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Abstract. Social networks are important dissemination platforms that
allow the interchange of ideas. Such networks are omnipresent in our
everyday life due to the explosive use of smartphones. Consequently,
modern social networks have reached a significant number of users, mak-
ing their size huge. Thereby scaling over such large data remains a chal-
lenging task. Reducing social networks’ size is a key task in social network
analysis to deal with this data complexity. Many approaches have been
developed in this direction. This paper is dedicated to proposing a new
taxonomy covering different state-of-the-art methods designed to cope
with the explosive growth of social network data. The suggested solu-
tion to the extensive generated data is to reduce the network’s size. We
then categorized existing works into two main classes that reflect how
the reduced network is generated. After that, we present new directions
for reducing large-scale social network size.
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1 Introduction

Modern social networks have reached an unprecedented number of users [2] due
to their accessible handling. For example, Facebook is the first social network to
surpass 1 billion registered accounts and currently sits at 2.91 millions monthly
active users1 that tag photos of new friends, check up on old ones, and post about
sport, politics, etc [2]. In fact, the classical methods designed for social networks
analysis become inapplicable [1]. In order to handle a such problem, several
works have been developed with the aim of reducing the network’s size while
preserving its original properties. Indeed, reducing the network’s size will serve
to manifold tasks such as influential nodes detection [8], communities selection
[1] and so on.

Reducing a social network’s size aims at finding a representative pattern of
the network while retaining its key properties. Choosing a subset of nodes or/and

1 https://www.statista.com/statistics/272014/global-social-networks-ranked-by-
number-of-users/.
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edges from the original network is the simplest way to form the reduced version
[3]. Many works have been proposed in this direction. In this paper we pro-
vide a state-of-the-art survey on reducing social networks’ size. In this detailed
survey, we divide the existing models into two main categories, graph sampling
and graph coarsening models. Our main concern is to investigate the existing
approaches and compare them according to the preservation of the network prop-
erties. The recent applications of reducing the network ’s size are also surveyed.
Finally, future directions are discussed.

The remainder of this paper is organized as follows: Sect. 2 presents pre-
liminary concepts of reducing social networks’ size. Section 3 is about graph
sampling methods. In Sect. 4 existing models for graph coarsening are discussed.
Section 5 outlines recent applications and the final section concludes this paper
and proposes some future research directions.

2 Preliminaries

2.1 Problem Definition

Since graphs are the privileged mathematical tools to model social networks, we
can define the reduction of a network size as: Given an undirected social graph
G(V,E), with n = |V | nodes and m = |E| edges, the goal is to create a version
G′ having n′ nodes such that n′ << n. The reduced graph G′ should be the most
similar to the initial one G. In other words, G′ conserves structural properties
of G [2]. We will define graph properties in what follows.

2.2 Network Properties

In order to evaluate the efficiency of the reduction method, we should check
some graph properties [5]. Indeed, preserving the original network’s structure
proves the success of the reduction method. Manifold properties were considered
for this task, (e.g. the clustering coefficient, the degree distribution, the graph
diameter,etc).

Definition 1 (Degree Distribution [2]). One of the most relevant and simple
graph properties is the degree distribution Pdeg(k) which can be defined as the
fraction of nodes in the graph having the same degree k [5]. It can be described
formally as:

Pdeg(k) =
|{v; deg(v) = k}|

n
(1)

where deg(v) is the degree of node v.

Definition 2 (Clustering coefficient [2]). Another measure for graph properties
is the clustering coefficient which quantifies the likelihood of two neighbors of a
node being neighbors themselves. Clustering coefficient CC(G) for a given graph
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G is defined as the ratio of the number of triangles to the number of triplets
known as length two paths [6].

CC(G) =
3 ∗ numberTriangles

0.5 ∗ allT riplets
(2)

where allT riplets =
∑n

i=1((|NB(ui)| − 1) ∗ |NB(ui)|) with NB(ui) is the set of
direct neighbors of ui.

Definition 3 (Graph diameter [3]). Diameter D(G) of a graph G can be defined
as the longest distance between all pair of vertices in G. More formally, it can
be described as;

D(G) = maxv∈V R(v) (3)

where R(v) is the radius of a node v, i.e. the maximum shortest path distance
to all other vertices. Since reducing the network’s size will serve to several social
network analysis tasks, we can put forth a practical application of such reduction
to a well known task which is community detection problem. Multiple approaches
have focused on reducing the network’s size as a preliminary step for community
detection from huge networks. In order to test the effect of the reduction strategy,
the clustering quality known as the modularity [7] can be used which is defined
as:

Q =
1

2m

∑

i,j

(Ai,j − kikj
2m

)δ(ci, cj) (4)

where m is the number of edges in the graph G, A represents its adjacency
matrix, ki denotes the degree of a node i, ci is the community to which the
node i is assigned and the function δ(ci, cj) indicates whether nodes i and j are
members of the same community.

A literature review allowed us to distinguish two main families of approaches
for reducing the network’s size that reflect how the reduced version is gener-
ated: graph coarsening and graph sampling. Li-Chun Zang [34] introduced in a
recent work a survey on graph sampling as a representation of relevant units
of a given graph. The paper talks about sampling from different areas includ-
ing real graphs, bipartite graphs and conventional graphs. However, there is a
lack of a clear categorization of graph sampling approaches. In fact, the author
did not illustrate the variety of graph sampling techniques nor their advantages
and limits. A recent survey on graph coarsening [33] was proposed with the aim
to take a broad look into coarsening techniques. The authors started by show-
ing the several techniques of graph coarsening and its applications in scientific
computing with a clear categorization. Then, the emergence of graph coarsening
in machine learning, which is of great interest nowadays, was discussed. How-
ever, only graph coarsening is presented in the paper for reducing graphs’ size,
although we distinguish many techniques for reduction. As for our work, the
main concern is is to investigate the existing approaches and to talk about their
advantages and limits. In this detailed survey, we divide the existing models into
two main categories, graph sampling and graph coarsening models.
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3 Graph Sampling

One of the well known methods for reducing the graph’s size is that of graph
sampling. The main idea of sampling is to find a representative pattern from the
original network while maintaining its properties. Choosing a subset of nodes
or edges from the initial graph is the simplest way to create the sample [2,3].
We distinguish three popular techniques for this family of approaches: Node
Sampling, Edge Sampling and Traversal Based Sampling. Figure 1 describes the
three sampling techniques for selecting six nodes from the original graph.

3.1 Node Sampling

The aim of node sampling technique is to select a set of k nodes then to retain
links between them. The choice of the k nodes can be done randomly. In this
direction, Leskovec et al. [5] have developed the well known approach RN (Ran-
dom Node). It starts by an uniform choice of a subset of nodes and the sample
is created on the basis of the selected nodes and edges connecting them. Even
its simplicity, RN may create samples with isolated nodes. To overcome this
limit, manifold heuristics have been suggested such that RPN (Random PageR-
ank sampling) and RDN (Random Degree Node) [5]. Indeed, the probability of
a node being selected is proportional to its PageRank value for RPN and its
degree for RDN. Based on degree distribution, Zhu et al. [12] proposed two sam-
pling strategies. The first one called NS-d (Node Degree-Distribution Sampling)
tends to create three nodes clusters for high degree nodes, medium degree nodes
and low degree nodes using the k-Means algorithm. As for the second strategy,
it uses the CountingSort algorithm to sort high degree nodes and then to put
them into the reduced graph using a specified sample fraction. Cai et al. [22] pro-
posed two variant algorithms of the existing UNI (uniform sampling) model. In
fact, UNI attributes an uniform sampling probability to each node while ignor-
ing the original network’s structure. To overcome the inefficiency of UNI and
further improve connectivity, the main purpose of the proposed algorithms is to
study nodes distribution and connections between them. The first model called
AdpUNI divides the userID space into several intervals to make an adaptive
change for sampling probabilities. As for the second algorithm AdpUNI+N, it
exploits the neighborhood of nodes to obtain a more representative version of
the original graph. Based on contextual structures, Zhou et al. [21] have trans-
formed vertices into vectors. Then, in order to have a reduced graph with high
quality clusters, nodes are selected from the vectorized space and a sample that
maintains graph connectivity is created.
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Fig. 1. Graph sampling techniques

3.2 Edge Sampling

Edge sampling is the second technique of sampling. It is based on the idea of
choosing a subset of edges at random then including their end nodes in the
reduced graph [5]. Random Edge sampling (RE) is the simplest method in this
line [3]. During edges selection, only the random chosen ones are added to the
sample. A key difference of TIES model (Totally Inducted Edge Sampling) [20] is
that, after choosing an initial set of edges and their end nodes, it adds other edges
that exist in the original graph among any of this sampled nodes. Wang et al.
[9] proposed two algorithms to treat complex networks having a self-similarity
structure. In fact, the authors have investigated relations between edges and
their neighborhood to choose only those caused by self similarity. DGS (Dis-
tributed Graph Sampling) [2] is a recent model designed to sample large scale
networks choosing only important edges. Based on the degree centrality, a new
measure qualifying the network edges called Edge Importance was proposed. For
distribution authors used the MapReduce paradigm [4]. The proposed method
demonstrated its efficiency to preserve the original network’s structure compared
to well known approaches. Similar to DGS, Yanagiya et al. [35] tried to find
important edges. The proposed model starts by converting the original graph
into a line graph in order to represent edges and connections between them.
Then, based on edge smoothness principle, important one are selected to create
the sample.

3.3 Traversal Based Sampling

The last family of approaches is traversal based sampling also known as sampling
by exploration. Indeed, sampling strategy starts with an initial set of nodes, then
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it expands the sample according to some observations. Forest Fire (FF) [5] is
inspired by spreading fire in the woods. It begins by picking an initial seed node,
then, it burns its outgoing links based on a forward burning probability. The
end nodes of the selected edges constitute the next seed set and the process is
repeated until reaching the required sample size. RWS (Random Walk Sampling)
[15] is one of the most commonly used methods in the literature. It starts by
picking an initial seed node at random, then it traverses the graph randomly to
move to a random neighbor. Although RW was proved to be simple, in some
cases, it gets stuck in an isolated component of the graph. A fast and recent
variant called CNARW (Common Neighbor Aware Random Walk) is proposed in
order to speed up the convergence of the RW [11]. The basic idea of CNARW is to
consider common neighbors of the recent visited nodes to choose next step ones.
The proposed scheme reduces RWS cost. DRaWS [16] is another improvement
of the random walk model. This work aims to estimate the degree distribution
and clique structures while reducing computational costs. In fact, for random
walk paths, DRaWS exploits the many-to-one formation between nodes and a
clique and the one-to-many formation between one node and many nodes in
a clique. DRaWS demonstrates an efficiency in both maintaining the graph’s
structure and reducing the computational costs. Rank Degree (RD) [13,15] is
a deterministic graph exploration model. Initially, a set of nodes is selected at
random. Then, for each node, Rank Degree selects top-k highest degree neighbors
and the new nodes are added to the seed set. The process iterates until reaching
the desired sample size.

Node Sampling (NS) and Edge Sampling (ES) are very simple. This is because
samples are created by selecting a subset of nodes (for NS) or a subset of edges
(for ES) randomly or based on some measures such that the degree, the MinCut,
etc. However, in some cases we can not apply NS or ES directly due to some
constraints like the space [3]. In this case, Traversal Based Sampling (TBS)
becomes more suitable for the simple reason that it starts by a few number of
seed nodes and then tries to expand it while traversing the network. It is worth
noting that the three sampling techniques are not totally different. In fact, some
traversal based models are used for NS or ES, for example RWS (Random Walk
Sampling) results in uniform edge distribution.

4 Graph Coarsening

Graph coarsening, also known as multilevel approach, is another line of research
for reducing the network’s size. It is a widely used technique for the resolution of
large scale classification problems. The principle aim of coarsening is to convert
the original network, level by level, into smaller ones. In other terms, starting
from the original graph G, a series of decreasing graphs’ size is created. At each
level i, the construction of Gi is based on the graph Gi−1 generated at the previ-
ous level [2]. In fact, vertices and edges are collapsed to form the new graph. The
choice of vertices or edges to be collapsed can be decided according to several
heuristics [1]. RM (Random Matching) [18] is a first implementation of the mul-
tilevel approach. It starts by the selection of a non-contracted node randomly.
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Then, it matches the selected node with one of its uncontracted neighbors. As a
result, the two nodes are merged into one super-node and the algorithm updates
the graph’s weight. The procedure is stopped when all vertices are marked. In
the same direction, Hendrickson and Leland [18] presented an algorithm that
starts by constructing a sequence of contracted graphs while adding weights on
links and nodes. It is achieved using the maximal cut. Then, the last graph is
partitioned by a spectral way. Finally, this grouping is projected and it is peri-
odically improved with the local refinement algorithm Kernigham and Lin (KL)
[29]. This algorithm has demonstrated good performance, but it requires a lot of
memory to store the graphs during the contraction phase. In fact, another con-
traction strategy generating fewer intermediate graphs would be a way to reduce
this problem. An improvement was introduced in [19] whose particularity lies in
the phases of contraction and refinement. Indeed, a new heuristic is presented
(hard-edge heuristic) as well as a faster variation of KL is used. As for the par-
titioning phase, this method tries to find groups of balanced size. As for Edge
Matching (EM), it aims to find bisection which minimizes the cutting cost. LEM
(Light Edge Mathing) [19] tends to minimize edges’ weight. In effect, it selects
a node u at random. After that, it chooses an uncontracted neighbor v in such
a way that the weight w(u, v) of the edge (u, v) is minimal. Chen et al. [27] pro-
posed an hybrid approach based on three matching schemes. First, this approach
merges two randomly chosen nodes while keeping the links between them, which
guarantees first-order proximity. To guarantee second-order proximity, the sec-
ond matching is based on the idea of merging nodes having common neighbors.
As for the last scheme, it is designed to combine the two previous ones. Another
category of contraction approaches is based on optimizing an objective function.
In this regard, MCCA (Multi-level Coarsening Compact Areas) [1] is proposed
with the aim to minimize the contraction rate. MCCA is designed to merge well
connected nodes at every level, then, to update nodes and edges weight until
a stopping criterion is met. The algorithm proceeds in a greedy way and at
each iteration the number of nodes and edges is reduced. The graph coarsening
schema is stopped when the contraction rate reaches a given threshold. Other
works have opted to maximize the quality of partition based on the modularity
function. In this light was proposed the work of LaSalle et al. [17]. The principal
aim of their method is to visit nodes in a random order and to merge each one
with a non visited neighbor while maximizing the modularity variation. If the
node has an empty neighboring it is shown as contracted. This algorithm pre-
vents big matching in case of power low degree distribution graph. To overcome
this shortcoming, the authors developed another variant called M2M which uses
a jump secondary during matching. It follows the same principle as the previous
method except that if all the neighbors of a node are marked, the latter will
be merged with one of its unmarked neighbors. Therefore, M2M improves the
old version to generate a small size sample. The contraction has affected various
axes in the analysis of social networks, in particular it has been widely used in
network partitioning often known as community detection problem [28]. In this
context, the Louvain algorithm [30] has been proposed by alternating between
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contraction and partitioning. Based on the modularity optimizer, the authors
proposed to assign all the vertices to different partitions according to the opti-
mal modularity. Once arrived at a first optimal situation, the process passes to
the higher level while processing each partition as a vertex. The process con-
tinues until no improvement in modularity is possible. This method solves the
problem of the modularity resolution. However, it offers a result that depends on
the order of node processing. To overcome this shortcoming, a Louvain variant
(with multi-level refinement) is suggested [31]. Another work called SLM (Smart
Local Moving) [32] has been developed with the aim of detecting groups in large
graphs while maximizing modularity. SLM gives higher modularity values than
Louvain, however it requires more calculation time. All the works mentioned
above consider only the network structure. However, semantic measures can be
used to merge nodes or/end edges for graph coarsening [14]. Among this mea-
sures we can talk about homophily [14], which is designed to understand common
interests of the network’s users.

Discussion
To conclude, graph sampling was widely used. It is one of the first typical
thoughts to process massive data. The performance of such strategy is indeed
studied in a number of methods to prove that the initial network’ s structure is
preserved [2]. However, graph sampling has some limits. The first one is that it
requires a prior knowledge of the global graph which is impracticable in certain
cases as in decentralized social networks. Another limit is that, this approach
depends on the network law degree distribution. In other terms, nodes degree
has an impact in sampling the network and in some cases we can obtain a dense
graph or a sample with a distribution different from that of the original one.

In the other hand, graph coarsening was widely used to process large net-
works but there is no theoretical proof that the initial network’ s structure is
preserved [2]. Another limit is that in many cases, there is a large portion of
well connected components which will lead to a poor quality of graph partition-
ing. Graph coarsening has been proved to be more suitable for the community
detection problem [17,19,28].

A summary of the different state-of-the-art approaches is highlighted in
Table 1. This table presents the advantages, limits and complexity analysis of
each approach. We denote by n the number of nodes of a graph G and by m the
number of edges.

5 Recent Directions

In order to reduce the network’s size, the approaches mentioned above take as
input the structure of the entire network. In some cases, due to the distribution of
networks, because of their huge sizes or decentralized controls, it is not possible to
access to the whole network. In this context, we present distributed approaches as
recent directions. Distributed approaches have demonstrated rapidity of imple-
mentation and ability to cope with large scale networks. For example, Zang et
al. [23] used MapReduce-Spark to implement three distributed algorithms. The
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Table 1. Summary on approaches for reducing networks’ size

Family Approach Complexity Advantages Limits

Coarsening RM [18] O(m) - Linear

- Simple

- Damage the quality of partition

Hendrickson et

Leland [18]

- Good performance in a variety

of graphs

- Significant memory

consumption

LEM [19] O(m) - Simple - Contracted graph with high

degree nodes

Chen et al.

[27]

O(n+mlog(n)) - Treat scale free networks

- Conserve the proximity of first

and second order

- Parameterized algorithm

MCCA [1] O(m+nlog(n)) - Conserve the original graph

properties

- Suitable for large scale

networks

- Pseudo-linear time complexity

M2M [17] O(m+n) - A small size contracted graph - Unsuitable for power low

degree distribution networks

SLM [32] - Improve the modularity of the

Louvain algorithm

- Significant calculation time

compared to Louvain

Sampling RN [5] O(n) - Simple strategy for nodes

selection

- Unstable due to its random

strategy

- The low degree distribution is

not conserved

RDN and RPN

[5]

O(m) - Improve the random node

choice by using a specified

heuristic

- RDN: significant number of high

degree nodes

- RPN: dense graphs

Zhu et al. [12] O(ktn)+O(m+n)

with t the

number of

iterations and k

the number of

K-Means

clusters

- Preserve the low degree

distribution

- Limited by the sampling rate

AdpUNI and

AdpUNI+ [22]

- Improve the existing UNI

(uniform sampling) model in

terms of biased sampling

- The sampling size is manually

defined

Zhou et al.

[21]

- Use contextual structures to

create the sample

- Samples with high number of

clusters

RE [5] O(m) - Simple, random choice of edges - The random strategy may

affect the network’s structure

TIES [20] O(m) - Improve the random choice of

RE

- Samples with a significant

number of links

Wang et al. [9] - Low computational complexity

compared to other models

- Networks with self-similarity

structure

DGS O(m) - Scale over huge networks using

distributed edge sampling model

- Preserve the original network’s

properties

Yanagiya et al.

[35]

- Sampling from large scale

graphs

- Experimental study limited on

some edge selection methods

FF [5] - A small size sample

- Conserve structural properties

- Polynomial time complexity

RWS [15] - Simple, choose nodes based on

random walks

- Risk of getting stuck in an

isolated component

DRaws [16] - Improve the choice of nodes

with the simple random walks

strategy

- Require an additional time for

shortest paths calculation

CNARW [11] - Speed up the convergence of

random walk sampling

- Degree distribution deviation

for the created samples

RD [13,15] - Deterministic graph exploration - Parameterized algorithm
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choice of Spark [25] is argued by the fact that this paradigm puts intermediate
data into memory instead of saving it on disk, which makes it much faster. Spark
offers also libraries helping to manipulate data in parallel (e.g. GraphX). Indeed,
in this work the input graph is partitioned using the node cutting strategy by
Graphx and is distributed over a set of machines. Each machine contains one or
more partition(s). For the first distributed sampling algorithm, nodes are selected
randomly from each partition until the desired sample size is reached. For the
second type (distributed edge sampling), a set of links is randomly selected in the
reduced sub-graph. For the last one (topology-based distributed sampling), two
steps are developed. The first step is to label some nodes and the second stage
is designed to sample the graph based on the assigned labels. The advantage
of this work is to draw several comparisons between centralized and distributed
approaches. In this direction, Gomes et al. [24] proposed distributed versions of
some sampling algorithms. In fact, they implemented four distributed versions
of RVS models (Random Vertex Sampling), RES (Random Edge Sampling), NS
(Neighborhood Sampling) and RWS (Random Walk Sampling). Distribution is
performed using the paradigm Spark. Another recent direction is that of using
deep learning to formulate the graph sampling problem as a reinforcement learn-
ing process. In this direction, Wu et al. [10] have adopted a deep learning strat-
egy to make agents able to select nodes at each time stamp. Then the sample
is formed at the end of an episode by the best nodes. Yang et al. [26] have also
investigated the deep reinforcement learning to sample networks using directed
associative graph. The purpose of this work is to preserve the connection rela-
tion of all samples among all episodes. The proposed model demonstrated its
efficiency especially for verifying the directed associative graph criteria.

6 Conclusion

In this paper, we focus on the problem of reducing social networks’ size. Many
current types of research on this problem are developed, and we have discussed
their advantages and limits. Our main contribution is to survey the existing
models for such problems and present a clear categorization of them. Recent
directions for treating large-scale networks are also presented. For the time being,
our immediate concern is to test some efficient models on real-world, large-scale
social networks and to present an experimental study.
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