
SESA: Fast Trajectory Compression
Method Using Sub-trajectories

Segmented by Stay Areas

Shota Iiyama1,3(B), Tetsuya Oda2,3 , and Masaharu Hirota1,3

1 Graduate School of Informatics, Okayama University of Science,
1-1 Ridaicho, Kita-ku, Okayama, Japan
i21im01cs@ous.jp, hirota@ous.ac.jp

2 Department of Information and Computer Engineering,
Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, Japan

oda@ous.ac.jp
3 Department of Information Science, Okayama University of Science,

1-1 Ridaicho, Kita-ku, Okayama, Japan

Abstract. The increase in trajectory data is associated with problems,
such as increased storage costs and difficulty in analysis. One solution
to these problems is trajectory compression. It reduces the data size
by removing redundant positioning points from the original trajectory
data. This study proposes SQUISH-E(µ) with Stay Areas (SESA), a fast
batch compression method for trajectory data based on the stay area.
A stay area is where the user stays for a certain period, such as the
waiting time for a traffic light or bus. Moreover, SESA segments the
trajectory into sub-trajectories using stay areas and applies SQUISH-
E(µ) to each sub-trajectory. The experiments with trajectory datasets
show that SESA achieves a compression time reduction of approximately
65% with little change in trajectory feature retention and approximately
the same compression rate as the direct application of SQUISH-E(µ).
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1 Introduction

Devices with global positioning systems (GPS), such as smartphones, drones,
and car navigation systems, are widespread. These devices generate an enormous
amount of trajectory data that record an object’s activities. Such trajectory
data can be used to track the movements of people, vehicles, and other objects.
Therefore, trajectory data are important sources of information for analyzing
human behavior patterns [11,13] and next location prediction [2,12].

However, the vast amount of trajectory data causes problems. First, commu-
nicating trajectory data increases the amount of communication in the network.
Second, storing a large amount of trajectory data incurs enormous storage costs.
Third, because several positioning points in the trajectory data are redundant,
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Fig. 1. Stay points and stay areas in a trajectory data.

the analysis requires extra time, which is essentially unnecessary. One solution
to these problems is trajectory compression. Trajectory compression is a method
that reduces the data size by removing redundant positioning points from the
original trajectory data.

Several trajectory compression methods have been proposed. These include
the Douglas-Peucker (DP) algorithm [3] and Spatial QUalIty Simplification
Heuristic (SQUISH) [8]. However, such trajectory compression methods pre-
serve the shape of the trajectory or movement speed of the object; nonetheless,
they do not preserve the information on the area where the user stays. In this
study, we refer to such an area as a stay area. A stay area provides valuable
information, such as analyzing the area where a user stays and the stay of the
associated traffic flow. Therefore, it is desirable to preserve the stay area of the
original trajectory data when applying the trajectory compression method.

Here, we define the stay area and point in the trajectory data. Figure 1 illus-
trates trajectory data containing stay areas and points. The purple-dashed cir-
cles represent the stay areas, and the red points surrounded by circles represent
the stay points. Stay points are positioning points (such as a bus stop or traffic
lights) recorded when a user remains at a particular location for a certain period.
Therefore, the stay area is defined by a set of consecutive stay points. Because
the first and last stay points are sufficient to represent the information of a user’s
stay time and location, we consider the remaining points as redundant points in
this study. In this study, we also refer to the first and last points of the stay area
and positioning points where the shape of the trajectory and speed of movement
have changed significantly as the feature points.

Even compression results from the existing trajectory compression methods
that do not have a specific process for extracting the stay area may accidentally
preserve the stay areas. However, the compression results do not necessarily pre-
serve the first and last points of the stay area. This indicates that the compression
results may not preserve information regarding the exact stay time of the user
at that location. In addition, several current trajectory compression methods
change the degree of compression by adjusting the parameters. Consequently, it
may be possible to adjust these methods to produce compression results within
a stay area. For example, when setting the parameters that decrease the com-
pression rate, the compression results obtained by these methods may preserve
both the first and last points of the stay area. However, because the compression
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result preserves the stay points other than the first and last points of the stay
area and other redundant points, its compression rate of the compression result
is low. Furthermore, when setting the parameters that increase the compression
rate, the compression method considers almost positioning points in the trajec-
tory data as redundant points and removes them. This possibly removes the
stay points. These facts make it difficult for the existing methods to compress
trajectory data with a high compression rate, while preserving the stay areas.

In this study, we propose a batch method of SQUISH-E(μ) with Stay Areas
(SESA) for fast trajectory compression. Furthermore, SESA uses Spatial QUal-
Ity Simplification Heuristic - Extended (μ) (SQUISH-E(μ)) [9], which preserves
the trajectory shape and moving speed, and Stay Area (SA) to extract stay
areas based on the method for extracting stay points proposed in [14]. The
SESA applies SQUISH-E(μ) to the sub-trajectories segmented by the stay area
extracted by the SA. Consequently, the compression time of the SESA is fast, and
the compression rate is high, while ensuring that the stay area in the trajectory
data is preserved.

The contributions of this research are summarized as follows.

1. We propose a batch compression method SESA extended from SQUISH-E(μ).
The SESA reliably preserves the stay area of trajectory data, because SESA
applies SQUISH-E(μ) to sub-trajectories segmented by stay areas.

2. SESA can compress most trajectory data approximately faster than applying
original SQUISH-E(μ) with almost no change in the compression rate of the
locus and the preservation rate of the feature amount.

The rest of this study is organized as follows. Section 2 describes the previous
compression methods related to our method. Section 3 describes the proposed
method in detail. In Sect. 4, we describe an experimental evaluation of the pro-
posed method. Section 5 provides a summary of the study.

2 Related Work

There are two types of trajectory compression methods: batch and online meth-
ods.

Batch compression methods compress the trajectory data using all the posi-
tioning points. Therefore, the batch compression method can be applied only to
the trajectory data after positioning is complete. The advantage of batch com-
pression methods is their high performance. This is because they use all posi-
tioning point information for compression. The DP [3] preserves the shapes of
trajectories. Additionally, DP recursively computes the compression points and
segments a trajectory based on the perpendicular Euclidean distance (PED).
The top-down time-ratio (TD-TR) [7] is an extension of the DP. It uses the
synchronized Euclidean distance (SED), which considers the timestamp of the
positioning points. We elaborate the SED in Sect. 3.3. This method preserves
the trajectory shape and speed of movement. However, the compression time of
TD-TR is slower than that of DP because SED requires more computational
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Fig. 2. Overview of SESA.

time than the PED. The top-down time-ratio Reduce (TD-TR Reduce) [5] is an
extension of the TD-TR to reduce the compression time. This method extracts
feature points from the trajectory data with movement direction and speed have
changed and applies TD-TR to the extracted points. The method proposed in [4]
preserves the contour of the trajectory data (particularly turning corners and
U-turns), considering the distance, angle, and velocity of the trajectory data.
Furthermore, SQUISH-E(μ) [9] is a trajectory compression method that uses a
priority queue. This method adds positioning points to the priority queue and
removes points with a low priority. The remaining points in the priority queue
are regarded as the compression results. The method proposed in [6] to com-
press a trajectory while preserving feature points applies SQUISH-E(μ) and the
method for extracting stay points proposed in [14] to trajectory data in parallel.

On the other hand, online compression methods compress trajectory data
using only the acquired positioning and few other points. Therefore, an online
compression method can be used during the positioning process. Online com-
pression methods compress data sequentially; thus, their performance regarding
the compression rate and preservation of the original trajectory features is often
lower than that of batch processing. Dead-Reckoning [10] is a fast trajectory
compression method that uses the speed of an object to predict the subsequent
moving point and its distance from the actual positioning point to determine
whether it is a compression point. Critical Point (CP) [1] is a trajectory compres-
sion method that focuses on the direction of movement. Regarding this method,
the compression point is the location where the direction of movement of the
user has changed.

The SESA of our proposed method compresses each sub-trajectory after the
SA segments the trajectory data. Therefore, SESA can select any compression
method, batch, or online. In this study, we use one of the primary methods for
trajectory compression: SQUISH-E(μ).

3 Proposed Method

Figure 2 presents an overview of SESA. A trajectory is defined as T =
{p1, p2, · · · , pn}, and the i−th positioning point pi = (xi, yi, ti) represents the
longitude, latitude, and timestamp, respectively. First, we apply SA to extract
the stay areas from the trajectory T . Second, we segment the trajectory into
sub-trajectories using the first and last stay points of each stay area. Third, we
apply SQUISH-E(μ) to each sub-trajectory to extract the compression points
from them. Finally, we integrate the compression points extracted from each
sub-trajectory and obtain the compression result T ′.
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Fig. 3. Segmentation process.

3.1 Extraction of Stay Area

In this section, we explain the process of extracting stay areas from trajectory
data using SA. The SESA uses SA to extract the stay areas from trajectory data
T .

The SA defines the positioning points in the trajectory data that satisfy all
of the following conditions as stay points:

a < i ≤ b

Distance(pa, pi) ≤ Tdistance

Distance(pa, pb+1) > Tdistance

Interval(pa, pb) ≥ Ttime

(1)

Distance(pa, pi) is the Euclidean distance between positioning points pa
and pi. Tdistance is the threshold distance between the two positioning points.
Interval(pa, pb) is the difference in the timestamps between positioning points
pa and pb. Ttime is the threshold of the difference in the timestamps between the
two positioning points.

After extracting the stay points, we regard each consecutive set of stay points
in the trajectory data as stay areas. Subsequently, we remove all stay points,
excluding each extracted first and last point of the stay area. We used each
extract stay area to segment the trajectory into sub-trajectories.

3.2 Segmentation

Here, we describe the segmentation process of a trajectory to sub-trajectories.
We segment the trajectory into sub-trajectories by the stay area extracted by
SA, as shown in Fig. 3. In the figure, the segmentation process has five cases
depending on the locations of extracted stay area. The red points are the first
point and the last point of stay area. The points marked with a star are the first
point p1 and the last point pn of the trajectory. Also, we apply SQUISH-E(μ)
described in the next section to the segmented sub-trajectories.
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3.3 SQUISH-E(µ)

Next, we describe the SQUISH-E(μ). SQUISH-E(μ) is a trajectory compression
method that uses priority queues. Priority is the degree of change in the shape
of the trajectory data when a positioning point pi is dequeued from the priority
queue. In SQUISH-E(μ), the shape differences in the trajectory before and after
the dequeuing do not exceed the threshold μ. Therefore, this method preserves
the shape and moving speed of the trajectory data.

Moreover, SQUISH-E(μ) comprises the following two steps.

step 1: Enqueue all the positioning points of a trajectory into the priority queue
Q.

step 2: Dequeue the low-priority points from Q.

Step 1 enqueues the positioning point pi of the trajectory to the priority
queue Q. Here, we denote the priority of pi as priority(pi). When enqueuing pi
to Q, the method initializes priority(pi) ← ∞ and π(pi) ← 0. The variable π(pi)
is used to maintain the neighborhood’s maximum priority of the removed points
in the subsequent step. When enqueuing a positioning point other than the first
point (i ≥ 3), we change the priority priority(pi−1) as follows:

priority(pi−1) = SED(pi−1, pred(pi−1), succ(pi−1)), (2)

where pred(pi) and succ(pi) are pi’s closest predecessor and successor among
the points in Q, respectively. The SED is the Euclidean distance between the
positioning pi = (xi, yi, ti) and pseudo p′

i = (x′
i, y

′
i, ti) points. The pseudo-point

p′
i is the point approximated on the line between the two positioning points

{ps(xs, ys, ts)|1 ≤ s < i} and {pe(xe, ye, te)|i < e ≤ n}. In this study, we cal-
culate the SED between pi and p′

i based on ps and pe, and we denote it as
SED(pi, ps, pe). Moreover, SED(pi, ps, pe) is calculated as follows:

(x′
i, y

′
i) =

(
xs +

ti − ts
te − ts

(xe − xs), ys +
ti − ts
te − ts

(ye − ys)
)

SED(pi, ps, pe) =
√

(xi − x′
i)2 + (yi − y′

i)2
(3)

Hence, the priorities of the first pQf and last pQl points of Q are priority(pQf ) ←
∞, priority(pQl ) ← ∞, which prevent them from being removed from Q. After
inquiring about all the positioning points to Q, the method moves to Step 2.

In step 2, the method dequeues the positioning points with low-priority values
in Q and compresses the trajectory using the following procedure.

1. We find the lowest priority positioning point pj in Q.
2. We update π(pred(pj)) and π(succ(pj)) based on priority(pj). If

π(pred(pj)) < priority(pj), we set π(pred(pj)) ← priority(pj). Furthermore,
if π(succ(pj)) < priority(pj), then π(succ(pj)) ← priority(pj).
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3. We dequeue pj from Q and update the priorities of pred(pj) and succ(pj).
Here, we let pk be either pred(pj) or succ(pj). If pk is the first or last point
in Q, then the priority is not updated. Otherwise, priority(pk) = π(pk) +
SED(pk, pred(pk), succ(pk)).

4. We repeat the process until the minimum priority value in Q is larger than
μ.

After the completion of Step 2, the points in Q are the compression results of
SQUISH-E(μ).

3.4 Integration

The last process of SESA is the integration of the compression results from
the sub-trajectories. We integrate the compression points of each sub-trajectory
extracted using SQUISH-E(μ). Their integration result is the compression result
T ′ obtained by the SESA. Considering (C), (D), and (E) in Fig. 3, T ′ also includes
the first and last points of the trajectory as described in Sect. 3.1. Consequently,
the SESA can reliably preserve the compression points of SQUISH-E(μ) and the
stay areas.

4 Experiment

In this section, we evaluate the performance of the SESA of our proposed method
and the conventional SQUISH-E(μ).

4.1 Experimental Conditions

We used the Microsoft GeoLife dataset [15–17] as the experimental data. The
total number of trajectories was 18,670. They were recorded using transportation
such as walking, cars, and trains. The mean of positioning points for each tra-
jectory were approximately 1,295. The mean sampling rates of the trajectories
were approximately 7 s.

We used three evaluation criteria: the SED error, compression rate, and com-
pression time. The SED error evaluates the difference in the trajectory shape
before and after the trajectory compression. The smaller the SED error value
is, the better the compressed trajectory data that preserve the shape of the
original trajectory data. The compression rate evaluates the percentage of the
positioning points removed using the compression method. The higher the value
of the compression rate is, the smaller the data size of the compressed trajectory.
The compression time evaluates the time required for the trajectory compression
method to compress the data. The smaller the compression time is, the faster
the method compresses the trajectory data.

We evaluated each SED threshold of SESA and SQUISH-E(μ), varying from
10 m to 100 m for each 10 m. We adjusted the SA thresholds of the SESA, setting
the thresholds for the stay distance and time to 15 m and 30 s, respectively.
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4.2 Experiment Results

Figure 4, 5, and 6 show the evaluation results of the SESA of the proposed
method and SQUISH-E(μ) with three evaluation criteria. The vertical and hori-
zontal axes represent each criterion and SED threshold, respectively. The red and
blue lines represent the performances of SESA and SQUISH-E(μ), respectively.

Fig. 4. SED Error.

SED Error. Figure 4 shows the SED errors of SESA and SQUISH-E(μ). When
the SED threshold is less than 30 m, the SESA has more significant SED errors
than SQUISH-E(μ). This is because SQUISH-E(μ) preserves several redundant
points in the stay area. Moreover, the shape of the compression result is similar
to that of the original trajectory, whereas the SESA preserves only the first
and last points in the stay area. Therefore, SQUISH-E(μ), which has a more
significant number of compression points, produces compression results closer to
the shape of the original trajectory data than the SESA. However, the SESA
reliably preserves the stay area without redundant stay points.

In addition, when the SED threshold is higher than 40 m, the SESA has lower
SED errors than SQUISH-E(μ). Furthermore, the larger the threshold is, the
more significant the difference. This is because SQUISH-E(μ) removes most of
the positioning points and cannot preserve the stay area, whereas the SESA can
preserve the stay area. When the SED threshold of SQUISH-E(μ) is significant,
the method may excessively compress the trajectory data because it deletes the
stay area to be preserved in addition to the redundant points. In contrast, the
compression result by SESA close to the shape of the original trajectory data
because it preserves the first and last points of the stay area.

Compression Rate. Figure 5 shows the compression rates of SESA and
SQUISH-E(μ). The compression rates of the SESA and SQUISH-E(μ) are



SESA: Fast Trajectory Compression Method 195

approximately identical. This difference is caused by the SESA, which preserves
the stay points.

When the SED threshold is less than 10 m, SESA has a higher compression
rate than SQUISH-E(μ). This is because SQUISH-E(μ) preserves several stay
points in each stay area, whereas SESA preserves only the first and last points in
each stay area. Thus, SESA has a higher compression rate than SQUISH-E(μ).

Fig. 5. Compression rate.

In addition, when the SED threshold is larger than 20 m, SESA has a lower
compression rate than SQUISH-E(μ). This is because the SESA preserves the
stay area, which cannot be preserved by SQUISH-E(μ). The compression points
of SESA increased because the number of preserved stay areas increased.

Compression Time. Figure 6 shows the compression times of SESA and
SQUISH-E(μ). Regarding all the SED thresholds, the compression time of SESA
is approximately 65% less than that of SQUISH-E(μ).

This is because SESA segments the trajectory into sub-trajectories using
SA. The time complexity of SQUISH-E(μ) is O(N log N), which tends to have a
shorter compression time because the length of the trajectory to be compressed
decreases by the segmentation process. Consequently, despite the increase in the
number of processes for extracting the area of stay, the compression time of the
SESA is fast for most movement trajectories.

4.3 Discussion

Here, we discuss the time complexity and applicability of SESA.
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Fig. 6. Compression time.

Time Complexity. We compare the time complexities of SESA and SQUISH-
E(μ). The complexity of SQUISH-E(μ) is O(N log N), where N denotes the
number of positioning points in the trajectory data. In addition, the time com-
plexity of the SA is O(N).

The best complexity of SESA is O(N + N log N
|st| ), where |st| is the number

of sub-trajectories in the trajectory data. Because the method applies SQUISH-
E(μ) to each sub-trajectory, the compression time is fastest when the number of
positioning points in each sub-trajectory is equal.

Subsequently, the worst case is that the SA does not find the stay area
in the trajectory data. The time complexity of SA O(N) is added to SQUISH-
E(μ). Consequently, the worst-case time complexity of SESA is O(N +N log N).
In addition, when the number of positioning points of the sub-trajectories
segmented by SA is non-uniform, the time complexity of SESA approaches
O(N + N log N). Therefore, the time complexity of the SESA varies between
O(N + N log N

|st| ) and O(N + N log N), depending on the location and number
of extracted sub-trajectories in the trajectory.

Applicability. Because SESA segments the trajectory data by the stay areas
into sub-trajectories, the compression time of SESA depends on the number of
stay areas in the trajectory data. Therefore, to investigate the possibility of the
SESA working effectively, we count the number of stay areas in the trajectory
data. Figure 7 shows a scatter plot of the number of stay areas in 1,000 randomly
sampled trajectory data of our dataset. Furthermore, the average number of stay
areas in all trajectory data are 13.22. This indicates that most of the trajectory
data may contain multiple stay areas. This is because, the trajectory data may
include stay areas owing to events such as waiting at a traffic light or stopping
at a stoplight during the user or object movement. Therefore, the SESA can
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Fig. 7. The number of stay areas in each trajectory data.

potentially compress the trajectory data at high speeds although this depends
on the location of stay areas in the trajectory data.

Furthermore, based on the compression time in Fig. 6, SESA is faster than
SQUISH-E(μ) throughout the SED threshold. Therefore, SESA is a fast trajec-
tory compression method.

5 Conclusion and Future Work

In this study, we have presented SESA, a fast trajectory compression method
that is an extension of SQUISH-E(μ). The SESA creates sub-trajectories based
on the user stay area extracted from the trajectory data and applies SQUISH-
E(μ) to each sub-trajectory. In evaluation experiments, we compared SQUISH-
E(μ) to SESA based on several evaluation criteria. The results show that SESA
requires approximately one-third of the compression time of SQUISH-E(μ) with
a slight change in the feature retention performance.

We plan to extend this study in the following directions. We will improve the
SESA for a faster compression time. In addition, because SESA is faster with a
more significant number of trajectory segments, we consider using feature points
other than the stay area to extract the points segmented from the trajectory.
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