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Abstract. Traditional spatial prevalent co-location pattern mining is
discovering groups of spatial features whose instances frequently appear
together in nearby areas. However, it is unsuitable for many real-world
applications where the significance of these instances must be consid-
ered. High utility co-location pattern (HUCP) mining is developed to
find highly beneficial patterns by considering the importance of spatial
instances. However, the mining result typically contains many HUCPs,
making it difficult for users to absorb, comprehend, and apply. This work
proposes a compressed representation of HUCPs, ε-closed HUCPs, that
allow for a user-specified small tolerance of the information between a
pattern and its supersets. If the information difference is not larger than
the small tolerance it only needs to keep the supersets. Moreover, an effi-
cient algorithm is developed to discover ε-closed HUCPs. The proposed
algorithm avoids examining many unnecessary candidates; therefore, the
performance of mining ε-closed HUCPs is significantly improved. A set
of different numbers of features, numbers of instances, and distribution
of both synthetic and real data sets are employed to evaluate the per-
formance of the proposed method completely. The experimental results
show that ε-closed balances the compression rate and the UPI error rate
and gives a large pattern compression rate within a relatively small range
of error rates. Moreover, the proposed algorithm is high-performance on
dense and large data sets.

Keywords: Prevalent co-location pattern · High utility co-location
pattern · ε-closed pattern

1 Introduction

As an important direction of spatial data mining, discovering spatial prevalent
co-location patterns (PCPs) from spatial data sets is finding groups of spa-
tial features whose spatial instances frequently occur with each other in nearby
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areas. For example, in a point of interest (POI) data set of a city, by using the
PCP mining technique we find that banks, supermarkets, and bus stations often
appear together within 200m, i.e., {bank, supermarket, bus station} is a PCP.
PCPs can expose relationship rules between features in spatial data sets and
the rules have been applied in many fields such as public safety [10], disease
control [11], agriculture [4,12], criminology [7,9], business [16], climate science
[1], transportation and location-based services [20], and so on.

In PCP mining, spatial instances are treated equally, it only considers the
prevalence of these instances that appear together in nearby of each other. How-
ever, in practice, each spatial instance has its importance, if the factor is not
considered, PCPs may lose meaning in their practical applications. For example,
the importance of a supermarket and a bank is not the same. The services cov-
ered by the supermarket will be more extensive than the bank in respect of the
supply of goods and service objects. The impact on the surrounding populace of
the supermarket will be greater than the bank. Therefore, the notion of high util-
ity co-location patterns (HUCP) has been proposed [19]. In HUCPs, each spatial
instance is assigned a utility value to reflect its significance or importance. In
addition, the correlation of the spatial features in a pattern is also considered
through the participating spatial instances of the pattern.

However, the mining result normally generates a large number of HUCPs and
includes redundant information. It is difficult for users to understand, absorb and
apply the mining result. Thus, it is very necessary to find a concise representation
of the mining result. But it is not easy to find a good concise representation since
it needs to meet three conditions at the same time: (1) the number of patterns
should be as little as possible; (2) the redundancy information should be removed
as much as possible; and (3) the error between the compressed and the original
should be as small as possible.

This work focuses on devising a representation that satisfies the above three
conditions. The main contributions of this paper are as follows:

– Propose an ε-closed high utility co-location pattern notion that is a concise
representation of HUCPs. If there is a small amount of information difference
between a HUCP and its supersets, the HUCP can be deleted, and it just
only needs to remain the supersets. The number of HUCPs can be reduced
significantly under losing a small amount of information.

– Users can control the number of output HUCPs through ε which defines the
amount of information difference between a HUCP and its supersets.

– Design a neighboring instance-based mining algorithm. Different from the
traditional generating-testing candidate mining algorithm, the proposed algo-
rithm does not collect and validate every co-location instance of a pattern, it
adopts an efficient query mechanism of a hash table.

The rest of this paper is organized as follows: Sect. 2 reviews related work.
The formal definitions and properties of ε-closed HUCPs are described in Sect. 3.
The neighboring instance-based mining algorithm is designed in detail in Sect. 4.
Experiments on both synthetic and real data sets are shown in Sect. 5. Section 6
summarizes the paper and highlights the directions for future work.
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2 Related Work

Compare with frequent itemset mining [13,14], PCP mining is more difficult,
complex, and interesting since in PCPs, there are very complicated neighbor
relationships between spatial instances in space. Thus, PCP mining has attracted
many researchers. Join-based [8] has been known as the first algorithm for mining
PCPs. It uses a join operation to collect co-location instances of each pattern.
This operation becomes very expensive when dealing with long-size PCPs and/or
dense spatial data sets. To avoid this disadvantage, many efficient PCPS mining
algorithms have been proposed such as join-less [22], overlapping clique-based
[17], clique-based [3], and candidate pattern tree [21].

How to efficiently discover PCPs from big data in limited execution time and
computer resources has become a new challenge. Parallel PCP mining algorithms
have been developed by executing on different platforms such as Hadoop and
Map-reduce [15], the graphic processing unit (GPU) [2], and NoSQL [2].

The above algorithms focus on mining all complete and correct PCPs. How-
ever, the mining result normally contains too many redundant PCPs, this makes
it difficult for users to understand, absorb and apply the mining result. Thus,
mining concise representations of PCPs have been proposed such as maximal
[16], closed [21], and non-redundant PCPs [18].

These mining algorithms mentioned above can be called traditional PCP min-
ing algorithms. The traditional only considers the prevalence of spatial instances
appearing together in nearby space, the importance or significance of spatial
instances is ignored, this may cause the discovered PCPs to become meaningless.
Therefore, HUCPs [19] that each spatial instance is assigned a utility value to
reflect its importance are proposed. To discover HUCPs, a utility participation
index (UPI) metric is designed to evaluate the interest of patterns. Unfortu-
nately, UPI does not hold the downward closure property that is often used to
reduce the candidate search space to improve mining efficiency.

Although HUCPs consider the importance of each instance, HUCPs have the
same problem as the traditional PCPs, that is, the mining result contains too
many patterns, making it difficult for users to absorb and apply. Therefore, in
this work, we focus on finding a concise representation of HUCPs. First, an ε-
closed HUCP notion, that relaxes the concise condition of the closure property by
allowing a small difference ε in the UPI value between a HUCP and its supersets,
is proposed. Second, a neighboring instance-based mining algorithm is designed.
This algorithm is based on the neighboring spatial instances, i.e., it first finds all
neighboring instances and stores the neighbor relationships into a compact hash
table, then co-location instances of each pattern are obtained by querying on
the hash table, it avoids verifying the neighbor relationship of each co-location
instance in the generating-testing candidate mining mechanism.

3 Method

Given a set of spatial features F = {f1, ..., fm} and a set of spatial instances
S = {I1, ..., Im} where It = {o1, ..., oq} is the set of instances of feature ft ∈ F .
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Each spatial instance oi ∈ S is formed by a three-element vector, i.e., <feature
type, instance identification, location>. We use f(oi) = ft to represent the
feature type of instance oi is ft. R is a user-defined neighbor relationship, if two
spatial instances oi and oj have the neighbor relationship, they are denoted as
R(oi, oj). When R uses a distance metric (e.g., Euclidean, Manhattan, Minkowski
distance metrics, and so on), if the distance between two instances oi and oj is
not larger than a distance threshold d given by users, oi and oj satisfy the
neighbor relationship R, i.e., R(oi, oj) <=> distance(oi, oj) ≤ d. NR(oi) =
{oj |R(oi, oj) ∧ f(oi) �= f(oj)} is the set of neighboring instances of oi under R.

Definition 1 (Utility of a spatial instance). The utility of a spatial instance
oi ∈ S is a value v ≤ 0 that is assigned to the instance to reflect its importance
and expressed by the superscript on it, i.e., ov

i . We denote the utility of a spatial
instance ov

i as u(ov
i ) = v.

Definition 2 (Utility of a spatial feature). The utility of a spatial feature ft ∈ F
is the sum of the utilities of its instances and denote as

u(ft) =
q∑

i=1

u(ov
i ) (1)

where q is the number of instances that belong to ft.

For example, Fig. 1 shows an example of spatial data set with assigned
instance utilities. A115 is an instance of feature A and its utility value is 15.
The solid line connects two instances to represent that they have a neighbor
relationship. Table 1 lists the instances with their utility values of each spatial
feature. Moreover, the utility of each feature also is drawn in Table 1.
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Fig. 1. An example of spatial data set with spatial instance utilities.
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Table 1. The utilities of the instances and features of the data set in Fig. 1.

Feature Instance Feature Instance Feature Instance Feature Instance

A115 B19 C117 D116

A26 B216 C214 D28

A38 B313 C36 D32

A42 B45 C46

A511

u(A) 42 u(B) 43 u(C) 43 u(D) 26

Definition 3 (Co-location pattern and co-location instance). A co-location pat-
tern c is a subset of spatial feature set F , i.e., c = {f1, ..., fk} ⊆ F . The number
of the features in c is k and it is called the size of c, i.e., c is a size k pattern. A co-
location instance CI(c) of a co-location pattern c is a set of spatial instances that
includes the instances of all feature types in c and these instances have the neigh-
bor relationship R, i.e., CI(c) = {o1, ..., ok}. The set of all co-location instances
of c is the table instance of c and denoted as TI(c) = {CI1(c), ..., CIp(c)}.
Definition 4 (Utility of a feature in a pattern). The utility of a feature ft in
a co-location pattern c = {f1, ..., fk}, i.e., ft ∈ c, is the sum of utilities of the
instances belonging to ft in the table instance of c and denoted as

u(ft, c) =
∑

ov
i ∈TI(c),f(ov

i )=ft

u(ov
i ) (2)

Definition 5 (Intra-utility ratio). The intra-utility ratio of a feature ft in a co-
location pattern c = {f1, ..., fk}, i.e., ft ∈ c, is the proportion of the utility of ft

in c to its utility in the data set and denoted as

intraUR(ft, c) =
u(ft, c)
u(ft)

(3)

Definition 6 (Inter-utility ratio). The inter-utility ratio of a feature ft in a
co-location pattern c = {f1, ..., fk}, i.e., ft ∈ c, is defined as

interUR(ft, c) =

∑
fh∈c,fh �=ft

u(fh, c)
∑

fh∈c,fh �=ft
u(fh)

(4)

Definition 7 (Utility participation ratio). The utility participation ratio of a
feature ft in a pattern c = {f1, ..., fk}, i.e., ft ∈ c, is the combination of the
intra-utility ratio and the inter-utility ratio of the feature and is denoted as

UPR(ft, c) = α × intraUR(ft, c) + β × interUR(ft, c) (5)

where α and β represent the weighted values of the intra-utility ratio and the
inter-utility ratio, respectively.
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Definition 8 (Utility participation index). The utility participation index of a
co-location pattern c = {f1, ..., fk} is the minimum utility participation ratio
among all the features in c and denoted as

UPI(c) = min
ft∈c

{UPR(ft, c)} (6)

Definition 9 (High co-location pattern). A co-location pattern c = {f1, ..., fk}
is a high utility co-location pattern if and only if its utility participation index is
not smaller than a minimum utility threshold μ given by users, i.e., UPI(c) ≥ μ.

When a co-location pattern has not yet been determined to be a HUCP, the
pattern is called candidate co-location pattern. For example, as shown in Fig. 1,
examine candidate {A, B, D}, based on Fig. 1, its table instance is {A511, B313,
D116} and {A26, B216, D28}, based on equations from (5)–(8), we can compute
UPI({A, B, D}) = 0.49. If a user sets μ = 0.2, since UPI({A, B, D}) = 0.49 >
μ = 0.2, thus {A, B, D} is a high utility co-location pattern.

Lemma 1. UPI does not satisfy the downward closure property.

Proof. In Fig. 1, when the minimum utility threshold is set to 0.2, i.e., μ = 0.2,
we can obtain {A, B, D} is a HUCP since UPI({A, B, D})=0.49. Beside, its a
superset {A, B, C, D} and its a subset {A, D} are also HUCPs since UPI({A,
B, C, D}) = 0.5 > μ and UPI({A, D})=0.74 > μ. It can be found that the UPI
value of a pattern can be greater or less than its supersets.

Definition 10 (ε-closed high utility co-location pattern). A co-location pattern
c = {f1, ..., fk} is an ε-closed HUCP if and only if c is a HUCP and there exists
no HUCP c′ such that c′ = {f1, ..., fk} ∪ {fk+1}, i.e., c ⊂ c′, and |UPI(c) −
UPI(c′)| ≤ ε, where ε is a UPI tolerance value given by users.

It is easy to find that, when ε = 0, ε-closed high utility co-location patterns
are closed high utility co-location patterns.

Definition 11 (UPI error rate). Given HUCPS and εHUCPS are the set of all
HUCPs and the set of ε-closed HUCPs, when using ε-closed HUCPs to represent
HUCPs, the UPI error rate is computed as

σ =
∑ |UPI(c′) − UPIc∈χ(c)|

|HUCPS| (7)

where χ is a set of HUCPs that are removed by ε-closed in Definition 10.

4 Neighboring Instance-Based Mining Algorithm

Based on Lemma 1, since the downward closure property is not held in the UPI
metric, if we employ the level-wise search mining framework [19], unnecessary
candidates cannot be effectively pruned, thus mining performance is extremely
inefficient, especially when the data set is dense. Moreover, the key of discovering
ε-closed HUCPs is collecting co-location instances of patterns and this step is the
most expensive [19]. Thus, reducing candidate search space and quickly collecting
co-location instances are the keys of improving mining ε-closed HUCPs. This
section develops a neighboring instance-based mining ε-closed HUCP algorithm.
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4.1 Maximal Clique Enumeration

Definition 12 (Neighboring graph). Given a data set S and a neighbor relation-
ship R, after materializing the neighbor relationship, we get a connected undi-
rected graph G(V,E) with V is the set of vertices of G that are the all instances
in S and E is set of edges that are these lines connecting neighboring instances.

Definition 13 (Subgraph and remaining neighboring graph). Given an instance
oi and its neighboring instance set NR(oi), a subgraph of the neighboring graph
G(V,E) is Goi

(Voi
, Eoi

) ∈ G(V,E), where Voi
= {oi} ∪ NR(oi) and Eoi

is the
set of lines that connect neighboring instances in Voi

. The remaining neighbor-
ing graph is Go−

i
(Vo−

i
, Eo−

i
) is the graph that contains all vertices and edges in

G(V,E) but not in Goi
(Voi

, Eoi
).
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Fig. 2. The subgraph and remaining neighboring graph of C214.

For example, after materializing the spatial neighbor relationship, a graph is
obtained as shown in Fig. 1. For C214, its subgraph and the remaining neighbor-
ing graph are plotted in Fig. 2.

After partitioning the neighboring graph by the subgraph and the remaining
neighboring graph, a maximal algorithm is applied to the subgraph to enumerate
maximal cliques (MCs) [5,6]. Here we do not focus on designing a new MC
enumeration algorithm, this work is paid attention to how to employ MCs to
improve the performance of mining ε-closed HUCPs. Algorithm1 describes the
pseudocode of a MC enumeration algorithm that is developed by Eppstein et
al. [6]. This algorithm inputs a set of vertices and edges, then uses a recursive
process to find maximal cliques. For more details, please reference [6].

Combining the partitioning strategy and MC enumeration algorithm, Algo-
rithm 2 shows the pseudocode of listing all MCs from the input spatial data set
under a neighbor relationship R. This algorithm first materializes the neighbor
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Algorithm 1. Enumerating maximal cliques on a graph
Input: G(V, E)
Output: maximal cliques, MCs
P ← V, R ← ∅, X ← ∅
Proc: BronKerboschDegeneracy(V, E)

1: for each vertex vi in a degeneracy ordering of G(V, E) do
2: P ← NR(vi) ∩ {vi+1, ..., vn−1}
3: X ← NR(vi) ∩ {v0, ..., vi−1}
4: BronKerboschPivot(P, {vi}, X)
5: end for

Proc: BronKerboschPivot(P, R, X)
1: if P ∪ X = ∅ then
2: MCs = MCs ∪ R � R is a maximal clique
3: end if
4: Choose a pivot u ∈ P ∪ X to maximize |P ∪ NR(u)|
5: for v ∈ P \ NR(u) do
6: BronKerboschPivot(P ∩ NR(v), R ∪ {v}, X ∩ NR(v))
7: P ← P \ v
8: X ← X ∪ v
9: end for

10: return MCs

Algorithm 2. Enumerating MCs
Input: G(V, E)
Output: a set of maximal cliques, MCS

1: NRS = {..., NR(oi), ...} ← materializing_neighbor_relationship(S, R)
2: while S �= ∅ do
3: oi ← S.pop()
4: Goi(Voi , Eoi) ←generate_subgraph(oi, NRS)
5: G

o−i
(V

o−i
, E

o−i
) ←generate_ remaining_neighboring_graph(Goi(Voi , Eoi), S)

6: S ← V
o−i

7: MCs ← Algorithm 1
8: MCS ← MCS ∪ MCs
9: end while

10: return MCS

relationship between instances in S (Step 1). Then, for each instance oi ∈ S, it
constructs the subgraph Goi

(Voi
, Eoi

) (Step 4) and the remaining neighboring
graph Go−

i
(Vo−

i
), Eo−

i
) (Step 5). After that, Algorithm 1 is employed to find MCs

in Goi
(Voi

, Eoi
) (Step 6). Finally, Algorithm 2 returns a set of MCs (Step 9).

Table 2 lists all MCs enumerated from the neighboring graph in the Fig. 1.

4.2 Co-location Instance Hash Table

Based on Definition 8, when calculating the utility participation ratio of a pat-
tern c = {f1, ...fk}, it only needs to know the spatial instances of each feature
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Table 2. The MCs listed from Fig. 1.

MC MC MC

{A1, C2, D1} {B2, D3} {A3, B1, C1}
{A5, B3, C2, D1} {B4, D3} {A3, B1, C3}
{A1, B4} {A2, B2, C4, D2} {A4, C3}
{A1, B2} {A2, B2, C1}

key2

value2

key1

value1

ACD

CA

A115 C214

D

D116

(a) An item.

ACD

CA

A115 C214

D

D116

ABCD

BA

A511

A26

B313

B216

C

C214

C46

D

D116

D28

ABC

BA

A26

A38

B216

B19

C

C117

C36

AB

BA

A115 B45

B216

AC

BA

A42 C36

BD

DB

B216

B45
D32

(b) All items.

Fig. 3. The co-location instance hash table constructed based on MCs of the data set
in Fig. 1.

participating in this pattern, it does not care which instance has a neighbor rela-
tionship with which instances. Therefore, given a pattern, if we can query the
participation instances of each feature into the pattern, the utility participation
ratio of the pattern can be easily calculated. We arrange these maximal cliques
into a special hash table structure.

Definition 14 (Co-location instance hash table). A co-location instance hash
table is a two-level hash table, i.e., (key1, (key2, value2)), where key1 is the set
of spatial feature types of these instances in a MC, key2 is the spatial feature
type of each instance in MC, and value2 is the instance itself in MC. All MCs
that instances in them belong to the same spatial feature type set are grouped
into an item in the co-location hash table.

Figure 3(a) shows an example of an item in the co-location instance hash table
that is constructed from maximal clique A115, C214, D116. Based on Table 2,
the co-location instance hash table of the input data set under the neighbor
relationship is plotted in Fig. 3(b).

4.3 Mining ε-Closed HUCPs

After constructing the co-location instance hash table based on MCs of the input
data set, the next step is how to quickly collect the instances that participate in
the co-location instances of each pattern from the hash table structure.

Lemma 2. Given a co-location pattern c = {f1, ...fk}, the instances of each
feature type in c that participate in the table instance of c are collected from the
values in the co-location instance hash table corresponding to the keys that are
supersets of c (including if c is a key, the key is also a superset of c).
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Algorithm 3. Filtering ε-closed HUCPs
Input: the co-location instance hash table, CIHash; d, μ, ε
Output: the set of ε-closed HUPC, εHUCPS

1: keyset ← CIHash.getKeys()
2: while keyset �= ∅ do
3: keyset ←sort_by_size(keyset)
4: c ← keyset.pop()
5: for item ∈ CIHash do
6: if c ⊆ item.getKey() then
7: TI(c) ←get_values(item.getValue)
8: end if
9: end for

10: UPI(c) ←calculate_UPI(TI(c))
11: if UPI(c) ≥ μ then
12: for c′ ∈ εHUCPS do
13: if (c ⊆ c′) and |UPI(c) − UPI(c′)| > ε then
14: εHUCPS.add(c)
15: break
16: end if
17: end for
18: end if
19: subc ←generate_direct_subsets(c)
20: keyset ← keyset ∪ subc
21: end while
22: return εHUCPS

Proof. From the definition of the co-location instance hash table, value2 is a
set of participating instances belonging to the feature type be key2 in a co-
location pattern named key1. If a pattern c ≡ key1, we can get the participating
instances of c directly from value2. However, the co-location instances of c may
be the subsets of MCs that are built into an item in the co-location hash table,
thus a part of co-location instances of c is queried from the values corresponding
to the keys that are supersets of c.

For example, for co-location pattern c = {A, B}, the instances that partici-
pate in c of A and B are obtained from the values of keys AB, ABC, and ABCD,
i.e., {A115, A26, A38, A511} and {B216, B313, B45}, respectively.

Algorithm 3 describes the pseudocode of filtering ε-closed HUCPs from the
co-location instance hash table. This algorithm first gets all keys in the co-
location instance hash table and stores them in a set of keys, keyset (Step
1). Next, Algorithm 3 executes a while loop. In the loop, keyset is sorted in
descending order size of the keys (Step 3) and it gets the first key as a co-
location pattern c (Step 4). Then, it queries these keys that are a superset of
c (Steps 5–6), and then takes the corresponding values and puts them into the
table instance of c (Step 7). After that, the utility participation index of c is
calculated (Step 8). If c is a HUCP (Step 9), it needs to verify whether the
pattern is ε-closed (Steps 10–13). Next, the direct subsets of c are generated and
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put into keyset as new candidates that need to be examined (Steps 14–15). And
finally, a set of ε-closed HUCPs is returned to users (Step 16).

5 Experiments

A set of experiments is constructed in this section to evaluate the effectiveness
and efficiency of the proposed method. Our work is compared with the original
work about mining HUCPs [19]. The two algorithms are implemented in C++
and run on a computer with CPU Intel(R) Core i7-3770 and 16 GB of RAM.

Table 3. A summary of the experimental data sets.

Name Spatial frame size # instances # features Property

Shenzhen [6] 28,800 × 89,900 (m2) 35,220 20 Dense, clustering

Shanghai [6] 65,500 × 113,600 (m2) 41,450 15 Dense, uniform

Vegetation [18] 71,930 × 66,440 (m2) 503,340 16 Dense

Synthetic [22] 5,000 × 5,000 * 15 Dense

Fig. 4. The number of HUCPs with the increase of the tolerance ε.

5.1 Spatial Data Sets

Both synthetic and real data sets are used in our experiments, in which the
synthetic data sets are generated by a data generator [22] and the real data
sets are listed in Table 3. As can be seen from Table 3, the experimental data
sets are dense and have different numbers of instances, numbers of features, and
distributions. This enables a more complete investigation of the performance
of the proposed algorithm. The utility of the instances in these data sets is
generated according to an exponential distribution under a hypothesis that the
number of the low utility instances is much more than the high utility instances.
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5.2 The Number HUCPs

The first experiment examines the number of HUCPs under different values of
the tolerance ε. Since closed HUCPs are a lossless compression of all HUCPs,
we only need to compare the proposed compression method with the closed. As
shown in Fig. 4, many patterns can be reduced effectively by giving a relatively
small tolerance value, ε, and as the value of the tolerance ε increases, more and
more patterns are removed. Because the condition of the closed is too strict, and
according to the UPI definition, this condition is difficult to achieve. It can be
seen that reducing HUCPs can be effectively achieved by relaxing the closure
condition under the tolerance ε controlled by users.

5.3 Compression Rate and UPI Error Rate

In this experiment, the compression rate and the UPI error rate of ε-closed
HUCPs are surveyed to demonstrate the power of the ε-closed. The compression
rate is calculated based on the closed HUCPs. We fix ε = 0.05 (a sufficiently
low tolerance in our opinion). Figure 5 plots the results on the two real data
sets under different distance thresholds. As the distance threshold increases, the
compression ratio increases, and the UPI error rate also increases. But the UPI
error rate does not exceed the configured tolerance. The above results prove that
the ε-closed can balance the compression rate and the UPI error rate, and it can
give a large pattern compression rate within a relatively small range of the UPI
error rate.

Fig. 5. The compression rate and the error rate of the ε-closed method under different
distance thresholds.
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Fig. 6. The compression rate and the error rate of the ε-closed method under different
minimum utility thresholds.

Moreover, the compression rate and the UPI error rate under different min-
imum utility thresholds are also examined and plotted in Fig. 6. As shown in
Fig. 6, in the small value of minimum utility thresholds, the compression rate
is large and the UPI error rate is also large. The larger the minimum utility
threshold, the greater the difference in the UPI values of the patterns, so the
number of HUCPs that can be reduced will be less.

From the above experimental results, we can conclude that the denser the
HUCPs (large values of distance thresholds and small values of minimum utility
thresholds), the stronger the ε-closed compression ability.

5.4 Scalability

In this section, the scalability of the proposed neighboring instance-based mining
algorithm is evaluated with several workloads, i.e., different distance thresholds,
minimum high utility thresholds, and numbers of spatial instances. For the con-
venience of description, the mining HUCP algorithm proposed by Wang et al.
[19] (to the best of our knowledge, this is the only work on mining HUCP so far)
is named level-wise-based since it adopts the traditional mining framework [22].
And our neighboring instance-based algorithm is named NI-based for short.

Figure 7 describes the execution time of the comparing algorithms on differ-
ent distance thresholds. As can be seen that at a small distance threshold, the
efficiency of the comparing algorithms is the same, the level-wise-based algorithm
fails in the case of large distance thresholds, while the neighboring instance-based
mining algorithm shows good scalability.

The execution of the proposed algorithm under different minimum high util-
ity thresholds is also plotted in Fig. 8. As can be seen that our algorithm shows
better performance at small thresholds.
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Fig. 7. The execution time of the comparing algorithms on different distance thresh-
olds.

Fig. 8. The execution time of the comparing algorithms on different minimum utility
thresholds.

Moreover, Fig. 9 plots the execution of the two algorithms on different num-
bers of spatial instances. To generate different sizes of input data sets, for the
synthetic data set, we fix the number of features and change the number of
instances, whereas we perform random sampling on the real data set (Vegetation
data set). As shown in Fig. 9, the execution time of the level-wise-based algo-
rithm increases dramatically with the increase of the number of spatial instances.
While the proposed mining algorithm gives scalability to large dense data sets.
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Fig. 9. The execution time of the comparing algorithms on different numbers of spatial
instances (μ = 0.1 for all).

6 Conclusion

This work proposes a concise representation of HUCPs, ε-closed HUCPs. This
representation allows a pattern and its superset to have a small tolerance ε that
users can control according to their applications. Experimental results on the
real data sets show that this representation can give a good compression rate
under a small loss of information. Moreover, to avoid too many unnecessary
candidates that need to be examined due to the UPI metric not satisfying the
downward closure property, this work proposes a neighboring instance-based
mining algorithm. The algorithm performs better than the existing algorithm
on the experimental data sets.

The proposed mining algorithm can perform the parallel computation to
improve the mining efficiency in giant spatial data sets.
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