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Preface

This book is dedicated to the 100th birthday of Andrey Grigorievich Ugodchikov,
who was one of the leading specialists in mechanics of the Soviet Union and Russia,
an expert in the field of apparatus and machine strength. A talented scientist and
engineer, teacher and organizer A.G.Ugodchikov hadmany contributions to both the
development of mechanics in general and applied problems of strength in particular
as well as to the education of scientific and academic staff. He created in Nizhny
Novgorod a well-known in Russia and abroad multidisciplinary scientific school
of mechanics on theoretical and applied problems of strength of machine-building
structures under multifactor effects of high parameters.

A. G. Ugodchikov performed a great scientific and organizational activity being
the rector of Gorky (now Nizhny Novgorod) University from 1969 to 1988. He
laid foundations for the successful development of the university, its material and
scientific base, for the growth of high-qualified scientific and academic staff, and for
broadening the horizons of research work thus allowing the university to confidently
occupy its place among the key national research universities in Russia.

Research activities of A. G. Ugodchikov began with the methods of the theory
of functions of a complex variable for solving a fairly wide range of problems
in the plane theory of elasticity—Muskhelishvili’s method of complex potentials.
This elegant method allows one to find a solution to the formulated problem for
the given boundary shape and boundary conditions when there is a function that
conformally maps a circle onto a simply connected domain occupied by an elastic
medium. A. G. Ugodchikov managed to solve complex applied problems on the
stress-strain state of diesel engine components. He kept lifespan interest to the devel-
opment of themethods of complex potentials and generalized analytical functions for
solving applied problems. His first investigations had already necessitated computer
modeling of problems in the mechanics of deformable solid. This approach became
for him and his students a specific feature of the emerging school of specialists in
strength mechanics in Nizhny Novgorod.

The research area of A. G. Ugodchikov expanded during his long creative life and
the results of his research work are noticeable in the following scientific directions
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• Theoretical and experimental foundations of quasi-static deformation of elastic-
plastic viscoplastic materials and structural elements made of them,

• Experimental studies of material deformation and fracture under quasi-static and
impulsive loading conditions,

• Theoretical and numerical methods for studying the stress-strain state of elasto-
plastic plates and shells under dynamic, pulsed loading and their interaction with
other media,

• Theoretical foundations ofmethods for optimizing deformable systems andmeans
of their numerical implementation,

• Theoretical foundations of deformation and fracture of solid deformable bodies
under pulsed thermal and force loads of high parameters,

• Theoretical foundations and numericalmethods for studying the kinetics of stress-
strain state of deformable bodies and structural units under the effects of highly
parametric interdependent fields of various nature.

As organizer, A. G. Ugodchikovmanaged to found in NizhnyNovgorod a special-
ized university department, a research institute and prepare numerous followers and
students who formed the basis of university teams.

Below are given a list of selected publications of Andrey G. Ugochikov

1. Ugodchikov A. G. Stress determination when pressing several round washers
into a plate bounded by a curve of a particular type, Dokl. Akad. Nauk SSSR.
1951. Vol. 77, No. 2. pp. 213–216 (in Russian)

2. Ugodchikov A. G. On calculating mounting stresses in machine-building parts,
Applied Mechanics. 1957. Vol. 3, No. 3. pp. 202–207 (in Russian)

3. Ugodchikov A. G. To the solution of the first basic problem of the plane theory
of elasticity for doubly-connected domains, Dokl. Akad. Nauk of the Ukrainian
SSR. 1960. No. 11. pp. 1480–1484 (in Russian)

4. Ugodchikov A. G. To the solution of the generalized biharmonic problem of
the plane theory of elasticity for double-connected domains. Dokl. Akad. Nauk
of the Ukrainian SSR. 1961. No. 11. pp. 1440–1443 (in Russian)

5. Ugodchikov A. G. Construction of conformally mapping functions. Kiev:
Naukova dumka. 1966 (in Russian)

6. Ugodchikov A. G., Dlugach M. I., Stepanov A. E. Solution of boundary value
problems of the plane theory of elasticity on digital and analog machines.
Moscow: Vysshaya shkola, 1970 (in Russian)

7. Ugodnikov A. G., Khutoryansky N. M. The boundary element method in
mechanics of deformable solids. Kazan: KSU Publishing House, 1986, 296
p. (in Russian)

8. Ugodchikov A. G. On equations of the dynamics of a deformable solid body,
Dokl. Akad. Nauk SSSR. 1991. Vol. 317, No. 4 (in Russian)

9. Ugodchikov A. G.Moment dynamics of a linear elastic body. Dokl. RAS, 1995,
Vol. 340, No. 1 (in Russian)

10. Malkov V. P., Ugodchikov A. G. Optimization of elastic systems. Moscow:
Nauka, 1981 (in Russian)
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11. Ugodchikov A. G., Korotkikh Yu. G. Some methods for solving physically
nonlinear problems in the theory of plates and shells on EDC. Kiev: Naukova
Dumka, 1971 (in Russian)

12. Bazhenov V. G., Kochetkov A. V., Mikhailov G. S., Ugodchikov A. G. The
Interaction of elastoplastic thin-walled structural elements with shock waves in
ideal compressible media, Izv. USSR Academy of Sciences. MTT. 1979. No.
2. pp. 141–149 (in Russian)

13. Bazhenov V. G., Kochetkov A. V., Krylov, S. V., Ugodchikov A. G. High-speed
impact of elasto-plastic thin-walled structures on compressible fluid surface,
Izv. USSR Academy of Sciences. MTT. 1984. Vol. 5, pp. 161–169 (in Russian)

14. Ugodchikov A. G., Short, J. G. Some solution methods for EDC physically
nonlinear problems of the plates and shells theory. Kiev: Naukova dumka, 1971
(in Russian)

15. Ugodchikov A. G., Korotkikh Yu. G. Equations of state under low-cycle
loading (Chap. 6: Equations of the thermoviscoplasticity theory with combined
hardening). Moscow: Nauka, 1981. pp. 129–167 (in Russian)

16. Ugodchikov A. G., Khutoryansky N. M. The boundary element method in the
mechanics of a deformable solid. Kazan: KSU Publishing House, 1986 (in
Russian)

Magdeburg, Germany
Cagliari, Italy
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Chapter 1
A Review of Hyperelastic Constitutive
Models for Dielectric Elastomers

Amin Alibakhshi, Shahriar Dastjerdi, Mohammad Malikan,
and Victor A. Eremeyev

Abstract Dielectric elastomers are smart materials that are essential components
in soft systems and structures. The core element of a dielectric elastomer is soft
matter, which is mainly rubber-like and elastomeric. These soft materials show a
nonlinear behaviour and have a nonlinear strain–stress curve. The best candidates
formodelling the nonlinear behaviour of suchmaterials are hyperelastic strain energy
functions. Hyperelastic functions have been extensively used formodelling dielectric
elastomer smart structures. This review paper introduces hyperelastic constitutive
laws for modelling dielectric elastomers. For this purpose, first, a general scheme of
hyperelastic models is expressed. Then, some well-known hyperelastic models are
introduced. Finally, we review in detail the utilized hyperelastic models for different
configurations of dielectric elastomers. Possible futureworks in this field are outlined
eventually.
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Smart polymers
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1.1 Introduction

For decades, research on variousmechanical structures has been amajor topic among
scientists [1–5]. The literature in this field has mainly focused on conventional mate-
rials possessing a physically linear behaviour. However, many other materials in the
world have a nonlinear behaviour. Many human tissues and bodies of animals and
plants show a nonlinear behaviour and are modelled as soft structures. These soft
structures have been the inspiration of new fields, specifically soft robotics [6, 7].
The main components in this field are soft materials [8, 9]. Using soft materials, we
can fabricate soft systems and structures. Dielectric elastomers (DEs) [10, 11] have
emerged as powerful smart materials that have been widely employed as soft actua-
tors and soft sensors for developing soft materials and structures. The simplest form
of a DE includes a soft membrane that is covered with compliant electrodes [12]. The
soft membrane is a major part of a DE. Rubber-like and elastomeric materials with
material nonlinearity are used as soft membranes in DEs. To induce deformation in
DEs, it is necessary to apply electromechanical loading to them [13, 14]. Generally,
a potential difference (voltage) and tensile mechanical load are utilized to induce
deformation in DEs. For this reason, DEs are considered smart electromechanical
systems.

In response to electromechanical loading, DEs deform nonlinearly and encounter
nonlinear oscillation and vibration [15]. From mechanical and vibrational points of
view, their potential energy should be calculated for modelling the deformation of
DEs. Because DEs consist of nonlinear materials as the core element, linear elasticity
cannot be employed for calculating their potential energy. The best alternative to
linear elasticity is nonlinear elasticity. Usually, the nonlinear elasticity of DE is
captured using hyperelastic constitutive laws [16, 17].Hyperelasticmodels have been
extensively employed for modelling static and dynamic responses of DEs. There is
a large volume of published studies describing the nonlinear response of different
types of DEs based on hyperelastic models [18–21]. As observed from prior studies,
the knowledge of hyperelastic models is essential for the accurate modelling of DEs.
This paper attempts to provide a more detailed investigation of hyperelastic models
for DEs.

This review paper is organized as follows. First, in Sect. 1.2, the theory of DEs
is described in brief. Then, in Sect. 1.3, the general formulation of hyperelasticity is
expressed. Next, in Sect. 1.4, the available hyperelasticmodels for diverse geometries
of DEs are reviewed. Finally, in Sect. 1.5, the main conclusions and perspectives for
hyperelastic models and nonlinear elasticity in DEs are expressed.
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1.2 Theory of Dielectric Elastomers

The basic theory of dielectric elastomers (DEs) originates from the theory of electro-
elasticity [22]. Many researchers have tried to develop and review the electro-
elasticity theory. For instance, in [23, 24], authors developed and reviewed some
boundary-value problems of electro-elasticity by using the continuum mechanics
notation and finite strain theory. A full discussion of electro-elasticity lies beyond
the scope of this study, but the above-stated literature was introduced for more
information.

In line with electro-elasticity, Suo [25] introduced the theory of dielectric elas-
tomers. The basic equations for electromechanical large deformations of DEs have
been formulated and extended. In another paper, Zhao and Suo [26] considered the
electro-elasticity of DEs and discussed the electrical and mechanical equations.

Based on the studies mentioned above, in general, a DE consists of a membrane
sandwiched between two compliant electrodes. The membrane may take different
geometries such as square, rectangular, spherical, tubular, cylindrical, plate-like, and
beam-like [27–33]. Tensile mechanical loads are applied to the membrane, and a
potential difference (voltage) is applied to the electrodes. The electrodes are located
on the top and bottom surfaces of the soft membrane. When the electrodes are
connected to the potential difference, one surface gains the positive electric charge,
and another surface gains the negative electric charge. These opposite electric charges
attract each other and thereby induce large deformation in the DE such that in the
thickness direction, the membrane shrinks, and in the in-plane direction, it stretches
and expands. During this process, depending on the type of loading, DEs experience
different responses and behaviours. The potential difference and tensile load can be
time-varying or static. When electrical or mechanical loadings depend upon time,
the response of DE becomes complicated, and, in this sense, they undergo nonlinear
vibrations (Fig. 1.1).

(a) (b)

Fig. 1.1 The schematic view of a dielectric elastomer membrane with voltage� and pressures P1,
P2. a reference configuration, b current configuration [34]
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1.3 Hyperelasticity

Dielectric elastomers are soft structures whose structural materials are mainly
rubbery and elastomeric. For instance, polydimethylsiloxane, silicone, rubber, and
VHB-based elastomers have been extensively used for structural materials of DEs
[35]. However, these materials possess an inherent nonlinear trend in their stress–
strain curves. Thus, they do not follow linear elasticity and Hooke’s law. Therefore,
the best candidates to describe the nonlinear elasticity of DE structures are hypere-
lastic material models. Up to now, diverse hyperelastic models have been employed
for DE systems [36, 37], e.g., the neo-Hookean model, Mooney–Rivlin model, Gent
model and modified versions of the Gent model, and Ogden model.

1.3.1 General Form of Hyperelasticity

Hyperelastic models are expressed in a functional form called the strain energy func-
tion and are mainly denoted by W . The hyperelasticity function may take numerous
mathematical forms, such as polynomial, exponential, and logarithmic. The strain
energy functions are mainly formulated in terms of material parameters and prin-
cipal invariants of right or left Cauchy–Green deformation tensors. The material
parameters are obtained from empirical tests, and principal invariants are expressed
based on the field of deformation and the corresponding deformation gradient.
One important difference between hyperelasticity and linear elasticity is that the
former requires two configurations to describe the deformation. They are reference
configuration (nominal quantity) and current configuration (true quantity). Gener-
ally, hyperelasticity is a subfield of finite strain theory, and in this field, tensors
play a crucial role in the description of hyperelastic models. Therefore, it seems
that a good knowledge of tensors may help researchers in understanding hyperelas-
ticity. Before mathematically speaking of hyperelasticity, we introduce some very
important tensors.

The first one and maybe the most important tensor is the deformation gradient
tensor. When the solids deform, we should explore how two elements dx and dX
change and find their relation. We formulate the deformation gradient tensor as [38]

d �x = Fd �X , (1.1)

where F is the deformation gradient tensor (material deformation gradient).
Depending upon the coordinate system, F may take different forms.

Based on the deformation gradient tensor, two other important tensors are intro-
duced, and the hyperelastic models are formulated according to these tensors. They
are the right and left Cauchy–Green deformation tensors. We formulate these tensors
as [39]
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C = FTF, (1.2)

b = FFT . (1.3)

In the above equation, C is the right Cauchy–Green deformation tensor, and b
stands for the left Cauchy–Green deformation tensor; the letter T is the symbol of
the transpose operation.

Using the eigenvalue problem, we can derive the principal invariants of the right
and left Cauchy–Green deformation tensor, which are the main elements of hyper-
elastic models. The invariants of the right Cauchy–Green deformation tensor are
written as

I1 = tr(C),

I2 = 1

2

(
trC2 − tr

(
C2

))
,

I3 = det(C) = J 2.

(1.4)

In the above equation, I1 and I2 are respectively the first and second invariants;
“tr” stands for trace; “det” shows the determinant; J represents the determinant of
F, i.e., J = det(F).

The invariants of the left Cauchy–Green deformation tensor are expressed as

I1 = tr (b),

I2 = 1

2

(
tr b2 − tr

(
b2

))
,

I3 = det(b) = J 2.

(1.5)

The general form of a strain energy function takes the following form:

W = Wiso + Waniso, (1.6)

in which Wiso is the isotropic part; Waniso stands for the anisotropic part. It is noted
that the majority of materials for DEs are considered to be incompressible. The
isotropic part itself is formulated asWiso = Wdev +Wvol in whichWdev stands for the
isochoric deformation andWvol shows volume change. Due to the incompressibility,
the volumetric part (Wvol) becomes zero. In the next section, the commonhyperelastic
models for DEs are introduced and formulated.
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1.3.2 Neo-Hookean Model

Neo-Hookean constitutive law is the simplest hyperelastic model that has been used
for DEs. This model has been developed for both compressibility and incompress-
ibility states. The neo-Hookean materials model for the compressibility state is
expressed as

WNeo-Hookean = c1(I1 − 3 − 2 ln J ) + D1(J − 1)2, (1.7)

where c1 and D1 are material constants. Considering the incompressibility, the neo-
Hookean model is formulated as

ψNeo-Hookean = c1(I1 − 3). (1.8)

1.3.3 Gent Model

Some constituent materials for DEs, such as the VHB-based elastomers, have
revealed the strain-stiffening effect in response to external loading. The strain-
stiffening effect defines a specified value of the stretch in elastomers. The Gent
model for a compressible nonlinear elastic material is written as [40]

WGent = −μJlim
2

ln

(
1 − I1 − 3

Jlim

)
+ κ

2

(
J 2 − 1

2
− ln J

)4

, (1.9)

in which μ and κ stand for material parameters; Jlim is a dimensionless parameter,
the so-called stiffening parameter (Gent parameters) that measures the strength of
the strain-stiffening; as Jlim is decreased, the strain-stiffening effect increases. The
Gent model for the incompressibility condition takes the following form [41]:

ψGent = −μJlim
2

ln

(
1 − I1 − 3

Jlim

)
. (1.10)

1.3.4 Mooney–Rivlin Model

Another hyperelastic model that has been utilized for DEs is the Mooney–Rivlin
model. This model is a good candidate for deformations with large strains. The
absence of the strain-stiffening effect is, however, the model’s most significant flaw.
The Mooney–Rivlin model for the compressibility condition is expressed as
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WMooney−Rivlin = C10
(
I 1 − 3

) + C01
(
I 2 − 3

) + 1

D1
(J − 1)2, (1.11)

where C10 and C01 represent material constants. The Mooney–Rivlin constitutive
law for an incompressible material is expressed as

ψMooney−Rivlin = C1
(
I 1 − 3

) + C2
(
I 2 − 3

)
, (1.12)

whereC1 andC2 stand formaterial constants. In Eqs. (1.11) and (1.12), I 1 = J−2/3 I1
and I 1 = J−4/3 I2.

1.3.5 Gent–Gent Model

The Gent–Gent model is a modified version of the Gent model. The existence
of the second principal invariant differentiates between the original Gent model
and the Gent–Gent model. The Gent model with the incompressibility condition is
formulated as [42, 43]

WGent−Gent = −c1 Jlim ln

(
1 − I1 − 3

Jlim

)
+ c2 ln

(
I2
3

)
, (1.13)

where c1 and c2 are material parameters.

1.4 Studies on Dielectric Elastomers Based on the Type
of Hyperelastic Model

This section reviews the published literature on dielectric elastomers (DEs) based on
hyperelastic models. First, the literature based on the Gent strain energy function is
reviewed. After that, the studies based on the neo-Hookean model, Mooney–Rivlin
model, and Ogden model are reviewed. Finally, we discuss modified versions of the
Gent model for DEs.

1.4.1 Studies Based on Gent Model

A large amount of literature on DEs based on the Gent model is available. For
instance, electromechanical instability in dynamicalmodes in aDEballoonwas iden-
tified by Chen et al. [44], who utilized the Gent hyperelastic model. Furthermore, by
plotting the voltage-stretch curve and pressure-stretch curve, the electromechanical
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instabilities of an interconnected DE spherical shell were studied by Sun et al. [45],
who utilized the Gent hyperelastic material model.

By depicting the time-stretch response and voltage-stretch curve, the oscillations
and instability of a balloon made of DE were analysed by Chen and Wang [46]
with the aid of the incompressible Gent constitutive model. Furthermore, nucleation
and Propagation of Wrinkles were investigated in [47] by using the Gent model to
consider the strain-stiffening.

The response of interconnected DE balloons was studied and simulated by Chen
andWang [48], who utilized the Gent model. Mao et al. [49] addressed the wrinkling
phenomenon experimentally in DE balloons by using the Gent model. They used the
stretch limit in the Gent model as Jm = 220. Snap-through instability and electrical
breakdown were also explored in their study.

In a deep analysis conducted by Lv et al. [50], dynamic characteristics and insta-
bilities of an electromechanically actuated hyperelastic balloonwere assessed, where
a Gent model was used to capture the strain-stiffening, and the damping effect was
also considered.

In [51], by implementing the Gent model with stretch limits as Jm = 270 and
97.2, new electromechanical instabilities in DE spherical shells were identified and
discussed. Wang et al. [52] by employing the Gent model analysed the anomalous
bulging behaviour in a DE spherical balloon.

In [53], using a visco-hyperelastic Gent model, the delayed electromechanical
characteristic of a spherical balloon was explored. In that study, a rheological model
with two springs and one dashpot was employed. In addition, the Gent energy func-
tion in conjunction with the viscoelastic effect was employed for investigating the
wrinkling behaviour of a DE balloon (see [54]).

Zhang et al. [55] harnessed the dielectric breakdown and instabilities in a DEwith
the Gent hyperelastic material model. Zhou et al. [56] considered the Gent model to
study the nonlinear behaviour of a DEmembrane. They utilized Equi-biaxial loading
and incorporated the viscoelasticity for the system.

Zhu et al. [57] investigated the response of DE encountering the wrinkling
phenomenon, employed the Gent constitutive law, and plotted the voltage-stretch
curves to provide a profound analysis. Finally, with the aid of the finite strain theory
and the Gent model, Garnell et al. [58] explored the sound radiation and vibrations
of a DE membrane.

A systematic investigation was conducted by Wang et al. [59] to assess the vibra-
tional behaviour of circular DEs. They reported the chaos and quasi-periodic motion
in DEs when the Gent model is employed. The influence of geometrical sizes on the
nonlinear vibration of a DEmembrane was assessed in [60], who employed the Gent
model and assumed that the elastomer is incompressible. Alibakhshi and Heidari
[61] investigated nonlinear vibrations of a microbeam made of DEs employing the
Gent model, and different phenomena were identified in that paper. In a series of
papers [62–67], the thermoelasticity of DEs has been investigated, where the Gent
material law was considered to calculate the elastic energy part.



1 A Review of Hyperelastic Constitutive Models for Dielectric Elastomers 9

1.4.2 Studies Based on Neo-Hookean, Mooney–Rivlin,
and Ogden Models

In this subsection, we concentrate on the neo-Hookean model, Mooney–Rivlin, and
Ogden models. Zhu et al. [68] analysed the nonlinear vibrations of a DE spherical
shell by modelling the elastomer based on the neo-Hookean strain energy function.
They analytically and numerically solved the problem and discussed the equilibrium
stretches of the elastomers.

The performance of a DE in electromechanical situations was addressed by Zhang
and Chen [69], who adopted the neo-Hookeanmodel in an incompressible condition.
The bifurcation phenomenon in a spherical balloon was analysed by Liang and Cai
[70], who employed the Ogden hyperelastic model and applied the pressure and
voltage to the balloon.

In [71], random vibrations of a spherical balloon were analysed with the help of
the neo-Hookean strain energy function. The author of that paper used the method of
stochastic averaging to solve the random problem analytically. In another paper [72],
the random response of a spherical balloon made of DE was investigated by using
the Mooney–Rivlin strain energy function. In that paper, stochastic averaging and
Monte Carlo simulation were implemented to help the author to identify different
aspects of stochastic problems.

With the application of inflation pressure and potential difference, the bifurcation
of a DE balloon was analysed by Xie et al. [73]. They utilized the Ogden, neo-
Hookean, and Mooney–Rivlin strain energy functions and compared the results with
the Gent model. In another paper published [74], the free vibration of a DE spher-
ical balloon was analytically and numerically solved using the neo-Hookean model,
Runge–Kutta method, and Newton-harmonic balance.

Static pull-in and snap-through instabilities and DC static instability in a DE
balloon with the aid of the neo-Hookean, Mooney–Rivlin, and Ogden models were
analysed by Sharma et al. [75]. In [76, 77], the nonlinear vibration and reso-
nance of DE balloons were explored numerically and analytically using multiple
timescales and incremental harmonic balance methods. In those papers, the neo-
Hookean strain energy function was applied. The parametric excitation of a DE was
analysed using the neo-Hookean model (see [78]), where the equilibrium points
and primary and secondary resonances were addressed. In [79, 80], by utilizing the
Ogden and Mooney–Rivlin strain energy functions, the dynamic response of DEs
was experimentally and analytically captured.

Kim et al. analyzed vibration frequencies of a DEmembrane by implementing the
neo-Hookean, Ogden, and Mooney–Rivlin models [81]. Dai and Wang [82] carried
out a dynamic analysis of the in-plane oscillations of neo-HookeanDEs. They applied
the incompressibility conditions forDE and depicted time-stretch response and phase
portraits in nonlinear vibration analysis.

The nonlinear response of a DE-based smart system was studied by Srivastava
and Basu [83], who utilized the single-term Ogden strain energy function in their
work. A neo-Hookean-based viscoelastic model was implemented in [84] to assess
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the performance of a circularDE. Randomoscillation of aDEballoonwas reported in
[85], in which the neo-Hookean model was adopted. Some researchers have tried to
develop DE-based systems incorporating neo-Hookean and Mooney–Rivlin models
in a thermoelectricity theory [86–89].

1.4.3 Studies Based on Gent–Gent Model

Researchers decided to discard this limitation because the Gent model cannot accu-
rately capture the deformation of hyperelastic materials at large strains. Some papers
extended the Gent model and by which its new versions were introduced. However,
the literature on modelling DEs based on the modified version of DEs is very limited.

In recent years, some researchers utilized theGent–Gentmodel forDEs,which is a
modifiedversionof theGentmodel. For instance,Alibakhshi andHeidari investigated
the nonlinear vibration and chaos in DE balloons based on the Gent–Gent model [90]
and concluded that this hyperelastic model is influential in controlling instabilities
and chaos in such systems. Alibakhshi et al. [91] analysed the nonlinear resonance
of a DE membrane employing the Gent–Gent model. They also considered a new
version of theGentmodel in that paper introduced byBien-aimé et al. [92]. Chen et al.
using a compressible Gent–Gent model, researched elastic waves of a DE laminate
[93].

1.5 Future Works on Nonlinear Elasticity of Dielectric
Elastomers

Researchers have been working on developing the responsiveness of DEs based
on anisotropy in recent years. They are considering fibre-reinforced hyperelastic
materials for such smart structures. The hyperelastic models incorporating fibre-
reinforcement are utilized for this kind of system [94–99]. The Holzapfel–Gasser–
Ogden hyperelastic model has been used in the majority of investigations in this field
[100, 101]. Thus, future works developing fibre-reinforcement of DEs seem to be of
interest.

Another emerging topic in this field of study is employing hyperelastic models
with the inclusion of humidity. It has been reported that humidity might affect the
performance of DEs in real-world applications [102–104]. Thus, this topic may also
be interesting to researchers and can be a major topic of study in future works.
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1.6 Conclusion

This paper reviewed the hyperelastic strain energy functions utilized for dielectric
elastomers. First, the mathematical formulations for nonlinear electro-elasticity and
finite strain theory were explained. Then, the studies for DEs based on the type of
hyperelastic model were reviewed. The following are some of the findings of this
research:

• The most widely used hyperelastic model for dielectric elastomers is the Gent
model.

• After the Gent model, the neo-Hookean model has been a candidate for capturing
the nonlinear elasticity of dielectric elastomers. This model has been used for
dielectric elastomers but not as much as the Gent model.

• The modified versions of the Gent model, such as the Gent–Gent model, are new
hyperelastic materials for analysing dielectric elastomers.

• The role of the second invariant of the Cauchy–Green deformation tensor is
prominent for dielectric hyperelastic smart structures.

• In the majority of the literature on DEs, incompressibility condition has been
assumed.

• The type of hyperelastic model defines the range of chaos, nonlinear vibrations,
and electromechanical instabilities.

For further reading on nonlinear elasticity, we refer to classic books [105–107] as
well as corresponding chapters [108–111]. In particular, in [110, 111] other useful
models of elastomers could be found.
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Chapter 2
Evolution of the Microstructure
of Obstacles from FCC Alloys Under
High-Velocity Impact Conditions

Svetlana A. Atroshenko and Georgii G. Savenkov

Abstract The article is devoted to the analysis of the behavior of various FCCmetals
under shock loading with irregularly shaped projectiles at speeds of 1.5–2.0 km/s.

Keywords Aluminum alloy · Stainless steel · Aluminum bronze · Shock loading

2.1 Introduction

Protection of various modern technical objects experiencing high-energy loads from
the impact of irregularly shaped strikers (for example, ammunition fragments and
micrometeorites) with impact velocities over 1.5–2.0 km/s is of significant scientific
and practical interest. Computer simulation of the processes of high-speed interaction
of strikers with various objects in order to create optimal structures requires deep
knowledge of the physical and mechanical properties and processes occurring in the
thickness, at least of thematerial of the target (object).However, the existing technical
measuring instruments make it possible to register only the kinematic parameters of
deformation and destruction of the obstacle and the striker, while the development
of internal processes remains inaccessible for visualization. In addition, the physical
processes of high-speed deformation and fracture occurring in obstacles are highly
dependent on the set of contact boundaries that are inherent in irregularly shaped
strikers, and in computer modeling and experimental studies, strikers, as a rule, have
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the correct geometric shape (cylinder, sphere). As a result, there is a significant loss
in the accuracy of calculations.

Therefore, the study of the evolution of the microstructure of the target material
under the conditions of a high-speed impact with an irregularly shaped striker comes
to the fore, despite the fact that such studies are of a post-factor nature and the state
of the microstructure at the moment of dynamic action may differ from that after
dynamic loading. However, it can be noted that it is the processes of restructuring
the internal structure of the material during its dynamic deformation and destruction
that determine the physical and mechanical properties of the medium.

In this work, we investigated the microstructure of samples cut from targets made
of an aluminum alloy of the AMg6 type (but additionally alloyed with scandium),
aluminum bronze and stainless steel 18Cr–10Ni–Ti, pierced by compact irregularly
shaped impactors (otherwise called impact “nuclei” [1, 2]). The initial velocity of
the impact of the striker with the obstacle was ~1.8–2.0 km/s.

2.2 Samples, Materials and Experimental Technique

Samples for metallographic studies were cut from targets with a diameter of 90 mm
and a thickness of 11 mm. The view of an aluminum alloy target after penetration
is shown in Fig. 2.1a. Samples prepared for metallographic studies are shown in
Fig. 2.1b, c.

The standardmechanical characteristics of the investigated alloyswere as follows:
σ0,2 = 325 MPa, σB = 430 MPa, δ5 = 25%, ψ = 30%—for aluminum alloy;
σ0,2 = 275 MPa, σB = 620 MPa, δ5 = 59%, ψ = 70%—for stainless steel;
σ0,2 = 385 MPa, σB = 725 MPa, δ5 = 35%, ψ = 36%—for aluminum bronze.

a) b) c)

Fig. 2.1 General view of an aluminum target after penetration (a) (the “crest” of the cavity is
indicated by a thick arrow) and samples for metallographic studies (b, c): b—stainless steel; c—
aluminum bronze
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a) b) c)

Fig. 2.2 Initial structures of the investigated alloys: a—aluminum alloy; b—steel; c—bronze

The structure was studied using an Axio Observer Z1 M optical microscope in a
bright field and C-DIC contrast. The initial structures of the studied alloys are shown
in Fig. 2.2.

2.3 Results of Microstructural Studies and Their Analysis

2.3.1 General Remarks and Results

In our case, all targets are classified as obstacles of finite thickness. In this case, the
mutual influence of the cavity formation zone and the rear free surface becomes a
significant factor [3, 4]. The compressionwave caused by the impact is reflected from
the free surface in the form of a tensile wave, which has time to return to the cavity
even before the plastic flow of the material stops. If the duration and amplitude of
tensile stresses exceed the critical values, then the destruction of the barrier material
near the rear surface occurs—it is spalling. If a spall does not form, the unloading
changes the stress–strain state in the cavity formation zone (compression along one
axis is transformed into a volumetric oppositely deformed state), which contributes
to the facilitated penetration of the obstacle by the striker. In our studies, for all three
samples on the rear surface, zones of destruction were revealed, which are obviously
associated with spalling phenomena (Fig. 2.1).

In all targets, irrespective of the alloy grade, nodal points (indicated by arrows in
Fig. 2.1) between the so-called terrace ledges were found in the macro-relief of the
surfaces of the holes formed [4].

Also three (in stainless steel and aluminumbronze) or four zones of penetration (in
aluminum alloy) stand out (Fig. 2.1) in the punched targets. The first zone, due to the
non-stationary stage of penetration [5], corresponds to the depth of ~0.3–0.5 of the
penetration thickness. The second (and the third for the barrier made of aluminum
alloy) is ~1/3 of the thickness (stationary stage of penetration), and the third (the
fourth, for the aluminum alloy) (associated with spalling phenomena) is ~1/6–1/3 of
the thickness.



22 S. A. Atroshenko and G. G. Savenkov

2.3.2 Evolution of Microstructure in Aluminum Alloy

The original stripe structure (Fig. 2.2a) at the very top of the ridge changes to a
fragmented one (Fig. 2.3a, b), which indicates large plastic deformations and high
temperatures in this layer. Further, as the projectile velocity decreases, the strip
structure remains unchanged (Fig. 2.3c), however, periodic protrusions are formed
along the edge of the cavity (Fig. 2.3d).

The formation of such protrusions may be due to the fact that as the striker moves,
the temperature of the material in front of it increases; in combination with high
pressures, this can lead to the appearance of local areas of melting and, accordingly,
to a decrease in the friction force. This leads to stress release and a change in the
friction mechanism from dry to plastic. The transition to a section with a lower
temperature creates some stoppers for the movement of the striker, which again
leads to a change in the friction mechanism from plastic to dry. Such a sequence of
changes in mechanisms and the appearance of stoppers can lead to the appearance
of periodic protrusions.

Finally, when the speed of the striker becomes much less than the initial one, rota-
tional (vortex) modes of plastic deformation begin to appear intensively (Fig. 2.3e,
f). One of the probable causes of the vorticity of the target material may be that
as the projectile velocity decreases, the material in front of it may already be in a

c)a) b)

d) e) f )

Fig. 2.3 Consecutive change in aluminum alloy of the profile of the relief as the target is penetrated:
a, b—fragmented structure; c—strip structure; d—protrusions; e, f—rotational modes
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friable state due to the appearance of tensile stresses arising from the interaction of
the forward and backward unloading waves. The friability of the material increases
the number of degrees of freedom, which can lead to the formation of structures that
experience pure rotation due to shear stresses.

2.3.3 Microstructure Evolution in Stainless Steel

As noted above, there are three zones of penetration in the stainless steel barrier
(Fig. 2.1b), corresponding to three stages of penetration.

In the first zone, at a distance of 1.5–3.8 mm from the frontal surface and 0.15–
0.75 mm from the edge of the cavity, an area of rotational plastic deformation was
found, consisting of disks with a practically ideal circular shape. The radius of the
disks ranges from 35 to 325μm (Fig. 2.4). Inside the large circles are smaller circular
elements and friable elements (pores). The microhardness inside the circular forma-
tions is higher than the initial hardness of the material outside these regions (HV =
2.62 GPa) by ~25% and on average is HV ≈ 3.14 GPa. Near the circular formations,
closer to the edge of the cavity, adiabatic shear bands (ASB) were found, which are
apparently associated with a high local temperature near the contact surface between
the impactor and the target [6] and with the instability of plastic flow resulting from
the effect of thermal softening at adiabatic or almost adiabatic plastic deformation.
It can be assumed that at the first stage of penetration, when the velocity parameters
of the striker are still sufficiently high, the target material does not have time to
dissipate the mechanical energy of the striker due to the collective motion and multi-
plication of dislocations. Therefore, to maintain the dissipation rate at the required
level, additional rotational modes of plastic deformation are switched on [7].

The second stage of penetration is characterized by the formation of a wavy relief
of the cavern edges on the contact surface between the striker and the target material.
Also for the first zone, signs of rotational (wave-like) plastic deformation inside the

a) b)

Fig. 2.4 Region of rotational plasticity in stainless steel ×1000 (a, b) (thin arrows indicate small
circular formations, thick arrows indicate adiabatic shear bands)
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a) b)

d)c)

Fig. 2.5 Steel microstructure in the second target zone: ASB (indicated by an arrow) and wavy
traces of plastic deformation—(a, b), crushing of δ-ferrite colonies—(c) and traces of grain
coarsening—(d)

grain structure were found (Fig. 2.5b). In addition, this zone is characterized by
recrystallization processes, which manifest themselves in the form of crumbling of
ferrite colonies (Fig. 2.5c) or coarsening of grains (Fig. 2.5d).

In the third target zone, associated with the interference of loading and unloading
waves, two types of cracks were observed: parallel to the rear surface and shear
cracks perpendicular to them (Fig. 2.6). If the first type of cracks is caused by tensile
stresses during the interference of unloading waves, then the second ones can be
due to their appearance to shear stresses in the direct load wave, when they reach a
critical value [8].

2.3.4 Evolution of Microstructure in Aluminum Bronze

In the first zone of the aluminum bronze target, adiabatic shear bands were revealed
as characteristic features (Fig. 2.7a). In the second zone, along with PAS, there are
also zones of dynamic recrystallization (Fig. 2.7b, c).
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Fig. 2.6 Spall and shear cracks in steel (×100)

a) b) c)

Fig. 2.7 Adiabatic shear bands—(a, b) (indicated by arrows), dynamic recrystallization zones—
(b) and recrystallized grains—(c)

In the third zone, on the sides of the cavity, there are cracks up to 3 mm long,
oriented relative to the direction of the striker’s action in different directions at an
angle of 45° (Fig. 2.8).

It can be assumed that in this zone, under the conditions of the dynamic impact
of the striker, compression along one axis was realized in the target, which was
transformed into a volumetric oppositely deformed state, which led to the formation
of the indicated oblique cracks.
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Fig. 2.8 Cracks in the third
zone of the aluminum bronze
target

2.4 Conclusion

Thus, based on the totality of the studies carried out, the following conclusion can
be drawn. After shock loading with the penetration of targets made of different
metals with an FCC lattice, signs of the transformation of the deformed state due
to the dissipation of mechanical energy were revealed in the following sequence:
slip of dislocations, rotational formations and localized adiabatic shears, bands of a
fragmented state and dynamic recrystallization, local dynamic polygonization and
recrystallization. Structural changes are weakly dependent on the initial structure of
the metal and are realized with the participation of interference (wave) effects of
shock wave scattering.
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Chapter 3
Decomposition of Solutions
of Multicomponent Boundary Value
Problems by Solutions
of Single-Component Ones
for the Purposes of Nanotechnology

Vladimir A. Babeshko, Olga V. Evdokimova, and Olga M. Babeshko

Abstract The integro-differential approach, which is part of the universal method
of solving boundary problems proposed by the authors, for the first time builds an
exact solution of the boundary problem in a quarter plane for a system of Lame
equations under the assumption of setting stress vectors at the boundary. The solu-
tion of a vector, two-component, boundary value problem is constructed decomposed
by solutions of one-component boundary value problems. Previously, this boundary
value problem was considered in a simpler formulation, assuming that displace-
ment vectors were assigned at the boundary. It was suggested that the construction
of a solution for the case of stresses is difficult. It is shown that the application
of the integro-differential method practically does not complicate the solution of
boundary problems with complicated boundary conditions. The research presented
in the article is important in studying the behavior of solutions to boundary value
problems of complex rheology described by systems of partial differential equations
using decompositions by solutions of individual equations. It is proposed to develop
this method for studying the behavior of multicomponent nanomaterials in order to
build models of their self-organization and self-assembly. They can be used to study
their physical and strength properties, as well as the possibility of controlling their
parameters.
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3.1 Introduction

In themonograph [1]V.Novatsky noted that the application of theGalerkin transform
[2, 3] or the representation of solutions using potentials in boundary problems with
stresses set at the boundary significantly complicates their solution compared to the
given displacements. At the same time, in most boundary problems considered in
engineering practice, boundary conditions of the first kind are set, that is, when stress
vectors are set at the boundary. The issues of studying and solving boundary value
problems for multicomponent materials are complex since it is necessary to consider
systems of partial differential equations in arbitrary ones, each of whose components
is present in boundary conditions [4].

B.G. Galerkin owns a transformation that allows us to bring systems of linear
partial differential equations with constant coefficients to separate differential equa-
tions. For a long time, this methodwas used only for the numerical study of boundary
value problems. However, there are tasks, including models, whose solutions are
needed in an analytical form. These are, firstly, mixed problems in which solutions
may have features [5], and secondly, solutions are needed in an analytical form, for
the formation ofmutual contacts, adhesion, and decay along the boundaries occurring
between the components ofmulticomponent particles.Models of such interaction are
available, for example, in [6]. Of particular interest are the well-known experimental
processes of self-organization and self-assembly of nanomaterials [7]. Experiments
are known, but there are no strict mathematical models. There is a question of sepa-
rating and mathematically describing the mechanical aspects of these processes and
the physico-chemical ones in order to understand a reasonable way of controlling
them and their components.

It is known that the variety of rheologies of multicomponent nanomaterials is
huge [8–16]. The more important is the task under consideration.

In this paper, it is shown that the universal method proposed by the authors for
solving boundary value problems [17] solves boundary value problems for both of
these types of boundary conditions fairly uniformly and without much difficulty.
The universality of the method consists in the uniformity of the approach in solving
boundary value problems for systems of partial differential equations in non-classical
domains, as well as for a number of integral equations, for example, Wiener–Hopf.
Boundary value problems can be posed in areas of different dimensions and different
rheologies. The available variousways of crushing the carriers of block elements, like
the condensation of grids in numerical methods, open up the possibility of using the
method for the cases of systems of differential equations with variable coefficients,
as it is performed in the finite element method.

The paper gives a solution to a vector boundary value problem decomposed by
packed block elements, which are solutions to scalar boundary value problems in a
quarter plane. For the first time, this approach has constructed an exact solution in the
first quadrant of a plane boundary value problem of the first kind for dynamic Lame
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equations at the stresses set at the boundary. In theworkof the authors [18], an integro-
differential method for decomposing solutions of vector boundary value problems
by scalar ones was developed, in the work [19], a less general, coordinate method.
In both cases, displacements were set on the units below. The integro-differential
method is used in the problem under consideration, which is more general than the
coordinate method, requiring the use of in-depth properties of solutions to scalar
problems, which is not always possible to obtain.

3.2 Basic Equations

Let us consider the plane boundary value problem of the second kind studied in
[18], for the system of Lame equations, posed in the first quadrant under harmonic
influences at the boundary where displacements are given. Based on it, we formulate
a boundary value problem of the first kind by setting stress vectors on the boundary.
Previously, it was not possible to obtain an exact solution to it, but the new universal
block element method [17] in this paper makes it possible to do this in the form of
decomposition of the solution by packed block elements of scalar problems.

In the first quadrant, the dynamic Lame equations, after excluding the time term
exp(−iωt), have the form

(λ + μ)
∂θ

∂x1
+ μ�u1 + k2u1 = 0, θ = ∂u1

∂x1
+ ∂u2

∂x2
, k2 = ρω2

(λ + μ)
∂θ

∂x2
+ μ�u2 + k2u2 = 0, x1, x2 ∈ �, �u = ∂2u

∂x21
+ ∂2u

∂x22

(3.1)

Here un(x1, x2) are the components of the displacement vectors at the point—��—
the area of the first quadrant x1 ≥ 0, x2 ≥ 0 λ,μ—the Lame parameters—ρ—
the density of the material of the deformable body—ω— the frequency of external
harmonic influences at the boundary, set by a complex function exp(−iωt), where t is
time. In a problem of the first kind, the values of normal and tangential stresses at the
boundaries of the quadrant are denoted on the abscissa axis by the functionsσ2(x1, 0),
τ2(x1, 0) and σ1(0, x2), τ1(0, x2)—on the ordinate axis. The stresses normal to the
boundary are indicated by a symbol σ , and tangents—τ . In a problem of the second
kind, the components of the vectors of normal and tangential displacements on the
boundary of the first quadrant are given the axes u1(x1, 0), u2(x1, 0) of the abscissa
and u1(0, x2), u2(0, x2) of the ordinate respectively.
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3.3 Decomposition of the Boundary Value Problem
Solution Using Block Elements

The Lame equations, both in static and dynamic cases, have a long-established prop-
erty of representing the solution as a sum of potential and vortex components, which
are also obtained by using theGalerkin transform [1–3]. Let us use the decomposition
of the solution of the Lame equations used in [18] in the following form:

u1(x1, x2) = ∂1ϕ(x1, x2) + ∂2ψ(x1, x2)

u2(x1, x2) = ∂2ϕ(x1, x2) − ∂1ψ(x1, x2)

∂1 = ∂

∂x1
, ∂2 = ∂

∂x2

(3.2)

The designations are accepted here

(
� − p21

)
ϕ = 0,

(
� − p22

)
ψ = 0, p21 = k21(λ + 2μ)−1, p22 = k21μ

−1

ϕ(x1, 0) = f1(x1, 0), ϕ(0, x2) = f2(0, x2)

ψ(x1, 0) = g1(x1, 0), ψ(0, x2) = g2(0, x2)

(3.3)

The functions gm , m = 1, 2 in boundary conditions are arbitrary, satisfying only
the conditions of the correctness of the statement of the boundary problem. In partic-
ular, they can be taken from the space of slowly growing generalized functions, in
which solutions to the boundary value problem in the domain � are sought.

The case of the Lame boundary value problem of the first kind is consid-
ered. Conditions of the form σ1(0, x2), τ1(0, x2), σ2(x1, 0), τ2(x1, 0) are set on the
coordinate axes.

Thus, for solutions of the Helmholtz equation, boundary conditions are formed
for x1 → 0 in the form

∂1ϕ(x1, x2) + ∂2ψ(x1, x2) = σ1(0, x2)

∂2ϕ(x1, x2) − ∂1ψ(x1, x2) = τ1(0, x2)
(3.4)

Similarly, when x2 → 0

∂1ϕ(x1, x2) + ∂2ψ(x1, x2) = σ2(x1, 0)

∂2ϕ(x1, x2) − ∂1ψ(x1, x2) = τ2(x1, 0)
(3.5)

To solve the boundary problem for the Lame equations with boundary condi-
tions (3.4), (3.5), solutions of boundary problems for the Helmholtz equations are
constructed under arbitrary boundary conditions (3.3). The block element method is
used, which is described in a number of works by the authors [18, 19]. Packed in the
first quadrant in the case of the Dirichlet boundary value problem, the solutions have
the form
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ϕ(x1, x2) = 1

4π2

¨
R2

ω1(α1, α2)

α2
1 + α2

2 − p21
e−i(α1x1+α2x2)dα1dα2

ψ(x1, x2) = 1

4π2

¨
R2

ω2(α1, α2)

α2
1 + α2

2 − p21
e−i(α1x1+α2x2)dα1dα2

ϕ(x1, x2) = 1

4π2

¨
R2

2∑

j=1

(
α3− j − α(3− j)1+

)[
Fj

(
α j

) − Fj
(
α j1+

)]

× e−i(α1x1+α2x2)
idα1dα2

α2
1 + α2

2 − p21

ψ(x1, x2) = 1

4π2

¨
R2

2∑

j=1

(
α3− j − α(3− j)2+

)[
G j

(
α j

) − G j
(
α j2+

)]

× e−i(α1x1+α2x2)
idα1dα2

α2
1 + α2

2 − p22

α11+ = i
√

α2
2 − p21, α21+ = i

√
α2
1 − p21,

α12+ = i
√

α2
2 − p22, α22+ = i

√
α2
1 − p22,

(3.6)

The sections of multivalued functions are dictated by the requirement to perform
automorphisms [18]. In accordance with the construction, the properties (3.3) are
valid for the reduced block elements.Using them,we introduce the following notation
for solutions of the Helmholtz equations:

φ(x1, x2) ≡ φ[x1, x2, f1(ξ1, 0), f2(0, ξ2)] → f1(x1, 0), 0 < x2 � 1

φ(x1, x2) ≡ φ[x1, x2, f1(ξ1, 0), f2(0, ξ2)] → f2(0, x2), 0 < x1 � 1

ψ(x1, x2) ≡ ψ[x1, x2, g1(ξ1, 0), g2(0, ξ2)] → g1(x1, 0), 0 < x2 � 1

ψ(x1, x2) ≡ ψ[x1, x2, g1(ξ1, 0), g2(0, ξ2)] → g2(0, x2), 0 < x1 � 1

In earlier works of the authors, the solution of the boundary value problem of
the second kind for the Lame equations was constructed by the integro-differential
method.

Its exact solution in the first quadrant has the form [18]
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u1(x1, x2) =
∂1

〈
ϕ1

[
x1, x2,

1

2
∂

(−1)
1 u1(ξ1, 0),

1

2
∂

(−1)
1 u1(0, ξ2) + 1

2
∂

(−1)
1 F(ξ2)

]

+ϕ2

[
x1, x2,

1

2
∂

(−1)
2 u2(ξ1, 0) + 1

2
∂

(−1)
1 D(ξ1),

1

2
∂−1
2 u2(0, ξ2)

]〉

+∂2

〈
ψ1

[
x1, x2,

1

2
∂

(−1)
2 u1(ξ1, 0) + 1

2
∂

(−1)
1 (ξ1),

1

2
∂

(−1)
2 u1(0, ξ2)

]

−ψ2

[
x1, x2,

1

2
∂

(−1)
1 u2(ξ1, 0),

1

2
∂

(−1)
1 u2(0, ξ2) + 1

2
∂

(−1)
1 E(ξ2)

]〉

(3.7)

u2(x1, x2) =
= ∂2

〈
ϕ1

[
x1, x2,

1

2
∂

(−1)
1 u1(ξ1, 0),

1

2
∂−1
1 u1(0, ξ2) + 1

2
∂

(−1)
2 F(ξ2)

]

+ϕ2

[
x1, x2,

1

2
∂

(−1)
2 u2(ξ1, 0) + 1

2
∂

(−1)
2 D(ξ1),

1

2
∂−1
2 u2(0, ξ2)

]〉

−∂1

〈
ψ1

[
x1, x2,

1

2
∂

(−1)
2 u1(ξ1, 0) + 1

2
∂

(−1)
2 (ξ1),

1

2
∂

(−1)
2 u1(0, ξ2)

]

−ψ2

[
x1, x2,

1

2
∂

(−1)
1 u2(ξ1, 0),

1

2
∂

(−1)
1 u2(0, ξ2) + 1

2
∂

(−1)
2 E(ξ2)

]〉

(3.8)

C(x1) = ∂2∂
(−1)
1 u1(x1, 0) − ∂1∂

(−1)
2 u1(x1, 0)

D(x1) = ∂2∂
(−1)
1 u2(x1, 0) − ∂1∂

(−1)
2 u2(x1, 0)

E(x2) = ∂1∂
(−1)
2 u2(0, x2) − ∂2∂

(−1)
1 u2(0, x2)

F(x2) = ∂1∂
(−1)
2 u1(0, x2) − ∂2∂

(−1)
1 u1(0, x2)

Below we will use it to solve the Lame problem of the first kind with boundary
conditions (3.4), (3.5).

To do this, we will carry out a number of transformations. Under boundary
conditions, we introduce new variables by putting for

σ1(x1, x2) → σ1(0, x2), τ1(x1, x2) → τ1(0, x2), x � 1

x1 = (2b1)
−1(z1 + y1), x2 = (2b2)

−1(z1 − y1)

Similarly, for

σ2(x1, x2) → σ2(x1, 0), τ2(x1, x2) → τ2(x1, 0), x2 � 1

we will accept

x1 = (2b2)
−1(z2 + y2), x2 = (2b1)

−1(z2 − y2)
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As a result, we get representations

(b1x1 − b2x2) = y1, (b1x1 + b1x2) = z1,

(b2x1 − b1x2) = y2, (b2x1 + b1x2) = z2

b1 = √
(λ + 2μ)μ, b2 = √

μλ,

∂y1 = (b1∂1 − b2∂2), ∂z1 = (b1∂1 + b2∂2), ∂y1∂z1 = (
b21∂1∂1 − b22∂2∂2

)
,

∂y2 = (b2∂1 − b1∂2), ∂z2 = (b2∂1 + b2∂2), ∂y2∂z2 = (
b22∂1∂1 − b21∂2∂2

)
,

(3.9)

σ1
(
(2b1)

−1(z1 + y1), (2b2)
−1(z1 − y1)

) ≡ σ10(y1, z1),

τ1
(
(2b1)

−1(z1 + y1), (2b2)
−1(z1 − y1)

) ≡ τ10(y1, z1),
(3.10)

σ2((2b2)
(−1)(z2 + y2), (2b1)

(−1)(z2 − y2)) ≡ σ20(y2, z2),

τ2((2b2)
(−1)(z2 + y2), (2b1)

(−1)(z2 − y2)) ≡ τ20(y2, z2)

As in [17], for an arbitrary continuous function w(ξ, η) we have the relations

∂(−1)
yn w(yn, zn) =

yn∫
0

w(ξ, η)dξ, ∂(−1)
zn w(yn, zn) = zn∫

0
w(ξ, η)dη,

∂yn∂zn

yn∫
0

zn∫
0
w(ξ, η)dξdη = w(y2, z2),

∂yn∂zn∂
(−1)
yn ∂(−1)

zn w(ξ, η)dξdη = W (y2, z2)

(3.11)

Note that in order to calculate derivatives or primordial boundary functions with
parameters that have turned to zero, it is necessary to use the block element method to
construct packed block elements for the Helmholtz equation with their participation,
and calculate the required values in the vicinity of the boundary.

Let’s add the following relations to (13.7), (13.8) instead of displacements

u1(0, x2) = μ∂1∂
(−1)
y1 ∂(−1)

z1 σ10(y1, z1) − λ∂2∂
(−1)
y1 ∂(−1)

z1 τ10(y1, z1),

u2(0, x2) = −μ∂2∂
(−1)
y1 ∂(−1)

z1 σ10(y1, z1) + (λ + 2μ)∂1∂
(−1)
y1 ∂(−1)

z1 τ10(y1, z1),

u1(x1, 0) = μ∂1∂
(−1)
y2 ∂(−1)

z2 σ20(y2, z2) − (λ + 2μ)∂2∂
(−1)
y2 ∂(−1)

z2 τ20(y2, z2),

u2(x1, 0) = −μ∂2∂
(−1)
y2 ∂(−1)

z2 σ20(y2, z2) + λ∂1∂
(−1)
y2 ∂(−1)

z2 τ20(y2, z2)

We prove that the expressions constructed in this way represent the solution of the
first boundary value problem for the Lame equation in the first quadrant, decomposed
using packed block elements.

To do this, you need to make sure that the boundary conditions (3.4) are met. Let’s
limit ourselves to the border x2, the check is performed similarly at the border x1.

Knowing that in order to verify the fulfillment of the boundary condition (3.4) for
the normal voltage on the axis x2, it is necessary using (3.9), (3.10), (3.11), calculate
the expression σ1(0, x2) = (λ+2μ)∂1u1(0, x2)+λ∂2u2(0, x2), we get the following
sequence of transformations
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(λ + 2μ)∂1u1(0, x2) + λ∂2u2(0, x2)

= (λ + 2μ)∂1
[
μ∂1∂

(−1)
y1 ∂(−1)

z1 σ1(0, x2) − λ∂2∂
(−1)
y1 ∂(−1)

z1 τ1(0, x2)
]

+λ∂2
[−μ∂2∂

(−1)
y1 ∂(−1)

z1 σ1(0, x2) + (λ + 2μ)∂1∂
(−1)
y1 ∂(−1)

z1 τ1(0, x2)
]

= (λ + 2μ)∂1μ∂1∂
(−1)
y1 ∂(−1)

z1 σ1(0, x2) − λ∂2μ∂2∂
(−1)
y1 ∂(−1)

z1 σ1(0, x2)

−(λ + 2μ)∂1λ∂2∂
(−1)
y1 ∂(−1)

z1 τ1(0, x2) + λ∂2(λ + 2μ)∂1∂
(−1)
y1 ∂(−1)

z1 τ1(0, x2)

= [(λ + 2μ)μ∂1∂1 − λμ∂2∂2]∂
(−1)
y1 ∂(−1)

z1 σ1(0, x2)

= ∂y1∂z1∂
(−1)
y1 ∂(−1)

z1 σ1(0, x2) = σ1(0, x2)

The ratio is taken into account here ∂y1∂z1 = (b12∂1∂1 − b22∂2∂2).
Consider the case of tangential stresses τ1(0, x2) given at the boundary substitute

in the right part

τ1(0, x2) = μ∂2u1(0, x2) + μ∂1u2(0, x2)

the values u1(0, x2), u2(0, x2) taken from (3.7), (3.8). As a result, we will have

μ∂2
[
μ∂1∂

(−1)
y1 ∂(−1)

z1 σ1(0, x2) − λ∂2∂
(−1)
y1 ∂(−1)

z1 τ1(0, x2)
]+

+μ∂1
[−μ∂2∂

(−1)
y1 ∂(−1)

z1 σ1(0, x2) + (λ + 2μ)∂1∂
(−1)
y1 ∂(−1)

z1 τ1(0, x2)
] =

= [(λ + 2μ)μ∂1∂1 − λμ∂2∂2]∂
(−1)
y1 ∂(−1)

z1 τ1(0, x2) =
= ∂y1∂z1∂

(−1)
y1 ∂(−1)

z1 τ1(0, x2) = τ1(0, x2)

The above ratio is used again here.
Thus, it is quite simple to decompose the solution of the boundary value problem

of the first kind for the Lame equation in the first quadrant by solutions of boundary
value problems for theHelmholtz equations describing vortex and potential processes
in the first quadrant.

3.4 Conclusion

Thus, in accordance with the objectives of the task, it is proved that having obtained a
solution to a scalar boundary value problem of the second kind, when a displacement
vector is set at the boundaries, it is simple enough to construct a solution to a vector
boundary value problem with complicated rheology of the first kind, when a stress
vector is set at the boundary. The proposed method is easily transferred to the three-
dimensional case.

Funding The work was carried out with the financial support of the Russian Science Foundation,
project 22-21-00128.
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Chapter 4
Determination of Dynamic Interlayer
Strength Properties of Layered
Composites Using Measuring Bars

Artem V. Basalin, Anatoly M. Bragov, and Aleksandr Yu. Konstantinov

Abstract The paper presents the results of the development and testing of experi-
mental schemes that allow us to study the characteristics of the interlayer strength of
layered composite materials. The schemes are based on the technique of measuring
bars. To determine the interlayer strength at separation, a modification of the Kolsky
method for direct tension is used. A sample of a special shape is glued to adapters
having threaded parts, by means of which the sample is installed in a split measuring
bar. To determine the mechanical characteristics of composite materials during inter-
layer shear, three experimental schemes were proposed and tested: dynamic three-
point bending of a short beam, dynamic compression of plate samples with inci-
sions and dynamic extrusion of the middle part of the samples in the form of paral-
lelepipeds. Loading of samples and registration of their deformation processes were
carried out using the technique ofmeasuring bars.Anumerical simulationwas carried
out to check the dynamic equilibrium condition of the sample in an experiment on the
dynamic bending of a short beam. The schemes were tested on samples of a layered
composite material with a polymer matrix reinforced with carbon fabric. The results
of a comparative analysis of the schemes for determining shear strength showed
that the most preferable is the scheme of extrusion of the middle part of the paral-
lelepiped, since, unlike the bending of the beam, it allows you to vary and control
the loading conditions, and unlike the testing of incised samples, it is symmetrical,
which eliminates the appearance of bending moments in the sample.
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4.1 Introduction

The structures made of multilayer composite materials based on glass or carbon
fiber and plastic binder (polymer composite materials or PCM) during exploita-
tion can be subjected to dynamic loads of various natures. Interest in the study of
the behavior of such materials under intense dynamic loads is determined by the
requests of the aerospace and automotive industries, energy technology, construc-
tion, etc. Composite materials have a set of properties and features that differ from
traditional structuralmaterials (metal alloys) and together open upwide opportunities
both for improving existing structures of various purposes and for developing new
structures and technological processes. To calculate stress–strain state and assess the
strength of structures, modern computing systems are used, for example, ANSYS,
LS-DYNA, ABAQUS, LOGOS, etc. The creation of digital models of real structural
elements greatly facilitates the optimization of the design under development and
significantly reduces the design time, but requires a large amount of reliable experi-
mental information. The development of newmaterials and the increasing complexity
of mathematical models lead to the need to develop experimental research tools. For
multilayer composite materials based on glass or carbon fiber and plastic binder
(polymer composite materials or PCM), the range of dynamic loads has not been
studied much. Available scattered experimental data on the effect of the strain rate
on the strength properties of individual classes of composites for specific loading
conditions.

Currently, the methods of dynamic testing based on the classical Hopkinson-
Kolsky split bar scheme have received the greatest development [14]. The main idea
of themethod is to use bars measuring indirectly themovement of sample points over
time and the history of changes in the force acting on the sample during loading. Due
to the small length of the sample compared to the length of the loading pulse, stresses
and strains are evenly distributed along its entire length, and deformation occurs
under conditions of so-called “dynamic equilibrium”. Currently, manymodifications
of the Split Hopkinson Pressure Bar (SHPB) method are used for compression,
tension, shear, torsion, etc. A description of various variants of SHPB can be found
in Campbell and Dowling [3–5, 7–9, 12, 15, 18, 19, 21].

In the last decade, methods based on the technique of measuring bars have been
widely used for the study of polymers [20] and structural PCMwith various reinforce-
ment schemes. For example, studies of the effect of the strain rate on the dynamic
behavior of woven PCM under tension [10, 11] and compression [2, 16] have been
carried out. The strain rate dependences of the deformation curves of unidirectional
carbon fiber plastics under tension [17] and compression [13] in the direction trans-
verse to the direction of the fibers and shear in the plane of the layer [13] are obtained
at deformation rates of ~1000 1/s. Cherniaev et al. [6] obtained deformation diagrams
of unidirectional carbon fiber in the direction perpendicular to the direction of the
fibers in the range of strain rates 10–2000 1/s using the copra test method and the
SHPB method. In Akl and Baz [1], experimental studies of the dynamic behavior
and damping properties during compression of a thermoplastic polymer filled with
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carbon nanoparticles using the classical scheme of the SHPB method at strain rates
of 2000–7000 1/s were carried out.

The purpose of this work is to develop and test methods for studying the dynamic
characteristics of the strength of layered PCM during interlayer fracture: shear and
separation.

4.2 Determination of Interlayer Strength at Separation

This section describes an experimental scheme for determining the ultimate strength
at the tension of the PCM in the direction perpendicular to the reinforcement plane.
A sample from a special-shaped PCM is attached to measuring bars using a snap-in
(Fig. 4.1). The system is loaded with a tensile pulse. In order to fix the sample in the
measuring bars, special adapters are used. Centering of the sample is performed by
drilling holes in the samples into which the adapter guides are inserted. The sample
is connected to the adapters by means of an adhesive joint. The “sample-adapter”
assembly is screwed into the measuring bars. This mounting scheme allows you to
prepare several samples for testing at once, while in the case of gluing the sample
directly to the measuring bars, the testing process slows down noticeably.

To determine the ultimate stress at which the fracture of the sample occurs
according to the interlayer separation (perpendicular to the reinforcement plane σ3),
the following ratio is used:

σ+
3 = max

(
ET · ST · εT (t)

a2

)

where εT—the transmitted strain pulse registered in the output bar, ET , ST—Young’s
modulus and cross section area of the output bar and a—sample section side.

The left part of Fig. 4.2 shows the characteristic time dependences of the tensile
stress in the cross section of the sample (blue line) and the rate of tension (red dotted
line). The ultimate value of the stress was determined as the maximum values of
σ3+(t). At the same time, the rate of tension at the moment of fracture of the sample
was determined. The data obtained during the testing of carbon fabric layered PCM

Fig. 4.1 Test scheme for determining the tensile strength of the PCM in the normal direction
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Fig. 4.2 Results of the experiment

Fig. 4.3 Sample after the test

are shown in the right part of Fig. 4.2. It can be noted that the value of σ3+ decreases
with increasing loading speed.

The sample after the test is shown in Fig. 4.3.

4.3 Determination of Interlayer Shear Strength by Bending
a Short Beam

To determine the strength characteristics of the interlayer shear of the PCM under
dynamic loading, by analogy with the standard for static testing of composites ISO
14130:1997, experimentswere conducted on the three-point bending of a short beam.
The general test scheme is illustrated in Fig. 4.4. In the experiments, measuring bars
with a diameter of 20 mm were used. The radii of the rounding bars and the distance
between the support bars were selected according to standard ISO 14130:1997. The
geometric characteristics of the beam samples (length L, widthW and height H) are
shown in Fig. 4.4. The sample sizes were 45 × 12 × 6 mm. A compressive pulse
through a loading measuring bar loads the sample.

One of the fundamental assumptions and conditions of applicability of the Kolsky
or SHPB method for determining the characteristics of materials is the condition of
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Fig. 4.4 Geometric characteristics of the sample and the forces acting on the beam during the test

dynamic equilibrium of the sample during loading. This means that at each moment
of time, the force acting on the sample from the side of the loading measuring bar
F(t) must be equal to the sum of the forces acting on the sample from the side of the
support bars F1(t) + F2(t).

Numerical simulation was carried out to assess the conditions of dynamic equilib-
rium of the sample-beam in the used configuration of the test facility. The simulation
was carried out in LS-DYNA code (Customer number 1069197). The results are
shown in Fig. 4.5, which shows the history of changes in the forces acting on the
sample from the measuring bars. The numbers indicate 1–the force from the contact
“loading bar-sample”, 2–the doubled force from the contact “sample-support bar”
and 3–the doubled force calculated according to the data of the strain gauges on the
support bar. The following conclusions can be drawn: firstly, the force acting on the
sample from the side of the loading bar at each moment of time is very close in
magnitude to the force acting on the sample from the side of the output-measuring
bars. The time difference between the beginning of the action of the first force (F)
and the appearance of the force on the support bars (F1 and F2) is about 10 microsec-
onds, i.e., in the process of deformation, a dynamic equilibrium condition occurs in
the sample. Secondly, the information from the strain gauge located on the support
bar allows to determine accurately the force F1 (F2).

To process the experimental information obtained during the bending of a
composite beam, the following relations are used:

The deflection rate of the beam is equal to

Vb(t) = cI ·
(
ε I + εR

) − 0.5 · cT
(
εT1 + εT2

)

The deflection is calculated by the following formula:

Ub(t) =
t∫
0

Vb(τ )dτ

Force acting on the beam from the input bar is calculated by the following formula:
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Fig. 4.5 Forces acting on
the sample: 1–force from the
“loading bar-sample”
contact, 2–doubled force
from the “sample-support
bar” contact and 3–doubled
force calculated from the
data of the strain gauge on
the support bar

F(t) = F1(t) + F2(t) = ET · ST · (εT1 + εT2
)

where ε I , εR—incident and reflected strain pulsesmeasured in the input bar, εT1 , εT2 —
transmitted strain pulses registered in output bars, cI—the speed of sound of input
bar’s material, cT—the speed of sound of material of output bars and ET , ST—
Young’s modulus and cross section area of output bars.

Interlayer shear stress is calculated by the following formula:

τ(t) = 3

4
· F(t)

h · w
The ultimate interlayer shear stress is the maximum value of τ(t). . The valid tests

are only those in which a single or multiple bundle was formed in the sample at the
end of the beam (Fig. 4.6).

The scheme was tested on beams made of laminated PCM based on carbon fiber.
Photos of the samples after the test are shown in Fig. 4.7. Depending on the amplitude
of the loading wave (the velocity of the impactor), different modes of fracture of the
sample are observed. On the left side of the photo, a single crack appears on the
end of the sample, and on the right, there is an intense multiple delamination in the
loading zone.

The characteristic strain pulses recorded in the experiment are shown in Fig. 4.8.
It can be noted that the pulses recorded on the support bars are in good agreement
with each other, which indicates the correct alignment of the experimental setup and
the exact installation of the test sample.

Fig. 4.6 "Valid” types of fracture of the sample
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Fig. 4.7 Types of sample fracture

Fig. 4.8 Characteristic strain pulses recorded in the experiment for three-point bending of a short
beam

Figure 4.9 illustrates a comparison of the forces acting on the sample from the
loading (F) and support (F1 + F2) bars. It can be noted that these forces correspond
quite well, which indicates that the conditions of dynamic equilibrium of the sample-
beam during bending are met.

Based on the results of the experiment using the formulas given above, the
following parameters were calculated: the deflection rate of the beam, the force F
acting on the sample during the test and the magnitude of the shear stress τ . The left
part of Fig. 4.10 shows the history of changes in the deflection rate of the beam (blue

Fig. 4.9 Comparison of the
forces acting on the sample
from the measuring bars in
the bending test
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Fig. 4.10 Processing and results of the bending tests

line, left vertical axis) and the force F acting on it (red line, right vertical axis). For
each experiment, the maximum value of the force and the corresponding value of the
deflection velocity were determined. According to the maximum force F, using the
appropriate formula, the value of the ultimate strength of the PCM during interlayer
shear was calculated. The velocity dependences of the strength characteristics are
presented in the right part of Fig. 4.10. The color of the dots characterizes the fracture
modes of the sample: 1—corresponds to the appearance of a single crack at the end
of the sample, 2—the appearance of multiple delamination at the end of the sample
and 3—intense multiple delamination in the loading zone. It can be concluded that
the dynamic strength is 15% higher than the static value.

4.4 Determination of Interlayer Shear Strength
by Compression of Samples of Special Shape

In the second scheme, samples with incisions were tested to determine the interlayer
shear strength. The configuration of the sample and equipment for fixing the sample
in the measuring device is shown in Fig. 4.11.

For processing experimental information, the following relations are used:
The shear rate is equal to

Vsh(t) = cI ·
(
ε I + εR

) − cT · εT

Fig. 4.11 Sample configuration for determining interlayer shear strength
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Fig. 4.12 Characteristic strain pulses recorded in the compression experiment of samples with
incisions

Shear stress is calculated by the following formula:

τ(t) = ET · ST · εT
L · w

where ε I , εR—incident and reflected strain pulses measured in the input bar, εT—
transmitted strain pulse registered in output bar, cI—the speed of sound of input
bar’s material, cT—the speed of sound of material of output bars, ET , ST—Young’s
modulus and cross section area of output bars and L and W—length and width of
the working area of the sample.

The scheme was tested on beams made of laminated PCM based on carbon fiber.
The characteristic strain pulses recorded in the experiment are shown in Fig. 4.12.

Figure 4.13 illustrates a comparison of the forces acting on the sample from the
loading (F1) and support (F2) bars calculated according to the Kolsky formulas.
The presence of complex equipment for attaching the sample to the measuring bars
(forks + tightening clips) distorts the wave pattern. Massive elements lead to addi-
tional wave reflections. A drop appears at the beginning of the reflected pulse and,
accordingly, an outburst appears on the force, which is determined by the differ-
ence between the incident and reflected pulses, which does not reflect the force
acting on the sample, but is a superposition of forces acting on the sample and an
inert massive rigging. However, during the loading of the sample, the condition of
dynamic equilibrium takes place.

Based on the results of the experiment using the formulas given earlier, the
following parameters were calculated: the shear rate, the forceF acting on the sample
during the test and themagnitude of the shear stress τ . The left part of Fig. 4.14 shows
the history of changes in the shear rate (blue line, left vertical axis) and the force
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Fig. 4.13 Comparison of
the forces acting on the
sample from the measuring
bars in the shear test

F acting on the sample (red line, right vertical axis). The stress has several peaks.
The first corresponds to the destruction of the sample along the cut plane. During
the second peak, the parts of the sample are closed when the gap formed by the cut
is estimated. For each experiment, the maximum value of the force in the first peak
and the corresponding value of the shear rate were determined. According to the
maximum force F, the value of the strength of the PCM during interlayer shear was
calculated using the appropriate formula. The velocity dependences of the strength
characteristics are presented in the right part of Fig. 4.14. The points are grouped by
the thickness of the sample. Bluemarkers correspond to the data obtained on samples
with a thickness of 2 mm, and orange—on samples with a thickness of 6.5 mm. The
dynamic strength according to the specified test method turned out to be lower than
the static one.

Fig. 4.14 Processing and results of the experiment on compression of samples with incisions
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4.5 Determination of the Interlayer Shear Strength
of the PCM by Extrusion of the Middle
of the Parallelepiped Sample

To determine the interlayer shear strength of the PCM, a scheme was used to extrude
themiddle of the sample-parallelepiped (two-plane shift). Loading in theRSGsystem
was carried out by a compressive load. The general view of the experimental scheme
is shown in Fig. 15a. The equipment for loading sample 5 (Fig. 15b) in the SHPB
system (measuring bars 1 and 2) includes parts 3 and 4, as well as a guide 6 for
centering parts.

When loading the sample in the described tooling, it shifts along the planes
highlighted in red in Fig. 4.16. Samples of 25 × 25x10 mm were tested.

The following relations are used to process experimental information:
Shear rate:

Vsh(t) = cI ·
(
ε I + εR

) − cT · εT

Shear stress:

a b

Fig. 4.15 General view of the experimental scheme

Fig. 4.16 Geometric
characteristics of the sample
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Fig. 4.17 Characteristic strain pulses recorded in the extrusion experiment

τ(t) = ET · ST · εT
2 · a · h

where ε I , εR—incident and reflected strain pulses measured in input bar, εT—trans-
mitted strain pulse registered in output bar, cI—the speedof soundof input bar’smate-
rial, cT—the speed of sound of material of output bars, ET , ST—Young’s modulus
and cross section area of output bars and a and h are the length and width of the shear
zone.

The scheme was tested on beams made of laminated PCM based on carbon fiber.
The characteristic strain pulses recorded in the experiment are shown in Fig. 4.17.

Figure 4.18 illustrates a comparison of the forces acting on the sample from the
loading (F1) and support (F2) bars calculated according to the Kolsky formulas. It is
seen that the presence of adapters used to implement extrusion introduces distortions
into the wave pattern, as a result of which the conditions of dynamic equilibrium are
not met.

Based on the results of the experiment, the following parameters were calculated:
the shear rate, the force F acting on the sample during the test and the magnitude of
the shear stress τ . The force is determined by the strain in the output-measuring bar.
The left part of Fig. 4.19 shows the history of changes in the shear rate (blue line,
left vertical axis) and the force F acting on the sample (red line, right vertical axis).
For each experiment, the maximum value of the force and the corresponding value
of the shear rate were determined. According to the maximum force F, the value of
the strength of the PCM during interlayer shear was calculated using the appropriate
formula. The results of processing all experiments are illustrated in the right part
of Fig. 4.19. The asterisk corresponds to the static value of shear strength during
interlayer shear. The values of interlayer shear strength obtained in the dynamic
range were on average 25% lower than the static characteristic.
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Fig. 4.18 Comparison of forces acting on the sample from the measuring rods in the extrusion
experiment

Fig. 4.19 Processing and results of the extrusion experiments

4.6 Comparative Analysis of Schemes for Interlayer Shear

Figure 4.20 shows a comparison of the values of the strength of the PCM during
interlayer shear obtained by different methods. It can be noted that the data obtained
by extrusion (red triangles) are in good agreement with the data determined by the
dynamic compression of samples with incisions (orange and blue squares). The
strength characteristic determined by the method of bending a short beam turned out
to be noticeably higher.

4.7 Conclusions

As a result of the work performed, a number of experimental schemes and
corresponding experimental installations were created based on the technique of
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Fig. 4.20 Comparison of data obtained by different methods

measuring bars, which allow testing samples from PCM to determine the strength
characteristics of interlayer shear and separation depending on the loading speed.
The method of dynamic bending of a short beam does not allow varying the loading
conditions in a sufficiently wide range, since the shape of the fracture of the sample
changes depending on the intensity of the load. In addition, in this type of test, it
is impossible to assess the conditions of destruction by the shape under study (for
example, the shear rate). The scheme for testing a sample with incisions is asym-
metric.Despite the small thickness of the sample, due to geometric features, a bending
moment occurs, which can disrupt the isolation of the fracture mode by interlayer
shear. The most informative is the scheme with the extrusion of the middle part of the
sample in the form of a parallelepiped. The approbation of the schemes was carried
out on the example of a layered composite of woven reinforcement. A comparative
analysis of the data obtained according to the described schemes is performed.
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Chapter 5
Durability of High-Load Structures

Valentin S. Bondar and Dmitry R. Abashev

Abstract The article describes the constitutive model based on the applied inelas-
ticity theory—one of the combined hardening flow theories. The authors identify the
material functions closing the applied inelasticity theory and formulate the funda-
mental experiment. The life of structural materials in the case of non-isothermal
cyclic loading is predicted by analyzing the durability of the air-cell diesel’s edge
and the uncooled conical nozzle tip in the case of thermal cycling. Life estimates
basedon the applied inelasticity theory are compared to experimental data and conser-
vative life estimation methods. The authors also consider examples of estimating the
life of a durable power generation system’s structure. Loading modes resulting in
considerable life reduction are described.

Keywords The combined hardening flow theory · Life of structural materials ·
Experiment · Thermoviscoplasticity

5.1 Introduction

Reliable information on the damage accumulation processes in structural materials
is required to ensure long-term (up to several decades) safe use of critical facilities
(nuclear and thermal power generation systems, chemical, gas, oil, aerospace aviation
facilities, etc.). As structural elements reach the end of their nominal service life, there
appears a problem of extending such life and ensure safe use throughout it.

These goals may be reached only by fulfilling operational monitoring methods,
the primary objectives whereof include estimation of the worked-out service life
and prediction of the extendable life of the materials making up critical areas of the
most loaded structural elements on the basis of mathematical modeling of damage
accumulation processes using contemporary thermoviscoplasticity or inelasticity
theories.
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A large number of publications are dedicated to the issues of generating alter-
native variants of thermoviscoplasticity or inelasticity theories. See monographs,
reviews, and separate publications for the main theory-building trends and extensive
bibliography [1–34].

The applied variants of the combined hardening-based flow theory have become
the most widely used for practical calculations. The best evidence-based and widely
used for estimating the life of structural elements exposed to thermoviscoplastic
deformation characterized by repeated long-term thermomechanical stresses are
Bondar [2–6], Korotkih [16, 17] and Chaboche [7–12] theory variants. It ought to be
mentioned thatKorotkih andChaboche distinguish between elastic, plastic, and creep
deformations, whereas Bondar—between elastic and inelastic ones. That is why the
former variants belong to the thermoviscoplasticity theory, whereas the latter one—
to the inelasticity theory. Accordingly, evolutionary equations for the yield surface
radius, displacement (backstresses), and damage accumulation are in the former vari-
ants formulated separately for plasticity and creep,whereas in the latter one—only for
inelasticity. It ought to bementioned that the division of irreversible deformations into
plastic and creep ones is conventional in nature. Rapid processes are characterized
by smaller creep deformations; these are neglected in favor of plastic deformations.
Slower processes, though, are characterized by both plastic and creep deformations,
and their division is conventional in nature, as in that case the irreversible deformation
is one. Rapid deformation processes are usually characterized by viscous fractures
following damage accumulation in the grain body, whereas very slow processes—by
brittle fractures following damage accumulation along grain edges. That is why in
the former variants damage accumulation processes are divided and described with
different kinetic equations. The main drawback of the first approach consists in the
absence of interconnection between plasticity and creep processes characterizing
both deformations and fractures. This comes in contrast to experimental data [1,
13, 16, 17, 23, 32, 34]. The second approach takes the deformation process history
and interconnection of plasticity and creep into account a priori—a rapid process
affects the subsequent slow one and vice versa. As for fractures, the presence of
the kinetic equation to describe embrittlement among the theory’s equations makes
both viscous (in case of significant deformations and short-term processes, or if the
number of cycles is low) and brittle (in case of smaller deformations and longer-term
processes, or high-cycle fatigue) fractures possible. Therefore, this theory variant
allows simulating mixed types of deformations and fractures.

This article describes the main provisions and equations of the applied inelasticity
theory—one of the combined hardening flow theories. The authors identify the mate-
rial functions closing the applied inelasticity theory and formulate the fundamental
experiment. The life of structural materials in the case of non-isothermal cyclic
loading is predicted by analyzing the durability of the air-cell diesel’s edge and the
uncooled conical nozzle tip in the case of thermal cycling. Life estimates based
on the applied inelasticity theory are compared to experimental data and conserva-
tive life estimation methods. The authors also consider examples of estimating the
life of a durable power generation system’s structure. Loading modes resulting in
considerable life reduction are described.
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5.2 Main Provisions and Equations of the Applied
Inelasticity Theory

Thematerial is homogenous and initially isotropic. The article describes small defor-
mations of polycrystalline structural steel grades and alloys taking place at temper-
atures not characterized by phase transitions and at such deformation rates that
dynamic effects may be neglected. Inelastic deformationmay result only in the mate-
rial’s deformation-induced anisotropy. Below is a summary of the basic equations
for the applied inelasticity theory.
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Here εi j , εei j , ε
p
i j—total, elastic and inelastic tensors; T—temperature; σ0 =

σi i/3—average stress; δi j—Kronecker delta; σi j , si j—stress tensor and devi-
ator; ai j—backstress deviator; C—yield surface radius (size); ε

p
u∗—accumulated

inelastic deformation; s∗
i j—active stress deviator; G—shear modulus; ω—damage

(ω ∈ [0;1]); W—fracture power.
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The equations above belong to the primary fundamental version of the inelasticity
theory—applied inelasticity theory [2–6]—one of the single-surface flow theories for
combined (translation/isotropic) hardening characterized by isotropic expansion or
narrowing of the loaded surface and displacement of the loaded surface’s center.
For the yield surface radius, we formulated the evolutionary equation to express
isotropic hardening, non-isotermal transition, and annealing softening. The evolu-
tionary equation for the backstress deviator features three terms, i.e. the yield surface
displacement rate deviator may be divided into inelastic deformation rate, displace-
ment, and inelastic deformation deviators. The first three addenda of this evolutionary
equation express an anisotropic hardening, and the subsequent one—non-isothermal
transition and recrystallization (softening). It ought to be mentioned that this theory
does not distinguish between plastic and creep deformations; all deformations are
inelastic. We also formulated kinetic damage accumulation equations to describe
damage accumulation processes, where we adopt the yield of backstresses charac-
terizing inelastic deformations as the power expended for damaging the material.
Apart from the addendum to express damage accumulation caused by backstresses,
kinetic equations contain the addenda to ensure non-isothermal transition, softening,
and healing.

5.3 Material Functions and Fundamental Experiment

The applied inelasticity theory is closed by the following material functions:

• E (T ), ν (T ), αT (T )—elastic parameters;
• Ea (T ), σa (T ), β (T )—moduli of anisotropic hardening;
• Cp

(
T , εP

u∗
)
—isotropic hardening function;

• W0 (T )—initial fracture energy;
• nα(T )—damage accumulation process’s non-linearity parameter equal to 1.5 for

almost all structural steel grades and alloys;
• bc (T ), ba (T ) , nc(T ) , na (T ), mω(T )—isotropic and anisotropic creep

parameters;
• bλ (T ) , bρ (T ), nλ(T ) , nρ (T )—healing and softetning parameters.

The following general (fundamental) experimental data set for different temper-
ature levels is sufficient to define material functions:

• elastic parameters E, ν, αT as defined by conservative methods;
• uniaxial extension σ1(ε) plastic deformation (up to 0.05–0.1) diagram;
• uniaxial extension σ2(ε) plastic deformation (up to 0.05–0.1 after compression to

deformation of 0.01–0.02) diagram;
• cyclic uniaxial extension/compression data at unchanging plastic deformation

range: number of cycles to failure (macrocrack) N f and dependence of maximum
stress values σ+

N during a cycle (in the end of a cycle) on a number of loading
cycles N (plastic deformation range �εP of ca. 0.01–0.02);
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• creep data for uniform extension stress: dependence of the minimal creep rate on
strain throughout the whole range of strain change from short-term to rather long
creep;

• long-term durability data: a long-term extension durability curve that includes all
three segments and a long-term compression durability curve that corresponds to
the second segment only.

The computational-experimental method of defining material functions on the
basis of the fundamental experiment is detailed in Bondar publications [2–6], which
list material functions for a range of structural steel grades and alloys.

5.4 Air-Cell Diesel’s Durability

Operational experience demonstrates that increasing diesel power leads to the prema-
ture breakdown of forces due to cracking. Extension of cracks perpendicular to the
air cell diesel’s edge is typical of deep chambers. Variable thermal stresses caused
by transient diesel operation modes have a prevailing effect over fractures of forcer
combustion chambers. It appears reasonable to perform accelerated testing of test
samples on engineless rigs at the new forcer design development stage. An engineless
thermal rig heats forcers with radiant energy (halogen lamps), while compressed air
blow-off ensures cooling of forcer combustion chamber edges.

Analysis of computed stressed-deformed states of diesel forcers demonstrated
a virtually uniaxial stressed state on the combustion chamber edges where cracks
appear. It ought to be mentioned that hoop stresses are one hundred times larger than
other stressed state components.

All the aforesaid helped to develop a computational-experimental method to
predict the durability of combustion chamber edges. It consists in the experimental
determination of the edge’s temperature and radial displacement (hoop deformation)
as functions of time in the thermal loading cycle, as well as in the calculation of the
stressed-deformed state kinetics and the number of cycles to fracture (macrocrack)
on the basis of the applied inelasticity theory.

We analyzed two thermal loading programs for an AL25 aluminum alloy-made
forcer differing in heating and cooling durations. The heating and cooling duration in
the first programwas 47+ 47= 94 s. In the second program, it was 72+ 72= 144 s.
Figure 5.1 representes experimental changes of the edge’s temperature T and hoop
deformation εθ , as well as calculated changes of the force hoop deformation εθ S (the
whole deformation excluding the temperature one) and of the inelastic hoop defor-
mation εP

θ for the second thermal loading program. The stabilized cyclic loop for the
second thermal loading program is given in Fig. 5.2. A back loop in the extension
stress area is caused by intensive heat transfer in the forcer cooling mode. Inelastic
deformation ranges for the first and the second programs are 0.00047 and 0.00121,
respectively. The estimated number of cycles for the first programwas 1,870,whereas
the experimental one varied from 1,900 to 2,200; the estimated number of cycles for



5 Durability of High-Load Structures 61

the second program was 260, whereas the experimental one was 300. The compar-
ison of estimated and experimental numbers of cycles to the cracks caused by non-
isothermal loading of the combustion chamber edge shows that they are satisfactory.
It ought to be mentioned that it is rather problematic to use Coffin’s test to predict
durability, as the available plasticity of the AL25 aluminum alloy strongly depends
on the temperature.

Fig. 5.1 Experimental
changes of the combustion
chamber edge’s temperature
and hoop deformation

Fig. 5.2 AL25 aluminum
alloy. Stabilized cyclic loop
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Fig. 5.3 Geometric
properties of the liquid
rocket engine’s nozzle tip

5.5 Low-Cycle Durability of the Conical Nozzle Tip

The study object is represented by a single-layer truncated conical shell (Fig. 5.3).
The shell’s back edge is supported by a stiffening ring to ensure the required stiffness.
Shell wall’s thickness is 1.0 mm, structural material—BZh100 heat-resistant steel.
The structure was exposed to multiple intensive heating instances (immersion into
melted salt) and subsequent cooling (by means of air blow-off and immersion into
liquid nitrogen) in a laboratory. Figure 5.4 contains experimental temperature change
curves for the shell (AB segment) and the stiffening ring (CD segment) throughout
the full thermal cycle. There is a significant alternating temperature gradient of the
generating structure in the BC segment of the shell/stiffening ring transition. The
applied inelasticity theory was used to calculate the kinetics of the stressed-deformed
state.We also evaluated the low-cycle durability of the nozzle tip. Figure 5.5 contains
a calculated trajectory of the inelastic deformations throughout three thermal cycles
for point B of the structure where the fracture took place (separation of the stiffening
ring from the shell). The estimated number of thermal cycles to structural fracture
was 50, whereas experimental fractures took place after 46–53 thermal cycles. The
number of cycles to fracture estimated on the basis of the Novozhilov-Rybakina test
is 33, whereas on the basis of the deformation kinetic test it is 250. The aforegiven
studies demonstrate that the loads in the analyzed point of the structure are complex
and non-isothermal, and that durability estimates (of the number of cycles to fracture)
based on the Novozhilov-Rybakina test and the deformation kinetic test are either
understated (almost two times) or overestimated (almost five times). At the same
time, applied inelasticity theory-based calculations satisfactorily correspond with
the experimental data.

5.6 Prediction of Life of a Power Generation System

We calculated the life of the power generation system’s material in the worst loaded
point of the shelled structure made of structural stainless steel for two complex
non-isothermal loading modes. Laws of changes for two stress components (soft
loading) and the temperature corresponding to the first mode are given in Fig. 5.6. In
this loading mode, the structure is taken to the heavy-rate mode that lasts for one year
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Fig. 5.4 Experimental
temperature changes of tip’s
segments

Fig. 5.5 BZh100
heat-resistant alloy.
Calculated trajectory of
inelastic deformations

within one hour; after that, the stress and the temperature decrease within two hours,
and the calculation continues with the nominal mode until the structural material’s
fracture. The total time to fracture was 99,000 h (11.3 years).

The second mode is determined by the laws of stress and temperature given in
Fig. 5.7. The structural material remains at the nominal loading mode for five years;
after that it is taken to the heavy-ratemode that lasts for one yearwithin one hour; after
that, the stress is taken back to the nominal mode. The structural material fractured
after 119,000 h (13.6 years), i.e. the structure’s life increased significantly.

The calculation demonstrates that the material accumulates damage non-linearly
and that this process depends on the sequence of heavy-rate and nominal modes. It is
obvious that linear addition-based life estimates in the case of the loading according
to the laws given in Figs. 5.6 and 5.7 will be the same, as the only difference between
them is the sequence of heavy-rate and nominal modes. The significant difference
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Fig. 5.6 First loading mode

Fig. 5.7 Second loading mode

in the time to fracture obtained using different loading programs is caused by the
non-linear nature of the structural material’s damage accumulation.

5.7 Conclusion

Having analyzed estimates and actual life of materials and structures exposed to
repeated and long-term thermomechanic loading causing inelastic deformation, we
may distinguish between the following several peculiarities of life-reducing loads:



5 Durability of High-Load Structures 65

• the non-isothermal nature of loading results in significant uncertainty of life esti-
mates, especially when the available material plasticity largely depends on the
temperature;

• complex non-isothermal loading makes life the least predictable. A sufficiently
significant life prediction requires adequate simulationof deformation anddamage
accumulation processes.

• the life of durable power generation systems in the nominal mode following the
heavy-rate mode in the very beginning of operation is considerably lower than
when a power generation system is taken to the heavy-rate mode after having
operated in the nominal mode.

The applied inelasticity theory variant analyzed herein allows for adequately
predicting the life of materials and structures exposed to repeated and long-term
thermomechanical loading.

References

1. Birger IA, Shorr BE et al (1975) Termoprochnost’ detalej mashin: Spravochnik. Mashinos-
troenie, Moscow

2. Bondar VS (1990) Neuprugoe povedenie i razrushenie materialov i konstrukcii pri slozhnom
neizotermicheskom nagruzhenii: dis d-ra fiz.-mat.nauk. Izd-vo MAMI, Moscow

3. Bondar VS (2004) Neuprugost’. Varianty teorii. FIZMATLIT, Moscow
4. Bondar VS, Danshin VV (2008) Plastichnost’. Proporcional’nye i neproporcional’nye

nagruzhenija. FIZMATLIT, Moscow
5. Bondar VS (2013) Inelasticity. Variants of the theory. Begell House, New York
6. Bondar VS, Abashev DR (2018) Applied theory of inelasticity. PNRPUMech Bull 4:147–162
7. Chaboche JL, Rousselier G (1983) On the plastic an viscoplastic constitutive equations. ASME

J Pres Vessel Techn 105:153–164
8. Chaboche JL (1989) Constitutive equation for cyclic plasticity and cyclic viscoplasticity. Int J

Plast 5(3):247–302
9. Chaboche JL (1991) Thermodynamically based viscoplastic constitutive equations: theory

versus experiment. In: ASME winter annual meeting, Atlanta, GA (USA), pp. 1–20
10. Chaboche JL (1993) Cyclic viscoplastic constitutive equations, parts I and II. ASME J Appl

Mech 60:813–828
11. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int

J Plast 24:1642–1692
12. Besson J, Cailletaud G, Chaboche J-L, Forest S, Blétry M (2010) Non-linear mechanics of

materials. Springer, Heidelberg
13. Kachanov LM (1960) Teorija polzuchesti. FIZMATLIT, Moscow
14. Il’jushin AA (1963) Plastichnost’. Osnovy obshchei matematicheskoi teorii. Izd. AN SSSR,

M.
15. Il’jushin AA (1990) Mehanika sploshnoj sredy. Izd-vo MGU, Moscow
16. Korotkih JuG, Volkov IA (2008) Uravnenija sostojanija vjazkouprugoplasticheskih sred s

povrezhdenijami. FIZMATLIT, Moscow
17. Korotkih JuG, Volkov IA, Igumnov LA (2015) Prikladnaja teorija vjazkoplastichnosti.

Monografija. Izd-vo Nizhegorodskogo gos.universiteta, Nizhnij Novgorod
18. Krempl E (1974) The influence of state of stress on low-cycle fatigue of structural materials:

a literature survey and interpretive report. Am Soc Test Mater Spec, Techn Publ, no 549, pp
1–46



66 V. S. Bondar and D. R. Abashev

19. Krempl E, Lu H (1984) The hardening and dependent behavior of fully annealed AISI Type
304 stainless steel under biaxial in phase and out-of-phase strain cycling at room temperature.
ASME J Eng Mater Technol 106:376–382

20. Krieg RD (1975) A. Practical Two Surface plasticity Theory. J Appl Mech 42:641–646
21. Krieg RD, Swearengen JC, Rhode RW (1978). A physicallybased internal variable model for

rate-dependent plasticity. In: Proc. ASME/CSME PVP Conference, pp 15–27
22. Lindholm US, Chan KS, Bodner SR, Weber RM, Walker KP, Cassenti BN (1985) Constitutive

modeling for isotropic materials (HOST). Second annual contract report, NASA CR, 174980
23. Malinin NN (1975) Prikladnaja teorija plastichnosti i polzuchesti. Mashinostroenie, M., 400 p
24. Miller AK (1978) A unified approach to predicting interactions among creep, cyclic plasticity,

and recovery. Nucl Eng Des 51:35–43
25. Miller KJ, Brown MW (1984) Multiaxial fatigue: a brief review. In: Adv. Fract. Res. Proc. 6th

Int. Conf. New Delhi 4–10, vol I, pp 31–56
26. Miller AK, Tanaka TG (1988) NONSS: a new method for integrating unified constitutive

equations ander complex histories. Trans ASME: J Eng Mater and Technol 110(3):205–211
27. Novozhilov VV, Kadashevich JuI (1990) Mikronaprjazhenija v konstrukcionnyh materialah.

Mashinostroenie, Leningrad
28. Ohno N (1982) A constitutive model of cyclic plasticity with a nonhardening strain region. J

Appl Mech 49:721–727
29. Ohno N (1990) Recent topics in constitutive modeling of cyclic and viscoplasticity. ApplMech

rev 43:283–295
30. Ohno N, Wang JD (1991) Transformation of a nonlinear kinematics hardening rulle to a

multisurface form under isothermal and nonisothermal conditions. Int J Plast 7:879–891
31. Ohno N, Wang JD (1993) Kinematics hardening rule with critical state of dynamic recovery.

Parts I and II. Int J Plast 9:375–403
32. Rabotnov JN (1966) Polzuchest’ jelementov konstrukcij. Fizmatgiz, M.
33. Temis JM (2005) Modelirovanie plastichnosti i polzuchesti konstrukcionnyh materialov GTD.

Materialy 49-oj Mezhdunarodnoj nauchno-tehnicheskoj konferencii AAI «Prioritety razvitija
otechestvennogo avtotraktorostroenija i podgotovki inzhenernyh nauchnyh kadrov». Shkola-
seminar «Sovremennye modeli termovjazkoplastichnosti». Chast’ 2. MAMI, Moscow, pp 25–
76

34. Vasin RA (1987) Jeksperimental’no-teoreticheskoe issledovanie opredeljajushhih sootnoshenij
v teorii uprugoplasticheskih processov. In: Avtoref. diss. d.f-m.n. MGU, Moscow



Chapter 6
Monotonic and Cyclic Loading Processes

Valentin S. Bondar and Dmitry R. Abashev

Abstract Experimental analysis of 12X18H10T stainless steel specimens subjected
to strain-controlled cyclic loading that comprises sequential monotonic and cyclic
loading under uniaxial tension-compression and standard temperature is used to
identify some features and dissimilarities of isotropic and anisotropic hardening
processes that occur during monotonic and cyclic loading. In order to describe these
features in terms of the plasticity theory (the Bondar model), which can be classi-
fied as a combined-hardening flow theory, plastic-strain redirection criterion and
the memory surface concept are introduced in the plastic-strain tensor space so
as to separate monotonic and cyclic strain. Evolution equations for isotropic and
anisotropic hardening processes are derived to describe the monotonic-to-cyclic and
cyclic-to-monotonic evolutions in transients. The basic experiment used to deter-
mine the material functions consists of three stages: cyclic loading, monotonic
loading, and subsequent cyclic loading until fracture. The results of the basic exper-
iment are fundamental to the proposed method for identifying the material func-
tions. Basic-experiment results and the identification method are used to identify
the room-temperature material functions of 12X18H10T stainless steel. The paper
compares the computational analysis and the experimental analysis of stainless steel
subjected to a strain-controlled fatigue test (loading) in five stages: cyclic, mono-
tonic, cyclic, monotonic, and cyclic loading until fracture. It further compares the
computational and experimental kinetics of the stress-strain state throughout the
deformation process. Changes in the amplitude and mean cycle stress during the
cyclic stress stages are subsequently analyzed. These stages are characterized by
hysteresis loop stabilization. Computational and experimental results fit reliably. The
theory adequately describes the processes of how the kinetics, the amplitudes, and
the mean cycle stress alter when subjecting a specimen to strain-controlled loading,
which enables a more adequate description of stress-controlled loading, especially
when loading is non-stationary and non-symmetric.
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Keywords Experiment · Strain-controlled cyclic loading · Plasticity ·
Combined-hardening flow theory

6.1 Introduction

Non-stationary asymmetric cyclic strain is a deformation process that is a sequence of
monotonic and cyclic loadings. It is a very complex problem tomodel such processes
mathematically when subjecting a specimen to strain-controlled cyclic loading, even
more so in the case of stress-controlled loading. Besides, such loadings are associated
with the hard-to-model hysteresis loop ratcheting and stabilization. As for the assess-
ment and prediction of the resource under non-stationary and asymmetric cyclic
loading conditions, fatigue damage accumulation must be determined throughout
the deformation process given the significant non-linearity of such damage.

Mathematical modeling of strain and damage accumulation when subjecting a
specimen to cyclic loading ismainly based on variants of plasticity theories belonging
to the class of combined (isotropic and anisotropic) hardening plastic-flow theories
as reviewed and analyzed in [1, 2, 4–12, 14–34, 37–40]. In this paper, such modeling
is based on the Bondar model, a version of plasticity theory [7–9, 11, 12] (Bondar
et al., 2013) which, as shown in [13], is the most adequate version for describing
cyclic loading-induced strain and fracture, as compared to the Korotkikh [21, 25,
33–35] or Chaboche [6, 14, 18] models. This paper presents the basic equations of
the Bondar Model.

In order to identify the features of strain induced bynon-stationary and asymmetric
cyclic loading, strain-controlled loading is analyzed by subjecting 12X18H10T stain-
less steel specimens to tension–compression tests in a sequence of five stages: cyclic,
monotonic, cyclic, monotonic, and cyclic loading until fracture. Analysis of the
cyclic-to-monotonic and monotonic-to-cyclic transients shows the need to separate
the monotonic and the cyclic deformation processes. To that end, a plastic-strain
redirection criterion and the memory surface concept for separating the monotonic
and cyclic deformation processes are introduced in the plastic-strain space. Evolu-
tion equations of isotropic and anisotropic hardening parameters for monotonic and
cyclic loading are further introduced in the Bondar plasticity theory equations.

Separation of the monotonic and cyclic strain is also a feature of the Korotkikh
model [34], where it is only used to describe the evolution of isotropic hardening. The
memory surface in this model is constructed in the backstress deviator space while
determining the maximum backstress intensity value in the deformation process. In
[25, 34], the evolution of anisotropic hardening in a plastic-strain deviator space is
described by introducing a memory surface while determining the maximum plastic-
strain intensity amplitude in the deformation process. The paper [36] uses the same
memory surface to describe the anisotropic hardening evolution as in the case of
isotropic hardening. All these approaches [25, 34, 36] have one significant drawback:
the resulting memory surface size can potentially decrease and increase at the end
of the cycle, resulting in a chance of it either both monotonic or cyclic loading at the
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end of each cycle. Besides, the evolution equation for the maximum cyclic loading
backstress intensity means that this value is always diminishing, although it should
remain constant in a stabilized cycle. In conclusion, it should also be noted that there
is no documented adequate rationale for the considered approaches [25, 34, 36].

Taking into account the identified features of monotonic and cyclic loading for
the refined equations of the modified Bondar plasticity theory, this research has
defined the basic experiment as well as the method for identifying the material func-
tions. The material functions of 12H18N10T stainless steel at room temperature are
obtained. This paper compares the computational analysis and experimental anal-
ysis of 12H18N10T stainless steel subjected to strain-controlled loading that is a
sequence of monotonic and cyclic loadings. The kinetics of the stress–strain state
is analyzed, and changes in the amplitude and mean stress of the cycle during the
cyclic loading stages are taken into account.

6.2 Basic Equations of the Plasticity Theory

A simplified version of the plasticity theory [10, 11, 13], which is a partial version
of the theory of inelasticity [7, 9], is considered. This version is a single-surface
combined-hardening flow theory. Its applicability is limited to small strains of
initially isotropic metals at temperatures that entail no phase transformations, at
such strain rates where dynamic and rheological effects are negligible.

Below is a summary of the basic equations for this plasticity theory version.

1. ε̇i j = c + ε̇
p
i j .

2. ε̇ei j = 1
E

[
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Here, ε̇i j , ε̇ei j , ε̇
p
i j are the total, elastic, and plastic-strain rate tensors;

σi j , si j , s∗
i j , ai j is the stress tensor, stress, active-stress, and backstress deviators;

ε
p
u∗ is the accumulated plastic strain; ω is the damage; E, ν are Young’s modulus
and Poisson’s ratio; C is the radius (size) of the yield surface; a(1)

i j , a(2)
i j , a(m)

i j are
Type I, II, and III backstresses (yield surface center displacement deviator); and
qε, g(m), g(m)

a are the defining functions, the relationship whereof to the material
functions is described below.

6.3 Monotonic and Cyclic Loading of 12X18H10T Stainless
Steel

The paper presents the results of experimenting with 12X18H10T stainless steel
subjected to uniaxial strain-controlled loading, which is a sequence of monotonic
and cyclic loading stages. The experiment consists of five loading stages:

• Stage 1 involves cyclic loading at ε(1)
m = 0, 
ε(1) = 0.016, and N (1) = 20

cycles;
• Stage 2 involves monotonic tension test up to ε(2) = 0.05;
• Stage 3 involves cyclic loading at ε(3)

m = 0.05 , 
ε(3) = 0.012, and N (3) = 200
cycles;

• Stage 4 involves monotonic tension up to ε(4) = 0.1;
• Stage 5 involves cyclic loading at ε(5)

m = 0.1, 
ε(5) = 0.012 , and N (5) = N f

cycles until fracture.

Here, ε(i)
m is the mean cycle strain; 
ε(i) is the cycle strain amplitude; ε(i) is the

final monotonic strain; N (i) is the number of cycles.
Figure 6.1 shows the experimental diagram of the 12X18H10T steel strain that

covers all five loading stages. The cyclic diagrams of Stages I, II, and III show the
loops for the first cycle and the last cycle. Experimental results are analyzed below.

Cyclic deformation at Stage I entails a cyclical hardening of 12X18H10T steel at
the initial stage, which slows down to insignificant levels

(
dCp/dε

p
u∗ ≈ 1M

∏
a
)
;

then the steel becomes virtually cyclically stable.
Stages III and V feature stabilization of the hysteresis loop. These stages are

identical stabilization-wise, as if therewas no pre-history of strain. Thus, themodulus
Ea , which is part of the Type I backstress evolution equation and is necessary for
loop stabilization, must have the same initial value Ea = Ea0. That said, during
monotonic post-cyclic loading, when Ea is reduced to nearly zero, the modulus Ea

must quickly return to its initial value Ea0.
Hardening is constant at Stages II and IV of monotonic loading. Here, hardening

is determined by the modulus Ea0 and to a lesser extent by the modulus of monotonic
isotropic hardening.
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Fig. 6.1 Stress–strain diagram of 12X18H10T steel

Thus, the behavior of the modulus Ea that describes the anisotropic hardening,
and therefore the behavior of the isotropic hardening parameters, will depend
significantly on whether the strain is cyclic or monotonic.

Memory surface that limits the cyclic deformation area is introduced in the plastic-
strain tensor space ε

p
i j in order to separate monotonic and cyclic strain. The surface

is determined by the position of its center ξi j and its radius (size) Cε. To compute
the center and size of the surface, two plastic-strain tensors ε

p(1)
i j and ε

p(2)
i j are intro-

duced to define the surface boundaries. These variables are zero as strain begins.
The displacement and size of the memory surface are determined at the time plastic
strain is redirected. The following condition is assumed as the redirection criterion:

ε̇
p
i j(t−0)ε̇

p
i j(t) < 0, (6.1)

where ε̇
p
i j(t) is the current plastic-strain rate tensor; ε̇

p
i j(t−0) is the plastic-strain rate

tensor at the preceding time point.
At this moment, the change in the boundaries, center, and size of the yield surface

is described based on the following relationships:

ε
p(2)
i j = ε

p(1)
i j , (6.2)

ε
p(1)
i j = ε

p
i j , (6.3)
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ξi j = ε
p(1)
i j + ε

p(2)
i j

2
, (6.4)
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[
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3

(
ε
p(1)
i j − ε

p(2)
i j

2

) (
ε
p(1)
i j − ε

p(2)
i j

2

)] 1
2

. (6.5)

Then the condition of cyclic strain is the strain within the memory surface

[
2

3

(
ε
p
i j − ξi j

) (
ε
p
i j − ξi j

)] 1
2

≤ Cε (6.6)

Outside the memory surface, the strain is monotonous.
Based on the above peculiarities of monotonic and cyclic loading, the following

equations are derived for the modulus Ea and backstress defining functions:

g(1) = Ea, g
(2) = β(2)σ (2)

a , g(2)
a = −β(2), (6.7)

(6.8)

a(m)
u =

(
3

2
a(m)
i j a(m)

i j

) 1
2

m = 3, ..., M

Ėa =
⎧
⎨

⎩

−KE

(
Ea
Ea0

)nE

ε̇
p
u∗ cyclic loading,

ME

(
Ea0−Ea
Ea0

)
ε̇
p
u∗ monotonic loading,

(6.9)

g(1)
a =

{
1
Ea

d Ea

d ε
p
u∗

cyclic loading,

0 monotonic loading.
(6.10)

Therefore, the followingmaterial functions need to be derived in order to describe
backstresses:

Ea0, σ (m)
a , β(m) are the moduli of anisotropic hardening;

KE , nE , ME are the parameters of anisotropic hardening when subjecting the
material to cyclic and monotonic strain.

The results of the experiment (Fig. 6.1) are used to define thesematerial functions.
Anisotropic hardening modulus Ea0 is found by the formula

Ea0 = σ (3)
m

ε
p(3)
m

, (6.11)

where σ (3)
m is the mean stress in the first Stage III cycle; ε

p(3)
m is the mean plastic

strain at the first cycle Stage III cycle.
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The moduli of anisotropic hardening σ (m)
a and β(m) are found by processing the

cyclic diagramof the last Stage I semi-cycle as per the procedure described in [10, 11].
The anisotropic hardening parameters KE and nE are found based on the results

of the hysteresis loop stabilization at Stages III and V. To that end, the dependence
in the coordinates

YE = ln

[
σm(N − 1) − σm(N )

2
ε p ε
p
m

]
, (6.12)

XE = ln

[
σm(N )

ε
p
m Ea0

]
(6.13)

is constructed,whereN is the cycle number;σm(N ) is themean stress of theN th cycle;

ε p is the plastic-strain amplitude; ε

p
m is the mean plastic strain. The dependence

obtained is approximated by the linear function

YE = aE XE + bE . (6.14)

Thus,

KE = exp(bE ), nE = aE . (6.15)

The parameter of anisotropic hardeningME of a specimen subjected tomonotonic
loading is determined from the considerations of restoring the parameter Ea from 0
to the value Ea0, whereby plastic strain changes under monotonic loading over ε

p
st .

Thus, the parameter ME shall be determined by the formula

ME = Ea0

ε
p
st

. (6.16)

Having found the backstresses over the entire process from Stage I to Stage V,
one can determine the behavior of the yield surface size (radius), i.e. the change in
isotropic hardening in cyclic-to-monotonic andmonotonic-to-cyclic strain transients.

Figure 6.2 shows the change in the yield surface size (functional C) throughout
the deformation process from Stage I to Stage V.

The dotted line in Fig. 6.2 shows the function of isotropic hardeningC = Cp
(
ε
p
u∗

)

induced by cyclic loading. Analysis of the results, presented in Fig. 6.2, shows that
the transition from cyclic to monotonic strain (Stages II and IV) is associated with
an increase in the intensity of isotropic hardening. The transition from monotonic
to cyclic strain (Stages III and V) is associated with a slowdown in such isotropic
hardening, as it tends to be isotropic C = Cp

(
ε
p
u∗

)
when subjecting the specimen to

cyclic strain.
Based on the above peculiarities of how isotropic hardening is altered by cyclic or

monotonic loading, the following dependence is assumed for the defining function
of isotropic hardening:
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Fig. 6.2 Yield surface-size change

qε =
⎧
⎨

⎩

[
dCp

dε
p
u∗

− KC

(
C−Cp

Cp

)nC ]
cyclic loading,

[
dCp

dε
p
u∗

+ MC

]
monotonic loading.

(6.17)

Thus, to describe such isotropic hardening, the following material functions must
be defined:

Cp
(
ε
p
u∗

)
is the function of isotropic hardening induced by cyclic loading;

KC , nC , MC are the moduli of isotropic hardening induced by cyclic and
monotonic loading.

These material functions are defined using the experiment results, see Fig. 6.2.
The function of isotropic hardening induced by cyclic loadingCp

(
ε
p
u∗

)
is determined

based on the surface-size changes at Stages III and V; see the dotted curve in Fig. 6.2
and I.

Cyclic loading isotropic hardening parameters KC and nC are found from the
results of decreasing the yield surface size at Stages III and V. To that end, a
dependence is constructed in the coordinates

YC = ln

[
d

(
Cp − C

)

dε
p
u∗

]

, (6.18)

XC = ln

[(
C − Cp

)

Cp

]

. (6.19)
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Table 6.1 Material functions of 12X18H10T steel

E, MPa ν Ea0,
MPa

σ
(2)
a ,MPa β(2) KE , MPa nE ME ,

MPa
KC ,
MPa

nC MC ,
MPa

2 · 105 0.3 800 140 260 1, 4 · 104 3.5 4 · 104 148 1.4 960

σ
(3)
a , MPa β(3) σ

(4)
a , MPa β(4) σ

(5)
a , MPa β(5) Wa , MJ/M3 nα

45 5000 41 2000 36 1100 1830 1.5

Table 6.2 Isotropic hardening function of 12X18H10T steel

ε
p
u∗ 0 0.0003 0.0006 0.0014 0.0045 0.006 0.01 0.025

Cp , MPa 160 125 110 100 65 50 51 57

ε
p
u∗ 0.1 0.15 0.3 0.45 0.6 1 8 25 45

Cp , MPa 85 90 105 110 115 115 121 135 159

The dependence obtained is approximated by the linear function

Y = aC XC + bC . (6.20)

Thus

KC = exp(bC), nC = aC . (6.21)

The parameter of isotropic hardening MC induced by monotonic strain is found
from the slope of the strain curve at Stages II and IV using the formula

MC = dσ

dε p
− Ea0 − dCp

dε p
(6.22)

6.4 Material Functions of 12X18H10T Stainless Steel

Material functions have been derived based on the results of room-temperature
experiments with 12X18H10T stainless steel; see Tables 6.1 and 6.2.

6.5 Verification of the Modified Plasticity Theory

To verify the modified plasticity theory, the researchers have computed the kinetics
of the stress–strain state of 12X18H10T stainless steel subjected to strain-controlled
cyclic and monotonic loading according to the five-stage program described in
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Fig. 6.3 First Stage I cycle

Section 6.2. Computation uses the material functions per Section 6.3. Figures 6.3,
6.4, 6.5, 6.6, and 6.7 present a comparison of the computed (solid curves) and experi-
mental (open circles) results. The dotted curves show the results based on the variant
[13] of the modified Bondar model. Figure 6.3 shows the cyclic diagram of the first
Stage I cycle; Fig. 6.4 shows the 20th (last) Stage I cycle, the monotonous loading at
Stage II, and the first Stage III cycle; Fig. 6.5 shows the 200th (last) Stage III cycle,
the monotonous loading at Stage IV, and the first Stage V cycle. Variations in the
stress amplitude and mean cycle stress at Stages I, III, and V are shown in Figs. 6.6
and 6.7.

There is a significant improvement in the description of the stress–strain state
kinetics based on the variant proposed herein, as compared to the previously [13]
modified model. As for the changes in the amplitude and mean stress of the cycles,
the proposed version adequately describes these rather complex processes.

6.6 Conclusions

Analysis of the stainless steel experiments leads to a conclusion that the processes
of isotropic and anisotropic hardening vary significantly depending on whether the
strain is monotonic or cyclic. Monotonic-to-cyclic and cyclic-to-monotonic strain
transitions are associated with hardening transients.

In the light of the identified features of monotonic and cyclic loading, the equa-
tions of the modified Bondar plasticity theory have been refined. The researchers
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Fig. 6.4 Last Stage I cycle, Stage II, and first Stage III cycle

Fig. 6.5 Last Stage III cycle, Stage IV, and first Stage V cycle

have defined the basic experiment, derived the material-function identification
method, and obtained suchmaterial functions for 12X18H10T stainless steel at room
temperature.
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Fig. 6.6 Stress peak-to-peak amplitude

Fig. 6.7 Mean stress

The paper compares the results of computational and experimental studies
of 12X18H10T stainless steel subjected to strain-controlled loading, a process
consisting of a sequence ofmonotonic and cyclic loadings. Stress–strain state kinetics
has been analyzed. Changes in the amplitude and mean stress of the cycle during
cyclic loading have been dwelled upon. Computational and experimental results fit
reliably.



6 Monotonic and Cyclic Loading Processes 79

The theory adequately describes the processes of how the kinetics, the amplitudes,
and the mean cycle stress alter when subjecting a specimen to strain-controlled
loading, which enables a more adequate description of stress-controlled loading,
especially when loading is non-stationary and non-symmetric.
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Chapter 7
Experimental and Computational Study
of Deformation and Fracture of Pine
Under Dynamic Three-Point Bending
of Beams

Anatoly M. Bragov, Mikhail E. Gonov, Leonid A. Igumnov,
Aleksandr Yu. Konstantinov, Andrey K. Lomunov, and Tatiana N. Yuzhina

Abstract The paper presents the results of an experimental study, as well as numer-
ical modeling of deformation and fracture of pine beams under dynamic loading.
Experiments are carried out on an installation implementing a dynamic three-point
bending scheme. To create a load and register the forces acting on the beams during
loading, the technique ofmeasuring bars is used.Deflections are calculated according
to the Kolsky formulas based on data from measuring bars, as well as by direct
measurement using the digital image correlation method based on high-speed video
recording. A procedure for determining the ultimate strain of pine in perpendicular
to the fiber direction is proposed according to experiments on three-point bending of
beams. Modeling of dynamic three-point bending of beams in LS-DYNA is carried
out. To describe the behavior of pine, the MAT_WOOD material model is used.
The use in the model of the value of ultimate strain determined during the experi-
mental study allowed us to obtain a good coincidence of the crack formation time in
full-scale and numerical experiments.
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7.1 Introduction

In recent years, the number of shipments of nuclear energy waste, components of
nuclear weapons, a wide range of toxic substances, etc. has increased. The require-
ments for their safety during transportation have increased. Calculations of the stress–
strain state and strength of containers in which the above materials are transported
are of great importance. The problems of analyzing possible emergency situations
have particular relevance. Situations, accompanied by intense dynamic impacts,
are possible during transportation, falling containers, terrorist acts, man-made and
natural disasters. Due to the increasing requirements for environmental safety, the
problem of creating reliable aviation containers for the air transportation of radioac-
tivematerials becomes very relevant and attracts the attention of researchers [1–5]. Its
complexity is due to the high levels of impacts characteristic of an aviation accident.

Wood of different tree species, having a relatively low density with sufficient
strength, is used as one of the damping materials. It is able to mitigate the results of
high-speed impacts on containers and their contents.

To date, wood is considered to be a material whose properties have orthogonal
anisotropy.When calculating wooden structures, an approximation of a transversally
isotropic material is usually used. The properties differ along and across the fibers for
the wood. For reliable calculation of the behavior of containers under impact, data on
the dynamic properties of wood are needed as well as reliable verified mathematical
models describing the behavior of wood under impact loads.

Wood in its structure is a complex natural composite cellular material similar to
cellular structures, metal ring systems, polymer foams, etc. Such materials, due to
their structure, have a good ability to absorb the energy of an impact or explosion [6].
In [7] has given a detailed historical overview of the use of wood in the 80 s of the
last century. Since the mechanical properties of wood strongly depend on the place
of growth, its age, and the place of sample cutting, the results obtained by different
authors may differ quite a lot from each other. In this connection, many scientists
around the world continue to study the dynamic properties of various types of wood.

The physical reaction of wood to dynamic loading is no different from other
materials, such as metals or rigid foams. However, for many years, the application
of the principles of impact mechanics to wood testing has been very limited, and
empirical approaches have often been preferred. Systematic studies of the dynamic
properties of five types of wood (balsa, pine, mahogany, American oak, and yucca) at
impact speeds up to 300 m/s are given in the works of Reid and co-authors [8–10]. In
these studies, the direct impactmethodwasused, inwhich aHopkinsonmeasuringbar
was used to measure the forces. The tests were carried out both under uniaxial strain
and under uniaxial stress conditions. The samples were loaded both along and across
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the fibers. As a result, the values of ultimate stresses were obtained and the fracture
energy was determined. It turned out that the ultimate dynamic stresses are several
times higher than the static values, and their magnitude increases with increasing
impact velocity. The authors explained the growth of ultimate stress under dynamic
loading, based on the results of Ashby [11], by the influence of inertial effects on
mechanical properties at the micro level. The authors noted a significant difference
in the mechanical properties of wood samples tested along and across the fibers:
the strength along the fibers was an order of magnitude higher than across. A large
amount of dynamic tests of sequoia, birch, pine, and aspen was performed by S. A.
Novikov and his collaborators [12]. Cylindrical samples of sequoia and birch with a
diameter and height of 25 mm were cut at angles of 0°, 5°, 10°, 15°, 30°, 45°, and
90° relative to the direction of the fibers and tested for uniaxial compression by the
Kolskymethod at temperatures of−30 °C,+20 °C, and+65 °C at a fixed humidity of
6–7%. Y. Byukhar and his collaborators [6, 13, 14] conducted studies of the behavior
of coniferous and deciduous wood species (spruce, pine, oak, beech, birch) under
intense dynamic impacts during explosive loading of wooden beams and slabs. In
their research, the authors used both experimental methods and numerical modeling
methods using the LS-DYNA software package. Static strength was determined by
tension, compression, and bending. At average strain rates, a three-point bending of
the beamunder shock loadingwas used (theSharpie test). For a strain rate of ~103 s−1,
the Kolsky method was used. In addition, experiments were carried out on loading
plates with a thickness of 50 mm using a cumulative explosive device. The results of
the conducted experiments on explosive loading and their numerical modeling using
experimentally obtained mechanical properties of wood in mathematical models
showed a good qualitative and satisfactory quantitative correspondence.

In [15], dynamic tests of the European beech were carried out using the Kolsky
method in all the main directions of loading. In [16], the behavior under compression
of the seaside pine in the transverse (radial-tangential) plane under quasi-static and
high-speed deformationmodes is considered. For tests at high strain rates, the Kolsky
methodwas used in combinationwith the digital image correlationmethod for recon-
struction of deformation fields. Quasi-static compression tests were also carried out
in order to compare the results. In [17], the behavior of fir under compression in two
orthotropic directions (longitudinal and transverse) was studied in a wide range of
strain rates from 2.2·10−3 s−1 to 1·10−3 s−1. In [18], the SHPB (Split Hopkinson
Pressure Bar) system was used to study the dynamic fracture of dry maple wood.
To study the influence of the geometric dimensions of the samples on the behavior
during fracture with a high strain rate, samples of two different thicknesses were
made. In [19], a comprehensive experimental program was carried out studying the
mechanical behavior of maple and ash wood for a range of densities used for the
manufacture of basic baseball bats. The experimental program included a four-point
bending test to determine the elastic modulus and breaking force and a Sharpie test
to determine the deformation to failure depending on the strain rate and density of
wood. Then the material parameters were calibrated by modeling using the finite
element method of the Sharpie experiment in the LS-DYNA software package using
the MAT_WOOD material model.
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The paper [20] presents an overview of the mechanical properties and material
models for wood.

The literature describes many applications in which constitutive models of wood
were required, considering the strain rate. These may include wooden aircraft [21],
impacts during an atomic explosion [22], rams, warships, hammered wooden piles
for coastal structures, ballistic strikes [7], road fence posts and wooden road fences
[23–29], protective structures of bus stops from the impact of various objects in a
strong hurricane wind [30], enclosing structures of stables [31], wooden buildings
[32, 33],wooden pallets for transporting goods, baseball bats and handles forworking
tools are all examples in which medium and high–speed deformations can occur.

This paper presents the results of experimental and computational studies of the
behavior of wood beam samples under dynamic three-point bending.

7.2 Test Method and Proceeding Procedure

For dynamic loadinggeneration andmeasuringof the dynamicdeformationprocesses
of beams, the measuring bar technique was used. Initially, Hopkinson developed his
shock rod technique for measuring the pressure created by explosives [34]. This
technique was further developed by Davis [35] and Kolsky [36], therefore the Split
Hopkinson Pressure Bar (SHPB) is also known as the Kolsky setup. More detailed
information about the SHPB technique can be found in the review by [37] and in the
article by [38]. To determine the strength of the material during bending in static, a
scheme for three-point or four-point bending of the beam is used. A similar technique
has been tested for the case of dynamic loading of wooden beams. A general view
of the sample-loading scheme is shown in Fig. 7.1.

In the experiments, measuring bars with a diameter of 20 mm were used. The
ends of bars were cut into a wedge. Loading of the samples was carried out by a
striker with a diameter of 20 mm and a length of 400 mm through a steel measuring
bar. To increase the level of the strain gauge signal, duralumin measuring bars were
used as supports.

Fig. 7.1 The sample-loading scheme
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Fig. 7.2 Geometric parameters of the setup and the beam

The geometric parameters of the setup (the radii of the rounded bars and the
distance between the output bars) are shown in the left part of Fig. 7.2. The geometric
parameters of the sample beam are shown on the right side of Fig. 7.2.

For interpretation of the experimental data from the dynamic three-point bending
experiments the following formulas were used:

Bending velocity was calculated by formula:

Vb(t) = cI · (
ε I + εR

) − 0.5 · cT
(
εT1 + εT2

)

Beam deflection was calculated by formula:

Ub(t) = t∫
0
Vb(τ )dτ

Force acting on beam from input bar was calculated by formula:

F(t) = EI · SI · (
ε I − εR

)

Forces acting on beam from output bars were calculated by formula:

F1(t) = ET · ST · εT1

F2(t) = ET · ST · εT2

here ε I , εR—the incident and reflected strain pulses in the input measuring bar,
εT1 , εT2 —the transmitted strain pulses, measured in the output bars, cI—the sound
speed in the input bar material, cT—the sound speed in the output bar material,
EI , SI—the Young modulus and the cross section area of the input bar, ET , ST—the
Young modulus and the cross section area of the output bar.

In addition to the standard to the measuring bar techniques strain gauge measure-
ments, the high-speed video registration was used to qualify the process of dynamic
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deformation of the beams (Fig. 7.3). The digital image correlation (DIC) technique
was used to determine the displacement and strain fields in the samples during
experiment.

The deflection of the beamwas determined using the displacements of some points
in the sample (Fig. 7.4). The point P0 was chosen near the incident bar and the points
P1 and P2—near the output bars as shown in Fig. 7.4. The time history of the beam
deflection was calculated by formula:

UDIC
b (t) = U P0(t) − 0.5 · (

U P0(t) +U P1(t)
)

where U P0(t), U P1(t) i U P2(t)—vertical displacements of point P0, P1, and P2.
The time histories of the vertical displacements of the points P0, P1, and P2

(solid lines) and the deflection (dotted line) of the beam during the dynamic loading
determined using the DIC method are shown in Fig. 7.5.

Fig. 7.3 Video registration tools

Fig. 7.4 Positions of the points to identify the deflection of the beam



7 Experimental and Computational Study of Deformation and Fracture … 89

Fig. 7.5 The displacements and deflection determined using the DIC

Figure 7.6 shows a comparison of the deflections of the beam calculated according
to the above Kolsky formulas (blue solid line) and determined using the DIC method
based on high-speed video registration (orange dotted line). It can be seen that the
deflection obtained by the DIC method is noticeably smaller. This is due to the
fact that indirect displacement measurements using measuring bars do not actually
register displacements of beam points, but only displacements of the bars themselves.
Since wood is a soft material, there are local deformations of beams in places where
metal bars affect them. Due to imperfections, gaps are also sampled. This leads to a
difference in the values of deflections measured in different ways. It should be noted
that the maximum deflection difference is about 0.2 mm.

Fig. 7.6 Comparison of beam deflections calculated according to the Kolsky formulas and
measured using DIC
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To assess the ultimate strength characteristics of the wood, according to high-
speed video recording data, deformation fields (normal components of the strain
tensor in the direction of the beam axis) were determined at each moment of time.
An example of deformation field, in the frame preceding the initiation of the crack,
is shown in Fig. 7.7. It can be seen that compression strains take place on the loaded
surface, and tension strains take place on the opposite surface. For further analysis
and evaluation of the fracture strain, the distribution of strains along the line shown
in Fig. 7.7 was determined.

Figure 7.8 shows the process of crack generation and growth during dynamic
beam bending.

Fig. 7.7 Strain field in the beam

Fig. 7.8 Kinogram of the beam deformation process
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Experimental studies have shown that the distributions of strains along the thick-
ness of the sample are linear up to the moment preceding the fracture initiation, and
the neutral axis of the beam coincides with its geometric center.

The specificity of the digital image correlation method is that the displacement
and deformation fields are not determined for the entire surface of the sample. These
values are not calculated on the part of the surface near the boundary (as can be seen
in Fig. 7.7).

This is because deformations in the DIC method are calculated at the central
points of elementary patterns (yellow rectangles in Fig. 7.9), which are used to track
movements. The patterns cannot be too small, since the pattern must be unique and
recognizable for the algorithm. As a result, a zone is formed at the border of the
sample, the width of which is equal to half the size of the elementary pattern. The
deformation parameters in this zone are unknown. Since the fracture originates on
the surface of the sample, extrapolation is necessary for a correct assessment of the
fracture strain value.

Figure 7.10 shows the result of extrapolation of strains from the area processed
by the DIC method to the sample boundary.

Fig. 7.9 Partitioning of the sample surface into zones when using the DIC method

Fig. 7.10 Extrapolations of strains to the sample boundary
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It can be noted that the maximum tensile strain in the processed region is 2.9%,
and the extrapolated value is 3.3%. By repeating a similar procedure for each frame,
it is possible to calculate the time dependence of the extrapolated strain value for
each moment of time. To assess the loading conditions, the value of the strain rate
was determined by differentiating the time history of strain.

7.3 The Results of Experiments

Experiments according to the scheme described above were carried out on pine beam
samples. The samples were cut in such a way that the fiber was oriented along the
width (b) of the sample (Fig. 7.11). The loading scheme, the designations of the
sample sizes and the orientation of the fibers are shown in Fig. 7.11. The velocity of
the striker was about 8 m/s.

Figure 7.12 shows the time dependences of the deflection of beams obtained under
close loading conditions. Solid lines show the data calculated according to theKolsky
formulas, and dotted lines correspond to the dependencies determined by the DIC
method. As noted earlier, deflections calculated from signals from measuring bars
turn out to be larger than deflections determined from digital images.

Fig. 7.11 Beam testing
scheme

Fig. 7.12 Time dependences
of deflection of beams
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Figure 7.13 illustrates the time dependences of the forces acting on the beam
during the test. The forces were determined by strain gauge signals from output
measuring bars. It is possible to note the good repeatability of the test results carried
out under similar conditions. The maximum value of the force was 5 kN.

Figure 7.14 shows the results of measurement of the history of tensile strain
across the fibers (left) and the corresponding strain rate (right) obtained using the
DIC method. When testing the beams, a tensile strain rate of about 700 s−1 was
obtained. The values of the fracture strain are ~3.5%.

Fig. 7.13 Time dependencies of forces

Fig. 7.14 Results of direct measurement of strain (left) and strain rate (right) by DIC method
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7.4 Material Model

To model the behavior of wood in code LS-DYNA, there is a MAT_WOOD model,
which is described in [39–41].

Within the framework of this model the following features of the behavior of
wood are laid down:

• The transversally isotropic behavior of the material is assumed.
• Irreversible deformation of the material is taken into account.
• The deformation hardening of the material is taken into account.
• The change in the properties and fracture of the material is laid within the

framework of the theory of the damaged medium.
• It is possible to take into account the influence of the strain rate on the strength

characteristics.

Adistinctive feature of theMAT_WOODmodel is the predefined set of parameters
embedded in it for two types of wood: yellow pine and Douglas fir.

The theoretical foundations of the MAT_WOOD model are described in [41]. It
is noted that wood is a fairly diverse material, however, a number of features can be
distinguished that differ it from other materials. The stiffness and strength charac-
teristics of wood depend on the direction and differ for the longitudinal, radial, and
tangential directions. The direction of the fiber is taken as the longitudinal direction. It
is also noted that formodelingpurposes, differences in properties in radial and tangen-
tial directions are insignificant, therefore, the behavior of wood is usually described
by a transversally isotropic model, and the terms “parallel” and “perpendicular” are
used to classify directions.

The strength characteristics of wood also differ for different types of loading:
compression, tension, and shear. The behavior of the material when tensioned in the
“parallel” and “perpendicular” directions, as well as when sheared close to linear
up to fracture (brittle behavior). When compressed, the wood behaves non-linearly,
there is a visco-plastic flow.

The wood model implemented in LS-DYNA includes the following components:

• Linear equation of state for elastic region;
• The criterion of fracture;
• The law of plastic flow;
• The law of hardening;
• The law of softening (degradation of properties) as damage accumulates;
• An equation describing the effect of the strain rate on the fracture stresses.

7.5 Modeling of Impact Bending of a Wooden Beam

Using the MAT_WOOD_PINE model, the simulation of the process of high-
speed bending of beams was carried out on the basis of the experimental scheme
described earlier. The simulation was carried out using LS-DYNA with the use of
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Fig. 7.15 Setting up a
dynamic beam bending
simulation

an explicit scheme for integrating equations in time and the finite element method
in a Lagrangian formulation for space discretization. The problem was solved in a
three-dimensional formulation. The geometric formulation of the problem and the
boundary conditions are shown in Fig. 7.15. The loading (1) and supporting (2 and
3) bars were modeled by non-deformable bodies, for which time dependences of
vertical displacements were applied. Those time histories were determined by the
digital image correlation method according to the data of a full-scale test.

In the full-scale experiment, crack initiation began at the time between frames
corresponding to 309 and 324microseconds (in the time frame inwhich the boundary
conditions were calculated). When using the MAT_WOOD model with default
strength parameters, no beam fracture was observed in the calculation.

As an experimental study has shown, a crack initiates with a tensile strain of about
3.5%. This corresponds to a value of ultimate stress of about 8.6 MPa. The results
of modeling the impact three-point bending of the beam after making appropriate
adjustments to the model are shown in Fig. 7.16. The red color corresponds to the
fractured material.

When the size of the final element decreases, multiple cracks appear in the fracture
zone (Fig. 7.17), but the moment of the initiation of the first fracture practically does
not change.

7.6 Conclusions

Modern tools for recording fast-flowing processes, such as the digital image correla-
tion method based on high-speed video recording, allow us to obtain comprehensive
information about the process of deformation of samples under shock loading. Based
on this method, a scheme for determining the ultimate deformation of fracture during
dynamic three-point bending of beams is proposed and implemented. The determi-
nation of the ultimate deformation is carried out by extrapolation of the strain fields
determined by the DIC method. The loading conditions (strain rate) are estimated by
differentiating the histories of deformation changes at the crack initiation point. The
value of the ultimate tensile strain in perpendicular direction of pine is determined
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Fig. 7.16 Fracture of the beam during dynamic bending

Fig. 7.17 The influence of the grid size on the simulation results
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from experiments on three-point bending. Obtained value was about 3.5%. The strain
rate at the moment of fracture was about 700 1/s. The use of the specified value of
the ultimate strain in the model made it possible to reliably predict the destruction
of the beam in a numerical experiment for dynamic three-point bending.

Acknowledgements The theoretical study was done with financial support from the Ministry of
Science and Higher Education of the Russian Federation (Project 0729-2020-0054). The experi-
mental investigations were conducted with financial support from the Russian Science Foundation
(project 21-19-00283).

References

1. Adalian C, Morlier P (1998) Modeling the behaviour of wood during the crash of a cask impact
limiter. PATRAM’98. Conference Proceedings, vol 1. Paris. France

2. Neumann M (2009) Investigation of the behavior of shock-absorbing structural parts of trans-
port casks holding radioactive substances in terms of design testing and risk analysis. PhD
thesis, Bergische Universität Wuppertal, Germany

3. Ryabov AA, Romanov VI, Kukanov SS, Spiridonov VF, Tsiberev KV (2016) Numerical anal-
ysis of impact and thermal resistances of air transport package PAT-2. Problems of Strength
and Plasticity J 78(1):101–111 (in Russian)

4. Ryabov AA, Romanov VI, Kukanov SS, Skurikhin SG (2006) Numerical simulations of
dynamic deformation of air transport package PAT-2 in accidental impacts. Proceedings of
9th International LS-DYNA Users Conference. Dearborn, USA, pp 43–51

5. Eisenacher G et al (2013) Crushing characteristics of spruce wood used in impact limiters
of type B packages. Packaging and transportation of radioactive materials PATRAM. San
Francisco, USA

6. Buchar J, Severa L, Havlicek M, Rolc S (2000) Response of wood to the explosive loading. J.
Phys. IV France 10:529–534

7. JohnsonW (1986) Historical and present-day references concerning impact on wood. Int J Imp
Eng 4(3):161–174

8. Harrigan JJ, Reid SR, Tan PJ, Reddy TY (2005) High rate crushing of wood along the grain.
Int J Mech Sci 47:521–544

9. Reid SR, Peng C (1997) Dynamic Uniaxial Crushing of Wood. Int. J. Imp. Eng. 19:531–570
10. Reid SR, Reddy TY, Peng C (1993) Dynamic compression of cellular structures and materials.

In: Wierzbicki T (ed) Jones N. Structural crashworthiness and failure. Taylor & Francis Publ,
London-New York, pp 257–294

11. Gibson LJ, Ashby MF (1997) Cellular solids-structure and properties, 2nd edn. Cambridge
University Press

12. BolshakovAP,GerdyukovNN,Novikov SA et al (2001)Damping properties of Sequoia, Birch,
Pine, and Aspen under shock loading. J Appl Mech Tech Phys 42(2):202–210

13. Buchar J, Adamik V (2001)Wood strength evaluation under impact loading. 39th international
conference experimental stress analysis. Tabor, Czech Republic

14. Buchar J, Krivanek I, Severa L (2001) High rate behaviour of wood. In: Nowacki WK,
Klepaczko JR (eds) New experimental methods in material dynamics and impact, trends in
mechanics of materials. Warsaw, pp 357–362

15. Sebeka F, Kubika P, Brabecb M, Tippner J (2020) Modelling of impact behaviour of European
beech subjected to split Hopkinson pressure bar test. Compos Struct 245:112330

16. Gomesa F, Xavierb J, Koerber H (2019) High strain rate compressive behaviour of wood on
the transverse plane. Procedia Struct Integr 17:900–905



98 A. M. Bragov et al.

17. Zhou SC, Demartino C, Xiao Y (2020) High-strain rate compressive behavior of Douglas fir
and glubam. Constr Build Mater 258:119466

18. AllazadehMR,Wosu SN (2012) High strain rate compressive tests on wood. Strain 48(2):101–
107

19. Fortin-Smith J, Sherwood J, Drane P, KretschmannD (2016) Characterization of maple and ash
material properties as a function of wood density for bat/ball impact modeling in LS-DYNA.
Procedia Engineering 147:413–418

20. Zhao S, Zhao JX, Han GZ (2016) Advances in the study of mechanical properties and consti-
tutive law in the field of wood research. IOP Conf. Series: Materials Science and Engineering
137:012036

21. Liska JA (1950) Effect of rapid loading on the compressive and flexural strength of wood.
USDA for serv report no. 1767. USDA For Serv Forest Products Laboratory, Madison, WI,
United States

22. Keeton JR (1968) Dynamic properties of small, clear specimens of structural-grade timber.
Technical report R-573, Y-F011-05-04-003. U.S. Navy Civ Eng Lab, Port Hueneme, CA,
United States

23. Gatchell C, Michie J (1974) Pendulum impact tests of wooden and steel highway guardrail
posts. USDA for serv research paper NE-311. Upper Darby, PA, United States

24. LeijtenAJM (2000) Literature review of impact strength of timber and joints.World conference
on timber engineering, Whistler, Canada

25. Bocchio N, Paola R, van de Kuilen JWG (2001) Impact loading tests on timber beams. In:
IABSE, vol 85. Lahti, Finland, pp 19–24

26. Botting JK (2003) Development of an FRP reinforced hardwood glulam guardrail. Master
thesis, The University of Maine, Orono, ME, United States

27. Kubojima Y, Ohsaki H, Kato H, Tonosaki M (2006) Fixed-fixed flexural vibration testing
method of beams for timber guardrails. J Wood Sci 52(3):202–207

28. Gutkowski RM, Shigidi A, Abdallah MT, Peterson ML (2007) Dynamic impact load tests of a
bridge guardrail system. MPC report no. 07–188. Mountain-Plains Consortium, Fargo, ND, p
37
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Chapter 8
Study of Dynamic Properties of Fiber
Concrete with Polymeric, Steel,
and Combined Fiber under High-Speed
Compression

Anatoly M. Bragov, Mikhail E. Gonov, Aleksandr Yu. Konstantinov,
and Andrey K. Lomunov

Abstract An experimental study of the dynamic properties of three types of fiber-
reinforced concrete under dynamic uniaxial compression relative to the original
fine-grained concrete was carried out. Three types of fiber-reinforced concrete were
produced: with polymer fiber, steel fiber, and with a combination of two types of
fiber. Static and dynamic tests were carried out. Dynamic compression tests were
carried out using the Kolskymethod at strain rates from 102 to 103 s−1. The tests were
carried out using a FASTCAMMini UX100 high-speed camera. The paper presents
the compositions of the studied materials, test parameters, as well as a compara-
tive analysis of the data obtained. The introduction of a reinforcing fiber into the
original fine-grained concrete increased the dynamic strength of the material. The
highest strength under dynamic uniaxial compression was shown by fiber-reinforced
concrete with steel fiber. The dependences obtained demonstrate that the maximum
breaking stresses achieved in the experiments grow linearly with an increase in the
strain rate, as do the corresponding limiting strains. The time before the onset of
fracture decreases with increasing strain rate according to a power law.
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8.1 Introduction

In parallel with the growth of the technogenicity of civilization, the number of emer-
gency situations is growing, exposing the structures of buildings and structures for
civil, industrial, or military purposes to high-speed dynamic effects in the form of
shocks and explosions. At the same time, structural materials such as concrete and its
varieties (fiber-reinforced concrete, reinforced concrete, special types of concrete)
are subjected to high-intensity dynamic loads. In addition to man-made disasters, the
increasing frequency of natural disasters, which are associated with climate change
on our planet, is coming to the fore. Various natural disasters are expressed by hurri-
canes, tornadoes, floods, and strong earthquakes that have become more frequent in
recent decades. Another factor in the occurrence of dynamic loads is the terrorist
threat to modern civilization in the form of detonation of various explosive and
combustible substances. The main danger of such phenomena is the loss of human
lives. The threat to life arises both from the loss of the bearing capacity of buildings
and structures, and from the occurrence of many shrapnel wounds caused by brittle
materials.

Ordinary concrete has relatively low tensile strength and low ductility, so it is
prone to cracking. The formation of cracks leads to the early onset of the destruction
of concrete or reinforced concrete. It has been proven that the addition of steel or
non-metallic fibers increases the tensile strength and plasticity of fiber-reinforced
concrete [1–5]. At present, steel reinforcement is widely used, however, along with
this, the technology of reinforcing concrete with fiber is becoming more widespread.
Various types of fibers are used as reinforcing elements in concrete. Fiber-reinforced
concrete is a compositematerial that contains fibers to increase its resistance to tensile
loads. Recently, new types of fiber-reinforced concrete have been developed with
various improved properties [6–9]. Today, fibers of various cross sections (flat, round,
rectangular, etc.) are used. Traditionally, fibers are classified by material and, as a
rule, metal, glass, synthetic, and natural fibers are used in fiber-reinforced concrete.
According to the length of thefiber,microfibers shorter than20mmwith an equivalent
diameter of 0.005–0.2mmandmacrofibers 20–80mm longwith a length-to-diameter
ratio of 40–120 are distinguished.

An important issue affecting the physical and mechanical properties of fiber-
reinforced concrete is the shape, volume fraction, and geometry of the fiber. The
influence of these factors was studied by various authors in [10–16]. The article [17]
considered the influence of the loading rate on the delamination of high-strength steel
fibers in heavy-duty fiber-reinforced concrete. The research focus is on experimental
strength characteristics at various strain rates to understand the dynamic properties of
heavy-duty fiber-reinforced concrete. Various mechanisms of detachment of straight
and geometrically bound fibers have been studied in detail. The experimental study
considers four types of high-strength fibers such as straight brass with a diameter
of 0.2 and 0.38 mm, with half-hooks at the ends with a diameter of 0.38 mm, and
twisted helical fibers with an equivalent diameter of 0.3 mm. The materials were
tested at four different strain rates. The test results show that the semi-hooked fibers
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show the highest strain rate sensitivity compared to the rest of the fibers used in this
study, which may be related to cracking of the stressed cement backing. In addition,
the influence of the angles of the location of the fibers to the axis of the sample was
studied at various strain rates, which affect the delamination of the fibers. Three fiber
angles are considered, 0°, 20°, and 45°. The results show that there is a relationship
between fiber angle and strain rate sensitivity, which influences fiber delamination.

In [18], the effect of various fiber shapes on the strength characteristics of fiber-
reinforced concrete in compression during impact loading is presented. This study
examined five commercially available types of fibers with different shapes and mate-
rial properties, namely synthetic, wavy, cold rolled, flattened, and hooked fibers.
In addition, two new types of helical fibers, called Helix I and Helix II, have
been proposed and tested to minimize fiber-reinforced concrete fiber spalling under
dynamic loading. The results showed that the properties of the fiber and its geometry
play an important role in determining the dynamic characteristics of fiber-reinforced
concrete in compression. For example, the impact resistance of the helical fiber
samples was better than other commercially available fibers.

In [19], a comparative analysis of the response of plain concrete and fiber-
reinforced concrete to impact loading was carried out. In this study, hook-end steel
fibers with volume fractions of 0.5% and 1% and polypropylene fibers with volume
fractions of 0.2%, 0.3%, and 0.5% were used. Experimental and numerical analysis
has shown that steel fibers can increase impact resistance to a greater extent than
polypropylene fibers due to their longer length, higher tensile strength, and better
cohesiveness. In addition, tensile and compressive strength, energy absorption degree
can be increased by increasing the fiber volume fraction.

Today, there are many types of fiber-reinforced concrete with steel fibers, among
which there are four main types, depending on the volume fraction of the fiber
and the initial strength properties of the concrete. The first type is fiber-reinforced
concrete with discontinuous discrete steel fibers. As indicated in [20], the volume
fraction of the fiber used in this type of fiber-reinforced concrete should be in the
range of 0.5–1.5%, since exceeding this value reduces the workability of the concrete
mixture and causes clumping, which will be extremely difficult to overcome during
vibrocompaction. However, high fiber percentages can be achieved with special fiber
addition techniques and even alignment procedures. The second type is high-strength
fiber-reinforced concrete, which is generally defined as high-strength concrete with a
compressive strength above 40 MPa, with the addition of short randomly distributed
fibers with a volume fraction of 2.0% or more. The addition of steel fibers to high-
strength concrete forms high-strength fiber-reinforced concrete and improves its
impact and fracture resistance. The third type—special fiber-reinforced concrete—is
a special type of high-strength concrete reinforced with high-strength fibers (150–
400 MPa) and a large volume fraction of steel fibers (5–10%). The cement base of
special fiber-reinforced concrete is extremely plastic due to the high content of steel
fibers. This feature makes it possible to effectively use fiber reinforcement without
the formation of large cracks under operating conditions.Quadruple type—ultra-high
strength fiber-reinforced concrete—is a new class of materials that combine a very
strong and dense binder cement base with a high fiber content. This material has a
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very high compressive strength (about 200MPa) and a relatively high tensile strength
(about 10 MPa), which minimizes crack opening and provides improved plasticity
properties compared to conventional concrete. At the same time, the fibers provide
plasticity both in tension and in compression. The addition of a sufficiently large
amount of fibers (more than 1.5% by volume) leads to tensile strengthening [21].
In addition, ultra-high-strength fiber-reinforced concrete can significantly improve
the impact resistance of panels and walls while maintaining standard thickness and
appearance [22].

In [23], the impact strength of fiber-reinforced concrete slabs was studied at low-
speed projectile impact. The main variables adopted in the studies were the type
and volume fraction of fibers. Various types of fibers were used such as polyolefin,
polyvinyl alcohol, and steel with volume fractions of 0%, 1%, and 2%, respectively.
In addition, 10 square slabs 1.0 m long and 50 mm thick were cast and tested.
Among various fiber types, hook-ended steel fiber concrete slabs have good energy
absorption and crack resistance characteristics.

In [24], experimental and numerical studies of a fiber-reinforced concrete slab
subjected to impact loading were carried out using 1%, 1.5%, and 2% steel fibers
with hooks at the ends. With an increase in the volume fraction of fibers, the pene-
tration resistance increased. Numerical analysis [25] of crater explosions in fiber-
reinforced concrete usingdifferent volume fractions of steel fibers showed an increase
in strength, impact strength, and fracture resistance. The best blast loading perfor-
mance was obtained using concrete containing 2.0% fiber volume fraction, followed
by concrete containing 1.5% and 1.0% fiber volume fraction.

In addition to fiber-reinforced concrete with steel or polymer fibers, combined
fiber-reinforced concrete is of particular interest, which can be attributed to the fifth
type of fiber-reinforced concrete. The combination of steel fibers with polymer fibers
has led to a significant increase in the blast resistance of structures. Fiber-reinforced
concrete, including the ratio of high-modulus steel fibers and relatively low-modulus
polyethylene fibers, was studied in [26] to achieve a balance between deformation
capacity and tensile strength required for impact and blast-resistant structures.

Combinedfiber-reinforced concrete has characteristics that are superior to those of
simple fiber-reinforced concrete. For example, 0.5% steel fiber with 1.5% polyethy-
lene fiber reduced spalling and damage zones [26]. In [27], a study was made on
the nature of the destruction and damage of fiber-reinforced concrete panels made of
combined fiber in comparison with ordinary reinforced concrete and fiber-reinforced
concrete. Composite fiber concrete panels have been shown to reduce damage and
improve re-impact impact resistance, as well as improve energy absorption capacity
and plasticity properties compared to reinforced concrete and fiber concrete panels
[27]. In addition, steel fibers combined with polypropylene fibers in concrete have
improved impact resistance compared tomonofiber concrete [28]. In [29] studied four
types of impact barriers, with different fiber types, including two types of synthetic
fiber, nylon fiber and carbon fiber, each with 1.5% fiber volume; a combination of
steel and synthetic fibers with a fiber content of 3.8% and 5%; and traditional rein-
forced concrete of normal density, used as a control sample. Nylon fiber-reinforced
concrete with a fiber content of 1.5% showed a significant performance improvement
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over typical reinforced concrete. However, a mixture of steel and synthetic fibers at
3.8% and 5% showed similar improvements. Explosive testing of fiber-reinforced
concrete slabs showed that the degree of destruction (particle size and velocity when
exposed to an explosive load) was significantly reduced due to the addition of steel
and polypropylene fibers [29].

It should be noted that the question of the best mechanical properties of fiber-
reinforced concrete with steel or combined fibers in dynamic compression is still
open. In connection with the foregoing, the study of the strength characteristics of
fiber-reinforced concretewith different types of fibers during high-speed deformation
and destruction is an urgent task. This article is devoted to the solution to this problem.

8.2 Test Method

High-speed tests under conditions of a one-dimensional compressive stress state
were carried out on the experimental setup SHPB-20 [30–32], the scheme of which is
shown in Fig. 8.1. The experimental setup according to the Kolsky method includes
a system of measuring rods, between which a test sample is installed, a gas gun
for accelerating a cylindrical impactor, strain gauges, a velocity meter, recording,
and computing equipment with a software package. In one of the rods, after the
impact of the impactor, a one-dimensional elastic compressionwave is excited,which
propagates along the rods at the speed of sound. Upon reaching the sample, this wave
splits due to the difference in the acoustic stiffness of the materials of the rod and
the sample, as well as the areas of their cross sections: part of it is reflected back
by a tension wave, and part passes through the sample into the second rod by a
compression wave. In this case, the sample undergoes elastic–plastic deformation
or destruction, while the rods are deformed elastically. By registering elastic strain
pulses in measuring rods with strain gauges according to the formulas proposed for
the first time by Kolsky, it is possible to determine the stresses, strains, and strain
rates in the sample as a function of time. The tests were carried out on samples with
a diameter of 20 mm and a length of 10 mm. Measuring rods, both loading and
supporting, as well as a cylindrical striker, are made of D16T duralumin alloy with
an elastic modulus of 0.71× 105MPa. The amplitude of the loading wavewas varied
by changing the striker velocity. The loading modes were chosen in such a way that
a gradual increase in the strain rate and loading rate was observed.

To fulfill the basic premise of the Kolsky method—a uniaxial stress state in the
sample, the main recommendations were taken into account, namely: the ratio of
the length of the sample to the diameter within 0.3–1.0; treatment of the ends of the
measuring rods before the start of each experiment with Litol lubricant to reduce the
effect of friction forces during the radial expansion of the sample. During dynamic
tests, a FASTCAM Mini UX100 high-speed digital camera was used to visualize
the deformation and fracture processes. On the basis of time-lapse photography, an
analysis was made of the time and nature of the destruction of the samples.
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Fig. 8.1 Scheme of the installation for testing under compression in the condition of a uniaxial
stress state

8.3 Characteristics of the Tested Materials

Fiber-reinforced concrete is a composite material containing reinforcing fiber and
having a number of advantages over conventional concrete: increased compres-
sive, tensile, and shear strength; impact and fatigue strength; crack resistance and
fracture toughness; frost resistance, water resistance, and heat resistance (fire resis-
tance). Improved properties of fiber-reinforced concrete provide high technical and
economic efficiency. The variability of materials of this kind leads to the need for
theoretical and experimental studies both to determine the dynamic characteristics
of fiber-reinforced concrete and assess the influence of filler parameters (material,
length, fiber shape, etc.), and to build mathematical models that describe its defor-
mation and destruction during calculations. Taking into account the influence of
dynamic loading conditions.

Three types of fiber-reinforced concrete were produced, differing in the material
of the reinforcing fiber: fiber-reinforced concrete with polymer fiber (polyfiber fiber-
reinforced concrete—PFRC) with a volume fraction of polypropylene fiber of 1.5%;
fiber-reinforced concrete with steel fiber (steel fiber-reinforced concrete—SFRC)
with a volume fraction of steel fiber of 1.5%; fiber-reinforced concrete with a combi-
nation of polymer and steel fibers (combined fiber-reinforced concrete—CFRC)with
a volume fraction of polypropylene (0.75%) and steel (0.75%) fibers. Also in this
section, the composition of the initial fine-grained concrete (FGC) is given for a
comparative analysis of the effect of reinforcing fiber on the mechanical properties
of the materials under study.

Polypropylene fiber, Fig. 8.2, manufactured by Poliarm, is a structural synthetic
macrofiber 25 mm long, which is a separate rigid fiber of sinusoidal-wavy shape
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from oriented virgin polypropylene, treated with a special compound that improves
adhesion to concrete mortar.

Polymer fiber has increased compressive and tensile strength, increased impact
and fatigue strength, reduces water separation, prevents delamination of the concrete
mixture, increases the fire resistance of concrete, reduces labor costs and terms of
work, does not damage the mixing and supplying concrete equipment. Technical
characteristics of polypropylene fiber are presented in Table 8.1.

The manufacturer of steel fiber is the BelarusianMetallurgical Plant (BMZ). Steel
fiber is made from high-carbon steel wire according to GOST 9389 with a tensile
strength of at least 1000 N/mm2 (MPa). For the manufacture of steel fiber-reinforced
concrete, a wave profile fiber 15 mm long and 0.3 mm in diameter was used, Fig. 8.2.

Dynamic compression tests were carried out on the RSG-20–2 unit. The
compositions of fiber-reinforced concrete are presented in Table 8.2.

Fig. 8.2 Polypropylene fiber “Poliarm” and steel fiber “BMZ”

Table 8.1 Specifications of
polypropylene fiber

№ Characteristic Indicator

1 Length 25 to 55 mm

2 Material Virgin polypropylene 100%

3 Specific gravity 0.91 kg/m3

4 Young’s modulus 3500 N/mm

5 Tensile strength 360–560 N/mm2

6 Softening temperature 156 °C

7 Color Transparent white

8 Chemical resistance To acids, alkalis, and solvents
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Table 8.2 Composition of fiber-reinforced concrete

№ Material Consumption per 1 m3 (kg)

Without fiber With polymer
fiber

With steel fiber With combined
fiber

1 Cement (grade
D500)

480 480 480 480

2 Crushed stone
(module 1–3 mm)

1250 1000 1000 1000

3 Medium sand 390 600 600 600

4 Superplasticizer 2.4 3.0 3.0 3.0

5 Water 205 200 200 200

6 Polypropylene
fiber “Poliarm”
25 mm

– 14.0 – 7.0

7 Steel corrugated
fiber BMZ
15 mm

– – 120 60

All samples for dynamic testing were made by drilling with a diamond crown
from pre-cast concrete blanks.

8.4 Results of Static Tests

Static tests for uniaxial compression consisted of 3–4 experiments for each mate-
rial. Cylindrical samples for static tests with a length and diameter of 20 mm were
drilled from concrete blanks. Static tests were carried out up to the stage of sample
failure at a constant strain rate of 3·10–5 s–1 on a Z100 Zwick-Roell testing machine.
The averaged test results in the form of strain diagrams are shown in Fig. 8.3 and
summarized in Table 8.6.

8.5 Results of Dynamic Tests for Uniaxial Compression

A cycle of dynamic tests of fine-grained concrete was carried out, consisting of
4 high-speed loading modes. The test parameters are shown in Table 8.7. Before
testing, the samples were sorted, measured, and numbered. The strain rates were in
the range from 100 to 1000 s−1.

The strain pulses recorded in the measuring rods were synchronized in time.
Using the formulas of the Kolsky method for each experiment, the dependences of
stress on time (σ~t), strain on time (ε~t), and strain rate on time (ε̇~t) were plotted.
The obtained dependences were synchronized in time for each speed mode. After
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Fig. 8.3 Results of static tests

Table 8.6 Results of static tests

№ Material Ultimate stress, MPa Ultimate strain, %

1 Fine-grained concrete 28.65 0.7

2 Polymer fiber-reinforced concrete 36.28 0.5

3 Steel fiber-reinforced concrete 60.38 0.6

4 Combined fiber-reinforced concrete 54.14 0.6
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the exclusion of the time parameter, a diagram of dynamic deformation (σ~ε) was
constructed with the display along the additional right vertical axis of the history
of changes in the strain rate (ε̇~ε) for each experiment. Further, for loading modes
of the same type, averaged diagrams of the dependence of stresses on strains (σ~ε)
and strain rates on strains (~ε), as well as the dependences of stresses on time (σ~t)
and strain rates on time (ε̇~t) were plotted. Below are the test diagrams of concrete
samples for each individualmode, onwhich solid lines show the dependence of stress
on time (σ~t) or stress on strain (σ~ε), the vertical axis on the left is stress; dotted
lines show the dependence of the strain rate on time (ε̇~t) or the strain rate on strain
(ε̇~ε), the vertical axis on the right is the strain rate.

In mode No. 1, the average striker speed is 10m/s. The average dynamic compres-
sive strength was about 33 MPa, the average strain rate was about 150 s−1. In this
mode, the samples retained their integrity in thefirst loading cycle,which is confirmed
by the elastic unloading zone on the deformation diagram. InmodeNo. 2, the average
striker speed was 16 m/s, the average dynamic compressive strength was 46 MPa,
with average strain rates of about 200 s−1. In mode No. 3, the average striker speed
was 21.0 m/s, the average dynamic compressive strength was 57 MPa, with average
strain rates of about 250 s−1. In mode No. 4, the average striker speed was 29 m/s,
the average dynamic compressive strength was about 69 MPa, with average strain
rates of about 820 s−1. Figure 8.4 shows averaged strain diagrams with a history of
strain rate changes.

In the above diagrams in the stress–strain axes (σ~ε), in the initial loading section,
the growth of stress and strain occurs according to a law close to linear, and with
further deformation, when the limiting stress values are reached, the concrete is
intensively destroyed (in modes 2, 3, 4), which is accompanied by a decrease in
stresses and an increase in deformations. Dynamic compression tests were carried
out in order to determine the effect of changing the strain rate on the strain diagram
and strength characteristics of the material shown below (Fig. 8.5). The dynamic
increase factor (DIF), defined as the ratio of dynamic strength to static strength,
ranged from 1.0 to 2.5.

The conducted cycle of dynamic tests of polyfiber-reinforced concrete consisted
of 3 speed modes and a total of 17 test shots. The strain rates were in the range from
200 to 900 s−1. Test parameters are given in Table 8.8.

In mode No. 1, the average striker speed is 17m/s. The average dynamic compres-
sive strength was 52MPa, at average strain rates of about 220 s−1. In mode No. 2, the
average striker speed is 24m/s, the average dynamic compressive strength is 57MPa,
with average strain rates of about 260 s−1. In mode No. 3, the average striker speed
is 33 m/s, the average dynamic compressive strength is 75 MPa, with average strain
rates of about 770 s−1. Figure 8.6 shows the averaged deformation diagrams with
the chronology of the change in the strain rate.

The dependences of the ultimate strength and deformation characteristics on the
dynamic factor (DIF) on the strain rate are shown in Fig. 8.7. The resulting time to
failure decreases depending on the strain rate according to a non-linear law. Limit
strainswithin the scatter of experimental data can be described by a straight horizontal
line, which indicates that the strain rate does not affect the ultimate strain to failure.
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Fig. 8.4 Averaged diagrams σ(ε) and š(ε), σ(t) and š(t) under compression for all FGC modes

The conducted cycle of dynamic testing of steel fiber-reinforced concrete
consisted of 3 speed modes and 14 test shots. The strain rates were in the range
from 180 to 720 s−1. Test parameters are shown in Table 8.9.

In mode No. 1, the average striker speed is 16m/s. The average dynamic compres-
sive strength was about 60MPa, at average strain rates of about 180 s−1. In mode No.
2, the average striker speed is 24 m/s, the average dynamic compressive strength is
85MPa, with average strain rates of about 250 s−1. In mode No. 3, the average striker
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Fig. 8.5 Effect of strain rate on the mechanical properties of fine-grained concrete under dynamic
compression

speed was 34 m/s, the average dynamic compressive strength was 100 MPa, with
average strain rates of about 690 s−1. Figure 8.8 shows the averaged deformation
diagrams with the chronology of the change in the strain rate.

In the above diagrams in the stress–strain axes (σ~ε), in the initial section of
loading, the growth of stress and strain occurs according to a law close to linear, and
with further deformation, when the limiting stress values are reached, the concrete is
intensively destroyed, which is accompanied by a decrease in stress and an increase
in deformations. The effect of changing the strain rate on the strain diagram and the
strength characteristics of the material is shown in Fig. 8.9.

The conducted cycle of dynamic tests of the combined fiber-reinforced concrete
consisted of 3 speed modes and a total of 14 test shots. The strain rates were in the
range from 140 to 740 s−1. Test parameters are given in Table 8.10.

In mode No. 1, the average striker speed is 16m/s. The average dynamic compres-
sive strength was about 53 MPa, at average strain rates of about 160 s−1. In mode
No. 2, the average striker speed is 24 m/s, the average dynamic compressive strength
was 68 MPa, with average strain rates of about 210 s−1. In mode No. 3, the average
striker speedwas34m/s, the averagedynamic compressive strengthwas 90MPa,with
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Fig. 8.6 Averaged diagrams σ(ε) and š(ε), σ(t) and š(t) under compression for all PFRS modes
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Fig. 8.7 Effect of strain rate on mechanical properties of PFRC under dynamic compression

average strain rates of about 710 s−1. Figure 8.10 shows the averaged deformation
diagrams with the chronology of the change in the strain rate.

Dynamic compression tests were carried out in order to determine the effect of
changing the strain rate on the strain diagram and strength characteristics of the
material shown below (Fig. 8.11).

For each of the resulting diagrams, characteristic points with the maximum
achieved stresses were identified, after which the destruction of the samples began.
For these points, the corresponding values of limiting strains and time to failure are
determined. The strain rates were assumed to be maximum before the specimens
began to fail, since they change during their deformation. The dependences obtained
demonstrate that with an increase in the strain rate, the maximum stresses increase,
the limiting strains corresponding to them also increase (according to a linear law),
and the time to the onset of destruction decreases according to a power law.

Table 8.11 shows the average strength and average percent strength gain for the
materials tested, relative to the composition of the original fine concrete.
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Fig. 8.8 Averaged diagrams σ(ε) and š(ε), σ(t) and š(t) under compression for all SFRC modes
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Fig. 8.9 Effect of strain rate on mechanical SFRC under dynamic compression

8.6 Conclusion

An experimental study of the dynamic properties of various types of fiber-reinforced
concrete under uniaxial compression has been carried out. Diagrams of dynamic
deformation at strain rates from 102 to 103 s−1 were obtained, based on the results
of which the characteristics of strength and deformability were determined, and the
dependences on various strain rates were determined.

The introduction of a reinforcing fiber into the original fine-grained concrete
increased the dynamic strength of the material under uniaxial stress. The highest
strength from 55 to 95 MPa under dynamic compression was shown by fiber-
reinforced concrete with steel fiber. Combined fiber-reinforced concrete ranked
second in terms of dynamic strengthening, and concrete with polymer fibers showed
a slight increase in strength. However, the highest average DIF, equal to 1.7, was
shown by the original fine-grained concrete, as well as concrete with polymer fibers,
whose DIF was also equal to 1.7.
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Fig. 8.10 Averaged diagrams σ(ε) and š(ε), σ(t) and š(t) under compression for all CFRC modes
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Fig. 8.11 Effect of strain rate on mechanical properties of CFRC under dynamic compression

Table 8.11 Average increase in strength of the studied materials

№ Material
type

Ultimate stress, MPa Average
strength,
MPa

Average
increase in
strength, %

Av. DIF

Mode № 1 Mode № 2 Mode № 3

Uniaxial dynamic compression

1 FGC 46 57 69 57 0 1.7

2 PFRC 52 57 75 61 7 1.7

3 CFRC 53 68 90 70 18 1.3

4 SFRC 58 85 97 80 28 1.4
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Chapter 9
Unsteady Longitudinal
Mechanodiffusion Vibrations
of a Rectangular Plate with Inner
Diffusion Flux Relaxation

Sergey A. Davydov, Anatoliy V. Vestyak, and Andrei V. Zemskov

Abstract We consider the unsteady problem of elastic diffusion deformations of
a rectangular orthotropic plate considering the diffusion fluxes relaxation. External
perturbations lay in the plate plane and allow us to use a two-dimensional elastic dif-
fusion model for continuum as a mathematical model. The solution is convolutions
of Green’s functions with functions defining the boundary perturbations. Green’s
functions finding method is based on the Laplace transform and double trigono-
metric Fourier series. We are using residues and tables of operational calculus for
transition to the originals of Green’s functions. The interaction effects of mechanical
and diffusion fields for a three-component material are calculated using the example
of a rectangular plate under tensile forces. We have also investigated the influence of
relaxation processes on mass transfer kinetics. Calculation results are in analytical
and graphical forms.

Keywords Elastic diffusion · Unsteady problems · Coupled problem ·
Multicomponent continuum · Green’s functions

9.1 Introduction

Issues related to the strength study include static/dynamic materials tests and con-
sideration of different physical fields interaction. This is due to various modern
structures and different conditions of their operation. It is often necessary to con-
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sider the interaction between mechanical, diffusion, temperature and other fields in
applied calculations.

Experimental study of the interaction between mechanical and diffusion fields
began in the 20s of the twentieth century. Many scientific theories have been formed
that allow describing the coupled mechanical, diffusion and other fields in a solid
medium. Among the most recent works are [1–16]. Various aspects of mechanod-
iffusion processes modelling are considered here: beginning with initial–boundary
problem formulation and ending with a description of methods for solving these
problems. Here are stationary [4, 11, 12] and unsteady problems [1–3, 5–8, 13–16].

The main complexity is the Laplace inverse transform when solving mechanod-
iffusion problems analytically. It is often used in solving initial–boundary problems.
The Durbin method [2, 3, 7, 8, 14] or similar algorithms based on the fact that the
Mellin integral is expressed through the inverse Fourier transform are used here.
Special quadrature formulas [1, 5, 15] allow to calculate the integral. These methods
have proven themselves in calculating the originals in a certain class of functions.
However, these algorithms are not suitable for Green’s functions because they belong
to the generalized function class, and it is difficult to use numerical integration meth-
ods in this case.

Numerical algorithms based on finite difference methods [6, 13] and the finite
element methods [16] are an alternative to analytical methods. In addition, numerical
methods are the only way to solve the boundary value problem in some cases. A
disadvantage of numerical methods is that solution comes to a discrete set of values,
which is difficult to analyse and investigate later. A rather complicated mathematical
problem is the question of algorithm stability and convergence.

This article proposes an analytical method for solving the unsteady mechanodif-
fusion problem for a rectangular plate. The method implies the Laplace transform
and Fourier series expansion in eigenfunctions of the elastic diffusion operator. This
approach has been tested for one-dimensional problems of elastic diffusion and ther-
moelastic diffusion [17, 18].

9.2 Problem Formulation

We considered a multicomponent rectangular plate under the action of unsteady
longitudinal forces. The resulting mass transfer and diffusion flux relaxations are
taken into account inside the plate.

The mathematical model describing two-dimensional elastic diffusion processes
for a homogeneous orthotropic medium in the rectangular Cartesian coordinate sys-
tem [19, 20]:
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Here, all quantities are dimensionless. Their relation to their dimensional coun-
terparts (when written the same way, they are indicated with a dash) is defined as
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where t is a time parametr; x∗
i is a rectangular Cartesian coordinate; u∗

i is a dis-
placement vector component; L is the diagonal size of the plate having dimensions
l∗1 × l∗2 ; ηq is the concentration increment of “q”th component in N + 1-component
medium; n(q)

0 is the initial concentration of “q”th component; Ci jkl is the component
of elastic constants tensor; ρ is a mass density; α

(q)

i j is a coefficient characterizing

the volume change of the medium due to diffusion; D(q)

i j is a diffusion coefficient; R
is the universal gas constant; T0 is an average temperature; m(q) is a molar mass of
“q”th component, f ∗

klm is an external perturbation; τ (q) is the relaxation time of the
diffusion flux.

We assume the initial conditions are zero.

9.3 Integral Representation of the Solution

The solution to the problem is sought in the integral form as follows:
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whereGmkl areGreen’s functions, which satisfy the following initial–boundary value
problem (initial conditions are zero):
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9.4 Algorithm for Green’s Functions

To find the Green’s functions, we apply the Laplace transform to (9.5) and (9.6)
and then represent the unknown functions as a double Fourier series. Let’s multiply
the first equation in (9.5) by cosμmx1 sin λnx2, the second by sinμmx1 cos λnx2,
and the rest by sin λnx1 sinμnx2 (μm = πm/ l1, λn = πn/ l2). Then we integrate
into the rectangle [0, l1] × [0, l2] and obtain the following system of linear algebraic
equations:
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2
n, Mqmn = �

q
12μ

2
m + �

q
22λ

2
n;
(9.8)

GL
rkl (x1, x2, ξ, ζ, s) =

∫ ∞

0
Grkl (x1, x2, ξ, ζ, τ ) e−sτdτ,

GL
1kl (x1, x2, ξ, ζ, s) =

∞∑

m=0

∞∑

n=1

GL
1klmn (ξ, ζ, s) cosμmx1 sin λnx2,

GL
2kl (x1, x2, ξ, ζ, s) =

∞∑

m=1

∞∑

n=0

GL
2klmn (ξ, ζ, s) sinμmx1 cos λnx2,

GL
q+2,kl (x1, x2, ξ, ζ, s)=

∞∑

m=1

∞∑

n=1

GL
q+2,klmn(ξ, ζ, s) sinμmx1 sin λnx2,

(9.9)

GL
1klmn (ξ, ζ, s) = 4

l1l2

∫ l1

0
cosμmx1dx1

∫ l2

0
GL

1kl (x1, x2, ξ, ζ, s) sin λnx2dx2,

GL
1kl0n (ξ, ζ, s) = 2

l1l2

∫ l1

0
dx1

∫ l2

0
GL

1kl (x1, x2, ξ, ζ, s) sin λnx2dx2,

GL
2klmn (ξ, ζ, s) = 4

l1l2

∫ l1

0
sinμmx1dx1

∫ l2

0
GL

2kl (x1, x2, ξ, ζ, s) cos λnx2dx2,

GL
2klm0 (ξ, ζ, s) = 2

l1l2

∫ l1

0
sinμmx1dx1

∫ l2

0
GL

2kl (x1, x2, ξ, ζ, s) dx2,

GL
q+2,klmn(ξ, ζ, s)= 4

l1l2

∫ l1

0
sinμmx1dx1

∫ l2

0
GL

q+2,kl (x1, x2, ξ, ζ, s) sin λnx2dx2.

Below are the systems of equations for the zero harmonics:
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k10n (s)GL
1kl0n (ξ, ζ, s) = F10n (ξ, ζ, s) ,

k2m0 (s)GL
2klm0 (ξ, ζ, s) = F2m0 (ξ, ζ, s) ,

F10n (ξ, ζ, s) = 2

l1l2
[C66λnδ1k (δ1l cos λnζ + δ2l) − δ2kδ1l sin λnζ ] ,

F2m0 (ξ, ζ, s) = 2

l1l2
[μmC66δ1k (δ1l + δ2l cosμmξ ] − δ2kδ2l sinμmξ ] .

(9.10)

The solution of the systems (9.7) and (9.10) has the following form:

GL
1kl0n(ξ, ζ, s)= 2

l1l2

C66λnδ1k (δ1l cos λnζ +δ2l)−δ2kδ1l sin λnζ

k1 (0, λn, s)
,

GL
2klm0(ξ, ζ, s)= 2

l1l2

μmC66δ1k (δ1l +δ2l cosμmξ)−δ2kδ2l sinμmξ

k2 (μm, 0, s)
;

(9.11)

GL
iklmn (ξ, ζ, s) = Piklmn (ξ, ζ, s)

Pmn (s)
(i = 1, 2) ,

GL
q+2,klmn (ξ, ζ, s) = ĜL

q+2,klmn (ξ, ζ, s) + Pq+2,klmn (ξ, ζ, s)

Qqmn (s)
;

(9.12)

ĜL
q+2,21mn (ξ, ζ, s) = − 4

l1l2

�
q
11μm

kq+2,mn (s)
sin λnζ,

ĜL
q+2,12mn (ξ, ζ, s) = 4

l1l2

�2qλnμm

kq+2,mn (s)
cosμmξ,

ĜL
q+2,11mn (ξ, ζ, s) = 4

l1l2

�1qλnμm

kq+2,mn (s)
cos λnζ,

ĜL
q+2,22mn (ξ, ζ, s) = − 4

l1l2C22

�
q
22λn

kq+2,mn (s)
sinμmξ,

ĜL
q+2,p+2,1mn (ξ, ζ, s) = 4D1 jqμm

l1l2

sin λnζ

kq+2,mn (s)
,

ĜL
q+2,p+2,2mn (ξ, ζ, s) = 4D2qpλn

l1l2

sinμmξ

kq+2,mn (s)
,

(9.13)

where

Pmn (s) = [
k1mn (s) k2mn (s) − μ2

mλ2
nC

2
0

]
�mn (s) −

−λ2
n

N∑

j=1

S1mn (s)� jmn (s) Mjmn − μ2
m

N∑

j=1

S2mn (s)� jmn (s) K jmn+

+μ2
mλ2

n

N∑

i=1

N∑

j=1

Ai j KimnM jmn�i jmn (s) ,

Qqmn (s) = kq+2,mn (s) Pmn (s) ,

(9.14)
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P121mn (ξ, ζ, s) = − 4

l1l2
k2mn (s) �mn (s) sin λnζ−

− 4

l1l2

N∑

j=1

[
μ2
m�

j
11S2mn (s) + α

j
2λ

2
nM jmn

]
� jmn (s) sin λnζ+

+ 4

l1l2
μ2
mλ2

n

N∑

j=1

�
j
11

N∑

i=1

A j i Mimn�i jmn (s) sin λnζ ,

P112mn (ξ, ζ, s) = 4

l1l2
C66λn

(
k2mn (s) − μ2

mC0
)
�mn (s) cosμmξ+

+ 4

l1l2
λn

N∑

j=1

[
C66BjmnMjmn + μ2

m�2 j S2mn (s)
]
� jmn (s) cosμmξ−

− 4

l1l2
λ3
nμ

2
m

N∑

j=1

�2 j

N∑

i=1

A j i Mimn�i jmn (s) cosμmξ,

P111mn (ξ, ζ, s) = 4

l1l2
C66λn

(
k2mn (s) − C0μ

2
m

)
�mn (s) cos λnζ+

+ 4

l1l2
λn

N∑

j=1

[
C66BjmnMjmn + μ2

m�1 j S2mn (s)
]
� jmn (s) cos λnζ−

− 4

l1l2
λ3
nμ

2
m

N∑

j=1

�1 j

N∑

i=1

A j i Mimn�i jmn (s) cos λnζ,

P122mn (ξ, ζ, s) = 4

l1l2
λnμmC0�mn (s) sinμmξ+

+ 4

l1l2
μmλn

N∑

j=1

[
α

j
1Mjmn (s) − �

j
22

C22
S2mn (s)

]
� jmn (s) sinμmξ+

+ 4

l1l2
μmλ3

n

N∑

j=1

�
j
22

C22

N∑

i=1

A j i Mimn�i jmn (s) sinμmξ,

P221mn (ξ, ζ, s) = 4

l1l2
μmλnC0�mn (s) sinμmζ+

+ 4

l1l2
μmλn

N∑

j=1

[
α

j
2K jmn − �

j
11S1mn (s)

]
� jmn (s) sin λnζ+

+ 4

l1l2
μ3
mλn

N∑

j=1

�
j
11

N∑

i=1

A j i Kimn�i jmn (s) sin λnζ,
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P212mn (ξ, ζ, s) = 4

l1l2
C66μm

(
k1mn − C0λ

2
n

)
�mn (s) cosμmξ+

+ 4

l1l2
μm

N∑

j=1

[−C66BjmnK jmn + λ2
n�2 j S1mn (s)

]
� jmn (s) cosμmξ−

− 4

l1l2
λ2
nμ

3
m

N∑

j=1

�2 j

N∑

i=1

A j i Kimn�i jmn (s) cosμmξ,

P211mn (ξ, ζ, s) = 4

l1l2
C66μm

(
k1mn (s) − C0λ

2
n

)
�mn (s) cos λnζ+

+ 4

l1l2
μm

N∑

j=1

[−C66BjmnK jmn + λ2
n�1 j S1mn (s)

]
� jmn (s) cos λnζ−

− 4

l1l2
λ2
nμ

3
m

N∑

j=1

�1 j

N∑

i=1

A j i Kimn�i jmn (s) cos λnζ,

P222mn (ξ, ζ, s) = − 4

l1l2
k1mn (s) �mn (s) sin λnξ−

− 4

l1l2

N∑

j=1

[
�

j
22

C22
λ2
n S1mn (s) + μ2

mα
j
1K jmn

]
� jmn (s) sinμmξ+

+ 4

l1l2
μ2
mλ2

n

N∑

j=1

�
j
22

C22

N∑

i=1

A j i Kimn�i jmn (s) sinμmξ,

P1,q+2,1mn (ξ, ζ, s) = 4

l1l2
μ2
m

N∑

j=1

D1 jq S2mn (s)� jmn (s) sin λnζ−

− 4

l1l2
μ2
mλ2

n

N∑

j=1

D1 jq

N∑

r=1

A jr Mrmn�r jmn (s) sin λnζ,

P1,q+2,2mn (ξ, ζ, s) = 4

l1l2
μmλn

N∑

j=1

D2 jq S2mn (s) � jmn (s) sinμmξ−

− 4

l1l2
μmλ3

n

N∑

j=1

D2 jq

N∑

r=1

A jr Mrmn�r jmn (s) sinμmξ,

P2,q+2,1mn (ξ, ζ, s) = 4

l1l2
λnμm

N∑

j=1

D1 jq S1mn (s) � jmn (s) sin λnζ−

− 4

l1l2
μ3
mλn

N∑

j=1

D1 jq

N∑

r=1

A jr Krmn�r jmn (s) sin λnζ,
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P2,q+2,2mn (ξ, ζ, s) = 4

l1l2
λ2
n

N∑

j=1

D2 jq S1mn (s) � jmn (s) sinμmξ−

− 4

l1l2
μ2
mλ2

n

N∑

j=1

D2 jq

N∑

r=1

A jr Krmn�r jmn (s) sinμmξ,

Pq+2,klmn (ξ, ζ, s) = μmKqmn P1klmn (ξ, ζ, s) + λnMqmn P2klmn (ξ, ζ, s) ,

�mn (s) =
N∏

j=1

k j+2,mn (s) , �qmn (s) =
N∏

j=1, j �=q

k j+2,mn (s), �qpmn (s) =
N∏

j=1, j �=q,p

k j+2,mn (s) ,

S1mn (s) = α
j
1C0μ

2
m − α

j
2k1mn (s) , S2mn (s) = α

j
2C0λ

2
n − α

j
1k2mn (s) ,

A j i = α
j
1α

i
2 − α

j
2α

i
1, Bjmn = α

j
2λ

2
n − μ2

mα
j
1 ,

D1 jq = D j
1 δq j − �

j
11α

q
1 , D2 jq = D j

2 δq j − �
j
22

C22
α
q
2 .

The transition to the original domain is done by residues and tables of operational
calculus as follows [21]:

G1kl0n (ξ, ζ, τ ) = 2
√
C66

l1l2

[
δ1k (δ1l + δ2l) − δ2kδ1l sin λnζ

λnC66

]
sin

(
λn

√
C66τ

)
,

Gsc
2klm0 (ξ, ζ, τ ) = 2

√
C66

l1l2

[
δ1k (δ1l + δ2l) − δ2kδ2l sinμmξ

μmC66

]
sin

(
μm

√
C66τ

) ;
(9.15)

Giklmn (ξ, ζ, τ ) =
2N+4∑

j=1

A( j)
iklmn (ξ, ζ ) es jmnτ

(i = 1, 2) ,

Gq+2,klmn(ξ, ζ, τ )= Ĝq+2,klmn(ξ, ζ, τ )+
2N+6∑

j=1

A( j)
q+2,klmn(ξ, ζ )es jmnτ

,

A( j)
iklmn (ξ, ζ ) = Piklmn

(
ξ, ζ, s jmn

)

P ′
mn

(
s jmn

) , A( j)
q+2,klmn (ξ, ζ ) = Pq+2,klmn

(
ξ, ζ, s jmn

)

Q′
qmn

(
s jmn

) ,

(9.16)

Ĝq+2,21mn (ξ, ζ, τ ) = − 4

l1l2
�
q
11μm sin λnζ

2∑

j=1

eχ jmnτ

k′
q+2,mn

(
χ jmn

),

Ĝq+2,12mn (ξ, ζ, τ ) = 4

l1l2
�2qλnμm cosμmξ

2∑

j=1

eχ jmnτ

k′
q+2,mn

(
χ jmn

),

Ĝq+2,11mn (ξ, ζ, τ ) = 4

l1l2
�1qλnμm cos λnζ

2∑

j=1

eχ jmnτ

k′
q+2,mn

(
χ jmn

),

Ĝq+2,22mn (ξ, ζ, τ ) = − 4

l1l2

�
q
22λn

C22
sinμmξ

2∑

j=1

eχ jmnτ

k′
q+2,mn

(
χ jmn

).
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9.5 Calculation Example

Let us take a three-component material (N = 2, independent components, zinc and copper, diffusing into
aluminium) with the following characteristics [22]:

C ′
12 = 5.11 · 1010 N

m2, C ′
66 = 2.63 · 1010 N

m2, T0 = 700 K , ρ = 2700
kg

m3,

α
(1)
11 = α

(1)
22 = 6.55 · 107 J

kg
, α

(2)
11 = α

(2)
22 = 6.14 · 107 J

kg
, l = 10−2 m,

D(1)
11 = D(1)

22 = 2.62 · 10−12 m
2

s
, D(2)

11 = D(2)
22 = 2.89 · 10−15 m

2

s
,

n(1)
0 = 0.01, n(2)

0 = 0.045, m(1) = 0.065
kg

mol
, m(2) = 0.064

kg

mol
.

Assume that the plate is under the action of tensile forces applied to the boundaries x1 = 0 and x1 = l1:

f211 (x2, τ ) = f212 (x2, τ ) = H (τ ) sin
πx2
l2

,

where H (τ ) is the Heaviside function.
All other load parameters in the boundary conditions (9.2) are assumed to be zero. Calculating the

convolutions (9.4), we obtain

u1 (x1, x2, τ ) =
∫ l2

0
G121 (x1, x2, ζ, τ ) ∗ f211 (ζ, τ ) dζ−

−
∫ l2

0
G121 (l1 − x1, x2, ζ, τ ) ∗ f212 (ζ, τ ) dζ =

=l2 sin λ1x2

∞∑

m=1

(−1)m+1sin

[
μm

(
l1
2

−x1

)]2N+4∑

j=1

Ã( j)
121m1

es jm1τ −1

s jm1
,

u2 (x1, x2, τ ) =
∫ l2

0
G221 (x1, x2, ζ, τ ) ∗ f211 (ζ, τ ) dζ+

+
∫ l2

0
G221 (l1 − x1, x2, ζ, τ ) ∗ f212 (ζ, τ ) dζ =

=l2 cos λ1x2

∞∑

m=1

(−1)m+1cos

[
μm

(
l1
2

−x1

)]2N+4∑

j=1

Ã( j)
221m1

es jm1τ −1

s jm1
,

ηq (x1, x2, τ ) =
∫ l2

0
Gq+2,21 (x1, x2, ζ, τ ) ∗ f211 (ζ, τ ) dζ+

+
∫ l2

0
Gq+2,21 (l1 − x1, x2, ζ, τ ) ∗ f212 (ζ, τ ) dζ =

= 4

l1
sin λ1x2

∞∑

m=1

(−1)m+1cos

[
μm

(
l1
2

−x1

)] 2∑

j=1

�1qλ1μm

k′
q+2,m1

(
χ jm1

)
eχ jm1τ −1

χ jm1
+

+l2 sin λ1x2

∞∑

m=1

(−1)m+1cos

[
μm

(
l1
2

−x1

)]2N+6∑

j=1

Ã( j)
q+2,21m1

es jm1τ −1

s jm1
,
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Fig. 9.1 Displacement
u1 (x1, x2, τ ) at x2 = l2/2

Fig. 9.2 Displacement
u1 (x1, x2, τ ) at x1 = l1/4

Ã( j)
k21mn = A( j)

k21mn (ζ )

sin λ1ζ
.

The calculation results are shown in the Figs. 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7 and 9.8. Figures9.1, 9.2,
9.3 and 9.4 show dependences of longitudinal displacements ui on time and coordinates. Calculations
show that diffusion processes at the initial stages of deformation do not affect the displacement field. At
initial times, the elastic and elastic diffusion displacements coincide.

Figures9.5 and 9.6 show the zinc and copper concentration increments, respectively, caused by lon-
gitudinal deformations.

The influence of relaxation effects on the mass transfer kinetics is shown in Figs. 9.7 and 9.8. Here,
different lines show zinc concentration increments for models with a finite and infinite speed of diffusion
fluxes. The relaxation effects manifest themselves at some finite interval of time and then disappear. Thus,
in Fig. 9.8, corresponding to the time τ = 109, both curves already coincide.
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Fig. 9.3 Displacement
u2 (x1, x2, τ ) at x2 = l2/4

Fig. 9.4 Displacements
u2 (x1, x2, τ ) at x1 = l1/2
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Fig. 9.5 Zinc concentration
increment η1 (x1, x2, τ ) at
x1 = l1/2

Fig. 9.6 Copper
concentration increment
η2 (x1, x2, τ ) at x1 = l1/2
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Fig. 9.7 Zinc concentration
increment η1 (x1, x2, τ ). The
solid line corresponds to the
time τ (q) = 200 s, the dotted
line to τ (q) = 0

Fig. 9.8 Zinc concentration
increment η1 (x1, x2, τ ). The
solid line corresponds to the
time τ (q) = 200 s, the dotted
line to τ (q) = 0
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9.6 Conclusions

We propose a mathematical model describing the effects of the interaction between mechanical and
diffusion fields during a rectangular orthotropic plate deformation. The algorithm is developed for finding
Green’s functions based on Laplace transform and decomposition into trigonometric Fourier series. It
allows us to reduce the general problem of Laplace transform inversion to the problem of rational function
inversion. Originals of Green’s functions are found using residues and tables of operational calculus. As
a result, it is possible to obtain the solution in analytical form, which provides ample opportunities for
various kinds of numerical experiments.

The effect of interaction between the mechanical and diffusion fields is demonstrated by the example
of a rectangular plate under the action of tensile forces. Unsteady loads initiate the process ofmass transfer.
At the same time, the relaxation diffusion processes reduce with time. The kinetics of mass transfer at
significant times can be described by classical mechanodiffusionwith the infinite speed of diffusion fluxes.
All results are presented in analytical and graphical forms.

Acknowledgements This work was supported by the Russian Science Foundation (project No
20-19-00217).
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Chapter 10
The Influence of the Detailed Model
of the Structure on the Stress–Strain
State of the Soil Base in the Calculations
of Seismic Resistance

Nadezhda S. Dyukina

Abstract The research is aimed at selecting an adequate design model of the struc-
ture in the tasks of assessing the strength of underground pipelines adjacent to the
structure. In a series of computational experiments, the influence of the structure
on the soil base under static and dynamic influences was studied. To analyze the
influence of the structure’s detail on the seismic response and dynamic deformation
of the foundation, three design models of a structure are considered. Invariants of the
calculation experiments were the mass and the center of mass of the structure, the
shape of the footprint and the overall dimensions of structures, the dynamic influ-
ence, and the elastic constants for all materials. It is established that the simplest
model of a structure—a homogeneous array—shows the greatest differences in the
static effect on the soil base during settlement and the dynamic effect from compres-
sion and shear waves. It is shown, some degree of detail of the structure should be
considered when calculating seismic impacts of underground pipelines adjacent to
the structure.

Keywords Numerical experiment · SSE · Deformation of the foundation · Seismic
impacts

10.1 Introduction

The calculation of structures and adjacent pipelines for seismic impacts is usually
carried out either with a simplified model of the structure [1, 2] or with a simplified
model of the soil base [3]. Simplification of the construction model is allowed in [4]
for nuclear power plants that differ from civil structures by a significant thickness of
foundation plates, whereas calculations of civil structures showmaximum stresses in
the foundation plate [3]. The use of a simplified model of the soil foundation implies
the calculation of the Winkler coefficient of the foundation [5] under the assumption
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that the spot of the projected structure transmits to the soil a load of a certain constant
intensity applied at the level of the sole of the foundation. The limitations of this
method of accounting for the soil base are associated with replacing the nonlinear
dependence of the subsidence of the soil base on the applied load with a linear one
and accepting one of themost likely load values—its ownweight, long-term loads, or
a long part of short-term loads. These limitations do not allow us to apply simplified
models of the soil base in calculations for seismic impacts, since taking into account
wave effects in the base is extremely important for determining the dynamic stiffness
of the soil base [6–9]. Seismic waves passing under the foundation of the building
change the parameters of the stress–strain state of the “building-soil” system. Since
the soil base has malleability and inertia, waves of the initial seismic impact and
waves associated with the presence and movement of the foundation of the structure
propagate in it. The phenomenon of wave damping, when mechanical energy does
not pass into heat but is carried away by waves from a moving die, is combined with
traditional damping associated with internal friction characteristic of soils, and often
turns out to be much more important for the overall reaction of the structure. It is
also necessary to take into account the possibility of local stress concentrations in the
soil base, leading to the transition of the soil medium into a loose and elastic–plastic
state and, as a consequence, a change in the bearing capacity of the base.

It is required to substantiate the permissible limits of the idealization of the struc-
ture and the soil foundation in the tasks of calculating seismic resistance. It is inter-
esting to study the influence of the details of the structure model on the stress–strain
state of the soil foundation and the dynamic deformation of the foundation in the
calculations of seismic resistance.

10.2 The Mathematical Model and Numerical Experiment

A rectangular soil massif of 2000× 2000× 200m is considered. The soil is modeled
by a continuous ideally elastic medium with characteristics E = 2.4 GPa, ν = 0.4,
ρ = 2000 kg/m3. On the upper soil surface in the center there is a structure with
mechanical characteristics E = 20 GPa, ν = 0.25, and mass of M = 8000 tons. To
analyze the influence of the structure’s detail on the seismic response and dynamic
deformation of the foundation, several design models of a structure of a given mass
are considered (Table 10.1). When the density of the construction material changed,
the new volume V new was determined from the ratio:

V new = M

ρnew
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(a) (b) 

(c) 

Fig. 10.1 Structures a—variant 1 in Table 10.1, b—variant 2 in Table 10.1, c—variant 3 in Table
10.1

Table 10.1 The description of the calculation experiments

Variant of calculation Density of material for
construction ρ, kg/m3

Geometric parameters of the structure

1 ρ = M
V = 1000 Cube 20 × 20 × 20 m (Fig. 10.1a)

2 ρ = 2500 Two plates 2 × 20 × 20 m, connected
by 4 columns 16 × 5 × 5 m
(Fig. 10.1b)

3 ρ = 2500 Two plates 2 × 20 × 20 m, connected
by 1 column 16 × 10 × 10 m
(Fig. 10.1c)
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Fig. 10.2. Shear wave at the
lower boundary of the soil

Invariants of the calculation experiments were:

– The mass and the center of mass of the structure;
– The shape of the footprint and the overall dimensions of structures;
– The dynamic influence;
– The elastic constants E, ν for all materials.

Numerical simulation is performed in LS-Dyna. The length of the edge of cubic
finite elements for the soil was assumed to be 2.5 m, for the structure—1 m. To
simulate the effect of gravity, a constant compressive stress is applied to the compu-
tational domain. Kinematic boundary conditions were set at the lower boundary of
the soil massif, simulating a shear wave propagating to the day surface of the soil
(Fig. 10.2). The determination of the kinematic effect at the lower boundary of the
soil was carried out in accordance with [10].

10.3 Numerical Results

Calculations made it possible to detect inhomogeneities in the stress fields and
displacement fields in complex structures (Fig. 10.3).

Qualitative differences in the process of the influence of settlement and dynamics
of the structures under consideration on the soil base at a given impact are shown
in Fig. 10.4. In accordance with the structural features of buildings, inhomogeneous
stress fields were obtained on the lower plate of the structure and in the near-surface
layer of the soil from the settlement (t = 0 s) and with a dynamic reaction to a shear
pulse (t = 0.33 s).

Figures 10.5, 10.6, 10.7, 10.8 and 10.9 demonstrate the distribution of stresses
and velocity components Vx, Vy in the soil horizontal profile buried at 0.5 m and
lying on the plane of symmetry of structures with a normal {0; 0; 1}. An increase
in the difference in stresses is typically at the stage of the settlement of buildings (t
= 0 s—solid lines in Figs. 10.5 and 10.6) and at the stage of the dynamic impact of
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(a)                                                                     (b) 

Fig. 10.3 Inhomogeneities in the stress fields (a) and displacement fields (b)

the shear wave on buildings (t = 0.33 s—dotted lines in Figs. 10.5 and 10.6, lines
with markers in Fig. 10.7). Here the interval of 40–60 m of the profile corresponds
to the foundation of the structure. The most significant difference obtained for the
components stress tensor σxx, σyy.

Figures 10.8 and 10.9 demonstrate as shear wave head to the structure (t < 0.35 s)
and reflected from it (t > 0.35 s). The velocity profiles show differences in shear
velocities up to 17% for different design variants (Fig. 10.8). The difference in
the vertical component of the velocity Vx, which characterizes the rocking of the
structure, is more significant (Fig. 10.9). The worst scenario is implemented for a
homogeneous version of the design.

Similar calculations were carried out for the short pulse influence of the longi-
tudinal compression-stretching wave. The characteristic differences for this type of
impact are the occurrence of long–term vibrations in complex structures and the
subsequent imposition of these vibrations (Fig. 10.10).

The response of all types of structures to the impact of a compression-stretching
wave was more significant than for the impact of a shear wave (Figs. 10.11, 10.12,
10.13). The stress profiles (Fig. 10.11) at the stage of static impact from the gravity
field and at the stage of dynamic impact differ by more than 4 times for all design
variants. The difference in the shapes of the profiles is more significant than when
exposed to a shear wave.
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(a)                                                       (b) 

(c)                                                      (d) 

(e)                                                       (f) 

Fig. 10.4 Stresses σxx in the soil under the foundation plate after settlement (a, c, e) and at the time
of the approach of the shear wave to the building (b, d, f): a, b—structure N1, c, d—N2, e, f—N3

10.4 Conclusion

In a series of computational experiments, the influence of the structure on the ground
base under static and dynamic influences was studied. The research is aimed, first,
at selecting an adequate design model of the structure in the tasks of assessing the
strength of underground pipelines adjacent to the structure.
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Fig. 10.5. Stress σxx at the depth 0.5 m

Fig. 10.6. Stress σxy at the depth 0.5 m

In the study, the worst-case scenario is implemented for the crudest model of the
structure, which, on the one hand, allows us to guarantee more favorable scenarios
for the reaction of the structure and the soil base for real, more detailed models.
At the same time, this can lead to overestimated load estimates when assessing the
seismic resistance of the structure and, as a result, the cost of construction increases.
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Fig. 10.7. Stress σyy, σyz, σxz at the depth 0.5 m

The choice of the construction model affects the results of numerical modeling
of the behavior of the structure under dynamic loads, as well as the change in the
stress–strain state of the soil base. Therefore, some degree of detail of the structure
should be taken into account when calculating seismic impacts.
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(a)

(b)

Fig. 10.8. Velocity profiles Vy in the soil at the depth 0.5 m under the structure: a—the beginning
of the dynamic impact, b—dynamic response of the structures
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(a)

(b)

Fig. 10.9. Velocity profiles Vx in the soil at the depth 0.5 m under the structure: a—the beginning
of the dynamic impact, b—dynamic response of the structures
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Fig. 10.10. Velocity Vx (a) and stress σxx (b, c) distribution, caused by the settlement (b) and
compression-stretching wave influence alone the X-axis (a, c)

Fig. 10.11 Stress profile σxx in the soil at the depth 0.5 m
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Fig. 10.12. Stress profile σxy in the soil at the depth 0.5 m

Fig. 10.13. Stress profile σyy, σyz, σxz in the soil at the depth 0.5 m
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Chapter 11
Generalized Linear Model of Dynamics
of Elastic Moment Shells

Quoc Chien Mai, Marina Yu. Ryazantseva, and Dmitry V. Tarlakovskii

Abstract The initial and boundary value problem describing the nonstationary
dynamics of a homogeneous thin anisotropic elastic moment shell is constructed.
The model takes into account the material anisotropy, free rotation, independent
normal unit vector rotation, and its transverse normal strain. The functional and the
physical law for the shell are constructed using the Hamilton functional, physical
relations for a three-dimensional body described by the Cosserat model, the hypoth-
esis of direct normal for the displacement field, and an analogous supposition for the
rotation vector. The boundary value problem for the elastic moment shell is obtained
as a necessary condition for an extremum of this functional. Various versions of
natural boundary conditions are considered. It is pointed out that transition to an
isotropic material only simplifies the physical relations without reducing the num-
ber of unknowns. The latter can be realized only at the expense of introducing some
additional hypotheses concerning the displacement and rotation fields or considering
special geometries of the middle surface.

Keywords Elastic moment shells · Unsteady problems · Cosserat model ·
Hamilton’s principle · Anisotropic shell
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11.1 Introduction

At present, the theory of elasticity of three-dimensional moment media has been
developed in sufficient detail and there have been many studies concerning this
issue. We will restrict ourselves only to the reference to publications [1–5] used in
this study.

The studies concerned with elastic moment shells are considerably fewer in num-
ber. We note only certain publications pertaining to the linear models, namely, [6–8].
In particular, the authors of [7] use the Hamilton functional and expansions into
power series in the normal coordinate which are then replaced by partial sums.

Different questions associated with the Saint-Venant hypothesis, the special fea-
tures of boundary conditions, the presence of holes, and the temperature field effect
for cylindrical shells were considered in [9–12]. In [13], an elastic sloping normal
moment shell under the action of a given nonstationary temperature fieldwas studied.
The material behavior was modeled by the isotropic Cosserat medium. Under the
suppositions of Timoshenko type, the standard for theory of shells, the equations of
motion are constructed. The examples of the statics of a hinge-supported rectangular-
in-plan spherical shell and the dynamics of a freely supported square plate, as well as
the stability of a circular cylindrical shell under the action of uniformly distributed
temperature, were considered.

By virtue of the known reasons, the behavior of elasticmoment plates and beams is
studiedmost simply. These questions are considered in [14–21]. In particular, in [17],
the equilibrium equations were constructed using certain simplifying hypotheses. In
[18–21], the problem of the motion of a plate of constant thickness was formulated
using the Cosserat model. The asymptotic equations were derived, which break down
into relations governing the stress–strain state and the boundary effect.

In this study, we develop initial and boundary value problems for elastic moment
shells, which, in our opinion, are most general within the framework of the direct
normal hypothesis and the Cosserat model. They take into account the medium
anisotropy, its free rotation, the independent normal unit vector rotation, and its
transverse strain.

11.2 Problem Formulation

We will consider a homogeneous anisotropic elastic moment shell of constant thick-
ness h, whose material possesses the symmetry about its smooth oriented middle
surface Π (closed or having a boundary � = ∂Π ) with the unit normal vector n
to the outer side. The geometric domain G ⊂ R3 occupied by the shell is bounded
by the surface [22, 24] ∂G = Π− ∪ Π+ ∪ Πb, where Π− and Π+ are the inner and
outer surfaces and Πb is the lateral surface.

It is assumed that the shell is thin, that is, there holds the inequality h/λ = δ � 1,
where λ is the characteristic dimension of its middle surface. The middle surface and
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its boundary �, if any, are preassigned as follows:

Π : r = r0
(
ξ 1, ξ 2

)
,
(
ξ 1, ξ 2

) ∈ D ⊂ R2, � : r = r0
(
ξ 1, ξ 2

)
,
(
ξ 1, ξ 2

) ∈ ∂D.

Then the outer, inner, and lateral surfaces are described, respectively, by the following
equations:

Π± : r = r±
(
ξ 1, ξ 2

) = r0
(
ξ 1, ξ 2

) ± h

2
n, (ξ 1, ξ 2) ∈ D,

Πb: r = r0
(
ξ 1, ξ 2

) + zn,
(
ξ 1, ξ 2

) ∈ ∂D, −h

2
≤ z ≤ h

2
.

The basis of the space tangent to the middle surface (tangent plane) P = ∂Π is
determined as follows:

π j = ∂ r0
∂ξ j

. (11.1)

Here and in what follows, unless otherwise specified, the Roman indices take the
values 1 and 2. The summation over the Greek indices is not made.

In domain G, the curvilinear coordinates ξ 1, ξ 2, z are introduced, as follows:

r = r0
(
ξ 1, ξ 2

) + zn
(
ξ 1, ξ 2

)
,
(
ξ 1, ξ 2

) ∈ D, −h

2
≤ z ≤ h

2
. (11.2)

In accordance with Eqs. (11.1) and (11.2), the spatial basis e1, e2, e3 is determined
as follows:

e j = ∂ r

∂ξ j
= π j + z

∂n

∂ξ j
, e3 = ∂ r

∂z
= n.

We note also that, for the components ĝi j of the metric tensor in the basis π1,π2, n,
there hold the equalities [5, 25] ĝi j = gi j , ĝ13 = ĝ23 = 0, ĝ33 = 1, where gi j are
the components of the metric tensor of surface Π .

Then for the vectors u and the second-rank tensors d we will use the following
notation:

u = ũi ei + ũ3n = ũi ei + u3n = û jπ j + û3n = û jπ
j + u3n, û3 = ũ3 = u3,

d = d̃ i j ei e j + d̃ i3ein + d̃3 jne j + d̃33nn = d̃i j ei e j + d̃i3ein + d̃3 jne j + d̃33nn =
= d̂ i jπ iπ j + d̂ i3π in + d̂3 jnπ j + d̂33nn = d̂i jπ iπ j + d̂i3π in + d̂3 jnπ j + d̂33nn.

In constructing initial and boundary value problems for shells, wewill use the Hamil-
ton functional for three-dimensional elastic moment shells, which can be written in
different forms [1–4, 25]. Here, we will write it as follows:
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H (u,ω) =
t2∫

t1

(I − E) dt, I (u,ω) = W − A (t2 > t1) , (11.3)

where

W = 1

2

∫

G

(
σ i jγi j + μi jχi j

)
d y, E = 1

2

∫

G

(
ρv2 + J�2) d y, v = u̇, � = ω̇,

A =
∫

G

ρ [(F, u) + (M,ω)] d y +
∫∫

∂G

[(
pv, u

) + (
mv,ω

)]
dS.

Here, E and W are the kinetic and potential energies of the body, respectively, A
is the work of external forces, ρ is the density, J is the mass measure of medium
inertia under rotation, u = ui ei and ω = ωi ei are the displacement and rotation
angle vectors, respectively, t is time, γ = γ i j ei e j and χ = χ i j ei e j are the strain and
bending/torsion tensors, respectively, σ = σ i j ei e j and μ = μi j ei e j are the stress
and moment stress tensors, respectively, F = F j e j and M = M j e j are the bulk
force and moment, respectively, and pν = σ i jνi e j and mν = μi jνi e j are the stress
and moment stress vectors, respectively, on an area with the unit outward normal
vector ν = νi ei ; the dots refer to time derivatives. In these qualities, and below in
this section, the Roman indices take the values 1, 2, and 3.

The components of the strain and bending/torsion tensors are related with
the coordinates of the displacement and rotation angle vectors by the equations
γi j = ∇i u j − εki jω

k, χi j = ∇iω j , where εki j are the components of the Levi-Civita
pseudotensor [25].

The general form of the physical law is constructed using the linearization of the
free energy and takes the form:

σ i j = Ci jklγkl + Di jklχkl, μi j = Bi jklχkl + Di jklγkl . (11.4)

Here, Ci jkl , Bi jkl , Di jkl are the physical constants of the medium or the components
of fourth-rank tensors having the following symmetry:

Ci jkl = Ckli j , Bi jkl = Bkli j , Di jkl = Dkli j .

For the isotropic Cosserat medium, these tensors and the physical law can be written
in the form:

Ci jkl = (μ + α) gikg jl + (μ − α) g jkgil + λgi j gkl,
Bi jkl = (γ + ε) gikg jl + (γ − ε) g jkgil + βgi j gkl, Di jkl = 0,

σi j = (μ + α) γi j + (μ − α) γ j i + λgi jdivu,

μi j = (γ + ε) χi j + (γ − ε) χ j i + βgi jdivω.

(11.5)
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Here, λ, μ are the elastic Lamé constants, while α, β,γ, ε are some additional phys-
ical parameters of the medium in the presence of moment effects. The last four
parameters satisfy the following restrictions [3, 4]:

α, γ, ε ≥ 0, 3β + 2γ ≥ 0, μ (2γ + β) = (α + μ) (γ + ε) .

Using the methods of calculus of variations, the following assertion can be fairly
easily demonstrated.

Assertion 1 The necessary conditions for an extremum of functional (11.3), when
the conditions δu|t=t1,t2 = 0, δω|t=t1,t2 = 0 are fulfilled (the symbol δ refers to a
variation), are the equations of motion:

ρ
∂2u j

∂t2
= ∇iσ

i j + ρF j , J
∂2ω j

∂t2
= ∇iμ

i j + ε jklσkl + ρM j

and the boundary conditions

ui |Πu
= ui0, ωi |Πω

= ωi0, σ j iν j

∣
∣
Πσ

= Pi , μ j iν j

∣
∣
Πμ

= K i .

Here, ui0, ωi0, Pi , K i are given functions and ∂G = Πu ∪ Πσ = Πω ∪ Πμ where
the surfaces Πu and Πσ as well as Πω and Πμ, intersect in a null-measure set.

11.3 Hamiltonian for an Elastic Moment Shell

Analogously to [22–24], we will use the direct normal hypothesis for the displace-
ment field thus arriving at the following equalities:

ûi
(
ξ 1, ξ 2, z

) = ui
(
ξ 1, ξ 2

) + ψi
(
ξ 1, ξ 2

)
z,

u3
(
ξ 1, ξ 2, z

) = w
(
ξ 1, ξ 2

) + ψ3
(
ξ 1, ξ 2

)
z; (11.6)

∇̂i û j = αi j + zβi j , ∇̂i u3 = −ϑi + (
bki θk + ∇iψ3

)
z, ∇̂3ûi = ψi , ∇̂3u3 = ψ3,

(11.7)
where

αi j = ∇i u j − bi jw, −ϑi = ∇iw + bki uk, θk = ψk − ϑk,

βi j = ∇iψ j − bi jψ3 + bki ∇ku j − ci jw =
= ∇iψ j − bi jψ3 + bki αk j , ci j = bikbkj .

(11.8)

Here, ∇i is the operator of covariant differentiation on the surface Π ; bi j are the
components of the tensor of the middle surface curvature; ui andw are the tangential
and normal displacements, respectively; and the quantities ψi determine the angle
between the vector n and the directing normal unit vector in the deformed state.
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As it is agreed in the theory of shells, here and in what follows, the terms nonlinear
in the coordinate z in these equalities are discarded and approximate equalities are
replaced by exact ones.

We assume that, for the rotation angle vector, there exist relations analogous to
Eqs. (11.6)–(11.8):

ω̂i
(
ξ 1, ξ 2, z

) = ωi
(
ξ 1, ξ 2

) + ϕi
(
ξ 1, ξ 2

)
z,

ω3
(
ξ 1, ξ 2, z

) = ω
(
ξ 1, ξ 2

) + ϕ3
(
ξ 1, ξ 2

)
z; (11.9)

∇̂i ω̂ j = ηi j + λi j z, ∇̂iω3 = ηi3 + λi3z, ∇̂3ω̂i = ϕi , ∇̂3ω3 = ϕ3, (11.10)

where

ηi j = ∇iω j − bi jω, ηi3 = ∇iω + bki ωk, λi3 = bki (ϕk + ηk3) + ∇iϕ3,

λi j = ∇iϕ j − bi jϕ3 + bki ∇kω j − ci jω = ∇iϕ j − bi jϕ3 + bki ηk j .
(11.11)

Then the components of the strain and bending/torsion tensors take the form:

χ̂i j = ηi j + λi j z, χ̂i3 = ηi3 + λi3z, χ̂3i = ϕi , χ̂33 = ϕ3; (11.12)

γ̂i j = ξi j + ζi j z, γ̂i3 = ξi3 + ζi3z, γ̂3i = ξ3i + ζ3i z, γ̂33 = ψ3, (11.13)

where

ξi j = αi j − κi jω = ∇i u j − bi jw − κi jω,

ξi3 = −ϑi − κkiω
k = ∇iw + bki uk − κkiω

k, ξ3i = ψi + κkiω
k,

ζi j = βi j − κi jϕ3 = ∇iψ j − bi jψ3 + bki ∇ku j − ci jw − κi jϕ3,

ζi3 = bki θk + ∇iψ3 − κkiϕ
k = bki (ψk + ∇kw) + cki uk + ∇iψ3 − κkiϕ

k,

ζ3i = κkiϕ
k .

(11.14)

Here, κ jk = ε jk3 are the components of a discriminant pseudotensor on the surface
Π.

Then, using Eqs. (11.6)–(11.14) and the procedure of the passage from the triple
over G integrals and the surface integrals over Π± to the integrals over the middle
surfaceΠ which is standard in theory of shells, and the passage from the integral Πb

to the curvilinear integral over the curve� = ∂Π , we canwrite down the components
of the functional (11.3) as follows:

W = W0 (u,ψ,ω,ϕ, w,ψ3, ω, ϕ3) =
= 1

2

∫∫

Π

(
T̂ i jξi j + T̂ i3ξi3 + T̂ 3iξ3i + T̂ 33ψ3 + M̂i jζi j + M̂i3ζi3+

+M̂3iζ3i + R̂i jηi j + R̂i3ηi3 + R̂3iϕi + R̂33ϕ3 + Si jλi j + Si3λi3

)
dS;

(11.15)
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E = E0 (u,ψ,ω,ϕ, w,ψ3, ω, ϕ3) =
= ρ

2

∫∫

Π

[
h

(
u̇i u̇i + ẇ2

) + I
(
ψ̇i ψ̇

i + ∂ψ̇2
3

)]
dS+

+ J

2

∫∫

Π

[
h

(
ω̇i ω̇

i + ∂ω̇2
) + I

(
∂ϕ̇i∂ϕ̇i + ∂ϕ̇2

3

)]
dS, I = h3/12;

(11.16)

A = A0 (u,ψ,ω,ϕ, w,ψ3, ω, ϕ3) =
=

∫∫

Π

[
(q, u) + (m,ψ) + qw + mψ3 + (mM ,ω)+

+ (m2M ,ϕ) + m̃Mω + m̃2Mϕ3
]
dS+

+
∫

�

[(
T (0), u

) + (
M(0),ψ

) + T(0)w + M(0)ψ3+

+ (
R(0),ω

) + (
S(0),ϕ

) + R(0)ω + S(0)ϕ3
]
ds,

(11.17)

where

T̂ i j =
h/2∫

−h/2

σ̂ i j dz, Mi j =
h/2∫

−h/2

zσ̂ i j dz, T̂ i3 =
h/2∫

−h/2

σ̂ i3dz, T̂ 3i =
h/2∫

−h/2

σ̂ 3i dz,

Mi3 =
h/2∫

−h/2

zσ̂ i3dz, M3i =
h/2∫

−h/2

zσ̂ 3i dz, T̂ 33 =
h/2∫

−h/2

σ̂ 33dz,

Si3 =
h/2∫

−h/2

zμ̂i3dz, R̂i j =
h/2∫

−h/2

μ̂i j dz, Si j =
h/2∫

−h/2

zμ̂i j dz,

R̂i3 =
h/2∫

−h/2

μ̂i3dz, R̂3i =
h/2∫

−h/2

μ̂3i dz, R̂33 =
h/2∫

−h/2

μ̂33dz;

(11.18)
q = qiπ i , m = miπ i , mM = m̃i

Mπ i , m2M = m̃i
2Mπ i ,

qi = qiF + qi+ + qi−, mi = mi
F + mi+ + mi−, q = qF + q+ + q−, m = mF + m+ + m−,

m̃i
M = mi

M + mi
M±, m̃i

2M = mi
2M + mi

2M±, m̃M = mM + mM±, m̃2M = m2M + m2M±,

qi± = P̂i
∣
∣∣
z=±h/2

, q± = P̂3
∣
∣∣
z=±h/2

, mi± = ± h

2
qi±, m± = ± h

2
q±

mi
M± = K̂ i

∣∣∣
z=±h/2

, mM± = K̂ 3
∣∣∣
z=±h/2

, mi
2M± = ± h

2
qiM±, m2M± = ± h

2
qM±,
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qiF = ρ

h/2∫

−h/2

F̂ i dz, qF = ρ

h/2∫

−h/2

F3dz, mi
F = ρ

h/2∫

−h/2

z F̂i dz, mF = ρ

h/2∫

−h/2

zF3dz,

mi
M = ρ

h/2∫

−h/2

M̂i dz, mM = ρ

h/2∫

−h/2

M3dz, mi
2M = ρ

h/2∫

−h/2

zM̂ii dz,m2M = ρ

h/2∫

−h/2

zM3dz,

T i
(0) =

h/2∫

−h/2

P̂i dz, Mi
(0) =

h/2∫

−h/2

z P̂i dz, T(0) =
h/2∫

−h/2

P̂3dz, M(0) =
h/2∫

−h/2

z P̂3dz,

Ri
(0) =

h/2∫

−h/2

K̂ i dz, Si(0) =
h/2∫

−h/2

z K̂ i dz, R(0) =
h/2∫

−h/2

K̂ 3dz, S(0) =
h/2∫

−h/2

z K̂ 3dz.

Here, T̂ = T̂ i jπ iπ j and M = Mi jπ iπ j are the tensors of tangential forces and
moments, respectively, T̂ i3π i , T̂ 3iπ i and Mi3π i , M3iπ i are the vectors of shear
stresses and additional moments, respectively, and T̂ 33 is the normal force. We
retain the analogous names for the quantities R̂ = R̂i jπ iπ j and S = Si jπ iπ j ,
R̂i3π i , R̂3iπ i and Si3π i and R̂33 supplementing them with the adjective “moment”.
The vectors q + qn andm + mn,mM + m̃Mn have the meaning of the surface pres-
sure and the moments per unit area, while m2M + m̃2Mn is the analogous second-
order moment. The vectors u,ψ,ω and ϕ are understood to mean the quantities
u = uiπ i ,ψ = ψiπ

i ,ω = ωiπ
i , and ϕ = ϕiπ

i on the surface Π . Thus, the Hamil-
tonian for an elastic moment shell has the following form:

H0 (u,ψ,ω,ϕ, w,ψ3, ω, ϕ3) =
t2∫

t1

(I0 − E0) dt, I0 = W0 − A0 (t2 > t1) ,

(11.19)
where W0, E0, and A0 are determined by Eqs. (11.15)–(11.17).

11.4 Physical Law for an Elastic Moment Shell

We assume that the shell material possesses the symmetry about the middle surface,
which is equivalent to the following equalities for the components of tensors of
physical constants (here, the sign pointing to their correspondence with the basis
π1,π2, n is omitted):

Ci jk3 = Ci j3k = Ci333 = C3i33 = 0, Bi jk3 = Bi j3k = Bi333 = B3i33 = 0,
Di jk3 = Di j3k = Di333 = D3i33 = 0.

Rewriting Eqs. (11.4) in terms of Eqs. (11.12) and (11.13), we obtain the laws of
stress variation throughout the shell thickness
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σ̂ i j = Ci jkl (ξkl + zζkl) + Ci j33ψ3 + Di jkl (ηkl + λkl z) + Di j33ϕ3,

σ̂ i3 = Ci33l (ξ3l + zζ3l) + Ci3k3 (ξk3 + zζk3) + Di3k3 (ηk3 + λk3z) + Di33kϕk,

σ̂ 3i = C3i3l (ξ3l + zζ3l) + C3ik3 (ξk3 + zζk3) + D3ik3 (ηk3 + λk3z) + D3i3kϕk,

σ̂ 33 = C33kl (ξkl + zζkl) + C3333ψ3 + D33kl (ηkl + λkl z) + D3333ϕ3,

μ̂i j = Di jkl (ξkl + zζkl) + Di j33ψ3 + Bi jkl (ηkl + λkl z) + Bi j33ϕ3,

μ̂i3 = Di33l (ξ3l + zζ3l) + Di3k3 (ξk3 + zζk3) + Bi33lϕl + Bi3k3 (ηk3 + λk3z) ,

μ̂3 j = D3 j3l (ξ3l + zζ3l) + D3 jk3 (ξk3 + zζk3) + B3 j3lϕl + B3 jk3 (ηk3 + λk3z) ,

μ̂33 = D33kl (ξkl + zζkl) + D3333ψ3 + B33kl (ηkl + λkl z) + B3333ϕ3.

Considering these equalities in combination with Eqs. (11.18) leads to a relation
between the internal force factors and the kinematic parameters of the shell, that is,
to the physical law:

T̂ i j = h
(
Ci jklξkl + Ci j33ψ3 + Di jklηkl + Di j33ϕ3

)
,

Mi j = I
(
Ci jklζkl + Di jklλkl

)
,

T̂ i3 = h
(
Ci33lξ3l + Ci3k3ξk3 + Di33kϕk + Di3k3ηk3

)
,

Mi3 = I
(
Ci33lζ3l + Ci3k3ζk3 + Di3k3λk3

)
,

T̂ 3i = h
(
C3i3lξ3l + C3ik3ξk3 + D3i3kϕk + D3ik3ηk3

)
,

M3i = I
(
C3i3lζ3l + C3ik3ζk3 + D3ik3λk3

)
,

T̂ 33 = h
(
C33klξkl + C3333ψ3 + D33klηkl + D3333ϕ3

) ;

(11.20)

R̂i j = h
(
Di jklξkl + Di j33ψ3 + Bi jklηkl + Bi j33ϕ3

)
,

Si j = I
(
Di jklζkl + Bi jklλkl

)
,

R̂i3 = h
(
Di33lξ3l + Di3k3ξk3 + Bi33kϕk + Bi3k3ηk3

)
,

Si3 = I
(
Di33lζ3l + Di3k3ζk3 + Bi3k3λk3

)
,

R̂3i = h
(
D3i3lξ3l + D3ik3ξk3 + B3i3lϕl + B3ik3ηkl

)
,

R̂33 = h
(
D33klξkl + D3333ψ3 + B33klηkl + B3333ϕ3

)
.

(11.21)

We note that the tensors of the internal force factors having the components
T̂ i j , Mi j , R̂i j , Si j are nonsymmetric. Letting the rotation angle vector in Eq. (11.20)
be zero and assuming that the quantitiesCi jkl (i, j, k, l = 1, 2, 3) are symmetric with
respect to the first and second pairs of indices we arrive, accurate to certain desig-
nations, to the formulas for the internal force factors of an anisotropic elastic shell
derived in [23].

In the case of an isotropic material, the physical law is simplified, when Eq. (11.5)
is used:

T̂ i j = h
[
(μ + α) ξ i j + (μ − α) ξ j i + λgi j (εs + ψ3)

]
,

Mi j = I
[
(μ + α) ζ i j + (μ − α) ζ j i + λgi jκs

]
,

T̂ 33 = h [λεs + (λ + 2μ)ψ3] ,
T̂ i3 = hgik [(μ − α) ξ3k + (μ + α) ξk3] ,
Mi3 = I gik [(μ − α) ζ3k + (μ + α) ζk3] ,
T̂ 3i = hgik [(μ + α) ξ3k + (μ − α) ξk3] ,
M3i = I gik [(μ + α) ζ3k + (μ − α) ζk3] ;

(11.22)
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R̂i j = h
[
(γ + ε) ηi j + (γ − ε) η j i + βgi j (ηs + ϕ3)

]
,

Si j = I
[
(γ + ε) λi j + (γ − ε) λ j i + βgi jλs

]
,

R̂i3 = hgik
[
(γ + ε) ηk3 + (γ − ε) ϕk

]
, Si3 = I (γ + ε) gikλk3,

R̂3i = hgik
[
(γ + ε) ϕk + (γ − ε) ηk3

]
, R̂33 = h

[
βηs + (β + 2γ ) ϕ3

]
.

(11.23)

Here, the following equalities are used:

εs = gklξkl = gklαkl = divu − 2Hw, ηs = gklηkl = divω − 2Hω, gklπkl = 0,
κs = gklζkl = gklβkl = ∇kψ

k − bkl gklψ3 + bkl∇kul − ckl gklw =
= divψ − 2Hψ3 + bkl∇kul − 2

(
2H 2 − K

)
w,

λs = gklλkl = ∇kϕ
k − bkl gklϕ3 + bkl∇kωl − ckl gklω =

= divϕ − 2Hϕ3 + bkl∇kωl − 2
(
2H 2 − K

)
ω,

where H = bi j gi j/2 and K = det
(
bij

)
are the mean and total (Gaussian) curvatures

of the surface Π , respectively.

11.5 Initial and Boundary Value Problems
for an Anisotropic Shell

Assertion 2 A necessary condition for an extremum of functional (11.19), when the
following conditions are fulfilled:

δu|t=t1,t2 = 0, δψ |t=t1,t2 = 0, δω|t=t1,t2 = 0, δϕ|t=t1,t2 = 0,

δw|t=t1,t2 = 0, δψ3|t=t1,t2 = 0, δω|t=t1,t2 = 0, δϕ3|t=t1,t2 = 0

are the equations of motion

ρh
∂2ui

∂t2
= ∇ j T ji − bikT

k3 + qi , ρh
∂2w

∂t
= ∇ j T j3 + bi j T i j + q,

ρ I
∂2ψ i

∂t2
= ∇ j M ji − T 3i + mi , ρ I

∂2ψ3

∂t2
= ∇ j M j3 − N + m,

h J
∂2ωi

∂t2
= gik∇ j R jk − πik

(
T 3k − T k3

) − bik Rk3 + m̃Mi ,

h J
∂2ω

∂t
= ∇ j R j3 + πik T̂ ik + bi j Ri j + m̃M ,

I J
∂2ϕi

∂t2
= gik

(∇ j S jk − R3k
) − πik

(
M3k − Mk3

) + m̃2Mi ,

h J
∂2ω

∂t
= ∇ j R j3 + πik T̂ ik + bi j Ri j + m̃M ,

I J
∂2ϕ3

∂t2
= ∇ j S j3 − Nω + πi j Mi j + m̃2M ,

(11.24)



11 Generalized Linear Model of Dynamics of Elastic Moment Shells 169

where

T i j = T̂ i j + bikM
kj , T i3 = T̂ i3 + bij M

j3, T 3i = T̂ 3i + bikM
k3, N = T̂ 33 − bi j M

i j ,

Ri j = R̂i j + bik S
k j , Ri3 = R̂i3 + bij S

j3, R3i = R̂3i + bik S
k3, Nω = R̂33 − bi j S

i j

and the boundary conditions

ui |�u
= ui0, w|�u

= w0, ψi |�u
= ψi0, ψ3|�u

= ψ30,

ωi |�ω
= ωi0, ω|�ω

= ω0, ϕi |�ω
= ϕi0, ϕ3|�ω

= ϕ30,

T jiν j

∣
∣
�p

= T i
(0), T j3ν j

∣
∣
�p

= T(0), M jiν j

∣
∣
�p

= Mi
(0),

M j3ν j

∣∣
�p

= M(0), R jiν j

∣∣
�m

= Ri
(0),

R j3ν j

∣∣
�m

= R(0), S jiν j

∣∣
�m

= Si(0), S j3ν j

∣∣
�m

= S(0).

(11.25)

Here, ui0, w0, ψi0, ψ30, ωi0, ω0, ϕi0, ϕ30 and T i
(0), T(0), Mi

(0), M(0), Ri
(0), R(0), Si(0),

S(0) are some given functions; � = �u ∪ �p = �ω ∪ �m , where the curve pairs
�u, �p and �ω, �m can have only points in common; and ν is the unit vector of the
outward normal to the lateral surface at z = 0 (at the line of intersection Πb ∩ Π )

Proof A necessary condition of an extremum of functional (11.19) is the variational
equation

δH0 (u,ψ,ω,ϕ, w,ψ3, ω, ϕ3) =
t2∫

t1

(δW0 − δA0) dt −
t2∫

t1

δE0dt = 0. (11.26)

�

In calculating the variation δW0 we take into account that the integrand in Eq. (11.15),
when Eqs. (11.22) and (11.23) are taken into account, is the linear form with the
coefficients given by the following linear forms:

f (x) =
n∑

i=1

gi (x) xi , x = (x1, x2, . . . , xn) , gi (x) =
n∑

j=1

ai j x j ,
(
ai j = const

)
.

For these functions, we can easily prove the equality

δ f (x) = 2
n∑

i=1

gi (x) δxi .

Using this equality, together with Eq. (11.14) and the generalized Ostrogradskii-
Gauss formula for a surface [25], we obtain
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δW0 =
∫∫

Π

{p − (
bikT

k3 − ∇ j T ji
)
δui − (

bi j T i j + ∇ j T j3
)
δw+

+ (
T 3i − ∇ j M ji

)
δψi + (

N − ∇ j M j3
)
δψ3+

+ [
πik

(
T 3k − T k3

) + bik Rk3 − gik∇ j R jk
]
δωi −

−
(
πik T̂ ik + bi j Ri j + ∇ j R j3

)
δω+

+ [
gi j R3 j + πik

(
M3k − Mk3

) − gik∇ j S jk
]
δϕi +

+ (
Nω − πi j Mi j − ∇ j S j3

)
δϕ3}dS+

+
∫

�

ν j
[
T jiδui + T j3δw + M jiδψi + M j3δψ3++

+R jiδωi + R j3δω + S jiδϕi + S j3δϕ3
]
ds.

(11.27)

Here, ν = νiπ i = [τ , n], where τ = τ iπ i is the unit tangent vector to the curve �.
As shown in [23], it coincides with the unit vector of the outward normal to the lateral
surface at z = 0.

The variation of the work of external forces is determined as follows:

δA0 =
∫∫

Π

[
qiδui + miδψi + qδw + mδψ3 + m̃i

Mδωi + m̃i
2Mδϕi +

+m̃Mδω + m̃2Mδϕ3
]
dS +

∫

�

[
T i

(0)δui + Mi
(0)δψi +

+T(0)δw + M(0)ψ3 + Ri
(0)δωi + Si(0)δϕi + R(0)δω + S(0)δϕ3

]
ds.

(11.28)

In transforming the last integral in Eq. (11.26), we assume that the order of integra-
tions with respect to time and over the surface can be changed and also apply the
formula of integration by parts. As a result, we obtain

t2∫

t1

δE0dt = −ρ

t2∫

t1

dt
∫∫

Π

[
h

(
üiδui + ẅδw

) + I
(
ψ̈ iδψi + ψ̈3δψ3

)]
dS−

−J

t2∫

t1

dt
∫∫

Π

[
h

(
ω̈iδωi + ω̈δω

) + I
(
ϕ̈iδϕi + ϕ̈3δϕ3

)]
dS.

(11.29)
Substituting then Eqs. (11.27)–(11.29) into Eq. (11.26) and taking into account the
arbitrariness of variations of the functional arguments, we arrive at the assertion
formulated.

The corresponding initial and boundary value problem is formed by Eqs. (11.24)
supplemented with the physical (11.20), (11.21) and kinematic (11.11), (11.14) rela-
tions, the boundary conditions (11.25), and the initial conditions. The assumption
on the material isotropy only simplifies the physical relations without reducing the
number of unknowns. The latter can be achieved only bymeans of introducing certain
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additional hypotheses concerning the displacement and rotation fields or considering
special geometries of the middle surface.

11.6 Conclusions

The most general initial and boundary value problems for elastic moment shells are
constructed within the framework of the direct normal hypothesis and the Cosserat
model. They take into account the medium anisotropy, free rotation, independent
rotation of a normal fiber, and its transverse normal strain. Using the results obtained
it is possible to pass in the future to different simplified versions of the equations, in
which the material is assumed to be isotropic, the normal strain and the perpendicu-
larity of the normal fiber to the middle surface are neglected, the problem dimension
is reduced (the case of plates and beams), etc.
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Chapter 12
Transient Interaction of a Rigid Indenter
with a Membrane Accounting
for Adhesive Forces

Anatoly. S. Okonechnikov, Grigory. V. Fedotenkov, and Elena. S. Feoktistova

Abstract This paper is devoted to the study of adhesive force influence on transient
deformation of a membrane interacted with rigid indenter. The research is carried
out by splitting the process of interaction into two phases. The phases are analyzed
sequentially. The first phase of interaction includes time period without mechanical
contact. After themechanical contact takes place, the second phase begins: it includes
the influence of contact pressure as adhesive forces. In this study, we considered both
phases of transient interaction for an infinitemembranewith a rigid indenter account-
ing for adhesive forces. The original numerical–analytical algorithm for determining
the contact stresses under the indenter is proposed. The graphical results for the first
phase of interaction are shown.

Keywords Adhesive force · Transient contact · Rigid indenter · Influence
function · Membrane · Integral equations · Influence function method

12.1 Introduction

Adhesion (from Latin adhaesio—adhesion, sticking), in this work, we will under-
stand as attraction to each other of the surfaces of interacting solids, based on the
action of intermolecular forces. At present, the issue of the influence of adhesive
forces on the contact interaction of bodies is most widely covered in a stationary
formulation. In [1], the essential role of adhesion forces at the nanoscale level is
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shown, and the influence of adhesion on the contact of bodies is assessed. Lyashenko
and Popov in [2] investigated the destruction of the adhesive contact between the
indenter and the elastic half-space. The influence of the friction force on the contact
interaction is shown, and the possible ways of changing the friction force as the con-
dition of contact between two bodies violated are investigated. In [3], the interaction
of several indenters with an elastic half-space was studied taking into account adhe-
sion in a transient formulation. The adhesive force was considered, in one case, as
the force of intermolecular attraction according to the Maugis model [4]. In the other
case, adhesive force considered as an interaction that takes into account the liquid
minisk located between the surfaces of the bodies. Goryacheva andMakhovskaya [5]
studied the attraction of two flat half-spaces under the action of the force of adhesive
attraction, taking into account the roughness of the surfaces. The influence of the
parameters of the adhesive force and the geometry of surfaces on gap between the
studied bodies was analyzed. In [6], Makhovskaya investigated the contact of a rigid
surface with protrusions with an elastic half-space under the forces of intermolec-
ular attraction and capillary adhesion. An example of calculating the actual contact
area and the surface area occupied by the liquid, depending on the external nominal
pressure at different relative humidities of the ambient air and different distances
between the protrusions, is given. In [7], the interaction of an indenter with an elastic
half-plane was studied taking into account adhesion in an axisymmetric formulation.
A study of the influence of microgeometry on the nature of the contact interaction
of an indenter with an elastic half-plane has been carried out. Tkachuk in [8] pro-
poses a method for solving axisymmetric problems for elastic bodies, taking into
account adhesion. A variational principle was proposed that allows one to construct
an approximate solution. A discretization is constructed and nonlinear equations are
obtained to determine the unknown radius of the circular contact spot and the nodal
values of the contact pressure.

A number of papers are devoted to the study of indentermotion along the boundary
of a deformable body. Thus, in [9], the contact problem of sliding at a constant
speed of rigid indenter’s doubly periodic wavy surface over a viscoelastic layer
lying on a rigid base is considered. The adhesive force also takes place between the
surfaces. In this paper, the influence of the friction force on the deformation of the
layer is estimated for various parameters of the layer viscosity and adhesive force.
Meshcheryakova in [10] studied the effect of adhesive forces on the rolling of a
spherical body on a viscoelastic layer on a rigid base. In the course of the study, a
methodwas used that makes it possible to approximately represent the contact area in
the form of a union of non-intersecting bands. The adhesive force is described by the
Lennard-Jones potential. The contribution of adhesive forces to the rolling resistance
of a spherical body over a viscoelastic layer is shown. In [11], Aleksandrov et al.
considered the problem of sliding at a constant speed of a smooth indenter along the
boundary of a viscoelastic half-space. A numerical–analytical determination method
for the contact pressure distribution and its dependence on the movement speed is
proposed. The problemwas solved by constructingGreen’s function for a viscoelastic
half-space with a concentrated force sliding along it at a constant speed.
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As the presented review of studies shows, there are very few studies in the field
of transient contact interaction taking into account adhesive forces, which adds to
the relevance of this work devoted to the study of transient processes taking into
account adhesive forces. It is caused by the complexity of the mathematical descrip-
tion and approaches to the study of transient processes. References [12–18] reflect
the main approaches and methods for studying transient processes in the mechanics
of a deformable solid body. These approaches are mainly based on the integral trans-
formations, the influence function method, and the theory of generalized functions.

There are quite a large number of models describing adhesive interactions. How-
ever, the most widely used model of the interaction of solids, proposed in the 20s of
the twentieth century by the English theoretical physicist, a member of the English
Royal Society—Lennard-Jones. According to his theory, the force of interaction
pa (h) between two surfaces depends on the gap h between the bodies:

pa (h) = −8wa

3h0

((
h0
h

)3

−
(
h0
h

)3
)

, (12.1)

where wa is the specific work of adhesion, h0 is the equilibrium distance between
the surfaces of the bodies, at which the adhesive force is absent.

In addition to the potential of Lennard-Jones, no less important is the model
proposed at the end of the twentieth century. It gives a simpler idea of the adhesive
interaction. According to this theory, an adhesive attraction of constant intensity p0
arises between the surfaces of bodies if the gap h (x, t) is less than some known
critical value of the gap hmax . In the area of mechanical contact, as well as when the
gap between the bodies exceeds the critical value, we assume the absence of adhesive
attraction. This model is called theMaugis–Dagdale theory [4] or theMaugis model.

pa (x, t) =

⎧⎪⎨
⎪⎩
p0, 0 < h ≤ hmax,

0, h > hmax

0, x ∈ Ω (x, t) ,

(12.2)

where Ω (x, t) is the area of mechanical contact between two bodies. A graphic rep-
resentation of the effect of adhesive forces on the deformation of the body according
to the Lennard-Jones and Maugis models is shown in Fig. 12.1.

12.2 Problem Statement

The transient interaction of an absolutely rigid indenter and an infinite membrane is
considered with the presence of a gap between the contacting bodies at the initial
time moment. We introduce a fixed rectangular Cartesian coordinate system Oxz,
associated with the plane of the membrane in the undeformed state, as well as a
moving coordinate system O1x1z1, associated with the centroid of the indenter. The
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Fig. 12.1 Curve
1—potential of
Lennard-Jones, Curve
2—Maugis model

Fig. 12.2 Influence of
adhesion on the deformation
of the membrane before the
onset of mechanical contact

shape of the indenter in coordinate system O1x1z1 is described by some function
f (x). When x = 0, the value of this function is equal to the distance from the
centroid of the indenter to its frontal point. The centroid of the indenter O1 moves
normally to the membrane according to the law g (t) with a velocity ġ (t). The dot
here and below denotes the derivative of the function with respect to time. At the
initial time moment, we take the value of the minimum gap between the bodies equal
to the critical value (h (0, τ ) = hmax), at which, according to the Maugis model,
adhesive attraction pa (x, τ ) will occur. Let us denote the size of the region within
which the adhesive attraction acts as 2b(t), where b(t) is the distance from the origin
of the fixed coordinate system to the boundary of the adhesive interaction (we will
consider the indenter is symmetrical with respect to the central axis passing through
the frontal point of the indenter) (Fig. 12.2).

After the onset of the time point at which h (0, t) = 0 the next phase of interaction
begins. The contact pressures arise in the area of contact between the indenter and
the membrane x ∈ [−c (t) , c (t)]. The adhesive interaction will affect outside the
contact zone of the bodies (Fig. 12.3).

The following dimensionless quantities are used in equations and relations written
below:

w′ = w

hmax
, τ = t

hmax
, p′ = phmax

a2
, x ′ = x

hmax
, σ ′

i j = σi j

λ + 2μ
, h′

max = 1,
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Fig. 12.3 Contact problem
of the interaction of an
indenter with a membrane,
taking into account adhesion

where τ—dimensionless time, a—bending waves propagation velocity in the mem-
brane, λ,μ—Lame elastic parameters. Below, apostrophes for dimensionless quan-
tities are omitted.

The mathematical formulation of the problem includes the following relations:

• The rigid indenter law of motion

z = g (τ ). (12.3)

• The membrane equation of motion in a plane formulation

ẅ (x, τ ) = ∂2w(x, τ )

∂x2
+ p (x, τ ) . (12.4)

• Expression for pressure considering both phases of interaction

p (x, τ ) = −p0H (b (τ ) − |x |) + (pc + p0) H (τ − τc) H (c(τ ) − |x |) . (12.5)

where H (·)—Heaviside function, τc—contact interaction phase start time, pc—
contact pressure in the area of mechanical interaction.

Expression (12.5) is composed in such a way that the first term describes the phase
of interaction between the indenter and the membrane without regard to mechanical
contact, while the second term takes into account the contact pressure pc arising
between the considered bodies after the time point τc. Due to the absence of distur-
bances at the initial time moment, the following initial conditions are included in the
problem statement:

w (x, 0) = dw(x, τ )

dτ

∣∣∣∣
τ=0

= 0. (12.6)

Also, we use a condition describing the behavior of displacements at the point in
infinity:

lim|x |→∞
w(x, τ ) = 0. (12.7)
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12.3 Solution Method

To determine the membrane deflection, we use the principle of superposition [12]

w (x, τ ) = p (x, τ ) ∗ ∗G (x, τ ) =
τ∫

0

∞∫
−∞

G (x − ξ, τ − t)p (ξ, t) dξdt. (12.8)

G (x, τ )—influence function describing the membrane deflection under the action
of concentrated force p (x, τ ) = δ (x) δ (τ ). In the plane formulation of the problem,
G (x, τ ) is defined as follows [14]:

G (x, τ ) = 1

2
H (τ − |x |) . (12.9)

Taking into account (12.5), (12.8), and (12.9), the membrane deflection function can
be written as

w (x, τ ) = p (x, τ ) ∗ ∗G (x, τ ) = wa (x, τ ) + wc (x, τ ) H (τ − τc) , (12.10)

wa (x, τ ) = − p0
2

τ∫
0

∞∫
−∞

ΩG (x − ξ, τ − t)Ωa (ξ, t)dξdt,

wc (x, τ ) = 1

2

τ∫
0

∞∫
−∞

(pc (ξ, t) + p0) Ωc (ξ, t)ΩG (x − ξ, τ − t)dξdt,

Ωa (x, τ ) = H [b (τ ) − |x |] , Ωc (x, τ ) = H [c (τ ) − |x |] , ΩG (x, τ ) = H (τ − |x |) .

Introducing the following notation:

ΩGa (x, τ ) = {(ξ, t) : ΩG (x − ξ, τ − t)Ωa (ξ, t) = 1} ,

ΩGc (x, τ ) = {(ξ, t) : ΩG (x − ξ, τ − t)Ωc (ξ, t) = 1} ,

we obtain the calculation formula for membrane deflection

w (x, τ ) = wa (x, τ ) + wc (x, τ ) H (τ − τc) .

wa (x, τ ) = − p0
2

∫∫
ΩGa

dξdt,

wc (x, τ ) = 1

2

∫∫
ΩG

[pc (ξ, t) + p0] dξdt .

(12.11)

Note that the integration domains ΩGa, ΩGc are not known in advance and must be
determined in the course of solving the problem. To find them, a numerical–analytical
algorithm has been developed and implemented. In this case, the areas ΩGa (x, τ )
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Fig. 12.4 Graph-analytical
method for 1st phase of
interaction

and ΩGc (x, τ ) are presented as a union of subareas:

ΩGa =
N⋃
i=1

Ω i
Ga, ΩGc =

N⋃
i=1

Ω i
Gc, (12.12)

whereΩ i
Ga ,Ω

i
Gc are the areas boundedbyvertical lines t = ti ,, (ti = i	t , (i = 0..N ),

	t—time step) and oblique straight lines ξ i
as (t) : ξ = kias (x) t + bias (x), ξ i

cs (t) :
ξ = kics (x) t + bics (x) (s = 1, 2), respectively. The index s values “1” and “2” cor-
respond to the upper and lower boundaries of the areas Ω i

Ga , Ω
i
Gc, (Fig. 12.4).

Taking into account the approximation described above, (12.11) becomes suitable
for calculations:

w (x, τ ) = wa (x, τ ) + wc (x, τ ) H
(
τ − τic

)
,

wa (x, τ ) = − p0
2

N∑
i=1

(
1

2

(
kia2 (x) − kia1 (x)

)
t2 + (

bia2 (x) − bia1 (x)
)
t

)∣∣∣∣
ti

ti−1

,

wc (x, τ ) = 1

2

N∑
i=ic+1

ti∫
ti−1

ξ i
c2(t)∫

ξ i
c1(t)

(pc (ξ, t) + p0) dξdt,

(12.13)
where ic corresponds to the timemomentτ = τc. Expressions (12.13)make it possible
to determine the membrane deflection at any time. Thus, the problem is reduced to
determining the adhesive force carrier boundary for the non-contact phase andfinding
the contact pressure at the contact interaction phase.

Let us consider the solution method of the problem in phases. To determine the
boundaries of integration ξ i

as (t), ξ i
cs (t) in (12.13), we will sequentially consider the
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moments of time τ = τl = 	t l (l = 1 . . . N ). The integration boundaries ξ i
a j (t) are

determined from the following condition: the boundary of the adhesive force carrier
appears in point where the gap between the surface of the indenter and the membrane
is 1:

b (τl) = 1. (12.14)

Condition (12.14) can be written as follows:

f [b (τl)] − g (τl) − w [b (τl ) , τl ] = 0 (12.15)

Expression (12.15) is a nonlinear equation with respect to b (τl ), as w [b (τl ) , τl ]
contains functions ξ l

as (t), ξ l
cs (t) which in turn depend on b (τl ). We solve equation

(12.15) using the following iterative scheme ( r is the iteration number):

f
(
brl

) − g (τl ) − w
(
br−1
l , τl

) = 0, (r = 0 . . . R) ,

b0l = bR
l −1, b

0
1 = 0,

(12.16)

Here, we assume bR
l as the value of the adhesive force boundary at time τl , obtained

with satisfactory accuracy at the iteration with number R . At the zero iteration, we
assume b01 = 0.

The boundaries of integration ξ l
as (t), ξ l

cs (t) are determined using the graph-
analytical method [17]. This method is illustrated by the example of the non-contact
phase of interaction (τl ≤ τc) (Fig. 12.4).

Figure12.4 shows carriers of the adhesive force Ωa , influence functions ΩG , and
their intersection at a fixed value of the coordinate and time. Knowing the values of
the boundaries of the carrier bR

i , one can determine the curves ξ i
as (t) at a fixed point

x and time τ from the above graph-analytical method.
For the contact interaction phase, the integration boundaries must be deter-

mined together with the procedure for constructing the contact pressure distribution
pc (x, τ ). To do this, we will use the following algorithm:

1. The contact condition at the time τl ≥ τc is used:

w (x, τl) = 1 + f (x) − g (τl) (12.17)

2. The zero approximation of the area of contact interaction c0 (τl) = c0l is deter-
mined.At the timemoment τl = τic+1, the area of contact interaction is determined
assuming the absence of contact pressure pc (ξ, t).

3. The integral equation (12.17) is solved for the contact pressure pc (x, τl) = p1cl
at the first iteration.

4. Membrane deflections are specified according to formula (12.13) using the
obtained contact pressure.

5. Based on the refined contact pressure, the boundaries of the adhesive interaction
carrier b1l are refined according to formula (12.16). The boundaries of the contact
interaction carrier are refined from condition (12.17). Further, based on the refined
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Fig. 12.5 Graph-analytical
method for second phase of
interaction

boundaries of the carriers, the contact pressure p2cl is determined from the solution
of Eq. (12.17).

6. The iterative process is repeated until a satisfactory accuracy of the results
pR
cl , c

R
l , bR

l is obtained.

Equation (12.17) is integral with respect to pc (ξ, τl). The solution of the integral
equation is carried out numerically assuming the contact pressure picj is constant
on segments ωi

j limited in time t ∈ [
ti−1, ti

]
and coordinate x ∈ [

x j−1, x j
]
, j =

1..M, x0 = −c (ti ) , xM = c (ti ) with step 	x . These assumptions allow us to
reduce (17) to a system of linear algebraic equations for the contact pressure
plcj = pc

(
x̃ j , τl

)
, x̃ j = x j + 	x/2.

The graphic-analytical method for the contact interaction phase is shown in
Fig. 12.5. In Fig. 12.5, the integration area ΩGc is defined at x = x̃m, (m = 1..M).
One can see in the figure: the contact pressure picj contributes to the displacements
at the point x = x̃m not on the entire segment ωi

j , but on the areas defined taking into
account ΩG . In light of the above, we use the following notation here and below:
ωi
m j = ωi

j (xm).
Taking into account (12.13), we write down the system of linear algebraic equa-

tions based on (12.17) in matrix form:

Ap = h

A = {amj }M×M ,p = {plcj }M×1
,h = {hm}M×1,

(12.18)

hm = 1 − g (τl) + f (xm) − 1

2

l−1∑
i=ic

M∑
j=1

picj

∫∫
ωi
m j

dtdξ + p0
2

∫∫
ΩGa/ΩGc

dtdξ,

amj = 1

2

∫∫
ωl
m j

dtdξ .
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Thus, using the above algorithm and formula (12.18), it is possible to determine
the distribution of the contact pressure under the indenter at timemoment τ = τl with
satisfactory accuracy. Note that the accuracy of the obtained solution depends on the
approximation of the contact pressure. This approximation is determined by the
partition number M , which can be selected in any convenient way at the considered
time point τl .

12.4 Rigid Indenter Motion at Constant Velocity

Let us consider the motion of a rigid indenter of the form f (x) = L + kx2. Indenter
moves according to the law g (τ ) = V0τ, V0 = 10−2 towards an infinite membrane.
The initial gap between the bodies is hmax = 1. The adhesive force is assumed p0 =
10−3 .

Figure12.6 shows the dependence of the membrane deflections w (x, τ ) on the
coordinate at various points in time. The indenter shape is flat (k = 0). The solid line
shows the deflection of the membrane at τ = 0.032, dashed—τ = 0.06, dotted—
τ = 0.12, respectively.

Figure12.7 shows the deflections of themembrane from the action of the adhesive
force, the indenter has a parabolic shape (k = 0.1). The solid line corresponds to the
deflection of the membrane at τ = 0.02, dashed—τ = 0.04, and dotted—τ = 0.05.

Fig. 12.6 Membrane
deflection caused by flat
indenter

Fig. 12.7 Membrane
deflection comparison for
various indenter shapes
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Fig. 12.8 Adhesive force
carrier expansion

Figure12.8 shows the expansion of the adhesive force carrier for various indenter
shapes. The solid line referred to a parabolic indenter, the dashed line—conical
indenter, the dotted line indicates the carrier corresponding to the hyperbolic indenter.

12.5 Conclusion

The paper proposes an original mathematical problem formulation of the transient
interaction of a rigid indenterwith an infinitemembrane, taking into account adhesive
forces. This formulation takes into account both non-contact and contact phases of
interaction. A solution approach for both phases of interaction has been developed.
A numerical–analytical method has been implemented for the phase of non-contact
interaction. A solution algorithm for the phase of contact interaction has been devel-
oped. The developed solution approach to the problem makes it possible to study the
interaction process for an arbitrary-shaped indenter moving according to an arbitrary
law. Graphical results for the non-contact stage of interaction are presented.
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Chapter 13
Transforming Deformation Model of Flat
Beams with Finite Length Fastening
Areas Located on One of the Front-Face
Surfaces

Vitaly N. Paimushin , Victor M. Shishkin , Vyacheslav A. Firsov ,
and Ruslan K. Gazizullin

Abstract On the example of a plane problem of the mechanics of a beam with finite
length fastening areas located on one of the front-face surfaces, it is shown that in the
study of deformation processes with additional account of the fixed area compliance
requires the introduction of the concept of the stress–strain state type transformation
at the transition across the boundary from an unfastened to a fastened section. Appro-
priate mathematical models are also required to describe such a phenomenon.Within
the framework of the classical Kirchhoff–Love model it is impossible to take into
account the presence of such fixed sections. At the same time, within the framework
of the simplest S.P. Timoshenko shear model, this transformation is possible if the
section is fixed only on one of the front-face surfaces. The kinematic and force condi-
tions for coupling of fastened and unfastened beam sections have been formulated.
Based on the derived relations, an exact analytical solution to the problem of static
bending of a cantilevered beam under the action of a constant surface load has been
found. This solution is in good agreement with the results obtained by modeling of
a beam using rectangular finite elements in a plane stress state, as well as using the
ANSYS software package based on the equations of a plane problem of elasticity
theory. An exact analytical solution has been obtained for the problem of transverse
bending vibrations of a flat beam with two cantilevered parts and a finite length
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section between them under vibration loading by a transverse force acting on one of
the unfastened section.

Keywords Flat beam · Finite length fastening area · Stress–strain state
transformation · Transverse bending · Vibration

13.1 Introduction

To study the deformation mechanics of thin-walled structures, there is an approach
when the problem is solved in the spatial formulation with the construction of their
numerical solutions based on modern commercial application software packages.
Such an approach is desirable, but ineffective for small relative thicknesses of the
plate. In this regard, considerable attention in the scientific literature has been paid to
the problems of reducing the three-dimensional equations of deformation mechanics
to two-dimensional equations of beam, plate, and shell theories taking into account
transverse shear and transverse compression. The scientific literature devoted to
these problems is very extensive and multifaceted. In particular, it is possible to
distinguish theworks devoted to the construction of higher-order geometrically linear
and nonlinear deformation models of thin-walled structural elements taking into
account transverse shear and transverse compression, as well as the development
on their basis of analytical and numerical methods for solving the corresponding
static and dynamic problems [1–4, etc.]. A critical analysis of the static equations
of composite plate theories obtained in the geometrically linear approximation was
carried out, in particular, in [5, 6]. In the first of them, a review of methods for
reducing the three-dimensional equations of thin-walled structures’ mechanics to
two-dimensional relations is given. A detailed critical analysis of static equations
has been carried out in the formulation of two-dimensional problems for composite
plates obtained using two approaches, namely, the method of weighted residuals and
the method on the basis of the application of variational principles of anisotropic
elasticity theory.

It should be noted that in all works devoted to the development of refined versions
of the high-order theory, practically no attention is paid to the problemsof formulating
the boundary conditions for different variants of connection with other structural
elements or their fixation to rigid support elements. For example, when formulating
the problems of beam mechanics, the real conditions for fixing their end sections of
a finite length, as a rule, are replaced by the conditions of either hinged support or
by pinching. However, this approach certainly introduces errors into their solutions.

Due to the insufficient degree of accuracy of the currently existing theoretical
foundations for the study of the physical phenomena described above (practically
even their absence), the issues discussed below related to the development of refined
mathematical models for the deformation of thin beams and plates with finite length
fastening areas, as well as the statement and the solution of the corresponding prob-
lems on their basis should be considered as urgent and priority areas of scientific
research.
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13.2 General Equations

The simplest deformation model of a flat beam with fixation section of length l
on the z = − t

2 surface (Fig. 13.1) can be built based on the Timoshenko model
by representing the displacements of an arbitrary point of the cross section in the
following form

U = u + zγ,W = w, 0 ≤ x ≤ a,U0 = u0 + zγ0,W0 = w0 = 0,−l ≤ x ≤ 0
(13.1)

and by imposing restrictions on functions u0, γ0

γ0 = 2u0
t

,−l ≤ x ≤ 0 (13.2)

where u0, w0, γ0 and u, w, γ are axial displacement, deflection and angle of rotation
of the cross section for the fastened and unfastened parts of the beam, respectively.
This restriction follows from the condition U0

(
z = − t

2

) = 0 formulated on the
fixing section of length l. In this case, from the condition of displacements U and
U0 equality in the section x = 0, formulated as U |x=0 = U0|x=0, we obtain the
equalities

γ = 2u0
t

, u = u0 at x = 0. (13.3)

Note thatwhen themodel (13.1) is replacedby the classicalKirchhoff–Lovemodel
U = u − zw′, W = w, and any of the z = ±t

2 surfaces is fixed in the −l ≤ x ≤ 0
area, it is possible to formulate only the pinch condition w|x=0 = 0, w′∣∣

x=0 = 0 in
x = 0 section. This does not allow taking into account the compliance of the beam’s
fastened section. Here and below the upper symbol ...′ means the differentiation of
the corresponding quantity with respect to the x coordinate.

In accordance with (13.1) and (13.2), in the case of small displacements the
following geometric dependences take place

εx = u′ + zγ ′, γxz = w′ + γ, 0 ≤ x ≤ a, (13.4)

Fig. 13.1 Beam with finite
length l fastening section
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ε0x = U0,x =
(
1 + 2z

t

)
u′

0, γ
0
xz = U0,z + W0,x = 2u0

t
,−l ≤ x ≤ 0, (13.5)

where εx , γxz and ε0x , γ
0
xz are deformation and shear angle of the unfastened and

fastened parts of the beam, respectively. Here the lower indices after the comma are
the partial derivatives with respect to the coordinates x and z. For normal and shear
stresses σx , σxz , the following physical dependencies take place

σx = E1
(
u′ + zγ ′), σxz = G13

(
w′ + γ

)
, 0 ≤ x ≤ a, (13.6)

σ 0
x =

(
1 + 2z

t

)
E1u0

′, σ 0
xz = 2u0G13

t
,−l ≤ x ≤ 0. (13.7)

Here E1 andG13 are the elasticity moduli of the beammaterial under its deformation
along the 0x axis and under transverse shear, respectively.

Under the action of a transverse load p, using dependences (13.4), (13.5), it is
possible to compose a variational equation

δ�0 + δ� − δA = 0∫
−l

t
2∫

− t
2

[

σ0
x

(
1 + 2z

t

)
δu’0 + 2σ0

xzδu0
t

]

dzdx + a∫
0

t
2∫

− t
2

[
σx

(
δu′ + zδγ ′) + σxz

(
δw′ + δγ

)]
dzdx

− a∫
0
pδwdx = 0∫

−l

(
T 0
11δu

’
0 + T 0

13δu0
)
dx + a∫

0

[
T11δu

′ + M11δγ
′ + T13

(
δw′ + δγ

) − pδw
]
dx

= 0. (13.8)

where, due to dependencies (13.6), (13.7)

T 0
11 =

∫ t
2

− t
2

σ 0
x

(
1 + 2z

t

)
dz = 4Bu0′

3
, T 0

13 = 4G13u0
t

, (13.9)

T11 = E1tu
′, M11 = Dγ ′, T13 = B13

(
w′ + γ

)
, B = E1t, B13 = G13t, D = E1t3

12
.

(13.10)

Equation (13.8), taking into account conditions (13.3) and (13.5), is transformed
to the form

(
T 0
11 − T11 − 2M11

t

)
δu0

∣∣∣∣
x=0

− T 0
11δu0

∣∣
x=−l +(T11δu + M11δγ )|x=a

+ T13δw|x=a
x=0 −

∫ 0

−l

(
T 0
11,x − T 0

13

)
δu0dx

−
∫ a

0

[
T11,xδu + (

M11,x − T13
)
δγ + (

T13,x + p
)
δw

] = 0.
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From these equations follow the equilibrium equations

T 0
11,x − T 0

13 = 0,−l ≤ x ≤ 0, (13.11)

T11,x = 0, M11,x − T13 = 0, T13,x + p = 0, 0 ≤ x ≤ a, (13.12)

boundary conditions

T 0
11

∣∣
x=−l = 0 at δu0 �= 0, (13.13)

T11|x=a = 0 at δu �= 0, M11|x=a = 0 at δγ �= 0, T13|x=a = 0 at δw �= 0,
(13.14)

And in addition to conditions (13.3), the static conjugation condition in the x =
0 section is formulated by virtue of δu0 �= 0

(
T 0
11 − T11 − 2M11

t

)∣
∣∣∣
x=0

= 0. (13.15)

13.3 Equations Corresponding to the Description
of the Unfastened Section of the Beam by the Classical
Kirchhoff–Love Model

The simplest equations for describing the deformation process of a beam with a
fixed section −l ≤ x ≤ 0 on the front surface z = − t

2 can be obtained based on the
representations

U0 =
(
1 + 2z

t

)
u0,W0 = 0,−l ≤ x ≤ 0, (13.16)

U = u − zw′,W = w, 0 ≤ x ≤ a. (13.17)

Of these, relations (13.17) correspond to the classical Kirchhoff–Love model.
Substituting (13.16), (13.17) in the cross section x = 0 to the conjugation conditions
for displacements U0|x=0 = U |x=0, , we obtain instead of (13.3) the dependencies.

u = u0, w
′ = −2u0

t
at x = 0. (13.18)

In the considered approximation instead of (13.8) we come to the variational
equation.
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∫ 0

−l
(T 0

11δu
′
0 + T 0

13δu0) + dx+
∫ a

0
(T11δu

′ − M11δw
′′ − pδw)dx = 0 (13.19)

in which, in contrast to (13.10),

M11 = −Dw′′, D = E1t3

12
. (13.20)

Taking into account (13.16), Eq. (13.19) after standard transformations is reduced
to the form
(
T 0
11 − T11 − 2M11

t

)
δu0

∣∣∣∣
x=0

−T 0
11δu0

∣∣
x=−l +

(
T11δu − M11δw

′)∣∣
x=a + M11,xδw

∣∣
x=a

− M11,xδw
∣∣
x=0 − 0∫

−l

(
T 0
11,x − T 0

13

)
δu0dx

− a∫
0

[
T11,xδu + (

M11,xx + p
)
δw

]
dx = 0. (13.21)

Equation (13.21) still implies the equilibrium Eq. (13.11) for the fixed part of the
beam and the corresponding boundary condition (13.13) as well as the equilibrium
equation for its unfixed part

T11,x = 0, M11,xx + p = 0, 0 ≤ x ≤ a (13.22)

with boundary conditions

T11|x=a = 0 at δu �= 0, M11|x=a = 0 at δw′ �= 0,

M11,x

∣∣
x=a = 0 at δw �= 0, (13.23)

In the section x = 0, , in addition to the kinematic conjugation conditions (13.18),
by virtue of the condition δu0 �= 0, the static conjugation condition for Sects. (13.15)
is formulated, in which M11 is determined by formula (13.20).

13.4 Construction of Analytical Solutions for the Simplest
Problems

Based on the derived Eqs. (13.11) and (13.12), let us construct solutions to two simple
problems.
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13.4.1 Bending of Cantilevered Fixed Flat Beam Under
Transverse Load p = const

Let us consider the bending problem shown on Fig. 13.1. For the fastening section,
using (13.9) and (13.11) is reduced to the form

u0
′′ − k2u0 = 0,−l ≤ x ≤ 0, (13.24)

where

k2 = 3G13(
E1t2

) . (13.25)

The general solution of Eq. (13.24) has the following form.

u0 = c1e
kx + c2e

−kx ,

where c1 and c2 are integration constant. Subjecting this solution to condition
(13.13) and taking into account (13.9), we obtain

c1 = c2e
2kl , u0 = c2

(
ek(2l+x) + e−kx

)
, u0|x=0 = c2

(
1 + e2kl

)
. (13.26)

For an unfastened section of the beam, using (13.10), we obtain the integrals of the
equilibrium Eqs. (13.12)

u = d1, γ = d2 −
(
a2x − ax2 + x3

3

)
p

2D
, (13.27)

w =
(
ax − x2

2

)
p

G13t
− d2x +

(
a2x2

2
− ax3

3
+ x4

12

)
p

2D
, (13.28)

where it is taken into account that w|x=0 = 0 and in addition to c1, c2 integration
constant d1, d2 are introduced into consideration. Note that in solutions (13.27),
(13.28) the presence of summand with constants d1 and d2 is entirely caused by
taking into account the deformability of the fixed section of the beam. At G13 → ∞
the solution found corresponds to the use of relations and Eqs. (13.16)–(13.23).

Using further relations (13.9), (13.10), (13.26)–(13.28) and conjugation condi-
tions (13.3), (13.15), we obtain the equalities

d1 = (1 + e2kl)c2; d2 = 2
t (1 + e2kl)c2; −2E1tk(1 − e2kl)c2 + 3a2

2t
p = 0

from which it follows
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c2 = 3a2

4E1t2k
(
1 − e2kl

) p, d1 = 3a2
(
1 + e2kl

)

4E1t2k
(
1 − e2kl

) p, d2 = 3a2
(
1 + e2kl

)

2E1t3k
(
1 − e2kl

) p.

(13.29)

Thus, in accordance with (13.7), (13.26) and (13.29), to determine the σ 0
x and σ 0

xz
stress components in the fastened section we obtain the following formulas

σ 0
x =

(
1 + 2z

t

)
E1c2k

(
ek(x+2l) − e−kx

) =
(
1 + 2z

t

)
3a2

4t2
ek(x+2l) − e−kx

1 − e2kl
p,

σ 0
xz = 2G13

t
c2

(
ek(x+2l) + e−kx

) = a2

2t2

√
3G13

E1

ek(x+2l) + e−kx

1 − e2kl
p.

13.4.2 Forced Bending Vibrations of a Flat Beam with Two
Cantilever Parts and a Fixation Section Between Them

To determine the elastic and damping properties of structural materials, specially
made cantilevered test specimens in the form of single- and multi-layer elongated
plates (flat beams) are used [7, 8].During the dynamic tests of such test specimens, the
phenomenon of vibration transmission from the working part of the test specimen to
its non-working part was found. Such transmission of vibrations can be explained by
the compliance of the fixing section of the finite length. This phenomenon requires an
appropriate theoretical substantiation. In this connection, we consider the problem
of forced bending vibrations of a flat beam with two cantilever parts fixed in a
−l ≤ x ≤ 0 section along the z = − t

2 surface (Fig. 13.2) under the action of
vibration load on one of these parts in the form of a concentrated force P = P̃eiωτ

with the amplitude P̃ and circular frequency ω (Fig. 13.2).
To describe the dynamic behavior of unfastened sections of the beam, one can

use the equations written in the approximation

T (k)
11,x − ρt ü(k) = 0, M (k)

11,x − T (k)
13 = 0, T (k)

13,x − ρtẅ(k) = 0, k = 1, 2, (13.30)

Fig. 13.2 Scheme of fastening and loading of the beam: 1—loaded cantilever part, 2—free
cantilever part, 0—fastened section



13 Transforming Deformation Model of Flat Beams with Finite Length … 193

which are obtained from Eqs. (13.12) at p = 0 by adding inertial forces ρt ü(k) and
ρtẅ(k) (ρ is the density of the beam material). For them, in the cross sections x = a1
and x = −b the force boundary conditions are formulated

T (1)
11

∣∣∣
x=a1

= 0, M (1)
11

∣∣∣
x=a1

= 0, T (1)
13

∣∣∣
x=a1

= P,

T (2)
11

∣
∣∣
x=−b

= 0, M (2)
11

∣
∣∣
x=−b

= 0, T (2)
13

∣
∣∣
x=−b

= 0, (13.31)

and in sections x = 0 and x = −l the following conjugation conditions must be
fulfilled(

γ(1) − 2u0
t

)∣∣
x=0

= 0,
(
u(1) − u0

)∣∣
x=0 = 0,

(
T 0
11 − T (1)

11 − 2M (1)
11
t

)∣∣
∣
x=0

= 0,

(
γ(2) − 2u0

t

)∣
∣∣∣
x=−l

= 0,
(
u(2) − u0

)∣∣
x=−l

= 0,

(

T 0
11 − T (2)

11 − 2M (2)
11

t

)∣∣
∣∣∣
x=−l

= 0.

(13.32)

Taking into account (13.10), Eqs. (13.30) are transformed to the following form

Bu(k)
′′ − ρt ü(k) = 0, (13.33)

Dγ(k)
′′ − B13

(
w(k)

′ + γ(k)
) = 0, B13

(
w(k)

′′ + γ(k)
′) − ρtẅ(k) = 0. (13.34)

By introducing displacement functions φ(k) in accordance with the dependencies

w(k) =
(

−1 + D

B13

d2

dx2

)
φ(k), γ(k) = φ(k)

′ (13.35)

the first equation in (13.34) is satisfied identically, and the second takes the form

Dφ I V
(k) − ρt D

B13
φ̈(k)

′′ + ρt φ̈(k) = 0. (13.36)

Solutions to Eqs. (13.33), (13.36) are sought in the form u(k) = ũ(k)eiωτ , φ(k) =
∼
φ(k)e

iωτ . It gives the equations

ũ(k)
′′ + �2

uũ(k) = 0,
∼
φ
I V

(k) + �2
wr

∼
φ(k)

′′ − �2
w

∼
φ(k) = 0, (13.37)

where

�2
u = ρω2

E1
,�2

w = ρtω2

D
, r = D

B13
.
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General solutions of Eqs. (13.37) have the following form

∼
φ(k) = g(k)

1 er1x + g(k)
2 er2x + g(k)

3 er3x + g(k)
4 er4x , (13.38)

ũ(k) = g(k)
5 ei�u x + g(k)

6 e−i�u x , (13.39)

where

r1 =
(

−�2
wr
2 +

√
�4

wr
2

4 + �2
w

) 1
2

, r2 = −
(

−�2
wr
2 +

√
�4

wr
2

4 + �2
w

) 1
2

,

r3 =
(

−�2
wr

2
−

√
�4

wr
2

4
+ �2

w

) 1
2

, r4 = −
(

−�2
wr

2
−

√
�4

wr
2

4
+ �2

w

) 1
2

,

(13.40)

and g(k)
j ( j = 1, 6; k = 1, 2) are integration constants. Using the solution (13.38)

according to (13.35), we obtain the following expressions

∼
γ (k) =

∑4

j=1
g(k)
j r j e

r j x , w̃(k) =
∑4

j=1
g(k)
j

(−1 + rr2j
)
er j x . (13.41)

For Eqs. (13.30), boundary conditions (13.31) at x = a1 and x = −b are formulated
as

ũ(1)
′∣∣
x=a1

= 0,
∼
γ (1)

′
∣∣∣
x=a1

= 0,
(
w̃(1)

′ + ∼
γ (1)

)∣∣∣
x=a1

= P̃
B13

,

ũ(2)
′∣∣
x=−b = 0,

∼
γ (2)

′
∣∣
∣
x=−b

= 0,
(
w̃(2)

′ + ∼
γ (2)

)∣∣
∣
x=−b

= 0, (13.42)

Six algebraic equations are obtained by substituting expressions (13.39) and
(13.41) into the boundary conditions.

g(1)
5 ei�ua1 − g(1)

6 e−i�ua1 = 0,
∑4

j=1g
(1)
j r2j e

r j a1 = 0,
∑4

j=1g
(1)
j rr3j e

r j a1 = P̃
B13

,

g(2)
5 e−i�ub − g(2)

6 ei�ub = 0,
∑4

j=1
g(2)
j r2j e

−r j b = 0,
∑4

j=1
g(2)
j r3j e

−r j b = 0.

(13.43)

To describe the dynamic behavior of the fixed section of the beam, instead of
(13.11), one should use the equation

T 0
11,x − T 0

13 − 4

3
ρt ü0 = 0,−l ≤ x ≤ 0. (13.44)

Taking into account (13.9) and representing the axial displacement u0 of the beam
in the form u0 = ũ0eiωτ , from (13.44) we pass to the equation
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ũ′′
0 − k2∗ ũ0 = 0, k2∗ = k2 − ρω2

E1
, k2 = 3G13

E1t2
. (13.45)

Calculations have shown that the first summand in k2∗ for real structural materials
and values of ω2 and t is approximately four orders of magnitude higher than the
second one. Therefore, one can take the value k2 > 0 instead k2∗ . In this case, the
general solution of Eq. (13.45) has the form

ũ0 = c1e
kx + c2e

−kx . (13.46)

In accordance with (13.9), (13.10), (13.39) and (13.46) the amplitudes of the
longitudinal forces in the fastened and unfastened parts of the beamwill be calculated
by the formulas

T̃ 0
11 = 4E1tk

3

(
c1e

kx − c2e
−kx

)
, T̃ (k)

11 = i E1t�u

(
g(k)
5 ei�u x − g(k)

6 e−i�u x
)
. (13.47)

Using conjugation conditions (13.32) in addition to (13.43), we obtain six more
equations.∑4

j=1g
(1)
j r j − 2

t (c1 + c2) = 0,
∑4

j=1g
(2)
j r j e−r j l − 2

t

(
c1e−kl + c2ekl

) = 0.

g(1)
5 + g(1)

6 − c1 − c2 = 0, g(2)
5 e−i�ul + g(2)

6 ei�ul − c1e−kl − c2ekl = 0,
4
3k(c1 − c2) − i�u

(
g(1)
5 − g(1)

6

)
− t

6

∑4
j=1g

(1)
j r2j = 0,

4

3
k
(
c1e

−kl − c2e
kl
) − i�u

(
g(2)
5 e−i�ul − g(2)

6 ei�ul
)

− t

6

∑4

j=1
g(1)
j r2j e

−r j l = 0.

(13.48)

The resulting systems (13.43) and (13.48) contain twelve equations and fourteen
constants of integration c1, c2, g

(k)
j ( j = 1, 6; k = 1, 2). The missing two equations

follow from the conditions w̃(1)

∣∣
x=0 = 0, w̃(2)

∣∣
x=−l = 0. These conditions, taking

into account the second expression in (13.41), take the following form

∑4

j=1
g(1)
j

(−1 + rr2j
) = 0,

∑4

j=1
g(2)
j

(−1 + rr2j
)
e−r j l = 0. (13.49)

13.5 Calculation Results and Their Analysis

The stress–strain state of a cantilevered flat beam under the action of constant surface
load p (Fig. 13.1) was determined using the relations obtained in Sect. 13.4.1 at the
analytical solution of the problem. The material of the beam is a unidirectional fiber
reinforced composite, based on the ELUR-P carbon fiber and KhT-118 epoxy with
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Fig. 13.3 Normal stresses σ 0
x , σx on the z = t

2 surface (a) and shear stress σ 0
xz , σxz (b): dashed

lines are σ 0
x , σ

0
xz (S.P. Timoshenko model); solid lines are σx , σxz (Timoshenko model); squares are

σ 0
x , σ

0
xz (FEM); dots are σx , σxz (FEM)

elastic moduli E1 = 100 GPa, G13 = 1 GPa. Load and geometrical parameters of the
beam are the following: p = 4500 N/m2; l = 30 mm; a = 250 mm; t = 3 mm.

Figure 13.3 shows the normal stresses σ 0
x , σx on the z = t

2 surface and shear stress
σ 0
xz , σxz in the fastened and unfastened parts of the considered beam (superscript 0

instresses corresponds to the fastened part of the beam). For the comparison, there are
analogous stresses, which were received based on the finite-element method (FEM).
The beam was modeled by rectangular finite-elements in the conditions of the plane
stressed state. The beam was divided into 25 elements through the thickness, the
fastened and unfastened parts were divided along the 0x axis into 250 and 2000
elements, respectively. The shear stresses σ 0

xz and σxz obtained on the basis of the
FEM correspond to their averaged values over the beam thickness.

From Fig. 13.3 one can see that normal and shear stresses corresponding to the
S.P. Timoshenko shear model are close enough to the results obtained on the basis of
FEM. This fact proves applicability of the given model for the stress–stain state anal-
ysis of beams having the finite length fastened sections on one of the face surfaces. A
substantial transformation of the stress–strain state parameters is observed at transi-
tion over the boundary x = 0 from an unfastened to a fastened section of finite length
l. The normal stresses σx are reduced by a factor of two in absolute value, and the
shear stresses σxz change sign and exceed in absolute value where the values were
obtained in section x= 0 of the unfastened part of the beam by almost 7.7 times. This
implies the conclusion that taking into account the flexibility of fastening sections
of finite length instead of setting kinematic boundary conditions for pinching in the
end sections can lead to a fundamental refinement of the results in the calculation
of plates and bar systems. This is especially important in strength analysis of plates
and beams made of fiber reinforced composite materials, since their failure mainly
occurs due to transverse shear stresses σxz .

In addition to this, the distributions of shear stressesσ 0
xz(z)over the thickness of the

beam in three x = const sections are shown in Fig. 13.4a. The ratios s of maximum
shear stresses σ 0

xz, σxz modulus to their averaged values over the thickness of the
beam as a function of x are also shown in Fig. 13.4b. Both results were obtained
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Fig. 13.4 Distribution of shear stresses σ 0
xz over the thickness of the beam a solid line corresponds

to the section x = −1.5 mm, dashed lines corresponds to the section x = −15 mm, dot-dash line
corresponds to the section x = −28.5 mm; the ratio s of the maximum modulus values of stresses
σ 0
xz , σxz to the moduli of their averaged values over the thickness of the beam, depending on x b

dotted line for σ 0
xz stresses; solid line for σxz stresses

using the ANSYS software package. Calculations have shown that in the sections
x = −l, x = 0 and x = a (see Fig. 13.1) s → ∞. Therefore, the regions x located
in the small vicinity of these sections are excluded from consideration.

The Table 13.1 shows the shear stresses σ 0
xz in three x = const sections, found

on the basis of the Timoshenko model, which are in good agreement with the
results calculated by averaging the distributions obtained using the ANSYS software
package.

The dynamic response of a flat beam (Fig. 13.2) under the action of a harmonic
force P = P̃eiωτ with an amplitude of P̃ = 240 N/m (per beam’s width unit) and
circular frequency ω = 2π f at f = 60 Hz (this frequency is close to the lowest
natural frequency of f1 = 61, 046 Hz) have been performed using the relations
obtained in Sect. 13.4.2 at the analytical solution of the problem. Beam material is a
unidirectional fiber reinforced composite on the basis of ELUR-P carbon fiber and
KhT-118 epoxy. This material has the following characteristics: E1 = 100 GPa; G13

= 1 GPa; ρ = 1500 kg/m3. Beam geometrical parameters are the following: l =
50 mm; b = 300 mm; a1 = 200 mm; t = 3 mm.

Figure 13.5 shows the amplitudes of deflections w of the beam at f = 60 Hz
frequency. Thus, the deflections are observed not only in the loaded part of the beam,
but also in the unloaded part due to the deformability of the fastened section of

Table 13.1 Shear stresses
σ 0
xz in three x = const

sections

x (mm) σ 0
xz in case of using the

Timoshenko model (MPa)
Averaged σ 0

xz(z) in case
of
using ANSYS (MPa)

−28.5 −0.992 −0.923

−15.0 −1.383 −1.381

−1.5 −2.657 −2.758
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Fig. 13.5 Deflection amplitudes w̃ (points correspond to the boundaries of the fastened part of the
beam)

Fig. 13.6 Amplitudes of normal stresses
∼
σ
0

x ,
∼
σ x on the z = t

2 surface (a) and amplitudes of shear

stress
∼
σ
0

xz ,
∼
σ xz (b): dashed lines are σ 0

x ,σ
0
xz ; solid lines are

∼
σ x , σxz

finite length l. Figure 13.6 shows amplitudes of normal stresses
∼
σ
0

x ,
∼
σ x on the z = t

2

surface and amplitudes of shear stresses
∼
σ
0

xz,
∼
σ xz in the cross sections of the beam.

The results show the presence of a significant stress–strain state type transformation
at the transition across the boundary from an unfastened beam’s parts to the fastened
one.

13.6 Conclusion

The basic relations of mechanics of flat beam with finite length fastening areas
located on one of the front-face surfaces are derived based on the S.P. Timoshenko
shear model. Equilibrium equations for the unfastened and fastened parts of the
beam, as well as boundary conditions for them, are obtained based on the variational
Lagrange equation. The kinematic and force conditions for coupling of fastened and



13 Transforming Deformation Model of Flat Beams with Finite Length … 199

unfastened beam sections are formulated. Based on the derived relations, an exact
analytical solution to the problem of static bending of a cantilevered beam under the
action of a constant surface load has been found. This solution is in good agreement
with the results obtained by modeling of a beam using rectangular finite elements
in a plane stress state, as well as using the ANSYS software package based on the
equations of a plane problem of elasticity theory. An exact analytical solution has
been obtained for the problemof transverse bending vibrations of a flat beamwith two
cantilevered parts and a fixed length section between them under vibration loading
by a transverse force acting on one of the unfastened section. The results obtained on
the basis of this solution show the transmission of vibrations from the loaded part of
the beam to its unloaded part due to the deformability of the fixing section of finite
length l.

The results obtained in the article are related to the study of the processes of
deformation of flat beamswith fixed sections of finite length under static and dynamic
loading. They should be considered as a methodology for setting the corresponding
problems ofmechanics with additional account of the compliance of the beam’s fixed
section. Within the framework of the classical Kirchhoff–Love model it is possible
to formulate only generally accepted boundary conditions in the transition section
from an unfastened section to a fastened one. At the same time, within the framework
of well-known refined Timoshenko model it is possible to take into account the
fastening of a beam with an absolutely rigid supporting element only on one of the
front surfaces.

The main result of this article should be considered as the proposed methodology
for studying the process of deformation of thin-walled structural elements that have
fixed sections of finite sizes on the boundary surfaces. It requires the use of refined
deformation models with a high order of accuracy, which are transformed in the
transition from an unfastened to a fastened section.
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Chapter 14
Active Damping of Transverse Vibrations
of Console Beam by Piezoelectric Layer
with Different Electrode Shapes

Egor V. Petrakov and Dmitry V. Balandin

Abstract In the problems of damping vibration, the question often arises on the
practical implementation of damping actuators. The damping efficiency is consid-
ered for a console beam described by a linear viscosity Bernoulli–Euler model. The
article presents the methods of damping transverse vibrations implemented by a
dynamic damper from a piezoelectric layer distributed symmetrically along the axis
of symmetry of the beam. Piezoelectric layers with a triangular and rectangular shape
of electrode plates are considered,which affect the nature ofmechanical stresses upon
application of electrical voltage. The electrode plates are thin layers made of nickel
or silver several microns thick and located normal to the polarization axis, that is,
along the length of the piezoceramic plate. The control of the piezoelectric layers
is realized by changing the potential difference between the electrode plates, while
the piezoelectric material uncoated by the electrode plate on both sides is useless to
use as an active material. In turn, mathematical models of the effect of piezoelec-
tric elements on the cantilever beam are derived from the Hamilton principle. The
Pareto-efficiency of quenching by piezoelectric plates with different electrode shapes
is evaluated relative to two criteria: the level of control voltage and the maximum
deflection of the beam. Also, for a more general analysis, the quenching efficiency
is also given for a beam with a piezoelectric plate applied along the entire length and
an electrode layer. In addition to Pareto sets, efficiency is also considered in a more
applied and particular example—time history. It is worth noting that the synthesis
of Pareto-optimal controls is based on the Germeier convolution, and the search for
optimal feedback is based on the application of the theory of linearmatrix inequalities
and effective algorithms for solving them.
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Keywords Vibration damping · Distributed system · Piezoelectrics ·
Bernoulli–Euler model · Generalized H2-norm · Pareto set · Linear matrix
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14.1 Introduction

The problem of reducing the level of vibrations affects many areas of engineering,
instrumentation and construction. Often the solution is to increase the strength and
stability of protected objects, but apart from the widely known methods of vibration
(vibration, balancing, balancing machines, changing the materials of the protected
object) [1] there is a less known method of applying a mass damper (MD). The
use of MD takes a special place because their use can be implemented not only at
the design and construction stage, but also in the case when unsatisfactory dynamic
characteristics of the structure are identified already during operation. In addition,
the advantage of dampers is that at a relatively low cost of additional material, they
make it relatively easy to get the effect of reducing the level of vibrations.

To create forces that dampen harmful vibrations of the protected object, it is
important to choose the optimal actuator that will meet various requirements to the
desired extent, for example, such as compactness or scale of force generation. Known
components of actuators (electromagnetic devices, pneumatic drives, rotors and
linear motors [2], etc.) can be used effectively in vibration damping tasks. In contrast
to the mentioned devices, modern technical materials, which are often referred to
as smart materials, have a number of advantages, since they can be lightweight and,
more importantly, can be seamlessly integrated structurally into an already designed
system without changing the inertial characteristics of the system. Smart materials
are materials that have one or more properties that can be changed significantly in
a controlled way by external perturbations such as voltage, temperature, humidity,
pH, electric or magnetic fields. There are many types of smart materials, some of
which are already common. Due to the possibility of generating forces, piezoelectric
materials are preferable for solving this problem. Among the many types of piezo-
electric devices, bending piezoactuators are of particular interest, the use of which
is considered in this article for damping vibrations.

A striking example of such integration is the composite aeroelasticwing, equipped
with thin piezoelectric plates in thewing structure, which allow to suppress unwanted
vibrations, without adding significant mass and without changing the shape of the
wing. A similar quenching method is used in the wing of an FA-18 deck aircraft
equipped with piezoelectric plates for vertical stabilization [3] (Fig. 14.1).
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Fig. 14.1 Wing
carrier-based aircraft FA-18

14.2 Statement of the Problem

To dampen vibrations of the structure (Fig. 14.2a), which is under the influence
of external perturbations, we consider piezoelectric layers that partially cover the
surface of the beam and have different forms of electrode plates (Fig. 14.2b, c). In
other words, we consider a piezoelectric layer consisting of a piezoceramic plate,
which is covered with electrode plates along the length. A mathematical model of
vibration damping of an elastic beam with piezoelectric layer actuators is derived. A
comparative analysis of the action of piezoelectric layers with identical piezoceramic
plates, but with electrode plates of different shapes, is performed. The location of
the piezoelectric layer is selected from the conditions for the most effective control
of vibrations. The effectiveness of quenching is considered relative to two criteria:
the control voltage applied to the piezoelectric layer and the deflection of the beam
at the end. In other words, it is necessary to find a Pareto set of solutions with respect
to two criteria, while the maximum value of the control voltage does not exceed the
maximum allowable value of the voltage for piezoelectric layers.

The main object of research is a cantilever metal beam (Fig. 14.2a), the size and
weight of which are so small in comparison with the size and weight of the base
that the influence of the beam on the base can be ignored. Piezoelectric layers are
represented with triangular and rectangular electrode forms of plates, the length of
the layers is 5 times less than the length of the beam, and the thickness is less by
an order of magnitude. The behavior of the beam is considered in the framework of
the Bernoulli–Euler hypothesis, the influence of the thickness of the piezoelectric
layer at the moment of inertia of the beam is ignored, since it does not significantly
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Fig. 14.2 Protected object with piezoelectric layers: a general view, with b rectangular and c
triangular plates attached to the beam

change the stiffness and inertia characteristics of the system, the hysteresis of the
piezoelectric layer is not taken into account.

14.3 Mathematical Model of Active Damping of Transverse
Beam Vibrations

A linear viscoelastic model is used to describe the transverse vibrations [4] of a beam
in the framework of the Bernoulli–Euler hypotheses in dimensionless variables:

∂2ω

∂t2
+ a2

(
∂4ω

∂x4
+ ϑ0

∂5ω

∂x4∂t

)
= − u0

ρA
+ v0(t) (14.1)

where ω = ω(x, t) is dimensionless deflection of the beam, K = ∂4

∂x4 is the differ-
ential operator of the fourth degree, β = a

l2 ϑ is dimensionless damping coefficient
of the system ϑ is the coefficient of internal viscosity, a2 = E J/ρA, E is elastic
modulus, J is moment of inertia of the section, ρ is density, A is cross-sectional
area of the beam, l is beam length, v(t) is acceleration acting on the base, t is time,
f (u, x1, .., xn) is control function applied at certain points of the beam x1, .., xn or
at intervals between points, u is the control, which will be mainly discussed later.

Equation (14.1) in partial derivatives is reduced to the equation in principal coor-
dinates (relative to the time function). For this purpose, the methods of separated
variables and normal forms are used, described in more detail in [5].

ω(x, t) =
∞∑
i=1

Xi (x)Ti (t),
∫ 1

0
Xi X jdx = 1,

∫ 1

0
K Xi X jdx =

{
λ4
i , i = j
0, i �= j

(14.2)

λi is eigenvalues of a beam, analogous to the eigenfrequency of a beam in dimen-
sionless variables. Xi are parameters that are functions of the beam shape. The values
of eigenvalues and form functions are derived from the boundary conditions of the
cantilever beam described by the Krylov function [6]. The transformation (14.1) to
the main coordinates is represented in the equation:
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T̈i + βλ4
i Ṫi + λ4

i Ti = −
∫ 1

0
Xi f (u, x1, .., xn)dx +

∫ 1

0
Xidxv(t) (14.3)

Equation (14.3) is a mathematical model for controlling transverse vibrations of a
beam under external perturbation. However, when considering a practical problem,
the control is implemented using actuators, which makes very impressive changes
to the mathematical model for controlling transverse vibrations, which is described
in more detail later.

14.4 Active Damping of the Cantilever Beam
with a Piezoelectric Layer

The piezoelectric layer is a piezoceramic plate with electrode plates attached to it on
both sides (Fig. 14.3), through which control is performed by changing the potential
difference between them. Piezoceramic material that is not covered with an electrode
lining on both sides is useless to use as an active material.

Linear equations of electrostatics and deformation for piezoceramics can be
written as:

[S] = [s]{T } + [d]{E}
[D] = [d]T {T } + [ε]{E} (14.4)

where {S}, {T } is strain and stress vectors, [s] is the matrix of elastic compliance, [d]
is tensor of piezoelectric constants, [ε] is the tensor of the dielectric constants, {E}
is vector of electric field strength, [D] is vector of electrical induction. In Eq. (14.4),
the first equation describes the reverse effect, and the second one describes the direct
effect. Since the variables are interconnected in pairs, any pair of mechanical and
electrical variables can be selected as independent [7].

The electrical energy of a piezoelectric element is found from the expression:

Fig. 14.3 Cantilever beam
with a piezoelectric layer
along its entire length
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We = 1

2

∫
	

({E}T [ε]{E} + 2{S}[e]{E} − {S}2[c]{S})d	

For the case of a piezoelectric plate polarized along the z axis operating on a pure
bend

(
S1 = −zω′′) applied to the beam at the interval [x1, x2] written as:

W ∗
e = 1

2

∫ l

0

∫
A
(ε33E

2
3 − 2ω′′zH

(
x01 , x

0
2

)
e31E3 − c11

(
ω′′)2)d Adx (14.5)

gde c11 is the modulus of elasticity of the piezoelectric ceramics, e31 = d31c11,
H

(
x01 , x

0
2

)
is Heaviside function describing the location of the piezoelectric layer.

Applying the Hamilton least action principle for the considered beam the following
equation is derived:

∫ t1

t0

∫ l

0

1

2
(ρAδω̇2 − 2e31zmbp(x)H

(
x01 , x

0
2

)
V δω′′ + E I δω′′2)dxdt = 0 (14.6)

where V = E3h p is the voltage applied to the piezoelectric layer, h p is the piezolayer
height, bp(x) is the width of the electrode plate, in the future we will consider cases
of changing the width, so it is accepted b0p = max(bp(x)), also bp(x) = b0pbp(x),

bp(x) is a dimensionless function of changing the width of the electrode lining along
the length. Thus, a dimensionless model of transverse vibrations of a beam with
consideration for friction and an applied piezoelectric layer with an arbitrary shape
electrode plate at the interval will take the following form:

ω̈ + βK ω̇ + Kω = γ (bp(x)H(x1, x2))
′′U (14.7)

where γ = lb0pzme31V 0/E I is a dimensionless coefficient of influence of the piezo-

electric layer, (x1, x2) = (x01 ,x
0
2)

l is the dimensionless interval of the application, U
is the dimensionless voltage applied to the piezoelectric layer that is the control.

U =
m∑
i=1

θ
(1)
i Ti + θ

(2)
i Ṫi (14.8)

where θ
(1)
i , θ

(2)
i are the feedback coefficients for movement and speed, respectively,

m is the number of the first modes considered.
Quantification of damping design is usually based on the results of solving two

problems. The first one is connected with consideration of free oscillations, where
the dissipation of the system is manifested in the damping of the oscillations and
the decay rate quantifies the dissipative properties of the system. The second task is
focused on dealing with forced steady-state oscillation [8]. In addition, the damping
of the system’s vibrations is manifested in the restriction of resonant amplitudes.
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Fig. 14.4 Amplitude
history: a free and b forced
oscillations of the system

(a)

(b)

Figure 14.4 shows amplitude history for a piezoelectric layer with an electrode lining
distributed along the entire length of the beam (Fig. 14.3).

From the above amplitude histories of natural and forced vibrations of the beam,
with a piezoelectric layer distributed along the entire length, the effect of control is
obvious. However, choosing such a feedback with minimal control costs that has the
maximum possible amplitude reduction is not a trivial task, and it is obvious that it
is more difficult than the task of single-criteria optimization.

14.5 Statement of the Two-Criteria Problem of Control
Theory

The need to transfer the problem in point 1 to the problem of control theory is due to
the fact that for this problem, the search for an optimal set of solutions with respect
to the quenching efficiency criteria (moving the end of the beam and controlled
stress), at least for three modes, is extremely cumbersome. Moreover, it is difficult
to implement, and the solution by iteration cannot always give optimal solutions.
Hence, the system of Eqs. (14.3) reduces to the canonical form of a controlled linear
system with two outputs:



208 E. V. Petrakov and D. V. Balandin

Ṫ = AT + BuV + Bvv

z1 = CT
z2 = Du

(14.9)

where T = (
T1 . . . Tm, Ṫ1 . . . Ṫm

)T
is the state vector, A is the control matrix, Bu, Bv

are the control and perturbation vectors, v is the external impact on the system, z1, z2
are the output values of the system and indicate the movement of the free end of
the beam and the voltage generated by the feedback (quenching efficiency criteria).
The theory of linear matrix inequalities and effective algorithms for solving them,
implemented in the MATLAB package, is used to find optimal feedback about the
two criteria.

Despite the fact that over the past two decades, progress has been made in solving
optimal control problems with criteria such as H∞- and H2-norms that have correct
physical interpretations in the formof levels of damping of deterministic or stochastic
perturbations from various classes, the consideration of multi-criteria problems with
these criteria causes significant difficulties. These difficulties aremainly related to the
complexity of characterization of the Pareto set and finding the corresponding scalar
multi-purpose function that would define this set. In addition, the task is complicated
by the fact that each of the criteria is characterized by its quadratic Lyapunov function
with a matrix which is the solution of Riccati equations or linear matrix inequalities
and scalar optimizationmulti-purpose function in the formof a particular convolution
leads in general to a bilinear system of inequalities matrices of these functions that
are Lyapunovmatrices and controller feedback. To solve such a system, an additional
condition was often introduced about the equality of all Lyapunov functions, which
introduced conservatism to the problem under consideration [7, 9–13]. At the same
time, the main question remained unanswered, as to what extent the obtained control
laws differ from the Pareto optimal ones.

In recent works [14–18] on multi-criteria optimization with criteria in the form
of H∞-and γ0-norms in deterministic and stochastic settings, we have found Pareto
suboptimal control laws whose relative losses in comparison with Pareto optimal
ones do not exceed 1 −

√
N
N , where N is the number of criteria. Therefore, we will

use the generalized H2 norm. [19, 20] Using two competing outputs is associated
with bringing the task to practical implementation, since the limited control resource
imposes certain restrictions on the feedback values.

For solving two-criterion problem ofminimization, it is necessary to use function-
ality that combines both criteria, generally used for this convolution. In this problem,
the Germeyer convolution is implemented, since the solution within the Germeyer
convolution for the generalized H2 -norm gives optimal solutions:

Jα(θ) = max

{
J1(θ)

α
; J2(θ)

1 − α

}
, α ∈ (0, 1) (14.10)
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The search for an optimal set of solutions with respect to two criteria is
implemented by linear matrix inequalities describing the finding of a generalized
H2-norm:

(
AY + Y AT + Bu Z + ZT BT

u Bv

BT
v −I

)
< 0

(
Y CT

α

Cα α2γ
2

)
≥ 0

(
Y ZT DT

α

DαZ (1 − α)2γ 2

)
≥ 0

where Z = θY , Y = X−1 is the inverse Lyapunov matrix. The result of the solution
will be a Pareto set of optimal solutions with respect to the two outputs of the
deflection of the end of the beam and the control value, which are found from the
expressions:

J1= ‖Hz1v‖g2 = sup
v∈L2

‖z1(t)‖g∞
‖v‖2 = sup

v∈L2

supt≥0|z1(t)|g∞
‖v‖2 = λ

1
2
max

(
CYCT

)

J2= ‖Hz2v‖g2 = sup
v∈L2

‖z2(t)‖g∞
‖v‖2 = λ

1
2
max

(
DθY θT DT

) (14.11)

This describes the mathematical apparatus for searching for optimal quenching
values, and it is necessary to find a mathematical model of active quenching of a
beam by piezoelectric layers with different forms of electrode plates.

14.6 Mathematical Model of Active Damping of a Beam
by Piezolelectric Layers of Various Shapes

Let’s consider special cases of application of piezoelectric layers, using the model
of active vibration damping of the piezoelectric layer with an arbitrary shape of the
electrode lining (14.7) (Figs. 14.5 and 14.6).

(a) (b)

Fig. 14.5 Application of piezoelectric layerswith different shapes of electrode plates:a rectangular,
b triangular
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Fig. 14.6 Piezoelectric layer
with a triangular electrode
plate

For a piezoelectric layer with an electrode lining, based on the results obtained
using (14.7), we can derive the equation in the main coordinates:

ω̈ + βK ω̇ + Kω = γ (−δ′(x − x1) + δ′(x − x2))U (14.12)

After the discovery of the piezoelectric effect in the study of the electrical prop-
erties of solid dielectrics of the crystal structure, Pierre Curie formulated a general
principle, which is now called theCurie principle. Itsmeaning is that the phenomenon
has all the attributes of symmetry that the cause that gave them birth has; the asym-
metry of the phenomenon is predetermined by the asymmetry of the cause. If we
consider that the piezoelectric material is self-balancing, then the question arises
about the behavior of the piezoelectric element for the case of transverse asymmetry.
For example, what will be the behavior and influence of the piezoelectric layer
when changing the shape of the electrode plates and, consequently, the generated
mechanical loads. The shape of the surface electrode plates determines the nature
of the mechanical load represented by the piezoelectric layer. Therefore, consider a
piezoelectric layer covered with a triangular electrode plate on both sides.

The equations of transverse vibrations of a beam with a triangular overlay are
written as follows:

ω̈ + βK ω̇ + Kω = γ (−δ′(x − x1) − l

l p
δ(x − x1) + l

l p
δ(x − x2))U (14.13)

Thus, piezoelectric layers, depending on the shape of the plates when applying
voltage, can be described as mechanical loads that are controlled by an external
energy source with a limited resource:

T̈i + βλ4
i Ṫi + λ4

i Ti = −MpX ′
i (1)U + v(t)

T̈i + βλ4
i Ṫi + λ4

i Ti = −Mp
(
X

′
i (x2) − X

′
i (x1)

)
U + v(t)

T̈i + βλ4
i Ṫi + λ4

i Ti = −(F p(Xi (x2) − Xi (x1)) − MpX
′
i (x1))U + v(t)

(14.14)

where the first equation describes the behavior of a piezoelectric layer evenly
distributed along the entire length of the beam (Fig. 14.7a), a kind of the
most efficient and limiting case, the second and third equations describe the
behavior of a piezoelectric layer with rectangular and triangular facings, respectively
(Fig. 14.7b, c).
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(a) (b) (c)

Fig. 14.7 Mechanical loads of piezolayers with different plates: a distributed along the entire
length; b rectangular and c triangular forms of electrode plates

14.7 Results

All calculations were given for the coefficient γ = 0.0516, (see (14.7)). In Fig. 14.8
optimal sets of solutions for the criteria are given.

Judging by the optimal Pareto sets, the efficiency of a piezo layerwith a rectangular
lining is higher than that of a triangular one in both operating modes. It would seem
that it is possible to talk about the inefficient use of a piezo layer with a triangular
lining for the tasks of active damping of the cantilever beam, but the following is an
amplitude history for both cases of operation with respect to forced vibrations of the
system (Fig. 14.9).

From amplitude history obviously, when an operating voltage (Fig. 14.9a) the
difference between amplitude history for different plates is minimal, but extreme
voltage differences amplitude history (Fig. 14.9b) has more noticeable, but still not
much. It is worth noting that the length of the piezoelectric layers was 5 times less
than the length of the beam, and the thickness of the layers is less by an order of
magnitude. That is, when using thin piezoelectric layers, it is possible to reduce
significantly the amplitude of vibrations in the case of external influence on the
cantilever metal beam, both for the case of the limit voltage of the piezoelectric layer
and for the operating voltage.

Fig. 14.8 Optimal Pareto
sets of solutions
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Fig. 14.9 Amplitude
history: a at the limit and b
at the operating voltage

(a)

(b)

14.8 Conclusions

The use of piezoelectric layers in the system of active vibration damping of a
cantilever beam is considered. To solve the problem of the efficiency of using piezo-
electric layers as an active damping device, two related criteria are introduced: the
level of voltage applied to the piezoelectric layer and the level of deflection of the
beam end. A comparison was made with respect to the selected criteria for rectan-
gular and triangular forms of plates, which were compared with a variant of a piezo
layer evenly distributed over the entire length.

Based on the Hamilton Principle, the influence of the electrode shape on the
generation of various mechanical loads by the piezoelectric layer was derived (14.7).
It was found that with respect to two Pareto criteria, the efficiency of a piezoelectric
plate of standard sizes with a rectangular shape of the electrode plate shows a better
result compared to a triangular plate.

Acknowledgements The work is supported financially by the Ministry of Science and Higher
Educa-tion of the Russian Federation, project no. 0729-2020-0055.
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Chapter 15
Investigation of the Dynamic Response
in a One-Dimensional Partially Saturated
Poroelastic Medium

Andrey N. Petrov and Leonid A. Igumnov

Abstract In this paper, the dynamic response of a poroelastic material to an impulse
load has been analytically investigated. The poroelastic material is represented by
a three-phase elastically deformable partially saturated porous medium, one phase
is a deformable solid skeleton, and the other two are fluid and gas that fill the pore
space. The mathematical formulation is a system of equations including the laws of
conservation of mass for fluid phases and a solid frame, an equilibrium equation for
a three-phase continuum, a constitutive relation for a three-phase medium, a relation
for determining the stress tensor, and Darcy’s law of filtration. The solution of the
equations of motion of a one-dimensional poroelastic medium is written in terms of
the variables of the displacement of a solid skeleton, and the pore pressure of fluid
and gas in the Laplace domain. The time domain solution is calculated using the
numerical inversion stepped method of the Laplace transform. The effect of material
parameters on the dynamic response is analyzed in a series of numerical experiments.
The results of this study may help to gain better insight into one-dimensional wave
propagation in unsaturated soils.

Keywords Poroelastic medium · Equilibrium equation for a three-phase
continuum · Constitutive relation for a three-phase medium · Waves propagation in
unsaturated soils

15.1 Introduction

Porous materials are widely distributed in nature and engineering as exemplified by
fluid-saturated soils, rocks, biological tissues, foam metals, etc. The mechanics of
porous media is of great importance in many branches of science, such as geotech-
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nics, geomechanics, engineering geology, biomechanics, mechanical engineering,
and materials science.

In recent years, the dynamic response of saturated soils under non-stationary loads
has been widely studied analytically. For example, Philippacopoulos [8] obtained
explicit solutions for displacements and stresses to the problem of deformation of
a homogeneous poroelastic half-space in the frequency domain using Helmholtz
expansions and Fourier transform. Tabatabaie Yazdi et al. [10] analyzed the dynamic
response of a porous-elastic layer subject to loading on a strip which simulates a strip
foundation. They found an exact solution in the frequency domain and proposed
a finite element scheme for solving complex geometry problems. Jin and Liu [3]
investigated the motion of a three-dimensional poroelastic half-space created by a
horizontal buried load using integral transformation methods.

The use of the model of a fluid-saturated porous material when considering wave
processes, even with account for substantial simplifications, significantly compli-
cates the computational scheme of the boundary value problem compared to elastic
or viscoelastic formulations. The contribution of the dynamic behavior of the filler
fundamentally changes the form of wave patterns, which can be predicted by using
advanced computational methods. Nevertheless, analytical solutions are of great
importance, since they make it possible to reveal the mechanisms of interaction
between solid and fluid phases, to carry out a posteriori evaluation of numerical
results, and to study transient processes in a porous medium subjected to dynamic
loading. An overview of available analytical solutions to the problems of wave prop-
agation in saturated porous media can be found in the work by Schanz [9]. Li and
Schanz [4] presented an analytical solution for a one-dimensional partially saturated
poroelastic rod.

15.2 Analytical Solution of One-Dimensional Wave
Propagation

In this study, the partially saturated poroelasticmedium consists of three constituents,
that is, solid skeleton, pore fluid, and pore gas. All the three phases are assumed to
be compressible. Temperature variations are neglected. Such a poroelastic material
can be considered as partially saturated. In the following, the mathematical model
suggested by Zhang et al. [11] will be used to describe the dynamic behavior of a
partially saturated poroelastic medium.

The relative proportions of constituent volumes are characterized by its porosity
φ and saturation degree S f of each phase f ∈ {w, a} as

φ = Vv

V
, S f = V f

Vv

, (15.1)

where Vv is the volume of interconnected pores in the specimen, V is the total volume
of the material, and V f is the volume of the f -phase. This gives the average density
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Fig. 15.1 Problem description

of the mixture ρ as
ρ = (1 − φ)ρs + φSwρw + φSaρa , (15.2)

where ρs , ρw, and ρa are partial densities of each phase. Consider a case where the
pores are completely filled:

Sa + Sw = 1 . (15.3)

The commonly applied [1] model of capillary pressure pc function is utilized in
this study, i.e.,

Se = (
1 + (χpc)

d
)−m

, (15.4)

where Se is the effective fluid saturation given as Se = (Sw − Srw)/(Sra − Srw), Sra
and Srw are the residual saturations, χ , m, and d are the material parameters of the
van Genuchten model.

Based on the theoretical pore size distribution model of Mualem [7], the relative
permeabilities of fluid Krw and gas Kra as a function of fluid saturation have the
following form:

Krw = √
Se

(
1 −

(
1 − S

1
m
e

)m
)2

, (15.5)

Kra = √
1 − Se

(
1 − S

1
m
e

)2m
. (15.6)

Consider the problem of the load impact in the form of a Heaviside step function
H(t) with respect to time on a one-dimensional partially saturated poroelastic rod
of length l (Fig. 15.1).

The boundary conditions are given as

p̂w(s, x = l) = 0 , (15.7)

p̂a(s, x = l) = 0 , (15.8)
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σ̂ (s, x = l) = −S0 , (15.9)

q̂w(s, x = 0) = 0 , (15.10)

q̂a(s, x = 0) = 0 , (15.11)

û(s, x = 0) = 0 , (15.12)

where q̂w and q̂a are the fluid and gas fluxes, σ̂ is the total stress, S0 denotes the
loading amplitude, symbol denotes Laplace transform with complex variable s.

The solutions for the displacement of solid skeleton û and pressures of fluid p̂w

and gas p̂a in the rod can then be derived in the Laplace domain as

û = S0
Ms2B1

3∑

i=1

(
e−λi s(x+l) − e−λi s(x−l)

1 + e−2λi sl
ti

)
, (15.13)

p̂w = −S0
Ms2B1

3∑

i=1

(
e−λi s(x+l) + e−λi s(x−l)

1 + e−2λi sl
ai ti

)
, (15.14)

p̂a = −S0
Ms2B1

3∑

i=1

(
e−λi s(x+l) + e−λi s(x−l)

1 + e−2λi sl
bi ti

)
, (15.15)

where the coefficients M , B1, λi , ti , ai , and bi are defined in appendix. For more
details on the derivation process of solution, please refer to Li and Schanz [4]. In this
work, the response in the time domain is calculated using the numerical inversion
method of the Laplace transform.

15.3 Laplace Transform Inversion

Consider a method based on the fundamental integration theorem—the stepped
method of numerical inversion of the Laplace transform. Consider the following
integral:

y(t) =
∫ t

0
f (τ )dτ, 0 ≤ t ≤ T . (15.16)

Integral (15.16) gives rise to the Cauchy problem for an ordinary differential
equation:

d

dt
x(t) = sx(t) + C, x(0) = 0. (15.17)
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Integral (15.16) is substituted for by a quadrature sum, weighting factors of which
are determined using Laplace representation and the linear multistepmethod [2]. The
traditional stepped method yields approximations of (15.16) at discrete time points

tn = nΔt ,Δt = T/N , n = 0, . . . , N , (15.18)

via the quadrature formula

y(0) = 0 , y(nΔt) =
n∑

k=1

ωk(Δt) , n = 1, . . . , N , (15.19)

For a parameter 0 < R < 1, the quadrature weights are defined by

ωn(Δt) = R−n

L

L−1∑

l=0

f̂

(
γ (Reil

2π
L )

Δt

)

e−inl 2πL , (15.20)

where is γ the quotient of the characteristic polynomials of a linear multistep method
according to Lubich [5, 6], the backward differentiation formula of second-order
γ (z) = 3/2 − 2z + z2/2 is adopted in this paper.

15.4 Numerical Simulations

In order to investigate the effects of fluid saturation, a series of parametric studies
are conducted. The length of the rod l is taken equal to 10m. The material properties
are provided in the appendix, and a Heaviside step function with S0 = 1N/m2 is
assumed for the time history of loading.

Figure15.2 shows the displacement graphs at the loaded rod end with the satu-
ration changing from 0.4 to 0.9. Firstly, the figure shows that the time dependences
of displacement exhibit an oscillating character. Secondly, when saturation is less
than 0.9, the displacements differ insignificantly from each other in magnitude and
propagation velocity of the longitudinal wave suggests little changes. In this case,
a decrease in the displacement amplitude by approximately 1.16 times and a slight
increase in the longitudinal wave velocity are observed in comparison with the same
characteristics for 0.4 ≤ Sw ≤ 0.9.

With increasing saturation from0.93 to0.99, the displacement amplitudedecreases
by several times and the longitudinal wave velocity exhibits a slight increase
(Fig. 15.3). In this case, the amplitude at Sw = 0.99 is already three times less than
that at Sw = 0.93.

An increase in saturation has a similar effect on the behavior of pore pres-
sures except that their amplitude also increases (Figs. 15.4, 15.5, 15.6, and 15.7).
In this case, the pressure amplitude grows faster with increasing saturation than the
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Fig. 15.2 Distributions of the displacement of solid skeleton u with time using different fluid
saturation values (Sw from 0.4 to 0.9)
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Fig. 15.3 Distributions of the displacement of solid skeleton u with time using different fluid
saturation values (Sw 0.9–0.99)

displacement amplitude. Thus, the amplitude of the pore fluid pressure at Sw = 0.8
differs twice from the pressure amplitude at Sw = 0.4 and almost by the same time
from the pressure amplitude at Sw = 0.4 (Fig. 15.4).
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Fig. 15.4 Distributions of fluid pressure pw with time using different fluid saturation values (Sw
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Fig. 15.5 Distributions of the fluid pressure pw with time using different fluid saturation values
(Sw 0.9–0.99)
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Fig. 15.6 Distributions of the gas pressure pa with time using different fluid saturation values (Sw
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15.5 Conclusion

Ananalytical solution to the problemof the dynamic load affecting a one-dimensional
partially saturated poroelastic rod is presented. The results of calculations obtained
using the step method of numerical inversion of the Laplace transform are presented.
The effect of material parameters on dynamic responses of displacement and pore
pressures is demonstrated. An increase in saturation results in a gradual decrease
in the frame displacement amplitude and leads to an increase in the fluid and gas
pressure amplitude. An increase in saturation above 0.9 gives rise to a significant
acceleration of the longitudinal wave propagation.

Acknowledgements Theworkwas carried out with the financial support of theMinistry of Science
and Higher Education of the Russian Federation (task 0729-2020-0054).

Appendix

See Table15.1.

α = 1 − K

Ks
, Sw + Sa = 1 , Se = Sw − Srw

Sra − Srw
, ζ = α − n

Ks
, (15.21)

pc = 1

χ

(
S

− 1
m

e − 1
) 1

d

, Su = −χmd(Sra − Srw)S
m+1
m

e

(
S

− 1
m

e − 1
) d−1

d

, (15.22)

Sww = Sw + pcSu , Saa = Sa − pcSu , (15.23)
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Table 15.1 General material parameters

Parameter type Symbol Value Unit

Porosity n 0.45 –

Density of the solid
skeleton

ρs 2650 kg/m3

Density of the fluid ρw 1000 kg/m3

Density of the gas ρa 1.28 kg/m3

Drained bulk modulus
of the mixture

K 8.33 × 106 N/m2

Shear modulus of the
mixture

G 3.85 × 106 N/m2

Bulk modulus of the
solid grains

Ks 3.5 × 1010 N/m2

Bulk modulus of the
fluid

Kw 2.25 × 109 N/m2

Bulk modulus of the
gas

Ka 1.45 × 105 N/m2

Intrinsic permeability k 5.3 × 10−12 m2

Viscosity of the fluid ηw 1.0 × 10−3 N s/m2

Viscosity of the gas ηa 1.8 × 10−7 N s/m2

Fitting parameter of
van Genuchten model

χ 1 × 10−4 m2/N

Fluid saturation Sw 0.9 –

Residual fluid
saturation

Srw 0 –

Residual gas
saturation

Sra 1 –

Fitting parameter of
van Genuchten model

m 0.5 –

Fitting parameter of
van Genuchten model

d 2 –

κw = Krwk

ηw

, κa = Krak

ηa
, (15.24)

ρ = (1 − n)ρs + nSwρw + nSaρa , (15.25)

β = κwnρws

nSw + κwρws
, γ = κanρas

nSa + κaρas
, (15.26)
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B1 = K + 4

3
G , B2 = ρ − βSwρw − γ Saρa , B3 = (α − β) Sw , (15.27)

B4 = (α − γ ) Sa , B5 = ζ SwwSw + n

Kw

Sw − Sun , B6 = βSw

ρws
, (15.28)

B7 = ζ Saa Sw + Sun , B8 = ζ SwwSa + Sun , (15.29)

B9 = ζ Saa Sa + n

Ka
Sw − Sun , B10 = γ Sa

ρas
, (15.30)

C1 = B1B6B10 , (15.31)

C2 = − (
B1B5B10 + B1B6B9 + B2B6B10 + B2

3 B10 + B2
4 B6

)
, (15.32)

C3 = B1(B5B9 − B7B8) + B2(B5B10 − B6B9)

−B3B4(B7 + B8) + B2
3 B9 + B2

4 B5 , (15.33)

C4 = B2(B7B8 − B5B9) , (15.34)

N1 = − C2

3C1
, N2 =

3
√
2

N3
, N3 = 3

√

N4 +
√
4N 3

5 + N 2
4 , (15.35)

N4 = −2C3
2 + 9C1C2C3 − 27C2

1C4 , N5 = −C2
2 + 3C1C3 , (15.36)

λ1 =
√

N1 + N2C2
2

3C1
− N2C3 + 1

3N2C1
, (15.37)

λ2 =
√

N1 + N5N2

3C1

(
1 − i

√
3
)

− 1

6N2C1

(
1 + i

√
3
)

, (15.38)

λ3 =
√

N1 + N5N2

3C1

(
1 + i

√
3
)

− 1

6N2C1

(
1 − i

√
3
)

, (15.39)

ai = (B1B7 + B3B4)λ
2
i − B2B7

(B4B6λ
2
i + B3B7 − B4B5)λi

, bi = (B1B8 + B3B4)λ
2
i − B2B8

(B3B10λ
2
i + B4B8 − B3B9)λi

,

(15.40)

t1 = a2b3 − a3b2 , t2 = a3b1 − a1b3 , t3 = a2b1 − a1b2 , (15.41)

M = t1λ1 + t2λ2 + t3λ3 . (15.42)
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Chapter 16
Dynamic Problems for Piecewise
Homogeneous Viscoelastic Bodies

Sergey G. Pshenichnov, Ekaterina A. Korovaytseva, Emilia Bazhlekova,
and Maria D. Datcheva

Abstract Anon-stationary dynamic problemof linear viscoelasticity for a piecewise
homogeneous body is considered for the case when the disturbed domain is finite.
The interrelation between such a problem and the spectral problem of piecewise
homogeneous body free oscillations is established. The structure of the eigenvalues
set of the spectral problem is investigated. A method of searching for eigenvalues
near the limit points of the spectral set is proposed. The integral Laplace transform
in time is applied to the non-stationary dynamic problem for a linear viscoelastic
piecewise homogeneous structure. For the case when each of the hereditary kernels
is a finite sum of exponentials, the solution in the originals is presented as a series of
residues at the points of the spectrum. Thus, the constructing of the non-stationary
solution is reduced to the search for the elements of the spectral set. As an example,
the solution to the plane axisymmetric problem of transient longitudinal waves’
propagation in a cross-section of a hollow infinitely long cylinder consisting of
two coaxial elastic layers and a viscoelastic layer between them is constructed and
discussed. As a result, it becomes possible to investigate and to reveal the influence of
the piecewise inhomogeneity on the non-stationary waves’ propagation in a cylinder
with viscoelastic and elastic layers.
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Keywords Dynamic problems of viscoelasticity · Piecewise homogeneous
bodies · Wave processes · Layered cylinder

16.1 Introduction

Piecewise homogeneous bodies with viscoelastic inclusions are widely used in
modern technology. One of the directions in the field of modeling the behavior
of such structures under dynamic excitations is related to the study of transient
wave processes in piecewise homogeneous viscoelastic structures using analytical
and semi-analytical methods. Results of such investigations employing analytical
methods were reported several decades ago [1–4]. In recent years, considerable
attention has been paid to investigations of these problems with analytical methods
in combination with numerical ones [5, 6]. Among others, an example of such
an approach is the application of the boundary integral equations method [7, 8].
The applications of this method allow to solve a number of dynamic problems for
composite viscoelastic media [9, 10]. It has to be also noted the existence of recent
publications devoted to the study of harmonic waves in viscoelastic layered media
[11, 12], as well as the dynamics of viscoelastic layered thin-walled structures [13].
At the same time, despite the achievements in the field under consideration there are
still many issues that require the attention of researchers.

Among various methods of solving linear viscoelastic dynamic problems, the
most common method is the integral Laplace transform in time. It is used often in
combination with other methods. However, due to the complexity of the inversion,
the solution in the originals is normally constructed asymptotically or by accepting
significant restrictions on the hereditary properties of the material. In this regard, it
is worth noting that in [14] the general properties of the solution to nonstationary
dynamic problems for viscoelastic piecewise homogeneous bodies in the Laplace
domain were established.

The aim of thiswork is based on the results of thework [14] to reduce the construc-
tion of the solution of non-stationary dynamic problems for piecewise homogeneous
viscoelastic body to searching for the eigenvalues of the free oscillations spectral
problem under certain conditions imposed on the initial parameters. In addition, the
aim is to propose and verify a method for finding the elements of the spectrum near
its final limit points and to demonstrate such an approach on a concrete example.

16.2 Non-stationary Dynamic Problem Statement

Consider a non-stationary dynamic problemof linear viscoelasticitywith the assump-
tion that the disturbances propagations domain � and its boundary � are bounded.
Herewith note that the body itself can be infinite, but, for example, can be considered
as being in a plane strain state. Thus, the dimension of the vector x = {xk} ∈ �
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depends on the specific problem and can vary from 1 to 3. The domain � consists of
N homogeneous isotropic linear-viscoelastic subdomains � = �1 ∪�2 ∪ · · · ∪�N .
Herewith the subdomains �i and � j do not intersect at internal points for any i
and j (i �= j). On the subdomain contact surfaces, the continuity conditions for the
displacement and stress vectors are imposed. The mathematical formulation of the
problem includes the dynamic equations (n = 1, 2, .., N ):

(
λ
∧

n + μ
∧

n

)
grad div u(n)(x, t) + μ

∧

n�u(n)(x, t) + f (n)(x, t) = ρn ü(n)(x, t),

x ∈ �n, (16.1)

the constitutive relation:

∼
σ

(n)

(x, t) = 2μ
∧

ndef u
(n)(x, t) + λ

∧

ndiv u(n)(x, t)
∼
I, x ∈ �n, (16.2)

generalized boundary conditions for the m -th subdomain (1 ≤ m ≤ N ), with a
boundary �:

∼
α

(m)

(x)
∼
σ

(m)

(x, t)n + ∼
β

(m)

(x)u(m)(x, t) = p(m)(x, t), x ∈ �, t > 0, (16.3)

continuity conditions between the adjacent subdomains p and q:

u(p)(x, t) = u(q)(x, t),
∼
σ

(p)
(x, t)n = ∼

σ
(q)

(x, t)n, x ∈ �pq (16.4)

and initial conditions:

u(n)(x, 0) = b(n)
1 (x), u̇(n)(x, 0) = b(n)

2 (x), x ∈ �n, (16.5)

where λ
∧

n, μ
∧

n are the operators

λ
∧

n = 1

3
[3K (n)

0 (1 − T
∧(n)

v ) − 2G(n)
0 (1 − T

∧(n)

s )], μ
∧

n = G(n)
0

(
1 − T

∧(n)

s

)
,

T
∧(n)

j ξ(t) =
∫ t

0
T (n)
j (t − τ)ξ(τ )dτ, j = v, s (16.6)

The dot above the variables denotes the derivative with respect to time t ; ρn is

density;
∼
σ

(n)

is the stress tensor; u(n), p(m), f (n), b(n)
1 , b(n)

2 are vectors of displace-

ments, external loading, body forces, initial displacements and velocities;
∼
α

(m)

,
∼
β

(m)

are given second-rank tensors that determine the type of boundary conditions;
G(n)

0 , K (n)
0 are the instantaneous values of the shear and bulkmoduli; T (n)

v (t), T (n)
s (t)

are the volumetric and shear relaxation kernels, characterizing the n-th subdomain;
∼
I
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is the unit tensor; n is an exterior unit normal to the respective domain boundary; �
is Laplace operator; def is the operator with which the tensor of small deformations
∼
ε

(n)

is expressed by u(n).
After applying the integral Laplace transform in time to Eqs. (16.1)–(16.4), we

obtain the problem in images expressed in terms of the following equations

(	n(s) + Mn(s))grad divU (n)(x, s) + Mn(s)�U (n)(x, s) − ρns
2U (n)(x, s)

+ ρn

[
sb(n)

1 (x) + b(n)
2 (x)

]
+ F(n)(x, s) = 0, x ∈ �n (16.7)

constitutive relations:

∼
S

(n)

(x, s) = 2Mn(s)defU (n)(x, s) + 	n(s)divU (n)(x, s)
∼
I, x ∈ �n, (16.8)

	n(s) = 1

3

[
3K (n)

0

(
1 − 
(n)

v (s)
) − 2G(n)

0

(
1 − 
(n)

s (s)
)]

,

Mn(s) = G(n)
0

(
1 − 
(n)

s (s)
)
,

boundary conditions:

∼
α

(m)

(x)
∼
S

(m)

(x, s)n + ∼
β

(m)

(x)U (m)(x, s) = P (m)(x, s), x ∈ �, 1 ≤ m ≤ N ,

(16.9)

The conditions on the contact between the adjacent subdomains:

U (p)(x, s) = U (q)(x, s),
∼
S

(p)

(x, s)n = ∼
S

(q)

(x, s)n, x ∈ �pq , (16.10)

Where

U (n)(x, s),
∼
S

(n)

(x, s), F(n)(x, s), P (m)(x, s),
(n)
v (s),
(n)

s (s), s ∈ C

are correspondingly the Laplace transforms of

u(n)(x, t),
∼
σ

(n)

(x, t), f (n)(x, t), p(m)(x, t), T (n)
v (t), T (n)

s (t)

Let us assume that the solutionU (n)(x, s) to the problem definedwith Eqs. (16.7)–
16.10) in images is constructed and focus on the issues related to the construction of
its original in the time domain.
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16.3 Connection Between the Non-stationary Dynamic
Problem and the Problem of Free Oscillations

Consider the problem of free oscillations of the discussed viscoelastic piecewise-
homogeneous body. We will assume that in the absence of body forces and external
loading ( f (n) ≡ 0, p(m) ≡ 0), the body has been freely oscillating for a sufficiently
long period of time from an initial moment that the character of the oscillations
does not depend on the way of their excitation. The lower limit of integration in the
relations (16.6) is taken to be minus infinity. Representing the nontrivial solution of
such a problem in the form

u(n)(x, t) = V (n)(x, s)est , s ∈ C,

we obtain the spectral problem that includes the equations listed below [14]:

(	n(s) + Mn(s))grad divV (n)(x, s) + Mn(s)�V (n)(x, s)

− ρns
2V (n)(x, s) = 0, x ∈ �n, (16.11)

boundary conditions:

∼
α

(m)

(x)
∼
Q

(m)

(x, s)n + ∼
β

(m)

(x)V (m)(x, s) = 0, x ∈ � (16.12)

and the contact conditions:

V (p)(x, s) = V (q)(x, s),
∼
Q

(p)

(x, s)n = ∼
Q

(q)

(x, s)n, x ∈ �pq . (16.13)

where

∼
Q

(n)

(x, s) = 2Mn(s)def V (n)(x, s) + 	n(s)divV (n)(x, s)
∼
I, x ∈ �n.

The eigenvalues s ∈ C of the spectral problem (16.11)–(16.13) determine the
frequencies and damping coefficients of the body free vibrations. Denote the set
of all the eigenvalues of this problem as Es . The relationship between Es and the
branch points, as well as the poles of the solution U (n) to the problem (16.7)–(16.10)
are discussed in [14]. In addition to these results, we formulate here the following
statements.

Statement 1. Any s ∈ Es is a singular point forU (n)—the solution to the problem
(16.7)–(16.10).

Based on this fact and the results reported in [14], the following statement can be
formulated.

Statement 2. Let the conditions be met:

(1) the set Es is at most countable;



232 S. G. Pshenichnov et al.

(2) the images of hereditary kernels 
(n)
v (s), 
(n)

s (s), as well as components of the
vectors of the body and the external forces F(n)(x, s), P (n)(x, s) have no branch
points in the complex plane;

(3) for the solution U (n)(x, s) in the Laplace domain the asymptotic conditions
known from the contour integration theory are fulfilled in the vicinity of an
infinitely distant point and in the small neighborhoods of the finite limit points
of the poles set.

Then the solution of the non-stationary dynamic problem (16.1)–(16.6) in the orig-
inals u(n)(x, t) can be represented as a sum of residues in the poles of U (n)(x, s)est .
Herewith the set of such poles, along with the poles determined by body and external
forces, includes Es .

16.4 Eigenvalue Search Method

Thus, searching for the eigenvalues of the spectral problem (16.11)–(16.13) is neces-
sary not only in the investigation of free oscillations, but is important for constructing
solution to a non-stationary dynamic problem for a viscoelastic piecewise homoge-
neous body. Therefore, in the following we focus our attention on the method of
searching for the elements of the set Es . The domain � is assumed to be bounded,
so the countability of the set Es appears naturally. Assume further that the relaxation
kernels T (n)

v (t), T (n)
s (t) belong to the class of functions:

∑K

k=1
ake

−bk t , 0 ≤
∑K

k=1

ak
bk

< 1, ak, bk − const, bk > 0, k = 1, 2, ...K .

(16.14)

Herewith, for the material of each homogeneous subdomain of�, each of the kernels
T (n)

v (t), T (n)
s (t) has its own values for the constants ak, bk , as well as the number K

of terms in the expression (16.14). Functions
(n)
v (s),
(n)

s (s) have no branch points.
Let us express the displacement through the scalar and vector potentials

u(n)(x, t) = gradϕ(n)(x, t) + rotψ(n)(x, t). Taking into account the representa-
tion ϕ(n)(x, t) = �(n)(x, s)est , ψ(n)(x, t) = �(n)(x, s)est , we receive the spectral
problem (16.11)–(16.13) in potentials. It includes the equations

[1 − 
(n)(s)]��(n)(x, s) = s2

[c(n)
1 ]2 �(n)(x, s),

[
1 − 
(n)

s (s)
]
��(n)(x, s) = s2

[c(n)
2 ]2 �(n)(x, s), x ∈ �n (16.15)

with boundary conditions (16.12) and contact conditions (16.13),whereV (n)(x, s) =
grad�(n)(x, s) + rot�(n)(x, s);
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(n)(s) is the Laplace transform of T (n)(t) =
{
(1 + ν

(n)
0 )T (n)

v (t) + 2(1 − 2ν(n)
0 )

T (n)
s (t)

}{
3(1 − ν

(n)
0 )

}−1
, ν

(n)
0 is the instantaneous value of the Poisson’s ratio,

c(n)
1 , c(n)

2 are the longitudinal and the transverse elastic wave velocities in the n
-th subdomain of �.

Note that each root s∗ of each of the equations

1 − 
(n)(s) = 0, 1 − 
(n)
s (s) = 0, n = 1, 2, ..., N (16.16)

converts the left-hand side of the corresponding Eq. (16.15) to zero. Thus s∗ may
be a finite limit point of the set Es of the spectral problem. Hereditary kernels
T (n)

v (t), T (n)
s (t) belong to the class (16.14), so each of the Eqs. (16.16) reduces to a

polynomial one. Let us introduce the notation:

β(n) = s√
1 − 
(n)(s)

, β
(n)
1 = s√

1 − 

(n)
s (s)

, n = 1, 2, ..., N .

We assume that all zeros of the functions 1 − 
(n)(s), 1 − 
(n)
s (s) are real and

simple. Let s∗ be one of the roots of one of the Eqs. (16.16), for example, 1 −

( j)(s∗) = 0. Then 1− 
( j)(s) ≈ B( j)(s − s∗) at s → s∗, where B( j) is a non-zero
real constant. Note that when s tends to s∗ on the real axis so that the condition
B( j)(s − s∗) < 0 is met, the value β( j) tends to infinity, remaining purely imaginary.
In many problems, this situation turns the functions included in the characteristic
equation for the elements of the setEs into trigonometric ones in a small neighborhood
of s∗. Let us assume as a hypothesis that the elements of the set Es in a small
neighborhood of its limit point s∗ can be searched for in accordancewith the condition
Re{β( j)} = 0. The same procedure is applicable to 1 − 


( j)
s (s∗) = 0. Thus, if all

the roots of Eqs. (16.16) are real and simple, we propose to search for the elements
of Es in a small neighborhood of each of these roots on the real axis. The complex
elements of Es can be searched for using iteration methods, taking elements of the
spectrum for an elastic body as an initial approximation.

16.5 Example. Dynamic Problem for a Three-Layer
Cylinder

Hereafter, an example is given for application of the method proposed above for
finding the elements of the spectral set Es , followed by constructing a solution to a
non-stationary dynamic problem for a piecewise homogeneous body.

Consider a problem of an unsteady longitudinal wave propagation in a cross
section of an infinite hollow layered cylinder. The cylinder consists of two coaxial
layers of the same elastic material, which are separated by a softer viscoelastic layer.
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Fig. 16.1 Cross section of
the cylinder

The continuity of displacement and radial stress is imposed at the layer’ interfaces.
We denote R0, R3—the inner and the outer radii of the cylinder, R1, R2—the radii
of the viscoelastic layer (R0 < R1 < R2 < R3). The cylinder is initially in a non-
perturbed state. The outer surface of the cylinder is free, while the inner surface is
exposed to an evenly distributed radial load Q(t) since the moment t = 0 (Fig. 16.1).

We will consider this problem as a special case of the general one of a cylinder
with an arbitrary number N viscoelastic layers, whose solution in the Laplace images
is presented in [15]. In the present work, for the case when the hereditary kernels
belong to the class (16.14), the solution in the originals for the three-layer cylinder
is presented as a series of residues.

In the polar coordinate system (R, θ ) with the origin at the center of the cross
section of the cylinder we present a formulation of the problem with an arbitrary
number N layers with boundaries R = Rm , (m = 1, 2, · · · , N − 1), R0 < R1 <

R2 < ... < RN−1 < RN . Let us introduce dimensionless values:

τ = t

t0
, r = R

RN
, r0 = R0

RN
, rm = Rm

RN
, Q0 f (τ ) = Q(t)

2G(1)
0

,

αn = c(N )
1

c(n)
1

, wn = 1 − ν
(n)
0

1 − 2ν(n)
0

, u(n)(r, τ ) = v(n)(R, t)

RN
,

σ (n)
r (r, τ ) = P (n)

R (R, t)

2G(n)
0

, σ
(n)
θ (r, τ ) = P (n)

θ (R, t)

2G(n)
0

,

γ (n)
s (τ ) = t0T

(n)
s (t), γ (n)

v (τ ) = t0T
(n)
v (t), n = 1, 2, ..., N ,

where t0 = RN/c(N )
1 , Q0 is a dimensionless constant; v(n)(R, t) is the radial displace-

ment, P (n)
R (R, t), P (n)

θ (R, t) are radial and circumferential stresses in the n-th layer.
Values T (n)

v (t), T (n)
s (t), G(n)

0 , ν(n)
0 , c(n)

1 for the n -th component (layer) of the body
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were introduced in the previous sections of the article. We will suppose that the creep
is bounded for all the layers’ material.

The dimensionless formulation of the problem is given by the equations:

(
1 − d

∧(n)

1

) ∂

∂r

[
∂u(n)(r, τ )

∂r
+ u(n)(r, τ )

r

]
− a2n

∂2u(n)(r, τ )

∂τ 2
= 0, rn−1 ≤ r ≤ rn,

(16.17)

herewith

σ (n)
r (r, τ ) = wn

(
1 − d

∧(n)

1

)∂u(n)(r, τ )

∂r
+ (wn − 1)

(
1 − d

∧(n)

2

)u(n)(r, τ )

r
, (16.18)

σ
(n)
θ (r, τ ) = wn

(
1 − d

∧(n)

1

)u(n)(r, τ )

r
+ (wn − 1)

(
1 − d

∧(n)

2

)∂u(n)(r, τ )

∂r
,

d
∧(n)

j ξ(r, τ ) =
∫ τ

0
d(n)
j (τ − χ)ξ(r, χ)dχ, j = 1, 2,

d(n)
1 (τ ) = 1

3
(
1 − ν

(n)
0

)
[(

1 + ν
(n)
0

)
γ (n)

v (τ ) + 2
(
1 − 2ν(n)

0

)
γ (n)
s (τ )

]
,

d(n)
2 (τ ) = 1

3ν(n)
0

[(
1 + ν

(n)
0

)
γ (n)

v (τ ) −
(
1 − 2ν(n)

0

)
γ (n)
s (τ )

]
, n = 1, 2, ..., N .

The equations are supplemented by initial conditions:

u(n)(r, 0) = 0,
∂u(n)

∂τ
(r, 0) = 0, (16.19)

the continuity conditions on the contact between the layers (m = 1, 2, ..., N − 1):

u(m)(rm, τ ) = u(m+1)(rm, τ ), G(m)
0 σ (m)

r (rm, τ ) = G(m+1)
0 σ (m+1)

r (rm, τ ) (16.20)

and the boundary conditions:

σ (1)
r (r0, τ ) = −Q0 f (τ ), σ (N )

r (1, τ ) = 0, τ > 0. (16.21)

For the considered three-layer cylinder (Fig. 16.1) N = 3, and
γ (1)
s (τ ) ≡ γ (1)

v (τ ) ≡ γ (3)
s (τ ) ≡ γ (3)

v (τ ) ≡ 0, therefore d(1)
1 ≡ d(1)

2 ≡ d(3)
1 ≡

d(3)
2 ≡ 0.
In addition, the elastic material of the first and third layers is the same, so α1 = 1,

w1 = w3, G
(3)
0 /G(1)

0 = 1.
Let us apply integral Laplace transform in time to Eqs. (16.17), (16.18), (16.20)

(16.21) taking into account the initial conditions (16.19), herewith s ∈ C , and



236 S. G. Pshenichnov et al.

U (n)(r, s), S(n)
r (r, s), S(n)

θ (r, s), F(s), D(2)
1 (s), D(2)

2 (s), �(2)
v (s), �(2)

s (s)

are respectively the transforms of functions

u(n)(r, τ ), σ (n)
r (r, τ ), σ

(n)
θ (r, τ ), f (τ ), d(2)

1 (τ ), d(2)
2 (τ ), γ (2)

v (s), γ (2)
s (s).

The solution for displacement in transforms takes the form (n = 1, 2, 3):

U (n)(r, s) = Q0F(s)
qn(s)

Z(s)
[I1(yn)g(n)

1 (s) + K1(yn)g
(n)
2 (s)], rn−1 ≤ r ≤ rn,

(16.22)

herewith

y1(r, s) = rs, y2(r, s) = rα2β
(2)(s), y3(r, s) = rs,

β(2)(s) = s√
1 − D(2)

1 (s)
,

Z(s) =
[
I1(r0s)

r0s
− w1 I0(r0s)

]
g(1)
1 +

[
K1(r0s)

r0s
+ w1K0(r0s)

]
g(1)
2 .

Functions g(n)
1 (s), g(n)

2 (s) are determined from recurrence relations:

(
g(m)
1

g(m)
2

)
=

(
z(m)
11 z(m)

12

z(m)
21 z(m)

22

)(
g(m+1)
1

g(m+1)
2

)
, m = 1, 2,

where

g(3)
1 = w3K0(s) + K1(s)

s
, g(3)

2 = w3 I0(s) − I1(s)

s
,

z(m)
11 = I1

(
b(m)
2

)
ψ

(m)
12 − K1

(
b(m)
1

)
ψ

(m)
21 , z(m)

12 = K1

(
b(m)
2

)
ψ

(m)
12 − K1

(
b(m)
1

)
ψ

(m)
22 ,

z(m)
21 = I1

(
b(m)
1

)
ψ

(m)
21 − I1

(
b(m)
2

)
ψ

(m)
11 , z(m)

22 = I1
(
b(m)
1

)
ψ

(m)
22 − K1

(
b(m)
2

)
ψ

(m)
11 ,

m = 1, 2,

b(1)
1 = r1s, b(1)

2 = r1α2β
(2), b(2)

1 = r2α2β
(2), b(2)

2 = r2s,

and also

ψ
(1)
11 = δ

⎡
⎣w1 I0

(
b(1)
1

)
−

I1
(
b(1)
1

)

b(1)
1

⎤
⎦, ψ

(1)
12 = −δ

⎡
⎣w1K0

(
b(1)
1

)
+

K1

(
b(1)
1

)

b(1)
1

⎤
⎦,
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ψ
(1)
21 = w2

(
1 − D(2)

1

)
I0

(
b(1)
2

)
−

(
1 − �(2)

s

)
I1

(
b(1)
2

)

b(1)
2

,

ψ
(1)
22 = −

⎡
⎣w2

(
1 − D(2)

1

)
K0

(
b(1)
2

)
+

(
1 − �(2)

s

)
K1

(
b(1)
2

)

b(1)
2

⎤
⎦,

ψ
(2)
11 = δ−1

⎡
⎣w2

(
1 − D(2)

1

)
I0

(
b(2)
1

)
−

(
1 − �(2)

s

)
I1

(
b(2)
1

)

b(2)
1

⎤
⎦,

ψ
(2)
12 = −δ−1

⎡
⎣w2

(
1 − D(2)

1

)
K0

(
b(2)
1

)
+

(
1 − �(2)

s

)
K1

(
b(2)
1

)

b(2)
1

⎤
⎦,

ψ
(2)
21 = w1 I0

(
b(2)
2

)
−

I1
(
b(2)
2

)

b(2)
2

, ψ
(2)
22 = −

⎡
⎣w1K0

(
b(2)
2

)
+

K1

(
b(2)
2

)

b(2)
2

⎤
⎦,

I0, I1,K0, K1 are the modified Bessel functions of the first and second kind;

δ = G(1)
0 s

G(2)
0 α2β(2)

, q1 ≡ 1

s
, q2 = − G(1)

0 w1

G(2)
0 r1α2β(2)s

, q3 =
w1w2

(
1 − D(2)

1

)

r1r2α2β(2)s2
.

Note that in the expressions above the values r0, r1, r2, w1, w2,G
(1)
0 ,G(2)

0 , α2 are
constants. Other values are functions of complex argument s. Besides, unlike the
previous section, in this section the value β(2)(s) is dimensionless. Transforms of the
stresses are obtained using (16.22) and the relations (n = 1 or n = 3):

S(n)
r = wn

dU (n)

dr
+ (wn − 1)

U (n)

r
, S(n)

θ = wn
U (n)

r
+ (wn − 1)

dU (n)

dr
,

S(2)
r = w2

[
1 − D(2)

1

] dU (2)

dr
+ (w2 − 1)

[
1 − D(2)

2

] U (2)

r
, (16.23)

S(2)
θ = w2

[
1 − D(2)

1

] U (2)

r
+ (w2 − 1)

[
1 − D(2)

2

] dU (2)

dr
.

Let the external load be defined as the Heaviside function f (τ ) = h(τ ) and the
relaxation kernels γ (2)

v (s), γ (2)
s (s) belong to the class (16.14) with dimensionless

parameters and so functions F(s), �(2)
v (s), �(2)

s (s), D(2)
1 (s), D(2)

2 (s) do not have
branch points. Then, functions U (n), S(n)

r , S(n)
θ determined by formulae (16.22),

(16.23), do not have branch points in the complex plain, despite the fact that they are
expressed through the functions which have such points. This becomes clear after
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cumbersome transformations. At the same time, it is not necessary to carry out these
transformations as this fact follows from a general theorem proved in [14].

We assume that all the roots of the equation 1− D(2)
1 (s) = 0 are real and simple.

In this case, after asymptotic investigation of the functions (16.22), (16.23) in the
vicinity of the limit points of the poles set, the originals u(n), σ (n)

r , σ (n)
θ represent in

the form of series of residues. We represent only the displacement:

u(n)(r, τ ) = u(n)
0 (r) + 2

∑
{z j}Re{Resz j

[U (n)(r, s)esτ ]} +
∑

{xl }
Res
xl

[
U (n)(r, s)esτ

]
,

(16.24)

u(n)
0 (r) = Res

s=0

[
U (n)(r, s)esτ

]
, n = 1, 2, 3.

Here {z j } ∪ {xl} = Es , herewith z j are complex, xl are real ( j, l = 1, 2, 3, ...). With
simple zeros of the function Z(s) each residue in the formula (16.24) in a point
sk ∈ Es is determined as:

Res
sk

[U (n)esτ ] = Q0qn(sk)

sk Z
′
(sk)

[I1(yn(r, sk))g(n)
1 (sk) + K1(yn(r, sk))g

(n)
2 (sk)]eskτ ,

a prime in Z
′
denotes a derivative. It can be shown that u0(r) is a solution to the

static elastic problem for a layered cylinder with long-term modules that correspond
to the viscoelastic kernels in the dynamic problem. Its expression is presented in [15].
The expressions for σ (n)

r (r, τ ), σ
(n)
θ (r, τ ) are constructed similarly using S(n)

r (r, s),
S(n)

θ (r, s). For arbitrary load function f (τ ) the solution will be based on the formula
(16.24) with a convolution.

Thus, the dimensionless initial input values are r0, r1, r2, ν
(1)
0 = ν

(3)
0 , ν

(2)
0 ,

G(3)
0 /G(2)

0 = G(1)
0 /G(2)

0 , α2 = c(3)
1 /c(2)

1 , γ (2)
v (τ ), γ (2)

s (τ ), f (τ ). For constructing
the original u(n)(r, τ ), the main problem is to find zeros of the function Z(s).

16.6 Numerical Results

In this section, we present the results of calculation of the elements of the spectral
set Es , as well as the results of calculation of the parameters of a non-stationary wave
propagation in the cross section of the cylinder with specific initial characteristics:

r0 = 0.4, r1 = 0.5, r2 = 0.9, ν
(1)
0 = ν

(3)
0 = 0.3, ν

(2)
0 = 0.2,

α2 = 0.25
√
210,

G(3)
0

G(2)
0

= G(1)
0

G(2)
0

= 10, γ (2)
v (τ ) ≡ 0, γ (2)

s (τ ) = 0.4e−τ + 0.1e−0.5τ .

The value for the parameter α2 was chosen as indicated because the densities of
all layers were considered the same. The limit points of the spectrum Es determined
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from the equation 1 − D(2)
1 (s) = 0 will be: s∗

1 = −0.8265564, s∗
2 = −0.4234436

(here and further, up to seven significant digits are indicated). In the process of
calculations, we limited ourselves to 8 real elements of the spectrum:

x1 = −0.4960449, x2 = −0.4591964, x3 = −0.4269673, x4 = −0.4244406.

x5 = −0.9913209, x6 = −0.8972754, x7 = −0.8405825, x8 = −0.8311154.

It is established that in the study of the transientwave process, these 8 real elements
are completely sufficient. The complex elements of the spectrum z j were calculated
by means of the Newton iteration method, while the purely imaginary values for the
elastic cylinder were chosen as the initial approximation. It is established that in the
study of the transient wave process, few dozen complex values z j are sufficient.

Below are the results for the case when the external load function is f (τ ) =
1 − e−100τ , τ > 0 (smoothed Heaviside function). Figures 16.2, 16.3, 16.4 and
16.5 show the time dependence of relative stresses:

κ(n)
r = G(n)

0 σ (n)
r (r, τ )/(G(1)

0 Q0) = P (n)
R (R, t)/(2G(1)

0 Q0),

κ
(n)
θ = G(n)

0 σ
(n)
θ (r, τ )/(G(1)

0 Q0) = P (n)
θ (R, t)/(2G(1)

0 Q0)

at fixed points r . Negative stresses are compressional (it is believed that Q0 > 0).
In Figs. 16.2, 16.3, 16.4 and 16.5 thick curves 1 show the time dependence of κ(2)

r

at point r = 0.9, κ(2)
θ at point r = 0.9, κ(3)

θ at point r = 0.9, κ(3)
θ at point r = r0 = 0.4

respectively. Dash-dotted curves 2 in Figs. 16.2, 16.3, 16.4 and 16.5 show similar

Fig. 16.2 Time dependence of κ
(2)
r at r = 0.9. Curve 1 for three-layer cylinder with viscoelastic

layer, 2—for cylinder with three elastic layers, 3—for elastic homogeneous cylinder
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Fig. 16.3 Time dependence of κ
(2)
θ at point r = 0.9. Curve 1 for three-layer cylinder with

viscoelastic layer, 2—for cylinder with elastic layers, 3—for elastic homogeneous cylinder

Fig. 16.4 Time dependence of κ
(3)
θ at r = 0.9. Curve 1 for three-layer cylinder with viscoelastic

layer, 2—for cylinder with three elastic layers, 3—for elastic homogeneous cylinder

results for a cylinder consisting of three elastic layers with initial characteristics
values:

r0 = 0.4, r1 = 0.5, r2 = 0.9, ν
(1)
0 = ν

(3)
0 = 0.3, ν

(2)
0 = 0.2,

α2 = 0.25
√
210,G(3)

0 /G(2)
0 = G(1)

0 /G(2)
0 = 10, γ (2)

v (τ ) ≡ γ (2)
s (τ ) ≡ 0.

Thin curves 3 in Figs. 16.2, 16.3, 16.4 and 16.5 illustrate results for the elastic
homogeneous cylinder:

N = 1, r0 = 0.4, ν
(1)
0 = 0.3, γ (1)

v (τ ) ≡ γ (1)
s (τ ) ≡ 0.
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Fig. 16.5 Time dependence of κ
(1)
θ at r = 0.4. Curve 1 for three-layer cylinder with viscoelastic

layer, 2—for cylinder with three elastic layers, 3—for elastic homogeneous cylinder

For the viscoelastic cylinder, the results are obtained with 100 complex and the 8
above-mentioned real elements of the spectrum.

It can be seen from the figures that the presence of a softer viscoelastic inclu-
sion significantly reduces the amplitude of the relative radial stress at the boundary
between the layers. Herewith, the amplitude of the relative circumferential stress at
the same boundary increases significantly in a harder layer and decreases in a softer
one compared to the relative circumferential stress at the corresponding point of a
homogeneous cylinder. The validity of the proposed approach to spectrum search
and the reliability of the calculation results is confirmed by the accuracy of meeting
the condition of the absence of disturbances at the selected point until the arrival of
the first front from the loaded boundary.

16.7 Conclusion

It is established that the connection between the solution of the non-stationary
dynamic problem of linear viscoelasticity for a piecewise homogeneous body and
the solution of the spectral problem of free oscillations of such a body in the case
of a finite perturbation propagation domain. Using the integral Laplace transform in
time with subsequent reversal the process of constructing a non-stationary solution
is reduced to the search for the eigenvalues of the spectral problem.

The properties of the set of eigenvalues of the spectral problem with relaxation
kernels in the form of a finite sum of exponentials are discussed. We formulate
sufficient conditions, which relaxation kernels must satisfy so that all finite limit
points of the spectrum are real. When these conditions are met, it is proposed to
search for the elements of the spectrum near its final limit points on the real axis. It is
proposed to search for the complex elements of the spectrumby an iterative numerical
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method. The validity of this approach is confirmed by constructing the solution to the
problem of transient longitudinal waves’ propagation in a cross-section of a hollow
infinitely long three-layered cylinder. The derived solution is valid for the entire time
interval and is convenient for numerical implementation. This solution allowed us
to investigate the non-stationary waves’ propagation in such a cylinder with specific
initial parameters.

Acknowledgements The reported study was performed within the bilateral project funded by
the Russian Foundation for Basic Research (project number 20-58-18002) and by the Bulgarian
National Science Fund (project number KP-06-Russia/5 from 11.12.2020).

References

1. Kozlov VI, Kucher NK (1980) Dynamic behavior of multilayer cylindrical structures with
transient loads. Strength Mater 12(5):639–648. (in Russian)

2. Lokshin AA (1994) The Head wave at the boundary of two hereditary-elastic half-spaces. The
case of a linear source. J Appl Math Mech 58(1):171–176

3. Nuriev BR (1985) Impact on a viscoelastic layered composite. Izv Akad Nauk AzSSR Ser
Fiz-Tekh Mat Nauk 4:35–41. (in Russian)

4. Sabodash PF (1971) Propagation of longitudinal viscoelastic waves in a three-layer medium.
Polymer Mech 7(1):124–128. (in Russian)

5. Hashemi Sh, Hosseini, Khaniki HB (2017) Dynamic behavior of multi-layered viscoelastic
nanobeam system embedded in a viscoelastic medium with a moving nanoparticle. J Mech
33(5):559–575. https://doi.org/10.1017/jmech.2016.91

6. Lee HS (2014) Viscowave—a new solution for viscoelastic wave propagation of layered struc-
tures subjected to an impact load. Int J Pavement Eng 15(6):542-557. https://doi.org/10.1080/
10298436.2013.782401

7. Bazhenov VG, Belov AA, Igumnov LA (2009) Boundary-element modeling of the dynamics
of piecewise homogeneous media and structures. N. Novgorod. (in Russian)

8. Bazhenov VG, Igumnov LA (2008) Methods of boundary integral equations and boundary
elements for solving three-dimensional problems of the dynamic theory of elasticity with
conjugated fields. Fizmatlit, Moscow. (in Russian)

9. Belov AA (2008) Boundary-element analysis of dynamics of compound viscoelastic bodies.
Probl Strength Plast. N. Novgorod, NNSU. (70):162–168. (in Russian)

10. Petrov AN, Ermolaev MD (2011) Boundary element analysis of the dynamics of composite
viscoelastic bodies. Mechanics of deformed solid. Vestnik Nizhegorodskogo universiteta N.I.
Lobachevskii 4(4):1694–1696. (in Russian)

11. Shamaev AS, Shumilova VV (2020) Asymptotics of the spectra of one-dimensional natural
vibrations in media consisting of solid and fluid layers. Dokl Phys 65(4):153–156. https://doi.
org/10.1134/S1028335820040084

12. Zhu JB, Zhao XB, Wu W, Zhao J (2012) Wave propagation across rock joints filled with
viscoelastic medium using modified recursive method. J Appl Geophys 86:82–87. https://doi.
org/10.1016/j.jappgeo.2012.07.012

13. Khudoynazarov K, Yalgashev BF, Mavlonov T (2021) Mathematical modelling of torsional
vibrations of the three-layer cylindrical viscoelastic shell. IOP Conf Ser Mater Sci Eng. https://
doi.org/10.1088/1757-899X/1030/1/012098.

14. Pshenichnov SG (2016) Dynamic linear viscoelasticity problems for piecewise homogeneous
bodies. Mech Solids 51(1):65–74. https://doi.org/10.3103/S0025654416010076

https://doi.org/10.1017/jmech.2016.91
https://doi.org/10.1080/10298436.2013.782401
https://doi.org/10.1134/S1028335820040084
https://doi.org/10.1016/j.jappgeo.2012.07.012
https://doi.org/10.1088/1757-899X/1030/1/012098
https://doi.org/10.3103/S0025654416010076


16 Dynamic Problems for Piecewise Homogeneous Viscoelastic Bodies 243

15. Korovaytseva EA, Pshenichnov SG (2021) Non-stationary dynamic problem for layered
viscoelastic cylinder.AdvStructMaterialsMultiscale SolidMech. SpringerNature Switzerland
AG 141:261–274. https://doi.org/10.1007/978-3-030-54928-2_20

https://doi.org/10.1007/978-3-030-54928-2_20


Chapter 17
Nanoindentation Derived Mechanical
Properties of TiN Thin Film Deposited
Using Magnetron Sputtering Method

Evgeniy V. Sadyrin, Andrey L. Nikolaev, Regina A. Bardakova,
Anzhelika A. Kotova, Ivan O. Kharchevnikov, Igor Yu. Zabiyaka,
and Sergei M. Aizikovich

Abstract A study of the mechanical properties of a thin titanium nitride (TiN)
film deposited using the magnetron sputtering on a silicon surface has been carried
out. The values of indentation hardness and reduced Young’s modulus were eval-
uated using nanoindentation in a course of a series of experiments with increasing
indentation load. The microgeometrical characteristics of the film surface (average
roughness, maximum roughness height) were determined from the results of atomic
forcemicroscopy. The chemical composition and thickness of the filmwere estimated
using scanning electron microscopy.
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17.1 Introduction

Nanoindentation is a set of techniques that use local precision penetration of a special-
ized tool—an indenter—into the material with depth detection at nanometer resolu-
tion [1, 2]. When working with nanoindentation units—devices that perform nanoin-
dentation—various forms of indenters are used. Thus, spherical [3, 4], conical [5,
6], flat [7, 8] and pyramidal indenters [9–11] are often used in studies of biological
materials. Among the latter, Berkovich indenters, which are a trihedral pyramid, are
especially popular, especially in the study of thin coatings and films [12–16]. A tetra-
hedral indenter in the form of a cube corner is used for especially delicate samples,
since it can be relatively easily damaged during the experiment [17, 18]. Figure 17.1
shows the general scheme of the experiment.

To select the correct nanoindentation parameters, in practice, one often resorts
to assessing the microgeometrical characteristics of coatings using atomic force
microscopy (AFM) [19–21] and scanning electron microscopy (SEM) [22–24]. The
latter is also used to study the chemical composition of the coating using energy-
dispersive X-ray spectroscopy to assess the quality of deposition [25–28].

In the present work, nanoindentation is used to evaluate the properties of a thin
TiN film, which is widely used in the manufacture of wear-resistant dental implants
[29–31], metal-cutting tools [32], as well as components for microelectronics [33,
34], and in other applications. Films made from TiN demonstrate high hardness,
electrical conductivity, chemical inertness and adhesion to substrates. This kind of
coatings can significantly improve the mechanical properties of product surfaces
[35–37], which leads to a significant increase in the service life of the product, the
possibility of their use in experimental facilities and under extreme conditions. The
evaluation of the mechanical properties of the coating was accompanied by a study
of its microgeometrical characteristics and chemical composition using AFM and
SEM.

Fig. 17.1 Indentation process of a coating, where P—indentation load at the current time t;
Pmax—maximum indentation load; hmax—maximum indenter depth; hc—indenter depth without
the surface displacement
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17.2 Materials and Methods

To create the coating under consideration, we used the magnetron sputtering of Ti
targets onto a silicon substrate in nitrogen atmosphere using a VSM100 unit (Aktan
Vacuum, Russia). The deposition took place in the mode with a stable power of
600 W, deposition type DC. In the additionally deposition time was 40 min and
temperature was 200 °C. The nitrogen pressure of the magnetron sputtering process
was set to 7 · 10−2 mbar.

To study the mechanical characteristics of the resulting coating, a Nanotest 600
Platform 3 nanoindentation unit (Micro Materials, UK) with a Berkovich diamond
indenter was used. The maximum indentation force, increasing from experiment to
experiment, was set: from 1.5 to 29 mN. The indentation time into the TiN thin
film was set to 30 s, the holding period of indenter at maximum load was 30 s, and
then the indenter was unloaded for 30 s. The areas for indentation were chosen in
such a way as to avoid contact of the indenter with dust particles using an optical
microscope device, positional synchronized with the indenter of the measuring-force
cell (maximum magnification 400×). It is important that the measurement results
are not affected by the presence of sags and depressions in the contact area of the
sample boundaries caused by previous indentations in the series. For this purpose,
the indentation sites were positioned in such a way as to be at least three times
their diameter from the sample boundaries, and the minimum distance between the
indentations was at least five times the largest indentation diameter [38]. Before
carrying out the experiments, all the necessary calibrations of the nanoindentation
unit (load, indenter area function,machine compliance)were performedon a standard
sample of fused quartz, followed by testing on a standard sample of sapphire. Before
each test, the pendulum was balanced additionally and the depth signal was tested.

The microgeometrical characteristics of the film surface were studied using an
AFM Nanoeducator (NT-MDT, Russia) equipped with a tungsten probe in the semi-
contact mode. The probe movement speed was 7 µm/s, the estimated scanning time
was 40 min. The film thickness and its chemical composition (utilizing energy-
dispersive X-ray spectroscopy) were determined using a Crossbeam 340 SEM (Carl
Zeiss, Germany). For the present study, an Everhart–Thornley secondary electron
emission detector was used at an accelerating voltage of 2 kV.

17.3 Results and Discussion

Figure 17.2 shows the surface topography of a thin TiN film obtained using AFM.
Due to the irregularity of the surface structure, the microgeometrical parameters

were determined using 12 profiles (four each in the horizontal, vertical, and diagonal
directions). Thus, the average values of the average roughness Ra and the maximum
roughness height Rt were 17± 2 and 127± 35 nm, respectively. Deposition artifacts,
presumably dust microparticles, were found on the surface of the sample.



248 E. V. Sadyrin et al.

Fig. 17.2 TiN film surface
topography obtained by
AFM

The indentation occurred under the action of loads in the range from 1.5 to 50mN.
Thus, themaximum indentation depth varied from51.31± 3.93 to 460.29± 22.4 nm.
In this regard, it is necessary to accurately know the roughness values of the film
surface in order to adjust the mathematical apparatus for processing the results of
indentation.

By studying the cross section obtained using a focused ion beam on SEM, the
thickness of the studied TiN coating was 734.7 nm (Fig. 17.3). Table 17.1 presents
the stoichiometric ratios of a thin film of TiN for the three studied spectra. The results
testify to the high quality of the deposition. In all spectra, iron is represented to a
small extent (0.91–0.95), which presumably got into the composition of the film due
to the non-ideal purity of the chemical composition of the Ti target.

Nanoindentationmade it possible to obtain the sets of diagrams “indentation load–
indentation depth”. Figure 17.4 shows these diagrams for the maximum loads of 17
and 26 mN.

Starting from the indentation depth of about 120 nm, a characteristic “step”
appears on the loading branches of the diagrams, indicating plastic processes in the
coating. This phenomenon is referred as “pop-in” in literature [39]. With increasing
strength, the number of such steps increases. Figure 17.5 for the “coating-substrate”
package shows the graphs of the effective dependences of the reduced Young’s
modulus Er and indentation hardness H on the maximum indentation depth hmax.
The mechanical characteristics were calculated using the Oliver–Pharr method [40,
41].

Table 17.1 Chemical composition of TiN film

Specter number N Ti Fe Sum (at%)

1 50.84 48.26 0.91 100.00

2 50.72 48.37 0.91 100.00

3 50.69 48.36 0.95 100.00
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Fig. 17.3 Evaluation of TiN thin film thickness after ion etching on SEM

a) b)

Fig. 17.4 Diagrams “indentation load–indentation depth” for the maximum loads Pmax: a 14 mN;
b 26 mN

The plots of mechanical properties reveal a rather complex behavior. At small
indentation depths (up to 180 nm), underestimated values of mechanical properties
are observed due to the influence of surfacemicrogeometry on the process of indenter
penetration (e.g. indenter tends to flatten out elements of themicro-roughness instead
of penetrating the continuous medium of the coating). Peak values of mechanical
properties (256.38 ± 12.79 GPa reduced Young’s modulus, 21.3 ± 1.64 GPa hard-
ness) were found at depths of hmax = 209.26 ± 6.49 nm, presumably these values
are close to the real values of the TiN coating. Taking Poisson’s ration of TiN for v
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Fig. 17.5 Plots of effective values of reduced Young’s modulus (blue) and indentation hardness
(black) versus maximum indentation depth with standard deviations

= 0.23 [42] the presumable value of the Young’s modulus of the film can be restored
E = 312.75 ± 12.25 GPa, which is close to some results reported in the literature
previously [42] however, lower than in some other studies [43, 44]. A further drop in
the mechanical property values is associated with an increase in plastic processes in
the coating, stabilizing at depths of 250 < hmax < 330 nm. At greater depths, a further
decrease in the studied characteristics is observed, associated with an increase in
the contribution of the substrate to the results. Taking into account the small thick-
ness of the coating and the relatively high value of its surface roughness, for this
sample it is not possible to unambiguously determine the value of the real Young’s
modulus of the film according to the international standard [45] by experimental
means, obtaining only sets of effective values for the “film-substrate” package. In
the future, for such cases, it is proposed to use mathematical modeling of the inden-
tation process, which allows either analytical [46–51] or finite element tools [52–55]
to calculate the value of the desired quantity from experimental data. Such methods
have shown high efficiency, in particular, in the study of ZrN coatings [56, 57] on
various substrates, two-layered NiO–Ni coatings [58].

17.4 Conclusion

In the present work, using nanoindentation we studied the behavior of the effective
reduced Young’s modulus and the indentation hardness of TiN thin film deposited
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by magnetron sputtering of particles on a silicon substrate. AFM, SEM, and energy-
dispersive X-ray spectroscopy were used to select the experimental parameters and
evaluate the deposition quality. The complex nature of the behavior of mechanical
properties with increasing indentation depth, as well as a number of features of the
“indentation force–indentation depth” diagrams for the “coating-substrate” package,
were found. The hypothetical values of the real reduced Young’s modulus and the
indentation hardness of the coating were determined, however, to refine these values,
it is proposed to use a mathematical model.
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