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Abstract. Outlying aspect mining (OAM) aims to identify a feature
subspace in which a given query object is dramatically distinctive from
the rest data. The identified features can assist the formulation and opti-
mization of decisions. Score-and-search methods are widely used in out-
lying aspect mining. However, limited by scoring instability and search
inefficiency, studies using this strategy are unable to be comprehen-
sive and accurate for mining outlying aspects. In this paper, it pro-
poses a novel OAM method based on genetic algorithm, named OSIER,
which can be applied in mining outlying aspects from multi-dimensional
spaces. OSIER improves the search efficiency by analyzing the corre-
lations between dimensions. By combining the genetic algorithm with
the traditional beam search strategy, OSIER effectively improves the
diversity of the searched aspects. As a result, the execution time for
candidate outlying aspects search is controlled in an acceptable range.
Experiments show that OSIER outperforms the benchmark methods in
terms of effectiveness on the OAM task. Besides, OSIER is capable of
providing valuable outlying aspect mining results for various types of
datasets.

Keywords: Outlying aspect mining · Kernel density estimation ·
Genetic algorithm

1 Introduction

Outlying aspect mining aims to discover an aspect (i.e., a set of features or
attributes) in which a query point has the most significant outlyingness. In many
real-life application scenarios, it can provide interpretable information and deci-
sion support for downstream tasks [13]. For example, a recruitment team some-
how highly interested in identifying what are the most outstanding merits or
shortcomings of a particular candidate compared to others.

It is worth noting that the distribution of query points in different spaces
varies significantly. As Fig. 1(a) shows, all the data samples are scattered in a
3-dimensional space. The outlyingness of the query point (red triangle) is not
significant in the full space. After projecting the data into various 2-dimensional
subspaces, the red triangle is more distinguishable from the other points (blue
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Fig. 1. An example of data distribution in different spaces. (a) Data distribution in
full space; (b)(c)(d) Data distribution in three projection subspaces.

dots) in Fig. 1(b) and Fig. 1(c). The space that can exhibit significant differences
between the query point and others is called the outlying aspect.

Technically, it is not feasible to enumerate all aspects due to the number of
subspaces grows exponentially with the increasing data dimensionality. To find
the optimal outlying aspect efficiently, we consider the following two challenges:

– (C1) How to search aspects efficiently and comprehensively? To
reduce the enormous computational cost of enumerating aspects, it should
select representative aspects in the search process. But the distributions of
different spaces are not regular, making it challenging to find all representative
aspects.

– (C2) How to measure the outlyingness of different aspects impar-
tially? A scoring function needs to be designed to quantify the outlyingness
of a query point in different aspects. However, calculating the outlyingness in
different dimensional aspects may lead to biased results.

Current approaches have limitations in addressing the above challenges. Con-
cerning the search strategy (C1), the most advanced and general approach is the
beam algorithm [10] using heuristic rules. This search strategy has an assump-
tion that if a point scores high in an l-dimensional aspect, it generally generated
by adding a dimension in a well-behaved (l − 1)-dimensional aspect. However,
Fig. 1(b) and Fig. 1(c) show extreme cases that disprove this assumption. Higher-
dimensional aspects with extreme distribution are not searchable. As for the
outlyingness scoring function (C2), Zhang et al. [17] used the distance from sur-
rounding points to the query point as a metric, leading to results biased towards
higher-dimensional aspects. The subsequent methods chose density as the eval-
uation criterion, but they still have shortcomings. The density ranking [5] loses
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the absolute degree of deviation, Z-score normalization [10] tends to aspects with
high variance, and the method of generating hypersphere simulation densities by
random sampling [12] produces a large instability.

In this paper, we propose a score-and-search method OSIER (short for
outlying aspects mining based on genetic algorithm), which can effectively iden-
tify the candidate outlying aspects. OSIER makes improvements to overcome
the shortcomings of existing methods from two perspectives. For C1, it retain
the strategy of generating high-dimensional aspects from well-behaved aspects,
while increasing the diversity of the searched aspect by replacing dimensions
with a mutation operation. This search method has the probability of getting
rid of the local optimum. For C2, it uses the strategy of stage comparison.
It compares the absolute density of the query point in different aspects under
the same dimension. Moreover, the optimal aspects under each dimension are
compared with a normalized score. In this way, it retains the absolute density
information of all data, avoiding biased results, and accelerates computational
efficiency. The main contributions of this paper are summarized as follows:

– We propose a novel genetic algorithm-based method, named OSIER, to
increase the diversity of searched aspects and generate more representative
aspects efficiently.

– We use a simplified density estimation function in a multi-dimensional space
and analyze an improved outlyingness measure guided by prior knowledge.

– We calculate the impact of each dimension on the outlying aspect by generat-
ing a maximum interval hyperplane, which can be used to guide the direction
of evolution in genetic algorithms. Besides, we use a new comparison strategy
preserving the absolute density of all data to avoid biased results.

– We demonstrate OSIER on multiple real-world and synthetic datasets. The
experimental results show that OSIER has higher search efficiency and sta-
bility, which can be applied to some extreme cases.

The rest of the paper is organized as follows. The related work is reviewed in
Sect. 2. Section 3 presents the details of OSIER. The experiments and results are
provided in Sect. 4, and Sect. 5 shows the conclusion and future work.

2 Related Work

2.1 Outlying Aspect Mining

Assume that there exists a d-dimensional space D = {D1,D2, ...,Dd} and a set
of data points X ∈ R

d. For a point Xi ∈ X, its feature under the full space is
represented as {Xi.D1,Xi.D2, ...,Xi.Dd}.

We call the combination of multiple dimensions as aspects (a dimension can
also be considered as an aspect), and the space composed of these dimensions
is a subspace of the full space D. For an aspect S = {Di1 ,Di2 , ...,Di|S|}, we
can define a measure of outlyingness scoring function ρS(q), which measures the
outlyingness of query point q in the aspect S. Based on the above definitions,
we can formalize the Outlying Aspect Mining problem as follows:
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Definition 1 (Outlying Aspect Mining). Given a set of n instance X in
d-dimensional space D, a query point q ∈ X, the outlying aspect mining is to
identify the non-empty aspect S ⊆ D in which the query point q’s outlying degree
ρS(q) is larger than any other aspect.

The existing OAM methods are mainly divided into two categories, feature
selection methods [4,9] and score-and-search methods [5,10,17]. Feature selec-
tion methods transform the OAM problem into a classical feature selection classi-
fication problem. More specifically, the two classes are defined as the query points
(positive class) and the rest of the data (negative class). Therefore, there is a
data imbalance problem when the model is trained. Besides, the interpretability
of these methods is poor. The score-and-search methods are more widely and
deeply researched than feature selection methods.

The frame of score-and-search methods is to search each candidate aspect,
calculate outlyingness for query points, and select the aspect with the highest
outlyingness as the optimal result. Zhang et al. [17] proposed a metric based on
the idea of kNN, called outlying degree. Duan et al. [5] applied kernel density
estimation to multidimensional space by using a product of univariate Gaussian
kernels. Meanwhile, they used a boundary pruning-based search strategy.

Vinh et al. [10] considered that the use of density ranking would lose impor-
tant information about the degree of absolute deviation. Thus they designed a
standard scoring function and proposed the concept of dimensionality unbiased-
ness for outlying aspect mining measures.

Definition 2 (Dimensionality Unbiasedness). If a density scoring function
ρS(·) satisfies the formula:

1
n

∑

Xi∈X

ρS(Xi) = const.w.r.t.|S| (1)

the function can be used to compare the outlyingness of query points in different
dimensional spaces directly.

Dimensionality unbiasedness provides a desirable property for designing den-
sity scoring functions, thus avoiding bias due to different dimensions and making
OAM more interpretable. Meanwhile, to prevent the problem of exploding the
number of high-dimensional aspects, a beam search method was proposed to
ensure that the number of search spaces is within a specific range by heuristic
pruning. Wells et al. [15] analyzed the shortcomings of kernel density search
and proposed SGrid density estimation instead, thus considerably speeding up
the computational process. Samariya et al. [12] generated hyperspheres by ran-
dom sampling to evaluate the outlyingness of query points to solve the complex
problem of density computation in high-dimensional space.

It is worth noting that outlier detection and outlying aspect mining are differ-
ent. Outlier detection aims to detect anomalous data that are exceptional with
respect to the majority of objects in the databases. It can applied in various
fields, such as disease detection [6], social media monitoring [19] and network
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intrusion supervision [1]. However, outlier detection is difficult to provide a rea-
sonable and intuitive explanation for the identified objects. The OAM task was
proposed for discovering aspects where the query instance exhibits the most
outlying characteristics.

2.2 Genetic Algorithm

In genetic algorithms, each individual consists of a gene string that represents
a feasible solution to that problem. Fitness is the metric used to evaluate the
individual, and the fitness function is usually determined based on the objective
function. The selection operation selects a parent based on fitness and inherits
its genes to the next generation of individuals. The selected parent undergoes
a crossover operation with a certain probability to produce the next individual.
After many generations, the genetic algorithm jumps out of the loop with a
defined threshold or number of iterations and obtains a better quality solution.
Genetic algorithm has been used to solve a large variety of problems efficiently,
including classification [3], credit risk assessment [8] and time-series analysis [11].

Zhu et al. [18] used genetic algorithms in the outlier detection problem. They
used cell-based segmentation techniques, which resulted in a high outlyingness
computation cost in a high-dimensional space. Zhang et al. [16] devised a method
that does not depend on the upper and lower bound closure properties. Similar
to [17], they chose distance as outlyingness, which is used to guide the evolution.

The genetic algorithm is an efficient optimization algorithm for intelligent
global search, which is simple and robust. Thus, we can use these characteristics
to discover outlying aspects efficiently.

3 Design of OSIER

In this section, we discuss the details of OSIER. It takes a query point q together
with a dataset X of n points {X1, ...,Xn} as input, Xi ∈ R

d, and outputs an
aspect in which the given point has the highest outlyingness.

3.1 Outlying Scoring Function

In the choice of scoring function, we use a simplified version of the multidimen-
sional density estimation function:

ρS(q) =
1

nh|S|

n∑

i=1

K(
‖q − Xi‖p

h
) (2)

where p denotes norm. In the absence of any prior knowledge, we choose the
Euclidean norm (p = 2), adopt the Gaussian kernel as kernel function K(·), and
calculate the bandwidth h follows Silverman’s rule of thumb [14] is more general.

This default density estimation parameter can be improved by prior knowl-
edge. One type of prior knowledge derived from the data description is the
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bound of each dimension. Suppose the dataset is restricted in a dimension
to a range of values. It is not reasonable to have a density distribution for
points outside the range. For example, age is a non-negative number. It is
unreasonable to produce a probability distribution in the space where age is
negative by the density estimation function. We use a reflection strategy to
solve this problem. If the data has a minimum value boundary b in dimension
Di, for query point q = {q.D1, ..., q.Di, ..., q.D|S|}, we set the symmetry point
qsym = {q.D1, ..., 2b − q.Di, ..., q.D|S|}. The optimized scoring function is:

ρ′
S(q) = ρS(q) + ρS(qsym) (3)

For the case where there are boundaries on both sides, we only consider the
first reflection point because the appropriate bandwidth ensures that the density
distribution after multiple reflections is equal to 0 or infinitely close to 0.

In addition, if a dataset is composed of multiple datasets, resulting in far from
normally distributed data, Silverman’s rule of thumb [14] will result in a poor
density estimate. We prefer to use an improved sheather algorithm [2] which can
achieve better results when the dataset is distributed in multiple dense regions.

3.2 Dimensions Correlation Analysis

Before formally calculating the query points’ outlyingness, each dimension of
the dataset needs to be analyzed. Different dimensions provide different con-
tributions to the generation of outlying aspects. Thus the analysis of a single
dimension helps to guide subsequent search process.

To make the outlying aspects result more credible, we perform a deeper anal-
ysis of the density estimation method. For a query point, if the distribution of
the projection on a dimension is remote and the probability density is mini-
mal, the dimension can have a large impact on aspect generation. This kind of
dimensions is called trivial outlying dimension, which is defined as follows:

Definition 3 (Trivial Outlying Dimension). Given a query point q, an out-
lyingness scoring function ρ(·) and a threshold ε, a dimension Di is called trivial
outlying dimension if ρDi

(q) ≤ ε.

An intuitive fact is that when a trivial outlying dimension is coupled with
another dimension, the generated aspects may still have a good outlyingness
score for the query point. Therefore, the trivial outlying dimensions should be
pre-processed to reduce their impact on the search results. For a query point, if
a trivial outlying dimension exists, aspects that may cause superior outlyingness
will be replaced by different combinations of that trivial outlying dimension with
other dimensions.

Example 1. Table 1 shows the shooting statistics for Los Angeles Lakers. We
employ OAMiner [5] to figure out outlying aspects of LeBron James. The result
shows that the top-5 outlying aspects are {3PM}, {3PM, 3PA}, {3PM,FGM},
{3PM,FTM} and {3PM, 3PA,FGM}. When we ignore the effects of feature
3PM , outlying aspect {FG%, FT%, 2P%} is revealed, which can offer more
hidden information.
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Table 1. Shooting statistics of six active players in Los Angeles Lakers

Name FGM FGA FG% 3PM 3PA 3P% FTM FTA FT% 2PM 2PA 2P%

LeBron James 11.1 21.3 52.3 2.9 8.0 36.2 4.6 6.0 76.6 8.3 13.4 61.8

Anthony Davis 9.2 17.2 53.7 0.3 1.8 18.2 4.4 6.1 70.9 8.9 15.4 57.8

Russell Westbrook 6.8 15.7 43.3 0.9 3.3 27.7 3.4 5.1 67.0 5.9 12.4 47.4

Stanley Johnson 2.3 4.8 47.0 0.6 2.0 31.9 0.9 1.2 70.7 1.6 2.8 57.9

Austin Reaves 2.3 4.8 47.6 0.8 2.6 31.8 1.3 1.5 83.8 1.4 2.1 67.3

Dwight Howard 1.9 3.1 60.9 0.1 0.2 66.7 1.3 2.0 62.9 1.8 3.0 60.6

Afterwards, we need to evaluate the correlation between dimensions and ana-
lyze the contribution of each dimension to the degree of query point outliers,
represented as a set of weights w = {w1, w2, ..., wd}. We construct a hyperplane
on the full space so that the query points are as separated as possible from other
points to calculate w. Since the query point and the rest of the sample points
are two classes of samples with extreme imbalance, we choose the one-class SVM
method and set the query point as the origin. Solving this maximum geometric
margin hyperplane is essentially a convex optimization problem:

min
1
2
||w||2 − τ +

1
υn

n∑

i=1

ξi

s.t. wT Xi ≥ τ − ξi, ξi ≥ 0

(4)

where Xi denotes spatial vectors of the i-th point, τ denotes the hyperplane
bias, ξi denotes the relaxation variable of the i-th point and υ denotes a trade-off
parameter. We solve the quadratic programming problem by Lagrange Multiplier
Method:

L(w, τ, ξ, α, β) =
1
2
||w||2 − τ +

1
υn

n∑

i=1

ξi −
n∑

i=1

αi(wT Xi − τ + ξi)−
n∑

i=1

βiξi (5)

In order to obtain a specific form for solving the dual problem, let the partial
derivative of L(w, τ, ξ, α, β) with respect to W , τ , and ξ equal to zero. We can
obtain the following three conditions:

w −
n∑

i=1

αiXi = 0 (6)

n∑

i=1

αi − 1 = 0 (7)

0 ≤ αi ≤ 1
υn

(8)
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Fig. 2. Significance of the weights generated by hyperplane.

Equation 6 can be solved for w, where X = {X1,X2, ...,Xd} is known, and
the optimal solution for α can be obtained by substituting Eq. (6)-(8) into Eq. 5:

min &
1
2

n∑

i=1

n∑

j=1

αiXi
T Xjαj

s.t.
n∑

i=1

αi = 1, 0 ≤ αi ≤ 1
υn

(9)

In reality, it is reasonable to expect that if this hyperplane is more perpen-
dicular to a dimension, the greater the contribution of this dimension in the
classification. As Fig. 2(a) shows, red triangle indicates the query, and the red
dashed line indicates the generated hyperplane. The hyperplane corresponds to
a weight vector of w = [3, 1], indicating that the dimension corresponding to the
x-axis has a greater influence on the query point becoming an outlier. Figure 2(b)
and Fig. 2(c) denote the density distributions of the data after projection on the
x-axis and y-axis, respectively, which also justify the analysis.

3.3 Outlying Aspect Generation

The strategy of searching candidate aspects is the core problem of computing
the outlying aspects in a high-dimensional data set. When the dimensionality is
large enough, the computation of traversing every aspect brings an unbearable
computational cost. This cost is exponentially related to the number of dimen-
sions. Taking OAMiner [5] as an example, it takes over 24 h on a dataset with 30
dimensions and 10,000 points, which is impracticable for many real-world high-
dimensional datasets. OSIER uses a genetic algorithm, which includes recombi-
nation, mutation, and selection operations to search for representative aspects
efficiently. The search strategy is given in Algorithm 1.

Procedure Recombination(·) generates new individuals by reorganizing parts
of the structure of multiple parent individuals in Step 4. If an aspect performs
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Algorithm 1. Pseudocode of OSIER
Input: a d-dimensional dataset X, a query point q, population P , mutation rate α.
Output: the outlying aspect of q.
1: Initialize the candidate dimension set CSet = {Di|ρDi(q) ≤ ε} (optional, The full

set can be used directly without considering trivial outlying dimension)
2: C1 ← CSet
3: Best-scored aspect set BS ← {arg min

Di∈CSet
ρDi(q)}

4: for l ← 2 to |Cset| do
5: RCl ← Recombination(Cl−1, P )
6: MCl ← Mutation(RCl, P, α)
7: for each candidate aspect S in RCl ∪ MCl do
8: if S has not been considered then
9: if |Cl| < P then

10: Cl ← Cl ∪ {S}
11: else if ρS(q) < Max({ρDi(q)|Di ∈ Cl}) then
12: replace the worst aspect in Cl by S
13: end if
14: end if
15: end for
16: BS ← BS ∪ {arg min

Ai∈Cl

ρAi(q)}
17: end for
18: BS ← Normalization(BS)
19: return bestAspect ← arg min

Ai∈BS
ρAi(q)

better in the paternal generation, the dimensions that make up this aspect are
more likely to participate in the generation of new individuals. Recombination
can discover most of the high-scored aspects by the heuristic search strategy.

Procedure Mutation(·) in Step 5 can handle extreme cases (e.g. Figure 1(b)
and Fig. 1(c)). OSIER use sampling to calculate the probability of each dimen-
sion participating in the mutation, which is calculated as:

pro(Di) =
WDi∑

Dj∈H

WDj

(10)

where H is the set of dimensions not involved in the recombination, WDi
indi-

cates the weight of the dimension Di on the outlyingness in full space, which is
mentioned before. A dimension with a larger weight will have a larger opportu-
nity to be selected for next generation to reproduce with modification. OSIER
uses bit-wise mutation which randomly replacing one of the dimensions that
make up an individual.

Moreover, in order to ensure a fair comparison between different dimensional
aspects, the outlyingness score needs to be normalized after calculation. A well-
known normalization method in the OAM task is Z-score [10]:

Z(ρS(q)) � ρS(q) − μρS

σρS
(11)



346 Z. Chen et al.

Table 2. Characteristics of the datasets

Data set # objects(n) # attributes(d)

Synthetic datasets 1000 10–100

Seed 210 7

Music emotion 400 50

Climate model 540 18

KSD 2856 71

where μρS is the mean of the density of all points in the aspect S, and σρS
is the standard deviation. The score obtained by this transformation satisfies
the dimensional unbiasedness requirement of Eq. 1. However, the computational
cost of normalizing each searched aspect is still large, so we consider a staged
comparison. When generating the aspects in each dimensionality, the optimal
aspect is obtained by comparing the original density evaluation score (Steps 6–
18). After obtaining the optimal aspects under each dimension, the outliers are
normalized (Step 19) and compared (Step 20) in these aspects. Compared to
OAMiner [5] and Density Z-score [10], the overall search complexity is reduced
from O(n2d · Wd) to O(nd · Wd + n2d · d), where n and d are the size and
dimensionality of data set, W is the average search width of each dimension.

4 Experiments and Result Discussion

4.1 Experimental Setting

Datasets. We use four real-world datasets from the UCI machine learning
repository1. We also use the synthetic datasets provided by Keller et al. [7].
Table 2 shows the characteristics of these datasets. The attribute values in the
dataset are all real numbers. For the sake of the subsequent description, we use
incremental subscripts to record the attributes of the dataset.

Baselines. Four OAM methods are selected as baselines to demonstrate the
efficiency and stability of OSIER, including kernel density rank (OAMiner) [5],
Z-score normalized Kernel density (ZKDE) [10], sGrid [15] and SINNE [12]. We
have made a brief summary in Table 3 for the outlyingness calculation used by
each method, where ψ denotes the size of the random subsample, t denotes the
number of ensemble models, and Individual Complexity represents the complex-
ity of computing outlyingness in one aspect for a query point. There are three
additional notes: (1) Although OAMiner introduces a boundary method to per-
form pruning operations, the amount of search space is uncertain and usually
much larger than other methods. The exact number depends on the true dis-
tribution of the data. (2) SINNE is a sampling-based method. Given a query

1 http://archive.ics.uci.edu/ml/index.php.

http://archive.ics.uci.edu/ml/index.php
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point and an aspect, the results will vary each time. In particular, the use of a
heuristic search approach can also lead to a volatile search of the aspects. (3)
The stability of OSIER depends on the mutation rate, which is usually small.
It works by accepting the probability of generating an aspect that is worse than
the current one, so it is possible to jump out of the local optimal solution. If
there is no extreme case, the searched aspects are stable for the same dataset.

Table 3. Summary the characteristics of baselines

Methods Individual complexity Complexity Interpretability Stability

OAMiner O(n2d) – High High

ZKDE O(n2d) O(n2d · Wd) High High

Sgrid O(n2d/ω) O(n2d/ω · Wd) Medium High

SINNE O(ψt2d) O(ψt2d · Wd) Low Low

OSIER O(nd) O(nd · Wd + nd2) High Medium

Experimental Setup. We use the parameters mentioned in Sect. 3.1. For the
aforementioned methods, we apply the default parameters. For the scoring func-
tion, OAMiner and ZKDE use the Gaussian kernel. We set ψ to 8 and t to 100 in
SINNE. For the search strategy, epsilon neighborhood range of OAMiner is set
to 1. Search width W and maximum dimensionality of searched aspects dmax in
beam search are set to 120 and 3, respectively.

Experiments were conducted on a PC with four Intel Xeon E5-2698 CPUs,
four GeForce RTX 2080 Ti GPUs and 512 GB memory, running Ubuntu 20.04.
The algorithms were implemented in Java and compiled by Java version 13.

4.2 Effectiveness

We use four real-world datasets from different domains to demonstrate the effec-
tiveness of OSIER in the OAM problem. Since we do not have a standard to
measure the quality of the found aspects, we display the visualization of outlier
points in the aspects as shown in Fig. 3. We choose query points with aspects of
three dimensions as examples for better visualisation. The red triangles indicate
the query points which exhibit good outlyingness in each obtained subspaces.
Visualization results show that OSIER can obtain well-behaved aspects.

We also compare our method with the baseline methods on 10, 20, 30, 40, 50,
75, and 100-dimensional synthetic datasets, respectively. The original datasets
provide with 19–136 outliers and the ground-truth of their outlying aspects. For
the fairness of the experimental criteria, we augmented the number of outliers.
For example, there is an outlier X1 and a normal point X2 in a d-dimensional
data set, and the outlying aspect of X1 is {D1,D2}. By replacing the dimen-
sions which are not in outlying aspect of X1, we can generate a new outlier
X3 = {X1.D1,X1.D2,X2.D3, ...X2.Dd}. Since OAMiner is committed to finding
aspects ranked 1, it may find more than one aspect. We consider that the correct
aspect has been found if the result contains the ground truth.
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Fig. 3. Visualization results on four real data sets.

The results are shown in Table 4. Experiment shows that OSIER achieves
the state-of-the-art performance on all datasets of different dimensions. There
is little difference in the effectiveness of each method in the low-dimensional
space. As the number of dimensions rises, the accuracy of OSIER improves more
significantly. The trend shows that the search strategy plays a greater role in
high-dimensional space. Besides, the heuristic rule pruning strategy (OSIER and
ZKDE) can search for more representative aspects than the boundary pruning
(OAMiner). ZKDE performs better than Sgrid and SINNE, which indicates that
using partial data makes the searched aspects unstable.

Figure 4 shows the efficiency test on the synthetic datasets with varying num-
ber of dimensions d and data size n. The base OAMiner method [5] is chosen
as the baseline method, which can reduce the impact caused by the different
functions of calculating the outlyingness. We select several query points with a
result subspace of no more than 3 dimensions to calculate the average running
time. Experiment shows that the search efficiency of our method is much faster.
Moreover, the execution time rises slower than the baseline as the dimensionality
and size of the dataset expand.
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Table 4. Overall Performances of Comparison with Baselines

Method syn 10D syn 20D syn 30D syn 40D syn 50D syn 75D syn 100D

OAMiner 0.893 0.664 0.463 0.352 0.320 0.308 0.192

ZKDE 0.953 0.808 0.839 0.631 0.601 0.635 0.573

Sgrid 0.942 0.629 0.574 0.556 0.524 0.508 0.426

SINNE 0.879 0.709 0.558 0.640 0.609 0.648 0.595

OSIER 0.967 0.856 0.843 0.770 0.694 0.671 0.654

Fig. 4. Efficiency test w.r.t the number of dimensions d and data size n.

4.3 Parameter Analysis

For ease of understanding, we select the data under two dimensions of the syn-
thetic datasets and visualize the results by contour lines.

The choice of norm comes in to play when d ≥ 2. In the previous norm studies,
the commonly used norms are p = 1 (Manhattan distance), p = 2 (Euclidean
norm), and p = ∞ (Maximum norm). As shown in Fig. 5(a), the value of p has
a tiny effect on the density distribution in a dense region. As the number of
data points increases, the choice of p is less important. We recommend using the
2-norm for its stronger symmetry.

Figure 5(b) shows that the value of bandwidth cannot be static. A reasonable
bandwidth should depend on the distribution of the data. A small bandwidth
will result in relatively independent density estimates (e.g. N = 100, h = 0.1),
and a large bandwidth will result in a dispersed density distribution, which
makes it difficult to reflect the differences. Silverman’s rule of thumb [14] is
a variance-based bandwidth selection method. By this method, the value of h
is taken closer to 0.25 when N = 100, and it can be observed that h = 0.25 is
more representative compared with the others in visualization results. bandwidth
essentially scales the kernel density estimation function in different dimensions
to obtain better experimental results.
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Fig. 5. Influence of different norm p and bandwidth b.

5 Discussion and Conclusion

In this paper, we study the outlying aspect mining problem and propose OSIER,
which address the shortcomings of existing methods effectively and provide more
interpretable and credible results. We analyze the application of kernel density
estimation methods to outlying aspect mining and design an adaptive scoring
function. In addition, we improve the commonly used aspects search strategy.
We introduce the idea of a genetic algorithm to obtain the fitness of individ-
uals in the process of genetic inheritance by analyzing the correlation among
dimensions. Also, the mutation operation in the genetic algorithm can handle
some extreme cases during the search process, thus avoiding getting trapped
in a local optimum. Experimental results on several real and synthetic datasets
demonstrate the effectiveness of the proposed method in outlying aspect mining.

Our future work will focus on applying OAM to hybrid or time-series data.
We plan to design a rational outlying aspect structure for interpretable results.
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