
Chapter 14
Active Damping of Transverse Vibrations
of Console Beam by Piezoelectric Layer
with Different Electrode Shapes

Egor V. Petrakov and Dmitry V. Balandin

Abstract In the problems of damping vibration, the question often arises on the
practical implementation of damping actuators. The damping efficiency is consid-
ered for a console beam described by a linear viscosity Bernoulli–Euler model. The
article presents the methods of damping transverse vibrations implemented by a
dynamic damper from a piezoelectric layer distributed symmetrically along the axis
of symmetry of the beam. Piezoelectric layers with a triangular and rectangular shape
of electrode plates are considered,which affect the nature ofmechanical stresses upon
application of electrical voltage. The electrode plates are thin layers made of nickel
or silver several microns thick and located normal to the polarization axis, that is,
along the length of the piezoceramic plate. The control of the piezoelectric layers
is realized by changing the potential difference between the electrode plates, while
the piezoelectric material uncoated by the electrode plate on both sides is useless to
use as an active material. In turn, mathematical models of the effect of piezoelec-
tric elements on the cantilever beam are derived from the Hamilton principle. The
Pareto-efficiency of quenching by piezoelectric plates with different electrode shapes
is evaluated relative to two criteria: the level of control voltage and the maximum
deflection of the beam. Also, for a more general analysis, the quenching efficiency
is also given for a beam with a piezoelectric plate applied along the entire length and
an electrode layer. In addition to Pareto sets, efficiency is also considered in a more
applied and particular example—time history. It is worth noting that the synthesis
of Pareto-optimal controls is based on the Germeier convolution, and the search for
optimal feedback is based on the application of the theory of linearmatrix inequalities
and effective algorithms for solving them.
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14.1 Introduction

The problem of reducing the level of vibrations affects many areas of engineering,
instrumentation and construction. Often the solution is to increase the strength and
stability of protected objects, but apart from the widely known methods of vibration
(vibration, balancing, balancing machines, changing the materials of the protected
object) [1] there is a less known method of applying a mass damper (MD). The
use of MD takes a special place because their use can be implemented not only at
the design and construction stage, but also in the case when unsatisfactory dynamic
characteristics of the structure are identified already during operation. In addition,
the advantage of dampers is that at a relatively low cost of additional material, they
make it relatively easy to get the effect of reducing the level of vibrations.

To create forces that dampen harmful vibrations of the protected object, it is
important to choose the optimal actuator that will meet various requirements to the
desired extent, for example, such as compactness or scale of force generation. Known
components of actuators (electromagnetic devices, pneumatic drives, rotors and
linear motors [2], etc.) can be used effectively in vibration damping tasks. In contrast
to the mentioned devices, modern technical materials, which are often referred to
as smart materials, have a number of advantages, since they can be lightweight and,
more importantly, can be seamlessly integrated structurally into an already designed
system without changing the inertial characteristics of the system. Smart materials
are materials that have one or more properties that can be changed significantly in
a controlled way by external perturbations such as voltage, temperature, humidity,
pH, electric or magnetic fields. There are many types of smart materials, some of
which are already common. Due to the possibility of generating forces, piezoelectric
materials are preferable for solving this problem. Among the many types of piezo-
electric devices, bending piezoactuators are of particular interest, the use of which
is considered in this article for damping vibrations.

A striking example of such integration is the composite aeroelasticwing, equipped
with thin piezoelectric plates in thewing structure, which allow to suppress unwanted
vibrations, without adding significant mass and without changing the shape of the
wing. A similar quenching method is used in the wing of an FA-18 deck aircraft
equipped with piezoelectric plates for vertical stabilization [3] (Fig. 14.1).
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Fig. 14.1 Wing
carrier-based aircraft FA-18

14.2 Statement of the Problem

To dampen vibrations of the structure (Fig. 14.2a), which is under the influence
of external perturbations, we consider piezoelectric layers that partially cover the
surface of the beam and have different forms of electrode plates (Fig. 14.2b, c). In
other words, we consider a piezoelectric layer consisting of a piezoceramic plate,
which is covered with electrode plates along the length. A mathematical model of
vibration damping of an elastic beam with piezoelectric layer actuators is derived. A
comparative analysis of the action of piezoelectric layers with identical piezoceramic
plates, but with electrode plates of different shapes, is performed. The location of
the piezoelectric layer is selected from the conditions for the most effective control
of vibrations. The effectiveness of quenching is considered relative to two criteria:
the control voltage applied to the piezoelectric layer and the deflection of the beam
at the end. In other words, it is necessary to find a Pareto set of solutions with respect
to two criteria, while the maximum value of the control voltage does not exceed the
maximum allowable value of the voltage for piezoelectric layers.

The main object of research is a cantilever metal beam (Fig. 14.2a), the size and
weight of which are so small in comparison with the size and weight of the base
that the influence of the beam on the base can be ignored. Piezoelectric layers are
represented with triangular and rectangular electrode forms of plates, the length of
the layers is 5 times less than the length of the beam, and the thickness is less by
an order of magnitude. The behavior of the beam is considered in the framework of
the Bernoulli–Euler hypothesis, the influence of the thickness of the piezoelectric
layer at the moment of inertia of the beam is ignored, since it does not significantly
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Fig. 14.2 Protected object with piezoelectric layers: a general view, with b rectangular and c
triangular plates attached to the beam

change the stiffness and inertia characteristics of the system, the hysteresis of the
piezoelectric layer is not taken into account.

14.3 Mathematical Model of Active Damping of Transverse
Beam Vibrations

A linear viscoelastic model is used to describe the transverse vibrations [4] of a beam
in the framework of the Bernoulli–Euler hypotheses in dimensionless variables:

∂2ω

∂t2
+ a2

(
∂4ω

∂x4
+ ϑ0

∂5ω

∂x4∂t

)
= − u0

ρA
+ v0(t) (14.1)

where ω = ω(x, t) is dimensionless deflection of the beam, K = ∂4

∂x4 is the differ-
ential operator of the fourth degree, β = a

l2 ϑ is dimensionless damping coefficient
of the system ϑ is the coefficient of internal viscosity, a2 = E J/ρA, E is elastic
modulus, J is moment of inertia of the section, ρ is density, A is cross-sectional
area of the beam, l is beam length, v(t) is acceleration acting on the base, t is time,
f (u, x1, .., xn) is control function applied at certain points of the beam x1, .., xn or
at intervals between points, u is the control, which will be mainly discussed later.

Equation (14.1) in partial derivatives is reduced to the equation in principal coor-
dinates (relative to the time function). For this purpose, the methods of separated
variables and normal forms are used, described in more detail in [5].

ω(x, t) =
∞∑
i=1

Xi (x)Ti (t),
∫ 1

0
Xi X jdx = 1,

∫ 1

0
K Xi X jdx =

{
λ4
i , i = j
0, i �= j

(14.2)

λi is eigenvalues of a beam, analogous to the eigenfrequency of a beam in dimen-
sionless variables. Xi are parameters that are functions of the beam shape. The values
of eigenvalues and form functions are derived from the boundary conditions of the
cantilever beam described by the Krylov function [6]. The transformation (14.1) to
the main coordinates is represented in the equation:
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T̈i + βλ4
i Ṫi + λ4

i Ti = −
∫ 1

0
Xi f (u, x1, .., xn)dx +

∫ 1

0
Xidxv(t) (14.3)

Equation (14.3) is a mathematical model for controlling transverse vibrations of a
beam under external perturbation. However, when considering a practical problem,
the control is implemented using actuators, which makes very impressive changes
to the mathematical model for controlling transverse vibrations, which is described
in more detail later.

14.4 Active Damping of the Cantilever Beam
with a Piezoelectric Layer

The piezoelectric layer is a piezoceramic plate with electrode plates attached to it on
both sides (Fig. 14.3), through which control is performed by changing the potential
difference between them. Piezoceramic material that is not covered with an electrode
lining on both sides is useless to use as an active material.

Linear equations of electrostatics and deformation for piezoceramics can be
written as:

[S] = [s]{T } + [d]{E}
[D] = [d]T {T } + [ε]{E} (14.4)

where {S}, {T } is strain and stress vectors, [s] is the matrix of elastic compliance, [d]
is tensor of piezoelectric constants, [ε] is the tensor of the dielectric constants, {E}
is vector of electric field strength, [D] is vector of electrical induction. In Eq. (14.4),
the first equation describes the reverse effect, and the second one describes the direct
effect. Since the variables are interconnected in pairs, any pair of mechanical and
electrical variables can be selected as independent [7].

The electrical energy of a piezoelectric element is found from the expression:

Fig. 14.3 Cantilever beam
with a piezoelectric layer
along its entire length
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We = 1

2

∫
	

({E}T [ε]{E} + 2{S}[e]{E} − {S}2[c]{S})d	

For the case of a piezoelectric plate polarized along the z axis operating on a pure
bend

(
S1 = −zω′′) applied to the beam at the interval [x1, x2] written as:

W ∗
e = 1

2

∫ l

0

∫
A
(ε33E

2
3 − 2ω′′zH

(
x01 , x

0
2

)
e31E3 − c11

(
ω′′)2)d Adx (14.5)

gde c11 is the modulus of elasticity of the piezoelectric ceramics, e31 = d31c11,
H

(
x01 , x

0
2

)
is Heaviside function describing the location of the piezoelectric layer.

Applying the Hamilton least action principle for the considered beam the following
equation is derived:

∫ t1

t0

∫ l

0

1

2
(ρAδω̇2 − 2e31zmbp(x)H

(
x01 , x

0
2

)
V δω′′ + E I δω′′2)dxdt = 0 (14.6)

where V = E3h p is the voltage applied to the piezoelectric layer, h p is the piezolayer
height, bp(x) is the width of the electrode plate, in the future we will consider cases
of changing the width, so it is accepted b0p = max(bp(x)), also bp(x) = b0pbp(x),

bp(x) is a dimensionless function of changing the width of the electrode lining along
the length. Thus, a dimensionless model of transverse vibrations of a beam with
consideration for friction and an applied piezoelectric layer with an arbitrary shape
electrode plate at the interval will take the following form:

ω̈ + βK ω̇ + Kω = γ (bp(x)H(x1, x2))
′′U (14.7)

where γ = lb0pzme31V 0/E I is a dimensionless coefficient of influence of the piezo-

electric layer, (x1, x2) = (x01 ,x
0
2)

l is the dimensionless interval of the application, U
is the dimensionless voltage applied to the piezoelectric layer that is the control.

U =
m∑
i=1

θ
(1)
i Ti + θ

(2)
i Ṫi (14.8)

where θ
(1)
i , θ

(2)
i are the feedback coefficients for movement and speed, respectively,

m is the number of the first modes considered.
Quantification of damping design is usually based on the results of solving two

problems. The first one is connected with consideration of free oscillations, where
the dissipation of the system is manifested in the damping of the oscillations and
the decay rate quantifies the dissipative properties of the system. The second task is
focused on dealing with forced steady-state oscillation [8]. In addition, the damping
of the system’s vibrations is manifested in the restriction of resonant amplitudes.
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Fig. 14.4 Amplitude
history: a free and b forced
oscillations of the system

(a)

(b)

Figure 14.4 shows amplitude history for a piezoelectric layer with an electrode lining
distributed along the entire length of the beam (Fig. 14.3).

From the above amplitude histories of natural and forced vibrations of the beam,
with a piezoelectric layer distributed along the entire length, the effect of control is
obvious. However, choosing such a feedback with minimal control costs that has the
maximum possible amplitude reduction is not a trivial task, and it is obvious that it
is more difficult than the task of single-criteria optimization.

14.5 Statement of the Two-Criteria Problem of Control
Theory

The need to transfer the problem in point 1 to the problem of control theory is due to
the fact that for this problem, the search for an optimal set of solutions with respect
to the quenching efficiency criteria (moving the end of the beam and controlled
stress), at least for three modes, is extremely cumbersome. Moreover, it is difficult
to implement, and the solution by iteration cannot always give optimal solutions.
Hence, the system of Eqs. (14.3) reduces to the canonical form of a controlled linear
system with two outputs:
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Ṫ = AT + BuV + Bvv

z1 = CT
z2 = Du

(14.9)

where T = (
T1 . . . Tm, Ṫ1 . . . Ṫm

)T
is the state vector, A is the control matrix, Bu, Bv

are the control and perturbation vectors, v is the external impact on the system, z1, z2
are the output values of the system and indicate the movement of the free end of
the beam and the voltage generated by the feedback (quenching efficiency criteria).
The theory of linear matrix inequalities and effective algorithms for solving them,
implemented in the MATLAB package, is used to find optimal feedback about the
two criteria.

Despite the fact that over the past two decades, progress has been made in solving
optimal control problems with criteria such as H∞- and H2-norms that have correct
physical interpretations in the formof levels of damping of deterministic or stochastic
perturbations from various classes, the consideration of multi-criteria problems with
these criteria causes significant difficulties. These difficulties aremainly related to the
complexity of characterization of the Pareto set and finding the corresponding scalar
multi-purpose function that would define this set. In addition, the task is complicated
by the fact that each of the criteria is characterized by its quadratic Lyapunov function
with a matrix which is the solution of Riccati equations or linear matrix inequalities
and scalar optimizationmulti-purpose function in the formof a particular convolution
leads in general to a bilinear system of inequalities matrices of these functions that
are Lyapunovmatrices and controller feedback. To solve such a system, an additional
condition was often introduced about the equality of all Lyapunov functions, which
introduced conservatism to the problem under consideration [7, 9–13]. At the same
time, the main question remained unanswered, as to what extent the obtained control
laws differ from the Pareto optimal ones.

In recent works [14–18] on multi-criteria optimization with criteria in the form
of H∞-and γ0-norms in deterministic and stochastic settings, we have found Pareto
suboptimal control laws whose relative losses in comparison with Pareto optimal
ones do not exceed 1 −

√
N
N , where N is the number of criteria. Therefore, we will

use the generalized H2 norm. [19, 20] Using two competing outputs is associated
with bringing the task to practical implementation, since the limited control resource
imposes certain restrictions on the feedback values.

For solving two-criterion problem ofminimization, it is necessary to use function-
ality that combines both criteria, generally used for this convolution. In this problem,
the Germeyer convolution is implemented, since the solution within the Germeyer
convolution for the generalized H2 -norm gives optimal solutions:

Jα(θ) = max

{
J1(θ)

α
; J2(θ)

1 − α

}
, α ∈ (0, 1) (14.10)



14 Active Damping of Transverse Vibrations of Console Beam … 209

The search for an optimal set of solutions with respect to two criteria is
implemented by linear matrix inequalities describing the finding of a generalized
H2-norm:

(
AY + Y AT + Bu Z + ZT BT

u Bv

BT
v −I

)
< 0

(
Y CT

α

Cα α2γ
2

)
≥ 0

(
Y ZT DT

α

DαZ (1 − α)2γ 2

)
≥ 0

where Z = θY , Y = X−1 is the inverse Lyapunov matrix. The result of the solution
will be a Pareto set of optimal solutions with respect to the two outputs of the
deflection of the end of the beam and the control value, which are found from the
expressions:

J1= ‖Hz1v‖g2 = sup
v∈L2

‖z1(t)‖g∞
‖v‖2 = sup

v∈L2

supt≥0|z1(t)|g∞
‖v‖2 = λ

1
2
max

(
CYCT

)

J2= ‖Hz2v‖g2 = sup
v∈L2

‖z2(t)‖g∞
‖v‖2 = λ

1
2
max

(
DθY θT DT

) (14.11)

This describes the mathematical apparatus for searching for optimal quenching
values, and it is necessary to find a mathematical model of active quenching of a
beam by piezoelectric layers with different forms of electrode plates.

14.6 Mathematical Model of Active Damping of a Beam
by Piezolelectric Layers of Various Shapes

Let’s consider special cases of application of piezoelectric layers, using the model
of active vibration damping of the piezoelectric layer with an arbitrary shape of the
electrode lining (14.7) (Figs. 14.5 and 14.6).

(a) (b)

Fig. 14.5 Application of piezoelectric layerswith different shapes of electrode plates:a rectangular,
b triangular
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Fig. 14.6 Piezoelectric layer
with a triangular electrode
plate

For a piezoelectric layer with an electrode lining, based on the results obtained
using (14.7), we can derive the equation in the main coordinates:

ω̈ + βK ω̇ + Kω = γ (−δ′(x − x1) + δ′(x − x2))U (14.12)

After the discovery of the piezoelectric effect in the study of the electrical prop-
erties of solid dielectrics of the crystal structure, Pierre Curie formulated a general
principle, which is now called theCurie principle. Itsmeaning is that the phenomenon
has all the attributes of symmetry that the cause that gave them birth has; the asym-
metry of the phenomenon is predetermined by the asymmetry of the cause. If we
consider that the piezoelectric material is self-balancing, then the question arises
about the behavior of the piezoelectric element for the case of transverse asymmetry.
For example, what will be the behavior and influence of the piezoelectric layer
when changing the shape of the electrode plates and, consequently, the generated
mechanical loads. The shape of the surface electrode plates determines the nature
of the mechanical load represented by the piezoelectric layer. Therefore, consider a
piezoelectric layer covered with a triangular electrode plate on both sides.

The equations of transverse vibrations of a beam with a triangular overlay are
written as follows:

ω̈ + βK ω̇ + Kω = γ (−δ′(x − x1) − l

l p
δ(x − x1) + l

l p
δ(x − x2))U (14.13)

Thus, piezoelectric layers, depending on the shape of the plates when applying
voltage, can be described as mechanical loads that are controlled by an external
energy source with a limited resource:

T̈i + βλ4
i Ṫi + λ4

i Ti = −MpX ′
i (1)U + v(t)

T̈i + βλ4
i Ṫi + λ4

i Ti = −Mp
(
X

′
i (x2) − X

′
i (x1)

)
U + v(t)

T̈i + βλ4
i Ṫi + λ4

i Ti = −(F p(Xi (x2) − Xi (x1)) − MpX
′
i (x1))U + v(t)

(14.14)

where the first equation describes the behavior of a piezoelectric layer evenly
distributed along the entire length of the beam (Fig. 14.7a), a kind of the
most efficient and limiting case, the second and third equations describe the
behavior of a piezoelectric layer with rectangular and triangular facings, respectively
(Fig. 14.7b, c).
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(a) (b) (c)

Fig. 14.7 Mechanical loads of piezolayers with different plates: a distributed along the entire
length; b rectangular and c triangular forms of electrode plates

14.7 Results

All calculations were given for the coefficient γ = 0.0516, (see (14.7)). In Fig. 14.8
optimal sets of solutions for the criteria are given.

Judging by the optimal Pareto sets, the efficiency of a piezo layerwith a rectangular
lining is higher than that of a triangular one in both operating modes. It would seem
that it is possible to talk about the inefficient use of a piezo layer with a triangular
lining for the tasks of active damping of the cantilever beam, but the following is an
amplitude history for both cases of operation with respect to forced vibrations of the
system (Fig. 14.9).

From amplitude history obviously, when an operating voltage (Fig. 14.9a) the
difference between amplitude history for different plates is minimal, but extreme
voltage differences amplitude history (Fig. 14.9b) has more noticeable, but still not
much. It is worth noting that the length of the piezoelectric layers was 5 times less
than the length of the beam, and the thickness of the layers is less by an order of
magnitude. That is, when using thin piezoelectric layers, it is possible to reduce
significantly the amplitude of vibrations in the case of external influence on the
cantilever metal beam, both for the case of the limit voltage of the piezoelectric layer
and for the operating voltage.

Fig. 14.8 Optimal Pareto
sets of solutions
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Fig. 14.9 Amplitude
history: a at the limit and b
at the operating voltage

(a)

(b)

14.8 Conclusions

The use of piezoelectric layers in the system of active vibration damping of a
cantilever beam is considered. To solve the problem of the efficiency of using piezo-
electric layers as an active damping device, two related criteria are introduced: the
level of voltage applied to the piezoelectric layer and the level of deflection of the
beam end. A comparison was made with respect to the selected criteria for rectan-
gular and triangular forms of plates, which were compared with a variant of a piezo
layer evenly distributed over the entire length.

Based on the Hamilton Principle, the influence of the electrode shape on the
generation of various mechanical loads by the piezoelectric layer was derived (14.7).
It was found that with respect to two Pareto criteria, the efficiency of a piezoelectric
plate of standard sizes with a rectangular shape of the electrode plate shows a better
result compared to a triangular plate.
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