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Abstract. Visual defect detection is critical to ensure the quality of
most products. However, the majority of small and medium-sized man-
ufacturing enterprises still rely on tedious and error-prone human man-
ual inspection. The main reasons include: 1) the existing automated
visual defect detection systems require altering production assembly
lines, which is time consuming and expensive 2) the existing systems
require manually collecting defective samples and labeling them for a
comparison-based algorithm or training a machine learning model. This
introduces a heavy burden for small and medium-sized manufacturing
enterprises as defects do not happen often and are difficult and time-
consuming to collect. Furthermore, we cannot exhaustively collect or
define all defect types as any new deviation from acceptable products are
defects. In this paper, we overcome these challenges and design a three-
stage plug-and-play fully automated unsupervised 360◦ defect detection
system. In our system, products are freely placed on an unaltered assem-
bly line and receive 360◦ visual inspection with multiple cameras from
different angles. As such, the images collected from real-world product
assembly lines contain lots of background noise. The products face dif-
ferent angles. The product sizes vary due to the distance to cameras. All
these make defect detection much more difficult. Our system use object
detection, background subtraction and unsupervised normalizing flow-
based defect detection techniques to tackle these difficulties. Experiments
show our system can achieve 0.90 AUROC in a real-world non-altered
drinkware production assembly line.

Keywords: Visual defect detection · Normalizing flow · Object
detection · Background subtraction · Computer vision

1 Introduction

Visual defects have a significant impact on the quality of industrial products.
Small defects need to be carefully and reliably detected during the process of
quality assurance [1,2]. It is important to ensure the defective products are
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identified at earlier stages, which prevents a negative impact on a company’s
waste, reputation and additional financial loss. In recent research, visual defect
detection has been increasingly studied again with deep learning approaches and
has improved quality control in the industrial field [3,4]. However, visual defect
detection is still challenging due to 1) collecting defective samples and manually
labeling for training is time-consuming; 2) the defects’ characteristics are difficult
to define as new types of defects can happen any time; 3) and the product videos
or images collected from SME’s non-altered assembly lines usually contain lots
of background noise as shown in Fig. 1, since a well designed production lines
that can ensure high quality product videos or images can be prohibitively costly
for SMEs. The results of defect detection become less reliable because of these
factors.

Fig. 1. Examples of video collected from a real-world bottle manufacturer. It demon-
strates the complexity and unpredictability of image background noise that could hap-
pen in a small to medium sized factory.

Most existing defect datasets [5] are either for one scenario (e.g. concrete, tex-
tile, etc.) or lack of defect richness and data scale. The popular anomaly defection
dataset [5] is too “perfect” (e.g. all products are perfectly aligned in the center
of the image, with clean and simple background) which cannot represent the
realistic setup in SME factories or requires challenging perfect pre-processing
(e.g. background removal, re-lighting, etc.). Specifically, the dataset is limited
to a few categories of products and a smaller number of samples [1,2,6]. To
ensure our experiments’ realism and applicability, we introduce a new dataset
collected from a commercially operating bottle manufacturer located in China.
This dataset includes 21 video clips (with 1634 frames) consisting of multiple
types of bottle products with both good samples with perfect surface and defec-
tive samples with less detectable scratches. An example of different types of
collected bottles is shown in Fig. 2. These videos are provided by ZeroBox.

Since specialized cameras and well-designed turing assembling lines are too
expensive for SME factories, it is highly desirable to have a fully automated
defect detection system with minimal cost that can be plug-and-play added to the
existing production lines. In this paper, we propose a three-stage deep learning
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powered, fully automated defect detection system based on object detection,
background subtraction and normalizing flow-based defect detection. The system
we proposed uses three novel strategies:

1. a novel object detection is used to narrow down the searching window and
realign the product from each input video frames,

2. a novel video matting based background subtraction method is used to remove
the background of the detected image so that the defect detection model can
focus on the product,

3. and a semi-supervised normalizing flow-based model is used to perform prod-
uct defect detection.

Extensive experiments are conducted on a new dataset collected from the
real-world factory production line. We demonstrate that our proposed system
can learn on a small number of defect-free samples of single product type. The
dataset will also be made public to encourage further studies and research in
visual defect detection.

Fig. 2. Samples of the ZeroBox bottle product dataset. Defective parts are labeled in
the red squares. (Color figure online)

2 Related Work

Since this paper focus on an end to end three stage network for product defect
detection, in this section, we will focus on the three areas of object detection,
background subtraction and visual defect detection.

2.1 Object Detection

Object detection refers to the operation of locating the presence of objects with
bounding boxes [7,8]. The types or classes of the located objects in an image
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are classified by the model with respect to the background. Currently, deep
learning-based models are state-of-the-art on the problem of object detection.
Top detection frameworks include systems such as deformable parts models,
Faster R-CNN, and YOLO.

Deformable part models (DPM) [9] use a disjoint pipeline with a sliding
window approach to detect objects. The system is disparate and only the static
features are extracted. Faster R-CNN [10] and its variants utilize region proposals
to find objects. The pipeline of Faster R-CNN consists of a convolutional neural
network, an SVM, and a linear model. However, each of the stages needs to
be finetuned precisely and independently. It can not be applied to real-time
situations due to the slowness of the overall system.

In 2016, J. Redmon et al. introduced a unified real-time object detection
model called “You only look once” (YOLO). Unlike DPM and Faster R-CNN,
YOLO replaces disparate parts to a single convolutional neural network. It
reframes object detection as a regression problem that separates bounding
boxes spatially and associates them with their class probabilities [11]. YOLO
is extremely fast, reasons globally, and learns a more generalized representation
of the objects. It achieves efficient performance in both fetching images from
the camera and displaying the detections. However, YOLO struggles with small
items that appear in groups under strong spatial constraints. It also struggles to
identify objects in new or unusual configurations from data it has not seen during
the training [11]. Still, YOLO is so far the best objection detection algorithm.

2.2 Background Subtraction

Background subtraction is a technique that is widely used for detecting moving
objects in videos from static cameras and eliminating the background from an
image. A foreground mask is generated as the output, which is a binary image
containing the pixels belonging to the moving objects [12,13]. The methods of
background subtraction for videos include video segmentation and video mat-
ting.

In video segmentation, pixels are clustered into two visual layers of foreground
and background. In 2015, U-Net [14] was proposed for solving the problem of
biomedical image segmentation. The architecture of this network is in the shape
of a letter “U”, which contains a contracting path and an expansive path. A
usual contracting layer is supplemented with successive layers and max-pooling
layers. The other path is a symmetric expanding path that is used to assemble
more precise localization. However, excessive data argumentation needs to be
applied to retain a considerable size of features if there is a small amount of
available training data.

Video matting, as another method of background subtraction, separates the
video into two or more layers such as foreground, background and alpha mat-
tes. Unlike video segmentation which generates a binary image by labelling the
foreground and background pixels, the matting method also handles those pixels
that may belong to both the foreground and background, called the mixed pixel
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[12,13]. Recently, Background Matting V2 (BGM V2) has achieved the state-of-
art performance to replace the background in a real-time manner [15]. The first
version of Background Matting (BGM) was initially proposed to create a matte
which is the per-pixel foreground colour and alpha of a person in 2020 [16]. It
only requires an additional photo of the background that is taken without the
human subject. Later, Background Matting V2 (BGM V2) is released to achieve
real-time, high-resolution background replacement for video conferencing. How-
ever, in the final matting results, there is still some residual from the original
background shown in the close-ups of users’ hairs and glasses. However, in real
industry environment, since the foreground object in each frame can be different,
the generated composite mask cannot always fully remove all the background,
therefore, the performance is not promising for unseen foreground object.

2.3 Defect Detection

In recent years, convolutional neural networks began to be applied more often to
visual-defect classification problems in industrial and medical image processing.
The segmentation approach plays a significant role in visualized data’s anomaly
detection and localization since it can not only detect defective products but
also identify the anomaly area.

Autoencoder has become a popular approach for unsupervised defect seg-
mentation of images. In 2019, P. Bergmann et al. proposed a model to utilize
the structural similarity (SSIM) metric with an autoencoder to capture the inter-
dependencies between local regions of an image. This model is trained exclusively
with defect-free images and able to segment defective regions in an image after
training [17].

Although segmentation-based methods are very intuitive and interpretable,
their performance is limited by the fact that Autoencoder can not always yield
good reconstruction results for anomalous images. In comparison, the density
estimation-based methods can perform anomaly detection with more promising
results.

The objective of density estimation is to learn the underlying probability
density from a set of independent and identically distributed sample data [18].
In 2020, M. Rudolph et al. [19] proposed a normalizing flow-based model called
DifferNet, which utilizes a latent space of normalizing flow to represent normal
samples’ feature distribution. Unlike other generative models such as variational
autoencoder (VAE) and GANs, the flow-based generator assigns the bijective
mapping between feature space and latent space to a likelihood. Thus a scoring
function can be derived to decide if an image contains an anomaly or not. As
a result, most common samples will have a high likelihood, while uncommon
images will have a lower likelihood. Since DifferNet only requires good product
images as the training dataset, defects are not present during training. Therefore,
the defective products will be assigned to a lower likelihood, which the scoring
function can easily detect the anomalies [19]. However, the normalizing flow
based method cannot perform end to end defect detection task.
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Fig. 3. Overview of our proposed system. Phase 1: our system first takes video clips
as input and utilizes YOLO to detect and draw bounding boxes on each product in
each frame. Phase 2: after YOLO detection, a pre-trained background matting model
is applied along with our novel background subtraction algorithm to remove the back-
ground noises surrounding the product within the bounding box. Phase 3: the processed
product images are further passed into the flow-based defect detection model to gen-
erate a normal distribution. After training the model, a scoring function is used to
calculate likelihoods against the good sample’s distribution to classify the input sam-
ple as defective or normal. We also created a visualization model to generate a video
output with the bounding box and predicted label on each frame.

3 Our Approach

In this paper, we propose a low cost plug-and-play fully automated 360◦ deep
learning defect detection system. Without requiring any major re-design of the
existing production line, the system is a simple add-on “box” to the existing
process. It utilizes multiple low-cost cameras to capture the product images from
different angles to ensure all important visual areas are covered at least once.
Then the captured images are used as the input in our proposed deep learning
based system to perform defect detection. The overview of the proposed system’s
pipeline is shown in Fig. 3.

The general stages and tasks within our proposed product defect detection
system can be divided into three main components, which are the object detec-
tion (Sect. 3.1), the background subtraction (Sect. 3.2) and the defect detection
(Sect. 3.3).

3.1 Novel Object Detection Based on Deep Learning and Traditional
Computer Vision Algorithms

Our system takes videos of products captured by four cameras installed on the
assembling line as input. These cameras are arranged 90◦ apart around a center
spot where all products will pass through along the assembling line. The 4 camera
inputs are fed into the system independently so there is no complication of
synchronizing all cameras.

In the video input, the product is moving on the convey belt viewed by a
static camera. Therefore the position of the product in each frame is different. In
our defect detection model, we focus on the product, eliminate the unnecessary
information from each frame (such as background) and thus we decided to adopt
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a pre-trained YOLOv5 [11] object detection model to narrow down the defect
detection searching window on input images collected from each cameras. The
pre-trained YOLOv5 model was further fine-tuned with the ZeroBox dataset.

Even though YOLOv5 is able to detect product position for each frame of
the video input, it is computationally too slow to continuously use YOLOv5
for all videos frames from all 4 cameras on a modest computer without GPU.
In order to reduce the computational workload, a traditional computer vision
based motion detection algorithm is utilized to first identify when a product
has moved into the center of each camera view on the conveyor belt and then
YOLOv5 is utilized only once per object instead of on all frames of the video
stream. The traditional computer vision based motion detection algorithm we
designed contains two parts, first, we calculate the absolute difference between
each two frames, and then we dilute the image to make the differences of moving
object more clear. Second, we set up a 400 by 400 pixels square region of interest
set in the middle of the camera view, so it will start triggering YOLO only when
the moving object entirely appear within the region of interest.

At the end of the object detection stage, the product will be realigned into
the center of the bounding box, and around 80% background information will be
eliminated from the original input frames. The output will be further normalized
to a 512 by 512 pixels image, and we use On

i refers to the original images taken
for i− th object from n− th view, after object detection, we got detected object
Dn

i for each object and each view respectively.

fdetection(On
i ) = Dn

i (1)

3.2 Novel Background Subtraction Based on Video Matting
and Traditional Computer Vision Algorithms

At the end of the object detection stage, most of the background has been
removed by the pre-trained YOLOv5 algorithm. However, as depicted by Fig. 3,
YOLOv5 would still keep a small margin around the product itself. The back-
ground in the margin makes it difficult for defect detection algorithms since
background can vary significantly from image to image and is often mistreated
as defective. Since YOLOv5 is only able to identify objects by rectangular boxes,
this problem is particularly challenging for products that don’t fit snugly in the
bounding box such as some of the products shown in Fig. 2 (for example the
cone shaped bottles and those with smaller necks).

To overcome this problem, an image background subtraction model is further
utilized to remove the background in each YOLOv5 bounding box. After object
detection and background subtraction, the processed images will be 100% of the
product itself and then suitable to be passed on to defect detection phase.

We use the background matting technique from pre-trained BGMv2 [15] to
draw a mask to remove the background. However, the matting performance is
not very reliable. The mask generated in each frame is slightly different from the
mask generated in other frames. To overcome this issue, we propose to linearly
add the masks that are generated in all bounding boxes from sequential video
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Fig. 4. Examples of mask generated in different stages. (a) Mask generated using
BGMv2 on first frame of the black bottle product. (b) Composite first 10 masks gen-
erated using BGMv2 on first 10 frames. (c) The composite mask generated using the
entire video dataset. (d) The 10% shrink and padding-resize of composite mask to
minimize the background from each frame.

frames as a composite mask. In other words, in the single product video input,
we will generate one single mask to segment the product and background in
every single frame. Then we use the composite mask to remove the background
from each bounding box generated by pre-trained YOLOv5 in each frame. We
use Mn

i refers to the mask generated for i − th object on the n − th view from
the differentiable matting function:

fmatting(Dn
i ) = Mn

i (2)

Since the foreground object in each frame can be different can have mul-
tiple products on the conveyor, the generated composite mask cannot always
fully remove all the background, therefore, the performance is not promising for
unseen foreground object. As shown in Fig. 5(b), the bottom of the image still
include some conveyor belt portion which is considered as the background noise.
To solve this problem, we further shrink the final mask by 10%, and the mask
is then padded to the original size as shown in Fig. 4(d).

The re-scaled mask can ensure all the background are removed in every frame.
The areas near the boundaries of the product can also be masked, so our defect
detection model might miss the defects in these boundary regions. However,
this problem is compensated by the fact multiple cameras are employed in the
system: most defects missed in one camera near the product boundary is fully
visible close to the center view of another camera.

Yin = concatenate(Dn
i − fre(Mn

i )) (3)

where fre is the shrink function and the final result for each object after back-
ground removal will be further concatenated as yin which is used as the input
feature in the next stage.
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Fig. 5. Examples of results after background removal using composite masks. (a) Ideal
background subtraction using composite mask (b) Some cases that the composite mask
cannot remove all the background due to the product might not be in the center of the
image.

3.3 Defect Detection Using Normalizing Flow Based Model

Fig. 6. Architecture of one block of normalizing flow based model proposed in Real-
NVP [20].

After object detection and background subtraction, the processed images are
further resized to the size of 448 by 448 pixels that only contains the product
information excluding any background noise. Then the processed images are fed
into a normalizing flow model to output a normal distribution by maximum
likelihood training.

We adopted the design of coupling layers as proposed in Real-NVP [20],
each individual layer of the normalizing flow based model is shown in Fig. 6.
yin which is the concatenated pre-processed images from four different angles,
is split into yin,1 and yin,2 that manipulate each other by applying scale (

⊙
as

the element-wise product) and shift operations are described by:

yout ,2 = yin ,2 � es1(yin ,1) + t1 (yin ,1)

yout ,1 = yin ,1 � es2(yout ,2) + t2 (yout ,2)
(4)

where s and t are differentiable functions implemented as a fully connected net-
work with a soft-clamping as our activation for better convergence:

σα(h) =
2α

π
arctan

h

α
(5)
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The goal of the normalizing flow based model is to maximize likelihoods for
input features y which are quantifiable in the latent space Z, which is equivalent
to maximizing the log-likelihood, which is also equivalent to minimizing the
negative log-likelihood loss L(y):

log pY (y) = log pZ(z) + log
∣
∣
∣det ∂z

∂y

∣
∣
∣

L(y) = ‖z‖2
2

2 − log
∣
∣
∣det ∂z

∂y

∣
∣
∣

(6)

To classify if an input image is anomalous or not, our model uses a scoring
function T (x) that calculates the average of the negative log-likelihoods using
multiple transformations of an image.

A(x) =

{
1 for τ(x) ≥ θ

0 for τ(x) < θ
(7)

The result will compare with the threshold value θ which is learned during
training and validation process and is later applied to detect if the image con-
tains an anomaly or not, where A(x) = 1 indicates an anomaly. Based on our
experiments, we found 55.11 is the best threshold for our cases. More implemen-
tation details and threshold selection strategy along with experiment results are
shown in the next section.

After defect detection, the information include anomaly prediction and pre-
dicted bounding box will be plot onto the original product video input as our
visualized video output. The example frame of output result can be found in
Fig. 3. Since we have four cameras to capture the 360◦ images of the product,
the product will be classified as defective if any of the cameras detects a defect.

4 Experiments and Results

In this section, we evaluate the proposed system based on real-world videos
provided by a factory in China. First, we briefly introduce the dataset that is
used in the following experiments. Then, the results of several representative
experiments are studied along with visual statistics. Since the complexity of
experiments primarily stems from the noisy background in the video inputs, our
experiments will solely concentrate on logo-free products and group them into
single and multiple product categories for experiment purposes.

4.1 Dataset

In this paper, we evaluate our defect detection system based on videos recorded
from real life. For fair and reliable experiment results, ZeroBox Inc. has created
a brand new dataset collected from an industrial production line monitoring
system. This dataset includes 21 video clips in total which consists of 13 types
of products with both good and defective samples. Some of the product sam-
ples are shown in Fig. 2. In addition, there are 1381 good product images and
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Fig. 7. Example images from the ZeroBox dataset of products from a real-world bottle
factory. Figure 7(a) and Fig. 7(b) show examples of the original image and cropped
images of a good product. Figure 7(c) and Fig. 7(d) show examples of the original and
cropped images of a defective product (the defect is labeled in the red square). (Color
figure online)

253 defective product images generated through YOLO detection and cropping.
Examples of defective and defective-free samples are presented in Fig. 7.

Since our normalizing flow-based defect detection model utilizes semi-
supervised learning, it only requires approximately 150 good sample images to
efficiently learn how to use a simple normal distribution to represent the complex
distribution of a group of good samples. Within our experiments on the product
of a white jar and a black jar, a total of 150 good sample images are used for
training. Another 121 sample images are used for validation, and the rest of 47
sample images are used for testing purposes. For both validation and testing, a
mixture of good and defective samples is used to evaluate the proposed system.

4.2 Implementation Details

For all experiments, we train our system for 10 meta epochs. Each meta epoch con-
tains 8 sub epochs which result in a sum of 80 epochs. Additional transformation
settings are applied to manipulate and adjust brightness, contrast and saturation
for the input images.During our experiments,wemanipulated the contrast, bright-
ness and saturation of the product images with a uniformly distributed random
factor in the interval of [0.5, 1.5] to pre-process input video frames. Results in later
sections also compare each experiment outcome while including or excluding this
process from the experiment. Although the model DifferNet proposed in the paper
[19] does not need defective samples during training, this process is still necessary
for validation. In fact, the validation process plays a critical role in determining the
threshold of the anomaly score. Within the evaluation stage, our proposed system
will be validated once at the end of each epoch based on the anomaly score calcu-
lated from the current training stage.

During the testing stage, the threshold for detection is chosen based on the
corresponding true-positive rate and false-positive rate of the trained model and
a given true-positive rate as the target used for training purposes. More specifi-
cally, the threshold value has the true-positive rate greater than our target-true
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positive rate but the smallest false-positive rate will finally be chosen in the
testing process to reflect the performance of our system. In order to predict
if a given input sample has a good or a defective product in it, we will use
the aforementioned threshold to evaluate. If the predicted anomaly score pro-
vided by the model is less than the threshold, this sample will be classified
as good. Otherwise, the sample is classified as a defective one. Within each
meta epoch, the corresponding Area Under Receiver Operator Characteristics
(AUROC) along with the calculated threshold values and anomaly scores on
our validation dataset for the system are computed and saved for later evalua-
tion stages. The metric AUROC is calculated using build-in roc curve function
imported from scikit-learn library [21]. In the last meta epoch, the system’s
aforementioned parameters are saved into the system as well for evaluation.
After training and evaluation, the test accuracy is calculated based on the per-
centage of the test dataset that is correctly classified. Moreover, a ROC curve
is plotted at the end of the training and testing process and is saved locally for
further analysis and exploration.

4.3 Evaluation

Our proposed system is tested on two products; one is jars with black visuals
and the other is jars with white visuals to compare and report the performance.
The two jars are in a shape that is very similar to a cone with no logo on their
surfaces. Moreover, we have compared the performance of the system trained on
two different types of input images along with the performance of the original
differNet [19]. The two types of input images that our model was trained on
are product images with cropping and product images with a mask used for
background removal. From our experiments, the best performance occurs on the
input images using the strategy of mask for background removal with a target
true positive rate set to 0.85 in training. Since many of the defects happen
far from the edges of the product from the input frames, an extra 10% mask
extension can further enhance the performance and achieve a promising test
accuracy. As a result, the accuracy of defect detection is increased by 20% with
a final test accuracy above 80% as our best performance from the proposed
system. Later experiments also show that the effect of background factors in
each frame can be further reduced by extending the mask. Detailed experiment
results are displayed in the following sections.

Experiment results are displayed in detection accuracy and its calculated
threshold for each trial and are compared for each of the aforementioned strate-
gies in the tables below. Table 1 presents the detailed performance of detection
in terms of test accuracy and its corresponding anomaly threshold on the black
jar product. Experiments with and without the image transformation process
(manipulation of contrast, brightness and saturation settings of input images)
are performed for comparison. Two experiment settings are applied which include
using images with cropping technique or using images with a mask. From Table 1
and Table 2, the original model of differNet [19] achieves the same test accuracy
before and after adding the transformation process. With a 10% cropping on
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each side of the image, our proposed system can obtain a better result on defect
detection with cropping performed during training. Finally, with an adaptive
mask applied to the input images, our proposed system can obtain the best
result of 87.00% as the test accuracy in all the experiments and a value of 55.11
as the corresponding anomaly threshold on defect detection while the mask helps
sufficiently eliminate other factors that potentially affect the accuracy in perfor-
mance.

Table 1. Performance of detection on images of black jar represented in Accu-
racy/Threshold.

Accuracy/Threshold Without transformations With transformations

differNet 24.19%/4.55 24.19%/15.88

(Ours)with 10% Cropping 61.29%/84.5 75.81%/13.91

(Ours)with Mask 67.42%/12.79 87.00%/55.11

Table 2 presents the detailed performance of detection in test accuracy and
its corresponding threshold on the product of the white jar under the same test
setup. Test results are compared with and without the image transformation
process for each proposed strategy. In this case, the proposed system has achieved
a generally higher test accuracy on images under image transformation settings.
The best performance still happens in the case which utilizes the adaptive mask
to eliminate the impact from the background.

Table 2. Performance of detection on images of white jar represented in Accu-
racy/Threshold.

Accuracy/Threshold Without transformations With transformations

differNet 24.87%/1.71 24.87%/1.85

(Ours)10% Cropping 65.88%/35.76 74.11%/3.79

(Ours)with Mask 67.27%/8.89 83.63%/8.76

5 Conclusion

In this paper, we introduce a new dataset for product visual defect detection.
This dataset has several challenges regarding defect types, background noise,
and dataset sizes. We have proposed a three-stage defect detection system that
is based on the techniques of object detection, background subtraction and nor-
malizing flow-based defect detection. Finally, extensive experiments show that
the proposed approach is robust for the detection of visual defects on real-world
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product videos. In the future, we plan to work on using background and fore-
ground segmentation with an end-to-end trained mask to eliminate the back-
ground noise in images identified by YOLO. Also, more data samples will be
collected for training, validation and testing.
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