .

All other indexes performed poorly on both synthetic as well as real data.
Either MC or VRC seems to be preferable to the popular “elbow” method
(which looks for a kink in the variation of the sum of squared errors, and is
very subjective). Furthermore, our results indicate that both the Akaike and the
Bayesian Information Criteria (AIC [3] and BIC [24]) are ineffectual in select-
ing the right K in K-Means clustering. The Gap Statistic [26] (Gap) performs
slightly better than the information criteria, but it is prohibitively expensive,
computationally.

Although more systematic exploration on more data sets is indicated, our
Covariant Metric (MC) metric does show promise in the real data sets that we
studied so far, as well as on an extensive collection of synthetic data. When it
comes to discovering the right number of clusters, MC performed remarkably
well. In fact, in real data, it outperformed the all other commonly used indexes
of clustering quality by impressive margins.

Once we have a reliable metric for the quality of clustering, we can auto-
mate and build upon the current K-Means clustering algorithm. For instance,
we can create scripts that will automatically select the optimal number of clus-
ters (and possibly the best variables to use). Much like the forward selection
or backward elimination processes in linear regression, K-Means clustering then
becomes amenable to automatic optimizations. Furthermore, with robust met-
rics enabling automatic discovery of the right number of clusters, it may become
possible to deploy K-Means clustering in situations where automated generation
of insights without manual supervision is desired.
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sive comparative study of cluster validity indices. Pattern Recogn. 46(1), 243–256
(2013). https://doi.org/10.1016/j.patcog.2012.07.021
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Léonard de Vinci Pôle Universitaire, Research Center,
92 916 Paris La Défense, France
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Abstract. Tourism and photography have become very complementary,
and tourists are constantly seeking the best spots to capture pictures and
memorize their vacations. However, the search for the best and unfor-
gettable photographic spots is difficult and time-consuming for tourists,
especially when visiting new regions. In this paper, we propose a method
for discovering tourist photo spots from geotagged photos using cluster-
ing algorithms. The clusters are characterized to determine the type of
photos such as selfies or panoramic. We compare our approach to the
most used clustering algorithms namely K-Means and DBSCAN. The
approach is simulated and experimentally evaluated on a real photo-
graphic dataset of the French capital Paris. Our approach identifies the
best-known, quirky and thematic spots in the reference websites.

Keywords: Tourism · Photographic spots · Clustering · HDBSCAN ·
Knowledge discovery

1 Introduction

Nowadays, tourism is considered one of the largest and fastest-growing indus-
tries. It is a significant economic sector for many countries in the world. Tourism
is deeply related to photography [4], especially because pictures allow travelers
to maintain good memories of their destinations [2]. Deborshee Gogoi introduces
in 2014 this concept as: “Photographic tourism is that form of special interest
tourism in which tourist visits a particular place with the primary aim of pho-
tographing subjects that are unique to him. The scope of photography may range
from landscapes, portraits, architectures, culture, food and wildlife to even macro
subjects” [10].

With the exponential increase of compact, cheap, or user-friendly cameras,
tourists tend to share more and more photographs to immortalize their experi-
ence and keep memories. This affluence of photos has led to the development of
multiple photo-sharing services such as Flickr and Instagram. These platforms
have redefined the way that people travel [11,14]. According to travel websites
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like Expedia1, the main priority for young travelers is whether their destina-
tion is visually appealing and lends itself to be photographed for posting on
photo-sharing networks.

However, finding the “best” spots to take photographs remains a tedious task,
especially when tourists do not know the region they visit [9]. The studies that
have been conducted up to now are focused on the identification and discovery
of a specific points that someone may find interesting using geotagged photos.
These points are mentioned in literature as hotspots, points of interest (POI),
and areas of interest (AOI) [3].

Our study focuses on the identification of the areas where the photos are
captured about a POI and not the identification of POI or AOI. To distinguish
those areas, they are named Touristic Photographic Spots (TPS) in the rest of
the paper. For each TPS, a set of characteristics is determined define the kind
of photos. For example, a TPS to have a panorama view, a TPS to acquire a
sunset in front of a monument, etc.

This paper proposes an approach to identify the Touristic Photographic Spots
of a POI and to qualify them. Our contributions can be resumed as the following:

– Clustering methods to determine TPS: this method take into account the
various aspect of the photos such as the density of photos, the distance to
the POI, the angle to the POI. In this manner, the clustering method is
based both on the geographical density of photos and on the variability of
the metadata. The choice of clustering algorithms must take into account
both the density and the proximity of data in respectively the geographical
aspect and the photographic aspect.

– A knowledge extraction to qualify each TPS: from the metadata of the cam-
eras, we compute for each TPS some knowledge such as its popularity, the
best time of the day to take photos or its focus.

This paper is organized as follows. Section 2 describes the related work for
representing and discovering spots from geotagged photos. Section 3, presents our
approach for identifying photographic spots using clustering methods. Section 4
describes and comments the results. Finally, Sect. 5 presents our conclusions and
recommendations for future studies.

2 Related Work

The studies that have been conducted up to now, in the field of tourists photog-
raphy are focused on the identification of the hotspots, points of interest (POI),
and areas of interest (AOI). As far as we know, no approach has addressed
our problem which is the identification of photographic spots using geotagged
photos. The closest works on our problem are the discovery of POI or AOI.

Some studies focus on density [6,8]. These aggregated data by hexagons to
produce density maps and therefore found the POI from the main peaks. This

1 https://www.expedia.com, more than 750 millions monthly visitors.

https://www.expedia.com
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approach has the advantage to be simple but the obtained density function is
too smooth to be used for photo spot discovery.

Some other studies considers a quite different approach, focusing on cluster-
ing algorithms. Indeed, discovering POI from geotagged photos can be treated as
a clustering problem to identify the most photographed places. More precisely,
the method used for geotagged photos are part of the geospatial clustering.

K-Means clustering algorithm (centroid-based algorithm) is the most used
one to identify clusters from geotagged data [15]. However, K-Means requires the
number of clusters as an input parameter, and it detects only spherical clusters.
This shape is unsuitable to reality. Indeed, peoples take photos depending on
the urban structure and the topology of the region, not as a bird view.

Density-based clustering methods are used to identify POI because a high
photos activity can be measured by density. These methods don’t require the
number of clusters as an input parameter. They can handle arbitrary shape
clusters, and sparse regions are treated as noise. Some example of algorithms
used are Mean Shift [5,18], Ordering Points To Identify the Clustering Structure
(OPTICS) [9] and Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [7]. Kisilevich et al. [16] propose Photo-DBSCAN (P-DBSCAN)
a new density-based clustering algorithm based on DBSCAN, that weight the
photo on various metadata. This method has been exploited and enriched during
the last decade [17,19].

Some recent studies use the topological structure of photos (spatial and non-
spatial) to determine clusters such as GeoSOM based on Self-Organizing map
[12]. The structure can also be studied through data mining such as FPGrowth
to understand the behaviors of tourists [13]. But those methods are used to
determine behaviors and patterns of people considering spatial and temporal as
continuous data.

Based on these varied approaches, we can deduce that to determine Touristic
Photographic Spots, the choice of the algorithm is important and is directly
related to the data. If we take the example of the Eiffel Tower, we found
many streets, bridges, and parks very close to the monument having diverse
views and which constitute a different TPS in its own right. However, these are
undetected by the most used methods seen previously. Centroid-based don’t suit
the urban infrastructure and Density-based may regroup excessively vast areas
due to the high proximity of those areas.

Our approach will be compare to the most used clustering algorithms for
POI identification namely K-Means and DBSCAN.

3 Our Approach

Our objective is to propose a method to identify the TPS of each POI and qualify
the TPS. Each POI is characterized by its type (hotel, restaurant, attraction)
and localization (lat, long). The POI is photographed by several users which are
identified by an identifier. Each photo is characterized by the tags of the photo,
localization (lat, long), the date and time when the photo is captured. A set
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of data is available on the camera used for each photograph as ISO, aperture,
shutter speed, and focal length.

Since we are looking for TPS as areas of various shape and size, and with
a homogeneous data for the characteristics, we propose a double clustering to
define TPS. The first algorithm, as a geographical clustering, will determine
the shape of the areas as when the second one, a data clustering guarantee
the homogeneity of the data. Then, we extract information from the clusters
concerning photographic tourism.

Our approach can be resumed in three steps as follows (see Fig. 1):

1. Global clustering : to create the continuous density areas, we apply a first
clustering algorithm on the Cartesian projection associated with the photos
of each POI.

2. Local clustering : to define TPS. For each cluster from the global clustering,
the local clustering is based on two new parameters, distance to POI and
angle with POI. Those greatly transform the view of any photos and are
required to refine previous clusters.

3. TPS qualification: extraction of knowledge from photos to qualify the found
TPS. The qualification is used to recommend the latter to tourists.

Fig. 1. Flowchart of our approach.

3.1 Global Clustering

The first step of our approach is to determine the shape of areas where tourists
take photos. The first step for any geospatial clustering is to make a Cartesian



Clustering Method for Touristic Photographic Spots Recommendation 227

projection of all photos. The global clustering has two main goals. Firstly, the
numerous outliers has to be removed, i.e. the photos that cannot constitute
a cluster. We define as outliers a small amount of geotagged data with a low
density that are not representative of any trend. Secondly, the TPS may be at
any size. It is dependent of the topology and the urban infrastructure, which
constrains how photos are taken.

To achieve these two goals, we use a density-based clustering algorithm. We
choose this kind of algorithms because they separate clusters by contiguous areas
of low point density. The data points in the separating areas of low point den-
sity are typically considered outliers. Some existing methods like DBSCAN and
OPTICS fail to identify clusters with different density levels because they are
based on a “flat” (i.e. non-hierarchical) representation. One of the methods that
solve this problem is HDBSCAN [20]. It is a clustering algorithm that extends
DBSCAN by converting it into a hierarchical clustering algorithm. This method
works in three steps: first, it estimates the densities around certain data to deter-
mine a threshold; then, it selects areas above this threshold density; finally, it
combines points in these selected areas.

Most of the density-based methods require the assumption of a density
threshold. They compute a threshold and gather the data with densities above
the threshold and group theme together to form clusters. To use HDBSCAN
algorithm, first, we need to estimate the density around some data to build the
density landscape of the dataset. The HDBSCAN algorithm computes the Core
distance of a random set of data thanks to the K-th nearest neighbor (KNN)
method. Data in denser regions would have smaller Core distances while data in
sparser regions would have larger Core distances. The density landscape is the
inverse of the Core distance. Then, HDBSCAN builds a hierarchy to figure the
right density for each cluster and how to cut like a hierarchical clustering.

In our approach we compare the HDBSCAN algorithm with the most used
clustering algorithms for POI identification namely K-Means and DBSCAN.

3.2 Local Clustering

The global clustering provides a set of clusters that contains a continuous den-
sity area of geotagged photos. Apart from the location of the photo, two other
parameters as angle of view and distance to the POI may vary greatly inside
each cluster. These parameters characterize the TPS differently as they alter the
purpose of the photos. The angle of view and distance are greatly heterogeneous
into the cluster around and near the POI, and with very large clusters. To refine
the clusters, we apply a second clustering based on those two parameters.

The second clustering is not applied on all clusters but just on clusters having
a threshold of variation of the angle and distance to POI. Those thresholds define
the limit of acceptable heterogeneity of a cluster. The two thresholds are defined
as follows:

– Clusters with a surface representing a total angle value above a threshold
are refined. We fix this threshold to one hour angle, which corresponds to 15
degrees. It corresponds to the change of framing in photography.
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– Clusters with the maximum distance between two points of the cluster must
be superior to a threshold are refined. We fixed this threshold to four-time
the epsilon value of the global clustering (thus two times the diameter to
have a sufficient size).

To define the angle formed between all points of the cluster and the coordi-
nates of the POI we use the following formula:

angle = θ = arctan
(

ΔLong

ΔLat

)
(1)

where ΔLong and ΔLat are the difference in longitude and latitude between the
data of the cluster and the POI, respectively. This angle is computed in radian.

To compute the distance between all points of the cluster and the coordinates
of the POI, we use a geodesic distance i.e. harversine distance.

Since we cannot make assumptions about the form and density of the second
clustering, we propose using various algorithms with pros and cons and to com-
pare their results to determine which one fits these data. We used internal and
external measurements to select the most appropriate method. For comparison
purposes, our approach should be deterministic.

In order to choose the best algorithm, we compare the results of four algo-
rithms with their pros and cons from the four main types of clustering:

Partitional/Centroid-Based: K-Means [1]. The K-Means algorithm is still
widely used because of its simplicity and good performance. The most key param-
eter to set is the number of clusters. To tune this number, we use the Elbow
method [22] using the Within-Groups Sum of Squares (WGSS). Indeed, we want
to evaluate the cohesion of the clusters and not the separation, as the clusters
are very close to each other.

Distribution Model-Based: Gaussian Mixture Model (GMM) [1]. This
algorithm employs an interesting approach that tries to represent the dataset as a
mixture of normal distribution. A GMM tends to group the data points belonging
to a single distribution together. While K-Means forms spherical shape cluster,
GMM can produce various ellipsoid shapes for the same dataset. For the number
of components parameter, in the same way as with K-Means, we implement the
Elbow method with WGSS.

Density-Based: Mean Shift [1]. This deterministic method update potential
centroids to be the mean of the points within a given bandwidth. Mean Shift
works very well on spherical-shaped data. Furthermore, it automatically selects
the number of clusters contrary to other clustering algorithms like K-Means.
The bandwidth was estimated by computing the K-Nearest Neighbors KNN
algorithm as recommended.

Hierarchical: AGNES [1]. Hierarchical method are deterministic and con-
structs a hierarchical tree of distances between data, called a dendrogram. This
is helpful because the algorithm produces an explicit graphical depiction of the
clusters. The AGNES method is one of the most used. It adopts a bottom-up
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approach. For the number of clusters, we employ the Elbow method with WGSS
with a Ward linkage.

3.3 Indexes and Validation

After applying the global clustering and the local clustering, we intersect the
results for both parameters angle and distance to produce new clusters from
the main one. The evaluation is essential to our approach, as it will allow us to
choose the most appropriate algorithm for the local clustering. The evaluation
allows us to find the most efficient algorithm.

We implemented internal measurements for the evaluation based on the
Cartesian projection of the data. The difference between algorithms can be very
closed and external evaluation would be ineffective and irrelevant since we refine
a single cluster. In our context, we need a high cohesion for clusters as there are
not well separated. Therefore, we choose the following evaluation:

1. Ball Hall : it computes the mean dispersion of a cluster, i.e. the mean of the
squared distances of the points of the cluster with respect to their center. The
lower the value, the better the clustering is.

2. Banfeld-Raftery index : it is the weighted sum of the logarithms of the mean
of the squared distances between the points in the cluster and their center.
The logarithm allows smoothing of the impact of big or small clusters in the
number of points. The lower the value, the better the clustering is.

The final clustering is composed of clusters from the global clustering and
refined clusters from the local clustering. Since the clusters are computed from
the data for a POI, they represent TPS for this POI. The process is done for
each POI.

3.4 TPS Qualification

Once the TPS of a POI are defined, we qualify these TPS to perform recom-
mendations to tourists. We define three ways to qualify the TPS: first, according
to the time of day, then, whether this TPS is a panorama or not, and finally
according to the popularity of the TPS.

Time of Day. We have broken down the day into four parts: Sunrise, Day,
Sunset, Night. We use the date of the photo and the ISO2 of the camera to
determine the right part for each photo. We manage the time when the photo
was captured with a margin of ±10 min. (1.4% of the day) for sunrise and ±20
min (2.8% of the day) for sunset depending on the timezone and period of the
year. We can also deduce the time of day from the ISO used by the photo. The
higher the ISO, the more sensitive the camera sensor becomes, and the brighter
your photos appear. ISO100 is used in a sunny and open area, ISO400 is used
during a cloudy day, ISO800 and higher are used from sunset to night time of
2 https://www.adobe.com/creativecloud/photography/discover/iso.html.

https://www.adobe.com/creativecloud/photography/discover/iso.html


230 F. Deseure-Charron et al.

day. From each TPS, we determine the percent of each part of the days from its
photos.

Panorama. This category indicates TPS that are likely to be panoramas. To
perform this, we combined several indicators: the number of POI having this
TPS, the aperture, and the focal length of each photo. First, we selected all
the photos located in the same cluster and counted the number of different POI
taken in each photo (from the tags). We compute the mean and the ratio of
photos having several POI to those with one POI. For this second indicator, the
aperture value designates the width of the hole within the lens through which
the light travels into the camera body. When the aperture is very narrow (below
f/8), the depth of field is large and therefore there is a chance that the photo is
a panorama. We take into account the largest aperture used among the photos
and its percentage. Finally, the focal length represents the measure of the optical
distance inside the lens from which all light rays converge on the image sensor
of the camera. The lower the value, the wider the field of view is, and therefore
the more likely it is a panorama. Focal lengths below 55 mm are used to take
large-angle photos. We take into account the largest focal length used among
the photos and its percent.

Popularity. The third way to qualify a TPS is according to its popularity, in
number of photos, and to be able to classify this TPS as unusual or unmissable
for example. A direct and effective measure is the percentage of importance of
the cluster as follows: popularity = nk

n . Where n remains the number of points
in the dataset and nk is the number of points in the kth cluster.

4 Experiments

We conducted experiments on the social network Flickr over a period from 2007
to 2019. We chose Flickr because it is primarily aimed at professionals and photo
enthusiasts. Moreover, it grants us access to the data related to the camera. For
our case study, we have chosen the city of Paris, because it is one of the most
attractive cities in the world; regularly ranking first among the most visited
cities in the world. In our dataset gathered from Flickr focused on Paris region,
we have 2, 945, 085 geotagged photos on 1, 414, 816 POIs taken by 98, 555 users
with 2, 948 different camera sets.

4.1 Data Processing

The tags in each photo, which designate the POI taken, have not been pre-filled
by the social network Flickr. Thus, it is written in many alternative ways in
the dataset (misspellings, translated into other languages). To overcome this
problem, we grouped all titles with a name at 85% similar Cosine similarity
using the vector embedding generated from Sentence-Bert [21]. At that time, we
removed photos captured in a short time interval by the same user. As we want
to extract knowledge from our clusters, especially at the time of day when a POI
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was taken, we chose a duration of five hours at minimum between two photos.
This allows us to take into account the users who took the POI during the day
and at sunset for example. Then, for determining the coordinates of the POI,
we use the Open Topo Data API 3. Finally, we project the data into a Cartesian
plane to perform our method.

To experiment with our approach, we present the result of the Eiffel Tower
POI. We choose this POI because, with more than 7 million visitors a year, it
is the most visited and photographed monument in the world on various social
networks like Flickr and Instagram. Since the monument is seen on most websites
about Paris and lots of media provides good analytics of the photographic
tourism of the Eiffel Tower, we can easily compare our results to them. In this
specific POI, after pre-processing, we get 17, 781 photos taken by 11, 372 users
with 674 different cameras.

To validate our approach, we compare the results with the spots referenced
on the blogs and touristic websites: lonelyplanet with 3.2 millions monthly vis-
itors4, lodgisblog with, 90 thousands monthly visitors (french), blog specialized
in photographic tourism5, image banks (Google Images, Instagram, Pinterest).

4.2 Global Clustering Comparison

Based on the 17, 781 photos tagged Eiffel Tower we produce a Cartesian pro-
jection then we implement the clustering algorithm. We initially performed the
global clustering using three methods: HDBSCAN, KMeans, and DBSCAN.

Conventional Methods. First of all, K-Means has been chosen as a reference
as it is one of the most used and simple clustering methods. This method ran-
domly initiates K points in the data as centroids and assigns all points to the
nearest centroids. Then the centroid moves to the average of the points assigned
to it. And we rehearse this step until convergence. The most critical parameter
to determine is the number of clusters. To acquire the most proper value for this
number, we compute the algorithm in a range from 2 to 100 and compute two
metrics: Silhouette and Davies-Bouldain. The objective is to determine the value
that maximizes the Silhouette score and minimizes the Davies-Bouldain score.
Finally, we compute the mean value rounded up to the nearest whole number
between the best number of clusters according to each index and employ it as a
parameter for our method.

Secondly, DBSCAN has been chosen as the most used density-based method.
For the epsilon value estimation, we use the k-dimensional tree (kd tree) method:
we compute the Nearest Neighbors algorithm on our data and get the distances
between all neighbors. Then, we select the elbow of the curve of the distance and
use the associated distance as the epsilon point. For the minPoints parameter,

3 https://www.opentopodata.org/.
4 https://www.lonelyplanet.fr/article/10-points-de-vue-sur-la-tour-eiffel.
5 http://blog.lodgis.com/top-10-des-vues-sur-la-tour-eiffel/.

https://www.opentopodata.org/
https://www.lonelyplanet.fr/article/10-points-de-vue-sur-la-tour-eiffel
http://blog.lodgis.com/top-10-des-vues-sur-la-tour-eiffel/
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we set the value to 4, which is equivalent to 2∗number of dimension as recom-
mended in the original paper of DBSCAN [7]. Finally, we choose the Euclidean
distance for performance reasons.

Indexes and Validation of the Global Clustering. To determine the best
clustering between K-Means, DBSCAN, and HDBSCAN, we will use the follow-
ing indexes:

1. Banfeld-Raftery: As reminder, it measures the mean of the squared distances
between the points of a cluster and its center. The lower the value, the more
points are closed to the center.

2. Davies-Bouldain: The score is the average of the maximum ratio between the
distance of a point to the center of its cluster and the distance between two
clusters centers. As a result, clusters that are farther apart and less scattered
will score higher. The minimum value for this index is 0 and lower values
indicate better clustering.

3. Calinski-Harabasz: It is the ratio between the between-cluster variance and
the within-cluster variance. The Calinski-Harabasz index varies between 0
(worst clustering) and infinite value (best clustering). It increases linearly
with the number of points in the sample. Therefore, its order of magnitude
can vary considerably from one dataset to another.

From those indexes, we choose the clustering with the highest Banfeld-
Raftery value, the lower Davies-Boudlain index, and the highest Calinski-
Harabasz index.

Results. As a reminder, the cohesion of the clusters is the most important
aspect as opposed to the separation. Indeed, two photos spots can be very close
or even touch each other and thus decrease the separation value and all associ-
ated measurements. The Table 1 shows the results of the three clustering algo-
rithms and the values of the cohesion index Banfeld-Raftery, Davies-Bouldain
and Calinski-Harabasz of each algorithm.

Table 1. Internal measurements comparison of classical methods (Eiffel Tower).

K-Means DBSCAN HDBSCAN

Banfeld-Raftery −1.86e5 −1.88e5 −1.94e5

Davies-Bouldain 7.3e−1 5.06e−1 5e−1

Calinski-Harabasz 1.3e4 4.39e3 4.4e4

As a reminder, we choose the clustering with the highest Banfeld-Raftery
value, the lower Davies-Boudlain index, and the highest Calinski-Harabasz index.
HDBSCAN presents the best overall results, close to DBSCAN. Thus, we choose
its cluster with −1.94e5 Banfeld-Raftery value, 5e−1 Davies-Boudlain index and
4.4e4 Calinski-Harabasz index. The Fig. 2 presents the results of the three algo-
rithms. K-Means (Fig. 2c) provides clearly some unintelligible clusters. The main
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difference between HDBSCAN (Fig. 2a) and DBSCAN (Fig. 2b) is the clusters
of small size are not discovered by DBSCAN. Moreover, since DBSCAN have
no regulation on the density/sparsity of data, it tends to find compact cluster
which affects clusters or borders with less density than the fixed threshold of
DBSCAN.

The global clustering also allowed identifying the main photographic spots
(Fig. 2a). We noticed that most of photographic spots use on the internet were
identified with our method. Most of the spots are widely shown is the reference
websites about the Eiffel Tower: 1) Arc de Triomphe, 2) Place de la Concorde,
3) Montmartre, 4) Centre Pompidou, 5) Printemps Haussman (rooftop), 6) Tour
Montparnasse, 7) Galeries Lafayette (rooftop). The global clustering also allowed
to identify of photographic spots not present on the reference sites like the two
bridges a) Grenelle bridge, b) Mirabeau bridge, etc.

Fig. 2. Global clustering comparison. (Color figure online)

4.3 Local Clustering Comparison

Two clusters are selected for the local clustering: A (in dark green) and B (in
yellow) from Fig. 2a. In the results, we present the local clustering for the first
selected cluster.

We test the four algorithms: K-Means, Mean Shift, DBSCAN, Agglomera-
tive clustering. We compare results with Ball Hall and Benfeld-Raftery index
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(Table 2). As a reminder, we choose the clustering with the lowest Ball Hall
value and Benfeld-Raftery index.

Table 2. Internal measurements comparison of algorithms used for local clustering
(Eiffel Tower).

KMeans AGNES Mean shift Gaussian mixtures

Ball Hall 8e−5 8e−5 1e−4 8e−6

Banfeld-Raftery −1.65e5 −1.60e5 −1.67e5 −1.66e5

The results of the algorithms are presented in Fig. 3. The GMM clustering
provides the best results which are also close to the urban structure near the
Eiffel Tower. From top left to bottom right, we can mention clusters located
at Trocadero’s Garden, Alma’s bridge with Palais de Tokyo, Iéna’s bridge with
Carrousel, closest northern roads (Quai Branly), closest eastern roads (Bour-
donnais avenue and University), the inner ring represents the various points of
view at the feet of the tower, then on the left in light blue we got Bir Hakeim
bridge, following by the Emile Antoine stadium, the Hotel Pullman and finally
the bottom pink cluster represents the Champ de Mars.

Fig. 3. Comparison of the four algorithms for local clustering on the Eiffel Tower in
Paris.
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As shown, the local clustering provides a more comprehensive view of photo-
graphic tourism near the Eiffel Tower. The various cited places offer various
points of view and ways to handle the tower’s environment.

4.4 Spot Qualification

Time of Day. During our experiments, we discovered good spots for sun dusk
as the proportion differs a lot from the reference one (between 7% and 10% of
all photos TPS instead of 2.78%), see TPS in Fig. 4. Those spots are on the
east, northeast of the Eiffel Tower, and they are at a higher altitude. Some
spots are close to the POI, tourists capture the sun dusk between the feet of the
Eiffel Tower. One TPS on the bottom left is the Grenelle bridge (number 26),
and many others are on various bridges. Tourists can see the sun dusk glare on
the water in front of the tower. We conclude those spots are ideal to take the
sun dusk close to the Eiffel Tower.

Fig. 4. Clusters with a high percent of sun dusk.

Panorama. Concerning the panorama, we obtained the following map Fig. 5). We
found most of panorama’s like La Défense (number 1), Montmartre (number 2),
Arc de Triomphe (number 3), some bridges, the Place de la Concorde (number
4), Saint Honoré district (number 5) and Les Halles (number 6). Those places
offer an advantageous point of view of some parts of Paris and are at higher
altitudes or with vast open views. Those results are biased as most tourists want
to place the Eiffel Tower in every photo.
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Fig. 5. Panorama’s detection for Eiffel Tower

Popularity. The most popular spots are all around the monument (main global
cluster) and in large places (Place de la Concorde, Montmartre, Arc de Triom-
phe). Moreover, most of the photos on the internet are taken from those places.

A deep discussion about our results is presented in our github6.

5 Conclusion and Future Work

Our approach allows solving the problem of identifying Touristic Photographic
Spots. It has succeeded in addressing the problem of places “hidden” by the main
cluster using a double clustering approach. Our context-free method adapts itself
to the dataset. It determines TPS with characteristics thanks to a benchmark
of adapted methods and index comparison.

In future works, we will enhance the spot’s qualification. Flickr grants us
access to the EXIF data of the images. It is therefore possible to qualify the spots
by using the photo and camera metadata. Moreover, we need to strengthen our
methods. We are also considering adopting the Self-Organizing Map, Spectral
Clustering and Spacial Clustering with the following five dimensions to find TPS:
three spatial dimensions, distances to POI, and angles with POI.
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Abstract. Recently, federated Learning (FL) has been widely used to
protect clients’ data privacy in distributed applications, and heteroge-
neous data and model poisoning are two critical challenges to attack. To
tackle the first challenge that data of each client is usually not indepen-
dent or identically distributed, personalized FL (PFL) or clustered FL,
which can be seen as a cluster-wise PFL method to learn multiple models
across clients or clusters. To detect the anomaly clients or outliers, local
outlier factor is a popular method based on the density of data points.
Therefore, a nested bi-level optimization objective is constructed, and
an algorithm of PFL with robust clustering called FedPRC is proposed
to detect outliers and maintain state-of-the-art performance. The break-
down point of FedPRC can be at least 0.5. Our experimental analysis
has demonstrated effectiveness and superior performance in comparison
with baselines in multiple benchmark datasets.

Keywords: Personalized federated learning · Robust clustering ·
Model poisoning

1 Introduction

Recently, federated Learning (FL) [33], which was first proposed in 2017, has
been widely used to protect clients’ data privacy in distributed applications,
such as Google’s Gboard on Android [33], Apple’s Siri [16], Computer Visions
[23,24,30], Smart Cities [48] and Healthcare [29,37,45]. The classical FL method,
called FedAvg [33], is to train a global model across all clients using gradients
to communicate efficiently and privately. Vanilla FL is apparently vulnerable
to model poisoning attacks due to its decentralized nature. Therefore, it is chal-
lenging to develop an FL application that has good personalized decision-making
ability and is robust against model poisoning attacks.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Furthermore, it has been proposed that the not independent or identically
distributed (non-IID) challenge can lower the accuracy and efficiency of the
training performance. It indicates that the data distribution of each client can
be different due to unique attributes or behaviour. Therefore, a globally shared
model may not generalize well and fairly in all clients. Personalized FL (PFL) is
the most popular method to address this challenge. Based on granularity, PFL
can be categorized into cluster-wise PFL and client-wise PFL. PFL methods,
such as Ditto [25] and WeCFL [31], train multiple models client-wise or cluster-
wise to better adapt to each client or cluster, while knowledge is still shared to
improve the performance.

Model poisoning is another challenge in realistic FL. In a distributed system
of FL, some malicious agents may upload fake or dirty gradients to the server in
the aggregation step, and then the aggregated model to distribute is poisoned.
It is naive to adopt anomaly detection techniques to find these malicious agents
or outliers. Local outlier factor (LOF) [5] is an efficient method based on the
density of data points.

To tackle the two challenges outlined above at the same time, it is difficult to
embed the anomaly detection technique into the PFL. We constructed a nested
bi-level optimization problem to combine client-wise PFL, cluster-wise PFL and
anomaly detection. An algorithm of PFL with robust clustering (FedPRC) is
proposed to detect outliers and maintain state-of-the-art performance. Our con-
tributions are summarized below.

– We formulate the PFL problem with robust clustering into a nested bi-level
optimization framework.

– We propose a novel PFL with robust clustering (FedPRC) algorithm to solve
the complex optimization problem, and the algorithm can resist Byzantine
workers.

– The experimental analysis demonstrates the effectiveness and superior per-
formance in comparison with baselines in multiple benchmark datasets.

The remaining sections of the paper are organized as follows. Section 2 intro-
duces related work. We then formulate the problem of PFL with robust clustering
in Sect. 3. The proposed FedPRC algorithm is outlined in Sect. 4. Experimen-
tal settings and empirical study are discussed in Sect. 5.1 and 5.2, respectively.
Finally, we present the conclusion in Sect. 6.

2 Related Work

2.1 PFL

PFL is the most popular technique used to address the non-IID challenge in
FL, as vanilla FL [33] delivers only one globally shared model that cannot fit
all clients’ data. Based on granularity, PFL can be categorized into cluster-wise
PFL and client-wise PFL. For cluster-wise PFL, also called clustered FL, clients
are grouped into several clusters, and then an identical number of models are
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trained based on these clusters. There are mainly two variants in cluster-wise
PFL methods, the representation of a client and the clustering method. The work
[44] uses model parameters to represent clients and K-means to do clustering.
CFL [39] uses hierarchy clustering to divide clients into two clusters based on
the cosine similarity of gradients iteratively. The loss of models is also used to
cluster clients by HypCluster [32] and IFCA [20]. The unified formulation and
convergence of cluster-wise PFL are studied by [31].

For client-wise PFL, each client has its personalized model, either in model
structure or model parameters, even in the loss function. A simple but effective
method is to fine-tune the trained global model [10,17]. Ditto [25] proposed a
bi-level optimization framework using a penalty term to constrain the distance
between the local model and the global model. FedRep [12] divides the network
into the backbone and the head, and learns shared parameters for the backbone
and unique parameters for the head. FedProto [42] adopts prototypes instead of
gradients to communicate and is more privacy-protective and communication-
effective. Research by [8,40] aims to train a global hyper-network or meta-learner
instead of a global model before sending it to clients for local optimization. Meta
learning and multi-task learning are also applied into PFL including [17,41].

2.2 Robust Clustering

The objective of clustering is to group similar objects together, and group dissim-
ilar objects into different clusters. And robust clustering is to enhance the robust-
ness of clustering results against outliers [19]. Many works have been conducted
in this area including [15,36]. Vanilla robust clustering methods include mixture
modeling [46], trimming approach [18]. Recently a number of works in robust
clustering have been studied by [1,14,18,22,46,47]. The work [6] researches K-
means with the bootstrap of median-of-means (MOM). The MOM estimator can
mitigate the influence of outliers, whereas the estimator of mean is not good at
addressing outliers. The bootstrap of MOM (bMOM) enhances the robustness
against outliers can thus achieve a better breakdown point, which is a measure
to quantify the toleration of outliers.

2.3 Model Poisoning and Anomaly Detection

The way a malicious agent generates an arbitrary update vector by merely shuf-
fling data labels seems very similar to the standard dirty-label poisoning in the
study of [9]. However, in the FL setting, the possibility of an adversary controlling
a small number of malicious agents and performing a model poisoning attack to
manipulate the learning process so that the jointly trained global model, which
turns into misclassification over some data, is much higher. FL is apparently
vulnerable to model poisoning attacks due to its decentralized nature. A line of
work has been done already [3,4,13]. In contrast to previous work, this work
focuses on detecting these malicious agents during the central clustering phase
by applying a density method to reduce the impact of those agents’ updates on
the aggregation of the cluster center.
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Anomaly detection can be described as the problem of finding patterns in
data that do not conform to expected behavior. Anomalies and outliers are two
terms used most commonly in the context of anomaly detection. Clustering can
be used as a technique for the training of the normality model, where similar
data points are grouped together into clusters using a distance function such
as [34]. Additionally, LOF [5] is a widely-used density-based anomaly detection
method. However, in the case of our method, we already know that malicious
agents are the anomalies that we tried to identify. The outcome after precluding
those identified outliers would be benign agents, and then only the benign agents’
weight matrix would feed into our clustering algorithm. The identifying outliers
stage has no inherited relation to the next clustering phase.

3 Methodology

Before outlining the methodology, the notations, which can be separated into
three parts, FL, clustering, and LOF, are listed below (Table 1).

Table 1. Table of Notations

Components Notation Definition

FL m Number of clients in FL system

Di, |Di| The dataset and its size on Client i

Mi Model function or structure of Client i

ωi Model parameters of Client i

Li Loss function of Client i

λi The importance weight of Client i, usually measured by
its dataset size

E Number of local update steps

Clustering K Number of clusters

ri,k ∈ R
m∗K The assignment matrix, ri,k = 1 if i ∈ k else ri,k = 0

i ∈ k Client i belongs to Cluster k

gi General form to represent Client i depending on hi, li,
Di or something else, e.g. model parameters or loss

Gk General form to represent the centroid of Cluster k, and
usually a linear combination of gi with i ∈ k

d(gi, Gk) The distance function of general representations
between Client i and the center of Cluster k, e.g.
Euclidean distance

LOF n Number of neighbours

ci Indicator. 1 if Client i belongs to inliers else 0
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3.1 PFL

For the classical FL problem, the objective can be formulated as shown below,

minimize
ω

m∑

i=1

λiL(M,Di, ω). (1)

The framework is shown in Fig. 1. The algorithm FedAvg [33] is also implied
in this figure, which can be summarized as four steps, model initialization or
distribution from server to clients, local update on clients, gradients upload from
clients to the server, and model aggregation on the server.

Fig. 1. Framework of classical FL

For the client-wise PFL problem, the objective can be formulated as shown
below,

minimize
{ωi}

m∑

i=1

λiLi(Mi,Di, ωi), (2)

which means an arbitrary client i may have its importance λi, unique dataset
Di, model structure Mi, model parameters ωi, and loss function Li.

3.2 LOF

To understand LOF [5], a density-based anomaly detection method, there are
five key definitions step by step. First, n-d of an object o is defined as the distance
d(o, p) between o and p ∈ D which satisfies:

– There are at least n objects o′ ∈ D|{o}, which holds d(o, o′) ≤ d(o, p), and
– There are at most n − 1 objects o′ ∈ D|{o}, which holds d(o, o′) < d(o, p).
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Second, the n-d neighborhood of an object o can be defined as:

Nn-d(o)(o) = {q ∈ D|{o} | d(o, q) ≤ n-d(o)}. (3)

Third, the reachability distance of an object p w.r.t. object o is defined as:

reach-dn(o, p) = max{n-d(o), d(o, p)}. (4)

As shown in Fig. 2, the reachability distance of o, p1 and o, p2 equals n-d(o) and
d(o, p2), respectively.

Fig. 2. Reachability distance of o, p1 and o, p2, respectively, for n = 5

Next, the local reachability density (lrd) of object o is defined as:

lrdn(o) =
|Nn(o)|∑

p∈Nn(o)
reach-dn(o, p)

. (5)

Finally, the LOF of object o is defined as:

LOFn(o) =

∑
p∈Nn(o)

lrdn(p)
lrdn(o)

|Nn(o)| . (6)

To judge whether an object belongs to outliers, usually yes if its LOF > 1,
which means it has a lower density than its neighbors, thus an outlier. With the
appropriate n chosen, the breakdown point for LOF can be at least 0.5, which
means that unless the malicious clients are the majority and behave similarly,
LOF will always work.
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3.3 Proposed Method

The framework of our proposed method of PFL with a robust clustering structure
to attack the model poisoning is illustrated in Fig. 3. Its optimization objective
can be formulated in the equation below, which is like a nested bi-level opti-
mization problem.

Fig. 3. Framework of proposed method

minimize
{ωi}

1
m

K∑

k=1

m∑

i=1

λiri,kciL(M,Di, ωi) (7a)

subject to {ri,k} = argmin
{ri,k}

K∑

k=1

m∑

i=1

λiri,kcid(gi, Gk) (7b)

{ci} = ILOFn(gi)>1. (7c)

4 Algorithm

To solve the complex Objective 7 above, which has three variables, Ω as the
ultimate variable, and R and C as the hidden variables, we need to design an
algorithm to solve them step by step carefully. Therefore, the Algorithm1 named
PFL with robust clustering (FedPRC) is proposed as below.

For the initialization, K-means++ [2] is used to set up a more robust initial
for the clustering. For the iteration process, it can be merged by two modules,
robust clustering and FL. The Robust clustering module is composed of three
steps, the Expectation step (E step), the LOF step, and the Maximization step
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Algorithm 1: Personalized FL with robust clustering (FedPRC)
Input: {D1, D2, . . . , Dm}, K, n
Output: {ri,k}, {ci}, {ωi}
Initialize:
K-means++ initialization
Iterate:
while stop condition is not satisfied do

E-Step:
Assign each device in b to its closest centroid using updated centroids
LOF-Step:
Use LOFn to label outliers
M/Aggregation-Step:
Recompute the centroids with inliers.
Local update-Step:
for each cluster k = 1, . . . K do

Assign centroids to every device in Cluster k.
for i ∈ Ck do

for E local epochs do
ωt+1
i ← ωt

i − η∇L(M, Di, ω
t
i)

end

end

end

end
End:
Fine tuning-Step
Fine-tuning ωi for E′ epochs.

(M step). And the FL module is composed of three steps either, the Distribution
step, the Local update step and the Aggregation step. Due to the M step in robust
clustering being the same as the Aggregation step in FL, these two modules can
be merged together to form the iteration process. Until convergence or stop
condition is satisfied, the output is K models for K clusters. To achieve better
performance for each client, a simple but effective personalization technique
called fine-tuning is imported as the optimum of one cluster is not the optimum
of its clients. Finally, we can obtain m personalized models with robustness
against model poisoning for every client.

5 Experiments

As a proof-of-concept scenario to demonstrate the effectiveness of the proposed
method, we experimentally evaluate and analyse the proposed FedPRC based
on the LEAF framework, an FL benchmark [7].
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5.1 Experimental Settings

Datasets. We employed two publicly-available FL benchmark datasets intro-
duced in LEAF [7]. LEAF is a benchmarking framework for learning in federated
settings. The datasets used are Federated Extended MNIST (FEMNIST)1 [11]
and Federated CelebA (FedCelebA)2 [28]. We follow the setting of the bench-
mark data in LEAF. In FEMNIST, the handwritten images are split according
to the writers. For FedCelebA, the face images are extracted for each person and
developed by an on-device classifier to recognize whether the person smiles or
not. A statistical description of the datasets is described in Table 2.

Table 2. Statistics of datasets. “#” represents the number of instances.

DATASET FEMNIST CelebA

# of Data 805,263 200,288

Classes 62 2

# of device 3,550 9,343

Model CNN CNN

LR 0.003 0.1

Local Epochs 5 10

Local Model. We use a CNN with the same architecture from [28]. Two data
partition strategies are used: (a) an ideal IID data distribution using randomly
shuffled data, (b) a non-IID partition by use a pk ∼ DirJ (0.5). Part of the code
is adopted from [43]. For FEMNIST, the local model’s learning rate is 0.003, and
the number of local epochs is 5. For FedCelebA, the learning rate is 0.1, and the
number of local epochs is 10.

Outliers. In this work, we evaluate the proposed method using the outliers gen-
erated from a poisoning attack tool. The idea of model poisoning adopts from
Krum [4], which is simply boosting each iteration of the learned model in some
worker node. Malicious clients assign wrong labels to each sample in the local
dataset. In other words, explicit boosting works to mimic the benign worker
clients during the learning process; the client tries to perform the same num-
ber of epochs on the local dataset via the same training objectives to obtain
an initial gradient update. Since the malicious client wants to ensure the out-
come deviates from the true label, it will have to overcome the scaling effect of
gradient updates collected from other nodes. In other words, the final gradient
updates the malicious nodes send back are then scaled by a factor Λ by which
the malicious nodes boost the initial update. The Λ here is a hyper-parameter

1 http://www.nist.gov/itl/products-and-services/emnist-dataset.
2 http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

http://www.nist.gov/itl/products-and-services/emnist-dataset
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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which is a multiplier for malicious clients which used to force the trained global
model to close its direction. Here we use the number of clients of a subset each
iteration, then multiply two as Λ.

Baselines. In the scenario of solving statistical heterogeneity, we choose FL
methods outlined below:

1. NonFed: We will conduct the supervised learning task at each device with-
out the FL framework.

2. FedSGD: uses SGD to optimise the global model.
3. FedAvg: is an SGD-based FL with weighted averaging [33].
4. FedCluster: is to enclose FedAvg into a hierarchical clustering framework

[38].
5. HypoCluster(K): is a hypothesis-based clustered-FL algorithm with dif-

ferent K [32].
6. Robust: design a framework run in a modular manner, namely, a robust

clustering model, and a communication-efficient, distributed, robust opti-
mization over each cluster separately [21].

7. FedDANE: is an FL framework with a Newton-type optimization method
[27].

8. FedProx: adds a proximal term onto an objective function of the learning
task on the device [26].

9. FedDist: we adapt a distance based-objective function in Reptile meta-
learning [35] to a federated setting.

10. FedDWS: a variation of FedDist by changing the aggregation to weighted
averaging where the weight depends on the data size of each device.

11. FedPRC(K): our proposed algorithm FedPRC with different numbers of
clusters K.

Training Settings. We used 80% of each device’s data for training and 20% for
testing. For the initialization of the cluster centers in FedPRC, we conducted pure
clustering ten times with randomized initialization over the gradients matrix
which is computed by each client in one epoch local training, and then the
“best” initialization, which has the minimal intra-cluster distance, was selected
as the initial centers for FedPRC. For the local update procedure of FedPRC,
we set N to 1, meaning we only updated Wi once in each local update.

Evaluation Metrics. Given numerous devices, we evaluated the overall perfor-
mance of the FL methods. We used classification accuracy and F1 score as
the metrics for the two benchmarks. In addition, due to the multiple devices
involved, we explored two ways to calculate the metrics, i.e., micro and macro.
The only difference is that when computing an overall metric, “micro” calculates
a weighted average of the metrics from devices where the weight is proportional
to the data amount, while “macro” directly calculates an average over the met-
rics from devices.
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5.2 Experimental Study

Comparison Study. As reported in Table 3, we compared our proposed FedPRC
with the baselines and found that our proposed FL framework achieves the
best performance in most cases. We can see our proposed FedPRC outperforms
all baselines in all metrics, which shows the effectiveness and significance of
FedPRC. Furthermore, as reported in the last three columns in Table 3, we found
that FedPRC with a larger number of clusters empirically achieves a better
performance, which verifies the correctness of the non-IID assumption of the data
distribution. Due to the experiments on both datasets being very consuming,
we use the grid search technique for the number of clusters and only run full
experiments with those values, that is, from two to four.

Table 3. Comparison of our proposed FedPRC(K) algorithm with the baselines on
FEMNIST and FedCelebA datasets. Note the number in parenthesis following “Fed-
PRC” denotes the number of clusters, K.

Datasets FEMNIST CelebA

Metrics (%) Micro-Acc Micro-F1 Macro-Acc Macro-F1 Micro-Acc Micro-F1 Macro-Acc Macro-F1

NoFed 79.4 67.6 81.3 51.0 83.8 66.0 83.9 67.2

FedSGD 70.1 61.2 71.5 46.7 75.7 60.7 75.6 55.6

FedAvg 84.9 67.9 84.9 45.4 86.1 78.0 86.1 54.2

FedDist 79.3 67.5 79.8 50.5 71.8 61.0 71.6 61.1

FedDWS 80.4 67.2 80.6 51.7 73.4 59.3 73.4 50.3

Robust(TKM) 78.4 53.1 77.6 53.6 90.1 68.0 90.1 68.3

FedCluster 84.1 64.3 84.2 64.4 86.7 67.8 87.0 67.8

HypoCluster(3) 82.5 61.3 82.2 61.6 76.1 53.5 72.7 53.8

FedDane 40.0 31.8 41.7 31.7 76.6 61.8 75.9 62.1

FedProx 51.8 34.2 52.3 34.4 83.4 60.9 84.3 65.2

FedPRC(2) 91.3 64.9 91.7 64.1 93.8 77.2 94.1 71.5

FedPRC(3) 91.1 63.1 91.0 62.6 93.6 77.8 93.3 70.6

FedPRC(4) 92.7 66.4 92.4 65.7 94.4 80.4 94.6 72.7

Convergence Analysis. To verify the convergence of the proposed approach, we
conducted a convergence analysis by running FedPRC with different cluster num-
bers K (from two to four) in 100 iterations. As shown in Fig. 4, FedPRC can
efficiently converge on both datasets, and it can achieve the best performance
with the cluster number K = 4. The last step is fine-tuning.
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Fig. 4. Convergence analysis for the proposed FedPRC with different cluster number
(in parenthesis) in terms of micro-accuracy.

6 Conclusion

This paper proposed a PFL method with a robust clustered structure to tackle
model poisoning attacks in FL while still keeping the state-of-the-art perfor-
mance. It is novel to combine client-wise, cluster-wise PFL, and robust clustering
together to tackle the non-IID and model poisoning challenges in FL.
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Abstract. Traditional driving behaviour recognition algorithms lever-
age hand-crafted features extracted from raw driving data and then apply
user-defined machine learning models to identify driving behaviours.
However, such solutions are limited by the set of selected features and
by the chosen model. In this work, we present a data-driven driving
behaviour recognition framework that utilizes an unsupervised feature
extraction and feature selection algorithm and a deep neural network
architecture obtained using an Automated Machine Learning (AutoML)
approach. To validate the feasibility of this solution, numerical evalua-
tions were performed on a unique real-world driving datasets collected
from 29 professional truck drivers in uncontrolled environments, includ-
ing supervisor’s scoring of driver behavior that is used as ground truth
data. Our experimental results show that the proposed deep neural net-
work model achieves up to 95% accuracy for multi-class classification,
significantly outperforming five other popular machine learning models.

Keywords: Driving behaviour classification · Driving style recognition

1 Introduction

Individual driving behaviour plays an important role in traffic safety, as well as
energy efficiency and vehicle wear and tear [1]. Therefore, there is an increas-
ing interest in quantitatively characterizing driver behavior leveraging massive
amounts of data generated by modern vehicles. This is especially important for
professional drivers, who are frequently on the road and in most cases drive very
large vehicles.

Many researchers have attempted to analyse, identify, model, and classify
driving behaviour [2]. However, as detailed in Sect. 2, the following research
gaps can be identified:

– Majority of the existing work on driving behaviour analysis are based on
exploratory or rule-based methods, which are difficult to validate without
actual ground truth.
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– Existing techniques, based on supervised learning, rely on traditional clas-
sification models which validate their results using individual driving events
(e.g., harsh turn, harsh braking, etc.) rather than overall driving behavior of
a driver (e.g. safe driver, harsh driver).

– Majority of these studies either conducted their experiments in a controlled
and/or simulated environment, or performed their analysis on a naturalistic
driving dataset collected by a few drivers.

– Though driving behaviour classification from naturalistic driving data is a
well-established practice [3], their characterization is still an open problem.
In this sense, given the obvious difficulties in contextualizing driving events,
the answer provided by many studies is the identification of absolute metrics
of evaluation. This approach can lead to conflicting results. For example,
harsh braking can be linked both to an aggressive driving style or to quick
reflexes in avoiding an unpredictable obstacle.

– Extensive work has been done on driving behaviour analysis for taxi/car
drivers. However, different types of vehicles have different dynamics [4] and
specifically trucks have some unique characteristics, such as size, weight, and
manoeuvrability, which result in even more different driving dynamics [5]. To
our knowledge, very limited work focused on truck drivers’ behaviour analysis.

To overcome the limitations of existing approaches and fill the research gaps,
we developed an Automated Machine Learning (AutoML) framework for driv-
ing behaviour classification of drivers using real-world, naturalistic driving data
collected in an uncontrolled environment. Our major contributions are:

– The proposed solution employs (i) automatic feature extraction and feature
selection from the driving data, and (ii) an AutoML framework for deep neural
network, based on AutoKeras, to automatically find the best deep neural
network architecture and corresponding hyper-parameters for our problem
and dataset. Our framework also integrates external spatial information such
as road type and maximum allowable speed and temporal information such
as the hour of the day, day of the week, etc.

– We leveraged a real-world driving dataset collected by 29 professional trash
truck drivers over a period of 76 days, and we validated our model with the
actual safety scores assigned to each driver. These scores were assigned by
a group of domain experts based on routine observation over a period of 3
months. To our knowledge, this is one of the few datasets that provide human
generated feedback about the driving styles in addition to the driving events.

– We classified the driving behaviours for both individual sessions (hourly) and
aggregated sessions (daily, weekly, and monthly) for each driver as short-term
and long-term driving behaviour.

– Finally, we compared our model with five other popular classification models
for driving behaviour classification.

To the best of our knowledge, among the works trying to classify the driving
behavior of professional truck drivers by analyzing large-scale datasets [6], this
is the only one that uses completely automated feature engineering and neural
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network search steps while validating its findings using safety scores assigned to
the drivers by a group of experts. The remainder of this paper is organized as
follows: Sect. 2 summarizes the recent literature on driving style recognition and
discusses their limitations and research gaps. Section 3 formulates our problem
for periodic and aggregated driving behaviour classification. Section 4 describes
datasets, pre-processing, feature-extraction/selection, and ML model employed
for driving behaviour classification in our work. Section 5 presents our experimen-
tal results on real-world driving dataset, followed by discussion and conclusions
in Sect. 6.

2 State of the Art

An extensive survey on driving behaviour analysis and driving style recognition
is provided in [2,7,8]. At a high level, existing driving behaviour analysis can
be divided in two categories: unsupervised and supervised. In the first case,
the classification of driving style is achieved through statistical analysis of the
relevant input signals, without the knowledge of actual classification. Whereas,
the later requires the knowledge of actual driving style classification of the data
used for training.

Unsupervised Approaches. Among unsupervised approaches, Gaussian mix-
ture model (GMM), k-means, and Bayesian learning techniques have been
used extensively in driving behaviour analysis studies. Fugiglando et al. [9,10]
employed k-means algorithm on CAN bus data to identify groups of similar
drivers based on the driving behaviour. However, no semantic explanation for
the different resulting classes was provided. Mudgal et al. [11] applied a hierar-
chical Bayesian regression technique on collected driving data to model instan-
taneous driving behavior at roundabouts. Similarly, McCall et al. [12] employed
a Bayesian learning technique to analyze the driving behaviour for braking assis-
tance and collision avoidance. These studies were either conducted in a simu-
lated/controlled environment or they considered data from few drivers. Wang et
al. [13] proposed a framework for driving style classification by utilizing primitive
driving patterns with the Bayesian nonparametric approaches. The features used
in [13] were the vehicle longitudinal acceleration, speed, and the distance from
the preceding vehicle. Although unsupervised algorithms have shown their appli-
cability for driving behaviour analysis [14], their output (e.g. clusters) require
interpretation in the absence of ground truth.

Supervised Approaches. Among supervised approaches, k-nearest neigh-
bours (kNN), SVM, and neural network are the most used techniques for driving
style recognition. Johnson and Trivedi [15] utilized kNN and dynamic time warp-
ing (DTW) in their system, MIROAD, to detect and recognize various aggres-
sive driving events. Similarly, Vaitkus et al. [16] exploited kNN on 117 features
extracted from long-term accelerometer data to classify driving styles into normal
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and aggressive driving. However, the results were evaluated based on the labels
defined by observing route signals. Authors in [17,18] evaluate driving styles
quantitatively by normalizing the driving behavior based on personalized driver
models, and detect abnormal driving by analyzing normalized driving behavior
using neural networks. Liu et al. [19] extracted 44 features from the driving data,
used information entropy to discretize them, and subsequently applied PCA to
further reduce the dimension. Then, fuzzy c-means and SVM were leveraged to
classify the driving styles.

In the past few years, deep learning based approaches have been quite suc-
cessful for driving style classification. Li et al. [20] applied CNN and long short-
term memory (LSTM) on driving operational 2-D pictures, constructed using
a nested time window technique on sequential data from naturalistic driving,
to classify driving styles. A similar approach has been presented by Milardo et
al. [21] to link physiological signals and driver images to vehicle kinematics and
drivers’ behavior. Bejani et al. [22] employed convolution neural network (CNN)
on smartphone acceleration data to extract the features, and subsequently used
them to classify driving styles.

Unlike unsupervised approaches, driving style classification using supervised
algorithms are easy to validate against the real (labelled) driving data. However,
they require a large number of labelled data for reliable performance. To deal
with the need of having lots of labeled training data, Wang et al. [23] presented
a semi-supervised approach, called semi-supervised SVM (S3VM), in which first
some representative data points are selected using k-means clustering and man-
ually labelled using a rule-based approach, and finally a quasi-Newton algorithm
is employed to assign the optimal label to all of the training data. The same fea-
tures and the same dataset as used in [23] were utilized in [24] to detect driving
styles using a kernel density estimation.

Although extensive work has been done on driving style recognition for car
drivers, very limited studies have analyzed the driving style of truck drivers.
Linkov et al. [25] presented a study on the correlation between professional
drivers’ driving behavior and their personality traits using a truck simulator.
However, the primary focus of this study [25] was on fuel efficiency [26] rather
than driving behaviour, which was considered as an auxiliary variable. In another
similar study, Ferreira et al. [1] collected data from professional bus drivers in
Lisbon, and applied Naive Bayes classifier to optimize fuel consumption and pro-
vide suggestions. Some suggestions such as “Minimize the use of acceleration”
and “Minimize the use of braking” are generally related to both efficient fuel
consumption and good driving behaviors.

3 Problem Statement

The objective of this work is to explore and classify the behaviour of drivers
using a data-driven approach applied on their driving data. Let Fd,tw denotes
the feature vector of a driver d ∈ {1, 2, .., N} derived from the raw time-series
data e.g. speed, frontal and lateral acceleration etc., of his/her driving for a
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window of tw time-period, where N is the number of drivers. The time-window
tw can range from hours to months depending on the user requirement, size of
the data, and classification performance.

In this article, we categorize both periodic (separate) and aggregated (com-
bined) driving behaviour. While the periodic driving classification represents a
driver’s trip behaviour for a period tw, the aggregated classification stands for an
individual driver behaviour based on his/her overall driving data. For a periodic
classification, at any time instant t of a driving trip of driver d, the correspond-
ing feature vector Fd,tw from t− tw to time tw can be classified into any class of
driving styles such as very bad, bad, less than average, above average, good, and
very good. Let n denote the total trips a driver segmented by time-window tw,
then the aggregated driving behaviour of a driver is achieved by accumulating
n driving behaviour classifications of his/her driving history.

Fig. 1. Technical pipeline of the proposed framework.

4 Proposed Solution

The proposed solution, as shown in Fig. 1, can be divided into five different steps:
data collection, pre-processing, feature engineering, neural network search, and
driver evaluation. In the following paragraphs we detail each step.

4.1 Dataset Description

The dataset used in this research has been collected by 29 professional truck
drivers over a period of 76 days, for a total of 45 million data points. The dataset
contains data from 33 different vehicles.

The raw data is collected at 1 Hz and it includes: a timestamp, GPS coor-
dinates, acceleration from a tri-axial accelerometer located in the cabin of the
truck, and the speed of the vehicle. In addition to these signals, an identifier for
the driver and the truck was also included for each data point.
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Additionally, each driver is linked to a score assigned by a group of experts
without using the driving data that analyzed in this work. In particular, car
crashes and traffic citations are the main factors that were considered to derive
the given scores for each driver. The provided scores are categorized into five
classes from A to F with A being the best and F being the worst. The distribu-
tion of driver scores are shown in Table 1.

Table 1. Scores

Score A B C D E F

# drivers 10 7 7 3 0 2

4.2 Pre-processing

The initial step in the pre-processing analysis is the removal of non relevant
data. The original dataset is made of daily sessions, one for each truck. First we
remove all the sessions belonging to drivers for which we do not have any rating.
Then we remove those sessions that are entirely contained in a 1 km radius area
around the starting point of the session. This action removes all the sessions
that are recorded during maintenance. After this step, the dataset contains 1276
sessions, with an average length of 207 km and an average duration of 10 h. Fig. 2
shows the final distribution of daily distances.

Fig. 2. Daily distance distribution

For each of these sessions:

– We correct the errors introduced by the GPS by matching each data point to
the road network in the most plausible way according to OSRM [27].
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– We augment the raw driving data with road-type classification (motorway,
trunk, primary, secondary, service, tertiary, and residential) and maximum
allowable speed at each GPS point, using OpenStreetMap (OSM) [28]. For
those locations where the maximum speed limit is not reported we use the
maximum speed limit retrieved for streets of the same type.

– We remove the data points where the vehicle is not moving and we split the
remaining data points on an hourly basis (tw = 1 h).

– Finally, we group the data points based on the road type.

It is important to notice that we have experimented with different time-
windows (tw = 1 h, 1 day, 1 week, and 1 month) and corresponding results are
reported in Sect. 5.1.

4.3 Feature Engineering

Different features can show various types of information about driving style, and
initially it is unknown which feature sets most accurately distinguish the different
driving styles. Therefore, we decided to extract an extensive set of features from
the data and then filter the most informative and predictive ones using a feature
selection method.

For each data segments described in Subsect. 4.2, we split the original set of
signals (frontal acceleration, lateral acceleration, and speed) into the following
derived signals according to the orientation of the accelerometer:

– Accelerating events i.e., instances where the speed of the vehicle is increasing.
– Braking events i.e., instances where the speed of the vehicle is decreasing.
– Right/Left turns i.e., instances with positive/negative lateral acceleration.
– Over-speeding i.e. instances where speed of the vehicle is greater than the

speed limit.

Then, we extracted 794 different features from each time-series (signal) uti-
lizing the tsfresh [29] library. Tsfresh is an open-source Python library which
can automatically extracts features from time-series data. First, it extracts 72
unique features, as described in the tsfresh documentation [30], then based on
these unique features it generates a total 794 features for each time-series by
using different parameter settings. Some of the features computed using tsfresh
are summary features (min, max, mean, median, mode, variance), quantiles,
skewness, kurtosis, average energy, auto-correlation, entropy, binned entropy,
FFT coefficients, wavelet coefficients, etc. However, not all the extracted fea-
tures are relevant for the analysis. Therefore, we reduced the number of features
using a feature selection process. This process consists of two phases: first each
feature vector is individually and independently evaluated with respect to its
significance for predicting the score of the driver. The significance of a feature
is addressed by statistical hypothesis testing, and the result of these tests is a
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vector of p-values, quantifying the significance of each feature for predicting the
score. Then the vector of p-values is evaluated on the basis of the Benjamini-
Yekutieli procedure [31] in order to decide which features to keep. At the end of
this process only 638 features are selected.

4.4 Neural Architecture Search

Deep learning based approaches have been quite successful in recent years for
classification problems. However, it is difficult to find the optimal configuration of
a neural network architecture, which can lead to numerous unsuccessful exper-
iments depending on the dataset and the problem. Typical hyper-parameters
that need to be tuned include the type and number of layers, optimizer algo-
rithm (SGD, Adam, etc.), learning rate, and regularization to name a few.

We address the above problem using an Automated Machine Learning
(AutoML) approach. In particular, we employed AutoKeras [32] which is an
AutoML system which can perform automatic model selection and hyperparam-
eter tuning for a given task. Using AutoKeras, we can search the best neural net-
work architecture for the given learning task and input dataset. AutoKeras [32]
utilizes a Bayesian optimization approach to guide through the search space
by designing a neural network kernel and selecting the most promising network
morphing operations (e.g. inserting a new layer or adding a skip-connection).

5 Results

We set AutoKeras to try 100 different models with 80-20 training-validation data
ratio and we trained 200 epochs for each model to find the best neural network
architecture for our task. The obtained features from the feature extraction step
were fed as an input to classify each segment (session) into one of the 5 classes
mentioned in Sect. 4.1. All the models were evaluated using mean squared error
(MSE) and mean absolute error (MAE) between actual scored and predicted
scores. The best neural network architecture that gives us the highest accuracy
is shown in Fig. 3.

The layers that can be found in the generated deep neural network are:

– MultiCategoryEncoding: this layer is used to encode categorical features to
numerical features.

– Dense: a densely-connected NN layer that implements the operation: out =
activation(dot(in, kernel) + bias) where activation is the element-wise acti-
vation function passed as the activation argument, kernel is a weights matrix
created by the layer, and bias is a bias vector created by the layer.

– ReLU: Rectified Linear Unit activation function. An activation layer that
returns element-wise max(x, 0).

– Softmax: an activation layer that converts an input array into a vector of
values that follows a probability distribution whose total sums up to 1. The
output values are in the range [0,1]
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Fig. 3. Deep neural network architecture

The different layers are organized as shown in Fig. 3. Each block in the figure
shows the name and type of each layer and the input and output size.

5.1 Selection of Time-Window for Aggregation

In this experiment, we choose different time-windows to create segments, classify
them in one of the 5 classes, and evaluate predicted scores against ground truth
scores. Fig. 4 shows the confusion matrices between the predicted scores and
ground truth scores for different time-window periods. Specifically: tw = 1 h,
1 day, 1 week, and 1 month. It can be noted that the results improve as the size
of the time-windows increase. We believe that this behavior can be linked to the
variability of driving activities. In general, while the behavior of a driver might
change significantly from one hour to another, for example if the driver is driving
in a crowded urban environment or on an highway, the behavior over longer
periods of time seems to be more consistent and the classification results are
closer to the labels provided by the ground truth. This can be noted by looking
closely at the misclassified data points. While in the 1 h scenario, even drivers
that are classified positively can be classified negatively, the weekly and the
monthly aggregation windows show a more concentrated distribution of results
around the expected outcomes.
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Fig. 4. Effect of aggregation period on classification performance for five class classifi-
cation.

5.2 Comparison of Different Models

To put our model’s result (DNN) into the perspective, we compare the deep neu-
ral network model’s performance with several other classification models such as
k-nearest neighbour (kNN), decision tree (J-48), support vector machine (SVM),
random forest (RF), and Adaptive Boost (Adaboost) model, which are popu-
lar and have been used in literature for driving style recognition. To run a fair
comparison, we have tested the proposed solution against the reference mod-
els using all four aggregation windows, and reporting for each combination the
Accuracy, the Mean Squared Error (MSE), the Mean Absolute Error (MSE), and
the F-1 Score. Each model has been trained using the same randomly selected
80% extract of the entire dataset, and tested on the remaining 20%. For the kNN
model we tried all values of k in the range [1, 50] and we obtained the best results
using k equal to 6, for the random forest model the number of estimators was
searched in the range [1, 1000] and we found the best results using 100, similarly
for the AdaBoost model after an extensive search the number of estimators was
set to 50 and the learning rate to 1.

Results are shown in Table 2, 3, 4 and 5. Although the results change based
on the aggregation window, showing the best results using the daily and weekly
aggregation windows, it is possible to notice that in all conditions the DNN model
outperforms all the other models. A point that we would like to underline is that
the worst results are obtained on the hourly and monthly aggregation windows.
In the first case a possible justification is the variability of driver’s behavior while
in the latter the reduced number of data points negatively impacts the training
of the models.
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Table 2. Classification performance (hourly)

DNN kNN J48 SVM RF AdaBoost

ACC 68.4% 24.6% 44.0% 46.0% 63.0% 42.6%

F1 64.6% 31.4% 44.3% 42.5% 61.6% 40.6%

MAE 1.25 1.72 2.30 2.16 1.44 2.33

MSE 6.16 6.03 12.66 11.69 7.69 12.75

Table 3. Classification performance (daily)

DNN kNN J48 SVM RF AdaBoost

ACC 92.0% 51.7% 67.3% 73.9% 88.0% 50.3%

F1 92.0% 62.4% 67.6% 73.7% 87.7% 49.1%

MAE 0.36 0.92 1.32 1.04 0.48 1.89

MSE 2.13 2.81 7.13 5.80 2.95 9.54

Table 4. Classification performance (weekly)

DNN kNN J48 SVM RF AdaBoost

ACC 94.9% 46.7% 74.7% 82.2% 88.8% 56.1%

F1 95.0% 56.8% 74.8% 82.0% 88.3% 56.1%

MAE 0.34 1.04 1.06 0.72 0.50 3.17

MSE 2.02 3.17 5.49 4.07 3.17 7.62

Table 5. Classification performance (monthly)

DNN kNN J48 SVM RF AdaBoost

ACC 68.1% 18.5% 44.4% 62.9% 62.9% 37.0%

F1 67.2% 23.0% 42.2% 61.1% 54.9% 29.3%

MAE 1.06 2.03 2.29 1.55 1.62 8.29

MSE 8.01 7.89 11.11 8.74 8.29 6.66

6 Conclusion and Future Work

This article presented an automated machine learning (AutoML) based frame-
work for driving behaviour recognition. The developed framework employs an
automatic feature extraction technique and AutoKeras based deep neural net-
work architecture to make feature selection and model selection process fully
automatic.

We tested our driving style classification framework on real-world driving
dataset and experimental results showed that our solution achieves up to 95%
classification accuracy for five-class classification, and significantly outperforms
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five other ML classification models which are popular for driving style classifi-
cation. As a part of this continued research and to overcome some limitations of
the current dataset, we plan to incorporate the effect of weather by leveraging
real-time weather data, extend the size of the driving data, and increase the
resolution of scoring events.
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Abstract. Density estimation is an important tool for data analysis.
Non-parametric approaches have a reputation for offering state-of-the-
art density estimates limited to few dimensions. Despite providing less
accurate density estimates, histogram-based approaches remain the only
alternative for datasets in high-dimensional spaces. In this paper, we
present a multivariate histogram approach to estimate the density of
a dataset without restrictions on the number of dimensions, containing
both numerical and categorical variables (without numerical encoding)
and allowing missing data (without the need to preprocess them). Results
from the empirical evaluation show that it is possible to estimate the den-
sity of datasets without restrictions on dimensionality, and the method
is robust to missing values and categorical variables.

Keywords: Density estimate · Multivariate histogram · Missing data

1 Introduction

Density is a scalar quantity that measures the concentration of a phenomenon in
a unit of space. Common examples are the population density of a country, i.e.,
how many people on average are in a square meter. If the phenomenon is the con-
centration of a gas, density refers to the average number of particles contained
in a cubic meter. When the concept is applied to the data generated by a phe-
nomenon, density is the average number of observations in a unit of hypervolume
(a generalization of length, area, and volume to any number of dimensions).

In statistics, one of the most common uses for density is to calculate probabil-
ities. In machine learning, it is an important tool for exploratory data analysis,
an initial investigation in a data collection to understand its shape and features,
such as skewness, multimodality, and anomalies [12]. Density analysis can also
reveal the need to collect more data [13]. There are many applications using
density in various areas of research, described in Sect. 2.3.
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Often a dataset is a sample of a population, making it possible to estimate the
population’s true density by calculating the dataset’s density. Density estimation
can use parametric, non-parametric and histogram-based approaches, detailed in
Sect. 2.2. Parametric approaches are limited to cases where the data distribution
fits a known distribution (via parameter tuning). Non-parametric approaches
have a broader scope and are widely regarded as offering the best density esti-
mates. However, estimating density becomes a gradually complex and compu-
tationally demanding process as the dimensionality (number of variables) of the
dataset increases. For instance, Kernel Density Estimators (KDE) are unfeasible,
even in datasets with as few as seven dimensions. Histograms, although provid-
ing less accurate density estimates when compared to the other approaches,
remain the only viable alternative. Current implementations of histogram-based
approaches, despite being able to deal with more dimensions than KDE and other
non-parametric approaches, still cannot deal with reasonably sized datasets.
Another constraint is related to the type of data. Histograms represent the fre-
quency of continuous numerical data and cannot be used with categorical data.
Moreover, histograms do not naturally handle missing data. The dataset has to
be preprocessed before density estimation by either filling in the missing values
with a specific method or removing the observations with missing data.

The main contributions of this paper are: 1) a histogram-based approach to
estimate the density of datasets designed to address the aforementioned limi-
tations, i.e., a method that is not limited by the dimensionality of the dataset,
is equally able of handling both numerical and categorical variables, and deals
with missing data (the only restriction is the size of the dataset constrained by
the available memory); 2) an empirical evaluation on a number of datasets with
different characteristics, demonstrating the ability to perform density estimation
within reasonable computational time; 3) an empirical evaluation of the effects
of missing values as well as categorical variables in the density estimates.

The remainder of this paper is structured as follows: Sect. 2 presents the
background and related work on density estimation and some of its applica-
tions; Sect. 3 presents a detailed description of the proposed method with a few
illustrative examples; Sect. 4 presents the empirical evaluations, results and their
discussion; Sect. 5 presents the conclusions.

2 Background and Related Work

2.1 Basic Concepts

A random variable is a formalization of a quantity or object which depends on
random events or experiments with an unpredictable outcome. If the possible
outcomes are finite and can be counted, the variable is discrete, otherwise, if
endless and impossible to count, it is continuous [8]. In either case, it is common
for some values to occur more often than others. A probability distribution is a
non-negative function specifying how likely a random variable is to take each of
its possible values, ranging from zero (impossibility) to one (absolute certainty).
For discrete variables, a probability mass function provides the probability of
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each specific value. For continuous variables, as there is an infinity of possible
values, the probability of taking a specific value is zero, a probability density
function or density, p(x), is used. An example is a Normal distribution (Eq. 1),
N

(
μ, σ2

)
with parameters mean (μ) and variance (σ2). The probability P that

a value of the variable x is within an interval [a, b] can be calculated from p(x)
as the area under a density curve (Eq. 2).

p(x) =
1

σ
√

2π
e− 1

2σ2 (x−µ)2 (1) P (a ≤ x ≤ b) =
∫ b

a

p(x)dx (2)

2.2 Approaches to Density Estimation

Density usually is estimated, as observations in a dataset are random samples
of a larger set or population. A dataset (D) is a collection of n observations
(X1, . . . , Xn ∈ R

d) described by d variables (or dimensions). Density estima-
tion is the process of using a sample dataset to find a density estimator, p̂(x),
a function that provides an approximation of the unknown density, p(x), of
a population [5]. Density estimation can use parametric, non-parametric and
histogram-based approaches, described next.

Parametric approaches are used when a preliminary analysis of the data can
clearly reveal that it follows a well-known distribution or this is assumed, even
without preliminary analysis. The distribution parameters are tuned in order
to fit it as closely as possible to the data distribution. The advantages are the
simplicity of the process and the possibility of understanding the parameters [12].
However, it is limited to scenarios of data fitting a known distribution. For
instance, assuming that a dataset with n observations can be fitted to a Normal
distribution (Eq. 3), the density estimator uses estimates for the parameters. A
simple method is estimating the sample mean, μ̂n and the sample variance, σ̂2

n

from the observations.
Non-parametric Approaches are used when the data does not appear to fol-

low a well-known distribution. Thus, a continuous function from the data dis-
tribution is devised, a process analogous to training a prediction model. The
advantage is the flexibility to estimate density for any distribution, regardless of
its shape. However, the process becomes harder with escalating computational
costs, both in available memory and elapsed time as dimensionality increases.
Most implementations deal with two dimensions (e.g., GenKern [9] and KernS-
mooth [15]), with very few handling more (e.g., three in sm [7] and six in ks [3]).
One of the most used algorithms is Kernel Density Estimators (KDE) [16] (Eq. 4)
with parameters kernel function (K), a smooth and symmetric function (e.g.,
Gaussian, Epanechnikov), and smoothing bandwidth (h), a positive value for
the amount of smoothing. Each observation (Xi) is replaced by a small den-
sity cluster (shaped like the kernel function) and all of them are added up.

p̂(x) =
1

σ̂n

√
2π

e
− 1

2σ̂2
n
(x−µ̂n)2

(3) p̂(x) =
1

nh

n∑

i=1

K

(
x − Xi

h

)
(4)
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Histogram-based approaches are used to summarize data in the early stages
of exploratory data analysis. Density estimation is obtained by the frequency of
observations when grouped into bins. Due to their simplicity, histograms are an
important and popular data analysis tool, with very quick results and low com-
putational costs, even for large datasets. However, an acceptable performance
is a trade-off for the quality of the estimate. A count-based method provides
a less accurate estimate, when compared to non-parametric approaches. A his-
togram (Eq. 5) is a function that partitions the domain of a variable into M
bins (x ∈ Bk). Each bin (Bk) has Nk observations with hk width. For instance,
if x is a numerical variable with domain [a, b], the partition into bins is given by
Eq. 6. For categorical variables, each bin is a set of one or more distinct values.

p̂(x) =
Nk

nhk
(5) Bk =

⎧
⎪⎨

⎪⎩

[a; a + h1] k = 1
(a +

∑k−1
i=1 hi; a +

∑k
i=1 hi] 1 < k < M

(a +
∑k−1

i=1 hi; b] k = M

(6)

2.3 Applications in Research

There are a number of applications of density estimation. In a study on the
causes of sudden infant death [4], a particular type of cell (degranulated mast)
in infants who died both of known and unknown causes was counted. The density
estimate revealed that between a quarter and a third of the cases, the count was
exceptionally high, hinting for further clinical investigation.

Another example is an experiment with measurements of the height on 15000
points of a steel surface [2]. The density estimate presented a unimodal distribu-
tion around 30μm with two tails around it. The right one detected parts of the
surface in contact with other surfaces, whereas the left one proved the existence
of leaks, causing fatigue cracks or grease accumulation points. Both findings led
to improvements in the steel surface fabrication process.

In another study, the goal was to understand the direction in which a group
of 76 turtles were headed when released to swim freely in the ocean [11]. The
density estimate was bimodal with most individuals swimming towards the 60◦

direction while a smaller proportion swam towards the exact opposite.

2.4 Example: Density of the Old Faithful Dataset

Density estimation can be illustrated using the Old Faithful Geyser dataset [1],
with 272 observations of two variables, namely, the ‘eruption time’ and ‘waiting
time to next eruption’ (measured in minutes). In Fig. 1 density is represented as
a 2-dimensional histogram in a 10×10 grid. The lightest rectangles correspond
to areas of greater concentration of data. Figure 2 presents a similar histogram
with increased granularity, in a 30×30 grid. The rectangles become smaller and
there are many more areas with zero density. Figure 3 depicts a density surface
obtained from a non-parametric approach.
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Fig. 1. 10×10 histogram Fig. 2. 30×30 histogram Fig. 3. Density surface

3 A Multivariate Histogram-Based Approach

The proposed approach for estimating the density of a dataset consists of a mul-
tivariate histogram (Γ ), a generalization of a histogram for more than one vari-
able. Formally, it is defined as a set of M pairs, each with a hyperrectangle (Hk)
and either a relative frequency (fk) or a density estimate (p̂k) (Eqs. 7 and 8).

Γf = {(Hk, fk) , k ∈ [1,M ]} (7) Γp̂ = {(Hk, p̂k) , k ∈ [1,M ]} (8)

Similarly as a 1-dimensional histogram partition the domain of a variable
into bins, a multivariate histogram partitions a hyperspace (defined by the cross
product of the domain of all variables) into hyperrectangles, for which the density
is estimated separately. The method is presented in Fig. 4 as three separate tasks
due to implementation issues. The hypergrid can be specified by the user or it can
be automated via configuration parameters (also specified by the user). While
counting observations according to a hypergrid is a simple computation (Γf ),
calculating hypervolumes is a considerably heavier one, carried out only for the
hyperrectangles with non-zero relative frequency (Γp̂).

Fig. 4. Overview of the multivariate histogram-based approach

3.1 Define Hypergrid

A bin of a categorical variable xi is a set of m values (Eq. 9), while in numerical
variables, is a half-open interval (Eq. 10). Formally, a hyperrectangle (Hk) is a
d-dimensional subspace defined as a tuple of bins (Eq. 11). The variable’s bins
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are contained in its empirical domain (Eq. 12) which is the set of distinct values
observed in a dataset. Partitioning the hyperspace into hyperrectangles defines
a hypergrid.

Bi,k = {v1, v2, . . . , vm} (9) Bi,k = (α, β] (10)

Hk = (B1,k, B2,k, . . . , Bd,k) (11) Bi,k ⊆ dom(xi) (12)

Table 1 illustrates these concepts for a dataset with three variables: age (x1),
gender (x2) and income (x3). For the numerical variables (x1 and x3), the cre-
ation of bins was automated in order to create three bins (with x3 discretized).
For the categorical variable (x2), a bin was created for each value. The partition-
ing resulted in the hypergrid definition of Table 2. Figure 5 depicts the hypergrid
and an extract of the list of hyperrectangles (H1 to H18).

Table 1. Hypergrid configuration

Var. Type Domain Precision

x1 discrete [18; 80]

x2 categorical {female, male}

x3 continuous [700.5; . . . ; 2340.7] 0

Table 2. Hypergrid definition

Var. B1 B2 B3

x1 (17; 35] (35; 52] (52; 80]

x2 {female} {male}

x3 (699; 1150] (1150; 1495] (1495; 2341]

H1 = (B1,1, B2,1, B3,1)
H2 = (B1,1, B2,1, B3,2)
H3 = (B1,1, B2,1, B3,3)
. . .
H16 = (B1,3, B2,2, B3,1)
H17 = (B1,3, B2,2, B3,2)
H18 = (B1,3, B2,2, B3,3)

Fig. 5. Hypergrid and hyperrectangles

3.2 Calculate Relative Frequencies

The frequency (Nk) is the number of observations (Xi) from a dataset D contained
in a hyperrectangle Hk (Eq. 13). The relative frequency (fk) is the proportion of
those in relation to the total number of observations (n) in the dataset (Eq. 14).

Nk = | {Xi : Xi ∈ D ∧ Xi ∈ Hk} | (13) fk =
Nk

n
(14)

3.3 Calculate Hypervolumes and Density Estimates

The hypervolume (Vk) is a measure of the volume of a hyperrectangle and
a generalization of the bin width of 1-dimensional histograms [10]. Formally,
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a hypervolume is the product of the width (wj,k) of all the edges (the bins in
this context) of a hyperrectangle Hk (Eq. 17). For numerical variables (either
discrete or continuous) the width is the difference between the upper and lower
bounds of the edge (Eq. 15). For categorical variables, the width is the number
of distinct values in the edge (Eq. 16).

The density estimate (p̂k) is the average number of observations in a unit of
hypervolume. Formally, it is the relative frequency normalized by the hypervol-
ume (Eq. 18). Consequently, unlike the cumulative sum of relative frequencies,
the density estimates of all the hyperrectangles do not add up to one.

wj,k = max Bj,k − min Bj,k (15) wj,k = |Bj,k| (16)

Vk =
d∏

j=1

wj,k (17) p̂k =
fk
Vk

(17)

An example for the dataset of Table 1 is presented in Table 3, listing only the
hyperrectangles with density estimates (p̂) greater than zero (Γp̂). Table 4 lists
all the intermediate calculations, namely, frequencies (N), relative frequencies
(f), width of hyperrectangles edges (|B|), and hypervolumes (V ).

Table 3. A multivariate histogram (Γp̂)

k B1 B2 B3 p̂

1 (17; 35] {female} (699; 1150] 1.6 × 10−5

4 (17; 35] {male} (699; 1150] 1.2 × 10−5

8 (35; 52] {female} (1150; 1495] 5.0 × 10−5

9 (35; 52] {female} (1495; 2341] 0.3 × 10−5

11 (35; 52] {male} (1150; 1495] 3.6 × 10−5

14 (52; 80] {female} (1150; 1495] 0.6 × 10−5

15 (52; 80] {female} (1495; 2341] 0.2 × 10−5

17 (52; 80] {male} (1150; 1495] 0.8 × 10−5

18 (52; 80] {male} (1495; 2341] 0.2 × 10−5

Table 4. Intermediate calculations

k N f |B1| |B2| |B3| V

1 235 0.126 18 1 451 8118

4 183 0.098 18 1 451 8118

8 542 0.291 17 1 345 5865

9 87 0.047 17 1 846 14382

11 390 0.210 17 1 345 5865

14 116 0.062 28 1 345 9660

15 93 0.050 28 1 846 23688

17 146 0.079 28 1 345 9660

18 68 0.037 28 1 846 23688

3.4 Estimate Density for Datasets with Missing Values

When a dataset has missing data, the approach includes additional tasks. Miss-
ing values are considered unknown values and contained in hyperrectangles with
edges unknown. A hyperrectangle having one or more unknown edges is an unde-
fined hyperrectangle, giving rise to an incomplete histogram. The approach for
handling missing values is to replace all undefined hyperrectangles with complete
ones (without unknown edges), provided that they cover the same region of the
subspace. Thus, for each undefined hyperrectangle, it is defined as a missing
values hypergrid, including only the variables in the unknown edges.

Figure 6 shows an example of an undefined hyperrectangle, enclosing all
observations where x1 ∈ (52; 80] and with missing values in both x2 and x3.
A missing values hypergrid is defined from the combination of the bins of x2 and
x3 (Fig. 7), a basis for a missing values histogram using an extract of the dataset
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with observations without missing values on both x2 and x3. The undefined
hyperrectangle is replaced by a set of complete hyperrectangles (Fig. 8). When
replaced, the relative frequencies of the complete hyperrectangles are scaled by
the relative frequency of the undefined hyperrectangle, yielding a second version
of the multivariate histogram. However, replacing all undefined hyperrectangles
with complete ones can result in multiple instances of the same hyperrectangles.
Therefore, it is necessary to coalesce identical hyperrectangles into one by adding
their relative frequencies in a third version of the multivariate histogram. The
process then resumes in task #3 as described in Sect. 3.3.

Fig. 6. An undefined
hyperrectangle

Fig. 7. Missing values
hypergrid

Fig. 8. Complete hyper-
rectangles

Table 5 is an incomplete histogram, with the undefined hyperrectangle of
Fig. 6 (denoted as k1 = ∗1). Table 6 is the missing values histogram obtained
from the observations without missing values in both x2 and x3 (based on the
hypergrid in Fig. 7). Figure 8 depicts the combination with the undefined hyper-
rectangle and subsequent replacement. Table 7 is the completed histogram with
the relative frequencies scaled by the relative frequency of the undefined hyper-
rectangle. The replacement led to the addition of two additional hyperrectangles
(k2 = 13 and k2 = 16), while the other four subspaces were initially already
covered in Table 5. Hence, all pairs of duplicate hyperrectangles have coalesced
into one with the relative frequencies added, resulting in Table 8.

4 Evaluation and Results

4.1 Computational Performance

The method’s computational performance was evaluated by estimating density
on a number of datasets from the UCI [6], Kaggle [1], and OpenML [14] reposi-
tories, selected according to a diversity of characteristics. We define the dataset
size (s = nd) as the product of n (#observations) with d (#dimensions). The
datasets in group #1 have few dimensions (d ≤ 6), only numerical variables, and
no missing values. Group #2 has the same characteristics, with a higher number
of dimensions. Group #3 also includes categorical variables and no missing val-
ues (dc specifying the number of categorical variables). Group #4 has datasets
with missing values (nmv specifying the number of observations with missing
values in at least one variable and rmv the ratio of missing values).
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Table 5. Incomplete histogram

k1 B1 B2 B3 N f

1 (17; 35] {female} (699; 1150] 235 0.113

4 (17; 35] {male} (699; 1150] 183 0.088

8 (35; 52] {female} (1150; 1495] 542 0.260

9 (35; 52] {female} (1495; 2341] 87 0.042

11 (35; 52] {male} (1150; 1495] 390 0.187

14 (52; 80] {female} (1150; 1495] 116 0.056

15 (52; 80] {female} (1495; 2341] 93 0.045

17 (52; 80] {male} (1150; 1495] 146 0.070

18 (52; 80] {male} (1495; 2341] 68 0.032

∗1 (52; 80] 223 0.107

Table 6. Missing values histogram

kφ B2 B3 N f

1 {female} (699; 1150] 235 0.126

2 {female} (1150; 1495] 658 0.354

3 {female} (1495; 2341] 180 0.097

4 {male} (699; 1150] 183 0.098

5 {male} (1150; 1495] 536 0.288

6 {male} (1495; 2341] 68 0.037

Table 7. Completed histogram

k2 k1 kφ B1 B2 B3 f

1 1 (17; 35] {female} (699; 1150] 0.113

4 4 (17; 35] {male} (699; 1150] 0.088

8 8 (35; 52] {female} (1150; 1495] 0.260

9 9 (35; 52] {female} (1495; 2341] 0.042

11 11 (35; 52] {male} (1150; 1495] 0.187

13 *1 1 (52; 80] {female} (699; 1150] 0.014

14 14 (52; 80] {female} (1150; 1495] 0.056

14 *1 2 (52; 80] {female} (1150; 1495] 0.038

15 15 (52; 80] {female} (1495; 2341] 0.045

15 *1 3 (52; 80] {female} (1495; 2341] 0.010

16 *1 4 (52; 80] {male} (699; 1150] 0.011

17 17 (52; 80] {male} (1150; 1495] 0.070

17 *1 5 (52; 80] {male} (1150; 1495] 0.031

18 18 (52; 80] {male} (1495; 2341] 0.032

18 *1 6 (52; 80] {male} (1495; 2341] 0.004

Table 8. Final histogram

k3 B1 B2 B3 f

1 (17; 35] {female} (699; 1150] 0.113

4 (17; 35] {male} (699; 1150] 0.088

8 (35; 52] {female} (1150; 1495] 0.260

9 (35; 52] {female} (1495; 2341] 0.042

11 (35; 52] {male} (1150; 1495] 0.187

13 (52; 80] {female} (699; 1150] 0.014

14 (52; 80] {female} (1150; 1495] 0.094

15 (52; 80] {female} (1495; 2341] 0.055

16 (52; 80] {male} (699; 1150] 0.011

17 (52; 80] {male} (1150; 1495] 0.101

18 (52; 80] {male} (1495; 2341] 0.036

The method’s performance was evaluated by measuring the elapsed time (t,
in seconds) for density estimation. In all datasets, the hypergrid was created to
contain three bins in numerical variables and one separate bin for each value in
categorical variables. The results are hardly surprising. The most penalizing fac-
tors in density estimation time are the size of the dataset and the ratio of missing
values. In smaller datasets (s < 30000) (Fig. 9), density is estimated in less that
one second (a regression line with nearly zero slope). The exception is a dataset
with missing values where t > 10, due to the need to perform hyperrectangle
replacements. For instance, in the ‘Astronauts’ dataset, all the observations have
at least one variable with a missing value, which greatly increases the calcula-
tion time (≈13 s). In larger datasets (Fig. 10) there is a clear linear relationship
between the size of a dataset and density estimation time. However, the slope of
the regression line is much higher in datasets with missing values.

4.2 Measuring Density with Categorical Variables

In the following experiments, we observed the effect that adding categorical
variables has on the density estimates of hyperrectangles. We expect that a new
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Table 9. Datasets selected for density estimation performance evaluation

Group Dataset n d s dc nmv rmv t

#1 China’s population [1] 73 4 292 0 0 0.00 0.04

Iris [6] 150 4 600 0 0 0.00 0.05

Old faithful [1] 242 2 484 0 0 0.00 0.06

Phoneme [14] 5 404 5 27 020 0 0 0.00 0.16

2D elastodynamic metamaterials [6] 20 520 3 61 560 0 0 0.00 0.37

Stock market@Kraken [1] 32 946 819 2 65 893 638 0 0 0.00 264.89

#2 Wine quality [1] 1 143 12 13 716 0 0 0.00 0.28

Dry bean [6] 13 611 16 217 776 0 0 0.00 1.16

SGEMM GPU kernel performance [6] 241 600 18 4 434 800 0 0 0.00 45.85

Students’ dropout/success [6] 4 424 37 163 688 0 0 0.00 1.62

Rice MSC [1] 75 000 106 7 950 000 0 8 0.00 214.05

Biological response [6] 3 751 1776 6 661 776 0 0 0.00 78.81

#3 Height of male and female [1] 199 4 796 1 0 0.00 0.14

Students performance in exams [1] 1 000 8 8 000 5 0 0.00 0.20

Car evaluation [6] 1 728 7 12 096 7 0 0.00 0.42

Auction verification [6] 2 043 9 18 387 1 0 0.00 0.25

Diabetes [6] 29 278 2 58 556 1 0 0.00 0.19

Airlines train [14] 10 000 000 10 100 000 000 3 0 0.00 1162.48

#4 Breast cancer Wisconsin [6] 699 8 5 592 0 16 0.02 0.14

HCV [14] 615 13 7 995 2 26 0.04 0.79

Astronauts [1] 952 11 10 472 10 952 1.00 13.77

Mushroom [6] 8 124 23 186 852 23 2 480 0.31 4.71

Job change of data scientists [1] 19 158 12 229 896 10 10 203 0.53 262.36

Adult [6] 32 561 13 423 293 8 2 399 0.07 31.23

Fig. 9. Smaller datasets (s < 30000) Fig. 10. Larger datasets (s ≥ 30000)

variable causes the observations to spread out over to more hyperrectangles,
therefore, decreasing the density of each. Still, as the number of observations is
unchanged, adding the densities of the new hyperrectangles must be equal to
the total density of the aggregating hyperrectangles.

We selected the Old Faithful dataset [1] (Sect. 2.4) with histogram in Table 10
(for p̂ > 0). A categorical test variable (x3) was added and randomly filled with
two values (c1 and c2). As a result, the observations of each hyperrectangle
spread out into pairs of hyperrectangles (Table 11). As expected, the sum of the
density estimates of each pair (equal bins in x1 and x2, different bin in x3) in
Table 11 is the density estimate of the aggregating hyperrectangle in Table 10.
Next, two more categorical test variables were added (x4 and x5), also randomly
filled with the same values as x3 (Tables 12 and 13 respectively). Again, the
aggregating hyperrectangles of the previous dimension hold the sum of each pair
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Table 10. Old Faithful histogram

k B1 B2 p̂

1 (1.5; 2.4] (42; 64] 0.01904

2 (1.5; 2.4] (64; 80] 0.00115

4 (2.4; 4.3] (42; 64] 0.00064

5 (2.4; 4.3] (64; 80] 0.00617

6 (2.4; 4.3] (80; 96] 0.00435

8 (4.3; 5.1] (64; 80] 0.01120

9 (4.3; 5.1] (80; 96] 0.01379

Table 11. Adding 1 cat. variable

k B1 B2 B3 p̂

1 (1.5; 2.4] (42; 64] {c1} 0.00810

2 (1.5; 2.4] (42; 64] {c2} 0.01094

3 (1.5; 2.4] (64; 80] {c1} 0.00029

4 (1.5; 2.4] (64; 80] {c2} 0.00086

· · ·
17 (4.3; 5.1] (80; 96] {c1} 0.00603

18 (4.3; 5.1] (80; 96] {c2} 0.00776

Table 12. Adding 2 cat. variables

k B1 B2 B3 B4 p̂

1 (1.5; 2.4] (42; 64] {c1} {c1} 0.00219

2 (1.5; 2.4] (42; 64] {c1} {c2} 0.00591

3 (1.5; 2.4] (42; 64] {c2} {c1} 0.00416

4 (1.5; 2.4] (42; 64] {c2} {c2} 0.00678

· · ·
35 (4.3; 5.1] (80; 96] {c2} {c1} 0.00287

36 (4.3; 5.1] (80; 96] {c2} {c2} 0.00488

Table 13. Adding 3 cat. variables

k B1 B2 B3 B4 B5 p̂

1 (1.5; 2.4] (42; 64] {c1} {c1} {c1} 0.00131

2 (1.5; 2.4] (42; 64] {c1} {c1} {c2} 0.00088

3 (1.5; 2.4] (42; 64] {c1} {c2} {c1} 0.00219

4 (1.5; 2.4] (42; 64] {c1} {c2} {c2} 0.00372

· · ·
71 (4.3; 5.1] (80; 96] {c2} {c2} {c1} 0.00201

72 (4.3; 5.1] (80; 96] {c2} {c2} {c2} 0.00287

of new hyperrectangles. The results confirm that the more dimensions added
to the dataset, the denser the hypergrid and more hyperrectangles are defined.
Hence, there is an inevitable tendency for the density associated with each to
decrease and the average density also to decrease, as demonstrated by the con-
trolled addition of binary categorical variables.

4.3 Measuring Density with Missing Values

In the following experiments, we observed the effect that adding missing values
has on the density estimates of hyperrectangles. The method used to handle
missing data leads to the inclusion of new hyperrectangles, even in subspaces
where there are no observations in the dataset. As the missing data increases, it
is expected a variation of density in all hyperrectangles (both existing and new
ones).

Missing values were deliberately created by randomly clearing existing ones
in the Old Faithful dataset [1]. Table 14 shows the differences (Δp̂) in density
estimates with increases in the rate of missing values for rmv = 0.01 (p̂1), rmv =
0.05 (p̂2), and rmv = 0.10 (p̂3). With missing values representing 1% of the
dataset, the differences in the density estimates are about 10−4 times or less in
order of magnitude (including the new hyperrectangles #3 and #7 previously
with zero density and, thus, omitted in Table 10). In the subsequent cases (5%
and 10% respectively), it is apparent that the absolute differences, while still
in the same order of magnitude, increased. Consequently, as the rate of missing
values increases, the variation in the density estimates becomes more sizeable.
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Table 14. Differences in density estimates of adding missing values

k B1 B2 p̂1 Δp̂1 p̂2 Δp̂2 p̂3 Δp̂3

1 (1.5; 2.4] (42; 64] 0.01890 −1.4 × 10−4 0.01817 −8.7 × 10−4 0.01796 −10.8 × 10−4

2 (1.5; 2.4] (64; 80] 0.00135 2.0 × 10−4 0.00154 3.9×−4 0.00174 5.9 × 10−4

3 (1.5; 2.4] (80; 96] 0.00009 0.9 × 10−4 0.00055 5.5 × 10−4 0.00103 1.0 × 10−4

4 (2.4; 4.3] (42; 64] 0.00064 0.0 × 10−4 0.00077 1.3 × 10−4 0.00084 2.0 × 10−4

5 (2.4; 4.3] (64; 80] 0.00609 −0.8 × 10−4 0.00613 −4.0 × 10−4 0.00605 −1.2 × 10−4

6 (2.4; 4.3] (80; 96] 0.00435 0.0 × 10−4 0.00403 −3.2 × 10−4 0.00394 −4.1 × 10−4

7 (4.3; 5.1] (42; 64] 0.00008 0.8 × 10−4 0.00044 4.4 × 10−4 0.00081 8.1 × 10−4

8 (4.3; 5.1] (64; 80] 0.01139 1.9 × 10−4 0.01102 −1.8 × 10−4 0.01083 −3.7 × 10−4

9 (4.3; 5.1] (80; 96] 0.01359 −2.0 × 10−4 0.01405 2.6 × 10−4 0.01353 −2.6 × 10−4

5 Conclusions

Density estimation methods have several applications in the scope of exploratory
data analysis. Non-parametric approaches are limited to a small number of
dimensions. Histogram-based approaches, despite offering less accurate density
estimates, remain the only alternative concerning datasets in high-dimensional
spaces. Still, current implementations have dimensionality constraints.

We propose a method without limitation in the number of variables, able to
handle categorical variables and missing data. The only limitation of the method
is related to the size of the dataset (observations × dimensions). While empir-
ical evaluation confirms that the method is able to deal with high-dimensional
datasets it also provides evidence that the method behaves as expected when
dealing with categorical variables and missing values. Additionally, the compu-
tational performance is closely correlated to both dataset size and missing data.

Acknowledgments. This work is financed by National Funds through the Por-
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Abstract. Event logs extracted from database systems often have over-
lapping timestamps that interfere with process discovery due to the ran-
dom nature of such overlaps. Heuristics and object-based analysis of
event logs attempt to discover processes using information beyond times-
tamps. Systems often include an audit function to track compliance of a
subset of tasks in a process. However, the logs are not a suitable primary
source of event logs since they represent specific tasks instead of entire
processes. This paper proposes a mapping and sequence analysis to cor-
relate high-granularity audit records with discovered events. We further
present our method’s effectiveness in identifying sequences among tasks
having the same timestamp.

1 Introduction

Process mining (PM) is a discipline of Business Intelligence and Data mining
that allows for the discovery, analysis, and enhancement of business processes
in the context of Business Process Mining. As described in the Process Mining
Manifesto [21], a primary data source (PDS) for PM is event logs, which are
a collection of instances of events. These events indicate an activity performed
on an entity at a specific time using a set of input data and resulting in a
set of outcomes. Process mining primarily relies on attributes and time stamps
to detect cases, tasks, and their sequences from event logs [20]. Availability
of high-quality event logs is a well-recognised challenge in the field of PM [2].
Events recorded with the same timestamp is one such quality issue that causes
task sequencing errors in the discovered process model. Large-scale distributed
systems use automated programs to execute business processes that transcend
multiple applications. As an example, an Order-To-Cash supply chain business
process [11] presents common issues such as missing or inconsistent values, differ-
ences in formats, standards, notations, granularity, and many more. The times-
tamps could hold the same value for multiple steps due to granularity of the
logging, delays in the logging system and concurrent batch execution of the pro-
cess in high-performance systems [5]. Examples of batch processes in the retail
domain include end-of-day upload of orders captured by field sales, optimum
inventory allocation, warehouse put-away, batch picking, and many more. The
batch order creation process involves executing rules such as duplicate orders,
availability of inventory, a price calculation, fraud check, and many more. While

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 281–296, 2022.
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these steps have a specific purpose and execute in a specific sequence to meet
the business requirements, each of these events for a trace could hold identi-
cal timestamps when recorded in event logs. Also, such events may be recorded
differently for each process instance. Such random order impedes process discov-
ery techniques resulting in a wrong sequence of tasks in the discovered process
model. The scope of our work is to address the time overlap issue by analysing a
secondary data source (SDS) (e.g., audit logs) for a sequence of related activities
and extrapolating the sequence to event logs. We present our work in the context
of the retail supply chain order fulfilment sub-process.

We perform our literature review in the context of process mining across log
extraction and the use of audit logs. Multiple techniques and tools are available
to extract usable event logs from enterprise applications [4], improve the quality
of extracted logs through preprocessing [20], and improve process discovery [16].
Existing literature reveals that repairing quality issues in logs is either a man-
ual process [17] or requires a strict reference process model [18]. Other options
include using fields from the event logs to deduce sequence such as case-id,
contextual information, transaction information, person information and many
more. [10] presented an approach to extract, transform and store object-centric
data, resulting in eXtensible Object-Centric event logs that further allow anal-
ysis without case notations. [9] addresses process discovery and conformance
checking when the logs contain billions of events (large) and thousands of activ-
ities (complex). They propose a Directly Follows Framework using inductive
miner. It uses a divide-and-conquer method for process discovery by recursively
splitting the process tree and merging their output. For complex processes, [17]
presents an approach that uses human inputs to repair non-conforming process
models discovered using existing algorithms. The authors use the human-defined
process model’s hierarchical structure to correct the discovered model’s localised
flow. Researchers use additional data sources [3], and metadata such as seman-
tic annotations [14] to improve the quality of discovered models. [1] explore the
use of additional data sources for process mining in the context of additional
fields available for analysis. Audit logs are an essential source of information
used in the business intelligence domain. Enterprise Applications (EAs) include
an audit function that proves it meets various business, operational, and legal
requirements to determine the system’s compliance. For example, a retail sys-
tem responsible for payment will need to record explicit action of the payer and
payee as provenance against non-repudiation and for compliance with the pay-
ment card industry’s data security standard (PCI-DSS). Due to its strict compli-
ance requirements, the audit information could provide insights into the correct
sequence of tasks in a process [13]. There are significant differences between
logs captured for audit purposes and other logs. Unlike event logs that focus
on capturing the occurrence of every event, and audit logs may target a sub-
set of events such as fraud check, inventory allocation, and shipment scheduling
within the Order-To-Cash process. Hence audit logs are unsuitable as the pri-
mary source of event logs. The captured information establishes compliance and
does not directly map to the process. Using audit logs as a supplement source

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf?agreement=true&time=1612405269104


Correcting Temporal Overlaps in Process Models 283

for process mining requires additional steps to map the records to process tasks.
Further, compared to regular logs, audit logs may be saved in a separate stor-
age system in a different format and may be subject to additional access and
security controls. In our literature review, we found instances of using audit
logs for anomaly detection in security [19], health [12] and finance [8] domains.
Further, we found instances of process mining used as a tool for determining
conformance and compliance in the domains of healthcare [12] and privacy [19].
Using audit logs as a source of event logs requires extensive preprocessing, and
the discovered process model likely has gaps in its tasks. However, the audit logs
contain important context information recorded in a predictable and consistent
order, which may be useful to address conflicts or uncertainties encountered in
the model.

Gaps Identified and Our Objectives: Current studies treat temporal overlap
of tasks as errors similar to missing values and employs mean or binning tech-
niques to correct them. Multiple techniques apply heuristics available in the logs
or other contextual information such as design documents or entity relationships
to derive a hierarchy of tasks. Thus, there is a need to treat overlapping temporal
information as valid data in the context of automated processes. While existing
studies use audit logs as a source of anomaly detection, we do not find their
instances used as supplementary sources of task descriptions. Further, validat-
ing and repairing discovered process models requires the involvement of human
experts. A method that augments human involvement could improve the perfor-
mance and accuracy of the process discovery step. We focus on using audit logs
to overcome sequence inconsistencies, validate, and suggest corrections for the
discovered model. The proposed work has the following objectives: a) For event
logs extracted from an OLTP database, we demonstrate the problem caused
in process models due to time overlaps. b) Establish a fundamental basis for
utilising an SDS in repairing such process models. c) Design and implement a
methodology to correlate sequences between the primary and SDS to repair the
analysed process. d) Evaluate the utility of our method by applying it to an
OLTP database as the PDS and corresponding audit logs as the SDS. Our con-
tributions include the novel methods of mapping audit activities to business-level
process tasks, correlating sequences through analysis of annotations, and using
the discovered insights to repair the process model. Our method is transferable
to scenarios where an SDS provides contextual information to repair sequence
errors in event logs generated from an associated primary source.

2 Proposed Method

This section details our proposed method of utilising audit logs to address
timestamp-based conflicts in the process model discovered from event logs. The
method relies on associating various audit records and the tasks they represent.
We first describe the mathematical basis of our proposed Stochastic Sequence
Analysis of Secondary Data Source (SA-SDS) method in Sect. 2.1 followed by its
detailed solution framework in Sect. 2.2.
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2.1 Mathematical Basis for the Proposed SA-SDS Method

Let L represent an event log which consist of N events, such that L =
[E1, E2, ..., EN ] where Ex = [EID,AY, TS] such that x ∈ {1, 2, ..., N} where
EID is the unique record identifier, AY represents ACTIVITY and denotes one
of n actions being recorded {a1, a2, ..., an} and TS represents the TIMESTAMP
which is a standard format system time of the log entry. We define a trace TE

as a sequence of events representing an instance of a process for specific inputs
and is a subset of events from L. Let the likelihood of activity ai be followed
by aj denoted as L(ai, aj) and is calculated from a training log set such that

L(ai, aj) =
N(ai,aj)

(Nai
∪Naj

) where N(ai,aj) is the number of times events with activ-

ity ai is followed by events with activity aj (not necessarily to be consecutive),
Nai

and Naj
are the number of events with activity ai and aj , respectively. For

example, activities a2 and a7 in a log containing the following traces with the
sequence of activities:
[{ {a_5, a_1, a_2, a_8, a_{10}, a_7},

{a_3, a_2, a_8, a_9, a_7},
{a_5, a_2, a_{10}, a_7},
{a_4, a_1, a_7, a_{10}, a_2, a_9} }]

Then, we calculate L(a2, a7) = N(a2,a7)

(Na2∪Na7 )
= 3

4 = 0.75 and L(a7, a2) =
N(a7,a2)

(Na7∪Na2 )
= 1

4 = 0.25 Similarly, let C denote an audit log which consists of
M audit records such that C = [C1, C2, ..., CM ] each Cx = [AID, pi, TS,CX]
for x ∈ {1, 2, ...,M} where AID is the unique audit record identifier, pi is PUR-
POSE which denotes one of the q audit categories P = {p1, p2, ..., pq}, TS is
TIMESTAMP which denotes standard format system time of the audit entry,
and CX CONTEXT is a variable length contextual data captured for the pur-
pose of the audit. A trace TC , defined as a sequence of audit records representing
an instance of a process for specific inputs, is a subset of audit logs from C. Let
L(pk, pl) be the likelihood of an audit record entry with purpose pk being fol-
lowed by a record with purpose pl. L(pk, pl) (calculated from a training log set)
such that: L(pk, pl) =

N(pk,pl)

(Npk
∪Npl

) where N(pk,pl) is the number of times audit
records with purpose pk is followed by records with purpose pl, Npk

and Npl

are the number of audit records with purpose pk and pl, respectively. Follow-
ing are the ways to establish an association between purpose fields of audit log
records and activity fields of event log records: 1) manual analysis of a test log,
2) a learning mechanism based on an annotated reference training log, or 3) by
applying an object-based analysis technique described by [10]. The sequence of
records observed in the audit logs will likely preserve the sequence of the actual
business process due to its strict compliance needs. In this context, observe the
following:

Observation O1: Given a set of activities present in the event logs and a set
of entries present in the audit logs, there exists an association such that one
or more values of PURPOSE can be associated with one or more values of
ACTIVITY, as determined from a pair of the test event and audit logs. We
denote the association as, {p1, p2, ..., pm} → {a1, a2, ..., an} ∀m,n
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Observation O2: The sequence of audit purposes that meet a compliance
requirement is available. The likelihood that an audit purpose follows a group
of purposes (calculated beforehand) such that

L(pj , (p1, p2, ..., p(j−1)) ∀m �= j,→ L(ai, (a1, a2, ..., a(i−1))) ∀m �= i

Inference 1: Given the above two observations, a similar relationship exists
between a sequence of audit purposes and corresponding event activities. Hence
the likelihood that an audit purpose follows a group of purposes correlates to
the likelihood that an event activity follows a group of activities. We denote the
correlation as L(pj , (p1, p2, ..., p(j−1)),→ L(ai, (a1, a2, ..., a(i−1))) ∀i, j.
Inference 2: Further, if L(ai, aj) > L(aj , ai) ∀i, j where activity is associated
with purpose, i.e., (ai) → (pm) and (aj) → (pn) ∃m,n then it can be surmised
as L(pm, pn) > L(pn, pm) ∀m,n.

2.2 SA-SDS Framework

Building upon the mathematical description, we present the solution framework
for the proposed SA-SDS method using the audit logs as the secondary source.
Figure 1 depicts the framework as containing the following phases:

Fig. 1. Workflow of modified onprom methodology with SA-SDS.

Data Collection: Systems capture audit records in heterogeneous sources such
as database tables and files. Each source may have different security restrictions,
encryption mechanisms, network protocols, and application interfaces. In this
phase, we implement the extraction routines to connect to those sources and
collect the audit data into a single data repository. At the end of this phase,
audit records are available in their raw format for further processing.

Preprocessing: The raw audit records from each source may be in a different
format (e.g. XML) and include records for many operations. Further, information
for operations related to an entity is not available in a single log. In this phase,
we parse the collection of raw format logs to filter out just the records related to
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the analysed business process. We then correlate records across multiple logs to
identify records related to the same entity, such as order and product. We then
convert each correlated audit record into a flattened row in a CSV format file,
ready for further processing.

Annotation: The audit records refer to specific activities which may not directly
correlate to the process executed. We employ a domain expert to provide a
reference set of audit records annotated with the corresponding process or task.
We then expand this annotation to the entire flattened audit logs based on
observed patterns of the reference set. A similar approach may be required for
the event logs if the task is not clear from the logs.

Stochastic Sequence Analysis: For the annotated audit records, we calculate
the probabilities of observing a sequence of records to establish the order in which
audit activities occur. We identify the events that overlap with the tasks referred
to by the annotations. Based on the mathematical basis discussed in Sect. 2.1,
the sequence applies to its annotated tasks and the process. At the end of this
phase, we list the discrepancies between the sequence assessed from audit logs
and the sequence observed in the event logs.

Correction: An analyst reviews the discrepancies listed in the previous phase
and approves the sequence changes. The log is modified to reflect the new
sequence and fed into the PM algorithm to discover the process model. We anal-
yse the generated model for Precision, Fitness, and simplicity. To validate our
methodology, we conduct experiments on order fulfilment business process. We
discuss the details of our case study and proposed analysis in Sect. 3. Section 4
presents the findings and the evaluation metrics used to validate our proposed
approach.

3 Case Study for Order Fulfilment Sub-process

In this section, we apply the proposed SA-SDS method to an order fulfil-
ment business process. The case study includes data collection, preprocessing,
exploratory analysis, audit data annotation, the proposed stochastic sequence
analysis, and suggesting corrections to the discovered model. In a retail supply
chain, the fulfilment process starts with the creation of an order and culminates
with the delivery of the order to the customer. An instance of this process may
include tasks such as check inventory, check serviceability, reserve inventory, get
payment details, create order, fraud check, approve order, release to node, sched-
ule to pick, pick items by batch, assess packing needs, pack, generate invoice,
notify shipping provider, shipment pickup, and delivery.

We take a subset of the order fulfilment process implemented using a scal-
able, enterprise-grade intelligent omnichannel OLTP order fulfilment platform
that supports a fulfilment pipeline with a series of tasks and rules. The plat-
form records transactions in a relational database and has a configurable audit
function recorded in the same relational database.
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3.1 Data Collection and Preprocessing

We simulate a retail order fulfilment process and collect the resulting logs from
OMS. We adopt the onprom toolchain process. Onprom is an Ontology-based
Data Association suite of tools to extract event logs from RDBMS. First, we
create an Ontology model using UML. Later, we use Protege editor’s Ontop
plugin, which allows us to map ontology classes and objects to data through SQL
queries. We introduce annotations to identify cases and events in the data, and
thus we extract an eXtensible Event Stream (XES) [7] format log. We provide
a masked excerpt from the extracted XES format log in Listing 1.1. As we can
infer from the excerpt, for a given order number 15, the timestamps for all tasks
are the same. Further, the tasks are recorded in a wrong sequence, with resolve
coming before create and hold actions.

Listing 1.1. A Concrete Example of a Masked Excerpt from XES Format Log. The
snippet shows overlapping timestamp for multiple tasks present in incorrect ordering.

. . .
<t race>
<s t r i n g key=”concept : name” value=”Order15”/>
<event> <s t r i n g key=”concept : name” value=”RESOLVE”/>
<date key=”time : timestamp” value=”2021−01−17T06 :01:01.000”/ > </event>
<event><s t r i n g key=”concept : name” value=”CREATE”/>
<date key=”time : timestamp” value=”2021−01−17T06:01:01.000”/></ event>
<event><s t r i n g key=”concept : name” value=”HOLD”/>
<date key=”time : timestamp” value=”2021−01−17T06:01:01.000”/></ event>
. . .
<event><s t r i n g key=”concept : name , ” value=”INVOICE”/>
<date key=”time : timestamp” value=”2021−01−17T06:01:01.000”/></ event>

</trace>
. . .

OMS allows for audit information to be captured via a configuration available
through tables [22]. OMS stores the audit information across multiple special-
purpose tables as a combination of text and XML data. We generate audit
records by executing controlled tests for performing fulfilment steps of create.
update, schedule, release, ship, and invoice. We extract the raw audit data from
these multiple tables. We then parse the XML audit records and filter them to
select records relevant to the analysed process. We then convert the extracted
audit records into flat CSV files suitable for further processing using Python
scripts. Listing 1.2 (present in Sect. 3.3) gives a snapshot of the raw audit log
and the embedded XML format data along with the corresponding flattened log.

3.2 Analysis of Raw Data

For extracting event logs, we analyse the OMS installation’s Entity-Relationship
model to choose six RDBMS tables covering the Order, Shipment, Invoice, and
Enterprise entities. When modelled as an ontology, the analysis results in seven
class properties, seven object properties, 49 data properties, and 56 associations.
Table 1 summarises the statistics for the raw XES format log. Table 1 shows that
there are 341 events categorised in 11 tasks while total unique cases in the event
logs are 64. Further, within audit logs, create and schedule are the most frequent

https://onprom.inf.unibz.it
https://protege.stanford.edu/
https://protegewiki.stanford.edu/wiki/Ontop
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Table 1. Summary of XES format event log and audit log. OL= Order Level, LL=
Line Level, OLL= Order & Line Level

XES metric Value

Events 341

Tasks 11

Cases 64

Audit CREATEHOLDRELEASE SCHEDULE INVOICE SHIP

Frequency 472 123 219 472 41 26

Remarks OLL OL OLL OLL OLL LL

activities, even more than twice of the next most frequent activity, i.e., release.
Interestingly, the extracted audit logs show a similar distribution of activities as
Zipf’s law. We visualise the distribution of tasks across the sequence in which
they occur. Figure 2 shows the number of occurrences of a task (y-axis) for each
sequence step (x-axis). The bar graph shows that sequence steps T3 through T6
can be one of five or six tasks confirming our problem statement of time overlaps
resulting in a random sequence of tasks. The graph reveals that any task can
occur at a step. Further, the tasks overlap across different steps with different
frequencies. For example, T3 and T4 have overlapping tasks, but schedule is
present more often in T4 than in T3. Similarly, create appears in T1 and T2
but has the highest frequency in T2.

Fig. 2. Activities against task sequence. Fig. 3. Audit activities vs audit steps.

Figure 3 shows the frequency of audit activities observed for each audit step.
The graph confirms that audit logs provide a clear sequence of the activities
in most cases. The actions OL SHPD and OL RELEA are distributed across
steps A8 and A9 indicating parallel execution. Audit records shows presence of
order level and line level records for create, release, schedule, and invoice.
However, hold was observed only at order level, indicating that the entire order
is placed on hold even if a single line triggers a business rule. These observations
are consistent with the expectations of the test run performed.

3.3 Annotating Preprocessed Audit Data

In this phase, we obtain a list of keywords and sequences that map audit fields
to process tasks from a domain expert. For instance, audit log entries generated
during the changeOrder API call created audit records with HoldType field that
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indicates the action as hold or release and the context as duplicate order check or
fraud check. We use the TransactionId field to determine the sequence as before
or after create activity. We captured this knowledge in a mapping file and used
it to annotate the flattened CSV. At the end of this step, we have flattened audit
logs with annotations that map each record to a process task. 1.3 lists the algo-
rithm, and the code snippet is made available in SA-SDS Github repository.
For example, we provide a snapshot of a raw audit log, flattened CSV, and
annotated CSV files in the code Listing 1.2. In this sample, the value of the
AuditType field confirms the corresponding event activity as schedule and pres-
ence of a LineID confirms the activity is performed at the order line level. Our
mapping for scheduling of an order line is the tag OL SCHEDULE.

Listing 1.2. Example of Raw Audit Log, Flattened CSV, and Annotated CSV Files

Raw Audit Log :
”202101170624010127629” ,”2021011706010127624” ,”202101170688010127628” ,
”<XDS FIL=’ a ud i t d e t a i l . de l . 0 0 1 . xml ’ OFF= ’1002955 ’ LEN= ’10279 ’/>” ,
”2021−01−17−06.01.01.000000” , . . .
Audit d e t a i l s XML:
<OrderAuditDetai l AuditType=”Schedule”>
<IDs> <ID DataType=”c l a s s S t r ing ” Name=”OrderID” Value=”Order15”/>
<ID DataType=”c l a s s S t r ing ” Name=”LineID” Value=”Order15Line1” /> . . .
F lattened Log :
”2021011706010127624” ,”Order15 ” , . . , ” ” , ”ORDER LINE” ,”” ,” Order15Line1 ”
. . .
”2021011807104228783 ” ,” Order30 ” . . . , ” ” , ”OTHERS | | HOLD TYPE” ,”ORDER” , . . .
Annotated Log :
12 ,”OL SCHED” ,”2021011706010127630 ” ,” Order15 ” . . , ”ORDER LINE” , . . ,
2 ,”O\ YCD DUPLICATE ORDER” ,”2021011706010127624” ,” Order15 ” , . .
. . .
8 ,”O CREATE” ,”2021011807104228783” ,” Order30 ” , . . ” , ”HOLD TYPE” ,”ORDER ”
. . .

Listing 1.3. Algorithm for Tagging Audit Log Entries

Input : Raw audit log , purpose f i e l d s , p roce s s mappings r u l e s
Output : Audit l og with each entry tagged f o r a proce s s s tep
f o r l i n e in rawAuditLog :

i f l i n e conta in s contextWords :
i f l i n e conta in s beginSequence : s t a r t new sequence to sequenceLog
e l i f : l i n e conta in s endSequence : mark sequence end to sequenceLog
e l s e : add l i n e to sequenceLog ; record sequenceOf f s e t

f o r l i n e in sequenceLog :
f o r taskKeyword in taskKeywords :

i f l i n e conta in s taskKeyword :
use{taskKeyword , s equenceOf f s e t } to get processTag from processMap
wr i t e processTag + l i n e to taggedAuditLog

Listing 1.4. Algorithm for Sequence Analysis

Input : Tagged Audit Log
Output : Matrix o f r e l a t i v e occur rence f r e qu en c i e s
i n i t i a l i s e f requency to z e ro s
f o r processTag in processTags :

f o r batch in taggedAuditLog : #batch = audit begin and end sequence
f o r tag in batch :#Compare r e l a t i v e tag p o s i t i o n s in a batch

i f tagSequence < processTagSequence :
f requency [ tag ] [ processTag ] −= 1

e l s e
f requency [ tag ] [ processTag ] += 1

wr i t e f requency to sequenceMatrixLog

https://github.com/anponnia/SA-SDS
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3.4 Stochastic Sequence Analysis of Audit Data

Once the audit data was available as CSV format data, annotated with activity
tags, we generated the frequency distribution for each activity using the algo-
rithm listed in 1.4. We generated a matrix capturing the likelihood of activity
occurring in the audit logs before or after another activity. The positive cell value
indicated the X-axis activity occurring after the Y-axis activity, while a negative
value indicated the reverse. A value of zero indicates a parallel occurrence of the
activities. The generated matrix provides sufficient insights to create a reference
sequence of activities for a domain expert to validate and adjust the discovered
process model. Table 2 shows a snapshot of the matrix (both rows and columns)
without normalisation. The values in the matrix confirm that our data has more
order level audit entries than order line level, indicating that we can draw higher
confidence when resolving order level sequencing errors.

Table 2. A snapshot of observed likelihood of activities with respect to each other

ACTIVITY O DUPCHK OL SHIP O INVOICE OL INVOICE O ADDRCHK O FRAUDCHK

O DUPCHK −59 59 58 58 58 58

OL SHIP −59 −59 −52 −52 58 58

O INVOICE −58 52 −58 58 58 58

OL INVOICE −58 52 −58 −58 58 58

O ADDRCHK −58 −58 −58 −58 −58 58

O FRAUDCHK −58 −58 −58 −58 −58 −58

O CREATE −58 −58 −57 −57 −57 −57

OL CREATE −27 −27 −27 −27 −27 −27

O SCHED −27 −27 −27 −27 −27 −27

OL SCHED −26 −26 −26 −26 −26 −26

O RELEASE −20 −20 −20 −20 −20 −20

OL RELEASE −20 −20 −20 −20 −20 −20

NONE 1 1 0 0 0 0

Fig. 4. Baseline process model discovered from heuristic miner

Fig. 5. Process model corrected after comparing results of SA-SDS method
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3.5 Correction of Discovered Process Model

We use ProM (an extensible framework for PM tasks) to generate the process
model given in Fig. 4. A comparison of the sequence of events between the dis-
covered process model and likelihood matrix (Table 2) reveals that the duplicate
order check always happens before create or any of the other audit records. Also,
the likelihood of invoice generation happening before shipment. It is further
apparent that hold criteria for fraud-check is occurring at the wrong sequence
and the invoice generation should happen after the pack step of the process,
given pack is part of the shipment task. These insights allow us to accurately
adjust the model to portray our test system’s fulfilment business process. We
present the corrected process model in Fig. 5. In the modified process model, hold
is marked as the root node followed by create. The step is important because,
on creation, the system places the order on hold for “duplicate check”. OMS
moves the status to resolve if the order is not a duplicate. A second hold -resolve
cycle occurs for “fraud-check” before sending the order to schedule. Figure 5 illus-
trates that the edges between hold, create, and resolve form a loop via create.
Rest of the states are kept in sequence with schedule positioned before release.
We dropped the nodes for pick and pack since they were observed for only one
event and had no support in the audit log.

4 Evaluation and Discussion

We evaluate our method against a popular process mining algorithm; Heuristic
miner [15]. Inspired by the current state-of-the-art, we use Fitness, Precision,
Generalisation, and Complexity to assess the quality of discovered model [6].
Fitness is the model’s ability to replay all events observed in the log; Preci-
sion describes the discovered model’s ability to accurately represent each event
without errors or; Generalisation the model’s potential to represent unobserved
but possible events; and Complexity indicates the difficulty for human analysis
of the discovered model. [6] quantifies this measure by the structural elements
of the model, namely tasks (node), connections (edges), and splits/joins. In the
following subsections, we discuss the performance of our model against Heuristic
Miner (HM) using each of the metrics above. Table 3 summarizes our comparison
of SA-SDS with HM.

Table 3. Comparison of process model quality metrics of SA-SDS with HM.

Metric SA-SDS HM Remarks

Fitness High Low Higher fitness

Precision High Low Fewer error flows

Generalisation Medium Low More robust

Complexity Simple Complex Less edge to node discrepancies

https://www.promtools.org/doku.php
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Fitness: We calculate the Fitness as the percentage of observed event sequences
correctly captured by the model. We interpret the percentage against a scale of
low (less than 33%), medium (between 33% and 66%), and high (greater than
66%). We observe that the model discovered using Heuristic Miner has a low
baseline Fitness factor of 17%, resulting in a rating of low. The results indicate
an impediment to the algorithm’s ability to identify and accommodate tasks
and process flow. We note that those events have the same timestamp when
analysing the event log entries for which the model got the sequence wrong. In
the absence of temporal or activity-based sequences, the algorithm relies on a
simple majority of observed sequences to form its model. For example, create,
resolve, and release are interpreted as parallel activities when they are not. The
model hence cannot replay observed sequences where create precedes schedule.
By choosing hold as the root, there is a mismatch in the number of events with
an observed state of create in comparison to the edge leading from hold to create.

In comparison, SA-SDS method provides additional insight which qualifies a
hold related to check duplicate order as happening before order create while hold
for fraud check happening after. Our method also identifies tasks such as release
when performed at the order, order line or both levels. Heuristics indicate that
hold must be resolved before being scheduled. Overall, the Fitness is improved
to 86%, resulting in a high rating. The experiment could not achieve a higher
rating as the audit records did not include ship task and analysis of the event
logs reveals records that went to ship state without an invoice generation.

Precision: We calculate Precision as a percentage of event data for which exe-
cution will complete without errors. We use a scale based on low (less than 33%),
medium (between 33% and 66%), and high (greater than 66%). HM achieves high
Precision and no errors in the overall flow of the fulfilment process as per the
event log content. However, analysis of the model by a domain expert reveals
logical errors such as parallelism when the activities are sequential and a loop
when there is none. The HM model indicates order creation on an exception
due to the negative outcome of one or more rules, such as the duplicate check
resulting in duplicate orders in the system.

Overall, 31.6% of the event logs data would complete without errors, lowering
its rating to low. SA-SDS addresses this issue by noting the need for duplicate
check before create along with better sequencing of activities. We also observe
that the model deduced that a release is performed directly after create in some
conditions. Heuristics indicate that resolving holds is an important precondition
before releasing an order for fulfilment. Our method correctly identifies this
precondition in its analysis. Overall, 89.6% of the event data can replay without
errors in our model. The lack of insights into orders that reached ship status
without an invoice being the cause of not getting a better Precision.

Generalisation: We perform a heuristic assessment of the model’s ability to
represent different sequences of tasks and sub-tasks. We gave a rating of high
if the model can accommodate new sequences and additional tasks and sub-
tasks. Whereas the rating is medium if the model can accommodate either new
sequences or additional tasks, and low if it can accommodate neither. Due to
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errors in the HM model, it could not include additional tasks or sequences,
resulting in a Generalisation rating of low. SA-SDS discovers more evidence
for discovered process tasks and uncovers further insights that make it better
suited for unseen data related to sub-tasks. The model captures hold and release
transitions better than HM. Hence it is better in accommodating valid new
sequences of existing tasks. The proposed method is better equipped to update
the model accurately when tasks are added or dropped. Overall, the domain
expert assessed Generalisation as medium for the proposed method and model.
Our tests were scoped to the create to ship flow of fulfilment sub-process of the
order-to-cash supply chain process. Thus, we must reevaluate Generalisation
with a broader dataset that includes more tasks, processes, and flows.

Complexity: We propose evaluating the model structure by comparing aspects
that lead to poor readability against the total number of nodes and edges in the
model. We identified that loops and parallel paths typically make the traversal
of the tree more complex than sequential paths. Also, errors such as differences
in the number of transitions indicated in the edges compared to the number
of events having a state corresponding to a node contribute to Complexity. We
define Complexity C as, C = (L+P+D)

(E+N) where L is the number of loops, P is
the number of parallel paths, E is the number of edges, and N is the number
of nodes in the model. Further, D is the number of instances where the node
values do not equate to the sum of states of incoming edges.

We map the number to a scale of simple if C < 0.5 and complex otherwise,
threshold determined by the domain expert. While the HM model created a
simple and human-readable model, the Complexity score was 0.59 due to a high
number of edge-to-node discrepancies. We calculate the corresponding score for
the model resulting from SA-SDS as 0.2. Also, since we derived our model from
additional insights, it was closely aligned with the domain expert’s view of the
process. We expect the model’s Complexity to vary according to the number of
tasks and sequences included. Our test data represented one sub-process of the
order-to-cash process. When dealing with a broader dataset involving large and
interdependent processes, we must reevaluate Complexity.

4.1 Discussion

In this section, we discuss the limitations of SA-SDS. As observed during our
evaluation, the audit log entries do not cover all tasks of a process and hence
would not help resolve time overlaps of such tasks. Also, the audit logs themselves
can face the problem of time overlap. We overcome this problem by relying
on a domain expert to provide the correct sequence of audit steps required
to meet the compliance needs of the process. The sequence information may
not be available in all cases. Further, the domain expert provided reference
patterns that allowed our implementation to map the audit log entries to process
steps. This mapping needs to be re-implemented for every instance of business-
specific audit scenarios, such as auditing a sourcing decision based on financial
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constraints, product demand, and market dynamics. The algorithm requires re-
implementation for standard audits such as PCI-DSS for payment processing,
where different implementation strategies generate different audit sequences.

Our choice of applying Heuristic miner on event log generated with onprom
established a baseline to measure improvement in determining the sequence of
tasks. SA-SDS framework augments other process discovery algorithms and log
extraction techniques that may reveal additional methods for dealing with time
overlaps. Recording high granularity timestamps in the primary event logs can
reliably resolve time overlaps. Time overlaps may also indicate the concurrent
nature of the process where the sequence is not essential. Further work is required
to ascertain the usefulness of audit logs in such situations.

5 Conclusion and Future Work

This paper described the challenge of event log entries with an overlapping times-
tamp and their impact on the discovered process model. We presented a novel
approach to applying insights from audit logs as a secondary data source (SDS)
to validate and repair the process model discovered from the event log. Once
mapped to process steps, we demonstrated the utility of audit activities for cor-
recting sequence errors in event logs for overlapping steps. Our method achieved
5X improvement in Fitness and a 2.8X increase in Precision with the model
replaying 197 additional events without errors. Our contribution to the PM com-
munity includes the novel method of mapping audit activities to process tasks
and further applying analysis to repair sequence errors in event logs.

Future work includes evaluating our approach on a broader set of business
processes, entities, and data to effectively evaluate the Generalisation and Com-
plexity metrics of the discovered process model. It also includes exploring the
utility of audit records to provide context.

Acknowledgments. We acknowledge Ms Subha Hari, Performance Architect with
IBM India Private Ltd, who helped us identify OMS APIs suitable for generating test
data, audit data annotation, and cutoff thresholds for evaluation metrics.
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Abstract. Ontology-based data access (OBDA) provides a mechanism
to extract information from databases through a conceptual ontology and
a mapping specification. This paper designs and develops a framework
for semi-automated ontology design that improves scalability and reuses
compared to manual design. We employ linguistic analysis on a database
schema to extract logical relationships and present a domain-aware pre-
processing technique to select components for creating the ontology. We
present a use case in the context of a business process in the retail sup-
ply chain domain. The approach is benchmarked against conventional
OBDA by evaluating standard metrics for the ontology, event logs, and
discovered process model. The results show that the ontology, event log,
and process model obtained through the proposed method performs bet-
ter in most evaluation metrics.

1 Introduction

Large companies define, document, implement, monitor, and manage thousands
of business processes and assets. The field of Business Process Management
(BPM) is the discipline concerned with identifying, organising, and improv-
ing the processes related to business operations. The process model depicts
a sequence and flow of tasks. The information systems implement the pro-
cesses, recording execution results in logs and data stores [18]. An event log
has one or more traces with each trace consisting of one or more events.
Each event denotes the execution of an atomic action/task (denoted by an
identifier) at a specific time. Within BPM, process mining (PM) is an active
research area on techniques that help enterprises discover, understand, and
improve business processes [23]. PM algorithms such as inductive miner and
heuristic miner use the content of the event logs to discover process mod-
els [17]. Analysts represent models using notations such as BPMN (Business
Process Model and Notation: a graphical notation that depicts the steps in a
business process), Workflow (a sequential series of tasks and decisions), Petri-
nets (a directed graph model representing state-transition of the process), and
many more. Most information systems do not generate quality event logs and
require expensive processing of the available data for process mining. Informa-
tion systems use a database to store configuration, reference, and transaction
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 297–309, 2022.
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details. The database schema design typically uses the Entity-Relationship (ER)
model to define entities, key-based relationships, and constraints. Data stored
in the database represent the subject, object, conditions, and context required
to execute processes. The availability of such comprehensive data makes the
database a potential source for event logs. Extracting event logs from databases
has challenges due to the data, rules, relationships, and dependencies stored in
disparate database objects. OBDA provides a mechanism to extract information
from databases through a conceptual ontology and a specification to map ontol-
ogy components to database columns. However, the ontology creation and the
column mapping actions are implementation-specific and require collaborative
manual effort between a domain expert and database designer. Our motivation
is to address the challenge of extracting event logs from relational database data
using database schema descriptions. Our further motivation includes creating an
industry-agnostic reusable framework that can be adapted to identify candidate
ontology components from a database schema. The framework further reduces
the manual work required to create an ontology for an OBDA process to map
domain-level process concepts to database tables.

1.1 Related Work

This section presents our findings from a comprehensive review of techniques
prevalent for log extraction in Process Mining (PM) and its parent field of Busi-
ness Intelligence. Our review focuses on using a database as a source of logs,
creating ontology from data sources, and applying ontology-based techniques for
extracting logs and mining processes. In event log extraction, metadata about
the table schema and business process provide essential context for log extrac-
tion. [7] proposed a simple matching logic using the frequency of entity terms
extracted from schema descriptions. [19] followed a semi-automatic bootstrap-
ping technique starting with a pool of keywords and using pre-defined queries
on public data sources to extract ontology components. [8,20] automated the
ontology bootstrapping by pursuing a rules-based approach which can analyse
and extract ontology elements from stored procedures and database constraints.
[16] use Association Rules Mining (ARM) to identify the positive and negative
association between terms to extract concepts from big data. [14] proposed a
metamodel to abstract the information system generating the event logs from
the data. [21] use a process data model to map the data source and schema
components for each process step to extract the log. [1] proposed an object-
centric model to capture control flow constraints, data dependencies, activity-
class relations, and shared relations. Ontology-based data access (OBDA) pro-
vides a framework for mapping an ontology to a base database schema using a
mapping mechanism [24]. [13] created a condensed knowledge graph from the
raw data to map source data to data analysis outcomes. The knowledge graph
was useful to support a query interface to data. [2] provided a meta-mapping
strategy to capture enterprise knowledge and use it for mapping to schema ele-
ments. They utilised a meta-schema (manually created) to capture concepts and
relations.
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[15] explored the potential for applying semantic-based annotations to data
sources and process models. They employed the conceptual analysis step to anno-
tate data sources with additional information. Their results showed improved
classification of traces compared to Fuzzy-BPMN miner and Inductive Miner.
[5] presented the OBDA technique by annotating a conceptual model of the avail-
able data. The authors developed tools that allow ontology-associated queries to
extract XES format data. It relied on a manually created ontology that required
high domain expertise. [6] relied on an interactive tool for users to express map-
pings and map ontology relations for use in OBDA. [9] extract, transform and
store object-centric data from a database that considers (many to many) rela-
tionships. It resulted in eXtensible Object-Centric (XOC) format event logs that
allowed process analysis without case notations in XES format.

We found that existing literature relies on manual expertise and thus lacks
scalability. Due to their reliance on integrity constraints, current approaches do
not discover or utilise logical dependencies in the context of event log extraction.
Similarly, ER model does not capture implicit relationships such as parent-child,
cause-effect, and many more. Furthermore, the reference information about the
domain stored in the database is not being utilised or explored to its fullest.
In contrast to the current work, this paper proposes a Word-Association-based
Database Analysis (WDA) technique to address the gaps of scalability, logical
dependencies, and implicit relationships discovery.

2 Novel Research Contributions

We define and implement a novel framework to determine word associations
from schema descriptions, identify keywords in the associated word sets, and
shortlist ontology components with the help of domain-aware filtering. Our pri-
mary innovation is combining the techniques of word similarity and ARM with
a Part-of-Speech (POS) based domain-specific filtering strategy. We apply the
selected ontology components in creating a process-specific ontology used for
OBDA mapping and event log extraction. We use the reference database schema
of a popular OLTP-based Order Management Software (OMS) as the context to
analyse and present the usefulness of our approach.

3 Research Methodology

This paper focuses on creating, implementing, and evaluating a framework that
uses an innovative combination of word similarity, ARM, and linguistic tech-
niques. We adapt the well-known design science research (DSR) workflow by
adding additional steps for a domain expert to 1) define the relevance of values
within the problem domain (in the first two phases) and 2) create a reference set
of domain-specific entities and intents. This section presents the design, devel-
opment, and experimental setup. The proposed approach is a multi-step process
broadly consisting of four phases, namely, a) Forming word sets from database
schema, b) Mining rulesets, c) Filtering rulesets, and d) Log extraction. We mine
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ontology relations from database schema as a preprocessing step for OBDA and
event log extraction. To validate the utility of our approach, we consider the
order-to-cash process of fulfilling an order against available inventory as exe-
cuted by OMS. The process contains multiple tasks: a) order creation with one
or more product items, b) allocating inventory for the items, c) releasing an
order to be fulfilled from a warehouse, d) printing an invoice, and e) shipping
using a logistics provider.

3.1 Forming Word Sets from Database Schema

ER models define database tables with integrity constraints such as primary
key ::: foreign key dependencies, uniqueness, and null values. When available,
names and descriptions of the tables and columns of the database schema contain
metadata meaningful to its purpose within the business context. We hypothesise
that columns about the same concepts tend to have similar keywords in their
description. The similarity is based on the entities (e.g, order) and actions per-
formed (e.g, pick). After removing language and domain-specific stopwords, we
treat each column description as a sequence of tokens. We create a dataset where
each instance represents a set of words from preprocessed column description.
We calculate the pairwise similarity between the sets using the Jaccard similar-
ity coefficient. We merge two sets if the coefficient is larger than a heuristically
determined cut-off value. We calculate the cut-off value by ensuring the following
for the resultant dataset: 1) Average words per set should increase after merging
to discard duplicate sets, 2) The number of sets is around half the number of
initial input sets to assure an average of one merge per set, and 3) Cut-off mea-
sure is higher than the mean similarity to ensure higher quality (high similarity)
merges.

At the end of this phase, each dataset instance represents words from simi-
lar columns across multiple tables in the database schema. The OMS database
schema contained 15262 non-empty column descriptions, of which 8323 were
unique. We created an initial dataset where each instance consisted of words
extracted from one unique column description. In addition to English language
stopwords, we filtered out retail domain and OMS specific stopwords such as
sequence, key, id, code, prefix, and many more. After preprocessing, the dataset
has 4934 sets of words with an average of 5.2 per set. We calculated pairwise
Jaccard similarity across sets. The scores fall between 0 and 0.5 with a mean
similarity of 0.171. 87.8% of the sets having a similarity score less than 0.05.
We merged two sets with similarity scores larger than 0.25, starting with those
with higher similarity. We determined the cut-off value of 0.25 by applying the
heuristics discussed earlier in the section. After performing the merge operation,
the dataset has 2691 sets with 6.72 words per set.

3.2 Mining Rulesets

We observe that the word sets are similar to transactions used for Market-Basket
Analysis in ARM. We apply Apriori algorithm on the dataset to uncover the
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rulesets of the form (X → Y ) where X and Y represent the antecedent and con-
sequent set of words (referred to as itemsets in ARM), respectively. To evaluate
the quality of the rule sets, we further calculate support (s(X → Y ) = σ(X∪Y )

T ),
confidence (C(X → Y ) = s(X→Y )

σ(X) ), lift (L{X → Y } = C(X→Y )
σ(Y ) ), and con-

viction ( (1−σ(Y ))
(1−C(X→Y )) ) scores. At the end of this step, we acquire a list of rules

for each domain concept along with their lift, support, confidence, and convic-
tion scores. We applied ARM on the OMS dataset of 2691 word sets to gener-
ate rules. We discarded the rules (s< 0.01 and C < 0.01) and thus obtained
72 million rules. In this case study, we extract a glossary of terms related to
the supply chain from different sources: Council for Supply Chain Management
Professionals, Inbound Logistics Magazine, and IBM Sterling Order Manage-
ment. We obtain top seven verbs relevant for fulfilment sub-process of the
order-to-cash business process: create, hold, inventory, invoice, release, sched-
ule, and ship. We filtered the rules by each word and obtained a total of 345156
rules spread across create (1274), hold (3994), inventory (39535), invoice (4135),
release (130405), schedule (463), and ship (165350).

3.3 Tag and Filter Rules

We extract the words from the rules and apply POS tagging to identify the con-
tent and function words. Using the identified words, we select rules having a com-
mon noun with another noun or verb as they indicate relationships between the
columns. With the help of a domain expert, we obtain a reference set of nouns,
verbs, and relationships relevant to the retail supply chain domain. We use the
reference set to select the final list of domain-specific rules, entities, and intents.
On the OMS dataset, we identify 228 unique words in the rules across create
(27), hold (16), inventory (57), invoice (14), release (33), schedule (11), and ship
(70). After applying POS tagging on the set of words, we select rules by apply-
ing the filtering strategy described above. As an example of a {nouni, verbi} →
{nounj , verbj} rule, we choose order (noun) and hold (verb) in the antecedent
and the words line (noun) and release (verb) in the consequent part of the rule.
Similarly, as an example of a {nouni, nounj} → {nounk} rule we select rules that
had words ship (noun) and organization (noun) in the antecedent and the word
node in the consequent portion of the rule. We shortlisted a total of 13394 rules
across create (34), hold (300), inventory (2323), invoice (292), schedule (65),
and ( ship) (6402). These rules and corresponding nouns and verbs represented
the candidate list of entities and intents from our dataset. We used the refer-
ence set to manually select order, line, organization, node, item, inventory,
hold, rule, ship, and invoice as entities. We also identified allocate, assign,
configure, setup, generate, place, release, schedule, and update as intents.

3.4 Use in Log Extraction

We use the identified entities as ontology classes and intents as relationships
We use this knowledge to construct an ontology that is used for OBDA by
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mapping data to ontology classes and objects. We use the onprom toolchain
to identify the case and trace within the ontology. We extract an XES [11]
format event log and apply Heuristics Miner [3] for process discovery. We assess
the usefulness of our approach using metrics for ontology construction, event
logs extraction, and process model discovery (discussed in the Sect. 4). Figure 1
provides the UML view of the resultant ontology for the OMS dataset.

Fig. 1. Ontology for order fulfilment with 10 entities and their associations.

We chose the entities hold, inventory, invoice, item, line, node, order,
organization, rule, and ship. We used relationships such as allocate to indi-
cate the allocation of inventory to an item in an order, create to indicate the
creation of an order, configure to represent a node in a supply chain configured
as an enterprise organisation capable of shipping orders, generate to represent
the invoice generation triggered for the order, release to initiate the warehouse
tasks, and schedule to represent the order being made available for shipping.
We further chose Rule class to represent the business rules such as duplicate
check, release and schedule. The resultant ontology correctly depicts node
as a type of organization and hold being placed on order for various business
conditions set up in rule. We used Protege editor’s Ontop mapping to create
OBDA mapping between the entities and the corresponding database table data.
We use the domain concepts and annotations from the ontology to map the data
to traces and events. We save the mapped data as an XES format event log. We
apply the Heuristic Miner (HM) algorithm to discover the process model from
the extracted event log. We discuss our findings in the next section.

4 Evaluation

In this section, we present the results of the proposed WDA approach and bench-
mark them against the conventional ER-based approach. As detailed in the above

https://onprom.inf.unibz.it/
https://protege.stanford.edu/
https://protegewiki.stanford.edu/wiki/Ontop
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section, our approach has three major outcomes: ontology, XES format log, and
the discovered process model. OBDA’s effectiveness depends on the quality of
ontology used for the data access. We observe that in the current state of the art,
evaluation of ontologies uses qualitative criteria of accuracy, completeness, cohe-
siveness, understandability, and computational efficiency. The criteria are mea-
sured through the five categories of quantitative metrics, namely base, schema,
graph, knowledgebase, and class [10]. In this paper, we focus on the complete-
ness criteria to evaluate the ontology as the process mining use case requires
an ontology that models the processes and relationships in their entirety. The
parameters of base and schema metrics indicate the completeness of an ontol-
ogy. The parameters represent the ontology design in terms of attribute richness,
inheritance richness, and axiom/class ratio, along with the number of classes and
axioms [12]. We compared the ontology created by our approach and ER-based
approach on the following: 1) Axiom count: The number of asserted state-
ments representing relationships based on class, object, and data properties. 2)
Axiom/class ratio: The proportion of classes containing axioms among all
classes. A higher value indicates the ontology’s ability to represent more process
dependencies, such as inventory allocated to a node. 3) Element count: The
number of classes, relationships, attributes, and individuals. A higher number
of elements mean the ontology captures more granular components of the pro-
cesses. 4) Attribute richness: The average number of attributes per class. A
minimum of one attribute per class is required to ensure no disjoint classes in
ontology. 5) Inheritance richness: The average number of sub-classes per class
represents the horizontal versus vertical distribution of sub-classes. Values closer
to zero indicate flat (more general) ontologies, while higher values indicate deep
(more specialised) ontologies. Process mining benefits specialised ontologies that
include more layers (granular details) and hierarchical relationships (evidence of
task flow within a process).

The ontology section of Table 1 reveals a significant increase in the num-
ber of axioms (by 137.6%), elements (by 104%), and subclass associations (by
203.2%). Higher values are due to additional classes and relationships identified
in our method. We also observe a higher axiom/class ratio (by 203%), reflecting
more relationship assertions in the ontology. Addition of hold and rule classes
allows the schedule task to be captured in the ontology. Our ontology has more
number of attributes per class (by 150%) to support additional relationships,
e.g. it captures tasks involving line, hold, organization, and invoice using differ-
ent attributes of order. It also improves the inheritance ratio (by 133%) with
a positive non-zero value (6.3), indicating a domain-specialised ontology with
greater details. The rule class’s ability to capture condition-based relationships
is one example of such specialisation.

The quality of event logs is an essential criterion for mining good process
models. [22] describe widely used quality metrics applicable for event logs: 1)
Completeness: The log represents all allowed states of the system. 2) Unam-
biguity: Each recorded state is distinct from the others. 3) Meaningfulness:
All recorded states map back to a state of the system. 4) Correctness: The
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Table 1. Comparison of ontology metrics of proposed model with ER-based model.

Outcome Metric WDA ER-based Remarks

Ontology Axiom count 499 210 137.6%

Entity count 104 51 104%

Subclass associations 94 31 203.2%

Axiom/class ratio 33.3 9.0 270%

Attribute richness 5.0 2.0 150%

Inheritance richness 6.3 2.7 133%

Event log Cases 2166 2166 Equal cases

Events 15583 6910 More events

Types 9 4 More tasks

Completeness High Low More states

Correctness High High Same

Meaningfulness High High Same

Unambiguity High High Same

Process model Fitness 0.79 0.99 Lower fitness

Precision High Low More states

Complexity Simple Simple Right complexity

right state in the log maps to the correct state in the system. The event log
portion Table 1 captures the comparison metrics for the extracted data. For the
same number of cases, the WDA-based log contained 125.5% more events and
125% more event types than the ER-based log. Additional event types identified
by WDA are hold, line, linerelease, schedule, and ship. These event types led to a
better completeness score for the WDA-based log. Both WDA and the conven-
tional method rely on the OBDA mapping to determine the state in the log. Log
extracted using WDA scores high in meaningfulness and correctness as the
OBDA mapping ties the state to the transaction data. Even though the conven-
tional method extracts less number of states, it scores high in meaningfulness
and correctness since it too relies on OBDA. [4] describe the metrics adopted
by researchers in the process mining domain to evaluate the discovered model.
The metrics assess the model’s ability to model the sequence of process states
from event logs correctly. We use the following metrics to compare the models
discovered by WDA and the traditional method: 1) Fitness: The model’s abil-
ity to replay all events observed in the log with values ranging from 0.0 to 1.0.
The metric ensures a PM algorithm such as the heuristic miner can recognise
the events in the log. 2) Precision: Accurately model each event without errors
represented in a three-step scale of high, medium, and low. The metric reflects
whether the sequence of events is correct. 3) Complexity: Measure the ease of
human analysis to validate the model against the physical process, represented as
either simple or complex. The presence of a higher number of loops and branches
impedes human readability.

Figure 2 paints the model discovered by applying Heuristics Miner (HM)
algorithm on the log generated with the ER model. HM discovers only four pro-
cess tasks arranged in a linear sequence without any branches or many states.
It also erroneously recognises charge as a peer step to invoice when it should
be a sub-task of invoice. Figure 3 represents the process model generated from
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Fig. 2. Process model generated with
HM on ER definitions.
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Fig. 3. Process model discovered with
HM on WDA generated XES event log.

the event log extracted using WDA. The model presents the expected patterns
of fulfilment flow from order creation to shipping. The observed state transi-
tions from update to line-release and release indicates the part where hold
on orders are resolved and the order is released to a warehouse for fulfillment.
Due to overlapping timestamps, release is determined as the prior state to
line-release for 59% of the events. It is also clear that 41.3% of the orders
have reached the ship state while just 19.2% of the orders generated an invoice.
These observations are in line with the expectations of the test execution. As
presented in the Process Model part of Table 1, the fitness score for the ER-
based model is 0.99. The high fitness score is due to the low number of states
identified in the log and the process’s sequential structure. WDA-model results
in a fitness score of 0.79 due to time overlaps and lack of information about
sequencing between multiple rules in the ontology. The proposed WDA-based
model scored high on precision by including all the states from the database.
ER-based model scores low as it did not include the states hold, line, linerelease,
release, schedule, and ship. Further, the ER model discovers the state charge as
a separate state when that is a sub-task of the state invoice (hence not listed
in the WDA-based model). On the simplicity metric, both models were simple
for human analysts to read and understand due to the absence of loops. In sum-
mary, while the WDA-based model scored lower on fitness, we found it to be
a more comprehensive representation of the order-to-cash process. The focus
of our paper is to evaluate the utility of Word association-based database anal-
ysis on order fulfilment part of the order-to-cash process. Comprehensively
evaluating the generalisation metric of the process requires a corpus of more
extensive and complex processes. Our proposed model partially addresses this
challenge of unavailable event logs by improving the technique to generate logs
from the database. We plan to utilise WDA in the future to discover and analyse
multi-enterprise supply chain processes.

5 Discussion

We observe that the WDA-based approach created an ontology that scored high
in the completeness metric measured by the base and schema parameters. Word
association analysis on the column descriptions, domain-specific filtering, and
reference set of relationship patterns played a crucial role in achieving the out-
come. Our technique identified logical dependencies across disjoint tables by
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choosing word association-based merging of column descriptions. In our experi-
ment, placing on hold is a task that blocks the processing of an order based on
a business condition. There are multiple types of hold : duplicate order, awaiting
approval, credit limit, fraud check, and many more. The table that stores the
business condition to trigger the hold has no schema relationship with the hold
table. WDA discovered a hold rule (R) triggered on order and line where the R is
related to customer information validity, payment limits, and business-imposed
default conditions. The payment relation is uncovered due to co-occurrence of
the keywords hold, payment, and limit.

WDA requires database column names and descriptions to be meaningful
indicators of their purpose. Schema with cryptic naming conventions or poor-
quality descriptions requires other data sources (e.g. table descriptions, design
documents) and further processing to extract meaning from the data. The num-
ber of word associations and an ARM-based ruleset generation leads to many
candidate rules. Filtering the rules by domain-specific keywords reduces the rules
from over 72 million to 0.34 million. Further, by choosing the keywords from a
widely available glossary of terms for the domain, we can replicate the filtering
for any domain where a formal glossary of terms is available.

The role of POS analysis is to focus on the entity (noun) and intent (verb)
words. Other NLP techniques such as Named Entity Recognition (NER) and
word-embedding based models (GloVe, BERT) can be used in the workflow. We
relied on a domain expert to provide a reference set of antecedent → consequent
pairs and POS combinations. The reference set helps in eliminating invalid noun-
verb pairs and determines the quality of the final candidate list of entities and
intents. A non-expert can convert the final candidate list to an ontology with the
expert reviewing the final result. While WDA did not fully automate ontology
design, it limited the expert’s involvement in creating reference sets and review-
ing the ontology design. Thus WDA achieves better scalability than a traditional
human-only technique. Further, separating domain-specific dependencies from
the core workflow ensures the solution is reusable for other domains.

The ontology creation and OBDA mapping followed the onprom toolchain
steps. The higher values of base and schema metrics of the ontology indicate
that WDA-based ontology represents the entities and relationships required to
completely model a high-level order fulfilment process. The ontology is more spe-
cialised than a vanillaER-based approachwithmore relations (e.g.node is a special
instance of an organization) identified. The ontology is case-specific and will need
to change to accommodate use cases involving additional entities or relationships.
Creating a comprehensive ontology for the domain covering a larger number of
processes and generating business rules by analysing the assertions was not in our
current research scope. The extracted event logs had additional events and event
types than those extracted by the existing ER-based approach. The OBDA map-
ping and annotations ensured that the XES format event logs included sufficient
content for the HM algorithm to discover the process. The discovered model’s abil-
ity to depict process variations needs data and ontology for additional workflows,
including complex processes from other domains such as Healthcare and Finance.
That is part of the future scope of our work.
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Overall, WDA provides a scalable framework to generate event logs from a
database. It is helpful in information systems that do not generate high-quality
event logs but use a data store with a formal schema definition. WDA enables
legacy enterprise applications to take advantage of advances in process mining to
analyse, optimise and automate their business operations. Our contributions to
the community include the innovative approach of combining the techniques of
word similarity and ARM with a POS-based domain-specific filtering strategy.

6 Conclusion and Next Steps

This article presented a word association-based database schema analysis (WDA)
technique to discover entities, intents, and relationships beyond the ER model
to improve event log extraction from RDBMS. We presented steps to analyse
the database schema through word similarity-based merging, association rule
mining, and POS tagging. We further implemented a domain-specific filtering
technique to mine valuable relationships that an ontology designer can be used to
create an ontology of the business process. Applying ARM on word associations
uncovered logical relationships beyond ER design such as calculation of tax and
surcharge being a requisite condition for the shipping task. Filtering rules by
domain words and POS tagging from 72 million to 13394 improved the time
taken for entity and intent identification. Comparative analysis of results across
the ontology created and log extracted shows measurable improvement in the
effectiveness of our approach in capturing event states and relationships. The
model discovered with our approach is better than the ER-based model in nearly
all evaluation dimensions and resulted in a comprehensive representation of the
business process. Results of WDA can improve supply chain process analysis and
optimisation. The phases of WDA are transferable to other database schema,
domains, and processes.

Future work includes addressing the gaps identified in the Sect. 1.1, evalu-
ating our approach with alternate text analysis techniques on a more extensive
set of business processes and applying our technique for intelligent automation
outcomes. Incubating a product based on the WDA framework is another work
in scope for the future.
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Abstract. While meta-heuristics are usually designed for the optimiza-
tion problems of the same domain and can achieve superior performance
compared with heuristics, their performances suffer severely when deal-
ing with cross-domain problems. Recently, many-objective optimization
methods have been proposed to handle the increase of the objectives,
and this further renders the cross-domain problems more challenging.
A technique known as hyper-heuristic (HH) has been proposed to effec-
tively handle cross-domain optimization problems, without the need to
alter the HH extensively. However, existing HHs focus mainly on single-
or multi-objective optimization problems, and little work has been done
on the many-objective optimization problems (MaOOPs) and lack delta
evaluation. Inspired by the sport of cricket, we propose a novel many-
objective selection hyper-heuristic technique named cricket-based selec-
tion hyper-heuristic (CB-SHH) in this paper, to produce well-diverse
and converged optimal solutions for MaOOPs. To the best of our knowl-
edge, we are the first to propose a sports-inspired HH. The proposed
technique computes the objective value based on the most recent mod-
ification to address one of the problems with HHs, namely the lack of
using delta evaluation, which is another contribution of the paper. In
CB-SHH, the exploitation and the exploration have been handled using
the greedy and randomization mechanism, respectively. Moreover, many-
objective meta-heuristics have been used as low-level heuristics to drive
the CB-SHH search. CB-SHH has been tested against the benchmark
and real-life datasets and has performed significantly better or equal
when compared with other meta-heuristics and HHs on 196 out of 200
instances based on Hypervolume (HV) values. Moreover, CB-SHH has
the best cross-domain performance measured by μ norm mean values
i.e. producing 234.8% and 76.4% better results than state-of-the-art HH
across HV and IGD respectively.
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1 Introduction

Optimization problems produce results based on objective functions. The results
are either maximized or minimized depending on the type of problems [9]. There
are multiple types of optimization problems based on the number of objective
functions i.e., single-objective optimization problems (SOOPs), multi-objective
optimization problems (MOOPs) and MaOOPs. In an SOOP, only one objective
function is considered. In MOOPs, more than two and less than four objectives
functions are considered. Whereas in MaOOPs, the number of objective functions
is four or more than four [3].

Many computationally hard optimization problems have been successfully
solved by different meta-heuristics which are personalized to each field by their
experts. But as the problem changes slightly, meta-heuristics usually fail to pro-
duce good results. HH is a cross-domain technique that can be used to solve
different optimization problems with a minimum change [6]. The HHs can be
divided into two main categories i.e., selection HHs and generation HHs. These
categories are made based on the type of search space. For a given optimization
problem, the selection HHs deal with the automation of selecting HHs. However,
generation HHs deal with the automation of methodologies to generate HHs
[6]. In selection HHs, low-level heuristics are selected by high-level approaches
[10]. Low-level heuristics are used to drive the search and can be meta-heuristics,
recombination operators, etc., while high-level approaches are the selection tech-
niques to select HHs [6,10,23,24,26].

Heuristics are problem-specific algorithms and meta-heuristics are usually
designed for the same domain problems, so their performances suffer while deal-
ing with cross-domain problems. Moreover, the increase in objectives also affects
the performances, therefore many-objective algorithms have been created to
tackle this problem. However, the issue remains the same and performances
continue to suffer in cross-domain problems. Recent literature describes that
the current HH techniques are mostly designed to solve SOOPs or MOOPs and
other techniques do not produce good results in cross-domain problems. More-
over, only a handful of work has been done in the field of many-objective HHs.
Furthermore, the proposed technique computes the objective value based on the
most recent modification to address one of the problems with hyper-heuristics,
namely the lack of using delta evaluation. Delta evaluation means determining
the objective values based on recently changed objective values rather than using
the entire set of solutions from the beginning to calculate objective values [6].

To tackle this issue, this paper proposes a novel many-objective selection
hyper-heuristic technique named cricket-based selection hyper-heuristic (CB-
SHH). The proposed selection HH is inspired by sport of cricket to produce
well-diverse and converged optimal solutions for MaOOPs. To the best of our
knowledge, the sports-based HH has not been explored before in the literature. In
CB-SHH, the exploitation and exploration have been handled using greedy mech-
anism and randomness respectively. As CB-SHH is developed to solve MaOOPs,
hence the three different many-objective meta-heuristics have been used as low-
level heuristics to drive the CB-SHH search. The proposed algorithm has been
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tested against two benchmark datasets i.e., DTLZ and WFG along with one
real-life problem i.e., Many-objective pickup and delivery problem (MaOPDP)
[3]. The main contributions of the paper are to develop a novel selection HH to
solve the MaOOPs effectively, to propose the first sports-inspired HH, to solve
the issue of not using delta evaluation in HHs, and to compare the results of
proposed technique with other state-of-the-art meta-heuristics and HHs.

The idea is inspired from the sports of cricket. In cricket, two batters play at
one time (striker and non-striker) and they try to score as many runs as possible
and team with the best scores win the game [17]. Striker is the one who plays
the ball and non-striker waits until the striker score certain number of runs to
get on strike [17]. Normally the best batters (based on their record/score) are
given chances at the beginning and then according to how they score runs in the
past their batting position (when they will bat) changes in the future. This idea
is incorporated into HH and CB-SHH has been proposed. Meta-heuristics have
been used as batters, and applied to the problems and based on how they score
(objective values), striker and non-striker have been decided.

In conclusion, a selection hyper-heuristic technique named cricket-based
selection hyper-heuristic (CB-SHH) is proposed. CB-SHH has been tested
against the benchmark and real-life datasets and has performed significantly
better or equal when compared with other meta-heuristics and HHs on 196 out
of 200 instances based on Hypervolume (HV) values. Moreover, CB-SHH has
the best cross-domain performance measured by μ norm mean [2] values i.e.
producing 234.8% and 76.4% better results than state-of-the-art HH across HV
and IGD respectively.

The remaining paper structure is as follows. The related work is being dis-
cussed in Sect. 2. The framework of CB-SHH is explained in Sect. 3. Section 4
discusses the empirical studies, whereas the last section presents the conclusion
and future work.

2 Related Work

This section describes the related work done for many-objective HHs recently.
The work done in the field of many-objective HH is very slight. Most of the
techniques are based on online feedback along with the perturbation approach
[11–15,18,20,29].

An HH known as a HH collaborative multi-objective evolutionary algorithm
(HHcMOEA) was presented in [12] for MOOP’s and MaOOP’s. It was shown
that HHcMOEA has produced better results when compared with other MOEAs.
A novel many-objective HH was proposed by [15]. MOEA/D and a novel selection
technique were mixed in this algorithm. The proposed algorithm experimented
against its other modifications. Inverted generational distance (IGD) was used
as an evaluation method and WFG was used as a benchmark dataset during the
experimental process. For MaOOPs, it exhibited good results.

Many-objective job shop scheduling problem was solved in [18] after the
previous work on the same problem [20]. GP along with NSGA-III was used to
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create the rules called GP-HH. A novel reference point modification technique
was introduced. It was proved the novel reference point modification technique
showed good results using the proposed technique. A MaOHH named as multi-
indicator hyper-heuristic was proposed by [11]. Indicators strengths were used
in this HH and their weakness was compensated. Moreover, online learning was
used as a feedback mechanism along with the Markov chain. Furthermore, a new
framework was presented to overcome the cost of the algorithm. The proposed
approach had better results than NSGA-III and MOEA/D.

A population-based HH is based on the combination of different MOEA’s
and is named as cooperative hyper-heuristic (HH-CO) [13]. The researchers have
made two experiments, firstly HH-CO is compared with MOEA’s and secondly,
HH-CO is compared with the champions of the CEC’18 competition. It was
proved that the proposed HH showed better results MaOOPs. In the extension of
this work, HH-C was applied on a real-life MaOOP named as wind turbine design
problem [14]. With the help of MOEA, Sandra et al. [27] developed a selection
HH for many-objective numerical optimisation and obtained promising results
when comparing benchmark and real-world datasets. A genetic programming-
based HHs was proposed by Atiya et al. [19] for the job-shop scheduling while
taking into account the various objectives. Using NSGA-III, Bianca et al. [25]
developed an HH for the many-objective quadratic assignment issue. Recently
HH named as epsilon-greedy selection HH (HH EG) was introduced [29]. Differ-
ent evaluation measures are used by low-level heuristics and it is independent of
the parameters. The benchmark datasets have been used and experiments proved
that the proposed algorithm showed better results than different MOEAs. How-
ever, it is missing the delta evaluation, which determines the objective values
using the entire set of solutions from the beginning rather than the most recent
changes.

In conclusion, the work done in the field of many-objective HHs is very less
as the focus remained on SOOPs or MOOPs and the techniques do not produce
good results in cross-domain problems and lacks delta evaluation. To tackle
the mentioned issues, CB-SHH is proposed. The proposed algorithm has been
tested against two benchmark datasets i.e., DTLZ and WFG along with one
real-life problem i.e., MaOPDP. CB-SHH has the best cross-domain performance
measured by μ norm mean values across different evaluation measures.

3 Cricket-Based Selection Hyper-Heuristic (CB-SHH)

3.1 Framework of CB-SHH

CB-SHH is based on the perturbation method with an online feedback approach
known as reinforcement learning outlined in Algorithms 1 and 2. The selection
technique (high-level) in CB-SHH is inspired by sport of cricket to produce well-
diverse and converged optimal solutions for MaOOPs. Performance indicators
i.e., Inverted generational distance (IGD) [22,28] and Hypervolume (HV) [5,22]
have been used. Cricket has been used to create CB-SHH. The idea of how two
batters remain in the crease, while one being on strike and the other being on
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Algorithm 1. Framework of CB-SHH
g: generations sc: the input solutions, sn: new solutions (non-dominated), gmax: total number of
generations, a: set of algorithms, amax: max number of algorithms, r: reference set, i: total number
of iterations, p: population size, imax: max number of iterations.
Input: gmax, a, i, p
Output: value // HV value
// Reference set is being created for fair comparison
while aj ≤ amax do

while g ≤ gmax do
sn ← ImplementingAlgorithm (aj , i, p, sc);
r ← r + sn;
g = g + 1;

end
aj ← aj+1;

end
// Generating a random value and choosing algorithm based on that value to get maximum range
of hypervolume
d ← GeneratingRandomValue (min = 0,max = 2); ∀d ∈ N

sn ← ImplementingAlgorithm (ad, imax, p, sc);
max ← ApplyHypervolume (sn, r);
// Generating two random values and choosing two algorithms to start the selection process
d1 ← GeneratingRandomValue (min = 0,max = 2);
d2 ← GeneratingRandomValue (min = 0,max = 2);
strike ← ChooseRandom(d1, d2);
CricketBasedSelection(a, i, p, sc, sn, d,max, d1, d2, strike, r);

non-strike is applied by selecting two meta-heuristics, one as a striker and the
other as a non-striker. The striker is the meta-heuristic which is applied always
to the current generation. Whereas the non-striker waits for the striker to score
poorly to come as a striker. Based on their scores, either their strike is swapped
or the striker can be given out and a new meta-heuristic takes its place based
on their previous records (scores). The new meta-heuristic is selected based on
the highest scores. The exploitation and exploration have been handled using
the greedy mechanism and randomness respectively. As CB-SHH is developed
to solve MaOOPs, hence the three different many-objective meta-heuristics have
been used as low-level heuristics to drive the CB-SHH search. CB-SHH gets the
maximum possible HV value by applying any random meta-heuristic and then
initially for a certain generation two random meta-heuristics are selected and one
out of them is applied to the problem. In the remaining generations, the meta-
heuristic is selected based on the best score among meta-heuristics. The scores of
meta-heuristic are calculated based on their performance in the last generations.
Moreover, the penalty and reward are being considered while calculating the
scores of the algorithm which are computed using the reinforcement learning
strategy.

3.2 Method

Components of CB-SHH have been discussed in this section.

Initialization. In the first generation, the population is created based on ran-
domness, whereas in the remaining generations the population from the previous
generation is passed into the next generation. The objectives values and hence the
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Algorithm 2. CricketBasedSelection(a, i, p, sc, sn, d,max, d1, d2, strike, r)
// Until end of generations
while g ≤ gmax do

sn ← ImplementingAlgorithm (astrike, i, p, sc);
value ← ApplyHypervolume (sn, r);
if value >= 0 && value < max ∗ (60/100) then

// New algorithm replaces old algorithm
score[strike] ← −2;
temp.add(getIndex(getMaxValues(score)));
int i = 0;
while temp.get(i) == d1 ‖ temp.get(i) == d2 do

temp.add(getIndex(getMaxValues(score)));
i + +;

end
if temp.HasNumberOfValues == 1 then

strike ← temp.get(0);
else

strike ← ChooseRandom(temp.getAll());
end

end
if value >= max ∗ (60/100) && value < max ∗ (70/100) then

// Strike changes
score[strike] ← −1;
strike ← Swap(d1, d2);

end
if value >= max ∗ (70/100) && value < max ∗ (80/100) then

// Algorithm remains the same
score[strike] ← 2;

end
if value >= max ∗ (80/100) && value < max ∗ (90/100) then

// Algorithm remains the same
score[strike] ← 4;

end
if value >= max ∗ (90/100) && value <= max ∗ (100/100) then

// Algorithm remains the same
score[strike] ← 6;

end
sc ← sn;
g = g + 1;

end
// Display the best HV value after last generation
Display ← value;

HV of the next generations are calculated using the modification done recently
in the solutions. Moreover, only the non-dominated solutions (snd) are allowed
to pass to the next generation as shown in (1). As shown in Algorithm 1, the ref-
erence set (r) is being created for a fair comparison between the meta-heuristics
and HHs.

func(sn(g + 1)) = func(sc(g))
∀sc ∈ snd

(1)

Algorithm Selection Technique. CB-SHH selects the better meta-heuristics
based on the HV (value) in every generation. The meta-heuristics are I-DBEA
[4], NSGA-III [7], and MOEA/D [30] as expressed by a = {a1, a2, a3, . . . , amax}.
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CB-SHH gets the maximum possible HV value (max) that can occur for a specific
problem among the mentioned meta-heuristics by applying any random meta-
heuristic (ad) for imax iterations. For the first generation two random meta-
heuristics (d1, d2) are selected and one out of them (strike) randomly is applied
to the problem (astrike). For every other generations, the best meta-heuristic
is applied based on the score of every meta-heuristic as expressed by score =
{score1, score2, score3, . . . , scoremax}.

HV (value) is calculated for that specific meta-heuristic and if the value is
less than the 60% of the maximum value (max), a new meta-heuristic is selected
based on the best scores and if multiple meta-heuristics have the same score
then any random meta-heuristic among the bests is selected. If the value is more
than 60% less than 70% of the maximum value (max) then the meta-heuristic
is swapped with the other randomly chosen meta-heuristic. If the value is more
than 70% less than or equal to 100% of the maximum value (max) then the
meta-heuristic remains the same as expressed in (2). The reason for choosing
these percentages is based on the fact that if a meta-heuristic is producing good
results then it is better not to change it with the new one and if it slightly
produces bad results then it is better to change its strike rather than replacing
with new meta-heuristic.

strike =

⎧
⎪⎨

⎪⎩

getAnyBestAlgorithm(score), if value >= 0 && value < max ∗ 0.6

swap(d1, d2), if value >= max ∗ 0.6 && value < max ∗ 0.7

strike, if value >= max ∗ 0.7 && value < max

(2)

Reinforcement Learning Strategy. The online feedback technique is imple-
mented using reinforcement learning strategy. The algorithm whose HV is higher
has received a reward, whereas the algorithm with a lower HV has received a
penalty. HV value (value) is calculated for every meta-heuristic and depending
on the value, the meta-heuristics are awarded or penalized. If the value is less
than 60% of the maximum value (max) or 70% of the maximum value (max)
then the meta-heuristics score is penalized by −1 and −2 respectively. And if the
value is less than the 80% of the maximum value (max) or 90% of the maximum
value (max) or 100% of the maximum value (max), then the meta-heuristics
score is rewarded by 2, 4, and 6 respectively as expressed in (3). The reason for
choosing the scores values is inspired by the sport of cricket as the batter can
score a maximum of 6 runs [17].

score(strike) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−2, if value >= 0 && value < max ∗ 0.6

−1, if value >= max ∗ 0.6 && value < max ∗ 0.7

2, if value >= max ∗ 0.7 && value < max ∗ 0.8

4, if value >= max ∗ 0.8 && value < max ∗ 0.9

6, if value >= max ∗ 0.9 && value <= max

(3)
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3.3 Analysis of CB-SHH

To have optimality in meta-heuristics, convergence and diversity of the solutions
in the decision space play an important role [21]. CB-SHH uses many-objective
evolutionary algorithms (MaOEAs) as meta-heuristics because MaOOPs fail to
produce good results with MOEAs due to the increased number of objectives [21].
Hence, affecting the optimality of solutions [21]. The reason of choosing I-DBEA,
MOEA/D, NSGA-III as MaOEAs is because they are state-of-the-art algorithms
for MaOOPs and the focus of the work is on the same problems. CB-SHH is han-
dling the offspring generation and environmental selection effectively by consid-
ering the non-dominated solutions from the last generation and a novel selection
mechanism respectively. Moreover, the balance between exploration and exploita-
tion of an algorithm is important to get an optimal solution globally [21] and one of
the main reasons for the proposed technique to work efficiently. As they are useful
in exploring the search space and getting closer to the best solutions respectively
which are computed using randomness and greedy mechanism respectively. Meta-
heuristics are selected randomly as well as based on the best scores. Moreover,
a reinforcement learning strategy is being implemented by handling the penalty
and reward values in the scores. Hence both randomness and greedy technique is
applied. Resulting in solutions being well exploited and explored.

3.4 Computational Complexity of CB-SHH (One Generation)

Firstly, for a fair comparison reference set is being created. O(mg(p2o)) is the
cost of creating reference set. The assumptions are as follows, O(p2o) [7] is the
cost of implementing the algorithm on a certain problem, where g is the number
of generations, m is the number of low-level heuristics, o is the dimension of the
objectives, p is the population size.

Secondly, the cost to apply an algorithm to get max value is O(p2o). The cost
to generate random numbers is constant. Lastly, the cost of the CricketBased-
Selection is O(g(p2o) + (m)). As it applies an algorithm to a certain problem
and then checks the range of value which can cost O(m) in the worst case as it
gets the maximum score value among algorithms. Therefore the overall compu-
tational cost of one generation of CB-SHH is O(mg(p2o)) i.e., O(N3), where N
represents the loops. The cost of the HH E is also O(N3) [29].

4 Empirical Studies

CB-SHH has been tested against random HH, recent HH named as HH E [29]
and three MaOEAs (I-DBEA, MOEA/D, NSGA-III). A java framework known
as MOEA is used to implement the techniques [1].

4.1 Experimental Settings

Datasets. Benchmark data sets have been used. The datasets are DTLZ2,
DTLZ4, DTLZ5, DTLZ7, WFG2, WFG4, WFG5 and WFG7 [8,16]. DTLZ2
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helps in testing the meta-heuristics (algorithms) performance for MaOOPs [8].
DTLZ4, DTLZ5, and DTLZ7 help in testing the meta-heuristics (algorithms)
performance on getting diversity, convergence and ability to have diverse sub-
populations in the Pareto-front respectively [8]. WFG2 is non-separable, convex
and disconnected [16]. WFG4, WFG5, and WFG7 are separable along with con-
cave geometry [16]. MaOPDP has been considered as a real-life problem with
six objectives [3]. The MaOPDP is a real-life problem which belongs to the class
of vehicle routing problems [3]. In literature, it has many variations but the
specific variation with six objectives are considered [3]. This specific variation
of MaOPDP is considered as it covers most of the important objectives. The
minimization objectives are number of routes, distance, time, distance and time
with largest routs, and loss [3]. It has many datasets, but for this study we con-
sidered the small dataset known as lc101 with 23 as number of vehicles and 200
as vehicle capacity [3].

Settings of Parameters. The evaluation measures for all the meta-heuristics
and HHs are calculated with 25 generations (g) and 10 iterations (i) for the
reference set and 1 iteration (i) for calculating the meta-heuristics. Iterations
(imax) for getting the maximum (max) are 1000. The considered objectives (o)
are 4, 5, 7, 10, and 12. The number of seeds is 5, to have fair results. The position
variable and distance are set to 5 in WFG. T-test (at 0.05 α value) is used to
show the significance of one algorithm over other algorithms.

Algorithms for Comparative Studies. MaOEAs (I-DBEA, MOEA/D,
NSGA-III), a Random HH, and a recent HH named as HH EG [29] have been
used for experiments. [4] proposed I-DBEA and it is an improved decomposition-
based algorithm and found to be used for MaOOPs. MOEA/D was proposed by
[30] and is based on the decomposition approach as well and can be used for
MaOOPs as well as MOOPs. NSGA-III [7] is based on a reference point-based
approach and is useful for solving MaOOPs. Random HH uses MaOEAs ran-
domly throughout the generations and HH EG is a recently proposed selection
HH based on epsilon and greedy methods.

Performance Indicators. HV [5,22] is one of the most commonly used per-
formance indicators. Its value range from 0 (worst) to 1 (best). IGD [22,28] is
another performance indicator and the lesser value is good. Both IGD and HV
consider convergence and diversity of solutions. μ norm [2] is used widely to
compare cross-domain performance.

4.2 Experimental Results and Sensitivity Analyses

Experimental Results. This section explains the experiments. During exper-
iments mean values of HV and IGD have been calculated for different datasets
against multiple algorithms (I-DBEA, MOEA/D, NSGA-III, CB-SHH, R HH,
HH EG) with 5 different numbers of objectives (4, 5, 7, 10, 12).
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Fig. 1. Mean HV, IGD values on DTLZ, WFG while considering 4, 5, 7, 10, and 12
objectives over all algorithms

Table 1. μ norm mean values of different number of objectives and algorithms using
HV values

μ norm mean on different datasets μ norm mean values of different number of objectives and algorithms

I-DBEA MOEA/D NSGA-III CB-SHH R HH HH EG

DTLZ 0.724518 0.571469 0.607398 0.755652 0.495825 0.196588

WFG 0.778608 0.277375 0.190477 0.857067 0.408579 0.295112

MaOPDP 0.478381 0 0.137309 1 0.326730 0.099522

DTLZ, WFG and MaOPDP combined 0.744900 0.414070 0.392556 0.811082 0.449141 0.242281

Ranking of algorithms 2nd 4th 5th 1st 3rd 6th

Improvement of CB-SHH over others 8.9% 95.9% 106.6% − 80.6% 234.8%

Table 2. μ norm mean values of different number of objectives and algorithms using
IGD values

μ norm mean on different datasets μ norm mean values of different number of objectives and algorithms

I-DBEA MOEA/D NSGA-III CB-SHH R HH HH EG

DTLZ 0.257204 0.380509 0.251916 0.181622 0.346625 0.852726

WFG 0.159217 0.703679 0.785566 0.212344 0.585429 0.763909

MaOPDP 0.009979 0.001216 0.013680 0 0.009930 1

DTLZ, WFG and MaOPDP combined 0.203376 0.528902 0.506422 0.192178 0.454903 0.812992

Ranking of algorithms 2nd 5th 4th 1st 3rd 6th

Improvement of CB-SHH over others 5.5% 63.7% 62.0% − 57.7% 76.4%
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Fig. 2. μ norm mean combined values of DTLZ, WFG, MaOPDP over different number
of objectives and algorithms using HV and IGD values

Figure 1 shows the mean HV and IGD values for DTLZ and WFG for all
objectives. For DTLZ2, CB-SHH has the best mean HV values for 5 and 10
objectives. For DTLZ4, CB-SHH has the best mean HV values for 4, 7, and
12 objectives. For DTLZ7, CB-SHH has the best mean HV values for 5 and 10
objectives. For WFG2, CB-SHH has the best mean HV values for 4 objectives.
For WF4, CB-SHH has the best mean HV values for 5, 7, 10, and 12 objectives.
For WFG5, CB-SHH has the best mean HV values for 5 objectives. For WFG7,
CB-SHH has the best mean HV values for 10 and 12 objectives. For MaOPDP,
CB-SHH has the best mean HV values. For DTLZ2, CB-SHH has the best mean
IGD values for 5 and 7 objectives. For DTLZ4, CB-SHH has the best mean IGD
values for 4 objectives. For DTLZ5, CB-SHH has the best mean IGD values for
10 objectives. For DTLZ7, CB-SHH has the best mean IGD values for 10 and 12
objectives. For WFG2, CB-SHH has the best mean IGD values for 4 objectives.
For WF4, CB-SHH has the best mean IGD values for 5 objectives. For WFG5,
CB-SHH has the best mean IGD values for 10 objectives. For WFG7, CB-SHH
has the best mean IGD values for 4, 7, 10, and 12 objectives. For MaOPDP,
CB-SHH has the best mean IGD values.

To check the cross-domain performance of CB-SHH, the μ norm mean values
have been calculated using HV and IGD mean values. Table 1 shows the values
of μ norm mean values for DTLZ, WFG and MaOPDP. CB-SHH has the best μ
norm mean values for DTLZ, WFG, MaOPDP, and their combined values. The
combined μ norm mean values are represented in Fig. 2 as well. Moreover, it was
found to be showing 80.6% and 234.8% improvement against the state-of-the-art
HHs.

Table 2 shows the values of μ norm mean values for DTLZ, WFG and
MaOPDP. CB-SHH has the best μ norm mean values for DTLZ, MaOPDP.
And a meta-heuristic i.e. I-DBEA has the best μ norm mean value for WFG.
However overall in the combined μ norm mean value, CB-SHH outperformed all
other algorithms. The combined μ norm mean values are represented in Fig. 2
as well. Moreover, it was found to be showing 57.7% and 76.4% improvement
against the state-of-the-art HHs.

Table 3 shows the t-test values over all datasets, objectives and algorithms
using HV values on 0.05 α. The significance of CB-SHH has been tested against
all other meta-heuristics as well as HHs. CB-SHH has performed significantly
better or equal on most of the instances i.e., 196 out of 200.
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Table 3. HV values comparison over all datasets, objectives and algorithms. Results
in terms of significantly worse (-), significantly better (+) and equal are mentioned
while alpha value is 0.05

Algorithms significance using t-test while considering HV indicator

Algorithms CB-SHH I-DBEA MOEA/D NSGA-III R HH HH EG

CB-SHH − +2/37/−1 +16/24/−0 +15/25/−0 +8/30/−2 +21/18/−1

I-DBEA +1/37/−2 − +14/24/−2 +15/24/−1 +12/27/−1 +19/18/−3

MOEA/D +0/24/−16 +2/24/−14 − +3/35−/2 +2/34/−4 +7/30/−3

NSGA-III +0/25/−15 +1/24/−15 +2/35−/3 − +1/35/−4 +8/28/−4

R HH +2/30/−8 +1/27/−12 +3/34/−2 +4/35/−1 − +10/28/−2

HH EG +1/18/−21 +3/18/−19 +3/30/−7 +4/28/−8 +2/28/−10 −

Fig. 3. Algorithms utilization over iterations on CB-SHH

The utilization of different algorithms over DTLZ, WFG, and MaOPDP has
been shown in Fig. 3. The I-DBEA is the most used meta-heuristic (algorithm)
on DTLZ, WFG, and MaOPDP.

Parametrical Analysis. Two benchmark datasets have been taken from DTLZ
and WFG along MaOPDP to perform parametrical analysis. Two set of param-
eters have been considered named as β and γ over all objectives. β represents
the original parameters done for all the experiments (reference set iterations are
set to 10, iterations set to 1, seeds are 5 and generations are 25). Whereas in
γ, the values are set to the following. Reference set iterations are set to 100,
iterations set to 10, seeds are 10 and generations are 30. Table 4 represents the
best meta-heuristics and HHs for the selected datasets using HV values. It is
shown in Table 4 that the parameters setting doesn’t affect the results except on
one instance where I-DBEA has replaced MOEA/D as the best meta-heuristic
for the DLTZ2 on 12 objectives.

Convergence Analysis. Convergence analysis has been done by taking one
dataset from each of the benchmark datasets i.e. DTLZ2 and WFG4 along with
MaOPDP. For DTLZ2, 5 objectives are considered, whereas for WFG4 10 objec-
tives are considered. The convergence over a number of generations driven by
HV values is shown in Fig. 4.
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Table 4. Best meta-heuristics and HHs over DTLZ2, WFG4, MaOPDP on all objec-
tives using HV values. β represents original parameters whereas γ represents changed
parameters.

Objectives DTLZ2 WFG4 MaOPDP

β γ β γ β γ

4 R HH R HH I-DBEA I-DBEA − −
5 CB-SHH CB-SHH CB-SHH CB-SHH − −
6 − − − − CB-SHH CB-SHH

7 NSGA-III NSGA-III CB-SHH CB-SHH − −
10 CB-SHH CB-SHH CB-SHH CB-SHH − −
12 MOEA/D I-DBEA CB-SHH CB-SHH − −

Fig. 4. Convergence of HV values of DTLZ2, WFG4 and MaOPDP on 5, 10 and 6
objectives respectively on CB-SHH and EG HH

5 Conclusion and Future Work

A novel many-objective selection hyper-heuristic technique named cricket-based
selection hyper-heuristic (CB-SHH) is proposed. CB-SHH is inspired by sport
of cricket to produce well-diverse and converged optimal solutions for MaOOPs.
The proposed algorithm has been tested against benchmark datasets i.e., DTLZ
and WFG along with MaOPDP. CB-SHH has performed significantly better
or equal when compared with other meta-heuristics and HH on 196 out of 200
instances based on HV values. It has the best μ norm mean values for all datasets
while calculating using HV values and IGD values except for the WFG while
calculated using IGD. In that case, it has the second-best μ norm mean, only
behind I-DBEA and performing better than other HHs. Moreover, it has the
best cross-domain performance measured by μ norm mean values i.e. producing
234.8% and 76.4% better results than state-of-the-art HH across HV and IGD
respectively.

In the future, the proposed CB-SHH can be applied to other many-objective
benchmark problems and real-life problems.
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Abstract. The optimal feature selection (FS) problem is widely targeted in the
field of machine learning (ML). There are several ways to select the best features
when the dataset dimension is small. However, when the dataset and number of
features tend to increase, the solution becomes unrealistic as we need to evaluate
every subset performance with the model. Various existing heuristics are partially
useful as they portray premature convergence and exponential or high computa-
tional complexity. To solve this issue, evolutionary approaches-based FS has been
extensively used in obtaining the optimal subset of features while maintaining the
accuracy of the model. This paper proposes an efficient evolutionary-based multi-
objective feature selection approach with a correlation coefficient filter method
calledMulti-ObjectiveOptimization based Feature Selection (MOOFS).We intro-
duce a two-stage process to select the best optimal features. In the first stage, a
subset of features is randomly selected, and then a novel mutual correlation coef-
ficient technique is used to get the important and relevant subset of features. The
proposed MOOFS is experimented on several datasets and compared with the
classical approach to demonstrate its efficiency.

Keywords: Feature selection · Correlation coefficient · Multi-objective
optimization · NSGA-II

1 Introduction

In the present technology-oriented world, huge number of data are generated intention-
ally or unintentionally which is stored with some characteristics, mostly referred as
features. All the features in the dataset may not be of importance due to dependency
implying features dependence on each other and redundancy indicating unwanted and
less important features. The process of selecting most optimal subset of feature is com-
monly termed as feature selection (FS), which is often considered one of themost critical
and challenging tasks in machine learning. The reduced feature set improve the com-
putational complexity and further helps in additional analysis. FS reduces feature space
(m× n) from very large space to a smaller (n× d ) space where d<m. Mathematically,
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a feature selection problem can be defined as follows: Suppose a dataset D contains n
number of features, and the objective is to select the optimal subset of features from D
which are relevant. D is represented as follows:

D = {f 1, f 2, f 3, ..., fn} (1)

where f 1, f 2, f 3, ..., fn represents the features of any dataset. In FS, we extract a subset
S = {f 1, f 2, f 3, ......, fd}, where, d < n.

In general, FS methods are classified into three categories namely filter, wrapper and
embedded (hybrid) approaches. Filter approaches use general characteristics of the data
to select features and are independent of learning algorithms. Wrapper methods always
include a learning algorithm and according to its performance (increase or decrease),
features are selected. The wrapper methods have high computational cost but provide
more accurate results. On the other hand, filter approaches have low computational
cost with less reliability. Lastly, the embedded methods include of filter and wrapper
approaches both where FS is a part of the training process that is held with a learning
algorithm.

According to set theory, if any dataset has n number of features, then 2n number of
subsets is possible, and our task is to pick best subset by which machine learning model
can give best accuracy. To select best subset, we need to evaluate every subset perfor-
mance with the model, which is unrealistic, when n increase to a huge number. Various
existing heuristics are partially useful as they portray premature convergence, exponen-
tial or high computational complexity. To solve this issue, evolutionary ormulti-objective
optimization (MOO) based FS approaches have been extensively used in obtaining the
optimal subset of features while preserving the accuracy of the model [1, 5]. These
approaches tend to be efficient, effective, and reliable methods. In practice, the FS based
on evolutionary, or MOO approaches falls under the wrapper method.

Mathematically, a multi-objective optimization problem (MOOP) can be formulated
as follows:

minimize F(x) = [f 1(x), (f 2(x)..., fm(x)]T
s.t.x ∈ D,

(2)

whereD is the decision space and x ∈ D is a decision variable. F(x) consists ofm objec-
tive functions fi : D → O, i = 1, ...,m, where O is the objective space. The function of
two objectives often trade-offs with each other, as, improvement in one objective may
lead to degradation of another. A decision maker (DM) whose having expert domain
knowledge, implicitly choose a solution which can optimize all objectives simultane-
ously. The best trade-off solutions are called the Pareto optimal solutions. In this paper,
a feature selection problem is formulated under a multi-objective optimization approach
where subset of features is selected by simultaneously optimizing more than one objec-
tive. Since there are multi-objectives, we propose to use the evolutionary algorithm (EA)
ofNon dominated sorted genetic algorithm-II (NSGA-II). Although, there aremanyEA’s
available in the literature and the selection of “best” algorithm certainly depends upon
the characteristics of each problem (No free lunch), NSGA-II is used in this paper due
to its scale-up capability [17]. The two contradictory objectives, considered in this paper
are: i) the number of selected features, and ii) Accuracy. The main goal of this paper



Multi-objective Optimization 327

is to propose an efficient evolutionary based multi-objective feature selection approach.
As obtaining the maximum accuracy is the prime objective with minimum number of
features, we select optimal feature in two stages. In the first stage, subset of features
is randomly selected by the initialization step of NSGA-II. In the second stage, mutual
correlation coefficient technique is used to get important, and relevant subset of features.

This approach is the hybrid filter-wrapper evolutionary approach where mutual cor-
relation coefficient technique is incorporated inside the considered EA. Using mutual
correlation coefficient technique, we calculate pair wise correlation for all features and
then calculate average correlation for all features from pair wise correlation matrix.
We use a threshold value and for reducing irrelevant and redundant feature we intro-
duce percentile concept which make a novel correlation coefficient technique. In this
concept, we only reduce percentage of features whose average correlation coefficient
values are above the threshold value. Collectively, the major contribution of this paper
is summarized as follows:

1) A novel correlation coefficient filter method is proposed and incorporated with
NSGA-II, to obtain optimal subset of features.

2) This paper introduces novel way to reduce only less correlated features based on
some threshold value in the filter approach. A novel randomized parameter, in the
form of a percentile value, is introduced which decides the number of features to be
reduced based on the size of the dataset.

3) The proposed approach enables to easily manage highly correlated dataset.

The remainder of this paper is organized as follows: In Sect. 2, literature review
introduces the related existing works in this field. Section 3 details the explanation of
the proposed approach of feature selection technique with the novel correlation coeffi-
cient technique. In Sect. 4, we will present experimental results of different dataset and
compare the proposed approach with traditional NSGA-II. In Sect. 5, we will draw a
summary of this article and outline the future research directions.

2 Literature Review

MOO approaches have achieved wide attention to solve the FS problems in many appli-
cations such as biomedical problems [2], text mining [3], image analysis [4], etc., where
more than thousands of features are present. Various feature selection techniques with
evolutionary algorithms (EAs) have been proposed in the literature. A survey of evo-
lutionary feature selection techniques can be found in Xue et al. [5]. Binary genetic
algorithms (Gas) are popularly used in EA when applied to feature selection. They use
N dimensional binary vector for the number of features in the dataset. Here, “1” and
“0”, shows whether the resultant feature is selected or not [6]. For more than 100 fea-
tures, exhaustive search techniques of feature selection such as SFS (Sequential Forward
Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward
Selection), SFBS (Sequential FloatingBackward Selection) algorithms are become com-
putationally infeasible in feature selection. To solve issue of selecting subset of features
in large dataset, evolutionary computing (EC) algorithms have drawn attention of the
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researchers. It has non-exhaustive search procedure which is computationally expensive
but not computationally infeasible. To solve FS problems effectively, metaheuristics
algorithms are coupled with wrapper methods that search the lower dimensional dataset
space by iteratively calling the learning algorithm [7]. Mostly used metaheuristics algo-
rithms focused on single objective of FS problems are GA [7, 17], Genetic Program-
ming (GP) [8], Particle Swarm Optimization (PSO) [9], Differential Evolution (DE)
[4], Ant Colony Optimization (ACO) [10]. Multi-objective EAs like NSGA-II [11, 20],
multi-objective evolutionary algorithm with domain decomposition (MOEA/D) [12],
Multi-objective particle swarm optimization (MOPSO) [13] are mostly used for the
multi-objective FS problems. Hu et al. proposed fuzzy multi-objective FS method with
particle swarm optimization, called PSOMOFS, where a fuzzy dominance relationship
is developed to compare the goodness of candidate particles and global leader of parti-
cles are determined by fuzzy crowding distance measure [14]. Xue et al. proposed PSO
based multi-objective FS algorithms where feature selection problem addressed by non-
dominated sorting and applying crowding distance, mutation, and dominance into PSO
[15]. Chen et.al. Proposed an efficient ACO for image feature selection [16]. In ACO,
graph is made to solve feature selection problem in which each feature is considered a
node of the graph. Any feature i.e., node is selected if an ant has visited the node. Hancer
et al. [22] developed first multi-objective artificial bee colony (MOABC) framework for
feature selection in classification, where a new fuzzy mutual information-based criterion
is proposed to evaluate the relevance of feature subsets. Khushaba et al. [18] proposed
a novel feature selection algorithm by combining DE with ACO where DE was used to
search for the optimal feature subset based on the solutions obtained by ACO.

3 Multi-objective Optimization Based Feature Selection (MOOFS)

Finding the optimal feature subset and maintaining the classification accuracy of low
and high dimensional dataset are the goal of our proposed approach. For this purpose,
we propose a novel Multi-Objective Optimization Based Feature Selection (MOOFS).
The candidate solution of MOOFS is encoded as a vector of n bits where each bit can
take value of 1 or 0 and number of selected features is decided according to the value
of 1 in the vector. Each vector is an individual in the population. For example, binary
vector solutions X of a dataset with n features represent as:

X = (x1, x2, x3, x4 . . . , xn), xj ∈ {0, 1} (3)

Then, the selected feature subset of X is:

X = (x1, x2, x3, x4 . . . , xd ) (4)

where d < n and xj = 1 represents that the corresponding jth feature is selected.
In our proposed MOOPS approach, we use binary NSGA-II algorithm with mutual

correlation coefficient technique where for all feature pair, we calculate average absolute
mutual correlation of a feature over k (= n − 1) features, where n is the total number
of features and k has (n − 1) features. Since NSGA-II algorithm randomly select ini-
tial population and offspring are generated using crossover and mutation, there is high
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possibility to select unwanted and noisy feature in each generation. To select relevant
features efficiently, after generating the population of feature set by NSGA-II, we use
mutual correlation coefficient technique (MCCT) before evaluating the selected features.
MCCT reduce the uncorrelated and less important features and gives the best subset of
features. These subsets of features evaluate by classification model to get the accuracy.
To clearly understand the proposedMOOFS, we introduce a novel algorithm (Algorithm
1) and then explain the step-by-step procedure.

Algorithm 1: Multi-Objective Optimization Based Feature Selection  
Input: Population Size, Maximum Iteration, Dataset (D), Classification Algorithm, 
Output: A set of non-dominated solutions.  

1. Generate Randomly initialize binary solutions with Population Size 
2. For it 1 = to Maximum Iteration 

a. Find out Subset-Features-Population according to value 1 in each individual 
of Population 

b. Reduced Subset-Features-Population: = Call Percentile_Correlation_Coeffi-
cient (Subset of Features, D)

c. Evaluate the whole Subset-Features-Population with KNN Classifier. 
d. Apply Non-Dominate sorting and Calculate Crowding distance. 
e. Do Selection, Crossover, and Mutation  
f. Generate New Population.   

3. Return: The non-dominated pareto optimal front (POF). 

In Step 1, a population with M individuals is randomly initialized in the binary
space {0, 1}. The variable size of a population is determined according to the feature
size of a dataset. The core process of (MOOFS) algorithm starts from Step 2, which is
iterated until the stopping criteria is met or a maximum number of iterations is reached.
In Step 2(a), the subset of features is identified with a position of 1 in the chromosome.
Then in Step 2(b), individuals are randomly generated, noisy and unwanted feature may
be included which can degrade the accuracy of the classifier. After that in Step 2(c), k-
nearest neighbors (KNN) classifier is used to evaluate the reduced subset of features with
l-fold cross validation (l = 10) technique. KNN is one of the widely used classifier in
evolutionary feature selection algorithms. The number of selected subset of features and
accuracy with KNN classifier are two objectives of ourMOOFS algorithms. The optimal
features are selected by simultaneously optimizing the objectives which are number of
selected features and accuracy. The objective functions are described as follows:

i) The number of selected features: The objective of this function isminimizing number
of features:

minF1(X ) = |X | (5)

where |X | denotes the cardinality of selected subset of features.
ii) Accuracy: Maximizing the accuracy of the classification model represent the higher

performance of classification. In this paper, accuracy is calculated by the KNN
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classifier with k fold cross-validation method (k = 10) and objective function is
defined as follows:

maxF2(X ) =
(
1

k

∑k

i=1

NCor

NAll

)
× 100 (6)

where NCor denotes the correctly classified test samples, and NAll is the total number of
test samples.

In Step 2(d), Non-dominated sorting used on the population and the crowding dis-
tance is calculated,which are keyprocess ofNSGA-II algorithm. InStep2(e, f), selection,
crossover and mutation is performed. The output of crossover and mutation is used to
generate new population for the next generation. Repeat the step 2 until the maximum
number of iterations/generations is reached. At the end in Step 3, the non-dominated
Pareto optimal front (POF) is returned where POF includes the number of selected
features and accuracy.

To improve the performance of the classifier, important, linearly independent features
need to be selected by removing noisy and unwanted feature. This task is done using
Algorithm 2 (Percentile_correlation_coefficient), which returns the reduced subset of
features after removing constant, and highly correlated features. In this algorithm, basic
correlation coefficient method is used with some conditional step. The correlation coef-
ficient technique measures the linear dependency or uncorrelation between two features.
Two features are uncorrelated when their correlation coefficient is 0 and linearly depen-
dent when their correlation coefficient is +1(positively correlated) or −1(negatively
correlated). Generally, the approach of algorithm 2 may be refereed as a filter approach.

Algorithm 2: Percentile_Correlation_Coefficient 
Input: Subset of Features, Dataset D
Output: Reduced Features Subset

1. Initialize percentile value p, number of features n, threshold value 
2. Calculate w according percentile value with formula w=round(n*p) 
3. For t=1 to w 

a. Set k=n-1 
b. Calculate Correlation Coefficient of Data set D according to Eq. (5) 
c. Compute average absolute mutual correlation of all features according to Eq. 

(4) 
d. Set s= largest average mutual correlation 
e. If s>threshold remove having largest average mutual correlation feature from 

Dataset D 
f. Set n=n-1 

4. Return Reduced Subset of Feature 

Algorithm2 shows the pseudocode of the percentile correlation coefficient algorithm.
In step 1 of this algorithm 2, we initialize the percentile value p (p = 0.3), number of
features (n) according to the input parameter-subset of features, and threshold value
(threshold = 0.9). Then, we calculate variable, w, according to the value of p and n. The
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value of w decides how many times step 3 will iterate to reduce the feature following
the condition of threshold value. In step 3(a), we define a variable k = n-1 and in 3(b),
the correlation coefficient matrix of Dataset (D) is computed, according to Eq. (7):

rx,y =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(7)

Then, step 3(c) computes the average absolute mutual correlation of one feature to
(n-1) feature according to Eq. (8), which is given as follows:

ri,k(=n−1) = 1

k

∑k

j=1,j �=i

∣∣rxi,xj
∣∣ (8)

where i is the ith feature, k denotes the all n-1 features except ith feature and j denotes 1
to k features except ith feature.

Fig. 1. Flowchart for multi-objective optimization based feature selection

Find out largest average mutual correlation value and assign to the variable ‘s’ (step
3(d)). Feature with the largest average mutual correlation will be removed in each iter-
ation, if the value of s is greater than threshold value (step (3(e)). Repeat the step 3
until the t is equated to w. As step 3 will iterate up to the value of w which means we
only reduce maximum w feature and minimum zero feature following the condition of
step 3(e). Further, the process will be iterated up-to stopping criteria and return the best
reduced subset of features (step 4). In this algorithm, we can manage highly correlated
dataset, where all feature’s average absolute mutual correlation value is greater than
the threshold which was impossible in only correlation coefficient technique. Figure 1
pictorially depicts the flowchart of proposed algorithm 1 and 2.
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4 Experimental Results

The proposedMOOFS uses NSGA-II for the feature selection. To validate the efficiency
of the proposed approach, we have used several datasets with various dimensions and
compared MOOFS with traditional NSGA-II approach. This section is divided into two
subsections. In first we have discussed about the datasets used and parameters settings
of theMOO approaches. In the later sub-section, we present the experimentation results.

i. Datasets and parameter settings
The details of the datasets used in this paper in mentioned in Table 1 which are
taken from UCI dataset [19]. The number of features varies from 33 to 241, while the
number of instances goes from351 to 4464. Themaximum iteration in theNSGA-II is
500 while the number of populations is 50. In the percentile_correlation _coefficient
method, the parameter threshold is experimented for 0.8 and 0.9 [21, 23].

Table 1. Datasets and their dimensions

Dataset #Instances #Features Classes

Ionosphere 351 33 2

Connectionist-Bench
(Sonar)

208 60 2

Hill-Valley 606 100 2

Musk1(Clean1) 476 166 2

Tuandromd 4464 241 2

ii. Experimental result and discussion.
Our proposed evolutionary Feature selection algorithm (MOOFS) is compared with
standard NSGA-II algorithm to validate its efficiency. The first set of our experimen-
tal results are Tables 2 and 3, consisting of best accuracy value corresponding to the
number of features. These tables also show the comparison among NSGA-II and our
proposed MOOFS. Table 2 shows the accuracy and number of feature values when
the threshold values is 0.8, whereas Table 3 shows the values for 0.9 threshold.

Table 2. Best accuracy of proposed MOOFS (with 0.8 threshold) and NSGA-II

MOOFS NSGA-II

Dataset Best accuracy #Feature Best accuracy # Feature

Ionosphere 94.8571 7 94.2857 9

Sonar 76.5 7 76 7

HillValley 64.9697 10 65.8333 10

Musk1 86.6479 26 84.5202 28

Taundromd 96.9389 39 96.8280 46
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From the Table 3, it’s evident that best values are obtained when the threshold value
is chosen as 0.9. For ionosphere dataset, MOOFS results in a higher accuracy of 94.865
with only six number of features, however, NSGA-II returned nine optimal features
with lesser accuracy of 94.286. For Sonar and HillValley datasets, best accuracy is again
achieved byMOOFSwhich is 76.286 and 65.97with seven and ten features, respectively.
The NSGA-II achieved less accuracy but with same number of features.

Table 3. Best accuracy of proposed MOOFS (with 0.9 threshold) and NSGA-II

MOOFS NSGA-II

Dataset Best accuracy #Feature Best accuracy # Feature

Ionosphere 94.8650 6 94.2857 9

Sonar 76.2857 7 76 7

HillValley 65.9696 10 65.8333 10

Musk1 85.0622 23 84.5202 28

Taundromd 97.1384 39 96.8280 46
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Fig. 2. POF of accuracy vs. no. of features of datasets: (a) Ionosphere, (b) Sonar (c) Hill Valley,
(d) Musk1, (e) Taundromd (Blue Color: Proposed MOOFS; Red Color: NSGA-II) (Color figure
online)
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The significant amount of improvement is achieved for the Musk1 and Taundromd
datasets, where the accuracy is significantly higher with a smaller number of features as
compared to the traditionalNSGA-II approach. The improvement in accuracy is achieved
with around 18% (Musk1) and 15% (Taundromd) reduction in number of features for
the datasets. The marginal improvement in accuracy for HillValley dataset is due to the
highly correlation among the features. It is clearly observed that our proposed MOOFS
algorithm shows better results compare to standard NSGA-II. Figure 2 shows the POFs
of all the datasets. In Fig. 3(a-e), accuracy convergence graph of the five datasets is
shown where best accuracy of every iteration is considered.
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Fig. 3. Accuracy convergence graph of Features of datasets: (a) Ionosphere, (b) Sonar (c) Hill
Valley, (d) Musk1, (e) Taundromd (Blue Color: Proposed MOOFS; Red Color: NSGA-II) (Color
figure online)

This convergence graph is made by five independent runs with 500 iterations of the
MOOFS and standard NSGA-II. Except HillValley and Musk1 dataset, we got higher
accuracy convergence graph and it is also shown that MOOFS showed stable result
around 250 iterations. We have further compared the proposedMOOFS with other well-
known classifier in machine learning using basic correlation coefficient with threshold
0.9. The results are compiled in Table 4. Hill Valley data set select only one feature
because this dataset is highly correlated. It is observed that except Hill Valley dataset,
remaining 5 datasets select more number of features which are 33 for Ionosphere, 57
for Sonar, 106 for Musk1, 154 for Tuandromd. Also, most of the classifier showed less
accuracy than our proposed approach. This trade-off of selecting optimal feature with
higher accuracy is efficiently achieved by our proposed MOOPS approach.
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Table 4. Accuracy of different classifier

Algorithm Ionosphere Sonar Hill Valley Musk1 Taundromd

Gradient boosting 91.17 57.26 50.50 62.26 98.40

Bagging classifier 91.17 57.45 51.83 66.26 98.60

Extra tree classifier 94.59 54.88 52.82 64.33 98.60

Random forest 93.73 55.90 51.83 65.00 98.40

AdaBoost 92.30 66.45 50.34 67.24 98.60

DT 86.31 58.40 50.00 62.02 98.40

Logistics regression 85.50 51.95 47.51 63.53 98.80

KNN 84.07 42.76 47.04 63.41 97.20

Support vector machine 64.14 38.09 48.00 56.87 75.00

NB 64.41 39.47 48.00 54.73 98.40

NSGA-II with KNN 94.28(9) 76(7) 65.83(10) 84.52(28) 96.78 (43)

MOOFS 94.86(6) 76.28(7) 65.96(10) 85.06 (23) 97.13 (39)

5 Conclusion and Future Work

This paper introduces a novel feature selection approach formulated under a multi-
objective optimization approach where subset of features is selected by simultaneously
optimizing more than one objective. Due to the scale-up capability, NSGA-II is uti-
lized where the two considered objectives are optimal number of features, and accu-
racy. Several datasets with various dimensions are considered for the experimentation.
The proposed approach is named Multi-Objective Optimization based Feature Selec-
tion (MOOFS), an efficient evolutionary-based multi-objective feature selection app-
roach with a correlation coefficient filter method. The experiments are done on different
datasets. From the results, a significant improvement in the accuracy with a consider-
able reduction in the number of features can be seen. Overall, our approach can reduce
irrelevant and redundant features, which helps reduce training time as well as improve
the performance of ML algorithms. One of the limitations of the proposed approach is to
define the threshold value for reducing the number of features, which can be improved in
future work. Further, the capability of the proposed approach for the big datasets shall be
experimented. This work can also be extended to self-adapting parameter values where
the correlation of the data set, dynamic in nature, can be identified.
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Abstract. Network embedding aims to learn the low-dimensional latent
representations of vertices in a network. Although there are a few works
that combine network embedding with privacy, they do not consider the
case of the multiplex network. When a vertex is deleted from the net-
work, it is easy to achieve the deleted relations by remaining embedding
vectors. We can also utilize inter-layer and intra-layer information to
pay attention to the feature and topological information in a multiplex
network. A large amount of auxiliary side information can improve the
performance of privacy attack. To address these issues, we propose choos-
ing the vertex degree with selectivity to study the problem of privacy
attack in the multiplex network. Our solution SAME, short for Sampling
Attack in Multiplex Network Embedding, consists of two components. In
the embedding component, we leverage adequate information from inter-
layer and intra-layer. Then in the privacy attack component, it generates
multiple variants of the original network by removing different single ver-
tex. We leverage these variants to train a classifier to recover the deleted
relations. We also conduct extensive experiments on several real-world
datasets covering the task of link prediction. Both quantitative results
and qualitative analysis verify the effectiveness and rationality of our
methods.

Keywords: Privacy attack · Multiplex network · Representation
learning · Membership inference

1 Introduction

With the popularization of search engines, recommender systems, and other
online applications [1], a huge volume of network data from users has been gen-
erated. To perform predictive analytics on network data, it is crucial to obtain the
representations (i.e., feature vectors) for vertices. Network embedding aims to
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learn the low-dimensional latent representations of vertices in a network. Based
on the vertex embeddings, standard machine learning techniques can be applied
to address various predictive tasks such as link prediction, clustering, and so on.
It is also well known in many research fields, including data mining [2], infor-
mation retrieval [3], natural language processing [4], etc. However, there is an
increasing demand for data protection and data recovery, especially in social
network scenarios. Therefore, it is imperative and challenging to perform such a
model to recover the relations which are removed in the network. To Distinguish
from the traditional embedding of a single-layer network, we define the embed-
ding of multiple networks as multiplex network embedding. In the multiplex
network embedding, there are more networks than single-layer network, which
can offer more associated information. As shown in Fig. 1, given a multiplex
social network that covers three different social platform information with all
embedding vectors, one user u7 in Twitter has been removed. The successful
privacy attack attempts to recover the relations by remaining information in the
Twitter network and other two platforms’ information.
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Fig. 1. The scenario of privacy attack in multiplex social network. We illustrate the
data structure and dependence between vertices and each layers’ topological structure
from three-layer network. From left to right are vertices attribute, multiplex network
structure, and their dependence between each layer.

Early studies mainly focus on the extraction of personal information due to
the increased overall awareness of privacy protection [5]. In general, one type of
attack is named model inversion attacks [6], and the other type is the member-
ship inference attack [7]. They aim to extract differences in the confidence of
the outputs between data used during the training process and data that was
not used. Our privacy attack method in multiplex network embedding is the
transformation of the inference attack. Despite effectiveness and prevalence, we
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argue that these methods can be suboptimal for privacy in multiplex network
embedding due to three primary reasons: 1) existing privacy attack methods are
not tailored for network embedding, and there is no optimization for network
and embedding vectors; 2) existing attack techniques do not consider the differ-
ences between vertices in a network, which lead to meaningless computing cost;
3) current works in privacy attack of network embedding do not consider the
situation in multi-layer network, i.e. multiplex network, which lead to a large
amount of valid information being ignored.

Is there a principled way to resolve the challenges mentioned above? To the
best of our knowledge, none of the existing works has paid special attention to
combining multiplex network embedding with privacy attack simultaneously. In
this paper, we propose SAME which utilizes vertex degrees to select samples
to train the classifier to predict the removed privacy relations in the multiplex
network. Compared with the single-layer network, the multiplex network embed-
ding involves more inter-layer information which can leverage other networks’
features and topological information to enhance the performance of the model.
We summarize the main contributions of this work as follows.

– In order to efficiently utilize the remaining embedding vectors in the original
network after deleted vertex, we proposed SAME to construct a classifier to
obtain the relations between the removed vertex and other vertices. Specifi-
cally, we remove additional vertices from the network, compute the respective
embedding, and compare them with original embedding rather than retrain-
ing.

– We simply sample the different vertices with different vertex degrees into
multiple bins, which can effectively distinguish the information density in a
network to reduce the computation cost.

– To leverage more auxiliary side information, we introduce the multiplex net-
work embedding to capture more features and topological information about
deleted data.

– We conduct extensive experiments on five real-world networks covering several
prevalent network embedding algorithms. Both quantitative results and qual-
itative analysis verify the effectiveness and rationality of our SAME method.

The remainder of the paper is organized as follows. We shortly discuss the
related work in Sect. 2. We formulate the problem in Sect. 3, before delving into
details of the proposed method in Sect. 4. We perform extensive empirical studies
in Sect. 5 and conclude the paper in Sect. 6.

2 Related Work

This section presents a brief overview of existing literature related to our work, in
particular, network embedding, multiplex network embedding, and membership
inference attack.
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2.1 Network Embedding

As an effective and efficient network analytic method, network embedding (a.k.a.
graph embedding) aims at converting the network data into a low dimensional
space in which the network structural information and network properties are
maximally preserved [8]. The study of network embedding problem has become
a hot topic in recent years and drawn more attention from both academia and
industry. In recent years, there are three main types of network embedding meth-
ods including random walk-based methods [9], factorization-based methods [10],
and deep neural network-based methods [11].

Following the pioneering work of [9], the random-walk-based methods typi-
cally apply a two-step solution: first performing random walks on the network to
obtain a “corpus” of vertices, and then employing word embedding methods to
obtain the embeddings for vertices. Grover et al. [12] introduce the breadth-first
sampling and depth-first sampling to change the method of random walk named
node2vec. Tang et al. [13] proposed a method called LINE which considers the
2nd-order proximity in the random walk to catch more implicit relations. How-
ever, Cao et al. [10] doubt whether the LINE can not obtain the deeper relations
which just utilize the 2nd-order proximity. They proposed the GraRep which
used a factorization-based method to obtain high-order relations. Deep neural
network-based methods are the state-of-the-art network embedding techniques.
Tu et al. [11] proposed a novel deep semi-supervised algorithm for simultaneous
graph embedding and node classification, utilizing dynamic graph learning in
neural network hidden layer space. DeepEmLA [14] smoothly projected different
types of attributed information into the same semantic space, while maintaining
the topological structures. Besides capturing high-order proximities, there are
several proposals to incorporate auxiliary side information into network embed-
ding, such as user profiles [15], events (hyper-edge) [16], spatio-temporal data
[17], etc.

2.2 Multiplex Network Embedding

The goal of multiplex network embedding is to achieve the information fusion of
multiple features of networks. It can be divided into two categories, joint repre-
sentation learning and coordinated representation learning [18]. Zhang et al. [19]
assume that the same vertex in multiplex networks preserves certain common
and unique feature of each layer. Thus, they proposed a scalable multiplex net-
work embedding to learn vertex embeddings in each layer by Deepwalk [9]. Ma
et al. [20] simply increased vertex embeddings in each layer of the multiplex net-
work. Recently, Yuan et al. [21] leverage similarity of vertices’ ensembles which
are selected by information density to propose a multi-view network embedding
model. In a departure from joint representation learning, coordinated repre-
sentation learning ignores the information across layers. Qu et al. [22] utilized
a few labeled data of different vertices to learn the weight of views with the
attention-based method. Liu et al. [23] extended the method to the multiplex
network by network aggregation and layer co-analysis. It is worth mentioning
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that Ning et al. [18] leverage high-order vertex dependence to explore the prob-
lem of multiplex network embedding with coordinated representation learning
in recent. It resolves the over smoothing and missing information problems by
jointly considering inter-layer and intra-layer. Although our proposed approach
varies depending on the ways of representation, its performance is independent
of various algorithms used for learning the embeddings.

2.3 Membership Inference Attack

As mentioned above, in this paper, the privacy attack in network embedding is
regarded as the transfer of general membership inference attack. Li et al. [24]
first defined the problem of inference attacks, which meant an adversary could
infer the real value of a sensitive entry with high confidence. The basic idea
is to extract differences in the confidence of the outputs for data used during
training and data that was not used. In social networks, Shokri et al. [25] used
the shadow model to construct similar training sets and target sets to determine
whether the samples are in the training sets. Zhang et.al [26] introduce a mem-
bership inference framework based on representation learning. This framework
is independent of the assumptions of the method involved in the synthetic data
generation process. Chen et al. [7] devise the first membership inference attack
against collaborative inference, to infer whether a particular data sample is used
for training the model of industrial Internet of Things. Although these methods
work well in their respective fields, they are not tailored for learning on multiplex
networks.

3 Problem Formulation

As mentioned above in Fig. 1, it is appropriate to represent these data from three
platforms that have multiple views and sources as the multiplex network. Hence,
three layers can not only represent the intra-layer relations but also can obtain
the dependencies and interactions between networks, i.e. inter-layer information.
We first give notations used in this paper, and then formalize the privacy attack
in multiplex network embedding problem to be addressed.

3.1 Notations

The important notations used in this paper are summarized in Table 1. We
assume G to be a multiplex network with |V | vertices and |L| layers. In
this network, each vertex can interact with others through |L| types of edges
(|L| ≥ 2). Hence, we can simply define the multiplex network architecture as
G = {Gl(V, E l), l ∈ L} which is made up of |L| layers with |V | vertices and
|∑l∈L E l| edges. Besides, we also define a situation in which each layer of mul-
tiplex network has the same vertices set and different edge sets as illustrated in
Fig. 1. Let i, j ∈ V be two vertices, it is simple to represent the il which is the
vertex i in layer l, and eli,j denotes the different vertices in the same layer. If it is
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Table 1. Important notations used in this paper.

Notations Explanations

G A multiplex network

V, E l The sets of vertices and edges in layer l respectively

|V |, |El| The size of vertices and edges in layer l respectively

el,l
′

i,j The edge between vertex i in layer l and vertex j in layer l′

E(G) The whole embedding sets of a multiplex network G

Evi The remaining representation after removed vertex vi in one layer

E ′
vi The retraining representation after removed vertex vi in one layer

the same vertex in different layers, it can be expressed as il and il
′
respectively.

Meanwhile, there is also an interaction between different vertices in different lay-
ers, i.e. jl

′
can be linked to il by the duplicates of i in l′ implicitly. For example,

in the social network as shown in Fig. 1 which has three layers, eTwitter,Facebook
u6,u7

is a cross-layer edge between uTwitter
6 and uFacebook

7 through an anchor link.

3.2 Problem Definition

The task of privacy attack aims to recover the removed relations in multiplex
network by remaining embeddings. In this paper, we employ the coordinated
representation learning for multiplex network embedding. Further, when the
vertex vi in one layer is removed, we denote the remaining network as Gvi

.
Therefore, the remaining representation of network is E(Gvi

). Because we only
consider one vertex within a network, it can be short for Evi

. The Evi
does

not need to retrain, so there is no explicit information in removed vertex vi.
However, the implicit information remains in the Evi

which has been influenced
by previously existing edges with vi. When the remaining vertices retraining, we
denote the representation of the network as E ′

vi
.

4 Sampling Attack in Multiplex Network Embedding

In this section, we present the proposed SAME model to address the three major
challenges mentioned in Sect. 1.

4.1 Multiplex Network Embedding

As shown in Algorithm 1, we learn the multiplex network embeddings by coordi-
nated representation learning method before privacy attack. Following the pio-
neering work [23], the global loss function of the embeddings consists of three
different components. They are intra-layer loss function, inter-layer loss function
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and attribute loss function respectively. As shown in Eq. 1, the loss function of
multiplex network embedding method is:

L = Lintra + Linter + Lattr. (1)

The inter-layer loss is expressed by k convolution layers and k deconvolution
layers as :

Lintra =
K/2∑

j=1

‖Ẑj − ZK−j‖22, (2)

in which K is the total layer number of convolution-deconvolution layers. The
input Zk is the vertices attribute X , hence the output Ẑk is a reconstruction
matrix in respect of X . These two matrices can simply be calculated by the trick
of Kipf and Welling. A general definition of graph convolution is given as follows:

Z = D̂−1/2ÂD̂−1/2XΘ, (3)

where A is an adjacency matrix, Â is the degree matrix, and D̂ii =
∑

j Aij .
ΔVi

and Δ′
Vi

represent the distance matrices of the remaining embeddings of the
network and the retraining embeddings of the network respectively. We denote
Θ as the convolutional kernel, and Θd as the deconvolution kernel. Hence, the
graph deconvolution layer can be formulated as:

Ẑ = D̂−(1/2)ÂD̂−(1/2)ZkΘd, (4)

where Ẑk is an output of the k-th layer of deconvolution layer in a neural network.
For inter-layer dependence loss, to save the vertex inter-layer dependence

property, the loss function is determined by local dependence measure Ppred(.|l, i)
and true underlying connecting distribution Ptrue(.|l, i) of vertex i in layer l,
which can be formulated as:

Linter =
1
N

∑

i∈V

l∑

l′=1

−[Ptrue(l′|l, i)logP̂pred(l′|l, i)

+ (1 − Ptrue(l′|l, i))log(1 − P̂pred(l′|l, i))],
(5)

where Ppred(.|l, i) is the concatenate of score function Score(l′|l, i):

Score(l′|l, i) = σ(hl
iWσ(

1
N

N∑

i=1

hl′
i )), (6)

in which the W is the trainable scoring matrix, σ is the logistic sigmoid non-
linearity and hl

i is the embedding of the vertex i in layer l. The Ptrue(.|l, i) is easy
to be obtained by the KL-divergence with structural similarity. To concatenate
each element with symbol Δ, the distribution is shown as:

Ptrue(.|l, i) = Δl′∈L
Sstruc(l′, l|i)∑
r∈L Sstruc(l′, l|i) . (7)
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Algorithm 1. The Multiplex Network Embedding Algorithm
Input: The network G =< V, E , L, X > ; Convolution-deconvolution neural network

with kernal Θ, Θd; Iteration times T ;
Output: E(G): The vertices embeddings of multiplex network G ;
1: Initialize the parameters of convolution-deconvolution neural network;
2: for Each iteration t ∈ T do
3: for l in L do
4: Calculate the Score function in each layer;
5: Generate the convolution embedding by Equation 3;
6: Generate the deconvolution embedding by Equation 4;
7: end for
8: Calculate Ppred by Equation 6;
9: Calculate Ptrue by Equation 7;

10: Update the convolution-deconvolution kernel Θ, Θd;
11: Reconstruct the attribute to obtain X̂;
12: Update the attribute by Equation 8;
13: end for
14: Incorporate the vertices embedding;
15: return E(G).

It is also important to introduce the reconstruction attribute x̂i =
σ(WΔL

l′=1Ẑ
l′
i ) to calculate the attribute loss function as:

Lattr =
1
N

∑

i∈V

∑

l∈L

−((xilogx̂l
i + (1 − xi)log(1 − x̂l

i))), (8)

where L is the layer number of multiplex network, xi is the attribute of vertex
i.

4.2 Overview of Privacy Attack

The privacy attack approach consists of three components as shown in Fig. 2.

Step1. Difference Matrix Calculation. First, we calculate the comprehen-
sive network embedding E of the multiplex network, then remove a vertex vi in
one layer, we obtain the remaining embedding Evi

. After the retraining, a new
representation E ′

vi
of the whole network is also obtained. Both of the distance

matrices Δvi
and Δ′

vi
can be calculated between each vertex pair. We finally

obtain the difference matrix by Diff(EVi
, E ′

Vi
) = ΔVi

− Δ′
Vi

.

Step2. Feature Vectors Construction. In order to determine whether there
is a relation between attacked vertex and other vertices which are in same layer,
we need feature vectors to train a classifier. For each vertex in the remaining
network, we calculate the distance changes to other vertices. The changes interval
can be divided into different bins which means the dimension of the feature
vector. The number of each bin represents the feature vector’s value in the fixed
dimension.
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Step3. Classifier Training. The node degree is also useful in the multiplex
network to conduct sampling. In reality, vertex with a high node degree contains
more information and is more vulnerable to attack. Hence, we sort the node
degree in order of high, medium and low to obtain different numbers of samples
by Ns = (α + β + γ) ∗ N . For the retraining representation E ′

vi
of whole network

which has removed vertex vi, we temporarily remove the sample vertex vj to
retraining a new representation E ′′

vj
. Step1 and step2 are performed for each

sample to obtain the final training dataset for constructing the classifier.

Diff( Training Features

Diff( Training Features

Diff( Training Features

Classifier

Attack Features

Fig. 2. Workflow of privacy attack. When the user has been attacked, we construct
the attack feature first. Then, through the shadow model, multiple networks have been
constructed to train the classifier. Finally, the deleted relations can recover through
the classifier.

4.3 Sampling Attack via Vertex Degree

As we described before, inference attack is independent of the algorithm used
for training the embedding [1]. However, the auxiliary side information which
derives from the multiplex network is vital for privacy attack. Hence, following
the workflow of Fig. 2, we first calculate the difference matrix Diff(EVi

, E ′
Vi

) by
the distance matrices between each vertex by Eq. 9:

Diff(EVi
, E ′

Vi
) = ΔVi

− Δ′
Vi

, (9)

where ΔVi
and Δ′

Vi
are the distance matrices of remaining embeddings of network

and the retraining embeddings of network respectively.
After we obtain different matrices, we start to construct feature vectors by

calculating the distance changes. This step is to decide the dimension of the



346 C. Kong et al.

feature vector. It divides the range of changes into n bins. Through the hyper-
parameter b, we create bins b1, b2, ..., bn that contain the same number of val-
ues. We repeat the above steps to create a training dataset for the classifier.
In this step, sampling is necessary to decrease the meaningless computation.
Node degree is the key to whether a vertex is vulnerable to attack. The vertices
are arranged according to the node degree and divided into three parts: high,
medium and low with three hyper-parameters α, β, γ as shown in Eq. 10:

Ns = (α + β + γ) ∗ N s.t. (α + β + γ ≤ 1), (10)

where the Ns is the total number of samples, and N is the number of reaming
vertices. By this equation, three hyper-parameters decide the number of samples
in different node degrees. Finally, a classifier can be performed by these training
data. Here, we employ the support vector machines as our classifier.

4.4 Discussion

We utilize the multiplex network embedding method to retrain the whole net-
work. The training algorithm is shown as Algorithm 1. In this algorithm, the
input are the multiplex network, neural networks with their initial parame-
ters and the iteration times. The result of this algorithm is to obtain the ver-
tices embeddings. In line 1, we initialize the parameters. For each iteration, we
firstly calculate intermediate parameters in each layer of a multiplex network
at lines 4 − 6. Then we calculate three different loss functions by updating the
convolution-deconvolution kernel at lines 8 − 12. At last, we incorporate the
vertices embedding into the embeddings of multiplex network G.

Hence, we deduce from the algorithm that when the SAME has S samples, the
total complexity of SAME is O(STNE|L|2) where T is the number of iterations,
N is the number of vertices in each layer, E is the number of edges of the whole
network, and L is the number of layers.

5 Experiments

To evaluate the performance of SAME, we employ it to a representative appli-
cation on five real-world networks - link prediction. Link prediction is usually
approached as a classification task that predicts whether a link exists between
two vertices. Through empirical evaluation, we aim to answer the following
research questions:

RQ1: How does SAME perform across different state-of-the-art network embed-
ding methods in link prediction?

RQ2: How does SAME perform when we reduce the auxiliary side information
through reducing the layer of multiplex network?

In what follows, we first introduce the experimental settings, and then answer
the above research questions in turn to demonstrate the rationality of our meth-
ods.
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Table 2. Basic statistics about different multiplex networks used in the link prediction
task.

Datasets #Nodes #Edges Layer descriptions with edges number

Vickers 29 740 Class: 316; Best friend: 226; Work: 198

CS-Aarhus 61 620 FaceBook: 193; Leisure: 124; Work: 21; Coauthor: 87; Lunch: 195

London 369 441 Tube:312; Overground: 82; DLR: 46

CKM 246 1, 551 Advice: 480; Discussion:565; Friend: 506

Celegans 279 5, 863 ElectrJ: 1, 031; MonoSyn: 1, 639; PolySyn: 3193

5.1 Experiment Settings

Datasets. For the link prediction task, we utilize several types of datasets involv-
ing social, biological and transportation. All of these datasets are multiplex net-
works and public accessible1. We list the statistic information about them in
Table 2.

– Vickers is collected by Vickers from 29 seventh grade students in a school in
Victoria, Australia. There are 3 layers in this network constructed by three
social questions (get along with, friends, work with).

– CS-Aarhus is a multiplex network consisted of five kinds of online and offline
relationships (Facebook, Leisure, Work, Co-authorship, Lunch) between the
employees of Computer Science department at Aarhus.

– London is collected in 2013 from the official website of Transport for London
and manually cross-checked. Vertices are train stations in London and edges
encode existing routes between stations. Underground, overground and DLR
stations are considered.

– CKM is collected by Coleman, Katz and Menzel on medical innovation, con-
sidering physicians in four towns in Illinois, Peoria, Bloomington, Quincy
and Galesburg. They were concerned with the impact of network ties on the
physicians’ adoption of a new drug, tetracycline. Three sociometric matrices
(layers) were generated, based on three questions (advice, discussion, friend).

– Celegans contains different types of genetic interactions for organisms in
the Biological General Repository (BioGRID). The present folder concerns
Caenorhabditis Elegans. The multiplex network used in the paper makes
use of the following layers: direct interaction, physical association, addi-
tive genetic interaction defined by inequality, suppressive genetic interaction
defined by inequality, association, co-localization.

Baselines. As we introduced in Sect. 2, there are three main types of embedding
algorithms. We choose the LINE [13] and node2vec [12] as the random-walk-
based algorithm, the GraRep [10] and TADW [8] as the factorization-based
algorithm, and DAGE [11] as the deep-neural-network-based algorithm. If not
specified, we use the open-source tools OpenNE2 to imply the network embed-
ding algorithms with default parameters.
1 https://manliodedomenico.com/data.php
2 https://github.com/thunlp/openne

https://manliodedomenico.com/data.php
https://github.com/thunlp/openne
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Table 3. Performance of the SAME on different networks and network embedding
algorithms with and without the multiplex network information. The value without
parenthesis is the performance of multiplex network embedding, and the value with
parenthesis is the performance of embeddings which are only leverage one-layer network
information.

Network AUC

(LINE) (node2vec) (GraRep) (TADW) (DAGE) (SAME)

Vickers 0.82 (0.74) 0.82 (0.67) 0.82 (0.76) 0.82 (0.79) 0.82 (0.79) 0.85 (0.81)

CS-Aarhus 0.93 (0.92) 0.93 (0.90) 0.93 (0.70) 0.93 (0.89) 0.93 (0.89) 0.93 (0.90)

London 0.78 (0.53) 0.78 (0.68) 0.78 (0.52) 0.78 (0.51) 0.78 (0.51) 0.80 (0.51)

CKM 0.87 (0.82) 0.87 (0.80) 0.87 (0.76) 0.87 (0.65) 0.87 (0.65) 0.89 (0.65)

Celegans 0.88 (0.86) 0.88 (0.78) 0.88 (0.76) 0.88 (0.73) 0.88 (0.75) 0.91 (0.75)

Network Precision@10

(LINE) (node2vec) (GraRep) (TADW) (DAGE) (SAME)

Vickers 0.46 (0.41) 0.46 (0.37) 0.46 (0.39) 0.46 (0.40) 0.46 (0.39) 0.46 (0.41)

CS-Aarhus 0.63 (0.55) 0.63 (0.57) 0.63 (0.51) 0.63 (0.56) 0.63 (0.56) 0.64 (0.56)

London 0.44 (0.29) 0.44 (0.31) 0.44 (0.30) 0.44 (0.31) 0.44 (0.31) 0.44 (0.32)

CKM 0.51 (0.44) 0.51 (0.45) 0.51 (0.45) 0.51 (0.46) 0.51 (0.46) 0.66 (0.45)

Celegans 0.57 (0.53) 0.57 (0.50) 0.57 (0.51) 0.57 (0.51) 0.57 (0.52) 0.59 (0.53)

Network Macro-F1

(LINE) (node2vec) (GraRep) (TADW) (DAGE) (SAME)

Vickers 0.41 (0.37) 0.41 (0.32) 0.41 (0.35) 0.41 (0.37) 0.41 (0.35) 0.41 (0.35)

CS-Aarhus 0.45 (0.40) 0.45 (0.41) 0.45 (0.44) 0.45 (0.41) 0.45 (0.39) 0.51 (0.39)

London 0.37 (0.31) 0.37 (0.32) 0.37 (0.31) 0.37 (0.33) 0.37 (0.30) 0.41 (0.31)

CKM 0.54 (0.49) 0.54 (0.47) 0.54 (0.44) 0.54 (0.45) 0.54 (0.46) 0.60 (0.44)

Celegans 0.56 (0.51) 0.56 (0.39) 0.56 (0.42) 0.56 (0.43) 0.56 (0.43) 0.56 (0.40)

Network Micro-F1

(LINE) (node2vec) (GraRep) (TADW) (DAGE) (SAME)

Vickers 0.49 (0.43) 0.49 (0.41) 0.49 (0.44) 0.49 (0.42) 0.49 (0.41) 0.53 (0.40)

CS-Aarhus 0.44 (0.41) 0.44 (0.37) 0.44 (0.36) 0.44 (0.34) 0.44 (0.33) 0.47 (0.34)

London 0.32 (0.29) 0.32 (0.30) 0.32 (0.27) 0.32 (0.28) 0.32 (0.30) 0.33 (0.30)

CKM 0.45 (0.40) 0.45 (0.39) 0.45 (0.37) 0.45 (0.38) 0.45 (0.40) 0.44 (0.40)

Celegans 0.50 (0.43) 0.50 (0.45) 0.50 (0.46) 0.50 (0.43) 0.50 (0.42) 0.46 (0.46)

Evaluation Measures. For the link prediction task, there are established eval-
uation measures. We utilize AUC, Precision@10, Macro-F 1 and Micro-F 1 as
metrics. We fine tune the α, β, γ as 0.005, 0.0025, 0.0025 with the trade-off
between the effectiveness and the efficiency in our method.
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Table 4. Performance Comparison with different layer sets. The first four sets in
CS − Aarhus, we leverage SAME to validate. The last single layer network, we utilize
the LINE method to perform.

Networks AUC Precision@10 Macro-F1 Micro-F1

FaceBook-Leisure-Work-Coauthor-Lunch 0.93 0.63 0.45 0.44

FaceBook-Leisure-Work-Coauthor 0.93 0.63 0.44 0.44

FaceBook-Leisure-Work 0.93 0.62 0.44 0.43

FaceBook-Leisure 0.93 0.59 0.43 0.43

FaceBook 0.92 0.55 0.40 0.41

5.2 Performance Comparison Under Privacy Attack (RQ1)

We evaluate the privacy attack on several different networks and embedding algo-
rithms to predict whether a vertex is connected with others, i.e., link prediction.
The values outside bracket in Table 3 denote the performance of link prediction
task after attacking by SAME which are utilized with multiplex network infor-
mation. The corresponding values in bracket illustrate the results which only use
the most edge number’s one-layer information.

Table 3 illustrates the performance comparison with and without multiplex
network information after performing privacy attack by SAME on different net-
works and network embedding algorithms in link prediction task, where we have
the following key observations: 1) the attack can recover substantial information
of the removed vertex on many networks across several network embedding algo-
rithms. Although in some networks it does not achieve good performance, it also
obtains excellent value in several networks such as AUC = 0.93 in CS-Aarhus
with SAME. It means that in practical situations, it is enough to identify an
individual; 2) the embedding algorithm is independent of the embedding algo-
rithm, because the key to the performance of attack lies in the structure of
the network rather than the effectiveness of the embedding algorithms. There
is no embedding algorithm that can perform best over all networks. Hence, we
introduce multiplex network embedding to capture more vertex attribute and
network topological structure information. It can improve the privacy attack
performance impressively.

5.3 Performance Comparison with Different Layer Number (RQ2)

In the last study, we observe that it is useful to capture more information in
privacy attack. However, how does the layer number affect the performance of
privacy attack is also a problem. We choose CS − Aarhus as the dataset in
this study because it has the most number of layers. We evaluate the privacy
attack on several layers setting by SAME and LINE. The results are shown in
Table 4, it validates what we suspected about layer number on privacy attack.
It means that the more layers we utilize, the better privacy attack performance
we achieve. Besides, it will eventually converge finally.
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6 Conclusions

In this paper, we have studied the problem of privacy attack in multiplex net-
work embedding model. It is a challenging task due to the difference of ver-
tices’ attribute and network structure. We propose a method to demonstrate the
importance of defense in network embedding and the effectiveness of auxiliary
side information in privacy attack. We have illustrated our proposed method on
five real-world networks. Experimental results indicate that multiplex network
embedding methods are easier to attack than one-layer network embedding.

In our future work, we plan to extend our work to handle the dynamic multi-
plex network embedding problems and deploy a distributed algorithm to support
more efficient computation.
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Abstract. Conditional Generative Adversarial Networks (CGANs) are
diversely utilized for data synthesis in applied sciences and natural image
tasks. Conditional generative models extend upon data generation to
account for labeled data by estimating joint distributions of samples
and labels. We present a family of modified CGANs which demonstrate
the inclusion of reconstructive cycles between prior and data spaces
inspired by BiGAN and CycleGAN improves upon baselines for natural
image synthesis with three primary contributions. The first is a study
proposing three incremental architectures for conditional data genera-
tion which demonstrate improvement on baseline generation quality for
a natural image data set across multiple generative metrics. The sec-
ond is a novel approach to structure latent representations by learn-
ing a paired structured condition space and weakly structured variation
space with desirable sampling and supervised learning properties. The
third is a proposed utilization of conditional image synthesis for super-
vised learner data set augmentation as an alternative generation met-
ric. Additional experiments demonstrate the successes of inducing cycles
in conditional GANs for both image synthesis and image classification
over comparable models with no additional tweaks or modifications. We
release our source code, models, and experiments here: https://github.
com/alexander-moore/Cycles-Improve-Conditional-Generators.

Keywords: Deep learning · GANs · Natural image synthesis

1 Introduction

Beyond demonstrations producing high-quality synthetic images, training gen-
erative models may improve downstream data efficiency, generalization, and
robustness of deep learning models across many domains [2]. Generative Adver-
sarial Networks (GANs) have received extensive ongoing study since their incep-
tion, and extensions proposed in the seminal introduction of GANs hinted at the
subsequent development of conditional GANs which specify the desired class of
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generated samples [6,11]. Conditional image synthesis with GANs learns func-
tional approximations from a joint prior-condition space to a joint condition-data
natural image space given labeled training samples [11,12].

Accounting for conditional distributions in the training of data synthesis
models allows for selection of generated data classes which may improve data
efficiency and model robustness during downstream training (Sect. 4.3, [2]). The
utilization of downstream supervised learners may additionally be a promising
metric in the training of conditional generators, particularly in non-natural image
tasks which lack standards of evaluating synthesized samples (Table 3).

This work proposes alterations to the CGAN architecture and training pro-
cedures which improve upon baseline conditional image synthesis according to
a variety of established and proposed evaluation metrics with a corresponding
incremental study isolating contributions to model improvement. We demon-
strate that incremental improvements on conditional image synthesis as mea-
sured by generative quality metrics correlate to improved downstream learner
accuracy for models trained on synthesized samples (Sect. 4.3). This finding
begets ongoing study of the role of conditional data synthesizers for data set
augmentation to improve model robustness, data efficiency, and performance on
low-data paradigms.

We study three models which improve upon baseline conditional genera-
tive GANs by inducing cycles inspired by unpaired image-to-image translation
from CycleGAN [18] with extensions to conditional data generation (Sect. 3).
We define cycles as a composition of functions from an initial space to an inter-
mediate space and back with low reconstructive error such that each function
image fulfills some distributional requirement: in the case of CycleGAN ([18],
Sect. 2.2), both spaces are image spaces with an adversarial discriminator. By
setting one of these spaces to be a multivariate normal latent prior, we induce
an autoregressive model with an added adversary, here called the conditional
autoencoder-GAN outlined in Sect. 3.1.

Two incremental modifications to this design are introduced in Sects. 3.2 and
3.3 which isolate the contributions of cycles versus autoencoding for encoder-
decoder models. A study comparing equivalent baseline conditional GANs to
cyclical models is performed in Sect. 4.1. We find that enforcing conditional,
reconstructive, and cyclical losses on the proposed models improves image syn-
thesis outcomes.

1.1 Contributions

This research contributes to the improvement of conditional natural image syn-
thesis with GANs and the utilization of conditional generation for simultaneous
or downstream supervised learning as follows:

1. A novel formulation of three conditional cyclical GANs to incorporate cycling
between spaces as well as a bipartite latent space for conditioning (Sect. 3).

2. An incremental study on the inclusion of cycles to conditional generators
demonstrating improvement on baseline conditional generators across a vari-
ety of experiments and metrics (Sect. 4).
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3. A proposed utilization of conditional image synthesis for supervised learning
data set augmentation as an alternative generation metric (Sect. 4.3).

2 Related Work

2.1 Generative Adversarial Networks

GANs have received extensive research for their promising capabilities to learn
unique solutions to training data distributions given a min-max game [6]. Opti-
mization uses expectation over samples from the training set x ∼ pdata of the
error of the discriminator given by log D(x). The discriminator evaluation of
real samples is balanced against generated samples given by the expectation
over samples z ∼ pz(z) decoded by the generator G(z), where z is the multivari-
ate standard normal prior. The agents update in turn, where the generator tries
to minimize the objective against a maximizing discriminator solved by

LGAN = min
G

max
D

V (D,G) = Ex∼pdata
[log D(x)]

+ Ez∼pz(z)[log 1 − D(G(z))].
(1)

(a) The
conditional generator.

(b) The conditional
discriminator.

(c) The auxiliary

Fig. 1. Baseline conditional GAN architectures.

Conditional GANs (Fig. 1) impart structure on the inputs to the generator
and discriminator by concatenating some label y to the input vectors of each
model [11]. This conditions the min-max optimization as:

min
G

max
D

V (D,G) = Ex∼pdata
[log D(x|y)]

+ Ez∼pz(z)[log 1 − D(G(z|y))].
(2)

The Auxiliary Classifier GAN (ACGAN) modifies the concatenated-input
discriminator of the CGAN to instead predict the corresponding class of input
training and synthetic samples [12]. This modification is discussed in Sect. 3 as a
potential benefit of training mixed-loss adversarial models. The ACGAN alters
GAN training by incorporating an auxiliary classifier head on the output of the
discriminator, with a conditional component given by:

LC = Ex∼pdata
[log P (C = c)] + Ex∼pz(z)[log P (C = c)]. (3)
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Using this conditional loss, the discriminator is trained to maximize LGAN +
LC (1) while the Generator is trained to maximize LC − LGAN [12]. In addition
to producing labeled data by specifying conditions, approximating conditional
distributions of training data with conditional generators is demonstrated to
improve generative quality and discriminability of samples over unconditional
GANs when labels are available [12].

2.2 CycleGAN

The family of models proposed in this work draws from the CycleGAN unpaired
image-to-image translation model [18]. CycleGAN (Fig. 2) training uses two
unpaired image sets drawn from distinct training distributions X and Y , typ-
ically natural images. Two models comparable to GANs are trained simulta-
neously: One generator learns F (x) = ŷ for training data x ∈ X directed by
a discriminator trained to distinguish training from synthesized samples in Y -
space, and another function which learns G(y) = x for training data y ∈ Y
taught by a discriminator who learns to distinguish training from synthesized
samples in Y -space. These generators are trained under the cycle constraint
enforced by the reconstructive penalty F (G(Y )) ≈ y and G(F (x)) ≈ x (Eq. 6).

Fig. 2. CycleGAN Architecture. Each space X,Y is accompanied by a discriminator
returning the adversarial generation loss Eq. 1.

LGAN (G,DY ,X, Y ) = Ey∼pdata(y)[log DY (y)]
+ Ex∼pdata(x)[log DY (x)]

(4)

Given generative models G,F with images in spaces X,Y respectively and
discriminators DX ,DY on spaces X,Y respectively, the full optimization objec-
tive L(G,F,DX ,DY ) is given by:

LGAN (G,DY ,X, Y ) + LGAN (F,DX , Y,X) + λLcyc(G,F ) (5)

where

Lcyc(G,F ) = Lrecon(F,G,X) + Lrecon(G,F, Y )
= Ex�pdata(x)[||F (G(x)) − x||1]
+ Ey�pdata(y)[||G(F (y)) − y||1].

(6)
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The hyperparameter λ tunes the relative importance of reconstruction and
adversarial components. This system optimizes the following:

G∗, F ∗ = arg min
G,F

max
Dx,Dy

L(G,F,DX ,DY ). (7)

Though CycleGAN emphasizes natural image style transfer, this research
investigates the usage of cycles between an unpaired multivariate normal latent
space and a natural image data space for conditional synthesis and demonstrates
that the regularization imparted by cycles may improve training outcomes over
non-cyclical baseline models via regularization imparted by additional optimiza-
tion objectives.

3 Cycles for Conditional Generation

This research proposes the Conditional Autoencoder-GAN (CAEGAN,
Sect. 3.1), Inverse Conditional Autoencoder GAN (ICAEGAN, Sect. 3.2), and
Cycle-Conditional Autoencoder GAN (CCAEGAN, Sect. 3.3) as incremental
cyclical alterations to the conditional GAN (CGAN, [11]) for conditional data
synthesis.

Training paradigms comparable to cycles have been proposed in the GAN
literature previously [5]. Though implemented differently in BiGAN in which the
discriminator evaluated corresponding pairs of latent and data points, Donahue
et. al. imparted the significance of reconstructing latent codes from samples for
the purpose of disentangling learned features [5].

3.1 Conditional Autoencoder-GAN

The CAEGAN (Fig. 3) combines reconstructive cycles with a GAN generator
by adding a reconstructive loss term to the CGAN. Loss contribution given
by discriminator evaluation of generated samples structures the variation space
without an explicit prior divergence penalty as in the VAE [9].

The autoencoder-GAN collapses the GAN generator and autoencoder
decoder into a shared parameter model, where gradients are summed and back-
propogated to both the encoder and decoder. The generative and reconstructive
tasks share parameterizations, leveraging the assumption that the training dis-
tribution and the learned approximation share a latent representation space.

Equation (8) gives the triple-criterion optimized by the CAEGAN:

L = LGAN + λ(LC + Lrecon) (8)

Two of the loss elements are directly borrowed from the nominal models: the
adversarial LGAN (1) and the autoencoding pixel-wise reconstruction loss Lrecon

given by mean squared error between the input sample and model output. LC

(Eq. 3) is given by a supervised loss from the encoder’s prediction of the input
sample label, meaning the model must predict the corresponding conditions of
the input sample in the encoding step.
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3.2 Inverse Conditional Autoencoder GAN

The Inverse Conditional Autoencoder GAN (ICAEGAN, Fig. 4) serves as the foil
to the conditional GAN for an incremental study with the addition of a cycle
which recovers latent codes from generated samples. The inverse mapping which
returns latent sample estimations of input images not provided by a typical
GAN – though it is known to be useful for auxiliary supervised feature learning
[12]. Methods such as contrastive learning [3] and BiGAN [5] emphasize the
importance of recovering the sampled latent code which led to the generation of
an image. The reconstruction loss is taken between the latent sample v and the
reconstruction v̂.

Fig. 3. Conditional Autoencoder-GAN (CAEGAN) architecture. Training samples are
encoded to a paired latent space given by a variation vector in the prior distribution,
and a condition in the label space. From this joint space encoded training samples may
be reconstructed, or new samples synthesized from prior sampling.

Fig. 4. Inverse Conditional Autoencoder GAN (ICAEGAN) Architecture. Pairs sam-
pled from the joint latent-condition space are decoded by a conditional generator, then
re-encoded by an encoding function, resulting in a reconstructive loss on the prior and
a supervised loss on the condition estimate.

L = LGAN + λ(LC + Lv recon) (9)

The reconstructive loss Lrecon is given by recovering the latent sample v in the
latent variation space V given decoded samples G(v). The multivariate standard
normal prior and condition space are sampled and decoded by the conditional
generator. This decoded random latent sample is evaluated by a discriminator,
and each model receives an adversarial loss LGAN given by (1). Departing from
the CGAN, by inducing cycles by reconstructions of encoded or decoded points
the generated sample is now re-encoded to the condition-variance space which
defines the reconstructive and predictive losses on the recovered variation and
condition samples LC and Lrecon (Eq. 3).
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3.3 Cycle Conditional Autoencoder-GAN

The Cycle Conditional Autoencoder-GAN (CCAEGAN, 5) is the extension of
the training algorithms proposed by the CAEGAN and ICAEGAN. Where the
CAEGAN and ICAEGAN perform reconstruction of a space under the image of
another space (data-latent-data and latent-data-latent, respectively), the cycle
autoencoder-GAN performs both tasks using shared coefficients. This leads to a
four part loss, given by:

L = LGAN + λ(LC + Lrecon + Lv recon) (10)

where the LC now comes from two sources: supervised learning of training data
labels Lc|x, and reconstructing the random samples of C-space by generating
and re-encoding latent samples from the condition given the decoding of the
(v, c) pair:

LC = Lc|x + Lc|G(v,c) (11)

Fig. 5. Cycle Conditional Autoencoder-GAN Architecture. Here, two cycles are per-
formed by a shared encoder and generator which incorporate losses from both CAE-
GAN and ICAEGAN components.

The CCAEGAN serves as a third incremental step to induce cycles for con-
ditional GANs. The CAEGAN may perform well due to the advantage of recon-
structing training samples, which baseline GANs cannot do. This could lead to
the model performing well on quantitative metrics by reproducing training sam-
ples while failing to produce novel samples [4,12]. The ICAEGAN and CCAE-
GAN contrast the CAEGAN as the ICAEGAN only learns from training labels
in the same manner as a GAN: indirectly through the lens of the discriminator’s
feedback.

4 Experiments

This section proposes experiments comparing the incremental cyclical models
and baselines for generative and supervised learning tasks for a natural image
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data set. Section 4.1 compares experiments in natural image synthesis quality
for the CIFAR-10 data set quantified by Fréchet Inception and Fréchet Joint
Distances, two metrics in image synthesis and conditional image synthesis eval-
uation [4,10]. We include Sect. 4.3 as a proposed alternative metric for the quality
of a trained conditional generator.

Last, we include 4.4 as a proposed direction of research combining gen-
erative, supervised, and cyclical models into a united family of distribution-
comprehension algorithms which demonstrate adversarial training of natural
image synthesis models may improve upon baseline supervised learners.

In order to compare different conditional image synthesis models we empha-
size standardized architecture, hyperparameter, training procedures consistent
with building blocks from DCGAN [13]. The DCGAN design is marked by the
following characteristics:

– Stride convolutions instead of pooling layers.
– Batch normalization between layers in both generator and discriminator.
– ReLU activations in the generator with a tanh output.
– leakyReLu activation in the discriminator.

Each model used the same architectures and hyperparameters: learning rate
ε = 2e − 4 , Adam optimizer with β1 = 0.5, β2 = 0.999, batch size of 16, and
1, 000 training epochs, resulting in 3, 125, 000 training updates per adversary.
Each component utilizes five 2-dimensional convolution layers of size 4, stride 2,
and padding 1, with ReLU or leakyReLU activations and batchnorm mirroring
[13].

There exist numerous large GANs which significantly outperform the
DCGAN-based models considered here for the FID metric [1,11,14,15]. The
models considered here serve as a study on how the minimal addition of
cycles to a DCGAN alter FID and FJD outcomes given three possible cycles
without changing the generative architecture. Lastly, models such as BigGAN
include substantial amounts of training modifications including but not limited
to spectral normalization, self attention modules, hinge losses, skip-z connec-
tions, orthogonal regularization, and truncation tricks [1]. Though these changes
improve model training stability and FID scores, our goal is to directly compare
minimal changes between conditional GANs without these design tweaks.

4.1 Quantifying Generative Quality

This section evaluates the generative quality of the proposed and baseline models
using the CIFAR-10 [10] data set, a collection of 60, 000 natural images evenly
distributed across 10 content classes. A predefined train-test split is used to
evaluate supervised learners on the unseen partition as well as compare distri-
butional distance between generated samples and unseen testing examples to
evaluate generative quality using the Fréchet Inception and Fréchet Joint Dis-
tances.

The Fréchet Inception Distance (FID, [7]) quantifies the quality of a gen-
erated distribution with respect to a target distribution by encoding each in a
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learned representation in the penultimate layer of the Inception-v3 model, a pre-
trained natural image classifier [16]. The FID is a standard metric for evaluating
generative models [4,8,17].

The FID does not account for the joint distribution of samples and classes
for conditional data to measure class adherence. The Fréchet Joint Distance
(FJD, [4]) accounts for joint distributions of images and conditions to express
generated sample quality, adherence to the intended class, and distance from
other classes. The FJD quantifies the distance between maximum likelihood
Gaussian estimation of the conditional distributions in the penultimate layer of
Inception-v3.

Table 1 demonstrates the generative quality for baseline and proposed con-
ditional generators. Training and evaluation were performed ten times for each
model class. At the conclusion of training, the FID and FJD of the trained model
are measured. The variability in the generative quality of these trained models
is recorded in the standard error reported for each experiment.

Table 1. Fréchet distances across model architectures for CIFAR-10 synthesis. Lower
is better.

FID FJD

CGAN 44.37 ± 0.05 51.97 ± 0.05

ACGAN 43.91 ± 0.03 61.59 ± 0.06

CAEGAN (ours) 37.67 ± 0.37 46.42 ± 0.04

ICAEGAN (ours) 39.06 ± 0.02 48.16 ± 0.02

CCAEGAN (ours) 35.72± 0.02 43.22± 0.03

It is worth noting that with the exception of the additional cycle the ICAE-
GAN and CGAN are identical models, as are the CAEGAN and CCAEGAN.
There is no increased model capacity or architectural difference beyond the addi-
tional loss components introduced by reconstructive cycles. When quantifying
the quality of the generated distribution, the ICAEGAN outperforms the CGAN
to a substantial degree. By contrasting these models we demonstrate cycles being
a substantial benefit to the training of generative models given a fixed decoder
capacity.

The discrepancy between the baseline and CAEGAN models cannot be
explained only by the autoencoders generating samples based on leaking recon-
struction of the training distribution as described in Sect. 3.3 as the ICAEGAN
does not perform data-space reconstruction of training samples, and the CCAE-
GAN has diluted the contribution of the data-space reconstruction compared to
the CAEGAN. Rather, generative performance is consistently improved when
the learned generative weights are updated in part by the addition of non-
adversarial cycle losses.
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4.2 Data Mining in a Low-Data Regime

Often, data mining application data sets contain few samples. Shortcomings
of adversarial training such as modal collapse and divergence are exacerbated
when models (typically the discriminator) overfit to the training data due to the
reduced problem difficulty.

In this section we investigate how the performances reported in Table 1
change with a substantially smaller data set. One quarter of the training dataset
of CIFAR-10 (12, 500 images) are used to evaluate potential collapses or dif-
ferences more apparent in the model designs for this more challenging image
synthesis task (Table 2).

Table 2. Small-data Fréchet distances across model architectures. Lower is better.

FID FJD Difference

CGAN 79.70 ± 0.83 90.56 ± 0.90 10.86

ACGAN 71.02± 0.40 88.58 ± 0.41 17.56

CAEGAN 71.77 ± 0.67 83.00± 0.68 11.23

ICAEGAN 86.04 ± 1.04 99.01 ± 1.19 12.93

CCAEGAN 73.00 ± 0.80 84.11 ± 0.85 11.11

4.3 Augmenting Training Data

The quality of a conditional image synthesizer may be quantified by the down-
stream performance of a data mining supervised learner trained using syn-
thesized samples. Synthetic data sets corresponding to a higher classification
accuracy may indicate higher quality conditional synthesis, particularly for non-
natural image tasks without explicit metrics such as the FID and FJD.

Table 3 reports the down-stream test accuracy of a multi-classification neural
network according to a swathe of synthetic sample data set proportions. In each
cell, ten trials are performed in which a baseline supervised learner is trained
using a training set which is the indicated percentage of the CIFAR-10 training
set. The remainder of the 50, 000 images are filled in with synthesized labeled
samples given by the row name. This means that for the 75% column, 37, 500
CIFAR-10 samples are chosen from a pre-determined shuffle of the training data
constant for each experiment, and the image of 12, 500 latent samples are drawn
from the corresponding generator and concatenated to the data set.

Results in Table 3 demonstrate how using conditional sample synthesis con-
tributes to model testing performance for a variety of ratios of training data to
GAN-augmented data, measuring the trained generator’s adherence to semantic
content present in CIFAR-10 testing samples as determined by the testing loss
of a model trained on the conditional synthesized samples.
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Table 3. Test accuracy when training data is augmented with different proportions of
generated samples.

Model 75% Real 25% Real 10% Real 5% Real 0% Real

CGAN 69.89 ± 0.05 64.06 ± 0.38 34.13 ± 0.16 24.91 ± 0.09 18.55 ± 0.12

ACGAN 69.45 ± 0.04 44.72 ± 0.20 27.93 ± 0.17 21.24 ± 0.17 16.13 ± 0.15

CAEGAN 69.45 ± 0.04 51.18 ± 0.18 34.45 ± 0.19 25.89 ± 0.15 19.45 ± 0.16

ICAEGAN 69.44 ± 0.05 49.61 ± 0.14 32.78 ± 0.17 25.42 ± 0.13 19.25 ± 0.15

CCAEGAN 70.00 ± 0.05 52.41 ± 0.19 36.49 ± 0.21 26.46 ± 0.10 19.95 ± 0.10

4.4 Cyclical Models Perform Classification

The final result on the benchmarking contribution of research is the demon-
stration that cyclical models do not just improve on comparable CGANs for
image synthesis, but situationally outperform comparable supervised learners
on image classification. One motivation for the study of generative models is
improved utilization of training data for robust, efficient models. Efficiency of
training data becomes increasingly vital for deep learning success as the num-
ber of samples decreases. The encoding component of each of the cycle models
CAEGAN, ICAEGAN, and CCAEGAN perform the multiple attention task of
encoding samples to the variation and code spaces. To measure supervised learn-
ing outcomes each cell of Table 4 indicates ten models trained from scratch on a
CIFAR-10 subset.

Instead of training only a predictive model, the three cycle models each
use the encoding portions of their architectures to encode the testing samples
alongside adversarial generative and reconstructive learning.

Table 4. Top-1 test accuracy of classification heads of conditional cycle models. Higher
is better.

Model 75% of Train 25% of Train 10% of Train 5% of Train

Predictor 69.87± 0.23 59.12± 0.06 47.09± 0.07 32.60 ± 0.12

CAEGAN 68.55 ± 0.04 56.34 ± 0.08 45.78 ± 0.07 41.07± 0.17

ICAEGAN 18.60 ± 0.80 20.71 ± 0.56 15.30 ± 0.89 14.05 ± 0.41

CCAEGAN 65.25 ± 0.25 50.86 ± 0.25 41.21 ± 0.18 34.30 ± 0.13

Table 4 demonstrates that the complexity of handling autoencoding, genera-
tive, and supervised tasks is a burden for the cyclical models for large volumes of
data. Though the CAEGAN and CCAEGAN testing accuracy is in stride with
the simple predictor for 75% and 25% of the training set, the results fall off for
the CCAEGAN when using 10% (5, 000) of training samples. However, a turn-
ing point exists between 10% (5, 000 samples) and 5% (2, 500 samples) of the
original set: the regularization imparted upon the encoder by managing the gen-
erative, reconstructive, and predictive tripartite loss improves the model’s testing
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accuracy, as both the CAEGAN and CCAEGAN pull ahead of the comparable
supervised learner. The ICAEGAN performance remains poor throughout due
to the encoder training without direct access to the training data set.

5 Conclusions and Future Work

We have demonstrated how the inclusion of cycles improves upon comparable
CGANs. We demonstrate that the relationship between conditional image syn-
thesis and supervised learning may benefit both tasks as performance in one area
may be used as a metric for the other. These results were consistent across the
FID, FJD and proposed augmentation metrics for CIFAR-10. The consistency
with which the three highly different cyclical models outperformed the baselines
lends itself to the notion that alternative training metrics may regularize against
shortcomings of adversarial training by limiting the space of viable parameters.

Generalizations on the theme of cycles for reconstruction may be extended to
any model architectures which rely on learning representations of data, and may
be beneficial beyond conditional GANs for image synthesis including extensions
to autoregressive and supervised learners. Contemporary research including [8]
investigates the utilization of augmentations for stabilizing GAN training, par-
ticularly for limited-data domains. The study of regularization effects including
but not limited to the corresponding quality of synthesized images and model
inference during training may be a productive area of research for the stabiliza-
tion of GAN training. Despite notorious instability in GAN training particularly
for low-n tasks, concurrent training of generative and supervised models may be
a promising direction for data-efficient multi-task deep learning models.
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Abstract. Overfitting is considered to be one of the dominant phenom-
ena in machine learning. A recent study suggests that, just like standard
training, adversarial training(AT) also suffers from the phenomenon of
overfitting, which is named robust overfitting. It also points out that,
among all the remedies for overfitting, early stopping seems to be the
most effective way to alleviate it. In this paper, we explore the role of
data augmentation in reducing robust overfitting. Inspired by MaxUp,
we apply data augmentation to AT in a new way. The idea is to gen-
erate a set of augmented data and create adversarial examples(AEs)
based on them. Then the strongest AE is applied to perform adversar-
ial training. Combined with modern data augmentation techniques, we
can simultaneously address the robust overfitting problem and improve
the robust accuracy. Compared with previous research, our experiments
show promising results on CIFAR-10 and CIFAR-100 datasets with Pre-
actResnet18 model. Under the same condition, for l∞ attack we boost
the best robust accuracy by 1.57%–2.89% and the final robust accu-
racy by 7.51%–9.42%, for l2 attack we improve the best robust accu-
racy by 1.64%–1.74% and the final robust accuracy by 3.80%–5.99%,
respectively. Compared to other state-of-the-art models, our model also
shows better results under the same experimental conditions. All codes
for reproducing the experiments are available at https://github.com/
xcfxr/adversarial training.

Keywords: Robust overfitting · Data augmentation · Adversarial
training

1 Introduction

Despite deep neural models have made an unprecedented progress on a wide
range of computer vision tasks, they can be easily fooled by adversarial exam-
ples(AEs) [1] , which can be crafted by adding small and invisible perturbation
to original images. With such intentional changes called adversarial attack to
inputs, many models fail to provide a satisfied performance. To prevent these
attacks, a whole lot of defense methods are being proposed. Adversarial train-
ing(AT) [2], which creates AEs and then treats them as training sets, is consid-
ered as the most efficient approach against adversarial attack.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 365–378, 2022.
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Fig. 1. This is the robust test on accuracy between baseline [2] and our method under
the PGD10 attack. The baseline method suffers serious robust overfitting, but our
method doesn’t. Further more, our final model surpasses the best checkpoint of the
baseline, which can be achieved by early-stopping [3].

However, recently a study [3] finds something intriguing in AT. It observes
that just like standard training, AT also suffers from the phenomenon of overfit-
ting (see left picture of Fig. 1). Namely, after several epochs of training, especially
after the adjustment of learning rate, the robust test accuracy begins to decrease
while robust train accuracy still increases. Various technologies are proposed to
address the problem, among which early stopping seems to be the most effective
way to alleviate the problem, while other tricks, such as regularization effect of
data augmentation, including mixup [4] and cutout [5], seem to be ineffective.

In this paper, we use data augmentation to counter this robust overfitting
phenomenon and to achieve better robust accuracy. As shown in the right picture
of Fig. 1, throughout the whole training process, the robust test accuracy and
the robust train accuracy rises continuously.

Inspired by MaxUp [6], we apply data augmentation to adversarial training
process. In our approach, we first generate a set of augmented data and then
create adversarial examples(AEs) based on them. The AE which causes the
maximal loss is used to perform AT. While MaxUp [6] minimizes the average risk
of the worst augmented data, we use the attack method to create AEs and then
minimize the average risk of the worst AEs. Our experiments demonstrate that
combined with our approach, augmentations including mixup and cutmix can
neutralize robust overfitting partially and meanwhile achieve a better prediction
result than early stopping scheme. As shown in Fig. 2, compared with the early
stopping approach [3], our approach still produces a correct label for perturbed
image, while the baseline approach returns a false one.

Our experiments achieve promising results on the CIFAR-10 and CIFAR-
100 datasets with the PreactResnet18 model. Under the same condition, for
l∞ attack we boost the best robust accuracy by 1.57% − 2.89% and the
final robust accuracy by 7.51% − 9.42%, for l2 attack we improve the best
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Fig. 2. We show the gap between the early stopping method [3] and our method. Left
column: the original images. Middle column: the l∞ adversarial noises by applying
PGD10 for 10 iterations. We normalize the noise into [0, 255] . Right column: the gen-
erated adversarial images. We also show the predicted labels and probabilities of these
images.

robust accuracy by 1.64% − 1.74% and the final robust accuracy by 3.80% −
5.99%, respectively. All codes for reproducing the experiments are available at
https://github.com/xcfxr/adversarial training.

2 Related Work

Szegedy et al. [1] observe that deep neural models are vulnerable to impercepti-
ble perturbations. With such perturbations, vanilla images become adversarial
examples(AEs) which can successfully fool the models. The approaches of gen-
erating AE are known as an adversarial attack. Some early approaches adopt
the fast gradient sign method(FGSM) [7], which crafts AE with a single gradient
step. BIM [8] on the other hand, extends FGSM to iterative small gradient steps.
DeepFool [9] declare that changing one pixel is enough to fool the classifier [10].
Among all approaches, projected gradient decent(PGD) [2] is considered as one
of the strongest first-order attack. As a result, a lot of PGD-based work was
studied, e.g. PGD combined with momentum [11] and logit pairing [12].

To address the problem of adversarial attack, many defense-related work
have been proposed. Some defense approaches are not always effective, such as
distillation [13] and generator [14,15]. Normally, adversarial training(AT) [2] is
considered as the most successful defensive approach. AT has attracted a series of
research efforts [10,16,17], among which Trades [17] is a notable work, achieving
a trade-off between the efficiency and robust accuracy.

Recently, Rice et al. [3] demonstrate that there is a serious overfitting phe-
nomenon called robust overfitting during AT and there is no effective way as good
as early-stopping to tackle it. Another research [18] also points out that despite

https://github.com/xcfxr/adversarial_training.
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of their excellent performances on improving robustness in standard training,
data-driven augmentations do not improve robustness to lp norm bounded per-
turbations. Contrary to their finding, Rebuffi et al. [19] show that data aug-
mentation has the potential to alleviate robust overfitting. In their experiment,
although data augmentation alone cannot improve robustness, with smooth-
ing the weights by model weight averaging(WA) [20], augmentation techniques
can alleviate overfitting and achieve a significant performance improvement. In
another research, Chen et al. [21] show that schemes of learned smoothening
is supposed to be a possible way to resist robust overfitting. They smooth the
weights by WA and the logits via self-training. In the latest research, Rebuffi et
al. [19] incorporate a large number of tricks to achieve the state-of-the-art robust
accuracy.

3 Preliminaries

3.1 Notations

In this section, we use x ∈ R
W×H×C and y to denote a training image

and its label, respectively. (x′, y′) is obtained from (x, y) by data transforma-
tion.Let Dn and L denote the training dataset with N input-label pairs and
the loss function, respectively. The neural network parameterized by θ is rep-
resented as fθ. So the empirical risk minimization(ERM) can be denoted as
min

θ
E(x,y)∼Dn

[L (fθ (x) , y)]. And we use δ to represent the perturbation created

by adversarial attack and δ are limited to the range of S, where S is chosen to
be a lp-norm ball and represents a closed interval [−ε, ε](ε defines the maximum
perturbation allowed).The letter m is the hyper-parameter of our algorithm,
which represents the number of AEs generated for each sample. We denote the
accuracy rate on the adversary as “robust accuracy”, so the accuracy rate on
the training adversary and test adversary are called “robust train accuracy” and
“robust test accuracy”, respectively.

3.2 MaxUp

The key idea of MaxUp is that for each (x, y), Gong et al. [6] generates m samples
by applying data transformations, which can be Gaussian Sampling N (

x, σ2I
)

or data augmentations. In the next step, among the m data points, they choose
the one that maximizes the loss function as a new training sample. The method
can be summarized as:

MaxUp arg min
θ

E(x,y)∼Dn

[
max
i∈[m]

L (fθ (x′
i) , y′

i)
]

(1)

Gong et al. consider MaxUp as a smoothness Regularization. They define

Lmax
m (fθ (x) , y) = E

[
max
i∈[m]

L (fθ (xi))
]

Lavg
m (fθ (x) , y) = E

[
1
m

m∑

i=1

L (fθ (xi))

] (2)
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and prove the following equal equation:

Lmax
m (fθ (x) , y) = Lavg

m (fθ (x) , y) + Φ (x, θ) + O
(
σ2

)

c−
m‖∇xL (fθ (x) , y) ‖ ≤ Φ(x, θ) ≤ c+m‖∇xL (fθ (x) , y) ‖,

(3)

where c+m ≥ c−
m ≥ 0 and σ2 bounds the range of changes in x caused by trans-

formation or data augmentation.

3.3 Projected Gradient Descent

Projected Gradient Descent(PGD) [2] is a method for generating reliable first-
order adversaries. An lp PGD adversarial example would start at some random
initial perturbation δ(0), where δ(0) ∼ U (−ε, ε) . Then the perturbation will be
iteratively adjusted with the following gradient steps while projecting back onto
lp ball with radius ε. The whole process can be described as:

δ̃ = δ(t) + α · sign (∇xL (fθ (x + δ) , y))

δ(t+1) = max
(
min

(
δ̃, ε

)
,−ε

)
.

(4)

Madry et al. [2] treat these newly generated adversaries as datasets and train
the robust model to defense adversarial attack, which is known as Adversarial
training(AT).

4 Methods

4.1 Algorithm

Our approach extends MaxUp and AT as follows. For each training example
(x, y), we first use augmentation techniques to generate m augmented data X ∈
R

m×W×H×C1. Then we apply PGD-attack to those generated data points. By
adding restricted perturbation, we can create m adversarial examples(AEs).

Among the m adversarial examples, we choose the one that generates the
maximal loss in our new training dataset. In this way, we can gain new and
more complex adversarial examples as our samples. The final step is utilizing
the new generated AEs to perform adversarial training. Overall, we propose a
new way of applying data augmentations to adversarial training(AT), which can
be summed up as:

arg min
θ

E(x,y)∼Dn

[
max
i∈[m]

L (fθ (xi + δi) , yi)
]

. (5)

The complete process of our method is described in Algorithm 1. The first six
lines are about the input and output. Lines 10 to 15 specifically describe how
we create AEs and apply data augmentation into AT at the formula level.
1 In this paper, we adopt mixup [4] and cutmix [22] as our data augment approaches.
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Algorithm 1. Using Data Augmentation in Adversarial Training
1: Input:
2: training one training sample: (x, y)
3: augmentation techniques: aug (x, y)
4: attack method: attack (fθ (x) , y)
5: Output:
6: new training sample (X ′, Y ′)
7: i ← 0, loss ← 0
8: while i �= m do
9: X, Y = aug (x, y)

10: δ = attack (fθ (X) , Y )
11: if L (fθ (X + δ) , Y ) > loss then
12: X ′ ← X + δ
13: Y ′ ← Y
14: loss ← L (fθ (X + δ) , Y )
15: end if
16: i ← i + 1
17: end while
18: return X ′, Y ′

4.2 Analysis

When m is equal to 1, our algorithm degenerates into ordinary adversarial train-
ing. When m become larger, more powerful and more sophisticated adversarial
examples(AEs) can be crafted, so that both in quantity and intensity our AEs is
more dominant. A trade-off of the approach is that, although parallel computing
is possible, from the perspective of computing resources, resources consumed
and memory occupied per epoch will increase linearly as m increases. A larger
m, on the other hand, can result in a faster convergence.

Here is a plausible explanation of why our approach works. With the con-
clusion of MaxUp(3.2) and our methods, the empirical risk in the AT turns
into

E(x,y)∼Dn

[
1
m

m∑

i=1

Lavg
m (fθ (xi + δi) , yi)

cm‖∇xi
L (fθ (xi + δi) , yi) ‖ + O

(
σ2

)
]

,

(6)

where c+m ≥ cm ≥ c−
m ≥ 0. So when we perform AT with the worst AE that costs

the maximal loss, the loss function has become a combination of a loss term
which measures how well the model fits the AE, a regularization term related
to the norm of ∇x and a high-order infinitesimal term which can be ignored.
The expectation of the loss term equals the expectation with normal AT, so our
algorithm essentially adds a penalty which restricts the magnitude of ∇x in the
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process of AT. Because of the regularization term, the first step of generating
AEs(3.3) has also changed. It turns into

δ̃ = δ(t) + α · sign (∇xi
[L (fθ (xi + δi) , yi) + Φ(xi, θ)]) , (7)

where Φ(xi, θ) equals cm‖∇xi
L‖. It is clear that the sign of the gradient may

change due to the extra term Φ (x, θ), so our methods can affect the process of
making the AEs to some extent.

In summary, our approach is a crafty combination of adversarial training
and data augmentation, by making sophisticated AEs in parallel to train a more
robust model.

5 Experiments

5.1 Experimental Settings

For a complete experimental comparison, most of our experimental setups follow
the original study [3], including the weight decay, the learning schedule and
epochs of training, etc.

5.1.1 Datasets and Architecture
Our experiments are conducted across two datasets: CIFAR-10, CIFAR-100 [23].
The CIFAR-10 dataset consists of 60000 32 × 32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test
images. The CIFAR-100 dataset is just like the CIFAR-10, except it has 100
classes containing 600 images each. There are 500 training images and 100 testing
images per class. And most of the experiments are implemented on CIFAR-10.
In order to observe the whole process of the robust accuracy change and pick
the checkpoint of the best performance, after each training epoch, we output the
robust loss and robust accuracy on the test set. Because of hardware and time
costs during training, all of our experiments are based on ResNet-18 [24].

5.1.2 Attack Methods
During the adversarial training, we use PGD10 with random initialization and
the step size of attack is 2/255. We consider two mainstream types of adver-
sarial perturbation l∞ and l2, and the norm of them are 8/255 and 128/255
respectively. For evaluation, we keep the same settings as training.

5.1.3 Other Setup
We use a fairly common learning schedule: for 200 epochs, the learning rate
begins with the rate of 0.1 and decays by a factor of 10 at the 100th and 150th.
We also adopt the SGD optimizer in a common way, with a momentum of 0.9
and weight decay of 5 × 10−4. For all datasets, we set batch size as 128 for
PreActResNet-18. When applying augmentation methods like cutmix [22] and
mixup [4] in our method, we default the α to 1.
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5.2 Experimental Results

5.2.1 Across Datasets and Perturbations
Table 1 shows the improvement brought by our methods across different datasets
and perturbations. We report robust test accuracy(RA) at two periods to numer-
ically demonstrate the phenomenon. The final-RA indicates the average robust
accuracy of last five epochs, the best-RA indicates the best robust accuracy in
the whole process of training and the diff-RA equals the best-RA minus final-
RA, which can measure the degree of robust overfitting. We consider adversarial
training(AT) [2] as baseline. The overfitting shows up across all datasets and
perturbations in baseline cases, with the gap between final and best reaching as
large as 7.05%(CIFAR-10). Compared with l∞ perturbation, the overfitting of
l2 are much less serious, espeicially in the CIFAR-10, the diff-RA is only 2.72%.
We use the code provided by Rice et al. [3] to reproduce the baseline results2.

Table 1. Robust test accuracy under attack with PGD10 against l∞ with radius ε =
8/255 across CIFAR-10 and CIFAR-100. Both experiments are based on ResNet-18.
The Final equals the average robust test accuracy of last five epochs and the Best is
the checkpoint with best robustness during the whole training process. The best results
and the smallest difference between best and final are marked in bold.

Dataset Norm Radius Settings Robust test accuracy (%)

Final Best Diff.

CIFAR-10 l2 ε = 128
255

baseline 68.90 ± 0.68 71.62 2.72

Our Methods 72.70 ± 0.36 73.36 0.66

CIFAR-10 l∞ ε = 8
255

baseline 46.23 ± 0.65 53.28 7.05

Our Methods 55.65 ± 0.34 56.17 0.52

CIFAR-100 l2 ε = 128
255

baseline 37.50 ± 0.12 43.15 5.65

Our Methods 43.49 ± 0.38 44.79 1.30

CIFAR-100 l∞ ε = 8
255

baseline 21.43 ± 0.44 28.15 6.72

Our Methods 28.94 ± 0.43 29.72 0.78

With our method, both the final-RA and the best-RA are boosted a lot. For
l∞ attack, we observe the best RA is pushed higher by 1.57%–2.89%. For exam-
ple, the best robust accuracy on CIFAR-10 rises from 53.28% to 56.17%. Further,
the difference between best-RA and final-RA is reduced to only 0.52%(CIFAR-
10) and 0.78%(CIFAR-100) respectively, where the overfitting problem is almost
solved. Unlike baseline cases whose best robust accuracy is nearly the first decay
of learning rate, the checkpoint which has the best-RA in ours is close to the
end, which also means robust overfitting phenomenon is mitigated. And for l2
attack, the final-RA was boosted from 68.90% to 72.70% on CIFAR-10 and from
37.50% to 43.49% on CIFAR-100 respectively.
2 https://github.com/locuslab/robust overfitting.

https://github.com/locuslab/robust_overfitting
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Fig. 3. Results of robust test accuracy under attack of l2 and l∞ over epochs for
ResNet-18 trained on CIFAR-10, CIFAR-100. Blue/Yellow lines show the our best
model and baseline. (Color figure online)

Figure 3 further plots the robust test accuracy curves during training, from
which we can clearly observe the diminishing of robust overfitting. The train-
ing curve is robustly improved until the end without compromising training
accuracy.

5.2.2 With Different Augmentation Techniques
Table 2 demonstrates the effectiveness of our methods among various regulariza-
tion. The baseline is still adversarial training. In Rice et al.’s [3] experiments,
data augmentation mitigates overfitting to some degree at the expense of losing
accuracy, and early-stopping seems to be the best way to fight against robust
overfitting. As Rebuffi et al. [19] point out, cutmix have powerful ability to
increase the robustness of model. And in our experiment, mixup [4] mitigates
the overfitting but loses a lot of accuracy. Cutmix [22] achieves better result than
early stopping under the same conditions and helps to alleviate overfitting well.
Combined with our method, both cutmix and mixup acquire significant power.
When m is set to 4, cutmix push the final accuracy of normal AT from 46.23%
to 55.65% and best accuracy from 53.28% to 56.17%, which also surpass early
stopping and normal cutmix a lot. And with m setting to 3, mixup can also be
better than normal cutmix, let alone early stopping.
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Table 2. Robust test accuracy with different regularization methods on CIFAR-10
based on PreActResNet18 under the attack of PGD10. The perturbation type is l∞
and the radius of it is 8/255. The Final equals the average robust test accuracy of last
five epoch and the Best is the checkpoint during the whole training period. The best
results and the smallest difference between best and final are marked in bold.

Method Robust test accuracy (%)

Final Best Diff.

Baseline 46.23 ± 0.65 53.28 7.69

Early stopping 53.10 53.30 0.20

Mixup(α = 1) 49.49 ± 0.70 51.14 2.76

Cutmix(α = 1) 53.53 ± 1.33 55.00 1.47

Our methoda 55.65± 0.34 56.17 0.52

Our methodb 54.10 ± 0.53 55.73 1.63
a use cutmix and set m = 4
b use mixup and set m = 3

Figure 4 shows the whole training process of robust accuracy with different
regularizations. Though mixup doesn’t achieve as good results as other meth-
ods, all data augmentations seem to help to resist the phenomenon of robust
overfitting because the robust accuracy doesn’t decrease significantly except for
baseline. And we can also observe, without our methods, the fluctuation of robust
accuracy curve is large, which indicates that our schemes can make the training
process more smooth and stable. Near the end of training, the vibration of our
accuracy curves(green and red curves) is much smaller than others.

Fig. 4. Robust test accuracy against ε∞ = 8/255 on CIFAR-10 with different data
augmentation schemes(method1 and method2 correspond to Table 3). The model is
a ResNet-18 and the panel show the evolution of robust accuracy as training pro-
gresses(against PGD10). The jump in robust accuracy half and two-thirds through
training is due to a drop in learning rate.
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5.2.3 Ablation Study of m
We test our methods with different sizes of m and observe their performance
against l∞ attack. The experiments are based on ResNet-18 [24] and incorporate
data augmentation including mixup [4] and cutmix [22]. We vary the size in 1,
2, 3, 4. Note that when m = 1, our methods degenerate into normal adversarial
training with cutmix or mixup. Against adversarial attack, naive cutmix get
stronger performance than mixup, this rule stays the same when m increase. As
shown in Table 3, in our experiments, cutmix gets best result when m equals
4, achieving the 56.17% best-RA and 55.65% final-RA respectively. When using
mixup, we get similar excellent results when m ∈ [2, 4]. The difference is the
smallest when m is equal to 2 for both cutmix and mixup. But when m continues
to be larger, the performance begins to degrade, especially the model trained
with mixup. Combined with the conclusions in MaxUp [6], we consider the reason
is that ResNet-18 is not complex enough.

Figure 5 demonstrates the whole training process when m varies. With our
schemes, we can see both cutmix and mixup achieved great improvement. Espe-
cially when the learning rate drops for the second time, our accuracy curves
continue to rise while normal methods have not changed.

5.3 Other Attempts

Drawing on the method of Rebuffi et al. we used the synthetic dataset [18]
provided by them and the model weighted average method [20], which improved
the robust accuracy by 4.66% to 61.18%. We control the ratio of synthetic data to
original data to be 7:3, which is the same as Rebuffi et al. [19]. Here we compare
our model with other state-of-the-art methods under the same experimental
conditions. We directly used the pretrained model3 provided by the authors.

Table 3. Ablation studies on CIFAR-10 with ResNet-18 when m varies. The attack
type is l∞ with radius 8/255. Experiments are performed with cutmix and mixup
respectively and they yield the best robust test accuracy observed during training, the
final robust test error averaged over the last five epochs, and the differences between
them.

m Robust test accuracy with cutmix Robust test accuracy with mixup

Final Best Diff. Final Best Diff.

1 53.53 ± 1.33 55.00 1.47 49.49 ± 0.70 51.14 1.65

2 55.70 ± 0.24 55.70 0.53 54.05 ± 0.66 55.12 1.07

3 55.15 ± 0.50 56.10 0.95 54.10 ± 0.53 55.73 1.63

4 55.65 ± 0.34 56.52 0.87 54.01 ± 0.46 55.55 1.54

3 https://github.com/deepmind/deepmind-research/tree/master/adversarial
robustness.

https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness
https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness


376 C. Xu et al.

Fig. 5. Results of robust test accuracy over epochs with the changing of m. All exper-
iments are training on CIFAR-10 with PreActResNet18 against ε∞ = 8/255. The left
and right pictures represent the performance of our methods, combined with mixup
and cutmix respectively.

As shown in Table 4, under the same conditions of Res-18 and PGD-10, our
model outperforms the second model on attacked data and get a similar result
on clean data. The third method gets the best results because they use all the
100M synthetic data.

Table 4. Robust test accuracy on CIFAR-10 based on PreActResNet18 under the
attack of PGD10. The perturbation type is l∞ and the radius of it is 8 /255.We use
augmentation to denote the Rebuffi et al.’s model [19] and generation to denote Gowal’s
model [18].

Model Standard test accuracy (%) Robust test accuracy (%)

Ours 83.36 61.18

Augmentation 83.54 60.43

Generation 87.61 62.04

We have also tried other methods to prevent robust-overfitting in our exper-
iments. Like MaxUp [6] we replace the augmentation step with N (

X,σ2I
)
,

our attempt in this experiment doesn’t get desired result, it does prevent
the overfitting but loses a lot of accuracy. And inspired by the procedure of
SoftPatchup [25], we change the mix step of cutmix [22]. In original cutmix,
x̃ = M � xA + (1 − M) � xB , ỹ = λyA + (1 − λ)yB , we try the transforma-
tion of x̃ = M � xA + (1 − M) � xA ∗ λ2 + (1 − λ2) ∗ (1 − M) � XB , ỹ =
λ1yA + (1 − λ1)(λ2yA + (1 − λ2)yB), where 1 − λ1 denotes the portion of the
cut area and λ2 is sampled from the uniform distribution(0, 1). This attempt
prevents the overfitting and is better than baseline but the gap with the best
result of ours is not small. Because data augmentations help to create complex
adversaries, we try to use PGD20 to make adversarial examples during training
and PGD10 to test robustness during testing, but it doesn’t work and still suffers
overfitting.
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6 Conclusion

This paper proves that, combining with modern data augmentation techniques,
we can improve the robustness of models and alleviate robust overfitting. Com-
pared with Rebuffi et al. we propose a stronger augmentation technique and
explore the ability of it. By making more sophisticated and more strong adver-
sarial examples, our methods seem to overcome the classifier’s weakness of robust
overfitting and get a more promising result. Although it seems to work well, the
reason of robust overfitting is still hard to explain. Our future work will delve
into the causes of robust overfitting and try to give some reasonable explanation.
We will also explore other useful tricks that can improve the robustness of deep
neural models to get a more powerful and strong robust model.
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Abstract. Deduplication is the task of recognizing multiple representa-
tions of the same real-world object. The majority of existing solutions
focuses on textual data, this means that data sets containing boolean and
numerical attribute types are rarely considered in the literature, while
the problem of missing values is inadequately covered. Supervised solu-
tions cannot be applied without an adequate number of labelled exam-
ples, but training data for deduplication can only be obtained through
time-costly processes. In high dimensional data sets, feature engineering
is also required to avoid the risk of overfitting. To address these chal-
lenges, we go beyond existing works through D-HAT, a clustering-based
pipeline that is inherently capable of handling high dimensional, sparse
and heterogeneous attribute types. At its core lies: (i) a novel matching
function that effectively summarizes multiple matching signals, and (ii)
MutMax, a greedy clustering algorithm that designates as duplicates the
pairs with a mutually maximum matching score. We evaluate D-HAT on
five established, real-world benchmark data sets, demonstrating that our
approach outperforms the state-of-the-art supervised and unsupervised
deduplication algorithms to a significant extent.

Keywords: Clustering · Entity matching · Data quality

1 Introduction

Integrating overlapping and complementary data sets is a common process that
creates new and valuable knowledge [3]. The main task of integration is to iden-
tify duplicate records, which represent the same real-world entity, such as prod-
ucts, institutes, or patients. This task is called deduplication [8], entity matching
[13], entity resolution [19] or record linkage [10]. It constitutes a crucial task that
improves the data quality by repairing and curating data sources [9], reducing
the storage size, and preparing data for downstream applications [8].

Existing solutions for deduplication are based on calculating pairwise simi-
larity scores from one or more attributes [6]. The unsupervised methods create
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a similarity graph, where the nodes correspond to records and the edges are
weighted by the matching scores of the adjacent nodes [12]. The graph is then
partitioned into clusters such that all nodes within each cluster correspond to
duplicate records. These approaches typically calculate matching scores by treat-
ing all attributes as textual data [6]. However, real-world data sets involve het-
erogeneous attribute types, i.e., numerical, categorical and boolean attributes.
Casting these types as strings disregards important information and possibly
leads to inaccurate matching scores. For example, the prices “14” and “14.00”
are identical as numbers, but partially similar when compared as sequences of
characters and totally dissimilar when treated as tokens. Hence, unsupervised
techniques need to correctly model and support heterogeneous attribute types.

On the other hand, supervised methods typically model deduplication as a
binary classification task [13]. They convert each pair of records into a feature
vector by applying similarity metrics on different attributes. The vectors are
then labelled to train a classifier that predicts the matching status for unla-
belled pairs. However, these approaches face multiple challenges: (i) The curse
of dimensionality, i.e., tasks become exceedingly difficult with a higher number of
dimensions. (ii) Labeled data is scarce, but obtaining it through crowd-sourcing
is costly and time-consuming [22]. Moreover, its size and quality affects the end
result to a significant extent [17], but are hard to ensure, due to the heavy class
imbalance. (iii) Supervised methods require long training times [17].

To address these shortcomings, we introduce D-HAT (Deduplication with
Heterogeneous Attribute Types), a novel clustering-based pipeline for end-to-end
deduplication. D-HAT goes beyond existing works in three ways: (i) It inherently
supports data sets with heterogeneous types of attributes and a large portion
of missing values (i.e., high sparsity). (ii) It inherently supports and leverages
complex schemata of high dimensionality. (iii) It achieves state-of-the-art results
without requiring any labelled data. Our contributions are the following:

– We propose D-HAT, an automated end-to-end, clustering-based framework
for deduplicating high-dimensional data sets with heterogeneous attribute
types and missing values. Its matching algorithm uses as features a compre-
hensive set of signals, coupling them with a novel greedy clustering method
that defines as matches the records with mutually maximum matching scores.

– We conduct experiments on established real benchmark data sets, showing
that: (i) In terms of effectiveness, D-HAT outperforms the state-of-the-art
supervised and unsupervised baseline methods. (ii) In terms of time efficiency,
D-HAT has an undeniable advantage over the baseline methods.

– We have publicly released all data and code used in our experiments through
https://github.com/Loujainl/D-HAT.

2 Related Work

The growing research on deduplication reflects its increasing importance, with
numerous methods tackling various aspects [4,6,8].

One of deduplication’s main challenges is its quadratic complexity: in the
worst case, it examines all possible pairs of records. Blocking is typically used

https://github.com/Loujainl/D-HAT
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to alleviate this complexity and to scale deduplication to voluminous data sets
[5,19]. Blocking puts together similar records in groups called blocks by apply-
ing blocking schemes or functions. A blocking function extracts signatures from
every record, dividing the input data set into a set of overlapping blocks – com-
parisons are reduced to candidates, i.e., pairs of records sharing at least one
block, reducing the computational cost to a significant extent. Yet, the higher
time efficiency comes with the risk of missing potential matches [20].

After blocking, matching is performed to determine the degree of similarity
between the candidate pairs of records. In essence, it applies similarity functions
to the values of selected attributes of the candidate records, obtaining numerical
matching scores. Next, it determines whether the resulting degree of similarity is
sufficient for designating two records as duplicates. We distinguish the matching
algorithms into unsupervised and supervised ones.

The former category includes a collection of methods that are provided by
JedAI [18,21] and Stringer [12], with ZeroER [24] constituting the state-of-the-
art unsupervised approach; it represents every candidate pair as a feature vector.
Unlike supervised methods, it does not require a training set. Instead, at its
core lies the observation that the distribution of the feature vectors for duplicate
records differs from that of the non-matching records. Based on this idea, it learns
the parameters of the Gaussian distribution of matching vectors by iteratively
applying expectation maximization to compute the posterior probability of a
matching label given the feature vector. A posterior probability higher than 0.5
is considered as an indication of duplicate records.

Among the supervised methods, the most popular one is Magellan [13], a
system that combines a variety of features with the main machine learning clas-
sifiers, such as decision trees, logistic regression and support vector machines.
After providing an annotated sample of candidate pairs T , matching is performed
by training a classifier over T . Magellan also offers a set of blocking methods.

DeepMatcher [17] is a space of matching solutions based on neural networks
with three modules: i) attribute embedding, ii) attribute similarity representa-
tion, and iii) a classification module. In most cases, the first module relies on
pre-trained fastText embeddings [1] to convert every token to a vector. EMTrans-
former [2] and DITTO [15] go beyond DeepMatcher by leveraging attention-
based transformers like BERT [7], and RoBERTa [16]. These solutions perform
well on textual data, outperforming Magellan in terms of accuracy [2,15,17]. We
disregard them, as they require large training sets and many hours of training
[17] in order to fine-tune hundreds of thousands of parameters [23].

3 Preliminaries

A data set T is a collection of records. A record is an object description denoted
by ri, where i is a unique identifier. Records are defined by their attributes. The
set of attributes in T is denoted by T.A, while the value of a specific attribute a
in record ri is symbolized as ri.a; ri.a = N/A indicates that ri lacks a value for
a, i.e., there is a missing or a null value. Two records, ri and rj , that describe
the same real-world object are matching, i.e., duplicates, a situation denoted by
ri ≡ rj . A data set is called clean if it does not contain any duplicates.
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Fig. 1. The end-to-end pipeline of D-HAT.

Deduplication is the task of identifying and linking duplicate records. A char-
acteristic of this task is that the number of duplicate records scales linearly with
the size of the input, unlike its computational cost, which increases quadrati-
cally [11]. As a result, Deduplication constitutes a heavily imbalanced task and
its effectiveness is measured with respect to the following measures:

1. Recall, the portion of existing duplicates that are detected, i.e., Re = TP
TP+FN .

2. Precision, the portion of record pairs characterized as duplicates that are
indeed matching, i.e., Pr = TP

TP+FP .
3. F-Measure, the harmonic mean of Recall and Precision, F1 = 2 × Pr×Re

Pr+Re ,

where TP stands for the true positive pairs, FP for the false positive ones, and
FN for the false negative ones.

In this context, Deduplication can be formally defined as follows:

Problem 1 (Deduplication). Given a data set T , detect the set of duplicate pairs
of records, D = {ri, rj ∈ T : i �= j ∧ ri ≡ rj}, such that Recall, Precision and
F-Measure are maximized.

4 Our Approach

We now delve into our framework, whose pipeline is illustrated in Fig. 1.
Step 1: Data Cleaning. The first step prepares the input by determin-

ing the core characteristics of the attributes describing the given data set(s)1,
i.e., it calculates the number of unique values and the data type per attribute.
Attributes that have two unique values are converted to boolean to obtain a
more precise degree of similarity. Attributes with very few unique values (<10)
are treated as categorical variables. Numerical attributes are identified through
regular expressions that detect quantities, possibly accompanied by an optional
unit of measurement. E.g., an attribute value width = ‘‘42.8 in’’ is trans-
formed into width = 42.8 and is marked as a numeric data type. Min-max
normalization is then performed on the values of numeric attributes:

Step 2: Attribute Selection. Attributes with a majority of missing values
lack valuable information for deduplication and, thus, can be disregarded. The
coverage of an attribute a expresses the portion of non-empty values in a across
1 In the case of Record Linkage, we assume aligned schemata.
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all input records; the fewer missing values there are, the higher is the coverage.
We formally define the coverage c of each attribute as: c(a) = 1− |ri.a=N/A:ri∈T |

|T | .

This step discards the attributes with a coverage below a specific threshold.
Preliminary experiments demonstrated that 0.1 constitutes an effective value.

Step 3: Blocking. This step is critical because it determines two things:
1. Time efficiency, because the processing time of the following steps is deter-

mined by the number of candidates in the resulting blocks.
2. Effectiveness, because the recall of D-HAT is bounded by the recall of block-

ing; the false negative pairs of records, which have no block in common, cannot
be detected by the subsequent steps, and are excluded from the final output.

Therefore, it is crucial that blocking balances these two competing goals:
the reduced search space and the high effectiveness. D-HAT is generic enough
to accommodate any blocking method that meets this requirement. Preliminary
experiments indicated that Magellan’s [13] overlap blocker is a robust approach
for creating blocks of high performance (see Sect. 5 for more details). It defines
as candidate pairs those sharing at least one token in the values of a specific
attribute. D-HAT applies the overlap blocker to all textual attributes in the
given data sets and opts for the one minimizing the number of candidates, while
maximizing coverage – high coverage implicitly signals high recall after blocking.

Step 4: Feature Matrix. Similar to supervised approaches, D-HAT repre-
sents each pair of records as a feature vector by applying type-specific normalized
similarity functions to selected attributes. Unlike supervised approaches, these
vectors are unlabelled. In more detail, after detecting the type of every attribute
in Step 1, D-HAT creates a feature vector Vi,j for each candidate pair of records
(ri, rj) ∈ B, where B is the set of blocks produced by the previous step and the
kth feature/dimension in Vi,j , V k

i,j , stems from a similarity function that is com-
patible with the type of the kth attribute, ak. If the value of either record for ak

is empty or incorrect (i.e., incompatible with the type of ak), V k
i,j =‘N/A’, which

stands for a missing feature. Note that this step does not require any domain
knowledge from the user. D-HAT automatically detects the attribute type and
applies the appropriate similarity functions in order to create the features.

In particular, the following functions are used by D-HAT:

• For boolean and categorical attributes, the equality operator.
• For numerical attributes, four similarity functions are used:

1. The equality operator,
2. The Euclidean similarity, V k

i,j = 1 − EucDist(ri.ak, rj .ak).
3. The relative similarity, V k

i,j = 1 − |ri.ak−rj .ak|
max(ri.ak,rj .ak)

.

4. The normalized Manhattan similarity, V k
i,j = |ri.ak−rj .ak|

max(ri.ak,rj .ak)
.

• For textual attributes, the following functions are used:
(i) Syntactic similarity measures.

D-HAT distinguishes textual attributes into short strings, if their average
value entails less than five words, and long strings otherwise. For both
types, it employs the following functions:
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1. Jaccard similarity: V k
i,j = |token set(ri.ak)∩token set(rj .ak)|

|token set(ri.ak)∪token set(rj .ak)| .
2. Generalized Jaccard, which extends the previous measure to consider

the bags of tokens: V k
i,j = |bag(ri.ak)∩bag(rj .ak)|

|bag(ri.ak)∪bag(rj .ak)| .

3. Overlap Coefficient: V k
i,j = |token set(ri.ak)∩token set(rj .ak)|

min(|token set(ri.ak)|,|token set(rj .ak)|) .

4. Bag: V k
i,j = 1 − max(|bag(ri.ak)−bag(rj .ak)|,|bag(rj .ak)−bag(ri.ak)|)

max(|(rj .ak)|,|(ri.ak)|)|)
5. Dice Similarity: V k

i,j = 2 × |token set(ri.ak)∩token set(rj .ak)|
|token set(ri.ak)|+|token set(rj .ak)| .

Additionally, D-HAT uses two similarity functions for short strings:
– Levenshtein similarity, the minimum number of edit operations

(insert, delete or substitute) required to transform one string to
another.

– Hamming, similar to Levenshtein except that it allows only substitu-
tion.

(ii) Semantic similarity measures. D-HAT exploits pre-trained embedding
representations of textual data. Two types of representations are actu-
ally used:
a) Word-based models like word2vec and GlobalVectors (GloVe). They

substitute each token (word) by a meaningful numeric vector that is
learnt from training a shallow feedforward neural network on large,
external, un-annotated textual corpora, such as Google News and
Wikipedia. In these models, words with contextual similarity have
linearly related vector representations. However, they cannot produce
vector representations for words that are out-of-vocabulary.

b) To address this limitation, skipgram models like fastText [1] represent
each word by the sum of the vector representations of its bag of char-
acters. Thus, they are capable of learning a recurrent neural network
that yields vector representations for words, independently of their
occurrence in the training data.

To extract numeric features/dimensions from the three pre-trained
embeddings (i.e., word2vec, GloVe and fastText), D-HAT applies three
similarity functions to the vectors of two records: the cosine, the Euclidean
and the word mover’s similarity [14]. For the last two functions, the
homonymous distance function d is transformed into a similarity value
sim as follows: sim = 1

1+d .
(iii) Hybrid similarity measures. This configuration combines the aforemen-

tioned syntactic similarity measures with the semantic ones, given that
they capture complementary matching evidence.

Overall, D-HAT creates one feature per boolean and categorical attributes,
four per numeric ones as well as nine semantic features and up to seven syntactic
ones per textual attribute.

Step 5: Matching Scores. The goal of this step is to estimate the matching
likelihood for each pair of candidates based on the feature matrix of the previous
step. This is carried out in two steps:
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(i) Binarizing the feature vectors. In essence, D-HAT treats each feature as a
vote for a “match” (1) or a “non-match” (0) decision. The dimensions of
boolean and categorical attributes are already binary. The dimensions of
numerical and textual attributes are defined in [0, 1], with higher values
indicating a higher matching likelihood. To binarize them, D-HAT employs
a similarity threshold θ ∈ [0, 1], common to all dimensions, such that all
numeric scores above θ are converted into “match” votes (1), while the
rest become “non-match” votes (0). All dimensions with a “N/A” value are
ignored.

(ii) Score estimation. To calculate the matching score mi,j for two candidate
records, ri and rj , we aggregate the dimensions of their binary feature vector
ˆVi,j into a single value through their mean, i.e., mi,j =

∑N
k=1

ˆV k
i,j/(N − n),

where N is the total number of features, n is the number of missing ones
and ˆV k

i,j ∈ {0, 1}.

At the end of these two steps, the matching scores of all pairs are calculated
and stored in a matrix M . The records and the matrix define a weighted graph
G(V,M), where the set of nodes V represent the input records, and M is the
adjacency matrix of weights. G(V,M) is referred to as the similarity graph.

Step 6: MutMax Clustering. The final step receives as input the similarity
graph G(V,M) and partitions it into a set of disjoint clusters, such that every
cluster corresponds to a unique entity, containing all duplicate records describing
it. The partitioning is performed by MutMax, a greedy approach that defines as
duplicates the pairs of records with mutually maximum scores. More specifically,
MutMax operates as follows: For each record ri, all candidates are sorted in
decreasing matching scores and the top one rimax = rj is selected as the potential
match. If ri was set as the potential match for rj , the records ri and rj are
designated as matches. The rest of the candidate pairs are ignored.

Overall approach. D-HAT algorithm is outlined in Fig. 2. Step 1 (Data
cleaning) is applied first (Line 1). Step 2 (Attribute selection) is performed given
threshold cmin (Lines 2–7). The overlap blocker is applied to each attribute
(Lines 8–10). A performance score is computed per attribute by multiplying
the coverage of attribute a with the reduction ratio [5]: getScore(Ba, a) = c(a) ·
RR(Ba, T ), where |Ba| denotes the total number of candidate pairs in the blocks
Ba. The attribute with the highest score is selected (Lines 11–14), and is applied
to retrieve the final set of blocks (Line 16).

The next loop simultaneously applies Steps 4 and 5. It builds a two-
dimensional array M with a score for each pair of compared records. In more
detail, F ∩ a is the set of functions applicable for attribute a. For each feature
higher than θ, the overall similarity is incremented by one matching vote (Lines
23–25). The average score is finally estimated for the current pair of candidates
(Line 29).

Finally, MutMax is applied to M (Lines 31–36). For each record, the most
similar candidate is specified and stored in array O (Line 31). Using O, D-HAT
identifies the record pairs that are mutually most similar (Lines 32–33), adding
them to the output (Line 34). Note that D is a set and that each output pair is
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Fig. 2. The end-to-end algorithm of D-HAT.

formed with the lowest id in the left part (i.e., i < j in (i, j) in Line 34); as a
result, no duplicate pairs are returned as output.

In terms of time complexity, the cost of Steps 1, 2 and 3 is linear with the
number of attributes in the given data set T , i.e., O(|T.A|). For Steps 4 and 5,
the cost is O(|B|). For Step 6 no sorting is required. Instead, D-HAT merely
iterates once over all cells in the two-dimensional array M . A hash table can be
used to store the estimated similarities in practice. As a result, both the time
and space complexity of Step 6 (and the entire algorithm) are linear with the
number of candidate pairs after blocking, i.e., O(|B|).

5 Experimental Evaluation

Setup. D-HAT is implemented in Python 3.8.5. All experiments were run on an
Ubuntu 18.04.5 server with a 12-core Intel Xeon D-2166NT @2GHz, 64 GB of
RAM and 300 GB HDD. A single core was employed in all time measurements.

Benchmark Data Sets. We employ five established data sets that come
from multiple domains: products, bibliography, restaurants, and healthcare.
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Table 1. Technical characteristics of the benchmark data sets. |S|, |T | and |D| stand
for the number of source records, target records and duplicate pairs, respectively.

Data set |S| |T | |D| #Attributes #Numerical #Bool. & Cat. #Textual #Selected

Amazon-Google 1,363 3,226 1,298 4 1 0 2 3

Abt-Buy 1,081 1,092 1,095 3 1 0 2 3

DBLP-ACM 2,614 2,294 2,223 4 1 1 2 3

Fodors-Zagats 533 331 112 5 0 0 5 5

Immucare 305 310 305 213 32 6 37 75

Immucare is a healthcare dataset matching two hospital visits of the same
patient. The technical details of these data sets [13,24] are summarized in
Table 1.

Baseline Systems. We compare the performance of D-HAT with Magellan
[13] and ZeroER [24]. For the former, we use decision tree as the classification
algorithm, while for the latter, no configuration is needed.

Evaluation Measures. We use the standard measures of recall, precision,
and F1-score, which are defined in Sect. 3. We also report the overall run-time,
i.e., the time that intervenes between receiving the data set(s) as input and
producing the duplicate pairs as output. We repeat every measurement three
times and report the average.

5.1 Step 3: Blocking

D-HAT applies Magellan’s overlap blocker to all attributes and selects as optimal
the one minimizing the number of candidates, while maximizing coverage. The
resulting performance appears in Table 2. In all cases, the number of candidate
pairs is reduced by whole order of magnitude (i.e., � 90%) in comparison to the
brute-force approach (i.e., |S| × |T |). The only exception is Abt-Buy, where the
candidates drop by 86%, which is a dramatic reduction of the search space, too.
Nevertheless, the recall in all cases remains rather high, above 90%. This means
that the vast majority of duplicate pairs co-occur in at least one block.

Note that precision after blocking remains very low for most data sets. To
raise it to acceptable levels, matching is required. Note also that compared to the

Table 2. Blocking performance. Time in Seconds.

Data set Key Attribute #Candidates Recall Prec Time

Amazon-Google Name 131,214 0.995 0.010 7.3

Abt-Buy Name 164,072 0.994 0.007 2.6

DBLP-ACM Authors 318,404 0.993 0.007 19.4

Fodors-Zagat Phone 111 0.929 0.936 0.7

Immucare Date of Birth 311 1.000 0.981 26.5
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Table 3. Matching effectiveness of D-HAT, Magellan and ZeroER across all data sets.
The best F1 per data set is underlined.

Data set D-HAT Magellan ZeroER

Syntactic Features Semantic Features Hybrid Features

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

A-G 0.904 0.479 0.626 0.828 0.349 0.534 0.925 0.532 0.675 0.513 0.573 0.542 0.663 0.385 0.487

A-B 0.818 0.402 0.539 0.635 0.174 0.274 0.824 0.346 0.487 0.440 0.443 0.442 0.220 0.601 0.322

D-A 0.992 0.956 0.974 0.995 0.980 0.987 0.997 0.974 0.985 0.980 0.983 0.981 0.936 0.945 0.940

F-Z 0.981 0.929 0.954 0.971 0.911 0.940 0.981 0.929 0.954 0.939 0.969 0.954 1.000 0.312 0.476

CA 0.993 0.987 0.990 0.990 0.987 0.988 0.993 0.987 0.990 0.968 1.000 0.984 1.000 0.487 0.655

overall run-time of D-HAT and the rest of the methods (in Fig. 3), the overhead
of blocking is negligible (< 10% in all cases). The only exception is Immucare,
where the overhead of blocking is high, due to the very large number of attributes
retained after Step 2 (75).

5.2 Steps 4–6: Matching

To ensure fairness, we apply the same blocker to the same key attribute for
both baseline systems, (e.g., we use the ‘phone’ attribute instead of ‘name’ in
Fodors-Zagats). Note that for Amazon-Google, ZeroER could not create its fea-
ture matrix within a time limit of 6 h. To complete the assessment, we combined
it with the feature vectors created by Magellan instead. As a result, the perfor-
mance of ZeroER could be slightly different from that reported in [24].

The resulting performance of all algorithms with respect to precision (Pr),
recall (Re) and f-measure (F1) appears in Table 3, while the corresponding run-
times are reported in Fig. 3. Note that after preliminary experiments, we set
cmin = 0.1 and θ = 0.7 for D-HAT in all cases. Note also that D-HAT is
combined with three different groups of features: (i) The syntactic ones, which
include only the syntactic similarity functions for textual attributes along with
the specialized functions of boolean, categorical and numeric attributes. (ii) The
semantic features, which differ from the previous group in that they replace the
syntactic similarity functions with the semantic ones. (iii) The hybrid features,
which employ all similarity functions for all types of attributes defined in Sect. 4.
In this way, we are able to examine the contribution of the two types of textual
similarity functions, which account for the majority of features used by D-HAT.

Compared to blocking, precision has actually increased by whole orders of
magnitude. This emphasis on precision should be attributed to MutMax clus-
tering, which associates every record only with its most similar candidate.

Comparing the various groups of features between them, we observe that
the syntactic ones consistently outperform the semantic ones. The reason is
that most data sets contain domain-specific terminology. As a result, especially
word2vec and GloVe suffer from a large portion of out-of-vocabulary terms. The
only exception is DBLP-ACM, which involves long textual attributes like venue
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Fig. 3. Run-time in seconds.

Table 4. The number of features per group.

Data set Non-textual Syntactic Semantic Hybrid

A-G 4 14 22 32

A-B 4 14 22 32

D-A 4 14 22 32

F-Z 0 35 45 80

CA 78 400 411 733

names and publication titles; in these settings, the evidence provided by semantic
similarities outperforms the syntactic ones, albeit by just ∼2%.

In terms of time-efficiency, the advantage of syntactic similarity functions is
clear in all cases, as shown in Fig. 3. The run-time of D-HAT increases by a whole
order of magnitude in almost all cases, when replacing the syntactic similarity
features with the semantic ones. This is caused by the large number of lookups
and computations that are required for converting every attribute value into a
high-dimensional embedding vector and a similarity score.

It is interesting to examine whether the combination of syntactic and seman-
tic similarities justifies the lower time efficiency by an increase in effectiveness.
This is only true in Amazon-Google, where hybrid features’ F1 is higher than the
syntactic ones by ∼10%. In all other cases, the hybrid features lie between the
two other groups of features, usually closer to the top performing one. Hence,
D-HAT should be exclusively combined with the syntactic group of features.

Compared to ZeroER, Table 3 shows that D-HAT with syntactic features
achieves significantly better effectiveness in most cases. Its f-measure is actu-
ally higher by 50%, on average, across the five data sets. At the same time,
Fig. 3 demonstrates D-HAT is consistently faster than ZeroER by whole orders
of magnitude (e.g., 1 min vs 6 hrs over Amazon-Google) – the sole exception
is DBLP-ACM, where D-HAT is slower, due to the computation of 10 syntac-
tic similarity functions over textual values. D-HAT takes into account attributes
with high level of noises (missing values, heterogeneity of existing values, errors),
which inevitably corrupt some matching signals.

Compared to Magellan, in the first two data sets, D-HAT achieves a higher
f-measure than Magellan by more than 13%, while in the next three data sets
both methods exhibit practically identical performance (i.e., their f-measures
differ by less than 1%). The competitive performance of Magellan stems from its
supervised functionality: in each dataset, 70% of the candidate pairs are used for
training its classification model, leaving only 30% of the pairs as a testing set. In
contrast, D-HAT processes all candidate pairs and its performance is bounded
by blocking. In terms of time-efficiency, we observe in Fig. 3 that D-HAT takes
a clear lead in all cases, as its run-time is lower than Magellan even by a whole
order of magnitude (e.g., 35 vs 400 s over Abt-Buy).

Overall, D-HAT typically outperforms the state-of-the-art unsupervised
deduplication method to a significant extent in all respects. Compared to the
state-of-the-art supervised approach, it exhibits similar effectiveness, if not
higher, at a much lower run-time, despite the lack of labelled instances.
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(a) Abt-Buy (b) Amazon-Google (c) DBLP-ACM

Fig. 4. Performance of D-HAT with syntactic features when varying the threshold θ.

5.3 Sensitivity Analysis

The only configuration parameter that is crucial for the performance of D-HAT
is the similarity threshold θ, whose value depends on the level of noise and
heterogeneity in the data. To assess its impact on the overall performance of
D-HAT, we consider all values in the range [0.5, 1] with a step of 0.1. The results
appear in Fig. 4. Due to lack of space, we report three of the five datasets.

We observe that this parameter has no effect on any evaluation measure over
DBLP-ACM. The reason is that the pairs identified as matches in these datasets
exhibit very high similarity (practically 1.0) for most of the features employed
by D-HAT. As a result, the matching decisions of MutMax clustering are not
altered by the value of θ. For Abt-Buy and Amazon-Google, we observe that
up to 0.7, the performance of D-HAT improves (Abt-Buy) or remains the same
(Amazon-Google). For θ > 0.7, a small increase in the similarity threshold yields
slightly lower performance with respect to all measures. The reason is that both
data sets are challenging tasks, because they contain many corner cases, i.e.,
records that are close to the decision boundary.

Overall, we can conclude that D-HAT is robust with respect to its similarity
threshold θ, with θ = 0.7 constituting a reliable default value.

6 Conclusions

We presented D-HAT, an efficient, fully automated clustering-based end-to-end
deduplication system. D-HAT can process high dimensional data sets with het-
erogeneous attribute types and missing values without requiring user interven-
tion or any labelled data. The thorough experimental study on benchmark data
sets demonstrates that our system achieves high accuracy across different bench-
mark tasks, and outperforms supervised and unsupervised baselines. The main
benefit of D-HAT over unsupervised methods is the high accuracy on all stan-
dard tasks, whereas compared to supervised methods, D-HAT eliminates the
extra time and effort needed from domain experts to annotate a training set. It
also saves the time required to find and train an efficient classification model.
In the future, we plan to parallelize D-HAT on top of Apache Spark in order to
scale it to huge data sets with millions of records.
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Abstract. Representational Similarity Analysis is a method from cog-
nitive neuroscience, which helps in comparing representations from two
different sources of data. In this paper, we propose using Representa-
tional Similarity Analysis to probe the semantic grounding in language
models of code. We probe representations from the CodeBERT model for
semantic grounding by using the data from the IBM CodeNet dataset.
Through our experiments, we show that current pre-training methods do
not induce semantic grounding in language models of code, and instead
focus on optimizing form-based patterns. We also show that even a little
amount of fine-tuning on semantically relevant tasks increases the seman-
tic grounding in CodeBERT significantly. Our ablations with the input
modality to the CodeBERT model show that using bimodal inputs (code
and natural language) over unimodal inputs (only code) gives better
semantic grounding and sample efficiency during semantic fine-tuning.
Finally, our experiments with semantic perturbations in code reveal that
CodeBERT is able to robustly distinguish between semantically correct
and incorrect code.

Keywords: Language model · Deep learning · Code semantics

1 Introduction

Recent development in deep neural network-based (DNN) language modeling
has brought in great advancements in various data-driven artificial intelligence
(AI) technologies. With the increasing scale of data repositories, the usage of
language models in various data-driven AI applications has increased as well.
This has brought in a new paradigm of Language-Model-as-a-Service. Under this
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Fig. 1. Difference between extrinsic and intrinsic evaluation for semantic grounding in
language models of code (LMCs).

paradigm, language models trained on huge web data enable natural language
interfaces to various AI applications, as well as provide rich features for various
downstream applications such as sentiment analysis, question answering, text
completion, etc.

Recent efforts in building AI-based assistive technologies in code and software
has seen development of big code datasets and repositories [6,11]. Hence, in par-
allel to the progress in developing DNN language models for natural language,
there has been a recent spurt in developing language models for code (LMC)
[3,4]. Representations obtained from LMCs are used as features for a variety of
downstream applications. Traditionally, the representations from language mod-
els are either evaluated against these downstream tasks (extrinsic evaluation),
or are probed for specific knowledge (intrinsic evaluation). A robust language
model of code is ideally expected to capture the actual meaning of the code text
(semantics) and not just its surface level form-based statistical patterns. As the
underlying code repository and databases become large and complex, semantic
grounding becomes quite important to avoid spurious outcomes.

Auto-regressive LMCs like Codex (GPT-3) [3] can be probed for such
semantic grounding with code-generation tasks as shown in Fig. 1. This can
either be achieved by generating code for a given natural language or code
prompt and testing it against input-output (IO) specifications [1]. These meth-
ods though complete from a semantic evaluation perspective, pose several lim-
itations. Firstly, these are extrinsic evaluation methods which only focus on
generating form-level tokens, which does not guarantee true semantic ground-
ing [2]. Secondly, for tasks not involving code-generation and for the tasks that
involve scaling to large code databases, the representations obtained from a
LMC are more important than the its ability to generate code and text (Fig. 1).
Hence, intrinsic evaluation methods become necessary for evaluating the seman-
tic grounding under such settings. Finally, for encoder-only models like Code-
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BERT [4], code-generation is not technically feasible, which is a requirement for
testing semantic grounding against IO specifications.

In this work we propose using Representational Similarity Analysis (RSA)
[7] to probe the semantic grounding in the representations from LMCs. Unlike
the other previous intrinsic evaluation methods, RSA is a method from cognitive
neuroscience which offers a flexible intrinsic evaluation setting which is agnos-
tic to various properties of the representations like their source, size, structure,
modality, etc. Hence, RSA becomes a good choice to evaluate the representa-
tions obtained from LMCs against a ground truth semantic representation. In
this work we probe CodeBERT with RSA. We use a code’s natural language
description as its ground truth semantic representation. Through our experi-
ments we show how RSA can be utilized to evaluate various aspects of research
and development in using LMCs for various data-driven code intelligence tasks.
Specifically, we aim to use RSA-based semantic grounding evaluation to study:
(1) The localization of semantic knowledge in different layers of CodeBERT; (2)
The impact of size of the fine-tuning datasets on the semantic grounding in Code-
BERT; (3) The impact of modality of code repositories (unimodal vs. bimodal)
on the semantic grounding in CodeBERT; (4) The robustness of CodeBERT
model against semantic perturbations in the code.

2 Background

LMCs can be broadly classified into two categories: auto-regressive models and
encoder-only models. Auto-regressive models like Codex (GPT-3) [3] are pre-
trained to generate code and text. Whereas, encoder-only models like CodeBERT
[4] are pre-trained to encode representations of code, and do not generate any
code or text. Depending on their category and their neural architecture, the
LMCs are pre-trained with a variety of pre-training objectives by using huge
multimodal (natural language and programming language) datasets [6,11].

LMCs have various data-driven applications in programming and software
engineering. These include natural language based code search [6], code transla-
tion and refinement [9], code repair [9], and bug detection [9]. Representations
from pre-trained LMCs are used to enable such applications in practical deploy-
ments. LMCs are usually fine-tuned with a relatively smaller dataset for the
target downstream application before deployment. This process is usually quite
resource-heavy in terms of data annotation costs and fine-tuning computing
costs. Hence, getting an estimate of optimal amount of fine-tuning for robust
deployments is very important. LMCs are usually evaluated against standard
tasks and benchmarks [6,9]. While most such recent LMCs show great perfor-
mance on such benchmarks, the true code understanding capabilities of these
models are still being tested with semantically challenging extrinsic evaluation
settings [1,3]. We extend such semantic evaluations into the intrinsic evalua-
tion paradigm by probing the representations from these LMCs for semantic
grounding.
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Table 1. The number of NL-PL sample pairs across the six programming languages
used by CodeBERT in the final dataset. *JS: JavaScript

Data split Submission type Go Java JS* PHP Python Ruby

Test Incorrect 10482 22213 8846 6339 25322 15354

Correct 22768 25438 9729 8103 25500 23658

Training Correct 29557 62370 12377 10455 67337 45433

Representational Similarity Analysis (RSA) is a method from cognitive neu-
roscience, originally invented to compare representations of neural and physiolog-
ical data and signals from different sources [7]. Recent work in natural language
processing research has focused on using RSA for various interpretability studies
with language models. Previously, RSA has been used to ground neural repre-
sentations from language models to that in the human brain [5]. RSA has also
been used to probe contextual semantic and syntactic information in language
models [8]. RSA has also been proved to be quite useful in studying the effect
of fine-tuning on natural language models [10]. Given the versatility of the RSA
method, and its successful application in evaluating natural language models, it
becomes a great choice to perform intrinsic evaluation of LMCs.

3 Experimental Setup

3.1 Dataset

We use the IBM CodeNet dataset [11] for all our experiments. The dataset
comprises 4000 coding problems with submissions in multiple programming lan-
guages. The problem descriptions in the dataset can be used as a natural lan-
guage (NL) modality. Whereas, the code submissions to these problems can
be used as a programming language (PL) modality. Hence each sample in the
dataset can be viewed as a NL-PL pair. While the original CodeNet dataset
comprises of code samples from over 50 programming languages, we only focus
on the six programming languages supported by CodeBERT as shown in Table 1.
We sub-sample and clean the CodeNet dataset as per the requirements for our
RSA-based semantic grounding probing experiments.

To generate the test data, we filter out 255 problems such that each problem
has a correct submission, and a wrong submission in each of the six programming
languages under consideration: Go, Java, JavaScript, PHP, Python, and Ruby.
In order to generate the training data, we filter out 808 problems (708: Training,
100: Validation), such that each problem has at least one correct submission for
each of the six programming languages. Given the noisy metadata files from the
CodeNet dataset, we manually extract the problem descriptions from the raw
problem description HTML files in the dataset. The extracted set of problem
descriptions is multilingual (non-English descriptions) in nature. We translate
all the problem descriptions to English using an off the shelf translation tool:
DeepL.1 The translations obtained from DeepL are manually checked for any
1 https://www.deepl.com/translator.

https://www.deepl.com/translator
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Fig. 2. Schematic overview of using the Representational Similarity Analysis method
with the code representations from the CodeBERT model.

errors. The final dataset statistics are shown in Table 1. The test data split is
used to perform the RSA-based probing for semantic grounding in CodeBERT.
On the other hand the training data split is used to fine-tune the CodeBERT
model, in order to inspect the role of fine-tuning on its semantic grounding. The
original IBM CodeNet dataset can be found here. Our modified version of the
IBM CodeNet dataset will be available on request. The code for our experiments
is publicly available here.

3.2 Representational Similarity Analysis (RSA)

Given N natural language description - code snippet pairs (NL-PL): we first
obtain the code representations {Ck} from the code snippets with CodeBERT.
Similarly, we obtain the semantic representations {Sk} from the natural lan-
guage descriptions with BERT, where kε[1, N ]. For ablation purposes, we extract
code representations under two different input settings: Unimodal (PL-only) and
Bimodal (NL and PL) as supported by the CodeBERT model. Next, we con-
struct the individual representational geometries (G ∈ R

N×N ) for {Ck} and {Sk}
by computing the pairwise dissimilarities between all the samples in the dataset:

GC = {1 − similarity(Ci, Cj)} (1) GS = {1 − similarity(Si, Sj)} (2)

where, i, jε[1, N ]
The final representational similarity score (RS) between the code and seman-

tic representations can then be obtained by finding the similarity between the

https://developer.ibm.com/exchanges/data/all/project-codenet/
https://github.com/shounaknaik/Probing-Semantic-Grounding-in-Language-Models-of-Code-with-Representational-Similarity-Analysis
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two representational geometries:

RS(C,S) = similarity(GC ,GS) (3)

Fig. 3. Heatmaps of RSA similarity scores across the six programming languages and
13 layers of the CodeBERT model.

A higher RS value can then be interpreted as higher semantic grounding
in the representations of code. We use Spearman correlation coefficient as the
similarity measure while calculating the pair-wise dissimilarities between the
samples, as well as the similarities between the two representational geometries.
We obtain statistically significant similarity scores throughout our experiments
with correlation p-values < 0.05. A schematic overview of using RSA with rep-
resentations from the CodeBERT model is shown in Fig. 2. While Fig. 2 shows
Unimodal setting with CodeBERT (PL-only), we perform RSA with Bimodal
setting as well (NL and PL).

4 Experiments

Previous work in language model probing has tried to analyze various semantic
knowledge localization trends in the layers of a language model [12].2 This helps
understand the model dynamics, as well as in selecting the best representations
for downstream applications. Hence, we first begin by evaluating the semantic
grounding in the pre-trained CodeBERT model with the default bimodal input
setting. We perform RSA with all 13 representations3 from the pre-trained Code-
BERT model. We use the Correct code samples from the Test split of the data
2 Localization studies aim to find out which layer and parameters of a neural network

capture the maximum amount of specific knowledge.
3 Embedding (layer 0) + Encoder blocks (layer 1–12).
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here. We observe that the semantic grounding is consistently low for the pre-
trained model (Fig. 3 x0) across all the layers and programming languages with
no particular localization trends. This indicates that the pre-trained CodeBERT
model shows low levels of semantic understanding for code data, and directly
using the representations from the pre-trained model in downstream practical
applications might not yield robust performance. Taking this into consideration,
we probe various practically motivated aspects of semantic grounding in LMCs:

4.1 Semantic Fine-tuning

We start our experiments by evaluating layer-wise representational similarity
scores for CodeBERT model. We visualize the extent of similarity and repre-
sentative semantic grounding through heatmap plots as shown in Fig. 3. We
plot a separate heatmap for each of the six programming languages used by
CodeBERT. The X-axis of each heatmap represents the layer of the CodeBERT
model. The Y-axis of each heatmap represents the amount of fine-tuning data
used to induce semantic knowledge in the CodeBERT model. The heatmap gra-
dient represents the RSA similarity score, which is representative of the amount
of semantic grounding as discussed in Sect. 3.2.

Firstly, we observe that the pre-trained CodeBERT model does not show
significantly low semantic grounding across all the layers and programming lan-
guages (as seen in the first row of each heatmap). Since the original pre-training
tasks used by the CodeBERT model do not induce enough semantic knowledge
in its representations as seen in Fig. 3, we evaluate how the amount of down-
stream semantic fine-tuning affects the model’s semantic grounding. We divide
the training data of each programming language into six splits, where num-
ber of samples are increased in the power of 2 at every step: x0, x1, x2, x4,
x8, x16, and x32. We use the NL-PL pairs in the training data to fine-tune
the model on the semantically relevant task of semantic code search - one of
the major downstream applications of code representations. We observe that
fine-tuning the model helps with inducing semantic grounding in the representa-
tions (Fig. 3). Even fine-tuning on a very small number of samples, significantly
increases the semantic grounding. Most of the semantic grounding is localized
in the deeper layers of the model (right half of the heatmaps), which is simi-
lar to that of previous natural language models [12]. We also observe that the
semantic grounding peaks at the pre-final layer. This shows that using represen-
tations from the final-layer or from the pre-trained model might not be optimal
for data-driven downstream code applications. This also reveals that large mul-
timodal datasets of NL-PL code samples are not required to induce high levels
of semantic grounding in the CodeBERT model.

4.2 Input Modality

Under practical settings, code repositories can either be unimodal or bimodal in
nature. Hence, most LMCs support bimodal NL and PL inputs. Here, we inspect
the role of input modality in semantic grounding. Following the fine-tuning done
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Fig. 4. RSA similarity scores after fine-tuning the CodeBERT model with Bimodal
(NL and PL) input.

with bimodal data as described in Sect. 4, we repeat the fine-tuning process
with unimodal data. We visualize the effect of input modality on the semantic
grounding in CodeBERT model with line-chart plots shown in Fig. 4 and Fig. 5.
We plot separate sub-plots for each of the six programming languages used by
CodeBERT. The X-axis of each sub-plot represents the amount of fine-tuning
data used to induce semantic knowledge in the CodeBERT model. The Y-axis
of each sub-plot represents the similarity score, which is representative of the
amount of semantic grounding as discussed in Sect. 3.2. We report the scores for
four layers for each of the six programming languages: {1, 4, 8, 12} - each of
which has a separate color-coded trajectory in each of the sub-plots.

We observe that both unimodal and bimodal inputs show increasing seman-
tic grounding in representations with fine-tuning in the deeper layers (8 and 12)
as seen in Fig. 5 and Fig. 4 respectively. On the other hand, similar to earlier
findings early layers (1 and 4) do not show any significant semantic ground-
ing. Hence, even without natural language descriptions, the deeper layers of the
model seem to capture code semantics up to some extent by just looking at the
code text. We also observe that representations from bimodal inputs hold signif-
icantly more semantic grounding (as high as 500% in languages like Java) than
those from unimodal inputs (Fig. 6). Hence, augmenting code repositories with
natural language descriptions and comments can help in developing better down-
stream applications with LMC representations. Bimodal inputs also show better
sample efficiency (Fig. 4), where the performance peaks with significantly less
amount of fine-tuning as compared to unimodal input which keeps on increasing
with an increasing amount of fine-tuning data, while still showing lesser semantic
grounding than bimodal input (Fig. 5).
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Fig. 5. RSA similarity scores after fine-tuning the CodeBERT model with Unimodal
(PL-only) input.

Fig. 6. Amount of relative gains in seman-
tic grounding when using bimodal inputs
over unimodal inputs.

Fig. 7. Amount of relative gains in
semantic grounding when using Cor-
rect code samples over Incorrect code
samples.

4.3 Semantic Perturbations

While all our previous experiments are conducted with the Correct code sam-
ples from the Test split of data, in this section we focus on using Incorrect code
samples which are semantically perturbed. Under practical settings, evaluating a
code against test specifications provides a complete and strict evaluation of code
semantics, where even a small change in code semantics shows error in the out-
puts. While this is possible with code generation models, intrinsically evaluating
code representations is not possible with such a setting. In an attempt to enable
such strict evaluation under an intrinsic setting, we compare the representational
similarity scores for Correct and Incorrect submissions in the dataset under a
unimodal (PL-only) setting. Using a unimodal setting ensures that cues from the
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natural language modality do not help the model capture semantics, and its true
understanding of code semantics is tested. Overall, we observe that CodeBERT
rightly shows significantly higher semantic grounding for Correct submissions
as compared to Incorrect ones across all fine-tuning checkpoints and languages
(Fig. 7).

Fig. 8. RSA similarity scores for Correct and Incorrect code samples obtained using
Unimodal (PL-only) representations from the best-performing layer (11) of the Code-
BERT model.

Further, we inspect the effect of fine-tuning on the similarity scores for both
Correct and Incorrect submissions. Here, we use unimodal representations from
the best performing layer 11 (Fig. 3). We visualize the semantic grounding trends
in CodeBERT model for Correct as well as Incorrect submissions with line-chart
plots as shown in Fig. 8. We plot separate sub-plots for each of the six program-
ming languages used by CodeBERT. The X-axis of each sub-plot represents the
amount of fine-tuning data used to induce semantic knowledge in the CodeBERT
model. The Y-axis of each sub-plot represents the similarity score.

We observe that with fine-tuning, the semantic grounding unexpectedly
increases equally for both Correct and Incorrect submissions. This might suggest
that similar to other language models, CodeBERT might be optimizing the code
search task stochastically on surface-level forms, and not on the code meaning [2].
While active research is still trying to overcome such issues, this can be bypassed
by using stricter ground-truth semantic representations derived from code struc-
tures like control flow graphs, data flow graphs, etc. and function specifications.
Overall, CodeBERT consistently achieves more semantic grounding for Correct
submissions over the Incorrect submissions across all the six programming lan-
guages and amounts of fine-tuning data. This suggests that while CodeBERT is
unable to penalize Incorrect code samples for semantic perturbations, it is able
to robustly differentiate between semantically correct and perturbed code sam-
ples by assign relatively lower semantic grounding to the Incorrect samples. This
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forms an intrinsic evaluation alternative to the standard practice of evaluating
against test specifications in an extrinsic evaluation setting.

5 Conclusion and Future Directions

In this work we propose using Representational Similarity Analysis to probe the
semantic grounding in language models of code (LMC). Through our experi-
ments with the pre-trained CodeBERT model we show that current pre-training
methods do not induce semantic grounding in LMCs. We also show that fine-
tuning on semantically relevant tasks helps induce semantic grounding in LMCs,
which is localized in the deeper layers of a LMC. Overall, our experiments show
that the representations from the pre-final layer of a LMC are most rich in
semantic knowledge. Our ablations with the input modalities reveal that differ-
ent modalities of inputs show different types of semantic grounding and sample
efficiency in LMCs, where even a relatively small number of fine-tuning exam-
ples is enough to obtain semantically robust performance in downstream appli-
cations. Our experiments with semantically perturbed Incorrect code samples
show that CodeBERT optimizes on form, and not on the meaning. However, it
robustly assigns relatively lower semantic grounding to the Incorrect code sam-
ples as compared to the Correct ones across various programming languages and
experimental settings.

While in the current work we use natural language descriptions as the ground
truth semantic representation, in future more formal semantic representations
like program structure and specifications can be used as the ground truth seman-
tic representations. It is also quite imperative to study how insights obtained
from RSA-based probing for semantic grounding translates to performance in
practical deployments of downstream applications.
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Abstract. Location information, such as customers’ home addresses, is
essential for data mining tasks. On the other hand, it is sensitive private
information. In most countries, when requesting a third party for data
mining, it is legally required to anonymize personal information such as
home addresses in the database. However, conventional anonymization
methods significantly lose the usefulness that location information has
inherently. In this paper, we proposed an anonymization method of loca-
tion retaining important locational features. In the proposed method,
each address is replaced with a ranking value of the distance from each
facility that is important in terms of location, such as a station or a
supermarket. We examined our method and confirmed that the impor-
tant rules mined from non-anonymized data could also be mined from
our anonymized data.

Keywords: Database anonymization · Address · Location · Database
utilization · Privacy preserving data mining

1 Introduction

The evolution of information and communication technology has made it pos-
sible to collect vast amounts of diverse data, which we call “Big Data.” Data
mining can discover useful regularities and unnoticed insights from big data.
Data mining used to be done by a closed organization in which databases were
kept inside the organization.

However, recent big data has become too big and diverse to utilize without
specialized technologies and skills. Therefore, most organizations must ask a
third-party agent for data mining to utilize big data. In addition, current machine
learning methods require a large amount of training data whose size is beyond
that a single organization can collect. Thus, there is an increasing need to share
or outsource databases.
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Besides, we must be aware of individuals’ privacy when analyzing big data.
In Japan and most countries, when requesting a third party for data mining, it is
legally required to anonymize personal information in the database [10]. Location
information such as customers’ home addresses is essential for data mining tasks.
However, it has to be anonymized since it is sensitive private information.

1.1 Conventional Database Anonymization

Figure 1 is an example of a typical ID-POS database, which contains a POS record
table and a customer table. When we ask a third-party agent for data mining, we
have to anonymize the database. Figure 2 is the anonymized ID-POS database, in
which (1) we remove or replace identifiable values and attributes, (2) we remove
or replace foreign key (link) values, and (3) we remove or replace peculiar/specific
values.

Fig. 1. An example of ID-POS database

Fig. 2. Anonymized ID-POS database
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As for the home address information, the home address string “Kagami 1-
7-1, Hiroshima” indicates a specific position on the map as in Fig. 3 (a). To
preserve privacy, we generalize, mask, or perturb values, which may lead to the
identification of an individual. We usually generalize or mask because perturb
may mislead incorrect location insights. The generalization and mask mean an
expansion of the area of address information. For example, if the home address
“Kagami 1-7-1, Hiroshima” is masked to “Kagami 1-X-X Hiroshima,” the masked
information in the map becomes somewhere inside the red polygon in Fig. 3 (b).
As we can see on the map, conventional anonymization methods significantly lose
the usefulness that location information has inherently. As a result, we cannot
mine specific location insights from the anonymized database.

(b) Kagami 1-x-x, Hiroshima(a) Kagami 1-7-1, Hiroshima

Fig. 3. Home address information on the Map

1.2 Utility Retained Location Anonymization

In this paper, we proposed a new anonymization method of locations, such as
home addresses. Unlike conventional methods, it retains essential locational fea-
tures for data mining. We replace each address with a distance ranking from
each essential facility, such as a station, a bus stop, and a supermarket. For
example, an address string, “Kagami 1-7-1, Hiroshima,” is replaced with a list
of a ranking that implies a place whose location is the X-th to the nearest sta-
tion, the Y -th to the nearest bus stop, the Z-th to the nearest supermarket, and
so forth. Together with the ranking, we also publish statistical information on
distance values so that we can approximately infer distance values from ranking
information.

Locational features of an address, such as how close to the station, bus stop,
and supermarket, are essential for analyzing a database that contains addresses.
On the other hand, we cannot disclose home address information to a third-
party agent since it is sensitive private information. The proposed anonymiza-
tion method can preserve privacy while retaining essential locational features.
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We examined our method through intensive experiments and confirmed that the
crucial rules mined from non-anonymized address data could also be mined from
our anonymized data.

The rest of the paper is organized as follows. We discuss related works in
Sect. 2. Section 3 describes the proposed anonymization method in detail. Next,
we examined the utilities of the proposed anonymization in Sect. 4. Then, we
conclude this paper in Sect. 5.

2 Related Works

The idea of k-anonymity [12] is frequently used for database anonymization
and privacy-preserving data mining. K-anonymity means that there exist k or
more individuals with the same combination of attribute values in the database.
By processing the database to satisfy k-anonymity, we can guarantee that the
probability of identifying a particular individual in the database is 1

k .
In the first step of k-anonymization, we classify attribute information in the

database into identifiers, quasi-identifiers, sensitive attributes, and others. Iden-
tifiers are data that can identify individuals by themselves, such as names and
unique numbers. Quasi-identifiers are data that cannot identify individuals by
themselves but can identify individuals by combining multiple pieces of informa-
tion. There is no clear standard as to which attribute is a quasi-identifier since
the nature of the database determines it, but in general, age, gender, and address
fall under this category. A sensitive attribute is information one does not want to
reveal to others, such as one’s annual income or illness. In k-anonymization, we
assume that the attacker knows the quasi-identifiers and processes them so that
their combination is not unique. Figure 4 is an example of k-anonymization. For
example, suppose that an attacker has the background knowledge that “A” is in
the database, and she/he knows “A” ’s age and address. In this case, the attacker
cannot distinguish whether “A” is line 1 or 2 in the anonymized database.

The idea of k-anonymity has been enhanced so that we can reduce the pri-
vacy risk [6,8]. The idea and its variants have been used to anonymize location
data such as home addresses and GPS records in privacy-aware location-based
and sensing services [1,4,5,9]. Though we can reduce the identification risk, con-
ventional location anonymization methods based on grouping significantly lose
location information’s potential data mining utility.

Database perturbation methods for privacy-preserving data mining have been
studied, which add randomized noises so that sensitive values of individuals
cannot be identified. Some database perturbation works consider methods to
perturb users’ location data, which are collected in location-based services [11].

Such privacy-preserving data mining works are kinds of database anonymiza-
tion methods retaining data mining utility. Though we can retain statistical
properties and find insights derived from aggregated values, we cannot retain
linkages between individuals’ sensitive values. As for location data, we can find
insights derived from aggregated values in each pixel grid. For example, we can
find a rule: “traffic accidents tend to occur close to crossings.” (A grid containing
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Fig. 4. Example of k-anonymity

a crossing has more traffic accidents than a grid without a crossing.) However, we
cannot find rules related to quantitative location proximity without individual
locations and their linkages (distances). We cannot find a rule, for example, “the
radius from a crossing that maximizes the ratio of traffic accidents is 0.8mile”
because of the loss of linkages (distances) between individuals’ locations. As a
result, we cannot construct classification and regression tree models, which are
essential prediction models and contain important location proximity insights in
area marketing.

3 Location Anonymization

In this section, we assume all location information is represented as two-
dimensional coordinates such as latitude and longitude. Figure 5 is a tiny example
with five sensitive locations (e.g., the customer’s home), which are represented
as red squares on a map. The map has three kinds of facilities, stations (purple
circles), bus stops (blue diamonds), and supermarkets (green triangles), which
affect the location.

To anonymize the sensitive locations (red squares), we first calculate distance
to the closest station, bus stop, and supermarket. The dot lines in the figure are
the corresponding nearest distances. Table 1 is the calculated distance. We, then,
replace distance values with ranking for each station, bus stop, and supermarket.
The number in parenthesis is the ranking value. For example, the red square 1 is
represented as (3, 4, 1), which implies the third, the fourth, and the first in the
distance ranking to the nearest station, bus stop, and supermarket, respectively.

Quantitative proximity, i.e., distance values, is one of the most meaningful
information in spatial data mining tasks. We also publish statistical informa-
tion on distance values to infer approximate distance values from the distance
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Fig. 5. Tiny example with 5 sensitive locations (Color figure online)

ranking. In our proposal, we publish percentile distance values. If the number
of location data is not too small like the tiny example, we publish the top 10%,
20%,..., 90% distance values. Even for such percentile representative values, we
had better not publish the exact value in a privacy-aware environment. So, if X
percentile ranking is Xr, we calculate the average distance value of (Xr −n)-th,
..., (Xr − 1)-th, (Xr)-th, (Xr + 1)-th, ..., (Xr + n)-th and use the average value
as X percentile distance value. Table 3 in the next section is an example of the
percentile distance value. In the example, we can infer that the top 10% distance
to the nearest station is around 157.61.

Table 1. Distance and rank for each facility
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4 Experiments

We examined the data mining utility of the proposed anonymization. We perform
decision tree analysis using anonymized data and non-anonymized location data.
We also evaluate data security from the viewpoint of k-anonymity. Here, we
examine how many anonymized locations are in the candidate areas selected
from the rankings and percentiles.

4.1 Data Set

We used two databases containing real locations. One is a real estate evaluation
data set provided by the UCI Machine Learning Repository [3], and the other is
the LIFULL HOME’S Monthly Data of Rentals and Sales [7], which is a database
of monthly rent for an apartment provided by Japanese rental housing agency.

UCI Real Estate Evaluation Data Set. This dataset is the market historical
data set of real estate evaluation collected from Sindian Dist., New Taipei City,
Taiwan. This data for the regression analysis consists of 414 records. We use three
attributes, “house price,” “latitude,” and “longitude.” There are 412 non-duplicate
records on the projected three dimensions. We randomly generated the location
of six facilities: station, bus stop, supermarket, hospital, market, and school. We
decide the number of each facility based on the density of corresponding facilities
in the city. The number of each facility is summarized in the second column of
Table 2.

Table 2. Number of facility

Facility (UCI * Taipei) Number Facility (HOMES:Kyoto) Number

Station 13 Station 34
Bus stop 296 Primary School 20
Supermarket 171 Junior high school 13
Hospital 51 Convenience store 137
Market 10 Supermarket 28
School 33 General hospital 26

Using the location of six kinds of facilities, we replace each location informa-
tion (the latitude and longitude) with a six-dimensional distance ranking to the
nearest station, bus stop, supermarket, hospital, market, and school. Together
with the location anonymization, we publish percentile representative distance
values for every 10%. Since the size of the location database is not large enough,
we divide the database into just two (the minimum number of divisions) and
calculate the percentile representative distance values for each. Table 3 is the
average percentile distances of the anonymized location database.
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Table 3. Average percentile distance table (UCI:Taipei)

LIFULL HOME’S Monthly Data of Rentals and Sales. This dataset is
the monthly rent for approximately 66,360,000 apartments LIFULL HOME’S.
In this experiment, we use data from July 2015. We extracted 7,121 apartments
(4,424 apartments in Nakagyo Ward and 2,697 apartments in Shimogyo Ward)
in Kyoto City, which have no duplicate on projected four dimension ID, monthly
rent, latitude, and longitude. We chose the city because it is an average urban
city in Japan.

Next, we collected real locations of six facilities: station, primary school,
junior high school, convenience store, supermarket, and general hospital from a
digital map. The number of each facility is summarized in the fourth column of
Table 2. Using the facility locations, we anonymize real apartment locations and
then make a similar average percentile distance table, shown in Table 4.

Table 4. Average percentile distance table (HOMES:Kyoto)



Location Data Anonymization Retaining Data Mining Utilization 415

4.2 Decision Tree and Regression Tree

To examine the data mining utility, we constructed two regression trees of the
house price for the UCI data; one is by using the non-anonymized original data,
and the other is by using the anonymized data. Figure 6 is the tree from the
non-anonymized data and Fig. 7 is the one from the anonymized data. Table 5
compares the top-3 significant branch conditions of the two regression trees. In
the table, rank 263.5 among 412 locations in the “to station” attribute means
that the rank is between 60% (approx. 247th) and 70% (approx. 288th). Based
on the percentile values in Table 3, the estimated value becomes between 641.72
and 1164.84. As for rank 123.5 is around 30% (approx. 124th). In this case,
we estimate the range between 290.82 (average of 251.60 (20%) and 330.04
(30%)) and 360.88 (average of 330.04 (30%) and 391.71 (40%)). Similarly, for
rank 379.5, which is further than 90% (approx. 371th), we estimate the range
between 2645.22 (90%) and ∞.

Fig. 6. Regression tree from non-anonymized locations (UCI:Taipei)

Table 5. Comparison of two models (UCI:Taipei)

Attribute Conditional branch (ranking) Estimated value Actual value

to station 263.5 [641.72, 1164.84] 826.827

to station 123.5 [290.82, 360.88] 330.03

to station 379.5 [2645.22,∞] 4007.266

Similarly, we constructed regression trees of monthly rent for the HOME’S
data. Table 6 compares the top-3 significant branch conditions of the two trees.
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Fig. 7. Regression tree from anonymized locations (UCI:Taipei)

Table 6. Comparison of two models (HOMES:Kyoto)

Attribute Conditional branch (ranking) Estimated value Actual value

to pschool 6513.5 [684.56,∞] 696.444

to conveni 5127.5 [201.30, 225.17] 220.251

to super 5037.5 [390.25, 460.23] 401.356

We can observe that all estimated value ranges adequately contain the actual
values.

4.3 Anonymity Analysis

One can observe six-dimensional distance ranking and percentile statistics in
our proposed anonymization in the two location databases. Assume distance
ranking (sta, bus, sup, hos,mkt, sch) = (60, 60, 230, 20, 140, 100) in 412 UCI data
as an example. According to the percentile statistic in Table 3, the 1st col-
umn’s (60th) estimated distance range is between 157.61(41st = 10%) and
251.60(82nd = 20%), the 2nd column’s (60th) estimated distance range is
between 54.83(41st = 10%) and 74.22(82nd = 20%), ..., and the 6th col-
umn’s (100th) estimated distance range is between 212.62(82nd = 20%) and
302.16(124th = 30%). If one knows the locations of all 412 sensitive data, she/he
can identify the location by the query using the estimated distance conditions.
It is an unrealistic situation. However, some kinds of background knowledge may
cause identification risks.

We examined how many sensitive locations are in an area that satisfies the
estimated distance condition inferred from a six-dimensional distance ranking for
each. We found that 185 records are identical by corresponding six-dimensional
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distance ranking among 412 sensitive data in the UCI data. Similarly, there are
571 identical records among 7, 121 sensitive data in the HOMES data. (Note
that facility locations in the UCI data are randomly generated and uniformly
distributed in the city. On the other hand, facility locations in the HOMES data
are existing facilities in the city. We think it causes the difference in the unique
record ratio between the two location databases.)

These identical records are 1-anonymity and are risky in the sense of the
k-anonymity idea. Suppose Bob has background knowledge that Alice’s record
exists in the database and knows Alice’s home. He can calculate distances from
Alice’s home to the nearest station, bus stop, ..., and school. Using the cal-
culated distances, he can get a list of estimated distance rankings. If the esti-
mated distance rankings match such an identical record, he may identify Alice’s
anonymized record in the database.

To prevent such a compromise from critical background knowledge, we should
not provide both a distance ranking table and the corresponding percentile table
together to a third-party organization. Note that data mining concerning quan-
titative proximity (distance) can be done without a percentile table. So, a third-
party organization that is provided only a distance ranking analyzes and gets
data mining results based on rankings. A database owner with the corresponding
percentile table can interpret the data mining results analyzed by the third-party
organization into those based on distance. So, we can claim that the proposed
anonymization preserves location privacy.

On the other hand, small ranking values, such as the nearest, the second
nearest, and so on, are themselves risky. For example, assume that we disclose
that a location record has a distance rank 1st from a station, which implies
that the record’s location is the nearest one from a station. If there is one resi-
dence/apartment very close to a station in the city, one can easily imagine that
the location is that residence/apartment. In such a case, we should replace the
k exact ranking, say, “1st,” “2nd,” ..., “kth” with “top-k” for small k.

5 Conclusions

In this paper, we proposed a location anonymization method in which we replace
sensitive locations such as the home addresses of users with a list of distance
rankings to the nearest facilities. Intensive experimental results show that we
can find informative quantitative proximity insights from the distance rankings
by using percentile statistics of distance values. For future works, we will try to
apply this anonymization to other spatial data mining functions such as cluster-
ing, association rule mining and so forth. We should also consider analyzing the
proposed anonymization’s theoretical foundations of privacy risks.

Acknowlendgement. In this paper, we used “LIFULL HOME’S Dataset” provided
by LIFULL Co., Ltd. via IDR Dataset Service of National Institute of Informatics.
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Abstract. Frequent Itemset Mining is an essential part of data min-
ing. SAT-based approaches that extract frequent itemsets in big data
encounter significant challenges when computing power and storage
capacity are limited. This paper proposes an efficient distributed SAT-
based framework for the Closed Frequent Itemset Mining problem
(CFIM) which minimizes communications throughout the distributed
architecture and reduces bottlenecks due to shared memory. Moreover,
it enhances scalability and fault tolerance. This approach makes use of
a Computation-Distributed Paradigm to efficiently enumerate the set of
all closed itemsets, by reducing the processing time. To the best of our
knowledge, this paper presents the first attempt towards a distributed
SAT-based approach for CFIM. An extensive empirical evaluation on
various real-word datasets shows the efficiency of the approach.

Keywords: Data mining · Closed frequent itemset mining ·
Propositional satisfiability · Big data · Distributed computing

1 Introduction

Frequent Itemset Mining (FIM, for short) [1,4] is a fundamental problem in Data
Mining (DM, for short), knowledge discovery and data analysis. This problem
aims at finding all sets of items that frequently occur in a given transaction
database. There are plenty of various real-word applications to FIM, including
marketing, scientific analytics, e-commerce, etc.

Recently, approaches that extract useful knowledge from data have appea-
red [24]. This research trend has endowed in a natural and flexible way the combi-
nation of complex constraints. Therefore, in contrast to traditional approaches,
user preferences can be easily handled without rewriting the algorithm from
scratch. In this context, several studies based on symbolic AI, including Con-
straint Programming (CP), Propositional Satisability (SAT) and Answer Set
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Programming (ASP), were conducted to deal with different DM tasks, such as
FIM [18], Closed Frequent Itemsets Mining (CFIM, for short) [19,25], frequent
sequence mining [14,22], association rules mining [5], etc. Those AI-based tech-
niques work well in practice on typical data sets. However, they are still less
efficient than classical approaches and not suitable for larger datasets. Specif-
ically, their efficiency decreases significantly when the dataset increases in size
or the support threshold turns to be low (i.e., a large number of itemsets). This
issue can be explained by the huge size of constraint networks/propositional
formulas encoding the itemset mining task.

Some efforts have been brought to speed up the efficiency of specialized algo-
rithms for FIM as well as SAT solvers by running them in parallel and in dis-
tributed environments. We provide a deep overview on it in Sect. 2.

The introduction of the first parallel SAT-based framework for FIM
has reduced the performance gap between declarative and specialized
approaches [10]. However, even if this framework significantly pushed forward the
performance of SAT-based itemset mining frameworks, there are still improve-
ments to be made. In this paper, we propose an extensible distributed frame-
work distriSATMiner that aims at distributing the computation to scale up. It
extends the paraSATMiner framework presented in [10] to distributed systems.
The main idea is to use a distributed architecture where the main server is in
charge of preparing the dataset as well as the computation instructions to SAT
based solvers avoiding communications between solvers. Each distributed SAT
solver is responsible for finding and sending models (i.e., frequent itemsets) back
to the main server. A fault tolerance work is done during the mining strategy
distribution to check if a solver is down or if the main server itself has failed.

2 Literature Review

In this section we propose a literature review on distributed FIM solvers using
specialized approaches and distributed SAT solvers.

Distributed Frequent Itemset Mining Approaches. There have been many chal-
lenges regarding the development of distributed FIM (DFIM) [13] using spe-
cialized approaches. In this context, distributed algorithms were proposed to
mine itemsets and association rules on distributed databases [6,7]. Later, the
emergence of Hadoop, a platerform based on the MapReduce framework [9],
and Spark [26], a new in-memory data flow platform, led to the introduction
of new frameworks for DFIM based on traditional algorithms. As an example,
PFP [20] proposed a new parallel form of FP-Growth [15] adapted to MapRe-
duce [9]. PFP [20] works with distributed datasets and uses the performances
of MapReduce [9] to perform parallel tasks in distributed environments. More
recently, ParallelCharMax [12], a FIM algorithm based on Charm [27] introduced
a master-slave architecture based on MapReduce framework [9] and Hadoop to
solve the maximal frequent itemsets problem. However, the common feature of
those distributed environments is to distribute the computation by using data
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distribution. However, while all these specialized approaches addressed various
challenges, they still have a major drawback in terms of flexibility. Indeed, they
are faster than the frameworks based on a declarative approach but faces real
challenges when new constraints come into play. A complete redesign is needed
to extract a different itemset with specialized solvers, which is not the case for
declarative approaches where adding a new constraint is sufficient.

Distributed SAT Solvers. Distributed SAT solvers rely on two strategies: divide-
and-conquer and portfolio algorithms. In portfolio, the same formula can be
assigned to concurrent workers with different strategies to find a solution. Divide-
and-conquer solvers operate in partitioning the search space to evaluate among
several concurrent workers.

Portfolio SAT Solvers. Distributed portfolio SAT based solvers introduce
features such as hierarchical parallelism and decentralized design [3,23]. Horde-
Sat [3] proposed a modular and decentralized design facilitating the implementa-
tion. The decentralized design offers the possibility to have all its node equivalent
in the parallel system and leaderless. It enables more scalability as well as simpli-
fying the algorithm. However, this paradigm is not suited for enumeration since
all slaves will search for every model, introducing a workload redundancy.

Divide-and-Conquer SAT and #SAT Solvers. Several distributed divide-
and-conquer SAT and #SAT solvers have been proposed [8,16,17]. The master
slave architecture is widely used which allows reliability, facility of deployement
and extensibility to various problems. In [8], the master is responsible for reading
the problem file and generating the final output. Only servants are assigned part
of the search space to investigate.

To reduce the computation time, some approaches propose scalable dis-
tributed learning and adaptive resource scheduling [8], clause learning [17], look-
ing ahead [16] and partitioning based on scattering [16] (DPLL-based partition-
ing). In [17], two schemes are used for maintaining the sets of learned clauses: i)
a database of partitioned constraints and independent learned clauses, ii) each
node supports a limited set of unary learned clauses specific to that node. The
VSIDS branching heuristic [21] and unit propagation look ahead are used to
partition the formula and to always branch on the most propagating literal.

Grid-SAT [8], a solver based on Chaff [21] introduces a smart backtracking. It
uses zChaff [2] as a solver core but in a new parallel form and tackling resource
sharing issues by implementing a distributed clause database subsystem that
can acquire and release memory from a grid-resource pool. However, while this
technique might be useful in this case, the bottleneck induced by the access to
memory when sharing it makes memory-sharing inefficient on our solver.

Hybrid SAT Solvers. As several contributions to distributed SAT frameworks
tend to focus on distributing existing parallel approaches, a new kind of hybrid
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solver has been introduced in [11,20]. Those frameworks combine the divide-
and-conquer and the portfolio approaches.

As for the divide-and-conquer solver, the Dolius framework introduces in [11]
with a master-slave model. The master divides the SAT formula through guiding
paths and sends it to workers. The laters process the formula with potentially
different types of SAT solvers. To avoid connection bottlenecks, the authors
proposed a tree architecture where a slave could be a master and uses its own sub-
slaves to solve its assigned problem which relies on a load balancing technique.

PaInleSS [20] is a distributed hybrid SAT framework which strategy, as for
Dolius, implements a tree architecture. However, the core of the PaInleSS archi-
tecture is formed by the three core concepts of a typical parallel SAT solver: a
sequential engine, parallelization and a sharing strategy.

3 SAT and FIM Problem Formalism

We provide here some preliminaries and notations about propositional satisfia-
bility problems, itemset mining problem and SAT-encoding for itemset mining.

3.1 Propositional Logic and SAT Problem

Consider a propositional language L defined over a finite set of propositional
variables V ar = {p, q, r, . . .}, logical constants ⊥,�, and logical connectives (¬,
∧, ∨, →, and ↔). Greek letters Φ, Ψ , etc. denote propositional formulas. V ar(Σ)
refers to the set of propositional variables occurring in the formula Σ.

A formula is called in Conjunctive Normal Form (CNF) if it is a conjunction
(∧) of clauses, where a clause is a disjunction (∨) of literals. A literal is a propo-
sitional variable (p) or its negation (¬p). A Boolean interpretation (or world) μ
of a formula Σ ∈ L is a total function from V ar(Σ) to {0, 1}.

μ is a model of Σ if Σ is satisfied under μ (μ(Σ) = 1). Then, Σ is said
satisfiable if there exists a model of Σ. models(Σ) denotes the set of models of a
formula Σ. Finally, the propositional satisfiability problem SAT is NP-complete
that consists in deciding whether a given CNF formula is satisfiable or not.

The all models enumerating problem for a CNF formula is a variant of the
propositional satisfiability one; a significant issue in many practical SAT appli-
cation domains such as data mining, unbounded model checking, etc.

3.2 Itemset Mining Problem

Let Ω = {a1, a2, . . . , am} be a set of m distinct items, an itemset I is a set of
items such that I ⊆ Ω. We use 2Ω to denote the set of all possible itemsets
over Ω. A transaction database D is a set of subsets of Ω, denoted by D =
{t1, t2, . . . , tn}, where each transaction ti ⊆ Ω(1 ≤ i ≤ n) is defined as a couple
(tidi; Ii), where tidi is the transaction identifier and Ii ⊆ Ω an itemset. Now, let
we give some basic definitions and notations of frequent itemset mining problems.

Given a transaction database D, the cover of an itemset I ⊆ Ω in D is
defined as Cover(I,D) = {tid | (tid,J ) ∈ D and I ⊆ J } and its support in D,
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is defined as S(I,D) = |Cover(I,D)|. An itemset is said to be closed if all its
supersets have strictly inferior support. Formally, an itemset I is closed if for all
J ⊃ I, S(I,D) > S(J ,D).

The problem of frequent itemsets is that of finding sets of items that appear
many times in a given a transaction database D i.e., FIM(D, θ) = {I ⊆ Ω|
S(I,D) ≥ θ}. We denote by CFIM(D, θ) the set of all closed frequent itemsets.
Note that an itemset I is frequent if and only if all its subsets are frequent.
This property is called the anti-monotonicity. More formally, let I and J be two
itemsets such that I ⊆ J . If S(J ,D) ≥ θ then S(I,D) ≥ θ.

3.3 SAT-Encoding for Closed Frequent Itemset Mining

Here, we review the SAT encoding scheme of the FIM problem proposed in [18].
Formally, the frequent itemsets mining problem is encoded into propositional
logic as a set of variables and constraints. Those encoding the itemsets named
xa, for all a ∈ Ω and those representing transactions yi, 1 ≤ i ≤ m i.e., yi is
true if the itemset appears in transaction Ti.

The following constraints ensure the required mapping. More precisely, Con-
straint (Φcov) captures the cover of an itemset i.e., each item belonging to the
itemset exclude the transaction which does not contain it to be part of the solu-
tion. The one of (Φfreq), allows enforcing the itemset to be frequent. Finally
(Φclos) ensures the closeness of the itemset.

Φcov =
∧n

i=1
(¬yi ↔

∨
a∈Ω\Ii

xa) Φfreq =
n∑

i=1

yi ≥ θ

Φ
clos

=
∧

a∈Ω

((
∨

(tidi,Ii)∈D, a �∈Ii

yi) ∨ xa)

The set of the models of Φcfim = Φcov∧Φfreq∧Φclos corresponds to the closed
frequent itemsets of D. From each model μ, the corresponding closed frequent
itemset is Xμ = {a ∈ Ω, xa ∈ μ}.

Even though the polynomial encoding space complexity of FIM into propo-
sitional logic, i.e., O(|Ω| × |D|), in practice, the solving is intractable especially
for large databases. To overcome such issue, a decomposition strategy has been
successfully applied in [10]. A common motivation for using decomposition is
to avoid dealing with the encoding of the whole database by making its solving
equivalent to the one of many but of reasonable size sub-problems.

More formally, assume Ω = {a1, . . . , am} and let Δ(D, θ) denotes the set of
closed frequent itemsets of D. This latter can be partitioned as follows:

Δ(D, θ) =
⊎

1≤i≤m

Δi (1)

where Δi is the set of closed frequent itemsets involving ai but not aj for j < i,
i.e., Δi = {X ∈ Δ(D, θ), ai ∈ X and ∀j < i, aj �∈ X}
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From propositional point of view, each subset Δi can be computed by con-
sidering the models of Φi defined as a constrained Φcfim defined as follows:

Φi = Φcfim ∧ xai
∧

∧

1≤j<i

¬xaj
(2)

Since each itemset in Δi involves ai, the formula Φcfim in Φi can be substi-
tuted by the one restricted to transactions containing ai to avoid generating the
whole encoding over D. The sub-formula Ψi = xai

∧∧
1≤j<i ¬xaj

added to Φcfim

is then a kind of guiding path [28]. Then the required models are those resulting
from each Φi. This decomposition method allows to considerably improve the
performance of the enumeration. Moreover, as the set of models of Φi, 1 ≤ i ≤ m
are disjointed, the solving of the sub-problems Φ1, . . . , Φm can be performed in
parallel as detailed in [10] where each core solves is assigned with a subset of
tasks (sub-problems). Even if balancing workload between cores enhance par-
allelism, the shared memory is a bottleneck when the core number grows. To
overcome this issue, we propose an extensible distributed framework that aims
at distributing the model enumeration to scale up.

4 Distributed SAT-Based Approach for CFIM

Thanks to the decomposition and the encoding, each task is independent and
distributable without further communications between servers. The distriSAT-
Miner framework is designed as a scaling up architecture with fault tolerance.

4.1 Architecture Presentation

The goal of our approach is to distribute enumeration of models between the
main server and solvers through guiding paths and to reduce the synchronization
steps. Each solver encodes subsets of models Δi from D using the threshold θ.

The global architecture is presented in Fig. 1. We identify the main node, the
broker service, the distributed database service and solver nodes.

The Main Node has three different jobs: 1) storing the transaction database
D with corresponding parameters (Ω), 2) scheduling the tasks among the solvers
with a mining strategy based on the guiding path, and 3) launching the fault
tolerance job to check if any solver is down or if the main node itself has failed.

The Data Transfer Layer relies on a distributed database that contains the
transaction database D accessed by the solvers and the enumerated models of
each Φi ∈ Φcfim. In fact, this storage procedure allows for further computations
which reduces the communication transfers (warm start computation).

The Instruction Layer relies on a broker service that roots tasks Ψi from the
guiding path to the corresponding solvers. It manages a distributed pool of tasks
allocated to each solver which enables fault tolerance and load balancing. The
fault tolerance module interacts with the broker service to check if a solver node
has failed and redistributes corresponding tasks using the mining strategy.
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Fig. 1. Architecture schema.

To finish with, a Solver Node is composed of a solver component of paraSAT-
Miner and connectors to the data transfer layer and the instruction layer.

Input: D: transaction database,
θ: min support threshold,
B: list of brokers

/* Parser Step */

1 @D ← db address(D);
2 if empty(@D) then
3 Ω ← getSortedItems(D);
4 Ω ← filterItems(Ω, θ);
5 db Store(@D, Ω, D);

6 else
7 Ω ← db getItems(@D);
8 Ωp ←

db processedItems(@D, θ);
9 ΩB ← broker queuedItems(B);

10 Ω ← Ω − Ωp − ΩB ;

11 end
12 foreach b ∈ B do
13 broker sendConfig(b, @D, θ);
14 end

/* Mining step */

15 MiningStrategy(Ω′, B);
16 FaultTolerance(B, θ);

Algorithm 1: Main Node

Input: Ω: List of items,
B: list of brokers

1 foreach i ∈ {1, ..., |Ω|} do
2 b ← B[i%|B|];
3 broker sendItem(b, i);

4 end
Algorithm 2: MiningStrategy

/* Initialization */

1 (@D, θ) ← broker getConfig();
2 Ω ← db getItems(@D);
3 D ← db getDB(@D);

/* Mining guiding paths */

4 i ← broker nextItem();
5 while i �= null do
6 Ψi ← encodeGuidingPath(Ω, i);
7 Φi ← encodeDB(D, θ, Ψi);
8 Δi ← PSATMiner(Φi, θ);
9 db addModels(@D, θ, i, Δi);

10 broker ackItem(i);
11 i ← broker nextItem();

12 end
Algorithm 3: Solver Node

Input: θ: min support threshold,
B : list of brokers

1 while !empty(broker queue(B)) do
2 s ← getDeadSolver();
3 if s �= null then
4 b ← B[s];
5 Ωb ← broker queuedItems(b);
6 MiningStrategy(Ωb, B − b);

7 end
8 wait();

9 end
10 foreach b ∈ B do
11 broker sendItem(b, null);
12 end

Algorithm 4: FaultTolerance
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Such a framework is interesting for several aspects. First, it avoids any com-
munications between solvers which work autonomously. Second, the dataset is
stored for further computations. To finish with, the design of the mining strategy
is simplified by only defining the distribution of tasks in the broker. Last but
not least, the broker service allows managing fault tolerance by keeping alive
communications and pools separately from solvers which can fail.

4.2 The distriSATMiner Algorithm

The distriSATMiner algorithm is composed of three main tasks which are 1)
the treatment distribution with database manipulations, the resources’ allocation
and the mining strategy, 2) the production of models which computes given
tasks Φi, and 3) the fault tolerance of the process. Algorithms 1 and 3 detail
the computation led on main and solver nodes while Algorithm 2 defines the
resource allocation strategy and Algorithm 4 deals with solvers’ fault tolerance.

We must notice that main and solver nodes are designed in an asynchronous
architecture to avoid time loss during the process. Since every task is made to be
independent, no strong synchronization is required (except waiting for tasks).

Main Node. Algorithm 1 details instructions processed in the Main Node
whose goal is to distribution tasks among the solvers. As seen in Fig. 1, it is
composed of a parser and a mining strategy.

The parser step starts by allocating an identifier to the database @D and
checks if it has already been stored (lines 1–2). It is used to check if an instance
is already in progress (fault tolerance at Main node level). If not, it sorts increas-
ingly the list of items Ω according to their frequencies from D (line 3) in order
to ease the guiding path while encoding, and stores the list of items Ω and
the database D in the distributed database (line 4) for further manipulations.
Once the database is stored, the SAT problem configuration is sent to all solvers
(lines 11–13) that shares the database address and the threshold to be computed.

The mining step treats the whole mining process by taking into account both
the distribution of tasks and the fault tolerance (detailed below). First, it filters
the sorted list of items by the given threshold θ (line 14). Then, this new list is
then treated in the mining strategy (line 15) with the corresponding items and
available brokers. To finish with, the fault tolerance module is launched (line 16).

Mining Strategy. This pluggable module in Algorithm 2 aims at allocating
resources (items) among the available solvers through corresponding brokers. It
distributes all items i ∈ Ω to solvers (line 1). For this, it relies on the broker
service which associates to each solver a distributed pool (denoted by b ∈ B).
Thus, asynchronously the main node sends an item i to a given solver node b
(line 3). Notice that this simple strategy distributes items uniformly to solvers
(line 2). Other strategies will be studied in future works.
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Solver Node. Algorithm 3 details the mining tasks executed in each solver
node. First, it waits for the configuration of the mining problem. For this, it
asks the broker service (i.e., the associated pool) the database address @D and
the threshold θ used for mining tasks (line 1). Then, it acquires encoded items
Ω and transactions D (lines 2 and 3).

The following steps consist in mining frequent itemsets with θ and Ω and ith

tasks. For each new item i ∈ Ω from the broker (line 4), it encodes the guiding
path Ψi (line 6) by keeping items from Ω to true if their occurrence is higher or
equal to i. Ψi is combined with the threshold θ to encode the guiding path Φi

simultaneously with both φcfim and Ψi (line 7) from Definition 2. Then, Φi can
be used to mine Δi in the solver (line 8). Finally, it stores the mined models
Δi (line 8) with corresponding information (unicity on the triplet: D, θ and i).
Once the models are mined and stored the solver can acknowledge the ith task
to the broker (line 10) and proceed to the next item (line 11). Thus, the process
is repeated until no more items are required to be processed (lines 5 and 11).

Fault Tolerance. We need to take into account the fault tolerance to avoid a
full restart. Different failures are identified in the process: Main Node (parsing
(Algorithm 1, lines 1–14), mining strategy (Algorithm 2), and the fault toler-
ance itself (Algorithm 4)), Solver Node (initialization (Algorithm 3, lines 1–4),
encoding (lines 6–8), iii) mining (lines 8–9), and communications with the broker
(lines 10–11)), the Broker service, and the Distributed database.

We must notice that brokers and the distributed database already deal with
failures byt replicating both the database D, processed models (Δi linked by
@D, θ, i), and pools of tasks in progress B. The Fault Tolerance is then handled
for both the Main Node (Algorithm 1) and Solver Nodes (Algorithm 4).

If a breakdown occurs at the Main Node level (Algorithm 1), when it restarts
(or another instance), it requires to check the tasks list Ω. In that case, the
database has already been stored (line 4) and we can get Ω from the database
(line 6). Then, it checks if items have been processed Ωp (line 7) and also if
some are still to be mined ΩB in brokers (line 8). Consequently, the list of
missing processed items Ω is the set of items from the database without Ωp and
ΩB (line 9). The following steps of the Algorithm 1 proceed with the mining
strategy.

At solver nodes (Algorithm 4), if one fails the Main Node will distribute
the corresponding tasks to remaining nodes through brokers. For this, while it
remains items to be processed (line 1) it checks if any solver is down (lines 2
& 3). If so, it gets none-processed items Ωb (lines 4 & 5) and apply the mining
strategy on it (line 6). Recall that if the failure occurs while processing a task,
items are removed from the pool only once computed models are stored. Thus,
if it is not stored, it remains in the pool and will be processed by Algorithm 4.

To finish with, once all items are processed (i.e., all brokers are empty) an
“ending” message is sent to solvers (lines 10–12).



428 J. Martin-Prin et al.

5 Experimental Results

In this section, we instantiated our approach distriSATMiner and evaluate the
performances of our solution. Our approach uses a distributed architecture with-
out any direct communication between main and solver nodes (see Fig. 1).

5.1 Technical Architecture

All the experiments were done on a kubernetes cluster equipped with an Intel
Xeon E5-2698V4 with 20 cores at 2.2 GHz base frequency and 250 GB of RAM.
To evaluate our distributed architecture, we scale up the experiments by either
deploying the paraSATMiner [10] on a single VM with up to 24 cores/threads
and a cluster of 24 VMs for solver nodes (distriSATMiner).

To instantiate our distributed architecture (Fig. 1), each node corresponds to
a distinct virtual machine. The data transfer layer and its distributed database
are handled by a MongoDB cluster which stores and replicates all configuration
data and computed models in dedicated collections shared by the main and solver
nodes. The broker service is provided by a Kafka which manages, distributes
and replicates pools for each solver node. Notice that both mongodb and kafka
guarantee fault tolerance at the storage level. Thus, our solution only requires
to handle computation at fault tolerance level (Algorithm 1 and 4).

The whole architecture setup with the main and solver nodes implementation
are available on Github with the deployment scripts1.

As mentioned the set of closed frequents itemsets corresponds to formulas’
models Φ. To enumerate them, we followed the approach of [10] that adapts
the MinSAT solver by disabling the restart and conflict analysis components.
It showed that using a DPLL-based procedure is more suitable than a CDCL-
based one. Since the number of models is usually huge, adding a blocking clause
to avoid having the same model each time will slow down the unit propagation.
To tackle this issue, each time a model is found, a chronological backtracking
is performed while inhibiting the restart component to ensure completeness.
Similarly a backtracking to the last decision is performed when a conflict occurs.
Let us note that the cardinality constraint (Φfreq) is managed inside the solver.

5.2 Performance Analysis

We carried out our experimental evaluation using different real-world data min-
ing datasets. We selected different datasets from the FIMI2 repository.

We limit our comparison to the parallel SAT-based approach, called
ParaSATMiner, proposed in [10]. It showed that the algorithm witnesses better
performances than existing declarative methods in literature for mining frequent
closed itemsets. Experiments were done using three different support thresholds

1 https://github.com/leonard-de-vinci/Distributed SAT Approach FIM.
2 http://fimi.ua.ac.be/data/.

https://github.com/leonard-de-vinci/Distributed_SAT_Approach_FIM
http://fimi.ua.ac.be/data/
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θ, respectively representing a light, medium and heavy computation task. Per-
formances are compared by testing the scale up of the number of solver nodes
(D) vs. the number of cores (P) in a local ParaSaTMiner from 1 to 24 instances.

We must notice that the framework stores the dataset to be shared with
solver nodes. Thus, for any experiment the global computation time can benefit
from avoiding further precomputations of the dataset. However, to be fair with
the parallel approach we count precomputing time (i.e., “cold start”).

Figure 2 shows the parallel and distribution effect on the solving time by
varying the number of cores (P - dashed lines) and the number of solver nodes
(D - plain lines). As shown, on most experiments, the distributed approach
obtains better performances. In fact, the bottleneck in a parallel version occurs
on the main memory access which makes this solution converging faster than
the distributed version, especially when the number of cores exceeds 16. This
effect can be seen for Retail (Fig. 2a) with a low threshold of 10 and 20, Pumsb
(Fig. 2d) with 2.5 × 104 Accident (Fig. 2f) with 6 × 104 and 4 × 104.

Fig. 2. Distribution (#solvers D) vs parallelism (#cores P)
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T40I10D100K’s dataset witnesses a very different behavior. In fact, the
obtained solving time is about 5 times longer in the distributed environment.
This effect is explained by the fact that the dataset when stored is pretty small
but most of all, the number of enumerated models is very low for this dataset.
Thus, the time spent to data transfer is too high compared to the gain on process-
ing time. This transfer time is shown on every experiment by the dashed constant
gray line (negligible in Figs. 2b, 2d, 2e and 2f). In Fig. 2c we can remark that
the transfer time is higher than the processing time, but for others it’s negligible
w.r.t. to the processing time. In a “warm start” execution, this transfer time
disappears and the distribution outperforms the parallel version.

As expected, the lower the threshold θ is the higher the running time becomes.
In fact, this is due to the large number of models that can be found. The conver-
gence obtained by ParaSaTMiner is all the more noticeable. Thus, the distributed
approach can still continue to benefit from a complete parallelism.

5.3 Aggregation Effect on CFIM

To study further the effect of scalability, we propose a new dataset based
on touristic visits over France from comments on TripAdvisor as depicted in
Table 1. It provides for each tourist, the set of geolocalized locations he has
commented. Such a study will help tourist stakeholders to understand intercon-
nections between frequent destinations and propose adapted tour operators.

Table 1. Touristic data characteristics

Instance #Transactions #Items Density Size

France (Department) 2,131,781 96 3.82% 26.5 M

France (District) 2,529,011 350 1.22% 41.4 M

France (City) 2,700,450 3,664 0.13% 58 M

France (Town) 2,750,818 36,612 0.014% 86.7 M

France (Location) 3,128,134 240,911 0.003% 129.3 M

Fig. 3. TripAdvisor France at various aggregation scales and different thresholds
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Since the data contains geographical features, we can mine the dataset by
extracting frequently visited zones by aggregating those locations on their com-
mon area. Thus, by exploiting the linked administrative area (GADM database3)
we can group locations on towns, cities, districts and departments, in order to
analyze correlations between zones in a country. Another interesting aspect of
this dataset is to study the effect of aggregation on CFIM with a same dataset;
higher density when aggregated since locations belong to the same area4.

To study the effect of various aggregation, we run the experiments with three
different support thresholds and we compared the datasets against each other.
Recall that we use the same dataset (at location level) aggregated on shared
properties “area” leading to Town, City, District and Department.

Figure 3 gives the solving time of these different scales on the Tripadvisor
dataset with three different thresholds and by varying the number of solvers.
It is interesting to notice that the increasing order of aggregation is not clearly
correlated to the computation time. In fact, the department scale with fewer
items (Table 1) takes less time than Districts with more items (3 times) while
expecting to have fewer models. This is due to the fact that data are skewed; for
instance, lots of visits in Paris lead to more extracted models between Districts
in Paris while fewer in other cities. This effect can also be seen with Town and
City scales that cost less than district scale for every thresholds. This means
that the District scale produces more computation to find models than other
levels of aggregation since many backtracking are necessary to find new models.

Moreover, changing the threshold has especially an impact on the compu-
tation time of all models except at Department scale. We can see that mining
models at a high threshold took more time for the Department aggregation level,
while it takes less time for lower thresholds. This means that most itemsets are
highly frequent and detected with very frequent items but it does not change as
much as other scales when trying lower thresholds.

It is interesting to notice that City and Town scales witness a same-solving
time. Thus, trips of users have a same logic while visiting France on destinations
(Cities). The low time obtained for Location means that few models are found
and it becomes harder to find common trips between users (Table 2).

3 GADM https://gadm.org/download country.html.
4 Datasets are anonymized, formatted and available on Github: https://github.com/

leonard-de-vinci/Distributed SAT Approach FIM/tree/main/data.

https://gadm.org/download_country.html
https://github.com/leonard-de-vinci/Distributed_SAT_Approach_FIM/tree/main/data
https://github.com/leonard-de-vinci/Distributed_SAT_Approach_FIM/tree/main/data
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Table 2. distriSATMiner vs. paraSAT-Miner on FIMI datasets

Instance (#Transactions, #Items) θ DSAT M-1s PSAT M-1c DSAT M-4s PSAT M-4c DSAT M-8s PSAT M-8c DSAT M-16s PSAT M-16c DSAT M-24s PSAT M-24c Sending time #Models

Retail (#88 162 #16 470 ) 80 13.14 14.06 4.48 5.4 3.38 4.05 2.79 3.79 2.79 4.39 2.69 > 8.103

60 17.66 19.1 6.15 6.95 4.82 5.67 4.06 5.25 3.78 5.56 > 1.104

40 26.28 27.82 9.42 10.63 6.77 8.55 5.94 7.52 5.84 7.98 > 2.104

20 48.72 50.54 16.89 19.35 11.64 14.79 10.29 12.57 9.76 13.58 > 5.104

10 100.34 105.34 31.99 36.86 21.18 24.57 15.87 21.26 15.01 21.88 > 1.105

40000 5.19 7.13 1.51 2.09 0.83 1.56 0.51 1.28 0.56 1.57 4.09 > 7.104

20000 40.49 52.58 14.45 19.23 10.99 15.45 10.39 14.64 10.36 15.02 > 5.105

Connect (#67 558 #129) 10000 340.13 417.96 99.72 129.68 67.98 92.12 43.22 69.76 39.66 66.97 > 3.106

5000 1586.39 1915.19 463.96 595.14 267.91 354.73 149.52 262.23 116.94 232.05 > 1.107

10000 1.02 1.16 0.35 0.37 0.17 0.27 0.11 0.38 0.13 0.56 5.58 ∼= 1.102

T40I10D100K (#100 000 #942) 8000 1.64 1.72 0.51 0.57 0.25 0.38 0.15 0.47 0.12 0.63 > 1.102

6000 2.62 2.98 0.84 0.84 0.43 0.57 0.26 0.64 0.19 0.9 > 2.102

4000 4.34 4.79 1.23 1.44 0.68 0.92 0.37 0.86 0.28 0.91 > 4.102

2000 11.69 12.34 3.05 3.72 1.72 2.52 1.06 1.76 0.7 2.44 > 1.103

Pumsb (#49 046 #2113) 40000 2.84 3.64 0.92 1.26 0.57 0.84 0.43 1329.55 0.43 1.24 5.39 > 2.104

35000 17.14 22.23 5.55 7.42 4.46 6.07 4.19 6.14 4.47 6.47 ∼= 2.105

30000 77.68 97.64 37.05 47.08 20.37 26.86 18.74 26.15 20.23 26.63 ∼= 9.105

25000 564.96 700.07 192.69 252.83 144.48 191.5 96.33 142.67 99.22 140.44 ∼= 6.106

20000 3858.91 4764.99 1259.72 1586.33 1028.38 1329.55 726.24 999.13 688.0 948.15 > 3.107

Kosarak (#990 002 #41267) 4000 24.81 26.44 8.79 9.82 6.34 8.12 5.51 7.74 5.46 8.81 15.88 > 2.103

3000 38.25 39.94 12.89 15.24 10.07 12.44 8.78 11.42 8.31 12.97 > 4.103

2000 105.64 109.85 32.98 35.96 20.57 25.76 18.88 23.84 15.67 23.28 > 3.104

1000 1003.55 1049.89 472.52 499.12 361.28 389.97 352.43 373.03 340.58 359.44 ∼= 5.105

Accidents (#340 183 #468) 100000 86.54 92.76 24.45 29.53 16.65 18.9 14.54 18.96 15.21 20.2 13.69 ∼= 1.105

80000 233.2 250.55 72.47 81.03 49.72 57.09 42.36 54.53 42.99 54.96 ∼= 4.105

60000 768.65 813.26 243.93 274.24 151.34 177.18 113.5 147.78 111.07 149.36 > 1.106

40000 3307.0 3512.26 1003.75 1132.71 607.95 690.34 361.03 484.3 366.59 492.24 ∼= 6.106

6 Conclusion

We proposed a distributed framework for Closed Frequent Itemset Mining using
propositional satisfiability. It relies on a Main Node that defines the mining
strategy by sending pieces of guiding paths to Solver Nodes. The distributed
architecture is fault tolerant and outperforms traditional parallel mining since
it avoids bottlenecks access to main memory. We also provided a new mining
dataset with various aggregation scales which brings new questions on mining
optimization using correlations between geographic areas.

For future works, we plan to enhance the mining strategy by finding better
heuristics allowing to improve the load balancing. In fact, most Solver Nodes
work in parallel and witness good performances. However it can occur that one
task is longer than others and other nodes wait it to finish.

Another search direction concerns the dynamic decomposition to avoid the
idleness of the workers. Moreover, we plan to exploit our distributed architecture
for other mining tasks such as maximal frequent itemset and top-k prefered ones.
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Abstract. Indexes are essential for increasing query speed. Traditional
databases require database administrators to manually tune indexes based
on knowledge and their experience. In recent years, AI techniques have
been successfully applied to many areas including automatic index rec-
ommendation. Reinforcement Learning (RL) methods such as Deep Q-
Network (DQN) can find better indexes than traditional methods, but still
suffer from the huge action space. Previous RL methods tried to solve it by
pre-narrowing action space to several candidate indexes, which may omit
some useful indexes. This paper focuses on offline Index Selection Prob-
lem (ISP) and tries to solve the problem via invalid action mask in a tree-
structured action space. First, we use Double DQN and Dueling DQN to
replace traditional DQN to get better estimation of Q-values. Then we pro-
pose a novel index recommendation approach DQN-AMTAS that collects
all possible indexes in a tree and recommends multi-column indexes from
left to right via invalid action mask based on the Leftmost Prefix Rule.
We conduct extensive experiments on TPC-H and TPC-DS datasets. The
experimental results show the superiority of our proposed DQN-AMTAS
compared with state-of-the-art index recommendation algorithms.

Keywords: Index Selection Problem · Deep Q-Network · Invalid
action mask

1 Introduction

Research on automatic index recommendation started as early as 1970 and is
often referred to as Index Selection Problem (ISP) in the literature. It is about
selecting what indexes to build for given database tables, data and workload
queries and has been proven to be NP-hard [13] with a huge solution space.
Therefore, it is hard to naively enumerate all possible index combinations. How
to search optimal or near-optimal solutions effectively is the major difficulty.

Both non-machine learning methods [5,8] and machine learning methods [10,
15] have been proposed. We mainly try to remedy the potential weakness of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Chen et al. (Eds.): ADMA 2022, LNAI 13726, pp. 434–445, 2022.
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heuristic rules in Lan’s work [10] that uses Deep Q-Network (DQN) [11] to
search optimal index configuration in offline scenarios where database tables,
data and queries are given and fixed. Our contributions can be summarized as
follows:

– We replace the traditional DQN with Double DQN and Dueling DQN in the
index recommendation framework to get better estimation of action values.

– We propose DQN with Invalid Action Mask in Tree-Structured Action Space
(DQN-AMTAS) that collects all combination of indexes in a tree-structured
action space and uses invalid action mask during training.

– In the experiments, we first find that Double DQN and Dueling DQN are
better than traditional DQN. Then we conduct experiments on TPC-H and
TPC-DS with different scale factors and memory budgets demonstrating our
DQN-AMTAS can find the best indexes that make query execution time the
shortest compared with baseline methods.

This paper is organized as follows. In Sect. 2, the related work is discussed.
The architecture design is described in Sect. 3. Then we replace the traditional
DQN with Double DQN and Dueling DQN, and propose DQN-AMTAS in
Sect. 4. The experiment results are given in Sect. 5. We conclude the paper in
Sect. 6.

2 Related Work

Algorithms for automatic ISP were firstly published in the early 1970s s and var-
ious methods vary in implementation and complexity. Many commercial DBMSs
have provided automatic index recommendation tools, such as Anytime [3],
DB2advis [16]. These algorithms can be divided into two categories: traditional
methods and machine learning-based methods.

Traditional index recommendation algorithms can be categorized from two
aspects. From the aspect of searching, some methods start from an empty set
and gradually add indexes (DB2advis [16], Anytime [3], Extend [14]), while some
other methods start from a large set of indexes (all combinations) and gradually
remove indexes (Drop [4], Relaxation [2]). From the aspect of formulating ISP
as some well-researched problems, researchers formulate ISP as Linear Program-
ming problems [5,12] and variants of 0–1 knapsack problem [8] because of the
similarity between these problems.

Machine Learning methods can be further divided into traditional Machine
Learning methods and Deep Learning methods (mainly Deep RL). There are
traditional Machine Learning methods such as genetic algorithm [6] and least-
square policy iteration [1]. Deep RL methods are mainly proposed after Sharma’s
first try to apply Deep RL approach [15] to index recommendation in 2018. Since
then, many researches on ISP utilize Deep RL, from Sharma’s method which can
only recommend single-column indexes to others recommending multi-column
indexes, from only B+ tree index to other index types.
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3 RL-Based Index Advisor

In this section, we first give the definition of Index Selection Problem, then
explain how to model ISP as a RL problem. After illustrating the general frame-
work, we describe our design of state, action, value function and neural network.

3.1 Index Selection Problem

Definition 1. Given a database D = {T1, T2, ..., Td}, where Td represents the
dth table in the database, with a known workload W = {q1, q2, ..., qn}, the
aim is to find a set of index configurations I∗ = {i1, i2, ..., ik} that I∗ =
argmaxICostI(W ) under constraints B = {b1, b2, ..., bj} such as index num-
ber of index space. CostI(W ) is the execution cost of workload W under index
configuration I. It is the sum of execution time of all queries in the workload,
calculated as CostI(W ) =

∑Q
j=1(costj).

Suppose we want to build a multi-column index of width c, the table has n
columns, there are n choices for the first column in the index, n-1 choices for
the second column, and so on. When the database contains hundreds of tables,
there are too many possible index configurations to consider. This requires the
design of efficient algorithms to automatically find the optimal solution in such
a large search space.

3.2 General Framework of the Index Advisor

The candidate set of ISP is too large to directly find the optimal configuration
at a time. It is often necessary to use an iterative and greedy search algorithm to
select and try index one by one. RL is used as a solution to the sequential deci-
sion making problem to search for the optimal index configuration. Under given
constraints, RL algorithm can automatically learn how to maximize target value
in interaction with the environment in episodes. As shown in Fig. 1, at each step
of an episode, the agent (index advisor) interacts with the environment (DBMS).
The agent selects an action (i.e. recommending an index) based on the current
state and policy, and the environment returns a reward value (decreasing in the
execution time, e.g. Formula 2 ) as value estimation of the chosen action from
the state. When the index size exceeds space constraint, the episode terminates,
indexes recommended in this episode are recorded, the environment is reset by
deleting all recommended indexes and setting the state to the initial state, and
a new episode starts. Among these episodes, we choose indexes with the shortest
workload execution time as the final recommendation.

We will explain in detail the design of states, actions, value function and
neural network in the following subsections.

3.3 States

We arrange all candidate indexes as an array, represented by one-hot encod-
ing schema: “1” represents the index at corresponding position is built and “0”
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Fig. 1. The framework for index recommendation

otherwise. This array indicates current state. Candidates can be single-column
or multi-column indexes generated by enumerating all possible combination of
columns. We can also pre-extract some candidates by heuristic rules as Lan et
al. did.

3.4 Actions

An action in ISP is an index chosen by the agent to be built. In DQN, the
one-dimensional array representing the current state is input into the neural
network, and the array of the same dimension is the output. Each value of the
output array represents the value function of selecting the corresponding index
of that position, that is, the Q value. Using the greedy strategy, the action
corresponding to the maximum Q value is selected:

A = argmaxπE(
T∑

t=0

λtR(st, at)|s0 = s, a0 = a) (1)

3.5 Value Functions

At every step, the agent selects an index from the candidate index set, adding to
the current index configuration to reduce the execution time of workload queries
without violating the constraints on the number of indexes or storage space. Let
Xi denote the index configuration after the i-th step, and X0 the initial index
configuration(empty set). The reward function is defined as the ratio of the cost
reduction and the initial cost [10] as Formula 2 shows.

R(Xt) =
Cost(W,Xt−1) − Cost(W,Xt)

Cost(W,X0)
(2)

where T represents the maximum number of steps not to exceed the constraints.
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3.6 Neural Network

We use three-layer fully connected Neural Network(NN) as shown in Table 1.
Note that the number of candidate indexes is equal to the dimension of the state
space as well as the dimension of the action space. The output array is an array
of Q-values. Each Q-value is the value of choosing the corresponding action from
the input state. The parameters of each layer are normalized with a Gaussian
distribution with mean 0 and variance 1.

Table 1. Structure of Neural Network

Layer Input dim Output dim

1 Number of candidates 1024
2 1024 1024
3 1024 Number of candidates

4 DQN-AMTAS

In this section, we describe the benefit of replacing traditional DQN with Double
DQN and Dueling DQN. Then we illustrate the idea and implementation of our
proposed DQN-AMTAS, with an example on REGION table .

4.1 Improvements on Traditional DQN

Double DQN. Traditional DQN [11] tends to overestimate Q-value because
every time the maximum Q-value of next state is added as show below:

Q(S,A) ← Q(S,A) + α(R + γmaxa′Q(S′, a′) − Q(S,A)) (3)

The solution is to use the eval-net (parameters always being updated) to choose
action with the highest Q-value, and use the target-net (same structure with eval-
net, parameters fixed but periodically synchronized with eval-net) to evaluate
Q-value for the chosen action [17]:

Q(S,A; θ) = R + γQ(w′, argmaxa′Q(S′, A′; θ); θ′) (4)

Dueling DQN. Dueling DQN divides the Q-value into two parts in Fig. 2: the
state value function V(s) and advantage function A(s,a) to get better estimation
of state-action value [18]. The Q-value is the sum of V(s) and A(s,a):

Q(s, a) = V (s) + A(s, a) (5)
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Fig. 2. The interaction between the agent and the environment

4.2 DQN-AMTAS

In this section, we first introduce the basic idea of our method and then describe
the implementation.

Idea. Take TPC-H as an example, there is a total of 51 columns in all tables and
59 candidate indexes will be generate by Lan’s heuristic rules [10]. If all columns
in each table are arranged in permutations, there will be 3551 candidate indexes.

Since recommending single-column indexes is not good enough, we need to
consider multi-column indexes. Lan et al. [10] design heuristic rules to pre-narrow
candidate set. However, we find that indexes recommended by Extend that make
queries faster contain some indexes not in the 59 candidate indexes extracted
by the heuristic rules. This means that when the heuristic rules are used, better
candidate indexes are excluded early before searching.

We then try all 3551 permutations as candidate set, but unfortunately the
agent is bewildered by so many actions and fails to find appropriate indexes,
even resulting in longer execution time than single-column indexes.

Now we need to devise a way to both make all combinations possible and
make the agent focus on more beneficial actions. Considering the leftmost match-
ing principle of a multi-column index, when building a multi-column index, it
is expected that the columns on the left of it are also helpful for speeding up
data retrieval. When recommending a multi-column index, we always first rec-
ommend single-column indexes, and then choose an existing index, add a column
to its right as a new wider index. In DQN, the action space should be fixed, and
we could not add or delete indexes. Therefore, we use invalid action mask [7]
to make some action valid and other invalid in each step. In this way, valid
action space of each step is greatly reduced and all permutation of columns are
selectable. In this way the RL agent is able to find appropriate indexes during
its trial-and-error interaction with DBMS.
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Implementation. To collect information of all candidates and enable conve-
nient update of state, action and mask, we design a tree to store all permutations
of indexes as well as their parents and children as explained above. Taking TPC-
H(a decision support benchmark consisting of a suite of business oriented ad-hoc
queries and concurrent data modifications) as an example, the root of the tree
has 8 children nodes in its first layer (representing 8 tables in TPC-H). Nodes in
the second layer are all single-column indexes in its father table node. The tree
structure of table Region is shown in Fig. 3.

Fig. 3. The tree-structured action space (REGION table as an example)

Since the input to the neural network is the current state and needs a one-
dimensional representation, we convert this tree into a one-dimensional array
by pre-order traversal. Each element in the array has the record of the columns
contained in the index and positions of its parent node and child nodes. Position
of a node is the node’s index in the array, which is convenient for updating valid
action information when the agent chooses an action and moves to a new state.

At the beginning of each episode, only single-column indexes are valid, as
shown in Fig. 4(a). At this time, a mask tensor is generated. The corresponding
position of a single-column index is True, and the others are False. The output
of the neural network is masked with the mask tensor and the Q value of the
invalid action is set to a negative number with a very large absolute value, so
that the invalid action will not be selected.

After the agent selects an action and executes it, the action is set to be
invalid and cannot be recommended again. At this time, the parent node of the
chosen index is deleted from the current index set because the left part of the
newly chosen index can be used for retrieval according to the leftmost matching
principle; the actions corresponding to the child nodes of the chosen index are
marked as valid, possible to be chosen in later steps, and so on.

Suppose the agent chooses r_regionkey for the first time, then r_regionkey
itself becomes invalid, and its children become valid as shown in Fig. 4(b).
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Assuming r_name and (r_name, r_regionkey) are selected in the next two steps,
the state changes to Fig. 4(c).

Fig. 4. State Illustration of DQN-AMTAS

Mask of next state also needs to be saved to replay buffer in addition to
<s,a,r,s’>. The mask is used to calculate maxa′Q(S′, a′) when updating the
parameters of the networks. Finally, after the episode ends, the environment
needs to be reset, masks set to only single columns recommendable. In addition,
because of ε greedy strategy, the algorithm can select a multi-column index whose
left part is not recommended but effective on the whole.
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We call this algorithm DQN with Invalid Action Mask in Tree-structured
Action Space (DQN-AMTAS). The pseudocode is shown in Algorithm 1.

Algorithm 1: DQN-AMTAS
input : Database with several tables D = {T1, T2, ..., Td}, workload of

several queries W = {q1, q2, ..., qn}
output: Selected indexes I∗ = {i1, i2, ..., ik}

1 Randomly initialize eval-net
2 Randomly initialize target-net
3 Generate tree-structured action space
4 for each episode do
5 State s0 ← initial state
6 for each step do
7 With probability ε select random action, otherwise choose

at = argmaxQ(s, a) from only valid actions
8 st+1 ← execute action, update the tree-structured action space

and get new state
9 Compute reward Rt

10 Store transition< st, at, Rt, st+1 > in replay memory
11 Sample experience from replay memory
12 Update eval-net with stochastic gradient descent
13 Update target-net frequently

5 Experimental Results

5.1 Baselines

We compare DQN-AMTAS with the following baselines on the platform provided
by Kossmann et al [9]:

– Extend : Extend [14] greedily chooses an action to maximize the ratio of cost
decrease and storage increase, either selects one column as a new index or
adds it to the right of an existing index.

– DB2advis: DB2advis [16] gradually adds indexes to index configuration
according to the ratio of cost decrease and storage increase from large to
small.

– Relaxation: Relaxation [2] starts from full optimal index set, gradually reduces
space until the storage constraint is satisfied.

– Anytime: Anytime [3] first recommends indexes for each query and then com-
bines them for the total workload.

– Lan’s DQN : Lan’s DQN [10] uses heuristic rules to pre-collect candidate
indexes before searching. We re-implement it in the platform [9] and name it
’DQN with heuristics’.



Index Advisor via DQN with Invalid Action Mask 443

5.2 Experimental Results

Our experiments are conducted on de-facto industry standard benchmarks TPC-
H and TPC-DS datasets. Scale factor determines how large data are generated,
e.g. 0.1GB when scale factor=0.1. Overall cost is measured by the execution time
of all queries in the workload. We use the total cost returned by the ’explain’
command.

Improvements of Double DQN and Dueling DQN. Table 2 shows the
results of different algorithms. From the table, we can see that the performance
of index recommendation using Double DQN and Dueling DQN algorithms is
better than that of traditional DQN.

Table 2. Improvements of Double DQN and Dueling DQN on TPC-H (scale fac-
tor = 0.1 memory budget= 50 MB)

Algorithm Overall cost Index space (MB) Index number

Lan’s DQN 289261.76 45703168 11

Lan’s DQN + Double DQN 288203.86 48005120 12

Lan’s DQN + Double DQN + Dueling DQN 288018.61 46358528 10

Table 3. Comparison results on TPC-H (scale factor= 0.1, memory budget= 50 MB,
only single-column index)

Algorithm Overall cost Index space (MB) Index number

Extend 288701.58 45596672 7
DB2advis 300405.44 49930240 18
DQN with heuristics 303822.04 48775168 14
DQN-AMTAS 287227.59 49889280 19

Comparison of DQN-AMTAS with Baselines Table 3 shows the results of
different algorithms recommending only single-column indexes in 0.1GB TPC-H
dataset under 50MB constraint. Our DQN-AMTAS’s overall cost is 287227.59
that is smaller than Extend. In the same experimental setting but recommend-
ing multi-column indexes, the leftmost of Fig. 5 shows indexes recommended
by DQN-AMTAS further reduce query execution time to 280258, shorter than
Extend’s 283254.

As shown in Fig. 5 and Table 4, DQN-AMTAS has lower cost than other
algorithms. Only on 1GB TPC-H dataset under 100MB storage constraint, the
result of DQN with heuristics is similar to the result of DQN-AMTAS.



444 Y. Wu et al.

Fig. 5. Comparison of DQN-AMTAS with baselines

Table 4. Comparison results on TPC-DS (scale factor= 1, memory budget= 50 MB)

Algorithm Overall cost Index space (MB) Index number

Extend 12382736.36 43515904 10
Anytime 12467281.36 49979392 20
DB2advis 12608707.42 49905664 57
DQN-AMTAS 12347613.18 49053696 12

6 Conclusions

In this paper, we apply improved DQN (Double DQN and Dueling DQN) with
invalid action mask in tree-structured action space to Index Selection Problem.
Including all useful candidates, our DQN-AMTAS can find better indexes than
other baseline algorithms.

In the future work, we will turn to online case of index recommendation and
adapt to constantly changing data and workload. After fully pre-training the
model on enough tables, data and queries, the model is expected to recommend
indexes in a single run and be faster than any search-based algorithms.

Acknowledgements. This study was supported by the Natural Science Foundation
of Shaanxi Province of China (Grant No.2021JM068).

References

1. Basu, D., et al.: Regularized cost-model oblivious database tuning with reinforce-
ment learning. In: Hameurlain, A., Küng, J., Wagner, R., Chen, Q. (eds.) Trans-
actions on Large-Scale Data- and Knowledge-Centered Systems XXVIII. LNCS,
vol. 9940, pp. 96–132. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53455-7_5

2. Bruno, N., Chaudhuri, S.: Automatic physical database tuning: a relaxation-based
approach. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, pp. 227–238 (2005). https://doi.org/10.1145/1066157.
1066184

https://doi.org/10.1007/978-3-662-53455-7_5
https://doi.org/10.1007/978-3-662-53455-7_5
https://doi.org/10.1145/1066157.1066184
https://doi.org/10.1145/1066157.1066184


Index Advisor via DQN with Invalid Action Mask 445

3. Chaudhuri, S., Narasayya, V.: Anytime algorithm of database tuning advisor for
microsoft sql server (2020)

4. Choenni, S., Blanken, H., Chang, T.: Index selection in relational databases. In:
Proceedings of ICCI 1993: 5th International Conference on Computing and Infor-
mation, pp. 491–496. IEEE (1993). https://doi.org/10.1109/ICCI.1993.315323

5. Dash, D., Polyzotis, N., Ailamaki, A.: Cophy: a scalable, portable, and interactive
index advisor for large workloads. arXiv preprint arXiv:1104.3214 (2011). https://
doi.org/10.48550/arXiv.1104.3214

6. Fotouhi, F., Galarce, C.E.: Genetic algorithms and the search for optimal database
index selection. In: Sherwani, N.A., de Doncker, E., Kapenga, J.A. (eds.) Great
Lakes CS 1989. LNCS, vol. 507, pp. 249–255. Springer, New York (1991). https://
doi.org/10.1007/BFb0038500

7. Huang, S., Ontañón, S.: A closer look at invalid action masking in policy gradi-
ent algorithms. arXiv preprint arXiv:2006.14171 (2020). https://doi.org/10.48550/
arXiv.2006.14171

8. Ip, M.Y.L., Saxton, L.V., Raghavan, V.V.: On the selection of an optimal set of
indexes. IEEE Trans. Softw. Eng. 2, 135–143 (1983). https://doi.org/10.1109/TSE.
1983.236458

9. Kossmann, J., Halfpap, S., Jankrift, M., Schlosser, R.: Magic mirror in my hand,
which is the best in the land? an experimental evaluation of index selection algo-
rithms. In: Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 2382–2395
(2020). https://doi.org/10.14778/3407790.3407832

10. Lan, H., Bao, Z., Peng, Y.: An index advisor using deep reinforcement learn-
ing. In: Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pp. 2105–2108 (2020). https://doi.org/10.1145/3340531.
3412106

11. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013). https://doi.org/10.48550/arXiv.1312.5602

12. Papadomanolakis, S., Ailamaki, A.: An integer linear programming approach to
database design. In: 2007 IEEE 23rd International Conference on Data Engineer-
ing Workshop, pp. 442–449. IEEE (2007). https://doi.org/10.1109/ICDEW.2007.
4401027

13. Piatetsky-Shapiro, G.: The optimal selection of secondary indices is np-complete.
ACM SIGMOD Rec. 13(2), 72–75 (1983). https://doi.org/10.1145/984523.984530

14. Schlosser, R., Kossmann, J., Boissier, M.: Efficient scalable multi-attribute index
selection using recursive strategies. In: 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pp. 1238–1249. IEEE (2019). https://doi.org/10.1109/
ICDE.2019.00113

15. Sharma, A., Schuhknecht, F.M., Dittrich, J.: The case for automatic database
administration using deep reinforcement learning. arXiv preprint arXiv:1801.05643
(2018). https://doi.org/10.48550/arXiv.1801.05643

16. Valentin, G., Zuliani, M., Zilio, D.C., Lohman, G., Skelley, A.: Db2 advisor: an
optimizer smart enough to recommend its own indexes. In: Proceedings of 16th
International Conference on Data Engineering (Cat. No. 00CB37073), pp. 101–
110. IEEE (2000). https://doi.org/10.1109/ICDE.2000.839397

17. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30 (2016). https://doi.org/10.1609/aaai.v30i1.10295

18. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling
network architectures for deep reinforcement learning. In: International Conference
on Machine Learning, pp. 1995–2003. PMLR (2016)

https://doi.org/10.1109/ICCI.1993.315323
http://arxiv.org/abs/1104.3214
https://doi.org/10.48550/arXiv.1104.3214
https://doi.org/10.48550/arXiv.1104.3214
https://doi.org/10.1007/BFb0038500
https://doi.org/10.1007/BFb0038500
http://arxiv.org/abs/2006.14171
https://doi.org/10.48550/arXiv.2006.14171
https://doi.org/10.48550/arXiv.2006.14171
https://doi.org/10.1109/TSE.1983.236458
https://doi.org/10.1109/TSE.1983.236458
https://doi.org/10.14778/3407790.3407832
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.1145/3340531.3412106
http://arxiv.org/abs/1312.5602
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1109/ICDEW.2007.4401027
https://doi.org/10.1109/ICDEW.2007.4401027
https://doi.org/10.1145/984523.984530
https://doi.org/10.1109/ICDE.2019.00113
https://doi.org/10.1109/ICDE.2019.00113
http://arxiv.org/abs/1801.05643
https://doi.org/10.48550/arXiv.1801.05643
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1609/aaai.v30i1.10295


A Hybrid Model for Demand Forecasting Based
on the Combination of Statistical and Machine

Learning Methods

Fadoua Ouamani1(B), Asma Ben Fredj1,2, Mohamed Rayen Fekih2, Anwar Msahli2,
and Narjès Bellamine Ben Saoud1

1 RIADI Research Laboratory, National School of Computer Science, University of Manouba,
Manouba, Tunisia

fadoua.ouamani@ensi-uma.tn
2 COGNIRA, Imm. PREMIUM, Les Berges du Lac, Tunis, Tunisia

https://cognira.com/

Abstract. Demand Forecasting (DF) is nowadays a key component of success-
ful businesses in retailing field. In fact, accurate customer’s demand forecasts
and insights into the reasons driving the forecasts may increase confidence, assist
decision-making and therefore boost’s the retailer’s profit. It is then crucial for
an accurate DF model to not only understand the retail time-series repeated pat-
terns but also the impacts of factors such as the promotions on the data behavior.
The literature review of existing research works has shown that statistical models
gave good results in accurately detecting time-series components such as season-
ality or trend but they fail when it comes to detecting external factors or causal
effects compared to machine learning models. Moreover, the combination of both
models either focused only on the trend component and neglected the seasonal-
ity or considered both of them but used sophisticated neural networks, which are
computationally expensive. To this end, in this paper, we propose an approach
that combines statistical and machine learning models to take advantages of their
aforementioned properties. We used first Multiple Linear Regression (served as
the baseline model as well) and linear interpolation to remove the promotions
effect from the data and compute promotional multipliers. Then, each resulting
data was fed to two statistical models (Prophet and Exponential Triple Smooth-
ing). Finally, the combination step consisted in reintegrating the promotions effect
into the forecasting results of each statistical model. Quantitative and qualitative
evaluations of the hybrid models’ performance showed that the hybrid models
outperformed the baseline model.

Keywords: Retailing · Data mining · Demand forecasting · Time-series ·
Statistical models · Machine learning · Hybrid model · Prophet

1 Introduction

In today’s fast-paced world, data collection, understanding and mining has become the
key to staying ahead of the competition, achieving success and boosting profits in many
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business fields. In retailing for example, it helps retailers gathering the most useful
information about their products and customers, forecasting the customer’s demand,
understanding the reasons behind sales actions and behaviors and making of the right
business decision. In retailing, the data is daily recorded and is organized into three-
dimensional hierarchies: time hierarchy (year, half of year, month, week, and day),
product hierarchy (: group, department, class, subclass and Stock Keeping Unit-SKU)
and location hierarchy (chain, area, region, district and store). Moreover, Retail data
is usually time-series data which is a collection of data sorted chronologically by a
time index. It has three components:1)trend component (T(t)) which shows the overall
tendency of the data to increase, decrease or remain stable through long periods, 2)
seasonal component (S(t)) which represents regularly spaced fluctuations having almost
the same pattern and magnitude during the same period every year and 3) irregular
component (I(t)) which refers to the unpredictable sudden changes in data. Time-series
(Y(t))may be additive (Y(t)=T(t)+S(t)+ I(t)) ormultiplicative (Y(t)=T(t)*S(t)*I(t)).
When the magnitude of the seasonal pattern evolves with the trend then the time series
is multiplicative.

Demand forecasting make then use of this data history to forecast the amount of
goods or services that will be sold in the future or in response to particular causal-effects
such as the promotions. In real world scenarios, the demand forecasting is based on the
Eq. (1) where the Y is the demand to forecast, Level is the average selling unit in the
absence of seasonality and Promotional_mutliplier is the ratio representing the increase
in sales within the presence of a promotion.

Y = Level × Seasonality × Promotional_multiplier (1)

Due to the particularity of retail data, it is crucial for a demand forecasting model to
not only understand the time series repeated patterns (trend and seasonality) but also
the impact of factors such as the promotions on the behavior of the data. However,
the existing research works on retail time-series forecasting propose statistical models,
machine learning models or a combination of both models that do not satisfy the two
aforementioned requirements simultaneously. In fact, statistical models focus on detect-
ing the time series components such as seasonality and trend, whereas machine learning
models have proven high effectiveness in handling causal effects. To this end, this paper
proposes a new approach to retail demand forecasting that combines both models to
handle causal effects and detect time series components with low complexity and easily
interpretable models.

The remainder of the paper is then organized as follows: Sect. 2 will be dedicated to
the review of existing research works on retail time-series forecasting and discussion of
the findings. This will lead us to the paper’s contributions described in Sect. 3 in terms
of a revisited KDD (Knowledge Discovery from Databases) that goes through different
steps: from data collection and preprocessing to model evaluation. Section 4 will be
then devoted to the presentation of the efforts made to carry out the first step. Once
data is ready, it’s fed to two machine learning techniques (Multiple Linear regression
and Linear Interpolation) to remove the promotions effect and compute promotional
multipliers;whichwill be described inSect. 5. Section6will present the statisticalmodels
used, namely Prophet and Exponential Triple Smoothing (ETS), their configurations and
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results of their trainings. Section 7 will finally present the model combination process
and comparison results of the performance of the different hybrid models based on both
quantitative and qualitative evaluations.

2 Related Work

Several retail time-series forecasting models have been proposed in the literature by
following two different approaches: single model-based approach and model combina-
tion based approach. In this section, we will briefly present the research works using
each approach, which help us to draw important conclusions and come up with our
contribution to the field.

2.1 Statistical Models

Different types of statistical models were utilized for retail time-series fore-
casting. MA(Moving Average), ARIMA (Auto Regression Moving Average),
SARIMA(Seasonal ARIMA), ETS(Exponential Triple Smoothing), Prophet, to cite but
a few. In [1], the authors have used ARIMA which is an optimized version of MA, as
MA cannot handle all time-series components and thus the high dimensionality vari-
able’s space and business related information about promotion and price fluctuation.
ARIMA was deployed for demand forecasting as an important component of supply
chain management process but it was incapable of capturing the seasonality pattern
within the time-series data. In an attempt to solve this problem, researchers in [2] have
used SARIMA for red lentils market price forecasting. Reference [3] proposes a ETS
model to forecast themonthly retail sales of consumer goods. Themodel has shown good
results with seasonal data. In [4], the researchers focused on forecasting monthly sales
of different items using Prophet and creating a product portfolio based on the forecast
reliability. Reference [5] has compared the performance of Prophet to ARIMA based on
the MAPE (Mean Absolute Percentage Error) evaluation metric calculation. The per-
formance of Prophet was slightly better than ARIMA in forecasting stock prices of a
unique individual. In [6], the authors compared classical Prophet model to its optimized
version by modifying the default Fourier order used to detect the seasonality to meet the
particularity of the training data. Both models were used for daily sales forecasting.

2.2 Machine Learning Models

An alternative to statistical methods for retail time-series forecasting, are machine learn-
ing method, including deep learning methods. In [7], the authors compared the fore-
casting results of prophet and SARIMA to machine learning model LightGBM (Light
Gradient Boosting Machine) on daily sales of Walmart stores. It has been shown that the
latter model outperformed the former models based on the calculation of RMSE (Root
Mean Squared Error) evaluation metric. The authors relate this difference to the fact
that the data used is highly affected by external factors, which statistical models failed
to capture. Whereas in [8], SARIMA outperformed ARIMA, Holt-Winters and ANN
when forecasting Amazon’s daily sales. The authors brought these results to the fact



A Hybrid Model for Demand Forecasting 449

that the date is characterized by a strong seasonality pattern and was less affected by
external factors. More sophisticated deep learning techniques were also proposed in [9],
in which the authors compared LSTM (Long-Short Term Memory), RNN (Recurrent
Neural Networks) and CNN (Convolutional Neural Network) models’ performance on
stock price prediction. As CNN use the information of the particular instant when fore-
casting unlike the others models and since stock markets are subjects to sudden changes,
it captured the effect of external factors and outperformed the other models.

2.3 Combined Models

Reference [10] provides a literature review on retail sales forecasting, in which single
models and combined models were compared to show better results among combined
models. In [11], the authors propose an ensemble model for demand forecasting that
combines Regression, Exponential smoothing, Holt-Winters and ARIMA models. The
method examines the performance of each model over time and combines the weighted
forecasts of the best performing models. In [12], the researchers used both MA and
ANN models. MA was used to remove the trend effect from the sale time-series data to
show only the differences in values from the trend. This has enhanced the performance
of ANN model as it will be able to understand and capture accurately causal effects.
Moreover, in [13], the authors have also proposed an hybrid model that uses LSTM and
RF (Random Forest) for demand forecasting in multi-channel retail. The authors started
by applying LSTM but they found that a residual caused by non-temporal explanatory
causes remained. Thus, they applied RF on these unexplained components which allow
them to outperform the single models applied on the same data.

To sum up, the research works studied have shown that statistical models gave good
results in accurately detecting time-series data components, namely trend and seasonality
but they fail when it comes to detecting external factors or causal effects compared to
machine learning models. The reason why some research works ([12] and [13]) have
combined them. However in [12], the authors focused only on the trend component
and neglected the seasonality component. Whereas in [13], the authors have considered
all the time-series data components but they have used sophisticated Neural Networks,
which are computationally expensive.

In fact, for optimization and interpretability sake, and as stated by the authors of [14,
15], and due to the huge scale of item-level sales in the retail business, it is crucial to
apply simple forecastmethods and time-applicable approaches based on a decomposable
models that can be updated gradually with only a limited amount of new sales data.
Based on these findings, we propose a new approach for retail demand forecasting that
will ensure a trade-off between the following three objectives: Handling causal effects,
detecting all time-series data components and proposing a decomposable approach with
low complexity and explainable results. To the best of our knowledge, this is the first
investigation in such an approach that satisfies simultaneously these three criteria.

3 The Proposed Approach

The proposed approach (see Fig. 1) is based on a hybrid model that will allow us to
capture both time-series data components and causal effects, and mainly the promotion
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effects on demand forecasting. The hybrid model will combinemachine learningmodels
and statistical models. We will then use Multiple Linear Regression (MLR) Model, not
only for its capability to detect causal effects, but also for its easily interpretable outputs.
This model will serve also as a baseline model. Linear interpolation will be the second
model that we will use to eliminate the promotion’s effect. The idea is to remove the
actual value of the data in presence of the promotions; then linearly link the rest of the
data points in order to have an approximation of the data with absence of promotion.
Statistical models like ETS, Prophet and SARIMAwill be then used on the resulting data
(without promotion’s effect). The choices were based on the findings from the literature
review and motivated by the fact that these models were commonly used and have given
accurate results when handling seasonality and trend components of time-series data
where external factors are removed.

After preparing the data, we will first apply MLR to get the coefficients that will
be used to compute the promotions multipliers. The multipliers will be then used to
remove the promotion effect from the data. We will also apply Interpolation to get
another version of the data without promotional effect. The resulting data will be fed to
statistical models after being preprocessed accordingly to meet the requirements of each
model. The combination step will reintegrate the promotional effect into the time-series
data by multiplying it with the promotion multipliers whenever there is a promotion to
reconstitute the predicted time-series with the correct magnitude. Finally, the results of
each combination will be compared to the baseline model.

4 Data Generation, Preprocessing and Exploration

The real data was inaccessible due to confidentiality issues. That being said, the data
on which the process was applied is a generated data that represents a simulation of a
grocer.

Fig. 1. The proposed approach for demand forecasting
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4.1 The Dataset

The generated data is described by 5 parquet files as follows:

1. The product file: data about 100 products, 12 classes, 24 subclasses and 5 different
departments;

2. The stores file: data about 30 stores, 4 regions in 1 country;
3. The customers file: data about 15000 customers and their purchasing frequency;
4. The calendar file: data about the time hierarchy of 1093 days (order of the week,

the month in a year, the name of the year, the days of weeks and the weeks of years
(WOY))

5. The Tlog file: data about the transactions (4702056 transactions) containing the
action of buying a product by a customer from a store in a certain week within a
promotion category: ′promo_cat′ and its discount ′promo_discount′.

4.2 Data Preprocessing

A data pipeline of three steps (joining, aggregation and cleaning) was applied on the
raw data to transform it into exploitable one. Specific additional techniques were used
depending on the model to meet its requirements (see Subsects. 6.1 and 6.2).

In the first step, we joined the transactional data in the Tlog filewith their correspond-
ing time information from the calendar file, the region and country information, and the
products data. Then, we aggregated the transactions having the same combination of
SKU, store, and week to the same row and filled it with the corresponding features in
addition to a sales feature containing the sum of these transactions.

The common resulting input for the next steps is composed of categorical features
and numerical features. We have as categorical features, the promotion category, at the
product level, we have subclasses and 100 SKU, at the location level, we have 4 Regions
an 30 stores, at the time level, we have the year (2018 to 2020), the WOY (52) and the
Week (from 01-01-2018 to 12-28-2020). The numerical features are the target variable
which is the Units and the feature variable which is the promotion discount.

4.3 Exploratory Data Analysis (EDA)

In an attempt to gain insight into time-series data components and their behaviors a plot
is proposed (see Fig. 2.). The seasonality peaks in the plot occurred in the same period, a
pattern that was observed in most SKUs. Same plots for the other subclasses have shown
almost the same results. The seasonality phenomenon was observable at the subclass
level and it is additive as its magnitude doesn’t change significantly over time. Whereas,
the trend component was absent.

The promotion effect (compared to a baseline plot that represents the median of non-
promoted sales; green line in Fig. 2) was observable through the variation of behavior
of the time-series data, with a peak in the fourth week of February. In fact, promotion
effect varies according to the promotion categories (BXGY, BXGX, 50%_off, 25%_off,
10%_off). The average of estimated promotion multipliers has shown that 50%_off had
the biggest effect on sales. This allows us to conclude that there is a positive correlation
between the estimated promotion multiplier and the promotion category.
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Fig. 2. Plot showing the sum of sales for the products in subclass 211

5 Removing the Promotions Effect Using MLR and Linear
Interpolation

Since statistical models are univariate and unable tomodel causal effects, the promotions
effect was first removed from data using two different techniques: MLR and linear
interpolation. Customized data preparation was done before feeding the data to the
MLR model. First, data was sorted by time to assure a non-erroneous forecast. Then,
the discount was transformed into a discount elasticity using the Eq. (2)

discount_elasticity = 1 − discount (2)

After that, log based data scaling was applied to reduce the vast range of the data and
to fit it to the additive model using the Eq. (3). Finally, one-hot encoding was applied to
the categorical features to make them understandable by the model.

log((yt
∧

)) = β1log(x1t) + β2log(x2t) + β3log(x3t) + · · · + βnlog(xnt) + log(et) (3)

(yt
∧

) = e(β1log(x1t)+β2logx2t)+β3log(x3t)+···+βnlog(xnt)+log(et))

5.1 Multiple Linear Regression Coefficients Generation and Promotions Effect
Removal

MLR has more than one predictor variable as shown by the Eq. (4) unlike simple Linear
regression.

yt = β0 + β1x1,t + β2x2,t + · · · + βnxn,t + εt (4)

β1, β2, β3,.., βn are the coefficients for the predictor variables x1,t, x2,t, x3,t,.., xn,t.. For
εt, it represents the unobserved random variable

Before training the model, we selected the following three parameters: 1)
fit_intercept: True (β0 must be calculated for each execution of the model); 2) nor-
malize: False (data is already scaled using the log); 3) positive: False (the coefficients
can be negative or positive). The model was applied with subclass pooling. Prediction
results (see Fig. 3) using MLR showed infinite values prediction (after july 2020). This
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Fig. 3. Excerpt from the actual and predicted aggregated sum of sales within the subclass 200
using MLR with subclass pooling

is due to the correlation between input features as depicted by EDA. The problem was
solved by using only three values for promo_cat: percentage, BXGX and BXGY.

TheMLRcoefficients obtainedwere then used to compute the promotionmultipliers.
The promotionmultipliers will be used in turn to remove the promotions effect from data
by dividing the sales data by their corresponding ones. Figure 4. Shows that the higher the
discount value is, the stronger the promotional effect gets as well as its coefficient. The
coefficients are capturing accurately the effects and are leading to accurate promotion
multipliers; thus an effective promotions effect removal.

Fig. 4. Excerpt from the actual time-series and time-series without promotions effect using MLR
coefficients for the product 65 in store 27

5.2 Interpolation Based Promotion Effect Removal

The promotion effect removal was also applied using the linear interpolation. The results
of the two techniques look similar. However, on the one hand, using only linear inter-
polation is risky since it is basically linking linearly the data without understanding the
category, discount, or any other information about the promotion effect. On the other
hand, this linear linking can be useful as it outperforms theMLR based approach in some
cases where the coefficients are relatively not accurate. Moreover, there are no specific
metrics to evaluate the two approaches. Thus, we decided to use both of them in the next
steps and integrate them into the final benchmark.
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6 Statistical Modelling

Statistical models require as input a univariate time series containing only two columns,
one for the ordered dates and the other for their corresponding values. To do so, the data
is first sorted by week feature. Then, log scaling is applied on the units if the statistical
model is additive. Finally, time-series data version is created using the data and units
columns.

6.1 Prophet Model

Prophet model is capable of handling trend, seasonality, and holiday effects, which occur
on an irregular basis over a day or a period of days. To do so, it decomposes the time-series
y(t) into trend (g(t)), seasonality (s(t)), holiday (h(t)) and error using the Eq. (5)

y(t) = g(t) + s(t) + h(t) + et (5)

The model was then configured as follows: Seasonality_mode was set to addi-
tive (default value) as we previously detected additive seasonality within the data;
Yearly_seasonality was set to True as the presence of repeated pattern of seasonality
will be detected in each year; growth was set to its default value (Linear) as the data
do not follow a logistic growth; changepoint_range was set also to its default minimum
value (0.6) as our data doesn’t contain the trend component, so the model don’t need to
be flexible to it; prior_scale_changepoints was set to 0.05 as the model will focus less
on trend component; changepoint_num was not specified to make the model investigate
by itself the number of changepoint in the above fixed range. After training the model,
the results show the prophet capability in capturing the seasonality pattern (see Fig. 5).
However, they also show a case of under-forecasting. In fact, Prophet gives significant
importance to the trend component when forecasting. When in the first period of sales,
the seasonal peak was higher than that of the second period; the model assumed the
presence of a decreasing trend. The altitude of this trend was high enough to cause an
under-forecasting in the test set.

Fig. 5. Excerpt from the Prophet forecasting results on the resulting data after promotion effect
removal using MLR coefficient for the product 66 in store 24



A Hybrid Model for Demand Forecasting 455

6.2 Triple Exponential Model (ETS)

Known as Holt-Winters Exponential Smoothing, ETS presents an improved version of
classical Smoothing models (single and double exponential smoothing) since it explic-
itly accounts for seasonality in the time series. It allows the configuration of the same
parameters: α, β, Trend Type, Dampen Type and Damping coefficient φ; and adds a new
parameter γ to control the seasonal component’s influence.

The ETSmodel requires specific parameters for both the model definition and fitting
steps. For model fitting, the parameter optimized will be set to True so that the model
will estimate automatically the best fitting parameters (α, β, φ, γ, Trend Type, Dampen
Type). The parameters chosen for model definition were based on the EDA findings and
are summarized as follows: seasonal was set to additive; trend was set to none as there
is no trend in our data, freq was set to W as data is weekly, seasonal_period was set to
52 (52 weeks each year). After training the model, the results have shown that ETS was
capable of capturing the seasonal pattern accurately (see Fig. 6). However in another
excerpts, an over-forecasting case was spotted out as by default the model gives more
importance to the recent values when predicting.

Fig. 6. Excerpt from the results of ETS’s forecasting on data without promotions effect using
MLR coefficients for the product 43 in store 1.

7 Model Combination and Results

7.1 Model Combination Process

The model combination process will combine the promotion coefficients and the predic-
tions. Based on the Eq. (1) (see Sect. 1), the process will encompass four combination
approaches as depicted by Fig. 7.
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Fig. 7. The model combination process

7.2 Benchmarking Results

The comparison of the four approaches was based on quantitative and qualitative eval-
uation. A first evaluation effort was based on the use of SMAPE, MAE and RMSE
statistical metrics as summarized in Table 1. The four experiments had similar results
and all of them outperformed the baseline model. However for approach 3, according
to the SMAPE metric, the ensemble model is relatively underperforming the baseline
model. Thus, we cannot make a clear assumption based on these results.

Table 1. Results of the quantitative evaluation of models performance

Models SMAPE MAE RMSE

Baseline model 64.394 9.570 5.411

Approach 1 55.616 7.190 4.775

Approach 2 61.450 7.262 4.781

Approach 3 64.480 8.314 4.849

Approach 4 57.200 7.175 4.730

Qualitative evaluation was then carried out since it shows an overview of the model
performance on all the SKUs. For the improvement cases, the SKUs and their inter-
pretation are the same for the four approaches as they were capable of detecting both
the seasonal component and the promotion effect with almost the same performance.
However, for the deterioration cases, they were similar per statistical model. In layman’s
words, approaches 1 and 2 that used ETS have their common deteriorated SKUs and
interpretations. Whereas approaches 3 and 4 which used Prophet have their particular
deterioration causes. But, for the majority of deteriorated cases, the main reason is the
non-seasonality of the data. This result is understandable since our hybrid models were
not designed to accurately forecast this type of data.
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8 Conclusion

Through this paper, we have introduced a hybrid modeling approach that combines in
different ways MLR and Linear interpolation with Prophet and ETS. The evaluation
results of the approach showed that our solution was able to accurately forecast the
demand based on both time-series data components and the promotion effect while
using a decomposable low complexity models. Even though, the generated data was
a good asset to conduct this work, a future work will consider the application of the
approach on real world data to obtain more generalized performance evaluation.
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Abstract. Unlabeled-unlabeled (UU) learning was proposed to cope
with the high cost of data annotation and some realistic cases, in which
we cannot get labeled data. It allows us to train a classifier with only
unlabeled data. State-of-the-art (SOTA) UU methods with good per-
formance based on neural networks (NN) have been proposed; however,
there is a lack of studies on boosting algorithms for learning from only
unlabeled data, even though boosting algorithms sometimes perform very
well with simple base classifiers. We propose a novel boosting algorithm
for UU learning: Ada-UU, which compares against neural networks. The
proposed method follows the general procedure of AdaBoost while the
classification error is estimated with two sets of unlabeled (U) data. We
empirically demonstrate that Ada-UU outperforms neural networks on
several large-scale benchmark UU datasets and has comparable perfor-
mance on a small-scale benchmark dataset.

Keywords: Boosting · Weakly supervised learning · UU learning

1 Introduction

In the past few decades, mining insights from big data has become a sought-
after research objective owing to the rapid development of machine learning
techniques. Supervised learning is one of the most popular genres among various
machine learning categories, where an intelligent system learns predictions from
labeled input-output pairs. However, researchers and stakeholders have progres-
sively realized that acquiring a vast amount of labeled data is exceedingly difficult
and expensive. This exists in numerous fields such as medicine, biometrics and
social media analysis. There are two typical difficulties in labeling the data. The
first one is the expense, while another is the label’s uncertainty. For example,
in social media sentiment analysis, the amount of data produced by Twitter’s
users could easily hit terabytes per day. It is impossible to label every record as
positive, negative or neutral. For the label’s uncertainty, taking disease diagnosis
as an example, we can only label the confirmed patients provided by the hospital
with the corresponding disease. A patient with mild or asymptomatic symptoms
cannot be labeled since they have not been diagnosed yet.
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To satisfy these real-world demands, positive-unlabeled (PU) learning [2–4]
has been widely studied, where a binary classifier can be trained with a few
labeled positive (P) data and sufficient unlabeled (U) data without knowing
negative (N) data. However, PU learning still requires a few labeled data. There
still exists a cost to label data, and there is no guarantee that we can get accurate
labels for a dataset [22]. Therefore, UU learning [12] was proposed with a stricter
setting, where it only learns from unlabeled (U) data, which is closer to a real-
world scenario.

Unlike clustering, UU learning does not rely on geometric assumptions of
the classes, such as that one cluster corresponds to one class. It does not need
to introduce additional assumptions upon which the learning objectives are
built [10,20] either. So far, most SOTA UU methods are based on neural net-
works (NN) [11–14]. However, NN may not always be the most suitable model
for classification tasks. As mentioned in [12,14], NN-based UU methods require
heavy hyper-parameter tuning, sophisticated correction functions and designed
network structures. Besides, large computational resources are required for train-
ing NN-based models.

A boosting method for PU learning has been proposed and proved to be effec-
tive [23], which generates a sequence of base classifiers and combines them with
corresponding weights. The same as traditional boosting methods for supervised
learning, [23] iteratively adjusts data weights during the boosting procedure.
The experimental results show that NN-based methods might not always be the
most suitable for a classification task. So far, no boosting algorithm has been pro-
posed to learn directly from only unlabeled data yet, even though the boosting
algorithms are the most effective in some of the practical machine learning tasks
on tabular data [1]. Inspired by [23], we propose a boosting algorithm Ada-UU
for UU learning, which does not require heavy parameter tuning or large GPU
resources. There remain two critical challenges in designing a boosting method
for training from only unlabeled data.

– How do we get the ideal base classifiers and their weights?
– How should we update the data weights in each iteration?

To address these challenges, four different data weights of two sets of U data
are maintained and updated in each iteration in Ada-UU. The classification error
is estimated with the two sets of U data and further contributes to the weight of
each base classifier. The experimental results show that the proposed algorithm,
Ada-UU, achieves higher performance than most baseline methods. The main
contributions of this work include:

– We innovatively propose Ada-UU, which is the first boosting method for UU
learning.

– We solve the two challenges of obtaining the optimal base classifiers with
corresponding weights and updating the data weights with only U data during
the boosting process.

– Compared with NN-based UU learning methods, our proposed algorithm does
not require extensive tuning of hyperparameters or a large number of expen-
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sive GPU devices. It can be counted as an efficient and green approach to
solving the UU problem.

2 Formulation and Background

2.1 UU Learning

Let X ∈ R
d and Y ∈ {+1,−1}(d ∈ N

+) be the input and output random
variables, respectively. πp = p(Y = +1) is the class-prior probability and πn =
p(Y = −1) = 1−πp. We use π to represent πp in the following for convenience. In
UU learning, the training dataset X is composed of two sets of U data, U1 with
size n1 and U2 with size n2. U1 and U2 are both sampled from p(x). Therefore,
we have {x1, x2, · · · , xn1} ∼ pU1(x) and {x1, x2, · · · , xn2} ∼ pU2(x).

pU1(x) = θ1pp(x) + (1 − θ1)pn(x), pU2(x) = θ2pp(x) + (1 − θ2)pn(x), (1)

where θ1 and θ2 are the class priors of U1 and U2 respectively.
Following the convention [12,14], we assume π, θ1 and θ2 as known and

θ1 > θ2 throughout the paper. Based on the given data, our objective is to
learn a binary classifier g : Rd → {+1,−1}. Let � : R × {+1,−1} → R be a loss
function that �(g(x), y) means the loss occurred when the classifier g outputs
the prediction when the label of x is y. Then the risk of the classifier g is

R(g) = πEp[�(g(x),+1)] + (1 − π)En[�(g(x),−1)]. (2)

Here Ep[·] means EX∼pp [·] and En[·] means EX∼pn [·], where pp(x) = p(x|Y = +1)
and pn(x) = p(x|Y = −1). In a PN learning scenario, we can approximate R(g)
by:

̂Rpn(g) =
π

np

np
∑

i=1

�(g(xi),+1) +
(1 − π)

nn

nn
∑

j=1

�(g(xj),−1), (3)

where np is the size of P data and nn is the size of the N data.
However, we cannot directly estimate Ep[�(g(x),+1)] or En[�(g(x),−1)] in

UU learning, since we do not have P data or N data. More specifically, given
only U1 and U2, we cannot approximate Eq. (2) by Eq. (3). Inspired by [15–17],
we can rewrite R(g) to make it possible to be approximated based on the given
U1 and U2. Recall that θ1 and θ2 are the class priors of U1 and U2, and we have
Eq. (1). Thus we can rewrite the risk of classifier g as follows.

Ruu(g) =EpU1
[a�(g(x),+1) + b�(g(x),−1)] + EpU2

[c�(g(x),+1) + d�(g(x),−1)]

=θ1Ep[a�(g(x),+1) + b�(g(x),−1)]
+(1 − θ1)En[a�(g(x),+1) + b�(g(x),−1)]
+θ2Ep[c�(g(x),+1) + d�(g(x),−1)]
+(1 − θ2)En[c�(g(x),+1) + d�(g(x),−1)].

(4)
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By setting Eq. (2) and Eq. (4) to be equal, we can get

a =
(1 − θ2)π
θ1 − θ2

, b = −θ2(1 − π)
θ1 − θ2

, c = − (1 − θ1)π
θ1 − θ2

, d =
θ1(1 − π)
θ1 − θ2

, (5)

Therefore, similar to Eq. (3), the risk in Eq. (4) can be approximated by:

̂Ruu(g) =
a

n1

n1
∑

i=1

�(g(xi),+1) +
b

n1

n1
∑

i=1

�(g(xi),−1)

+
c

n2

n2
∑

j=1

�(g(xj),+1) +
d

n2

n2
∑

j=1

�(g(xj),−1),

(6)

Equation (6) has been proved to be unbiased [12]. Therefore, the proposed
UU method, which uses the unbiased risk estimator, is called UU-Unbiased [12].
However, UU-Unbiased suffers from severe overfitting and the overfitting usu-
ally happens when the empirical risk goes negative, which is not legitimate. In
order to solve the overfitting problems, a family of consistently corrected risk
estimators

̂Rcc(g) = f1(a ̂R+
U1

(g) + c ̂R+
U2

(g)) + f2(b ̂R−
U1

(g) + d ̂R−
U2

(g)) (7)

have been proposed [14], where f1 and f2 can be any consistent correction func-
tion. [14] introduced three typical types of correction functions and named the
methods with those functions as: UU-ABS, UU-ReLU and UU-LReLU. These
methods have been studied in [14] and proved to be effective in solving overfit-
ting problems and improving model performance. Denote a ̂R+

U1
(g) + c ̂R+

U2
(g) as

̂Ruup and b ̂R−
U1

(g) + d ̂R−
U2

(g) as ̂Ruun . UU-ReLU uses the ReLU function that

̂Ruu−ReLU(g) = max{0, Ruup} + max{0, Ruun}
= max{0, a ̂R+

U1
(g) + c ̂R+

U2
(g)} + max{0, b ̂R−

U1
(g) + d ̂R−

U2
(g)}.

(8)
Using ReLU function as correction function to prevent overfitting problems has
also been discussed in [9]. UU-ReLU uses the absolute function that

̂Ruu−abs(g) = |Ruup | + |Ruun |
= |a ̂R+

U1
(g) + c ̂R+

U2
(g)| + |b ̂R−

U1
(g) + d ̂R−

U2
(g)|.

(9)

UU-LReLU uses the generalized leaky ReLU function, i.e. f1(x) = f2(x) =
I{x≥0}x + I{x≤0}λx, where λ ≤ 0. The parameter λ controls the weights of the
negative risks. In this way, the model can learn from all the training data, since
it does not completely ignore the negative part as UU-ReLU and UU-ABS do.
Note that the absolute function and the ReLU function are special cases of the
generalized leaky ReLU function [14].
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2.2 AdaBoost

Boosting is an ensemble method, that generates a sequence of base classifiers and
combines them into a strong model. AdaBoost (adaptive boosting) is one of the
most classic boosting algorithms [5,6]. It has been widely studied and applied to
different areas, such as facial recognition [19] and financial fraud detection [18].
It has also been combined with PU learning together [23] and achieved good
performance, which shows the potential of the algorithm in weakly supervised
learning. However, there is still a lack of study on boosting algorithms for UU
learning as far as we know.

In this paper, we review AdaBoost from the view of [7], following [24]. Let
us set the number of base classifiers to T . Then the algorithm will generate
T hypotheses {ht(x) : t = 1, . . . , T} sequentially and combine them with cor-
responding weights αt. The final output of the algorithm can be written as
H(x) = sign(

∑T
t=1 αtht(x)). At each iteration, the data distribution Dt of train-

ing samples is updated based on the output of the algorithm that the weights of
the misclassified data will be increased while the weights of the correctly clas-
sified data will be decreased. In other words, the later classifiers focus more on
the instances misclassified by the earlier classifiers. In this way, AdaBoost can
achieve better performance than a single base classifier by combining the base
classifiers with proper weights.

Now we review the details of the algorithm. The algorithm tries to minimize
an exponential loss

Rexp(h) = E(x,y)[e−yh(x)] (10)

in each round when a new hypothesis h is generated. Assume we are in iteration
t of the algorithm, where we already have a set of hypotheses and their weights.
Denote the weighted combination of the generated hypotheses in the previous
t − 1 iterations as H and the hypothesis we generate in the current round as h.
The current exponential loss can be written as

Rexp(H + αh) = E(x,y)[e(−y(H(x)+αh(x))]. (11)

Denote ε = Ex∼D[y �= h(x)], we can get

α =
1
2

ln
1 − p(y �= h(x))

p(y �= h(x))
=

1
2

ln
1 − ε

ε
,

where α is the weight of h that greedily minimizes Rexp(H + αh). This is how
we decide the weight of each generated hypothesis in AdaBoost.

Now we consider how to generate h and update the data distribution. Since
it will not lose generalization, we expand Eq. (11) to second order with respect
to h(x) = 0 and fix α = 1,

Rexp(H + h|x) ≈ Ey[e−yH(x)(1 − yh(x) + y2h(x)2/2)|x]

= Ey[e−yH(x)(1 − yh(x) + 1/2)|x],
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which is further minimized by

h∗(x) = arg max
h

Ey[e−yH(x)yh(x)|x].

Therefore, to get the optimal classification performance, the distribution is
updated in each iteration as

D(t+1)(x) = e−y(H(x)+αh(x))p(y|x) = Dt(x) · e−αyh(x).

3 Proposed Method: Ada-UU

As mentioned in Sect. 1, we solve two challenges in this paper: i) How do we
obtain the ideal base classifiers with corresponding weights? ii) How do we update
the data weights as the training process goes on? We explain the details of our
proposal in the following two subsections.

3.1 Estimation of the Combination Weight

In this part, we are going to explain how we decide the weights of the base
classifiers. Note that with only U data available, our goal is still to minimize the
exponential risk in Eq. (10). Assume we are at round t and we already have the
previous generated hypotheses hi and their weights αi, i ∈ {1, 2, · · · , t − 1}. A
new hypothesis h has just been generated. The same as Sect. 2.2, we denote the
weighted combination of the generated hypotheses as H, then we can represent
the risk as

Rexp(H + αh) = e−yH(x)(e−α · p(y = h(x)) + eα · p(y �= h(x))) (12)

when using exponential loss as the surrogate loss. Let the derivation of Eq. (12)
equal to zero, then we can get the weight of the hypothesis

α =
1
2

ln
p(y = h(x))
p(y �= h(x))

=
1
2

ln
1 − p(y �= h(x))

p(y �= h(x))
, (13)

which minimizes the risk. Note that we only have U data in UU learning, so we
need to estimate P (y �= h(x)) based on the U data. Because we have

p(y �= h(x)) = πEp[�01(h(x),+1)] + (1 − π)En[�01(h(x),−1)], (14)

inspired by the procedure of rewriting the classification risk in UU learning
introduced in Sect. 2.1, given U1 with class prior θ1 and U2 with class prior θ2,
we can rewrite Eq. (14) as

p(y �= h(x)) =θ1Ep[a�01(g(x),+1) + b�01(g(x),−1)]
+(1 − θ1)En[a�01(g(x),+1) + b�01(g(x),−1)]
+θ2Ep[c�01(g(x),+1) + d�01(g(x),−1)]
+(1 − θ2)En[c�01(g(x),+1) + d�01(g(x),−1)],

(15)



A Boosting Algorithm for Training from Only Unlabeled Data 465

whose empirical estimation is

p̂UU(y �= h(x)) =
a

n1

n1
∑

i=1

�01(g(xi),+1) +
b

n1

n1
∑

i=1

�01(g(xi),−1)

+
c

n2

n2
∑

j=1

�01(g(xj),+1) +
d

n2

n2
∑

j=1

�01(g(xj),−1),

(16)

where

a =
(1 − θ2)π
θ1 − θ2

, b = −θ2(1 − π)
θ1 − θ2

, c = − (1 − θ1)π
θ1 − θ2

, d =
θ1(1 − π)
θ1 − θ2

. (17)

Note that in AdaBoost, the weights of the training examples will be updated
in each iteration. In the following paper, we use w to represent the data weights.
In UU learning, we maintain four different kinds of U data as shown in Eq. (16).
Following [9,23], we denote them as U+

1 , U−
1 , U+

2 and U−
2 . Denote the data

weights in iteration t as wt, we define

w1(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a
n1

, for x ∈ U+
1

b
n1

, for x ∈ U−
1

c
n2

, for x ∈ U+
2

d
n2

, for x ∈ U−
2

. (18)

In iteration t, after we get the current hypothesis h and the previous combined
classifiers Ht−1, the weighted error estimated in the t-th iteration can be written
as

ε̂t(U1,U2) =
∑

x∈U+
1

[w1(x) exp (−Ht−1(x)) �01(h(x),+1)]/Z1 + (19)

∑

x∈U−
1

[w1(x) exp (Ht−1(x)) �01(h(x),−1)]/Z2 +

∑

x∈U+
2

[w1(x) exp (−Ht−1(x)) �01(h(x),+1)]/Z3 +

∑

x∈U−
2

[w1(x) exp (Ht−1(x)) �01(h(x),−1)]/Z4,

where Z1, Z2, Z3 and Z4 are normalization constants that
Z1 =

∑

x∈U+
1

w1(x) exp (−Ht−1(x)) /a, Z2 =
∑

x∈U−
1

w1(x) exp (−Ht−1(x)) /b,
Z3 =

∑

x∈U+
2

w1(x) exp (−Ht−1(x)) /c, Z4 =
∑

x∈U−
2

w1(x) exp (−Ht−1(x)) /d,
and

αt
UU =

1
2

ln
1 − ε̂t(U1,U2)

ε̂t(U1,U2)
. (20)
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Similar to Eq. (8) and Eq. (9), we denote
∑

x∈U+
1

[w1(x) exp (−Ht−1(x)) �01(h(x),+1)]/Z1 +

∑

x∈U+
2

[w1(x) exp (−Ht−1(x)) �01(h(x),+1)]/Z2

as ε̂p, and
∑

x∈U−
1

[w1(x) exp (Ht−1(x)) �01(h(x),−1)]/Z3 +

∑

x∈U−
2

[w1(x) exp (Ht−1(x)) �01(h(x),−1)]/Z4

as ε̂n for convenience.

3.2 Updating the Data Weight

Since we do not know the labels in UU learning, we cannot update the data
weights in the same way as AdaBoost in PN learning, where only a set of data
weights needs to be updated for all the data. In our proposal, four different sets
of data weights are updated simultaneously in each round. In this part, we are
going to explain the details of how we update the data weights. The same as [23],
we omit the conditional dependence on x in the original derivation as it does
not impact our learning objective.

We start from our original goal, which is minimizing the exponential loss
in Eq. (10). Given generated hypotheses at iteration t, we already know their
weighted combination Ht−1 and the corresponding weight of each one αt. We fix
αt = 1 without losing generalization. Then we have

Rexp(Ht−1 + h) = E(x,y)[e−y(Ht−1(x)+h(x))]

≈ E(x,y)[e−yHt−1(x)(1 − yh(x) +
y2h(x)2

2
)]

= E(x,y)[e−yHt−1(x)(1 − yh(x) +
1
2
)]

= E(x,y)[
3
2
e−yHt−1(x) − yh(x)e−yHt−1(x)]. (21)

We can find that minimizing Eq. (21) is equal to maximizing

E(x,y)[e−yHt−1(x)yh(x)]. (22)

Denote Eq. (22) as Et, then the empirical estimation of Eq. (22) is

̂Et =
a

n1

n1
∑

i=1

e−Ht−1(xi)h(xi) +
b

n1

n1
∑

i=1

−eHt−1(xi)h(xi)

+
c

n2

n2
∑

j=1

e−Ht−1(xj)h(xj) +
d

n2

n2
∑

j=1

−eHt−1(xj)h(xj).

(23)
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In practice, we maximize ̂E to achieve our objective of maximizing Eq. (22).
Since Ht(x) = Ht−1(x) + αt

UUht(x), we have eHt(x) = eHt−1(x)eαt
UUht(x) for

t ≥ 1. With the w1(x) defined in Eq. (18), if we further define

wt+1(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wt(x)e−αt
UUht(x), for x ∈ U+

1

wt(x)eαt
UUht(x), for x ∈ U−

1

wt(x)e−αt
UUht(x), for x ∈ U+

2

wt(x)eαt
UUht(x), for x ∈ U−

2

, (24)

then we can rewrite Eq. (23) as

̂Et =
∑

x∈U+
1

w1(x)e− ∑t−1
j=1 αj

UUhj(x)ht(x) −
∑

x∈U−
1

w1(x)e
∑t−1

j=1 αj
UUhj(x)ht(x)

+
∑

x∈U+
2

w1(x)e− ∑t−1
j=1 αj

UUhj(x)ht(x) −
∑

x∈U−
2

w1(x)e− ∑t−1
j=1 αj

UUhj(x)ht(x)

=
∑

x∈U+
1

wt(x)ht(x) −
∑

x∈U−
1

wt(x)ht(x) +
∑

x∈U+
2

wt(x)ht(x) −
∑

x∈U−
2

wt(x)ht(x)

=
∑

x∈U+
1

⋃
U+

2

wt(x)ht(x) −
∑

x∈U−
1

⋃
U−

2

wt(x)ht(x). (25)

From Eq. (25), we can see that four sets of data weights needs to be updated
as defined in Eq. (24) in each iteration. Re-weighting the training examples
based on Eq. (24) and maximizing our objective ̂Et could lead to a desired base
classifier h∗

t in iteration t. We can rewrite ε̂t(U1,U2) in Eq. (19) with a simpler
form as

ε̂t(U1,U2) =
∑

x∈U+
1

[wt(x)�01(h(x),+1)]/Z1 +
∑

x∈U−
1

[wt(x)�01(h(x),−1)]Z2

+
∑

x∈U+
2

[wt(x)�01(h(x),+1)]/Z3 +
∑

x∈U−
2

[wt(x)�01(h(x),−1)]/Z4.

3.3 Algorithm

In the previous two subsections, we introduced how we obtain the base classifiers
with corresponding weights and how we update the data weights in the training
process in our proposal. In this section, we summarize the procedure of the
algorithm Ada-UU and introduce the implementation details.

Ada-UU has a similar procedure as AdaBoost as shown in Algorithm 1 and
Algorithm 2. We first initialize the data weight as Eq. (18). Then in each itera-
tion, we generate the desired classifier with the largest ̂E calculated by Eq. (23)
and update the data weight as Eq. (24). Below are some implementation details.
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– We skip the stump whose classification error on the training examples is larger
than 0.5, since a weak learner should be slightly better than random guessing.

– We skip the stump with non-positive ε̂p and non-positive ε̂n to ensure they
are legitimate according to [14].

– We set the parameter β additionally based on the phenomenon we observed
in experiments that a proper β improves the performance of Ada-UU. Details
are discussed in Sect. 4.4.

Algorithm 1 Ada-UU StumpGenerator
Input: Class prior π; Data weight wt(·);

Training data U1 and U2; Number of steps S.
Output: Generated stump h∗

t , weight of the generated stump αt
UU.

procedure: StumpGenerator
Initialize ̂Emax = −∞, εmin = ∞
for feature f in all features do

for s = 1, · · · , S, do
Randomly select a value v in the range of f
Use v as the split point of the stump and get h
Calculate ε̂t, ε̂p and ε̂n based on Eq. (19)
if ε̂t ≥ 0.5 or ε̂p < 0 or ε̂n < 0 then

Skip the stump and continue
else

Calculate ̂Et by Eq. (23)

if ̂Et > ̂Emax then
̂Emax = ̂Et;h

∗
t = h; εmin = ε̂t

end if
end if

end for
end for

αt
UU = 1

2
ln 1−εmin

εmin
end procedure

4 Experiments and Results

In this section, we study the empirical performance of our proposed method
Ada-UU from the following two aspects.

– Comparing the performance of Ada-UU with SOTA NN-based UU methods
under different class prior settings.

– Studying the impact of different β on the performance of Ada-UU under
different class prior settings.
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Algorithm 2 Ada-UU
Input: Class prior π; Training data U1 and U2;

Number of training rounds T ; S; β.
Output: F (x).

procedure: Ada-UU
Initialize H0 = 0; Calculate the initial data weight w1(·) based on Eq. (18),
for t = 1, · · · , T do

h∗
t , αt

UU = StumpGenerator (π, wt,U1,U2, S)
Calculate wt+1 based on Eq. (24)
Ht = βHt−1 + αt

UUh∗
t

end for
F (x) = sign

(

∑T
t=1 αt

UUh∗
t (x)

)

end procedure

We first introduce the datasets we use and the methods we compare with. Then
we give the experimental results and discussion.

4.1 Dataset

We study the performance of our proposed method on three public datasets.
The details of the datasets are listed below.

– Epsilon1 is a binary text classification dataset with +1 and −1 labels for
Parscal large scale learning challenge in 2008 [21]. It has 400, 000 training
data points and 100, 000 test data points, with 2, 000 features for every data
point. We randomly sample 40, 000 data points as training data and 10, 000
data points as test data. The class prior π of this dataset is 0.50.

– Breast Cancer dataset2 is a binary classification data set with label 0 and +1.
The label 0 represents malignant breastcancer and the label +1 represents the
benign cancer. We preprocessed label 0 into label −1. It has 455 training data
points and 113 test data points. Each data point has 30 features. The class
prior π of this dataset is 0.59.

– UNSW-NB15 Dataset3 is a large-scale dataset in cyber security with label 0
and label +1. The label 0 represents normal logs and +1 represents abnor-
mal logs. We preprocessed the label 0 into label -1. This datset has 175, 340
training points and 82, 331 test data points. Each data point has 39 features.
The class prior π of this dataset is 0.68.

Following [12,14], we preprocess the training data into two unlabeled datasets
U1 and U2 with the same size. The class priors of the two datasets θ1 and θ2 are
set into (0.8, 0.2), (0.7, 0.3) and (0.6, 0.4) respectively for the experiments.
1 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html.
2 https://goo.gl/U2Uwz2.
3 https://research.unsw.edu.au/projects/unsw-nb15-dataset.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://goo.gl/U2Uwz2
https://research.unsw.edu.au/projects/unsw-nb15-dataset
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4.2 Methods

We compare our proposed Ada-UU with the NN-based SOTA UU methods intro-
duced in Sect. 2.1. The details of each method we compare with are summarized
as follows.

– UU-unbiased, the UU learning method with unbiased risk estimator described
in Eq. (4) without correction function. The overfitting issue occurs when the
empirical risk goes negative.

– UU-ABS, the unbiased UU learning method using absolute function described
in Eq. (9) as correction function.

– UU-ReLU, the unbiased UU learning method using ReLU function described
in Eq. (8) as correction function.

– UU-LReLU, the unbiased UU learning method using generalized leaky ReLU
function described in Sect. 2.1 as correction function.

The model structure and the optimizer are the same as [14], where they
showed the efficiency of the SOTA UU methods with experimental results. More
specifically, the model structure is 5-layer multilayer perceptron (MLP) with
ReLU as the activation function. The batch size and learning rate were set to
128 and 5e−5 respectively. The resulting objectives were minimized by Adam [8]
with the default momentum parameters β1 = 0.9 and β2 = 0.999 as in [14].

4.3 Performance of Ada-UU

The empirical performance of SOTA UU methods and our proposed Ada-UU
are shown in Table.1. We can see that when θ1 and θ2 are getting closer, in most
cases, the performance of both NN-based methods and Ada-UU decrease. This
finding is consistent with [12,14]. Intuitively, as θ1 and θ2 are getting closer,
U1 and U2 are becoming more similar, which provides less information to the
learning process.

The results in Table.1 show that Ada-UU outperforms the other methods on
the large-scale dataset (i.e. Epsilon and UNSW-NB15), especially when the dif-
ference of θ1 and θ2 gets larger. Ada-UU does not outperform NN-based methods
on the small-scale dataset (i.e. Breastcancer), but still has comparable perfor-
mance. Note that Ada-UU performs significantly better than NN-based methods
on the large-scale cyber security dataset UNSW under each different class prior
setting.

4.4 Impact of β

Apart from comparing Ada-UU with other methods, we also discovered the
impact of β on the prediction performance. The β in Ada-UU controls the con-
tribution of historical stumps to the final prediction in the training phase. In
other words, adjusting β results in the change in how much the decisions made
by existing stumps affect the final prediction while there is a new stump. The
experiments were conducted with the dataset introduced in Sect. 4.1 under the
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Fig. 1. Experimental results given β ∈ {0.001, 0.01, 0.1, 0.2, 0.5, 0.7, 0.9, 1} on Epsilon,
UNSW-NB15 and BreastCancer. β is denoted by lr in the figures.

three different class prior settings the same as the experiments in Sect. 4.3. More-
over, we experimented β ∈ {0.001, 0.01, 0.1, 0.2, 0.5, 0.7, 0.9, 1}. The experimen-
tal results are presented in Fig 1, where we can clearly see that the variation in
β leads to remarkable differences in the model’s performance. Note that we use
lr to represent β in the figures.

5 Conclusion

In this paper, we propose a novel boosting method for UU learning Ada-UU. We
solve the problem of obtaining the base classifiers with corresponding weights
and updating the data weight with only U data in the boosting procedure. We
show the efficiency of our proposed method empirically. In the future, we will
prove that the theoretical properties of AdaBoost can be guaranteed in UU
learning.
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Abstract. We consider the problem of making predictions about long-
tailed interval variables. Such variables are commonplace in revenue pre-
diction, where a small part of the population has very large positive
or negative values. Log transforms are often used in such problems, and
when modeled in a log space, a correction factor is required when convert-
ing back to the original space. In this work, we study the effectiveness
of two different approaches of applying correction factors at the indi-
vidual model level and the whole model level. Particularly, we consider
ensembles of simpler models (decision trees) with individual correction
factors, compared with XGBoost, an averaging model using an overall
correction factor. We show that the ensembles of simple models out-
perform XGBoost, when the correction factors are applied separately to
each component model.

Keywords: Machine learning · Ensemble models · Log
transformation · Long-tailed variables

1 Introduction

In the world of finance and revenue agencies, it is often the case that there are a
small number of very large values and many smaller ones. An example is a char-
ity donations dataset used in the KDD98 Cup [13], which has such a pattern of
many small donations and a few much larger ones. If linear regression methods
are used ignoring the long tail, the residuals in the model tend to be proportional
to the size (i.e., heteroscedastic) and so predictions are least reliable at the larger
values – where the predictions are most important. Log transformation [15] is
often used and then regression is more reliable. The KDD98 data and many other
finance/revenue datasets have missing values in some of their explanatory vari-
ables, and these are seldom Missing Completely At Random (MCAR) [6] which
makes approaches like complete case analysis or single imputation of question-
able use or validity. Many of the decision tree (DT) and variant algorithms [7]
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used in machine learning are robust to missing values, so lend themselves to
these problems. Decision trees also will only ever predict within the range of the
target variable since each prediction is an average of values in the data. Deci-
sion trees are known to have high variance in that a small change in an input
can cause a large change in output. One way round that is to use an ensem-
ble approach, averaging over many decision trees with slightly different sets of
rows and columns. More recent algorithms (which internally are averaging over
many trees) such as XGBoost [1,14] and LightGBM [4,5] have been shown to
be more accurate than older methods. However, in the case of a log-transformed
target this is not always so, as these algorithms do not ‘know’ the target has been
transformed. In this study we show that an ensemble of simpler DT methods can
outperform either a single or ensemble of more sophisticated methods – because
the ensembles of DT make explicit allowance for the different correction factors
required for each component model when a target has been log-transformed.

2 Problem Statement

A typical example of a long-tailed interval variable in financial and revenue data
is shown in Figs. 1 and 2. Figure 1 is the cumulative distribution function (CDF)
on the original scale and is essentially very close to a step function at zero and
Fig. 2 shows it on a scale closer to zero. From Fig. 2 a proportion of the values
are zero and there is a suggestion of a log-normal distribution on both sides. We
modelled the (absolute value of) negative and positive parts separately, excluding
zeros in both cases. Note that in some populations there is no negative part. In
this work, we address the challenging problem of predicting such long-tailed
variables using appropriate correction factors for log transforms.

Fig. 1. Cumulative Distribution Func-
tion showing full range: note step func-
tion at 0

Fig. 2. Cumulative Distribution Func-
tion showing range closer to zero: note
distribution near zero

3 Methodology

When using predictive models, such as decision trees and random forest, to
predict a long-tailed variable, the log of the target variable has been modelled,
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and therefore, a correction factor needs to be applied when back transforming –
this is derived from the expected value of the mean of the log-normal distribution.
A seminal reference is Miller [8]. The correction factor is based on the variance,
so is always greater than 0 in log space and 1 in original space respectively. The
correction factor (in log space) is defined as

α = exp(σ2/2), (1)

where σ is the standard error of the regression and is derived from the fit to the
training data.

Miller’s work [8] shows that this transformation has been used in wide variety
of fields, including allometry [12], river loads [2], flood frequency [10], extreme
value time series [9], and psychological data [3]. Smith notes that not using the
correction factor results in too low predictions of fossil body mass [12]. Pandey
and Nguyen note that linear models had higher bias and Root Mean Squared
Error and under predicted floods [10].

As the transformation is affine and the rank-order is important to our results,
the transformation would not matter if only one model was considered. However
as we are explicitly looking at ensembles of models each of which will have a dif-
ferent correction factor, we do need to use the individual correction factors for
each model. To study the effectiveness of two different ways of applying correc-
tion factors, we conducted an experimental study of ensembles of simpler models
(decision trees) with individual correction factors, compared with XGBoost, an
averaging model using an overall correction factor, and report our experimental
results in next section.

4 Experiments

4.1 The Dataset

The data used in our experiments are sourced from a government revenue office
for predicting revenue or income of two types of entities. As each type of entity
has both positive and negative parts, there are 4 populations to model. For
each population the data has about 100,000 rows, randomly sampled from a
much larger population. The explanatory variables number about 90 interval
and 50 nominal (character and numeric) – these being from a larger pool of
about 1,000 explanatory variables. Many of the interval variables are themselves
log transformed. The positive and negative parts of each interval variable are
treated separately, yielding two new variables.

The nominal variables are transformed using one-hot encoding to derive a
design matrix. The numbers of levels per nominal variable vary from 2 to about
20.

The data has been sanitised so that the transformed data had nearly the
same mathematical properties but was no longer identifiable or sensitive. These
transformations were:

– Identifiers were replaced by random integers;
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Fig. 3. C-statistic plots for Train and Test data

– The target variable was perturbed by an amount proportional to its size;
– All interval variables were converted to ranks, retaining missing values and

given uninformative names; and
– Nominal variables (character and numeric) were given uninformative levels

and names and missing values retained.

The interval variables contain missing values which XGBoost can deal with
though the Python sklearn package does not. Hence the missing values were
imputed for the Decision Tree modelling. Missing nominal variables define a
new level.

4.2 Evaluation Measure

For an interval variable with a small number of very large values (i.e., long
tailed), a widely-accepted measure for model evaluation is the c-statistic, which
measures how well the rank-order is predicted. To calculate this, the data are
sorted in descending order of the actual or predicted value, and the area under
the curve calculated as proportions of cases ordered from zero to one. The c-
statistic is quite sensitive to the most extreme values in a population, so the
ratio of predicted to actual is reported—an example plot is shown in Fig. 3.

Note that for targets which are always strictly greater or less than zero the
c-statistic is always less than 1. For populations with both positive and negative
parts, it can exceed 1. The ratio of prediction to actual is nearly always less
than 1.

4.3 Experimental Settings

At the start, the data were randomly split into two subsets, Train (70%) or Test
(30%) and kept that role throughout. The numbers of ensembles tested were 1,
5, 10, 25 and 50.
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Fig. 4. CDF for actual and predicted
– single Decision Tree (Color figure
online)

Fig. 5. Close up of CDF – single Deci-
sion Tree (Color figure online)

The specific learners used were the BaggingRegressor from Python
sklearn [11]. The default base estimator (Decision Tree) was used for the Deci-
sionTree modelling and XGBRegressor was used for the XGBoost modelling.

4.4 Decision Trees Vs XGBoost

Considering first a single decision tree, Fig. 4 shows the actual CDF (see black
line) of the target variable, the Ensemble without correction (green line) and
the predictions corrected (yellow and blue lines). Because the corrections are
greater than 1, the CDF of the predictions are shifted to the right. However the
ensemble predictions for Train and Test (yellow and blue lines, respectively) are
much closer to the actual data. Figure 5 zooms in on part of the plot and here
the ‘lumpy’ nature of DT predictions is apparent.

For 50 ensembles the equivalent plots are Figs. 6 and 7. In both, there is
a band of predictions (grey lines) for each model, which follow essentially the
same curve and lie to the right of the actual (black line). However averaging 50
predictions results in Train and Test CDFs (yellow and blue lines, respectively)
follow the actual much more closely.

The predictions from a XGBoost model with 1 and 50 ensembles are shown
in Figs. 8, 9, 10 and 11. As expected, the individual prediction curves are much
smoother for these models. The averaged predictions and individual ones overlay
each other.

Figures 12 and 13 show histograms of the correction factors for 50 models,
respectively with DT and XGBoost. The DT ones (see Fig. 12) are larger than
XGBoost (see Fig. 13) because the errors on individual models are larger. Look-
ing at the variability of the factors for the XGBoost models suggests all factors
lie within [2.02, 2.055] whereas those for DT lie within a larger range [1.3, 2.6]

.
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Fig. 6. Ensembles – Decision Trees
(Color figure online)

Fig. 7. Close up of ensembles – Deci-
sion Trees (Color figure online)

Fig. 8. CDF of actual and predicted for
single XGBoost model

Fig. 9. Close up of single XGBoost
model

In Table 1, we compare the model performances for the positive part for
entities of type 1. For a single model the c-statistic ratio for decision tree (DT)
models is slightly worse than XGBoost models for the Train data (0.8537 vs
0.8576) and noticeably worse for the Test data (0.8065 vs 0.853). As the number
of ensembles increases, the DT model’s performance increases more than that
of XGBoost, so that at 50 ensembles the DT (0.8899) is better than XGBoost
(0.8616). For the Test data, the XGBoost results are still better (0.850 for DT
vs 0.855 for XGBoost).

Tables 2, 3 and 4 repeat this pattern for other populations: for 1 ensemble
the XGBoost outperforms DT, but as the number in the ensemble increases, the
XGBoost improves only slightly while the DT improves markedly, being better
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Fig. 10. CDF of actual and predicted
for Ensembles – XGBoost

Fig. 11. Close up of Ensembles –
XGBoost

Fig. 12. Histogram of correction fac-
tors for Decision Tree models

Fig. 13. Histogram of correction fac-
tors for XGBoost models

than XGBoost usually by 5 ensembles for the Train data. In all scenarios a single
DT performs worse that a single GB, but as the number of ensembles increases,
the GB performance does not improve much and the DT becomes in some cases
superior to the GB for the Train data though not for the Test data. Although
GB remains best, its advantage is relatively small in most tables.

This model performance needs to sit alongside the computational perfor-
mance: the DT models are of the order of 7–8 times faster to run than XGBoost,
so an ensemble of 5–10 will be of a similar order of computation effort as a single
XGBoost model. The XGBoost models sometimes failed for problems with more
than 300 columns, likely due to the limit of computer memory.
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Table 1. Positive part of type 1 ratios
of C-statistics

Ensemble DT DT GB GB

Size Train Test Train Test

1 0.8537 0.8064 0.8576 0.8536

5 0.8797 0.8389 0.8609 0.8552

10 0.8855 0.8473 0.8615 0.8555

25 0.8891 0.8497 0.8615 0.8552

50 0.8899 0.8500 0.8616 0.8551

Table 2. Negative part of type 1 ratios
of C-statistics

Ensemble DT DT GB GB

Size Train Test Train Test

1 0.7391 0.7780 0.8010 0.8775

5 0.8475 0.8566 0.8039 0.8797

10 0.8627 0.8676 0.8037 0.8782

25 0.8721 0.8688 0.8049 0.8797

50 0.8762 0.8768 0.8067 0.8793

Table 3. Positive part of type 2 ratios
of C-statistics

Ensemble DT DT GB GB

Size Train Test Train Test

1 0.8711 0.8429 0.8852 0.8894

5 0.9080 0.8753 0.8874 0.8908

10 0.9140 0.8861 0.8885 0.8919

25 0.9183 0.8918 0.8885 0.8918

50 0.9192 0.8875 0.8877 0.8909

Table 4. Negative part of type 2 ratios
of C-statistics

Ensemble DT DT GB GB

Size Train Test Train Test

1 0.8297 0.7719 0.8731 0.8369

5 0.8796 0.7944 0.8694 0.8356

10 0.9093 0.8236 0.8728 0.8406

25 0.9220 0.8351 0.8734 0.8398

50 0.9216 0.8326 0.8711 0.8396

4.5 Effect of Not Log Transforming

Figures 14 and 15 show boxplots of residuals from models with respectively no
transformations and log transformed target variables. Such plots are useful in
determining whether or not heteroscedasticity is present in a regression model.
There are 20 boxes grouped by rank of the predicted value. Without transforma-
tion (Fig. 14) the largest ranked residuals are roughly 107 larger than the other
groups. With transformation (Fig. 15), the residuals are all of a similar scale. As
the predictions at the highest values are those of most interest, not transforming
has resulted in predictions that are least accurate where it matters most.

Fig. 14. Residuals of models without
log transformations

Fig. 15. Residuals of models with log
transformations
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5 Conclusions

We have studied the problem of predictive modeling for long-tailed interval
variables and have experimentally investigated two different methods of apply-
ing correction factors for log transforms in ensemble models. Our experimental
results on real-world data show that using an ensemble of simpler models can
outperform when building machine learning models to predict long-tailed inter-
val target variables. Alternatively, at least give a very similar performance to a
sophisticated method such as XGBoost. This is because many sub-models that
make up an XGBoost model do not have individual correction factors—they are
only available at the whole model level. Future work will further evaluate the
individual correction factors approach with more machine learning algorithms
and more datasets from other domains.

Acknowledgements. Author RL thanks the ATO and CSIRO for the opportunity
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