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Abstract. We study algorithms for graph problems in which the graphs
are of extremely large size N so that super-linear time ω(N) or linear
space Θ(N) would become impractical. We use a parameter k to charac-
terize the computational power of a normal computer that can provide
additional time and space bounded by polynomials of k. In particular,
we are interested in strict linear-time algorithms using space O(kO(1)).
In our case studies, as examples, we present a randomized algorithm of
time O(N) and space O(k2) that constructs a maximal matching of size
upper bounded by k in a graph of size N , and a randomized kerneliza-
tion algorithm of time O(N) and space O(k3) for the NP-hard Edge
Dominating Set problem. Our kernelization algorithm for Edge Dom-
inating Set has its kernel size match the best kernel size by known
polynomial-time kernelization algorithms for the problem with no space
complexity constraints. We also show that the techniques developed in
our algorithms can be used to develop improved streaming algorithms.
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1 Introduction

Recent progress in data science has shown that classical algorithmic techniques
may become inadequate when dealing with data sets of enormous size. For exam-
ple, it was estimated that Baidu stored 2,000 petabyte data, Google stored 15,000
petabyte data while NSA held 10,000 petabyte data [1]. Thus, a traditionally
“efficient” algorithm of, say, quadratic running time, may turn out to be not
practically feasible. There have been fast growing interests in the study of mas-
sive data sets. The research has included the study of structures of massive
data and data queries (e.g., [10]), parallel and distributed processing of massive
data (e.g., [15]), and preprocessing of massive data (e.g., [9]). The research has
been driven directly by practical applications in massive data processing, and is
essentially heuristic-based. There has also been very active research in the algo-
rithmic community. The study of very fast (sublinear-time, linear-time, or nearly
linear-time) algorithms in dealing with massive data sets has drawn extensive
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attention. A number of computation models for dealing with massive data sets
have been proposed and studied. In particular, data streaming models [16] have
been studied, where algorithms must process the input stream in the order it
arrives while using a limited amount of memory. Recently, studies on streaming
algorithms based on parameterized computation have appeared [5,6,8].

In the current paper, we study a new computational model for massive data
processing with limited “local” computing resources. Our model is of a multivari-
ate nature, which measures the complexity of reading the very large input data
sets in terms of the size of the data sets and analyzes the computational cost
in terms of a parameter that characterizes the computational power provided
by limited local computing resources. Problems in our consideration have two
parameters N and k, where N is the input size, which is assumed to be extremely
large so that super-linear time (such as quadratic-time) algorithms would be con-
sidered impractical, while k gives the “size” of feasibility such that the limited
local computing resource (e.g., a normal computer) can handle problems with
complexity (time and space) bounded by polynomials of k, in addition to the
linear-time reading from the input. More specifically, we will study algorithms
for graph problems in which the graphs are of extremely large size N , such that
the algorithms run in strict linear-time using memory space polynomial in the
parameter k, i.e., that the algorithms run in time O(N) and space O(kO(1)).

We argue that the proposed model is theoretically interesting and practi-
cally meaningful. Insisting on strict linear-time allows processing data sets of
very large size. On the other hand, there seems no simple functional relations
between the input size and the available computational power. In many cases,
problems in massive data processing (such as aggregations) look for solutions of
size manageable by local computational resources, where the solution size and
the size of input data are not directly correlated. Therefore, it is meaningful
to introduce another parameter k to characterize the available computational
resources. The constraint on the space complexity in terms of the parameter k
reflects the fact that although massive data are stored publicly so that users can
read the data, the users do not own the space so cannot write over the data in
the space. Limiting local resources to be bounded by polynomials of the param-
eter k offers new challenges in algorithmic research. Also, optimizing the cost
of local resources in terms of the parameter k widens the applicability of the
algorithms. For example, if k is the solution size, then algorithms requiring less
local resources can handle massive data problems with larger solutions.

As examples, we study well-known graph problems that have been extensively
studied in algorithmic research, and demonstrate how they can be solved in the
proposed model. In particular, we present a randomized algorithm of time O(N)
and space O(k2) that constructs a maximal matching of size upper bounded by
k in a graph of size N , and a randomized kernelization algorithm of time O(N)
and space O(k3) for the NP-hard Edge Dominating Set problem. Our kernel-
ization algorithm for Edge Dominating Set has its kernel size match the best
kernel size by known polynomial-time kernelization algorithms for the problem
with no space complexity constraints. We also show that the techniques devel-
oped in our algorithms can be used to develop improved streaming algorithms.
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Because of the space limit, proofs for the lemmas and theorems that are
marked with ♦ are omitted and will be given in the full version of the paper.

2 Constructing a Maximal Matching

We start with the well-known Maximal Matching problem. For an integer
q > 0, we will denote by [q] the set {0, 1, 2, . . . , q − 1}. Let G = (V,E) be the
input graph. We define the size N of the graph G to be N = |V | + |E|. Without
loss of generality, we will assume that V = [|V |].

Recall that a matching in the graph G is a set of edges in which no two edges
share a common endpoint. The size of the matching M is the number of edges
in M . The matching M in G is maximal if for any edge e �∈ M in G, M ∪ {e} is
not a matching in G. For a subgraph or an edge subset Z of G, we will denote
by V (Z) the set of vertices in Z. In particular, for a matching M , V (M) is the
set of vertices that are endpoints of the edges in the matching M .

Maximal matching has many applications in the study of other graph prob-
lems. A large matching in a graph G may directly lead to the nonexistence of a
solution to G for certain graph problems. On the other hand, a (small) maximal
matching in G may provide rich information for the solutions to the problems.
For example, for the famous NP-hard Vertex Cover problem, a matching of
size larger than k in a graph directly implies that the graph has no vertex cover
of size k, while the vertex set of a maximal matching in the graph is a good
approximation to the minimum vertex cover of the graph [4]. Another example
of applications of maximal matching will be given in the next section when we
study kernelization algorithms for the NP-hard Edge Dominating Set prob-
lem. Motivated by these observations, we will study the following problem:

(parameterized) Maximal Matching (p-MaxMatch)
Given a graph G and a parameter k, either construct a matching of size
larger than k, or construct a maximal matching of size bounded by k.

Note that a solution to p-MaxMatch can be easily derived from a maximal
matching of the graph G. Moreover, if we had space linear in N , then a maximal
matching M in G can be constructed by the following greedy algorithm: first
unmark all vertices, then scan the edges of the graph G, and add an edge e to M if
the two endpoints of e are unmarked then mark the two endpoints of e. However,
this algorithm will need Ω(|V (G)|) space to record if each vertex in G is marked
or not, which becomes infeasible in the environment of big data. Alternatively,
we can use a balanced search tree (e.g., a red-black tree [7]) that supports search
and insertion in logarithmic time per operation to store the marked vertices.
This takes space O(k) for matchings of size O(k). However, using this data
structure, checking if a vertex is marked would take time O(log k), resulting in
an O(N log k)-time algorithm, which is a super-linear time algorithm.

We present an algorithm that runs in time O(N) and space O(k2) for the
p-MaxMatch problem. We assume that the edges of the graph G are given in
a fixed order. Thus, the maximal matching constructed by the greedy algorithm
described in the previous paragraph is well-defined and unique. We denote this
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maximal matching by Mmax. Note that we only use the greedy algorithm to
define the maximal matching Mmax. Thus, the complexity of the greedy algo-
rithm constructing the matching Mmax is irrelevant to that of our algorithms.

Let the maximal matching Mmax be Mmax = {e1, e2, . . . , er}, where the edges
e1, e2, . . ., er are given in the order constructed by the greedy algorithm. Based
on the matching Mmax, we define another matching M∗ as follows.

M∗ =
{

Mmax if r ≤ k,
{e1, e2, . . . , ek, ek+1} if r > k.

(1)

Thus, M∗ is a matching of at most k + 1 edges. If |M∗| ≤ k, then M∗ is the
maximal matching Mmax. The vertex set V (M∗) of the matching M∗ contains
at most 2k +2 vertices. In the discussions of this section, we will let k2 = 2k +2.

We say that a hash function h is injective from a vertex subset V0 if for any
v, w ∈ V0, v �= w, we have h(v) �= h(w). We say that an array A[0..k2

2 − 1]
represents the vertex set V0 via a hash function h if (1) h is a hash function from
V (G) to [k2

2] that is injective from V0; and (2) for each v ∈ V0, A[h(v)] = v, and
for all other j’s (i.e., j �= h(v) for any v ∈ V0), A[j] = −1.

Let H0 = {h1, . . . , hb} be a set of hash functions from V (G) to [k2
2]. Con-

sider the algorithm Match-0 in Fig. 1, where M [1..b] is an array in which the
element M [i] is a matching in G such that the hash function hi is injective from
V (M [i]), and H[1..b, 0..k2

2 − 1] is a 2-dimensional array such that for each i, the
1-dimensional array H[i, 0..k2

2 − 1] represents the vertex set V (M [i]) via hi.

Fig. 1. Constructing a maximal matching

Theorem 1 (♦). The set H0 contains a hash function injective from
V (M∗) if and only if the algorithm Match-0(G, k,H0) returns a triple
(M [i], hi,H[i, 0..k2

2 − 1]). If this is the case, then (1) M [i] is the matching M∗;
(2) hi ∈ H0 is injective from V (M [i]); and (3) the array H[i, 0..k2

2 −1] represents
V (M [i]) via hi.

We analyze the complexity of the algorithm Match-0, assuming that each
hash function can be represented in space O(1), and that for a vertex v ∈ V (G),
the value hi(v) for a hash function hi in H0 can be computed in constant time.
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Theorem 2 (♦). Algorithm Match-0(G, k,H0) takes time O(N · b) and space
O(k2b) on a graph of size N , where b is the number of hash functions in H0.

Remark 1. For finding the matching M∗ and the hash function hi in H0 that
is injective from V (M∗), we can run the algorithm Match-0 in an alternative
way, which can reduce the space complexity to O(k2) while keeping the same
time complexity. For this, we can call the algorithm Match-0(G, k, {hi}) on
each hash function hi in the set H0, and stop when Match-0(G, k, {hi}) returns
a triple (Mi, hi,Hi[0..k2

2 − 1]) on a hash function hi. By Theorem 1, in this
case, Mi = M∗, hi ∈ H0 is injective from V (M∗), and the array Hi[0..k2

2 − 1]
represents the vertex set V (M∗) via hi. By Theorem 2, Match-0(G, k, {hi})
takes time O(N) and space O(k2). Thus, running Match-0(G, k, {hi}) over all
hash functions hi in H0 takes time O(N · b), which is the same as that given
in Theorem 2. On the other hand, since space complexity is “re-useable”, this
approach takes space O(k2) instead of O(k2b). The drawback of this approach
is that we need to scan the input graph G up to b times. This, though keeping
the same asymptotic time complexity as that of the algorithm Match-0, causes
repeatedly scanning the input graph, which, in general, is undesirable in big data
computations.

By Theorem 1, to solve the p-MaxMatch problem, i.e., to construct the
matching M∗ for the instance (G, k) of the problem, we need to have a set H0

of hash functions from V (G) to [k2
2] in which at least one is injective from the

vertex set V (M∗). This can be achieved using universal hash functions [7].

Proposition 1 ([7]). For any subset S of V (G) with |S| ≤ s, if we randomly
pick a hash function h from a universal set Hu of hash functions from V (G) to
[s2], then the probability that h is not injective from S is upper bounded by 1/2.

Now we are ready to complete our algorithm for the p-MaxMatch problem.
Let M∗ be the matching in the graph G defined in (1). The matching M∗ contains
at most k + 1 edges, so the number of vertices in V (M∗) of the matching M∗

is bounded by k2 = 2k + 2. Therefore, if we have a universal set Hu of hash
functions from V (G) to [(2k + 2)2] = [k2

2], then for r hash functions randomly
picked from Hu, the probability that all these r hash functions are not injective
from the set V (M∗) is upper bounded by 1/2r. Thus, the probability that at
least one of these r hash functions is injective from V (M∗) is at least 1 − 1/2r.
In particular, for any given constant ε > 0, if we let r = �log(1/ε)�, then the
probability that at least one of the r hash functions randomly picked from the
universal set Hu of hash functions is injective from V (M∗) is at least 1 − ε.

Note that by our assumption, V (G) = [|V (G)|]. To have a universal set of
hash functions, let p0 be a fixed prime number such that p0 ≥ |V (G)|.
Proposition 2 ([7]). Let Hu = {ha,b | 1 ≤ a ≤ p0 − 1, 0 ≤ b ≤ p0 − 1}, where
each hash function ha,b is defined as: ha,b(v) = ((a ·v + b) mod p0) mod k2

2. Then
the set Hu is a universal set of hash functions from V (G) to [k2

2].

Each hash function ha,b in Hu is given by the two integers a and b, thus, can
be represented in space O(1). To randomly pick a hash function from Hu can
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be implemented by randomly picking two integers a and b with 1 ≤ a ≤ p0 − 1
and 0 ≤ b ≤ p0 − 1, which takes (randomized) constant time. Moreover, given a
hash function ha,b in Hu and a vertex v ∈ V (G), we can compute the hash value
ha,b(v) in constant time. Thus, all assumptions for the analysis of the complexity
of the algorithm Match-0, as given in the paragraph before Theorem 2, can
be satisfied if we use hash functions in the universal set Hu. As a result, the
complexity of the algorithm Match-0 as given in Theorem 2 holds true.

We summarize the above discussions in the algorithm given in Fig. 2.

Fig. 2. An algorithm for the p-MaxMatch problem

When ε > 0 is a fixed constant, the number b = �log(1/ε)� of hash functions
picked in step 1 of the algorithm Match is also a constant. Combining this with
Theorems 1-2, we conclude with the following theorem (recall that k2 = 2k +2):

Theorem 3. For any fixed error bound ε > 0, there is a randomized algorithm
that solves the p-MaxMatch problem with a probability ≥ 1 − ε, and runs in
time O(N) and space O(k2) on a graph G of size N and a parameter k.

Remark 2. The triple (M [i], hi,H[i, 0..k2
2 − 1]) constructed in step 2 of the

algorithm Match(G, k, ε) gives a good data structure for the matching M∗ =
M [i], where the array H[i, 0..k2

2 − 1] represents the vertex set V (M∗) of the
matching M∗ via the hash function hi that is injective from V (M∗). In particular,
for any vertex v in the graph G, by checking if H[i, hi(v)] = v, we can test in
constant time if the vertex v is in the vertex set V (M∗) of the matching M∗.

Remark 3. Algorithms Match-0 and Match can actually be regarded as 1-
pass streaming algorithms on the insert-only model [16] for the p-MaxMatch
problem. The algorithm Match-0 (thus also the algorithm Match) reads in
step 3 the edges of G in the given order, and never needs to re-read the edges.
Thus, if the edges of the graph G are given as a stream, then the algorithms
still work fine. These stream algorithms take space O(k2) and update time O(1)
(the update time of a streaming algorithm is the time spent on processing each
element in the stream, which, in the algorithm Match-0, is by steps 3.1–3.2).

3 Kernelization for Edge Dominating Set

In this section, we study kernelization algorithms for the NP-hard problem Edge
Dominating Set on the proposed model.
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Let G be a graph. An edge e in G dominates another edge e′ if e and e′ share
a common endpoint. Note that an edge always dominates itself and that if e
dominates e′ then e′ also dominates e. An edge set E1 dominates another edge
set E2 if every edge in E2 is dominated by an edge in E1. Note that the edge set
E1 dominating the edge set E2 does not necessarily imply that E2 dominates
E1. An edge dominating set of a graph G is an edge set in G that dominates all
edges in G. The size of an edge dominating set D is the number of edges in D.

The (parameterized) Edge Dominating Set problem (abbr. p-EDS) con-
sists of instances of the form (G, k), asking if the graph G has an edge dominating
set of size bounded by k. The p-EDS problem is NP-complete [13]. A kernel-
ization algorithm for p-EDS is a polynomial-time algorithm that on an instance
(G, k) of p-EDS produces an “equivalent” instance (G′, k′) of p-EDS such that;
(1) (G, k) is a yes-instance of p-EDS if and only if (G′, k′) is a yes-instance of
p-EDS; and (2) both the size of the new graph G′ and the new parameter k′ are
upper bounded by a function g(k) of the input parameter k that is independent
of the size of the graph G. The graph G′ in the output (G′, k′) of the kernelization
algorithm is called the kernel constructed by the kernelization algorithm.

There has been a series of research work on kernelization algorithms for the
p-EDS problem. Fernau [11] proposed a kernelization algorithm for p-EDS that
gives a kernel of at most 8k2 vertices. Rodriguez’s kernelization algorithm for
p-EDS [17] obtained an improved kernel with at most 4k2 + 8k vertices. Xiao,
Kloks, and Poon [18] proposed a linear-time kernelization algorithm for p-EDS
yielding a kernel with at most 2k2 + 2k vertices and O(k3) edges. Hagerup
[14] presented a further improved linear-time kernelization algorithm for p-
EDS that gives a kernel of at most max{k2/2 + 7k/2, 6k} vertices and at most
8k3/27+O(k2) edges. The linear-time algorithms in [14,18] require O(N) space
on input graphs of size N . Fafianie and Kratsch [8] studied parameterized stream-
ing algorithms and presented a 2-pass streaming kernelization algorithm of space
O(k3 log k) for the p-EDS problem that gives a kernel of size O(k3 log k).1

In this section, we will assume that the graph G is given in an adjacency list.

3.1 The First Kernelization Algorithm for P-EDS

We first study a kernelization algorithm for the p-EDS problem on our model,
following the ideas given in [18] that gave a kernerlization algorithm for p-EDS
running in linear time and linear space. Note that it can be challenging to keep
the linear time while limiting the space complexity: when we limit the space
complexity, many constant time operations used in the linear-time algorithms in
[14,18], such as checking if a vertex is in a given set, can no longer be done in
constant time, which will cause the algorithms to run in super-linear time.

Our first kernelization algorithm for p-EDS is given in Fig. 3, which uses the
algorithm Match-0 developed in the previous section, where k2 = 4k + 2.

1 It is known [5] that (even randomized) 1-pass streaming algorithms for the p-EDS
problem require Ω(N) space. As a result, 1-pass streaming algorithms for the prob-
lem have become less interesting.
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By Theorems 1 and 3, with a probability at least 1−ε, step 2 of the algorithm
KerEDS1(G, k) obtains a triple (M∗, h,H[0..k2

2 − 1]), where M∗ is a matching
of at most 2k + 1 edges in G that is a solution to the instance (G, 2k) of the p-
MaxMatch problem, h is a hash function from V (G) to [k2

2] (where k2 = 4k+2)
that is injective from V (M∗), and the array H[0..k2

2 − 1] represents V (M∗) via
h. In particular, if |M∗| ≤ 2k, then M∗ is a maximal matching in the graph G.

Fig. 3. First kernelization algorithm for the p-EDS problem

Proposition 3 ([18]). Let (G0, k) be the output of algorithm KerEDS1(G, k).
Then (G, k) is a yes-instance of p-EDS if and only if (G0, k) is a yes-instance
of p-EDS, where the graph G0 has at most 2k2 + 2k vertices and O(k3) edges.

Theorem 4 (♦). For any fixed ε > 0, the algorithm KerEDS1(G, k) is a
randomized kernelization algorithm for the p-EDS problem that produces the
kernel (G0, k) in time O(N) and space O(k3), with a success probability at least
1 − ε.

Remark 4. The algorithm KerEDS1 can be implemented so that it only
makes two linear-time scans on the edges of the graph G, taking constant time
per edge. Therefore, the algorithm can be implemented as a 2-pass streaming ker-
nelization algorithm for p-EDS. Fafianie and Kratsch [8] have studied streaming
kernelization algorithms for p-EDS. A 2-pass streaming kernelization algorithm
for p-EDS with update time O(k2) was presented (see [8], Theorem 5). It was
mentioned, with no detailed descriptions (see [8], Corollary 4), that the update
time of the algorithm could be improved to O(log k). In any case, the algorithms
given in [8] run in super-linear time in terms of the input graph size. In compar-
ison, our algorithm KerEDS1, if implemented as a streaming algorithm, uses
the same number of passes and has the same space complexity as those in [8], but
has better update time O(1). On the other hand, we mention that the algorithms
given in [8] are deterministic while our algorithm KerEDS1 is randomized.
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The running time of the algorithm KerEDS1 depends on the probability
error bound ε > 0: by Theorem 2 and step 1 of the algorithm KerEDS1,
to achieve a success probability 1 − ε, the algorithm Match-0 will take time
O(N log(1/ε)) and space O(k3). Therefore, the algorithm will no longer run in
linear time if we want to achieve a success probability 1 − o(1).

3.2 A New Kernelization Algorithm for P-EDS

In this subsection, we present a new randomized kernelization algorithm for
the p-EDS problem, which basically keeps the same time and space complexity
as that of the algorithm KerEDS1, but has a much high success probability.
Moreover, we will show how to use this algorithm to achieve kernels whose size
matches the best known kernel size for p-EDS, without increasing the time and
space complexity and decreasing the success probability.

A vertex v in G is a large-vertex if its degree is larger than 2k. Otherwise, v
is a small-vertex. An edge is a large-edge if its both endpoints are large-vertices,
and an edge is a small-edge if its both endpoints are small-vertices. Therefore,
the vertices of the graph G are classified into large-vertices and small-vertices,
and there are three kinds of edges: large-edges, small-edges, and edges whose
one endpoint is a large-vertex and the other endpoint is a small-vertex.

Lemma 1 (♦). Every large-vertex must be contained in every edge dominating
set of size bounded by k. As a result, the number of large-vertices is upper bounded
by 2k if the graph G has an edge dominating set of size bounded by k.

Our new kernelization algorithm, KerEDS2, for the p-EDS problem is given
in Fig. 4. Lemma 1 ensures the correctness of step 2 of this algorithm. The major
difference between this algorithm KerEDS2 and the algorithm KerEDS1 is
that the vertex set V (M∗) of the matching M∗ is unknown to the algorithm
KerEDS1 when it chooses hash functions in step 1, while the vertex set VL is
known to the algorithm KerEDS2 when it chooses the hash function in step 3.
This difference enables us to significantly improve the success probability.

Fig. 4. A new kernelization algorithm for the p-EDS problem.
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Lemma 2 (♦). An edge can dominate at most 4k − 1 edges in the set ES.
Thus, if |ES | > k(4k − 1), then the graph G has no edge dominating set of size
≤ k.

Lemma 3 (♦). The graph G0 constructed by the algorithm KerEDS2(G, k)
has O(k2) vertices and O(k3) edges.

Theorem 5 (♦). The graph G has an edge dominating set of size ≤ k if and
only if the graph G0 constructed by the algorithm KerEDS2(G, k) has an edge
dominating set of size ≤ k.

By Theorem 5, the algorithm KerEDS2 is a kernelization algorithm for the
p-EDS problem. In the following, we analyze the complexity of the algorithm.

Theorem 6. The algorithm KerEDS2(G, k) is a randomized kernelization
algorithm for the p-EDS problem that runs in time O(N) and space O(k3),
and, with a success probability at least 1 − 1/2k+N/k ≥ 1 − 1/4

√
N , constructs a

kernel of O(k2) vertices and O(k3) edges.

Proof. After the algorithm obtained the vertex set VL in step 1 and verified that
kL = |VL| ≤ 2k in step 2, its step 3 repeatedly picks a random hash function h
from a universal set Hu of hash functions that map V (G) to [k2

L], and checks if
h is injective from VL, until a hash function h from Hu is obtained such that h
is injective from VL. Note that picking a random hash function from Hu takes
(randomized) O(1) time. To check if a hash function h from V (G) to [k2

L] is
injective from VL, we can use an array H[0..k2

L − 1] to record the values h(v) for
all v ∈ VL to see if two vertices in VL collide under the hash function h. Thus,
checking if a hash function h is injective from VL takes time O(|VL|) = O(k).
Suppose that step 3 of the algorithm KerEDS2 tries at most b randomly picked
hash functions from Hu, then step 3 of the algorithm will take time O(bk + k2)
and space O(k2), where the space complexity O(k2) is for storing the array
H[0..k2

L − 1] and the term k2 in the time complexity is the time to initialize the
array H[0..k2

L−1]. By Proposition 1, the probability that step 3 of the algorithm
finds a hash function h from Hu that is injective from VL is at least 1 − 1/2b.
Note that once such a hash function h is found, the array H[0..k2

L −1] described
above becomes the array that represents the vertex set VL via the hash function
h. In consequence, checking the membership of the set VL now takes time O(1).

With the data structure built in step 3 that supports checking the member-
ship of the vertex set VL in constant time, now checking if an edge is in the set
ES in step 4 takes constant time, and checking if a vertex v is a small-vertex
with all neighbors in VL in step 6 takes time O(dG(v)), where dG(v) ≤ 2k is
the degree of the small-vertex v. Therefore, another linear-time scanning will be
sufficient to complete all steps 4–8 of the algorithm KerEDS2.

Summarizing the above discussions combined with Lemma 3, we conclude
that the algorithm KerEDS2(G, k) runs in time O(N + bk + k2) and space
O(k3) and has a success probability at least 1 − 1/2b. Setting b = (N + k2)/k,
the algorithm running time becomes O(N + k2), and the success probability
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becomes 1−1/2(N+k2)/k. Finally, by comparing N and k2, using a technique we
also used in Theorem 2, we can simplify the running time to O(N). 
�

The error bound 1/4
√
N of the algorithm KerEDS2 given in Theorem 6 is

very small because N is assumed to be very large. On the other hand, the size
of the kernel constructed by the algorithm KerEDS2 is not as good as that by
the algorithm KerEDS1, as given in Proposition 3. This, however, can be easily
overcome: once we obtain the kernel (G0, k) by the algorithm KerEDS2(G, k),
where the size N1 of the graph G0 is O(k3), we can run any known linear-time
kernelization algorithms for p-EDS on (G0, k), such as those in [14,18], which
take time O(N1) = O(k3) (thus also in space O(k3)), and produce a kernel of
better size. In particular, if we use the algorithm in [14] that gives the currently
best kernel size for p-EDS on the instance (G0, k), then with the additional
O(k3) time and O(k3) space, we can get the kernel whose size matches the best
known kernel size given in [14]. We summarize this discussion as follows:

Theorem 7. There is a randomized kernelization algorithm for the p-EDS
problem that on an instance (G, k) of p-EDS, runs in time O(N) and space
O(k3), and, with a success probability at least 1 − 1/4

√
N , constructs a kernel of

at most max{k2/2 + 7k/2, 6k} vertices and at most 8k3/27 + O(k2) edges.

Remark 5. Again the algorithm in Theorem 7 can be implemented as a 2-pass
streaming kernelization algorithm for p-EDS, with space complexity O(k3) and
update time O(1). To achieve O(1) update time, we need to be more careful in
step 6 of the algorithm KerEDS2, using the technique of pipelines (see [3]). We
point out that although our algorithm has constant update time, it does require
non-constant time between the two passes to find an injective hash function (see
step 3 of the algorithm KerEDS2), and, if we want to achieve a kernel size
matching the best known one, also non-constant time after the second pass to
apply the kernelization on the instance constructed by the algorithm KerEDS2.

4 Conclusion and Final Remarks

Motivated by recent research in massive data processing, we studied a computa-
tional model whose complexity is measured by the very large input size N and
a parameter k that characterizes the limited power of local resources. We pre-
sented algorithms for well-known graph problems and studied new algorithmic
techniques on the model. In particular, we developed a randomized algorithm of
time O(N) and space O(k2) that constructs a maximal matching of size bounded
by k in a graph of size N , and a randomized kernelization algorithm of time
O(N) and space O(k3) for the NP-hard Edge Dominating Set problem. Our
kernelization algorithm for Edge Dominating Set has its kernel size match
the best one by known polynomial-time kernelization algorithms without space
constraints for the problem. Moreover, as we discussed in Remarks 4–5 (see also
[3]), the techniques developed in our study can be applied to develop streaming
algorithms with improved update time for some well-known graph problems.
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The computational model we studied suggests reconsideration for many com-
putational problems, including many classical ones such as Graph Matching
[2], in the framework of massive data processing. A particular area where the
model can be investigated is kernelization algorithms [12], for which here we
studied a particular problem Edge Dominating Set. Most proposed kerneliza-
tion algorithms run in polynomial time and were developed without much focus
on detailed efficiency and with space complexity rarely considered. On the other
hand, the approach of kernelization seems to fit very well in dealing with massive
data, and provides pre-processing techniques to reduce large problem instances
to much smaller (thus manageable) instances. Kernelization algorithms whose
running time is linear or nearly linear in terms of the input size, with limited
space complexity, are very interesting in this direction of research.
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