
Chapter 6
Monotonic and Cyclic Loading Processes

Valentin S. Bondar and Dmitry R. Abashev

Abstract Experimental analysis of 12X18H10T stainless steel specimens subjected
to strain-controlled cyclic loading that comprises sequential monotonic and cyclic
loading under uniaxial tension-compression and standard temperature is used to
identify some features and dissimilarities of isotropic and anisotropic hardening
processes that occur during monotonic and cyclic loading. In order to describe these
features in terms of the plasticity theory (the Bondar model), which can be classi-
fied as a combined-hardening flow theory, plastic-strain redirection criterion and
the memory surface concept are introduced in the plastic-strain tensor space so
as to separate monotonic and cyclic strain. Evolution equations for isotropic and
anisotropic hardening processes are derived to describe the monotonic-to-cyclic and
cyclic-to-monotonic evolutions in transients. The basic experiment used to deter-
mine the material functions consists of three stages: cyclic loading, monotonic
loading, and subsequent cyclic loading until fracture. The results of the basic exper-
iment are fundamental to the proposed method for identifying the material func-
tions. Basic-experiment results and the identification method are used to identify
the room-temperature material functions of 12X18H10T stainless steel. The paper
compares the computational analysis and the experimental analysis of stainless steel
subjected to a strain-controlled fatigue test (loading) in five stages: cyclic, mono-
tonic, cyclic, monotonic, and cyclic loading until fracture. It further compares the
computational and experimental kinetics of the stress-strain state throughout the
deformation process. Changes in the amplitude and mean cycle stress during the
cyclic stress stages are subsequently analyzed. These stages are characterized by
hysteresis loop stabilization. Computational and experimental results fit reliably. The
theory adequately describes the processes of how the kinetics, the amplitudes, and
the mean cycle stress alter when subjecting a specimen to strain-controlled loading,
which enables a more adequate description of stress-controlled loading, especially
when loading is non-stationary and non-symmetric.
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6.1 Introduction

Non-stationary asymmetric cyclic strain is a deformation process that is a sequence of
monotonic and cyclic loadings. It is a very complex problem tomodel such processes
mathematically when subjecting a specimen to strain-controlled cyclic loading, even
more so in the case of stress-controlled loading. Besides, such loadings are associated
with the hard-to-model hysteresis loop ratcheting and stabilization. As for the assess-
ment and prediction of the resource under non-stationary and asymmetric cyclic
loading conditions, fatigue damage accumulation must be determined throughout
the deformation process given the significant non-linearity of such damage.

Mathematical modeling of strain and damage accumulation when subjecting a
specimen to cyclic loading ismainly based on variants of plasticity theories belonging
to the class of combined (isotropic and anisotropic) hardening plastic-flow theories
as reviewed and analyzed in [1, 2, 4–12, 14–34, 37–40]. In this paper, such modeling
is based on the Bondar model, a version of plasticity theory [7–9, 11, 12] (Bondar
et al., 2013) which, as shown in [13], is the most adequate version for describing
cyclic loading-induced strain and fracture, as compared to the Korotkikh [21, 25,
33–35] or Chaboche [6, 14, 18] models. This paper presents the basic equations of
the Bondar Model.

In order to identify the features of strain induced bynon-stationary and asymmetric
cyclic loading, strain-controlled loading is analyzed by subjecting 12X18H10T stain-
less steel specimens to tension–compression tests in a sequence of five stages: cyclic,
monotonic, cyclic, monotonic, and cyclic loading until fracture. Analysis of the
cyclic-to-monotonic and monotonic-to-cyclic transients shows the need to separate
the monotonic and the cyclic deformation processes. To that end, a plastic-strain
redirection criterion and the memory surface concept for separating the monotonic
and cyclic deformation processes are introduced in the plastic-strain space. Evolu-
tion equations of isotropic and anisotropic hardening parameters for monotonic and
cyclic loading are further introduced in the Bondar plasticity theory equations.

Separation of the monotonic and cyclic strain is also a feature of the Korotkikh
model [34], where it is only used to describe the evolution of isotropic hardening. The
memory surface in this model is constructed in the backstress deviator space while
determining the maximum backstress intensity value in the deformation process. In
[25, 34], the evolution of anisotropic hardening in a plastic-strain deviator space is
described by introducing a memory surface while determining the maximum plastic-
strain intensity amplitude in the deformation process. The paper [36] uses the same
memory surface to describe the anisotropic hardening evolution as in the case of
isotropic hardening. All these approaches [25, 34, 36] have one significant drawback:
the resulting memory surface size can potentially decrease and increase at the end
of the cycle, resulting in a chance of it either both monotonic or cyclic loading at the
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end of each cycle. Besides, the evolution equation for the maximum cyclic loading
backstress intensity means that this value is always diminishing, although it should
remain constant in a stabilized cycle. In conclusion, it should also be noted that there
is no documented adequate rationale for the considered approaches [25, 34, 36].

Taking into account the identified features of monotonic and cyclic loading for
the refined equations of the modified Bondar plasticity theory, this research has
defined the basic experiment as well as the method for identifying the material func-
tions. The material functions of 12H18N10T stainless steel at room temperature are
obtained. This paper compares the computational analysis and experimental anal-
ysis of 12H18N10T stainless steel subjected to strain-controlled loading that is a
sequence of monotonic and cyclic loadings. The kinetics of the stress–strain state
is analyzed, and changes in the amplitude and mean stress of the cycle during the
cyclic loading stages are taken into account.

6.2 Basic Equations of the Plasticity Theory

A simplified version of the plasticity theory [10, 11, 13], which is a partial version
of the theory of inelasticity [7, 9], is considered. This version is a single-surface
combined-hardening flow theory. Its applicability is limited to small strains of
initially isotropic metals at temperatures that entail no phase transformations, at
such strain rates where dynamic and rheological effects are negligible.

Below is a summary of the basic equations for this plasticity theory version.
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5. ȧi j =
M∑

m=1
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Here, ε̇i j , ε̇ei j , ε̇
p
i j are the total, elastic, and plastic-strain rate tensors;

σi j , si j , s∗
i j , ai j is the stress tensor, stress, active-stress, and backstress deviators;

ε
p
u∗ is the accumulated plastic strain; ω is the damage; E, ν are Young’s modulus
and Poisson’s ratio; C is the radius (size) of the yield surface; a(1)

i j , a(2)
i j , a(m)

i j are
Type I, II, and III backstresses (yield surface center displacement deviator); and
qε, g(m), g(m)

a are the defining functions, the relationship whereof to the material
functions is described below.

6.3 Monotonic and Cyclic Loading of 12X18H10T Stainless
Steel

The paper presents the results of experimenting with 12X18H10T stainless steel
subjected to uniaxial strain-controlled loading, which is a sequence of monotonic
and cyclic loading stages. The experiment consists of five loading stages:

• Stage 1 involves cyclic loading at ε(1)
m = 0, 
ε(1) = 0.016, and N (1) = 20

cycles;
• Stage 2 involves monotonic tension test up to ε(2) = 0.05;
• Stage 3 involves cyclic loading at ε(3)

m = 0.05 , 
ε(3) = 0.012, and N (3) = 200
cycles;

• Stage 4 involves monotonic tension up to ε(4) = 0.1;
• Stage 5 involves cyclic loading at ε(5)

m = 0.1, 
ε(5) = 0.012 , and N (5) = N f

cycles until fracture.

Here, ε(i)
m is the mean cycle strain; 
ε(i) is the cycle strain amplitude; ε(i) is the

final monotonic strain; N (i) is the number of cycles.
Figure 6.1 shows the experimental diagram of the 12X18H10T steel strain that

covers all five loading stages. The cyclic diagrams of Stages I, II, and III show the
loops for the first cycle and the last cycle. Experimental results are analyzed below.

Cyclic deformation at Stage I entails a cyclical hardening of 12X18H10T steel at
the initial stage, which slows down to insignificant levels

(
dCp/dε

p
u∗ ≈ 1M

∏
a
)
;

then the steel becomes virtually cyclically stable.
Stages III and V feature stabilization of the hysteresis loop. These stages are

identical stabilization-wise, as if therewas no pre-history of strain. Thus, themodulus
Ea , which is part of the Type I backstress evolution equation and is necessary for
loop stabilization, must have the same initial value Ea = Ea0. That said, during
monotonic post-cyclic loading, when Ea is reduced to nearly zero, the modulus Ea

must quickly return to its initial value Ea0.
Hardening is constant at Stages II and IV of monotonic loading. Here, hardening

is determined by the modulus Ea0 and to a lesser extent by the modulus of monotonic
isotropic hardening.
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Fig. 6.1 Stress–strain diagram of 12X18H10T steel

Thus, the behavior of the modulus Ea that describes the anisotropic hardening,
and therefore the behavior of the isotropic hardening parameters, will depend
significantly on whether the strain is cyclic or monotonic.

Memory surface that limits the cyclic deformation area is introduced in the plastic-
strain tensor space ε

p
i j in order to separate monotonic and cyclic strain. The surface

is determined by the position of its center ξi j and its radius (size) Cε. To compute
the center and size of the surface, two plastic-strain tensors ε

p(1)
i j and ε

p(2)
i j are intro-

duced to define the surface boundaries. These variables are zero as strain begins.
The displacement and size of the memory surface are determined at the time plastic
strain is redirected. The following condition is assumed as the redirection criterion:

ε̇
p
i j(t−0)ε̇

p
i j(t) < 0, (6.1)

where ε̇
p
i j(t) is the current plastic-strain rate tensor; ε̇

p
i j(t−0) is the plastic-strain rate

tensor at the preceding time point.
At this moment, the change in the boundaries, center, and size of the yield surface

is described based on the following relationships:

ε
p(2)
i j = ε

p(1)
i j , (6.2)

ε
p(1)
i j = ε

p
i j , (6.3)
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Then the condition of cyclic strain is the strain within the memory surface

[
2

3

(
ε
p
i j − ξi j

) (
ε
p
i j − ξi j

)] 1
2

≤ Cε (6.6)

Outside the memory surface, the strain is monotonous.
Based on the above peculiarities of monotonic and cyclic loading, the following

equations are derived for the modulus Ea and backstress defining functions:
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Therefore, the followingmaterial functions need to be derived in order to describe
backstresses:

Ea0, σ (m)
a , β(m) are the moduli of anisotropic hardening;

KE , nE , ME are the parameters of anisotropic hardening when subjecting the
material to cyclic and monotonic strain.

The results of the experiment (Fig. 6.1) are used to define thesematerial functions.
Anisotropic hardening modulus Ea0 is found by the formula

Ea0 = σ (3)
m

ε
p(3)
m

, (6.11)

where σ (3)
m is the mean stress in the first Stage III cycle; ε

p(3)
m is the mean plastic

strain at the first cycle Stage III cycle.



6 Monotonic and Cyclic Loading Processes 73

The moduli of anisotropic hardening σ (m)
a and β(m) are found by processing the

cyclic diagramof the last Stage I semi-cycle as per the procedure described in [10, 11].
The anisotropic hardening parameters KE and nE are found based on the results

of the hysteresis loop stabilization at Stages III and V. To that end, the dependence
in the coordinates

YE = ln

[
σm(N − 1) − σm(N )

2
ε p ε
p
m

]
, (6.12)

XE = ln

[
σm(N )

ε
p
m Ea0

]
(6.13)

is constructed,whereN is the cycle number;σm(N ) is themean stress of theN th cycle;

ε p is the plastic-strain amplitude; ε

p
m is the mean plastic strain. The dependence

obtained is approximated by the linear function

YE = aE XE + bE . (6.14)

Thus,

KE = exp(bE ), nE = aE . (6.15)

The parameter of anisotropic hardeningME of a specimen subjected tomonotonic
loading is determined from the considerations of restoring the parameter Ea from 0
to the value Ea0, whereby plastic strain changes under monotonic loading over ε

p
st .

Thus, the parameter ME shall be determined by the formula

ME = Ea0

ε
p
st

. (6.16)

Having found the backstresses over the entire process from Stage I to Stage V,
one can determine the behavior of the yield surface size (radius), i.e. the change in
isotropic hardening in cyclic-to-monotonic andmonotonic-to-cyclic strain transients.

Figure 6.2 shows the change in the yield surface size (functional C) throughout
the deformation process from Stage I to Stage V.

The dotted line in Fig. 6.2 shows the function of isotropic hardeningC = Cp
(
ε
p
u∗

)

induced by cyclic loading. Analysis of the results, presented in Fig. 6.2, shows that
the transition from cyclic to monotonic strain (Stages II and IV) is associated with
an increase in the intensity of isotropic hardening. The transition from monotonic
to cyclic strain (Stages III and V) is associated with a slowdown in such isotropic
hardening, as it tends to be isotropic C = Cp

(
ε
p
u∗

)
when subjecting the specimen to

cyclic strain.
Based on the above peculiarities of how isotropic hardening is altered by cyclic or

monotonic loading, the following dependence is assumed for the defining function
of isotropic hardening:
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Fig. 6.2 Yield surface-size change
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⎧
⎨
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)nC ]
cyclic loading,
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Thus, to describe such isotropic hardening, the following material functions must
be defined:

Cp
(
ε
p
u∗

)
is the function of isotropic hardening induced by cyclic loading;

KC , nC , MC are the moduli of isotropic hardening induced by cyclic and
monotonic loading.

These material functions are defined using the experiment results, see Fig. 6.2.
The function of isotropic hardening induced by cyclic loadingCp

(
ε
p
u∗

)
is determined

based on the surface-size changes at Stages III and V; see the dotted curve in Fig. 6.2
and I.

Cyclic loading isotropic hardening parameters KC and nC are found from the
results of decreasing the yield surface size at Stages III and V. To that end, a
dependence is constructed in the coordinates

YC = ln

[
d

(
Cp − C

)

dε
p
u∗

]

, (6.18)

XC = ln

[(
C − Cp

)

Cp

]

. (6.19)
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Table 6.1 Material functions of 12X18H10T steel

E, MPa ν Ea0,
MPa

σ
(2)
a ,MPa β(2) KE , MPa nE ME ,

MPa
KC ,
MPa

nC MC ,
MPa

2 · 105 0.3 800 140 260 1, 4 · 104 3.5 4 · 104 148 1.4 960

σ
(3)
a , MPa β(3) σ

(4)
a , MPa β(4) σ

(5)
a , MPa β(5) Wa , MJ/M3 nα

45 5000 41 2000 36 1100 1830 1.5

Table 6.2 Isotropic hardening function of 12X18H10T steel

ε
p
u∗ 0 0.0003 0.0006 0.0014 0.0045 0.006 0.01 0.025

Cp , MPa 160 125 110 100 65 50 51 57

ε
p
u∗ 0.1 0.15 0.3 0.45 0.6 1 8 25 45

Cp , MPa 85 90 105 110 115 115 121 135 159

The dependence obtained is approximated by the linear function

Y = aC XC + bC . (6.20)

Thus

KC = exp(bC), nC = aC . (6.21)

The parameter of isotropic hardening MC induced by monotonic strain is found
from the slope of the strain curve at Stages II and IV using the formula

MC = dσ

dε p
− Ea0 − dCp

dε p
(6.22)

6.4 Material Functions of 12X18H10T Stainless Steel

Material functions have been derived based on the results of room-temperature
experiments with 12X18H10T stainless steel; see Tables 6.1 and 6.2.

6.5 Verification of the Modified Plasticity Theory

To verify the modified plasticity theory, the researchers have computed the kinetics
of the stress–strain state of 12X18H10T stainless steel subjected to strain-controlled
cyclic and monotonic loading according to the five-stage program described in
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Fig. 6.3 First Stage I cycle

Section 6.2. Computation uses the material functions per Section 6.3. Figures 6.3,
6.4, 6.5, 6.6, and 6.7 present a comparison of the computed (solid curves) and experi-
mental (open circles) results. The dotted curves show the results based on the variant
[13] of the modified Bondar model. Figure 6.3 shows the cyclic diagram of the first
Stage I cycle; Fig. 6.4 shows the 20th (last) Stage I cycle, the monotonous loading at
Stage II, and the first Stage III cycle; Fig. 6.5 shows the 200th (last) Stage III cycle,
the monotonous loading at Stage IV, and the first Stage V cycle. Variations in the
stress amplitude and mean cycle stress at Stages I, III, and V are shown in Figs. 6.6
and 6.7.

There is a significant improvement in the description of the stress–strain state
kinetics based on the variant proposed herein, as compared to the previously [13]
modified model. As for the changes in the amplitude and mean stress of the cycles,
the proposed version adequately describes these rather complex processes.

6.6 Conclusions

Analysis of the stainless steel experiments leads to a conclusion that the processes
of isotropic and anisotropic hardening vary significantly depending on whether the
strain is monotonic or cyclic. Monotonic-to-cyclic and cyclic-to-monotonic strain
transitions are associated with hardening transients.

In the light of the identified features of monotonic and cyclic loading, the equa-
tions of the modified Bondar plasticity theory have been refined. The researchers
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Fig. 6.4 Last Stage I cycle, Stage II, and first Stage III cycle

Fig. 6.5 Last Stage III cycle, Stage IV, and first Stage V cycle

have defined the basic experiment, derived the material-function identification
method, and obtained suchmaterial functions for 12X18H10T stainless steel at room
temperature.
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Fig. 6.6 Stress peak-to-peak amplitude

Fig. 6.7 Mean stress

The paper compares the results of computational and experimental studies
of 12X18H10T stainless steel subjected to strain-controlled loading, a process
consisting of a sequence ofmonotonic and cyclic loadings. Stress–strain state kinetics
has been analyzed. Changes in the amplitude and mean stress of the cycle during
cyclic loading have been dwelled upon. Computational and experimental results fit
reliably.
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The theory adequately describes the processes of how the kinetics, the amplitudes,
and the mean cycle stress alter when subjecting a specimen to strain-controlled
loading, which enables a more adequate description of stress-controlled loading,
especially when loading is non-stationary and non-symmetric.
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