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Abstract. Face frontalization has been partially solved by deep learning
methods, such as Generative Adversarial Networks (GANs). However,
due to the lack of paired training datasets, current generative models are
limited to specific poses. Similarly, current unsupervised frameworks do
not utilize properties of human faces, which burdens the neural network
training. To improve and overcome current challenges, we design a novel
self-supervised method that takes full advantage of human face modeling
and facial properties. With our proposed method, single-view images
collected in the wild can be utilized in training and testing. Also, the
synthesized images are robust to input faces with large variations. We
utilize the symmetric properties of human face to texture unseen parts
in a human face model. Then, a GAN is used to fix undesired artifacts.
Experiments show that our method outperforms many existing methods.

Keyword: Image processing

1 Introduction

Face frontalization is widely used in face recognition, face editing, and virtual
and augmented reality. The problem of face frontalization is described as rotating
various head poses into the frontal view of a face. As a fundamental challenge in
computer vision, traditional methods do not perform well for this problem. This
is because of the variations in facial details [1]. Most traditional methods struggle
to find corresponding patterns and translate a face with various poses into the
frontal view. However, the advent of the Generative Adversarial Network (GAN)
brings a different aspect to solving the problem of face frontalization. Specifically,
numerous input-output pairs are used for training to find the pattern of the face
rotation for a generator and a discriminator. It is no coincidence that many large-
scale face datasets [2,3,5-7] allow deep Convolutional Neural Networks to train
for pose-invariant recognition. Compared to pose-invariant datasets, collecting
pose-variant datasets (target person is photographed by different angles) is more
expensive. Also, existing pose-variant datasets are not comparable with pose-
invariant datasets in terms of the number of images [8,9]. For example, the
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Multi-PIE face dataset [9] only contains images from 337 people, which is far
less than a wild face dataset [6]. Also, these datasets are usually constrained to a
controlled environment. The trained model only reflects the result from a specific
domain. This kind of model lacks generalization ability. As a result, current
methods which directly apply pose-variant datasets to GANs have difficulty in
achieving promising results [10-14].

To avoid the problems caused by insufficient training datasets, we propose a
novel unsupervised learning structure that allows face frontalization from single-
view images. With this new unsupervised learning structure, all known face
datasets can be used for training. This measure also vastly increases the general-
ization ability of our trained model. Compared to inpainting-based unsupervised
face frontalization methods [16-18], our method further exploits the symmetric
information of a face in a 3D space. This better preserves facial details and
identity information for a GAN. We call our method URSF-GAN (Unsupervised
Rotation and Symmetric Filling Driven GAN).
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Fig. 1. The pipeline our URSF-GAN (Unsupervised Rotation and Symmetric Filling
Driven GAN). Our method supports pose-invariant datasets. In-the-wild single-view
facial images can be directly used in our method. First, an input face image is lifted to
a 3D Morphable Model (3DMM). Then, the model is rotated by an arbitrary angle. We
render the model and lift it back to 3D. A specially designed symmetric repair algorithm
fixes missing textures. We rotate the model back to the front and use Pix2Pix GAN to
eliminate artifacts.

As Fig. 1 shows, our method consists of two main parts. First, the single-
view facial image is tested to see if they are front facing. For front faces, we
lift faces from the 2D plane into 3D. Then, we rotate faces by arbitrary angles.
The rotated faces are rendered into the 2D plane. For these rendered faces, we
lift them into 3D again and rotate them back to the front. Clearly, some facial
textures are hidden due to the arbitrary rotations, such as the opposite side
of the nose bridge. We repair these missing information using the other side of
the face. Until this step we do not use GAN. Nevertheless, the rendered faces
are already good. The reason for using GAN is trying to eliminate the artifacts
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caused by rotation and repairs. The steps above can be described in the following
mathematical way.

Pb = frender (flift (Pa) X Rd)
Pc = frender (flift (Pb) X Rfd ® be)

Here, P, means the original front face input. fi;7+ is the function that lifts
the face into 3D. Ry is a rotation matrix with degree d. f,cnder means rendering
a 3D scene into 2D. P, is the rotated face, and P, is the face rotated back.
Following this order, {P,, P.} becomes the training pair that is ready to fit a
GAN for eliminating artifacts. As for the selection of a GAN, we modify Pix-
to-Pix, which allows it to be more suitable for eliminating artifacts and enhance
facial details. More details will be given in Sect. 3.

Remarkably, differing from previous supervised learning models, our pro-
posed structure can fit any existing human face dataset. Our key contributions
can be summarized as follows:

1. We propose an unsupervised framework that exploits the concept of 3D lifting
and rotation. Single-view face images can be directly used in our framework.
This brings unlimited training data and increases the models generalization
ability.

2. We apply symmetric repair during rotation. It makes training-free facial
images suitable for use. Our approach shifts the training focus of GAN from
inpainting faces to eliminating artifacts, making our network easier to train.
This structure benefits from GANs to generate more photo-realistic face
frontalization results.

2 Related Work

2.1 Traditional Approaches

The problem of face frontalization aims to generate frontalized faces. The clas-
sical approach establishes a 3D model from facial images. Then, the 3D model
can be rotated to the desired position. In a seminal work, 3D Morphable Model
(3DMM) [19] sets a baseline for subsequent studies. 3DMM decomposes facial
shape and appearance into PCA spaces. The decomposed information can be
further analyzed in studies like face reconstruction or face landmark localization
[20]. Based on 3DMM, Claudio et al. proposed an image patch localization and
interpolation method by extracting feature descriptors [21]. However, limited
by the number of feature descriptors, their method cannot keep enough facial
details. Similarly, Zhu et al. proposed a Possion Editing based method to fill the
area occluded by 3DMM rotation [22]. Taking advantage of 3DMM fitting, both
methods can be used in constrained and unconstrained environments. However,
the missing area usually shows more artifacts than deep learning methods.
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2.2 Supervised Learning Approaches

The development of deep learning and GAN drew more activity for solving face
frontalization problems [10-14,16-18]. Tran et al. proposed a method leveraging
a disentangled representation GAN model to learn frontalized face synthesis
[10,11]. Also, the encoder-decoder structure is used to estimate variations in
different faces. However, there are artifacts in their results due to the lack of
effective interpretation from the encoder and decoder. Other than this, Huang
et al. proposed a new GAN structure called TP-GAN to solve the problem of face
frontalization [12]. This GAN structure involves perceiving and analysis of global
structure and local details. They involve a landmark located patch network to
assists encoder-decoder preserving local texture. Similarly, Hu et al. proposed
a GAN structure that is driven by facial landmark heatmaps, which is called
CAPG-GAN [13]. CAPG-GAN also introduces identity information preservation
loss to maintain local textures. Besides this, Yin et al. designed a GAN structure
that incorporates 3DMM [14]. To avoid undesired effects from occlusion, they
also introduce mask symmetry loss to reproduce missing information. Cao et
al. proposed a High Fidelity Pose Invariant Model to solve the problem of face
frontalization [17]. They designed a new texture wrapping method to bind faces
in 2D and 3D surfaces. However, most of the current methods require input-
output pairs for training. As we mentioned before, obtaining paired data is very
expensive. Thus, most of the current GAN methods are trained on the Multi-
PIE dataset. However, the Multi-PIE dataset contains only 337 people, leading
to a lack the generalization ability.

2.3 Unsupervised Learning Approaches

Recently, some research has looked into face frontalization for in-the-wild single
view images. Deng et al. proposed a GAN structure to repair the missing areas
of the facial UV map [16]. Finally, they perform a reconstruction on the repaired
UV map. However, without real 3D rotations, an incomplete UV map cannot
represent the real missing area, causing risks in robustness. Zhou el at. proposed
a GAN inpainting network to fix the missing areas after rotation [18]. However,
the convergence speed of their network is slow due to the lack of missing area pre-
filling. Our approach both preserves facial details and improves training speed.

2.4 Image-to-Image Translation GAN

In recent years, many GAN structures try to solve the problem of image-to-image
translation, which means the input images will be encoded in a low-dimensional
space and stylized for the output [23-26]. Almost all such architectural solutions
include decoders and encoders. However, 5 loss often blurs output images during
decoding. Thus, [ loss is usually used for the Image-to-Image translation GAN
structure. Corresponding loss functions are adapted for specific problems. For
classical network architectures, Pix2Pix focuses on mapping the training pairs by
traditional I3 loss [23]. It is applicable and easy to use for many image-to-image
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translation tasks. Also, collecting paired datasets is expensive. Unsupervised
Image-to-Image GAN structures take advantage of cycle consistency to stylize
the input images [26]. As a classical example, CycleGAN can translate images
without feeding it paired data. Although we have the same goals, face frontal-
ization requires the maximum preservation for identity information and facial
details. Thus, we modify the Pix2Pix method to eliminate artifacts and enhance
facial details.

3 Proposed Approach

3.1 Summary of Our Framework

Our approach can be conceptually divided into two parts. The first part aims
to model, rotate and infer for single-view face images to generate a training
dataset. The second part is to de-fake the inferred faces by an Image-to-Image
translation GAN. We will then explain the implementation details and ideology
behind each part.

3.2 Basic Concepts on Lifting Faces into 3D Space

Due to the needs of our framework, we model the face while preserving almost all
of the facial textures. Currently, many deep learning-based studies are available
to fit faces as 3D parameters. Like many models in 3D space, 3D face models
are defined by their vertices. The mathematical representation is as follows:

Viace = [U1,02,03,...,v,] while v; = [$i>yiyzi]T

Viace 18 the collection of facial vertices. Based on this 3D feature, 3D Mor-
phable Models (3DMMs) allow fitting 3D facial models with given 3D parameters
[19]. Recall the fitting formula:

S=S + Ajqoiq + Aeaﬁpaexp

T= T + Atexatex

Here, S has a similar meaning as V/, i.e., 3D vertex coordinates. S represents
the mean facial shape from 200 young adults (100 male and 100 female). A;q
denotes shape basis. A.;, means expression basis. Here, S, A;q and Aczp are
constant values. With given 3D parameters a;q and acgp, the input 2D facial
images can be fitted into a 3D model. Similarly, 7 means mean texture, and Aye,
represents the texture basis. However, from the perspective of fitting accuracy,
the results of texture fitting are poor. Thus, we restore the texture information
by recording the vertex RGB information for the corresponding 2D face image.
The process of obtaining vertex RGB information can also be called vertical

projection. It can be mathematically expressed as:
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Ci = Hz, 4 (@) while  C; = [ry, g;, bi]"

Here Hz, 4, (Cl) are the vertical projections of vertices at 2D position z;, g;.
Suppose we do not perform the rotation matrix operation after 3DMM modeling.
In this case, we are able to ignore the depth information in 3D space and get all
facial textures if the input image is a frontal face. In other words, if we are only
fitting a face as 3D Morphable Model, the face’s pitch, yaw, and roll will remain
the same as the original 2D facial image. However, if the input image is not a
frontalized face, the problems of occlusion and texture persist. We will discuss
this issue in a later section (Figs. 2, 3, 4 and 5).

Fig.2. The 3DMM fitting and texturing pipeline. The face is fed into 3DDFAv2 to
estimate 3DMM parameters. Then, we lift face images to the 3DMM model. For frontal
faces, we can use the vertical projection directly to obtain the facial texture.

Note that o;q, qegp are two 3D parameters that we need to calculate for a
unique face. We use 3D Dense Face Alignment Version 2 (3DDFAv2) [27], as one
of the most efficient, stable and accurate methods, to model the facial images.
The most crucial core of this method is the 3D-assisted short video synthesis
method, which can simulate in-plane and out-of-plane face movement to convert
a static image into a short video. Then, the model can be trained based on the
short video. Thus, it makes 3D Dense Face Alignment possible for only one input
static image, which matches our need.

Another important concept in our work is rendering. Rendering means pro-
jecting the 3D model into 2D space. Before rendering, the model can be rotated
by a certain Euler angle to the desired position. Mathematically, the step of
rendering can be represented as:

‘/Qd(p) = f *Pr+ R * (S + Aidaid + Aezpaexp) + t2d
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Here, Va4(p) is the projection result. f is the scale factor. Pr repre-
sents the orthographic projection matrix. R is the rotation matrix which con-
tains the Euler angles of pitch, yaw and roll. tog is a translation matrix.
(S + Ajq0uq + Aempaezp) is the 3DMM fitted model.

3.3 Unsupervised Training Strategy

Recall the overview in the introduction section. The purpose of lifting 2D face
images to 3D space and rotating, filling, and rendering is to create effective
training data pairs. The whole set of operations described here (lifting, adding
texture, rotating and rendering) can be replaced by the mathematical notations
{Sa,Tu, Rg, V}. In order to create the input and output datasets, we have to
rotate the face model to the front face position after rotating it by an arbitrary
angle. This means that the above process will be performed twice. In terms of
notation sets, {Sq, Ta, Ro, Vs, Sp, R—g, T—qa, Ve} can represent the entire process.
Among them, since the input face image must be a frontal face, the facial texture
information would be completely obtained. However, when faces are rotated by
an Euler angle, there will be some missing texture patches on the model. Thus,
to solve this problem, we first need to find the location of missing patches.

Fig.3. For vertices that have different depths, only the vertex in the surface can
obtain the correct texture when rendering a 3D model. In this example, the orange
vertex is visible, and the gray vertex is invisible.

Recall the vertical projection C; = Hgz, 4, (Cl) while C; = [ri,gi,bi]T. Now,
we consider the depth information z;. Due to the properties of the projection, the
texture information is valid only when it first crosses the surface of the object.
So, within the same coordinate, only the uppermost z value will yield the correct
texture information. The remaining vertices are invisible due to occlusion. Thus,
we modify the original vertical projection formula and categorize the vertices
into two classes (with and without visible texture).

o — Vyisib = Ci =Haz, 4, ((EZ) while C;= [ri,gi,b:]" and i= argmax (z,v,Vz)
' Vinvisib = C; = {z,y,Vz;} \ argmax (z, y, Vz;)
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Here, Vs can only be vertices that are located at the surface of the object.
For the remaining vertices with lower depth, we consider them as invisible ver-
tices and do not add texture on them.

As an intuitive idea to filling the V;,yisip, the perpendicular distance between
an invisible vertex to the face midline can be calculated. Based on this distance,
we can find the vertex that is perpendicular to the midline at the other half of
the face. Thus, we can find a one-to-one correspondence for the left and right
face vertices. Mathematically, it can be represented as:

d (Vimidiine ) =| V; L midline |
Vi = —d (Vimidiine ) L midline

Here, Vj/ is the corresponding vertex. d (v;~midline) is the Euclidean distance
between the current vertex to the point perpendicular at midline. Since we com-
pute the distance, we can find the corresponding vertex. Finally, the texture
information (RGB value) for invisible vertices can copy and paste vertices from
another half of the face.

However, this intuitive idea does not produce good results. There are two
main reasons. First, during face photography, different parts of the face are
exposed to different light levels. This also results in a small area of the face
being affected by the shadow. At the same time, such an effect is difficult to
completely remove by normalization and other methods. In regular modeling,
the shaded part of the face will feel natural because of the smooth transition.
However, if we force the corresponding positions of the left and right faces to be
swapped, the vertex textures at the missing positions will make the overall look
feel abrupt. Second, the human face is not perfectly symmetrical from left to
right. If we do not use a landmark to determine the position of the face’s organs,
direct left-right swapping usually does not perfectly match the corresponding
positions. Thus, using an intuitive idea would lead to massive artifacts, which
inevitably affect the analysis of GAN in the next step.

Considering the above, we perform a pre-component before the symmet-
ric copy. By landmark detection of the base 3DMM face model, we perform a
regional division for the left and right faces. The region can be divided as eyes,
nose, mouth and other parts for each left and right faces. For each classification,
if there are vertices that are not visible in this classification, we swap and copy
directly from the other half of the face that is visible. Furthermore, suppose
more than two classifications have invisible vertices. This case indicates that we
have a large missing range and we directly copy the other half of the face to the
invisible part. The advantage of this approach is that only a small amount of
artifacts appear in the marginal parts of each category. Also, these artifacts are
patterned. This weakens the difficulty when analyzing input-output pairs in the
next step of GAN.

Piett = Pright While V; € Pright v left (1)
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Here, P represents the parts for eyes, nose, mouth, and other parts of one
side of the face. The texture value can be found in the corresponding part if the
current part has invisible vertices.

Fig. 4. Comparison of texturing with and without restoration. The left image is the
original facial image. The middle image is texturing result without restoration. The
right image is the texturing result with our restoration method. When there is no
repair, the occluded vertices will also get texture information from the corresponding
2D position for the image. This causes the model texture to be normal on one side of
the face and distorted on the other side. We added detection and repair for texture.
The model obtained is almost free of artifacts. The results are already in a usable state
even before processing by GAN.

3.4 Photo-Realization by URSF-GAN

In order to achieve photo-realistic results, we need to eliminate artifacts by apply-
ing an Image-to-Image translation network. Again, compared to other GAN-
based methods for encoding 2D facial images or inpanting missing parts, we
have less burden on the network. Thus, we choose Pix2Pix as the base network
to translate the images. We have made small modifications to this network. We
trained the network on RTX 2080*2. Eventually, after three hours of training,
the network can generate realistic facial images.

URSF-GAN uses U-Net as its Generator. The reason is that our task needs to
translate from one facial image to another. That is, the input and output need to
be roughly aligned. Although the input and output differ in surface detail, they
have the same underlying general structure. U-Net can be employed to capture
both underlying structure and high-level semantic information.

To train our network, we apply the conditional GAN loss defined as:

»CcGAN (G7 D) = Em,y[log D(LE, y)]+
E, .[log(1 — D(z,G(z, 2))], arg rrgn mgxﬁcGAN(G’, D).

Here, D(z,y) is the probability of the target facial image being real. (1 —
D(z,G(x, z)) is the probability of the generated facial image being real. Thus,
the generator tries to minimize the loss, and the discriminator tries to maximize
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Fig.5. The GAN structure of our URSF-GAN method. We have two differences from
the original Pix2Pix. First, we embed the degrees when the model is rotated back.
Second, we add random Gaussian noise to the input face image to avoid over-fitting.

the loss. Also, current research show that [y loss empirically leads to blurry
output [28]. We involve the [; loss to avoid blurred images. This is expressed as:

L11(G) = Eey 2 [lly — Gz, 2)|1]
Eventually, the final loss function for our URSF-GAN generator is:

G* = arg mGin ml%LX LCGAN(Gy D) + )\ﬁLl(G)

Before training, random Gaussian noise is added to the input facial images
to avoid over-fitting. Then, to standardize the face size, we use a face detection
algorithm on the image dataset to crop the images. Besides this, we also embed
the 3D model rotation degree since we found that higher degree tends to have
a wider face and lower light. Embedding the rotation degree helps the network
analyze the repairing environment. The whole network setup is shown below.

Our model is tested differently than the way it is trained. For testing, the face
image is lifted to a 3D model. The same method of obtaining textures requires
the occluded texture to be repaired. Then, the model is rotated to a frontal face.
Finally, the rendered model is used as the model input for the GAN. There is
no need to add random noise during testing.



Unsupervised Rotation and Symmetric Filling Driven GAN 69

4 Experiments and Evaluations

4.1 Experimental Settings

We use the CelebA dataset for preprocessing and training. CelebA contains
202599 face images [29]. Among all facial images, we pick the first 60000 for
training purpose, and use 5000 images (index from 60000 to 65000) for testing.
Before training, we perform facial detection based on the Dlib C++ Library to
standardize the face size. Then, each face image is modeled after rotation by
10 different arbitrary angles. After this, the face models are rotated back, filled,
and rendered. The abovementioned steps allow us to create training input-output
pairs. These data is run for 50 epochs. After that, the training data is discarded,
and new training data needs to be generated by performing the abovementioned
steps again.

Our model is trained in the Pytorch 1.6 environment with 2 * RTX 2080
settings. The size of input and output is 100 % 100 x 3. During the preprocessing,
we add Gaussian noise to input images with mean 0 and standard deviation
1. We choose the Adam optimizer to optimize the network with 8; = 0.5 and
B2 = 0.999. The learning rate is 0.0001. The model is well-trained after 400
Epochs.

4.2 Evaluation

Within the field of face frontalization, most of the methods do not have pub-
licly available source code. Thus, we directly use the demonstration images of
various papers for comparison. Figure 6 shows the result of comparison between
our URSF-GAN and other state-of-the-art methods. Since we cannot find the
original facial images, we just show screenshots from other papers. Thus, the
input resolution in our method is very low. However, although our method has
low resolution, it still generates good results.

LFW-3D HPEN Input Yim et al DR-GAN

Ghodrati et al GSP-GAN Our

(d

Input TP-GAN  HF-PIM

Input

Fig. 6. Results of comparison with other popular methods.
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4.3 Comparison with Other Methods

We analyze the results from different methods. Figure 6 contains four comparison
pairs (a), (b), (¢) and (d). For (a), as a critical issue, LEFW-3D [15] and HPEN
[22] do not rotate the face into an exact frontal position. For each method, LEW-
3D uses a single, unmodified 3D reference for all input faces to generate frontal
images. Apparently, a single reference cannot adapt well to all human faces,
which leads to significant misalignment of the results. HPEN also employs a
method that combines 3D modeling and interpolation. However, without further
artifact elimination, the results have significant distortions at the facial bound-
ary. Compared to other methods, our URSF-GAN generates a true frontal face
and maximally preserves facial details.

For (b), since TP-GAN [12] takes a supervised method to train the net-
work, it has chromatic aberration problems in the output. Specifically, their
chromatic aberration is biased towards the chromatic aberration used in the
MultiPIE dataset [9]. This also demonstrates the lack of generalization capa-
bility for supervised methods at the current stage. HF-PIM [17] decomposes
the facial rotation problem into dense field estimation and facial texture map
recovery. However, both TP-GAN and HG-PIM cannot fully rotate the face into
frontal faces. Finally, our method has some problems in the nose tip area, where
we recover some parts of the nose tip as bread. We believe this is because of the
low input resolution. Our 3D facial model contains 38365 vertices, which is larger
than the number of input pixels. Thus, when we fit the model, many vertices
will share the same pixel value. This leads to misalignment when we recover the
model. Besides this issue, our URSF-GAN can rotate the input faces quite well.

For (c), Yim et al. proposed a method that only utilizes DNN instead of
GAN [31]. Their DNN can decode, rotate and reconstruct the final image. How-
ever, for image synthesis, DNN is inferior to GAN. Their result has issues in
reconstructing glasses. DR-GAN [10] is deficient in terms of retaining identity
information. Also, the synthetic human facial image has problems on the face
contour and positions. Our method is better at preserving identity information.
One small drawback is that our method does not have satisfactory restoration
for the right side of the glasses. This is due to the inability of 3DMM in modeling
accessories like glasses. Thus, accessories are directly captured as skin texture,
which influences the accuracy of positions after rotation. Fixing this problem
will be the key focus of our future research in 3D-based modeling.

For (d), Ghodrati et al. proposed a two-stage DNN method to generate and
refine the frontal face [32]. Their result is excessively smooth and hardly conveys
the effect of light and shade when a person is photographed. The result for GSP-
GAN [33] has good resolution. However, it cannot fully preserve the identity
information. After comparison, we found that our method performed best in
terms of overall performance.

4.4 More Results for CelebA Dataset

Figure 7 shows more testing results for CelebA dataset. In this figure, we roughly
divide the results into three categories (faces rotated in minor degree, moderate
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Minor Degree

Fig. 7. More results on CelebA dataset.

degree and large degree). The left is the input face and the right is the out-
put. By comparison among three categories, our facial identity feature decays
slowly as the rotation degree increases. Benefitting from the strategy of mod-
eling rotation, this strategy also limits the facial details that are generated by
GAN, which simplifies the inference processing and leads to the preservation of
identity feature. Facial recognition results from Sect. 4.5 also proves this point.

4.5 Face Recognition Results

We also perform the face recognition test on Multi-PIE dataset with baseline
of LightCNN [30]. The quantitative results show that our method has greater
robustness when rotating faces with larger angles (Table1).

Table 1. Face recognition correct rate by Light CNN on the Multi-PIE dataset.

Angle 30° 1 45° | 60° | 75° | 90°
FF-GAN 92.5 89.7 |85.2 77.2 | 61.2
TP-GAN 98.1 954 |87.7 77.4 64.6
CAPG-GAN 99.6 97.3 90.3 76.4 66.1
URSF-GAN (Our) | 91.4 |90.7 88.6 |81.3 70.8

5 Conclusion

We designed an unsupervised face frontalization model based on 3D rotation
and symmetric filling. Then, image translation GAN was used to fix artifacts.
Compared to other unsupervised GAN models, our model reduces the GAN’s
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burden from inpainting to fixing artifacts, which makes our model easy to train.
Results show that our model can generate photo-realistic frontal face images. For
faces with large angles, our method can preserve more identity information than
other state-of-the-art methods. In the future, we want to embed our method with
the supervised structure to improve robustness when people wear accessories or
are occluded by others.
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