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Abstract. Advances in artificial intelligence and automatic question generation
have made it possible to create millions of questions to apply an evidence-based
learn by doing method to thousands of e-textbooks, an unprecedented scale. Yet
the scaling of this learning method presents a new challenge: how to monitor the
quality of these automatically generated questions and take action as needed when
human review is not feasible. To address this issue, an adaptive system called the
Content Improvement Service was developed to become an automated part of the
platform architecture. Rather than adapting content or a learning path based on
student mastery, this adaptive system uses student data to evaluate question quality
to optimize the learning environment in real time. In this paper, wewill address the
theoretical context for a platform-level adaptive system, describe the methods by
which the Content Improvement Service functions, and provide examples of ques-
tions identified and removed through these methods. Future research applications
are also discussed.
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1 Introduction

Adaptive instructional systems have varied widely in the past decades. Different tech-
nologies have focused on a range of adaptive strategies—including content level of
difficulty, tutoring dialogues, self-correction, metacognitive prompts, etc.—with vary-
ing levels of effectiveness [2]. Systematic reviews have worked to make sense of a
diverse field of research through categorizations and frameworks. Vandewaetere et al.
[14] describes adaptive systems according to the source of adaptation (what determines
adaptation), target of adaptation (what is being adapted), and pathway of adaptation (how
it is adapted). Vandewaetere et al. identify the primary source of adaptation as learner
characteristics that point to aptitude characteristics or a learner model. Martin et al. [8]
expanded the adaptive source to include a content model and instructional model in
addition to the learner model. Yet no matter the source of adaptation, we can see that
these systems generally focus on an evolving relationship between the learner and the
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pedagogical path. What if the source and target of adaptation are one and the same? This
paper will outline an adaptive instructional systemwhich does not focus on an individual
student as the source of adaptation, but rather focuses on individual question items to
adaptively update the learning environment.

While Vandewaetere et al. [14] noted the increasing use of intelligent learning for
adaptive systems, it was also still an evolving technology with unknown future impact.
“Currently, Bayesian networks, fuzzy logic and neural networks are considered as new
approaches to the development of learner models. However, based on our review, we can
conclude that all of these newer techniques are still in the very early stage of development,
and none of the techniques has been concretely implemented in an adaptive system,”
(p. 128). Artificial intelligence (AI) became part of Martin et al.’s [8] adaptive learning
model framework, serving as part of the “adaptive engine” in their system (though
notably this study did not address the use of AI in the literature it reviewed).

The adaptive system described herein was developed as a solution to a new chal-
lenge created by using AI for automatic question generation (AQG) on an enormous
scale. Bookshelf CoachMe™ (BCM), a new learning feature of the Bookshelf e-reader
platform from VitalSource Technologies, uses AQG to deliver formative practice ques-
tions alongside the e-textbook content so students can practice while they read. Millions
of questions were generated using AI and released in over 4,500 e-textbooks as a free
feature of the e-reader platform. The goal of these automatically generated (AG) for-
mative questions is to help students become active participants in their learning process
by practicing at the point of learning. This method of “learn by doing” has been shown
to have six times the effect on learning outcomes compared to reading alone [6], and
follow-up research has found that this method is causal to learning [6, 13]. As anyone
who has created educational content is aware, no content is perfect. Historically, text-
books, courseware, and any learning content students see goes through review and QA
prior to being released as well as after it’s released, as it is inevitable that students find
problems or errors. The AG questions described had extensive automated QA as well
as targeted human QA prior to release. Research on questions generated through this
AI process found that they performed equally as well with students as human-authored
questions on several key metrics [11]. And still, as no human could write millions of
perfect questions, neither will AI generate a perfect question set. So while AI has solved
the problem of how to create formative practice for effective learning at scale, a new
challenge presents itself in how to monitor and QA this enormous question set. The
solution is an AI-driven adaptive system.

The Content Improvement Service (CIS) is an adaptive system not limited to a single
instance of a course or learning environment, but rather is a platform-level system that
monitors all questions delivered in all e-textbooks. The CIS uses all student responses to
make decisions about the quality of the questions. In this way, the content is the source
of adaptation as well as the target of adaptation. The CIS uses data at a micro level, as it
is monitoring each individual question and every student answer. Yet at the same time,
the CIS uses data at a macro level, as it is using millions of data points to make decisions
for an entire platform.

We can begin to see the differentiation between an adaptive system that acts to
move a student through a content path and one that adapts for the purpose of iterative
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improvement of the content itself. The concept of iterative improvement is one familiar to
manyfields, but is of particular importance to learning engineering. Learning engineering
is a practice and process that uses human-centered engineering design and data-informed
decision-making to support learners [4]. Iterative improvement is key to the process of
learning engineering, both in the development of learning experiences, as well as the
action following data analysis [5]. From previous case studies, we see examples of how
this data-driven iterative improvement cycle can benefit students [10], yet often the data
analysis is only done infrequently at specific points due to scarcity of expert human
resourcing. The CIS uses real-time question responses and takes an action to adapt the
learning environment for all students. This process is not one that happens at prescribed
times (such as after a semester ends) but instead it occurs continuously. TheCIS performs
a continuous process of iterative improvement for the AG questions across the platform,
thereby automating this key learning engineering cycle.

The goal of this paper is to examine the CIS as a tool for large-scale adaptation and
iterative improvement. We will describe the architecture of this system, the technology
driving its function, and examine examples of the improvements it identifies forAGques-
tions. In this way, we hope to illuminate how combining learning science-based methods
with adaptive instructional systems and scalable artificial intelligence technology can
produce systems of great benefit to millions of learners worldwide.

2 Architecture of the CIS

As defined by Vandewaetere et al. [14], the Content Improvement Service is the path-
way of adaptation, by monitoring question data, identifying problems, and carrying out
decisions. Illustrated in Fig. 1, the CIS is the critical link between the live learning
platform and the passive content management system (CMS). In many online learning
environments, a manual feedback loop takes place after a course is delivered in order
to improve the materials for the next semester. The CIS enables us to make changes as
soon as enough data are available to demonstrate a need for a change instead of waiting,
e.g., for an entire semester to go by. As students enroll and proceed at different rates
through an e-textbook, we have the chance to improve practice for the next student to
encounter it during the same semester without the semester (or more) lag.

The CIS has two essential types of input. The first is information about the questions
and content available to students in the learning platform. Knowing some basic data—
such as the question identifier, the textbook it belongs to, and the type of question
(multiple choice, text entry, etc.)—provides the CIS with enough basic information do
its analysis. Importantly, there is nodomainknowledge required.The second typeof input
is data about student interactionswith the content and questions, for example, correct and
incorrect question attempts. Additionally, students are given the option to rate questions
they answer and this feedback is also considered. No Personal Identifiable Information
(PII) is tracked or needed within the CIS. The continuous stream of interactions is used
to update a local database with summary statistics for each question being analyzed.
Although the richness of both types of data may increase as new ideas are developed
for automatically improving content, the two broad categories and pipelines ultimately
remain the same.
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Fig. 1. An ongoing automatic cycle of content improvement based on usage data. Content is
published from a CMS into a learning platform where students engage with the content. The data
generated from that usage are monitored by the CIS coupled with basic information about the con-
tent it received during the publishing step. Should any rule apply to trigger content improvement,
it messages the CMS with the relevant information allowing the CMS to publish the improvement
to the live content in the learning platform.

In a continuous manner, the CIS updates the available summary data and determines
what actions, if any, should be taken. For example, a decision rule may trigger that
indicates a question is not performing acceptably and should be removed (or replaced
if there is a replacement available). In response to this update from the CIS, the CMS
automatically publishes an update to the live course and informs the CIS of the question
removal and replacement (if any) and the cycle of automated iterative improvement
continues.

3 Recall: The Guiding Philosophy of the CIS

An important design consideration for the tests of question quality is whether they should
be oriented toward precision or recall. That is, is it more important to require a high
degree of certainty that a question is unsatisfactory before removing it, or that as many
unsatisfactory questions as possible are identified and removed? These two requirements
are at odds with each other, and in general not possible to satisfy simultaneously (known
as the “precision-recall tradeoff”).

As a key goal of the CIS is to minimize the exposure of these questions to stu-
dents, there is a need to identify them as quickly as reasonably possible. This means
emphasizing recall over precision—erring on the side of caution rather than continuing
to collect evidence in order to maximize confidence in the question’s classification. The
question generation process for BCM uses an overgenerate-and-rank approach [3] to
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ensure there is a surplus of questions available for replacing questions deemed unsat-
isfactory, and so the system can afford to be more aggressive in removing potentially
problematic questions. This focus on recall is also in service to a student-centered app-
roach of development, another critical element of learning engineering. In this context,
the precision-recall tradeoff is occurring in a student learning environment so in maxi-
mizing the recall of questions in the CIS, we are prioritizing the student experience. In
this way, recall becomes a guiding philosophy of the CIS.

4 Decision-Making in the CIS

The CIS is a platform-wide adaptive system that makes decisions about questions in
real-time, making it a large part of the architecture of the learning environment. Because
of this, the decision-making processes are not intended to remain part of a “black-box”
system where nothing is known about the system’s inner workings by its users. Sharma
et al. [9] put forth a rationale for using a “grey-box” approach:

....where the input features can be informed from the context and the the-
ory/relevant research, the data fusion is driven by the limitations of the resources
and contexts (e.g., ubiquitous, low-cost, high precision, different experimental set-
tings), and the [machine learning] method is chosen in an informed manner, rather
than just as a way to obtain the optimal prediction/classification accuracy. In other
words, this contribution aims to invite researchers to shift from the optimal ends
(outputs) to the optimal means (paths), (p. 3007).

In the case of the CIS, the goal of the system is to make decisions about questions
as quickly as possible, and so the learning science context is critical to determining the
optimal means by which the CIS makes its decisions. Designed to address the challenge
of continuously evaluating the performance of formative questions at scale, the CIS was
developed with a recall philosophy and a learner-centered approach. The methods for its
decision-making were derived from this context; incorporating research ranging from
student perception to question psychometric properties shaped the methods by which
the CIS operates.

This grey-box approach also fosters trust and accountability in the system through
the transparency of its research base and methods. When decisions are being made in
an automated fashion that impact student learning environments at scale, the ability
to explain how those decisions are made is necessary. In this paper we outline several
research-based optimal means that contribute to the optimal ends—the decisions of the
CIS. It is also noteworthy that CIS uses the methods selected as tools, and that these
tools can be modified, extended, added or removed based on evolving technological or
theoretical breakthroughs. In this way, the CIS is itself a system that can be iterated upon
based on data and research.

This grey-box approach of incorporating relevant theory and research into the meth-
ods of the CIS (or pathway of adaptation) is therefore also congruent with a learning
engineering approach. Research is a critical input of the learning engineering process
[10], and here it is also used to determine the methods of adaptation. The CIS was
developed using the learning engineering approach, and to apply this domain expertise
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with the technical capacity to make research- and data-informed decisions at massive
scale. It would be more difficult to trust a black-box system designed without regard for
context or learning theory to make unsupervised determinations about content. Instead,
a grey-box system designed by learning science experts to use research-based methods
to achieve a student-centered outcome provides a responsible and accountable system.

4.1 Student Helpfulness Ratings

One simple and directmeasure of question quality is student feedback, so the firstmethod
of the CISwe outline is the use of student helpfulness ratings. After answering a question
in BCM, the student is given the opportunity to give it a simple thumbs up/thumbs down
rating of helpfulness (Fig. 2). When a thumbs down rating is given, additional feedback
can optionally be provided on why the student felt the question was not helpful.

Fig. 2. Question helpfulness rating feature.

Analysis of a data set of BCM usage comprising 911,044 student-question interac-
tions in 3,948 textbooks showed that students do not rate questions very often, only in
0.52% of rating opportunities, with a thumbs down rating 0.20% of the time.

A single thumbs down rating is generally not sufficient evidence that a question
should be removed. Some students tend to challenge questions they answer incorrectly,
and it is also well known that question rating agreement is often low even among trained
reviewers [7], which can be common for subjective judgments. Determination of an
appropriate decision rule or rules based on the number and context of thumbs down
ratings requires calibration from data. However, an example from an economics text-
book of a question with two thumbs down ratings shows that the additional information
students can optionally provide can be helpful:

“The ______ of a new sports car doesn’t just affect the person driving off the
dealer’s lot.”
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Answer: “sale”

Both students rating the question indicated that the question was not relevant to the
subject matter, which increases the likelihood that it should be removed.

4.2 Bayesian Inference of Mean Score

TheCIS also considers question quality as outlined by the literature as part of itsmethods.
Of the psychometric properties relevant to question quality, perhaps the one of most
interest is difficulty. For formative practice, for example, if questions are too easy or
too difficult, it may risk diminishing student engagement and satisfaction. Therefore, it
is necessary for the CIS to monitor difficulty so that questions not meeting the desired
criteria can be removed. A common way to gauge a question’s difficulty is by its mean
score (sometimes called the difficulty index). If a question’smean score is not acceptable,
our task is to learn this as quickly as possible from the observed data (to a specified
confidence level) in order to minimize exposure of poorly performing questions.

Here, a simple approach is to model each question independently, treating students’
answers to the question as Bernoulli trials. A Bernoulli random variable models an
event with exactly two possible outcomes, such as success and failure (e.g., correct
and incorrect), represented as 1 and 0, and has a single parameter p, the probability of
success, which in this case represents the question’s mean score. The Bernoulli trials
model requires that the trials are independent, and that the probability of success or
failure is the same for each trial. The first is reasonably satisfied (each trial is an answer
by a different student) but the second is not, since thismodel approximates the probability
of a correct answer as the same for all students (the mean score), when in fact it depends
strongly on the individual student. While this assumption would be too restrictive for
many analyses, it is entirely adequate here. While a more complex model like item
response theory [1]—that takes student ability into account—would be more accurate, it
would also require collecting much more data to make the assessment, which is at odds
with our requirements. The higher accuracy afforded is not needed when we recognize
that recall is more important than precision in identifying poorly performing questions;
put another way, we are perfectly willing to sacrifice some acceptable questions in
order to remove the unacceptable ones. Furthermore, when the mean score of an AG
question is very low it is sometimes indicative of an error in the generation process that
yielded a question that is not correctly answerable, making individual student abilities
less relevant.

The need to assess a question’s difficulty from a small sample of student data suggests
a Bayesian approach. Bayesian methods provide a powerful and flexible approach to
estimation of models from data. In particular, this enables probability distributions for
a model’s parameters to be learned from data rather than simply point estimates. The
Bayesian approach combines prior knowledge or assumptions about themodel parameter
distributions with the likelihood of the observed data under the model to obtain the joint
posterior distribution of the model parameters. A Bayesian approach can thus help us
arrive at better-quality decisions more quickly by allowing us to incorporate what is
known about question mean scores from prior experience. The total number of successes
in a given number of Bernoulli trials has a binomial likelihood function, and for Bayesian
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inference it is common to use a beta distribution as the prior distribution of p since this
has a closed-form solution for the posterior distribution, which is also a beta distribution.

The shape parameters α and β of the beta prior distribution can be determined by
fitting the mean and variance of an empirically observed set of question mean scores.
This gives a so-called “informed prior.” A data set from a previous large-scale study on
the difficulty of automatically generated and human-authored questions [11] was used
to determine a prior in this manner. Figure 3 shows a histogram of mean scores of 809
AG questions and the beta distribution fit to it (α = 4.58, β = 1.82).

Fig. 3. Informed prior distribution for mean score obtained from AG question mean scores.

For the sake of illustration on a real example, suppose we wish to remove a question
if it is at least 90% likely that its mean score is less than 0.5, i.e., more students will
answer it incorrectly than correctly. A particular question in a human resources textbook
had 4 correct and 16 incorrect answers in the first 20 students. Should it be removed? To
decide, we must construct the posterior distribution of the question’s mean score from
the prior and observed data, and then evaluate the decision rule with it. The posterior
is obtained by updating the prior’s α and β values with the number of observed correct
and incorrect answers, respectively, giving α = 8.58, β = 17.82. The probability that the
mean score is less than 0.5 is then simply the posterior’s cumulative distribution function
at 0.5, the shaded area in Fig. 4. Note that the posterior has been shifted significantly
to the left of the prior based on the observed data. The shaded area is 0.968, or 96.8%,
which is greater than the 90% threshold, so the question should be removed.

The question to be removed based on Bayesian inference on its mean score is:

“Employees want to work for employers that can provide them with a certain
amount of ______ security.”

Answer: “economic”

Among the incorrect answers students gave were “job,” “employment,” and “fi-
nancial.” Rather than corresponding to misconceptions, these responses are effectively
synonymous with the expected answer, leading to the low mean score.
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Fig. 4. Posterior distribution formean score, shown togetherwith the prior distribution fromFig. 3
for comparison. The shaded area represents the probability under the model that the question’s
mean score is below the decision rule’s threshold of 0.5 (dashed vertical line).

In continuous deployment, with regular updating of the posterior distribution, the
decision to remove the question could actually have been made in a maximum of 17
student responses (4 correct, 13 incorrect) using the given rule.

5 Conclusion

The use of artificial intelligence to scale effective learning methods is a significant
milestone in the advance of educational technology as awhole.However, using automatic
question generation at scale presents a new issue of scale: monitoring and taking action
on questions. To do this for millions of questions is an impossible manual task in any
scenario, so an automated system is a necessary solution. The Content Improvement
Service was developed with a systems design perspective to work with the learning
platform and the CMS to implement a feedback loop for continuous improvement.
The CIS operates at enormous scale—across thousands of textbooks and millions of
questions—and yet at the same time it operates at a micro scale—taking action at the
individual question level. In the context of Vandewaetere et al.’s [14] adaptive model,
the automatically generated questions are both the source and target of adaptation, with
the CIS as the pathway to adaptation.

The CIS is a complex system that is a prime example of the technological advances
Vandewaetere et al. [14] anticipated arising for the pathway of adaptation. A major
objective of the CIS is to make decisions as quickly as possible in order to improve the
learning experience for as many students as possible, so complex statistical models are
employed to make these determinations efficiently. Yet the statistical methods of the CIS
also need to be used in service to a student-centered purpose and in a research-based,
grey-box approach. As seen in the examples previously outlined, the CIS uses student
feedback as well as question performance data as methods for decision-making. If a
question is underperforming, it should not wait to be identified until after potentially
hundreds or even thousands of students have experienced it; that question should be
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removed and replaced the moment the CIS is confident in that decision. This goal is
directly aligned with the student-centered approach of learning engineering. The CIS
is the adaptive system that continuously works to optimize the learning resource for
students. Furthermore, the CIS itself can adapt and undergo iterative improvement over
time, as its methods of analysis are refined and learning science expertise continues to
be added.

The CIS presents the opportunity to engage in large-scale data analytics that could
reveal new insights in learning science. One clear avenue of future research is to study
and improve the AQG process itself. As it is operating on the largest collection of
automatically generated questions delivered for student use in natural learning contexts
to date, the decisions made by the CIS will provide large, labeled data sets for question
quality, which can be used for developing machine learning models to better detect
suboptimal questions before they are released. The results of the CIS could also reveal
interesting insights into the performance of these automatically generated questions
across subject domains. Another avenue of future study is characterizing the timescales
needed to optimize questions in the learning environment. Previously, data analysis to
identify problematic human-authored questions occurred only after a semester or year of
data had been collected, if even at all. In addition to the analysis itself, there is the need
for expert review of the results and for any follow-up actions based on that review to
be implemented manually. These practical requirements mean students may not receive
the benefits of this improvement cycle for a year or longer. With the CIS, these analyses
and decisions are improving the learning environment constantly, indicating that at a
certain point, every question will have been optimized for students. Discovering this
optimization point would be a valuable finding.
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