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A Review of Hyperelastic Constitutive
Models for Dielectric Elastomers

Amin Alibakhshi, Shahriar Dastjerdi, Mohammad Malikan,
and Victor A. Eremeyev

Abstract Dielectric elastomers are smart materials that are essential components
in soft systems and structures. The core element of a dielectric elastomer is soft
matter, which is mainly rubber-like and elastomeric. These soft materials show a
nonlinear behaviour and have a nonlinear strain–stress curve. The best candidates
formodelling the nonlinear behaviour of suchmaterials are hyperelastic strain energy
functions. Hyperelastic functions have been extensively used formodelling dielectric
elastomer smart structures. This review paper introduces hyperelastic constitutive
laws for modelling dielectric elastomers. For this purpose, first, a general scheme of
hyperelastic models is expressed. Then, some well-known hyperelastic models are
introduced. Finally, we review in detail the utilized hyperelastic models for different
configurations of dielectric elastomers. Possible futureworks in this field are outlined
eventually.
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1.1 Introduction

For decades, research on variousmechanical structures has been amajor topic among
scientists [1–5]. The literature in this field has mainly focused on conventional mate-
rials possessing a physically linear behaviour. However, many other materials in the
world have a nonlinear behaviour. Many human tissues and bodies of animals and
plants show a nonlinear behaviour and are modelled as soft structures. These soft
structures have been the inspiration of new fields, specifically soft robotics [6, 7].
The main components in this field are soft materials [8, 9]. Using soft materials, we
can fabricate soft systems and structures. Dielectric elastomers (DEs) [10, 11] have
emerged as powerful smart materials that have been widely employed as soft actua-
tors and soft sensors for developing soft materials and structures. The simplest form
of a DE includes a soft membrane that is covered with compliant electrodes [12]. The
soft membrane is a major part of a DE. Rubber-like and elastomeric materials with
material nonlinearity are used as soft membranes in DEs. To induce deformation in
DEs, it is necessary to apply electromechanical loading to them [13, 14]. Generally,
a potential difference (voltage) and tensile mechanical load are utilized to induce
deformation in DEs. For this reason, DEs are considered smart electromechanical
systems.

In response to electromechanical loading, DEs deform nonlinearly and encounter
nonlinear oscillation and vibration [15]. From mechanical and vibrational points of
view, their potential energy should be calculated for modelling the deformation of
DEs. Because DEs consist of nonlinear materials as the core element, linear elasticity
cannot be employed for calculating their potential energy. The best alternative to
linear elasticity is nonlinear elasticity. Usually, the nonlinear elasticity of DE is
captured using hyperelastic constitutive laws [16, 17].Hyperelasticmodels have been
extensively employed for modelling static and dynamic responses of DEs. There is
a large volume of published studies describing the nonlinear response of different
types of DEs based on hyperelastic models [18–21]. As observed from prior studies,
the knowledge of hyperelastic models is essential for the accurate modelling of DEs.
This paper attempts to provide a more detailed investigation of hyperelastic models
for DEs.

This review paper is organized as follows. First, in Sect. 1.2, the theory of DEs
is described in brief. Then, in Sect. 1.3, the general formulation of hyperelasticity is
expressed. Next, in Sect. 1.4, the available hyperelasticmodels for diverse geometries
of DEs are reviewed. Finally, in Sect. 1.5, the main conclusions and perspectives for
hyperelastic models and nonlinear elasticity in DEs are expressed.
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1.2 Theory of Dielectric Elastomers

The basic theory of dielectric elastomers (DEs) originates from the theory of electro-
elasticity [22]. Many researchers have tried to develop and review the electro-
elasticity theory. For instance, in [23, 24], authors developed and reviewed some
boundary-value problems of electro-elasticity by using the continuum mechanics
notation and finite strain theory. A full discussion of electro-elasticity lies beyond
the scope of this study, but the above-stated literature was introduced for more
information.

In line with electro-elasticity, Suo [25] introduced the theory of dielectric elas-
tomers. The basic equations for electromechanical large deformations of DEs have
been formulated and extended. In another paper, Zhao and Suo [26] considered the
electro-elasticity of DEs and discussed the electrical and mechanical equations.

Based on the studies mentioned above, in general, a DE consists of a membrane
sandwiched between two compliant electrodes. The membrane may take different
geometries such as square, rectangular, spherical, tubular, cylindrical, plate-like, and
beam-like [27–33]. Tensile mechanical loads are applied to the membrane, and a
potential difference (voltage) is applied to the electrodes. The electrodes are located
on the top and bottom surfaces of the soft membrane. When the electrodes are
connected to the potential difference, one surface gains the positive electric charge,
and another surface gains the negative electric charge. These opposite electric charges
attract each other and thereby induce large deformation in the DE such that in the
thickness direction, the membrane shrinks, and in the in-plane direction, it stretches
and expands. During this process, depending on the type of loading, DEs experience
different responses and behaviours. The potential difference and tensile load can be
time-varying or static. When electrical or mechanical loadings depend upon time,
the response of DE becomes complicated, and, in this sense, they undergo nonlinear
vibrations (Fig. 1.1).

(a) (b)

Fig. 1.1 The schematic view of a dielectric elastomer membrane with voltage� and pressures P1,
P2. a reference configuration, b current configuration [34]
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1.3 Hyperelasticity

Dielectric elastomers are soft structures whose structural materials are mainly
rubbery and elastomeric. For instance, polydimethylsiloxane, silicone, rubber, and
VHB-based elastomers have been extensively used for structural materials of DEs
[35]. However, these materials possess an inherent nonlinear trend in their stress–
strain curves. Thus, they do not follow linear elasticity and Hooke’s law. Therefore,
the best candidates to describe the nonlinear elasticity of DE structures are hypere-
lastic material models. Up to now, diverse hyperelastic models have been employed
for DE systems [36, 37], e.g., the neo-Hookean model, Mooney–Rivlin model, Gent
model and modified versions of the Gent model, and Ogden model.

1.3.1 General Form of Hyperelasticity

Hyperelastic models are expressed in a functional form called the strain energy func-
tion and are mainly denoted by W . The hyperelasticity function may take numerous
mathematical forms, such as polynomial, exponential, and logarithmic. The strain
energy functions are mainly formulated in terms of material parameters and prin-
cipal invariants of right or left Cauchy–Green deformation tensors. The material
parameters are obtained from empirical tests, and principal invariants are expressed
based on the field of deformation and the corresponding deformation gradient.
One important difference between hyperelasticity and linear elasticity is that the
former requires two configurations to describe the deformation. They are reference
configuration (nominal quantity) and current configuration (true quantity). Gener-
ally, hyperelasticity is a subfield of finite strain theory, and in this field, tensors
play a crucial role in the description of hyperelastic models. Therefore, it seems
that a good knowledge of tensors may help researchers in understanding hyperelas-
ticity. Before mathematically speaking of hyperelasticity, we introduce some very
important tensors.

The first one and maybe the most important tensor is the deformation gradient
tensor. When the solids deform, we should explore how two elements dx and dX
change and find their relation. We formulate the deformation gradient tensor as [38]

d �x = Fd �X , (1.1)

where F is the deformation gradient tensor (material deformation gradient).
Depending upon the coordinate system, F may take different forms.

Based on the deformation gradient tensor, two other important tensors are intro-
duced, and the hyperelastic models are formulated according to these tensors. They
are the right and left Cauchy–Green deformation tensors. We formulate these tensors
as [39]
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C = FTF, (1.2)

b = FFT . (1.3)

In the above equation, C is the right Cauchy–Green deformation tensor, and b
stands for the left Cauchy–Green deformation tensor; the letter T is the symbol of
the transpose operation.

Using the eigenvalue problem, we can derive the principal invariants of the right
and left Cauchy–Green deformation tensor, which are the main elements of hyper-
elastic models. The invariants of the right Cauchy–Green deformation tensor are
written as

I1 = tr(C),

I2 = 1

2

(
trC2 − tr

(
C2

))
,

I3 = det(C) = J 2.

(1.4)

In the above equation, I1 and I2 are respectively the first and second invariants;
“tr” stands for trace; “det” shows the determinant; J represents the determinant of
F, i.e., J = det(F).

The invariants of the left Cauchy–Green deformation tensor are expressed as

I1 = tr (b),

I2 = 1

2

(
tr b2 − tr

(
b2

))
,

I3 = det(b) = J 2.

(1.5)

The general form of a strain energy function takes the following form:

W = Wiso + Waniso, (1.6)

in which Wiso is the isotropic part; Waniso stands for the anisotropic part. It is noted
that the majority of materials for DEs are considered to be incompressible. The
isotropic part itself is formulated asWiso = Wdev +Wvol in whichWdev stands for the
isochoric deformation andWvol shows volume change. Due to the incompressibility,
the volumetric part (Wvol) becomes zero. In the next section, the commonhyperelastic
models for DEs are introduced and formulated.
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1.3.2 Neo-Hookean Model

Neo-Hookean constitutive law is the simplest hyperelastic model that has been used
for DEs. This model has been developed for both compressibility and incompress-
ibility states. The neo-Hookean materials model for the compressibility state is
expressed as

WNeo-Hookean = c1(I1 − 3 − 2 ln J ) + D1(J − 1)2, (1.7)

where c1 and D1 are material constants. Considering the incompressibility, the neo-
Hookean model is formulated as

ψNeo-Hookean = c1(I1 − 3). (1.8)

1.3.3 Gent Model

Some constituent materials for DEs, such as the VHB-based elastomers, have
revealed the strain-stiffening effect in response to external loading. The strain-
stiffening effect defines a specified value of the stretch in elastomers. The Gent
model for a compressible nonlinear elastic material is written as [40]

WGent = −μJlim
2

ln

(
1 − I1 − 3

Jlim

)
+ κ

2

(
J 2 − 1

2
− ln J

)4

, (1.9)

in which μ and κ stand for material parameters; Jlim is a dimensionless parameter,
the so-called stiffening parameter (Gent parameters) that measures the strength of
the strain-stiffening; as Jlim is decreased, the strain-stiffening effect increases. The
Gent model for the incompressibility condition takes the following form [41]:

ψGent = −μJlim
2

ln

(
1 − I1 − 3

Jlim

)
. (1.10)

1.3.4 Mooney–Rivlin Model

Another hyperelastic model that has been utilized for DEs is the Mooney–Rivlin
model. This model is a good candidate for deformations with large strains. The
absence of the strain-stiffening effect is, however, the model’s most significant flaw.
The Mooney–Rivlin model for the compressibility condition is expressed as
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WMooney−Rivlin = C10
(
I 1 − 3

) + C01
(
I 2 − 3

) + 1

D1
(J − 1)2, (1.11)

where C10 and C01 represent material constants. The Mooney–Rivlin constitutive
law for an incompressible material is expressed as

ψMooney−Rivlin = C1
(
I 1 − 3

) + C2
(
I 2 − 3

)
, (1.12)

whereC1 andC2 stand formaterial constants. In Eqs. (1.11) and (1.12), I 1 = J−2/3 I1
and I 1 = J−4/3 I2.

1.3.5 Gent–Gent Model

The Gent–Gent model is a modified version of the Gent model. The existence
of the second principal invariant differentiates between the original Gent model
and the Gent–Gent model. The Gent model with the incompressibility condition is
formulated as [42, 43]

WGent−Gent = −c1 Jlim ln

(
1 − I1 − 3

Jlim

)
+ c2 ln

(
I2
3

)
, (1.13)

where c1 and c2 are material parameters.

1.4 Studies on Dielectric Elastomers Based on the Type
of Hyperelastic Model

This section reviews the published literature on dielectric elastomers (DEs) based on
hyperelastic models. First, the literature based on the Gent strain energy function is
reviewed. After that, the studies based on the neo-Hookean model, Mooney–Rivlin
model, and Ogden model are reviewed. Finally, we discuss modified versions of the
Gent model for DEs.

1.4.1 Studies Based on Gent Model

A large amount of literature on DEs based on the Gent model is available. For
instance, electromechanical instability in dynamicalmodes in aDEballoonwas iden-
tified by Chen et al. [44], who utilized the Gent hyperelastic model. Furthermore, by
plotting the voltage-stretch curve and pressure-stretch curve, the electromechanical
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instabilities of an interconnected DE spherical shell were studied by Sun et al. [45],
who utilized the Gent hyperelastic material model.

By depicting the time-stretch response and voltage-stretch curve, the oscillations
and instability of a balloon made of DE were analysed by Chen and Wang [46]
with the aid of the incompressible Gent constitutive model. Furthermore, nucleation
and Propagation of Wrinkles were investigated in [47] by using the Gent model to
consider the strain-stiffening.

The response of interconnected DE balloons was studied and simulated by Chen
andWang [48], who utilized the Gent model. Mao et al. [49] addressed the wrinkling
phenomenon experimentally in DE balloons by using the Gent model. They used the
stretch limit in the Gent model as Jm = 220. Snap-through instability and electrical
breakdown were also explored in their study.

In a deep analysis conducted by Lv et al. [50], dynamic characteristics and insta-
bilities of an electromechanically actuated hyperelastic balloonwere assessed, where
a Gent model was used to capture the strain-stiffening, and the damping effect was
also considered.

In [51], by implementing the Gent model with stretch limits as Jm = 270 and
97.2, new electromechanical instabilities in DE spherical shells were identified and
discussed. Wang et al. [52] by employing the Gent model analysed the anomalous
bulging behaviour in a DE spherical balloon.

In [53], using a visco-hyperelastic Gent model, the delayed electromechanical
characteristic of a spherical balloon was explored. In that study, a rheological model
with two springs and one dashpot was employed. In addition, the Gent energy func-
tion in conjunction with the viscoelastic effect was employed for investigating the
wrinkling behaviour of a DE balloon (see [54]).

Zhang et al. [55] harnessed the dielectric breakdown and instabilities in a DEwith
the Gent hyperelastic material model. Zhou et al. [56] considered the Gent model to
study the nonlinear behaviour of a DEmembrane. They utilized Equi-biaxial loading
and incorporated the viscoelasticity for the system.

Zhu et al. [57] investigated the response of DE encountering the wrinkling
phenomenon, employed the Gent constitutive law, and plotted the voltage-stretch
curves to provide a profound analysis. Finally, with the aid of the finite strain theory
and the Gent model, Garnell et al. [58] explored the sound radiation and vibrations
of a DE membrane.

A systematic investigation was conducted by Wang et al. [59] to assess the vibra-
tional behaviour of circular DEs. They reported the chaos and quasi-periodic motion
in DEs when the Gent model is employed. The influence of geometrical sizes on the
nonlinear vibration of a DEmembrane was assessed in [60], who employed the Gent
model and assumed that the elastomer is incompressible. Alibakhshi and Heidari
[61] investigated nonlinear vibrations of a microbeam made of DEs employing the
Gent model, and different phenomena were identified in that paper. In a series of
papers [62–67], the thermoelasticity of DEs has been investigated, where the Gent
material law was considered to calculate the elastic energy part.
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1.4.2 Studies Based on Neo-Hookean, Mooney–Rivlin,
and Ogden Models

In this subsection, we concentrate on the neo-Hookean model, Mooney–Rivlin, and
Ogden models. Zhu et al. [68] analysed the nonlinear vibrations of a DE spherical
shell by modelling the elastomer based on the neo-Hookean strain energy function.
They analytically and numerically solved the problem and discussed the equilibrium
stretches of the elastomers.

The performance of a DE in electromechanical situations was addressed by Zhang
and Chen [69], who adopted the neo-Hookeanmodel in an incompressible condition.
The bifurcation phenomenon in a spherical balloon was analysed by Liang and Cai
[70], who employed the Ogden hyperelastic model and applied the pressure and
voltage to the balloon.

In [71], random vibrations of a spherical balloon were analysed with the help of
the neo-Hookean strain energy function. The author of that paper used the method of
stochastic averaging to solve the random problem analytically. In another paper [72],
the random response of a spherical balloon made of DE was investigated by using
the Mooney–Rivlin strain energy function. In that paper, stochastic averaging and
Monte Carlo simulation were implemented to help the author to identify different
aspects of stochastic problems.

With the application of inflation pressure and potential difference, the bifurcation
of a DE balloon was analysed by Xie et al. [73]. They utilized the Ogden, neo-
Hookean, and Mooney–Rivlin strain energy functions and compared the results with
the Gent model. In another paper published [74], the free vibration of a DE spher-
ical balloon was analytically and numerically solved using the neo-Hookean model,
Runge–Kutta method, and Newton-harmonic balance.

Static pull-in and snap-through instabilities and DC static instability in a DE
balloon with the aid of the neo-Hookean, Mooney–Rivlin, and Ogden models were
analysed by Sharma et al. [75]. In [76, 77], the nonlinear vibration and reso-
nance of DE balloons were explored numerically and analytically using multiple
timescales and incremental harmonic balance methods. In those papers, the neo-
Hookean strain energy function was applied. The parametric excitation of a DE was
analysed using the neo-Hookean model (see [78]), where the equilibrium points
and primary and secondary resonances were addressed. In [79, 80], by utilizing the
Ogden and Mooney–Rivlin strain energy functions, the dynamic response of DEs
was experimentally and analytically captured.

Kim et al. analyzed vibration frequencies of a DEmembrane by implementing the
neo-Hookean, Ogden, and Mooney–Rivlin models [81]. Dai and Wang [82] carried
out a dynamic analysis of the in-plane oscillations of neo-HookeanDEs. They applied
the incompressibility conditions forDE and depicted time-stretch response and phase
portraits in nonlinear vibration analysis.

The nonlinear response of a DE-based smart system was studied by Srivastava
and Basu [83], who utilized the single-term Ogden strain energy function in their
work. A neo-Hookean-based viscoelastic model was implemented in [84] to assess
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the performance of a circularDE. Randomoscillation of aDEballoonwas reported in
[85], in which the neo-Hookean model was adopted. Some researchers have tried to
develop DE-based systems incorporating neo-Hookean and Mooney–Rivlin models
in a thermoelectricity theory [86–89].

1.4.3 Studies Based on Gent–Gent Model

Researchers decided to discard this limitation because the Gent model cannot accu-
rately capture the deformation of hyperelastic materials at large strains. Some papers
extended the Gent model and by which its new versions were introduced. However,
the literature on modelling DEs based on the modified version of DEs is very limited.

In recent years, some researchers utilized theGent–Gentmodel forDEs,which is a
modifiedversionof theGentmodel. For instance,Alibakhshi andHeidari investigated
the nonlinear vibration and chaos in DE balloons based on the Gent–Gent model [90]
and concluded that this hyperelastic model is influential in controlling instabilities
and chaos in such systems. Alibakhshi et al. [91] analysed the nonlinear resonance
of a DE membrane employing the Gent–Gent model. They also considered a new
version of theGentmodel in that paper introduced byBien-aimé et al. [92]. Chen et al.
using a compressible Gent–Gent model, researched elastic waves of a DE laminate
[93].

1.5 Future Works on Nonlinear Elasticity of Dielectric
Elastomers

Researchers have been working on developing the responsiveness of DEs based
on anisotropy in recent years. They are considering fibre-reinforced hyperelastic
materials for such smart structures. The hyperelastic models incorporating fibre-
reinforcement are utilized for this kind of system [94–99]. The Holzapfel–Gasser–
Ogden hyperelastic model has been used in the majority of investigations in this field
[100, 101]. Thus, future works developing fibre-reinforcement of DEs seem to be of
interest.

Another emerging topic in this field of study is employing hyperelastic models
with the inclusion of humidity. It has been reported that humidity might affect the
performance of DEs in real-world applications [102–104]. Thus, this topic may also
be interesting to researchers and can be a major topic of study in future works.



1 A Review of Hyperelastic Constitutive Models for Dielectric Elastomers 11

1.6 Conclusion

This paper reviewed the hyperelastic strain energy functions utilized for dielectric
elastomers. First, the mathematical formulations for nonlinear electro-elasticity and
finite strain theory were explained. Then, the studies for DEs based on the type of
hyperelastic model were reviewed. The following are some of the findings of this
research:

• The most widely used hyperelastic model for dielectric elastomers is the Gent
model.

• After the Gent model, the neo-Hookean model has been a candidate for capturing
the nonlinear elasticity of dielectric elastomers. This model has been used for
dielectric elastomers but not as much as the Gent model.

• The modified versions of the Gent model, such as the Gent–Gent model, are new
hyperelastic materials for analysing dielectric elastomers.

• The role of the second invariant of the Cauchy–Green deformation tensor is
prominent for dielectric hyperelastic smart structures.

• In the majority of the literature on DEs, incompressibility condition has been
assumed.

• The type of hyperelastic model defines the range of chaos, nonlinear vibrations,
and electromechanical instabilities.

For further reading on nonlinear elasticity, we refer to classic books [105–107] as
well as corresponding chapters [108–111]. In particular, in [110, 111] other useful
models of elastomers could be found.
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