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Abstract. This article studies the linear ordering problem, with appli-
cations in social choice theory and databases for biological datasets.
Integer Linear Programming (ILP) formulations are available for linear
ordering and some extensions. ILP reformulations are proposed, showing
relations with the Asymmetric Travel Salesman Problem. If a strictly
tighter ILP formulation is found, numerical results justify the quality of
the reference formulation for the problem in the Branch&Bound conver-
gence. The quality of the continuous relaxation allows to design rounding
heuristics, it offers perspectives to design matheuristics.
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1 Introduction

A bridge between optimization and Machine Learning (ML) exists to optimize
training parameters of ML models, using continuous optimization and meta-
heuristics [18,19]. Discrete and exact optimization, especially Integer Linear
Programming (ILP), is also useful to model and solve specific variants of clus-
tering or selection problems for ML [5,6]. In this paper, another application of
ILP to learning is studied: the Linear Ordering Problem (LOP). LOP is used
in social choice theory to define a common consensus ranking based on pair-
wise preferences. If many applications deal with a small number of items to
rank, bio-informatics applications solve specific LOP instances of large size as
medians of permutations [2,3]. An ILP formulation is available for LOP with
constraints defining facets [10,11]. An extension of LOP considering ties relies
on this ILP formulation [2]. Current and recent works focus on consensus ranking
for biological datasets, and use specific data characteristics of these median of
permutation problems for an efficient resolution [1,14]. This paper analyzes the
limits of state-of-the art ILP solvers to solve LOP instances. Several alternative
ILP formulations are designed using recent results on the Asymmetric Traveling
Salesman Problem (ATSP) from [15]. Comparison of Linear Programming (LP)
relaxations illustrates and validates polyhedral analyses, as in [15]. The practical
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implication of polyhedral work is analyzed on the resolution using modern ILP
solvers, as in [4]. Lastly, the quality of LP relaxation is used to design variable
fixing matheuristics, as in [7]. Variants of variable definitions and ILP Formula-
tions are recalled in Tables 1 and 2.

Table 1. Definitions of variables in the ILP formulations

Variables Definitions

xi,j ∈ {0, 1} xi,j = 1 iff item i �= j is ranked before j

yi,j ∈ {0, 1} yi,j = 1 iff item i �= j is ranked immediately before j

fi ∈ {0, 1} fi = 1 iff item i is the first item of the ranking

li ∈ {0, 1} fi = 1 iff item i is the last item of the ranking

ni ∈ [0, N − 1] ni − 1 gives the position of item i in the ranking

zi,j,k ∈ {0, 1} zi,j,k = 1 for i �= k and j �= k iff i is ranked before j

and item j is ranked immediately before k

z′
i,j,k ∈ {0, 1} z′

i,j,k = 1 for i �= j �= k iff i is ranked before j and j is before k

2 Problem Statement and Reference ILP Formulation

LOP consists in defining a permutation of N items indexed in [[1;N ]], while
maximizing the likelihood with given pairwise preferences. wi,j � 0 denotes the
preference between items i and j: i is preferred to j if wi,j is higher than wj,i.
A ranking is evaluated with the sum of wi,j in the N(N−1)

2 pairwise preferences
it implies. Each permutation of [[1;N ]] encodes a solution of LOP, there are N !
feasible solutions. The reference ILP formulation, given and analyzed in [10,11],
uses binary variables xi,j ∈ {0, 1} such that xi,j = 1 if and only if item i is
ranked before item j in the consensus permutation. With such encoding, one
computes the rank of each item i with 1 +

∑
j �=i xj,i. ILP formulation from [11]

uses O(N2) variables and O(N3) constraints:

max
x�0

∑

i�=j

wi,jxi,j (1)

xi,j + xj,i = 1 ∀i < j, (2)
xi,j + xj,k + xk,i � 2 ∀i �= j �= k, (3)

Constraints (2) model that either i is preferred to j, or j is preferred to i.
Constraints (3) ensure that xi,j variables encode a permutation: if i is before j
and j before k, i.e. xi,j = 1 and xj,k = 1, then i must be before k, i.e. xi,k = 1
which is equivalent to xk,i = 0 using (2). Constraints (2) and (3) are proven to
be facet defining under some conditions [11].

Note that some alternative equivalent ILP were formulated. Firstly, the prob-
lem is here defined as a maximization, whereas it is considered as a minimization
of disagreement in [2]. Considering w′

i,j = wj,i or w′
i,j = M −wi,j , where M is an
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upper bound of weights wi,j , it allows to transform minimization into maximiza-
tion. Secondly, equations (3) are equivalently written as xi,k − xi,j − xj,k � −1
in [2]. Formulation (3) is symmetrical, and was also used for the ATSP [17]. To
see the equivalence, we use that −xi,k = xk,i − 1:

xi,k − xi,j − xj,k � −1 ⇐⇒ −xi,k + xi,j + xj,k � 1
xi,k − xi,j − xj,k � −1 ⇐⇒ xk,i − 1 + xi,j + xj,k � 1
xi,k − xi,j − xj,k � −1 ⇐⇒ xk,i + xi,j + xj,k � 2

3 From ATSP to Consensus Ranking, Tighter
Formulations

LOP and ATSP feasible solutions may be encoded as permutations of [[1;N ]],
order matters for cost computations. If any LOP solution is a permutation, ATSP
solutions are Hamiltonian oriented cycles. LOP solutions can be projected in a
cycle structure, adding a fictive node 0 such that w0,i = wi,0 = 0 opening and
closing the cycle: x0,i = 1 (resp xi,0 = 1) expresses that i is the first (resp
last) item of the linear ordering. This section uses polyhedral work from ATSP
to tighten the reference formulation for LOP [15]. For ATSP, binary variables
yi,j ∈ {0, 1} are defined such that yi,j = 1 if and only if j is next item immediately
after item i, for i �= j ∈ [[1;N ]]. Equivalently to consider a fictive node 0, we define
binary variables fi, li ∈ {0, 1} such that fi = x0,i = 1 (resp li = xi,0 = 1) denotes
that item i is the first (resp last) in the linear ordering. Having these variables
x, y, l, f induces another ILP formulation for LOP, denoted SSB for ATSP [17]:

max
x,y,f,l

∑

i�=j

wi,jxi,j (4)

xi,j + xj,k + xk,i � 2 ∀i �= j �= k, (5)
yi,j � xi,j ∀i �= j, (6)

xi,j + xj,i = 1 ∀i < j, (7)
∑

i fi = 1 (8)
∑

i li = 1 (9)
li +

∑
j �=i yi,j = 1 ∀i, (10)

fi +
∑

j �=i yj,i = 1 ∀i, (11)

Objective function differs from ATSP: a weighted sum of y, f, l variables is
minimized for ATSP [17]. For ATSP, x variables were used only to cut sub-
tours, whereas it is necessary for LOP to write a linear objective function. The
constraints are identical for ATSP and LOP once variables x, y, f, l are used.
Constraints (5) and (7) reuse (2) and (3). Constraints (10) and (11) are ATSP
elementary flow constraints: for each item there is a unique predecessor and
a unique successor, 0 as node successor or predecessor implies variables fi, li
are used. Unicity constraints (8) and (9) are ATSP elementary flow constraints
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arriving to and leaving from the fictive node 0. SSB can be tightened in the SSB2
formulation, replacing constraints (5) by tighter constraints (12) from [17]:

∀i �= j �= k, xi,j + yi,j + xj,k + xk,i � 2 (12)

Sub-tours between two cities (or items) may have a crucial impact in the res-
olution, as in [5]. Having variables x and constraints (5) and the tighter variants
implies the other sub-tours between two items. Indeed, yi,j+yj,i � xi,j+xj,i = 1.
Constraints (13) are sub-tour cuts between node 0 and each item i > 0, these
are known to tighten strictly SSB2 formulation [17]:

∀i, fi + li � 1 (13)

Another formulation was proposed for ATSP without constraints (5), but
with linking constraints yi,j − xk,j + xk,i � 1, to induce the same set of feasible
solution [9]. These constraints can be tightened in two different ways:

∀i �= j �= k, yi,j + yj,i − xk,j + xk,i � 1 (14)

∀i �= j �= k, yi,j + yk,j + yi,k − xk,j + xk,i � 1 (15)

Tightening only with (14) and (15) induce respectively GP2 and GP3 formu-
lations for ATSP [9]. A strictly tighter formulation, denoted GP4, is obtained
with both sets of constraints [15]. A strictly tighter formulation is also obtained
adding (12) to (14) and (15) for ATSP. Numerical issues are to determine whether
the quality of LP relaxation is significantly improved after tightening for LOP.

4 Other ILP Reformulations

In this section, alternative ILP reformulations for LOP are provided, adapting
other formulations from ATSP. Firstly, a formulation with O(N2) variables and
constraints is given, before three-index formulations with O(N3) variables.

4.1 ILP Formulation with O(N2) Variables and Constraints

Similarly with MTZ formulation [13], O(N) additional variables ni ∈ [[0, N − 1]]
directly indicate the position of the item in the ranking :

max
x,n�0

∑

i�=j

wi,jxi,j (16)

xi,j + xj,i = 1 ∀i < j, (17)
nj + N × (1 − xi,j) � ni + 1 ∀i �= j, (18)

ni +
∑

j �=i

xi,j = N − 1 ∀i, (19)

ni ∈ [0, N − 1] ∀i (20)
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Note that as for MTZ formulation, variables ni can be declared as continuous,
feasibility of (18) and bounds (20) implies ni ∈ [[0, N − 1]]. Objective function
(16) and constraints (17) are unchanged. Constraints (18) are similar with MTZ
constraints: if i is ranked before j, i.e. xi,j = 1, then it implies nj � ni + 1, N
is a “big M” in this linear constraint. If (17) and (18) are sufficient to induce
feasible solutions for the ILP, constraints (19) complete (18) without using any
“big M”. Indeed, ci =

∑
j �=i xi,j counts the number of items after i, so that for

each i, ci+ni = N −1. As big M constraints are reputed to be weak and inducing
poor LP relaxations, a numerical issue is to determine the difference with the
continuous relaxation when relaxing also constraints (18) and (19).

Note that this relaxation has trivial optimal solutions, considering xi,j = 1
and xj,i = 0 for i �= j such that wi,j � wj,i. Hence, following upper bound is
valid, and also larger than any LP relaxation for LOP:

UB =
∑

i<j

max(wi,j , wj,i) (21)

4.2 Three-Index Flow Formulation

Another three index formulation, tighter than GP2, GP3 and GP4, was proposed
for ATSP [9]. Adapting this formulation to LOP, one uses binary variables zi,j,k ∈
{0, 1} for i �= k and j �= k defined with zi,j,k = 1 if and only if i is ranked
before j (not necessarily immediately before) and j is ranked immediately before
k. First and last items are still marked with binaries fi, li ∈ {0, 1}. Binaries
xi,j , yi,j ∈ {0, 1} are then defined by xi,j =

∑
k zi,j,k + lj and yi,j = zi,i,j .

max
z,l,f�0

∑

i�=j

wi,j

(

li +
∑

k

zi,j,k

)

(22)

li +
∑

k zi,j,k + lj +
∑

k zj,i,k = 1 ∀i < j, (23)
∑

i fi = 1 (24)
∑

i li = 1 (25)
li +

∑
j �=i zi,i,j = 1 ∀i, (26)

fi +
∑

j �=i zj,j,i = 1 ∀i, (27)
zi,j,k � zj,j,k ∀i, j, k, (28)

Constraints (23) and (24)–(27) are respectively constraints (7) and (8)–(11)
replacing x, y occurrences by the linear expressions using z, l variables. A similar
operation allows to write the objective function (22) using z, l variables. Con-
straints (28) model that zi,j,k = 1 implies that j is ranked just before k and
thus zj,j,k = 1. This formulation has O(N3) variables and O(N3) constraints
only because of constraints (28). It is possible to preserve the validity of the
ILP while having only O(N2) constraints replacing flow constraints (28) by the
aggregated version:

∀j, k,
∑

i

zi,j,k � Nzj,j,k (29)
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4.3 Another Three-Index Flow Formulation

In another three-index formulation, binary variables z′
i,j,k ∈ {0, 1} are defined

such that for i �= j �= k, z′
i,j,k = 1 if and only if items i, j, k are ranked in this

order. In this ILP formulation, we keep variables xi,j , it induces the valid ILP
formulation for LOP:

max
x,z�0

∑

i�=j

wi,jxi,j (30)

3z′
i,j,k � xi,j + xj,k + xi,k ∀i �= j �= k (31)

z′
i,j,k + z′

i,k,j + z′
j,i,k + z′

j,k,i + z′
k,j,i + z′

k,i,j = 1 ∀i �= j �= k, (32)

Constraints (31) are linking constraints among variables x, z: z′
i,j,k = 1

implies xi,j = xj,k = xi,k = 1. Constraints (32) express that each triplet
i �= j �= k is assigned in exactly one order in a permutation, replacing con-
straints of type xk,i + xi,j + xj,k � 2. Constraints (32) induce that this ILP
formulation has also O(N3) variables and O(N3) constraints. Note that a sim-
ilar constraint can be defined as cut for the previous ILP formulation, with an
inequality:

zi,j,k + zi,k,j + zj,i,k + zj,k,i + zk,j,i + zk,i,j � 1 (33)

Table 2. Summary of implemented formulations, their denomination, the sets and
asymptotic number of variables and constraints

Formulation Variables Constraints nbVariables nbConstraints

LOP ref x (2), (3) O(N2) O(N3)

LOP SSB2 x, f, l, y (6)–(11), (12, (13) O(N2) O(N3)

LOP GP3 x, f, l, y (6)–(11), (15) O(N2) O(N3)

LOP MTZ x, n (17), (19) O(N2) O(N2)

LOP flowGP z, f, l (23)–(27), (28) O(N3) O(N3)

LOP flowGP aggr z, f, l (23)–(27), (29) O(N3) O(N2)

LOP flow2 x, z′ (31), (32) O(N3) O(N3)

5 Computational Experiments and Results

Numerical experiments were proceeded using a workstation with a dual processor
Intel Xeon E5-2650 v2@2.60GHz, using at most 16 cores and 32 threads in total.
Cplex version 20.1 was used to solve LPs and ILPs. Cplex was called using
OPL modeling and OPL script languages. LocalSolver in its version 10.5 was
used as a heuristic solver benchmark to compare primal solutions when optimal
solutions are not proven. The maximal time limit for Cplex and LocalSolver
was set to one hour, Cplex was used with its default parameters. For reuse and
reproducibility, OPL and LocalSolver codes and generated instances are available
online at https://github.com/ndupin/linearOrdering.

https://github.com/ndupin/linearOrdering
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5.1 Data Generation and Characteristics

It was necessary to generate specific instances for this study. As mentioned by
[1,14], instance characteristics are crucial in the resolution difficulty. In many
social choice applications and datasets, N is small, exact resolution with formu-
lation LOP ref is almost instantaneous. For the biological application, N is very
large but median of permutations among similar permutations is easier than gen-
eral instances. In the extreme case where wi,j coefficients encode a permutation
(median of 1-permutation, trivial problem), trivial bounds UB give the optimal
value, and LP relaxations of every ILP formulation give the integer optimal solu-
tion. For this numerical study, as in [15], quality of polyhedral descriptions are
analyzed on the implications on the quality of LP relaxation using diversified
directions of the objective function. Three generators were used for this study:

• aleaUniform (denoted aUnif): wi,j for i �= j are randomly generated with a
uniform law in [[0, 100]].

• aleaSum100 (denoted aSum): uniform generation in [[0, 100]] such that wi,j +
wj,i = 100: for i < j wi,j is randomly generated in [[0, 100]] and wj,i is then
set to wj,i = 100 − wi,j .

• aleaShuffle (denoted aShuf): max(N/2, 20) random permutations are gen-
erated (with Python function shuffle), wi,j are then computed using Kendall-τ
distance and Kemeny ranking, as in [1–3].

A fourth generator was coded, as in aleaShuffle, but generating small pertur-
bations around a random permutation. Actually, the results were very similar for
ILP formulations to the 1-median trivial instances. Real-life structured instances
for median of permutations are much easier than random instances. The gener-
ators allow to analyze the impact of structured instances.

Number of items N was generated with values N ∈ {20, 30, 40, 50, 100}. For
N ∈ {20, 30, 40}, the Best Known Solution (BKS) are optimal solutions proven
by Cplex. For N ∈ {50, 100}, LocalSolver always provides the BKS. There is also
no counter-example where LocalSolver does not find a proven optimal solution
in one hour, we note that LocalSolver is also efficient in short time limits. For
each generator and value of N , 30 instances are generated and results are given
in average for each group of 30 similar instances, with the denomination XX−N
where XX ∈ {aUnif,aSum,aShuf}. Lower and upper bounds v(i) on instance i
are compared with gaps to BKS, denoted BKS(i):

gap =
| v(i) − BKS(i) |

BKS(i)
(34)

5.2 Comparing LP Relaxations

To analyze the quality of polyhedral descriptions recalled in Table 2, Table 3
presents gaps of LP relaxations of ILP formulations for LOP and the naive
upper bound (21). Table 4 presents the computation time for LP relaxations,
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Table 3. Comparison of the average gaps to the BKS for the LP relaxations of formu-
lations recalled in Table 2 and the naive upper bound (21)

Instances (21) ref/SSB2 GP3 MTZ flow-GP flow-GP-agg flow2

aUnif-20 12,86% 0,02% 10,49% 10,84% 5,22% 11,53% 12,86%

aUnif-30 14,86% 0,17% 13,20% 13,39% 7,34% 13,98% 14,86%

aUnif-40 16,98% 0,60% 15,68% 15,78% 9,22% 16,16% 16,98%

aUnif-50 17,84% 1,12% 16,80% 16,86% 10,22% 17,17% 17,84%

aUnif-100 21,65% 3,17% 21,10% 21,11% – 21,25% 21,65%

aSum-20 19,00% 0,05% 15,56% 16,13% 7,26% 17,23% 19,00%

aSum-30 21,96% 0,31% 19,53% 19,84% 10,25% 20,45% 21,96%

aSum-40 24,40% 1,18% 22,52% 22,70% 12,53% 23,21% 24,40%

aSum-50 26,24% 2,25% 24,71% 24,83% 14,16% 25,23% 26,24%

aSum-100 31,44% 4,97% 30,64% 30,65% – 30,84% 31,44%

aShuf-30 1,93% 0,00% 1,39% 1,42% 0,29% 1,89% 1,93%

aShuf-40 1,44% 0,00% 1,18% 1,18% 0,42% 1,42% 1,44%

aShuf-50 1,41% 0,00% 1,18% 1,18% 0,44% 1,40% 1,41%

aShuf-100 1,80% 0,02% 1,65% 1,55% – 1,80% 1,80%

to highlight the impact of the number of variables and constraints recalled in
Table 2. These tables illustrate the difficulty of instances, aShuf are easy instances
with good naive upper bounds and LP relaxations. Datasets aSum and aUnif
induce more difficulties with worse continuous bounds, and aSum is even more
difficult than aUnif.

Contrary to ATSP where GP2, GP3, SSB2 are not redundant [15], (3) induces
much better LP relaxations for LOP than (14) and (15). Adding (14) and (15) in
ILP formulations with (3) or (12) does not induce any difference in the quality
of LP relaxation. It explains why in Table 2, we remove constraints of type (3)
to compare quality of LP relaxations. An explanation is the different nature of
LOP and ATSP problems because of different objective functions: if polyhedrons
defined by constraints are identical, objective functions with weighted sums in
x or y change the projection on the space of interest.

Flow formulation flow-GP improves significantly the quality of LP relaxation
of GP3, as for the ATSP, but it is still significantly worse than SSB formulations.
Computation time of LP relaxation is much higher with flow-GP, computations
were stopped in one hour without termination for N = 100. With aggregation
(29) instead of (28), LP relaxation is computed quickly, but the quality of LP
relaxation is dramatically decreased, the continuous bounds are close to the
naive upper bounds (21). MTZ adaptation has the quickest LP relaxation, but
the continuous bounds are close to the ones of GP3. Last flow formulation always
provides exactly the naive upper bounds (21), constraints (33) do not tighten
flow-GP formulation, this result differ from [16].
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Table 4. Comparison of the average time (in seconds) to compute LP relaxations for
ILP formulations recalled in Table 2

Instances ref SSB2 GP3 MTZ flow-GP flow-GP-agg flow2

aUnif-20 0,04 0,14 0,32 0,00 1,21 0,06 0,07

aUnif-30 0,28 0,75 1,08 0,01 7,62 0,18 0,25

aUnif-40 0,49 2,27 3,58 0,03 38,60 0,53 0,83

aUnif-50 0,95 5,59 10,55 0,12 173,49 1,36 2,32

aUnif-100 26,63 278 839 1,04 – 18,24 54,61

aSum-20 0,04 0,17 0,33 0,00 1,20 0,06 0,07

aSum-30 0,29 0,77 1,08 0,01 7,48 0,19 0,25

aSum-40 0,50 2,12 3,43 0,03 37,10 0,55 0,83

aSum-50 0,95 5,65 10,74 0,12 168,24 1,40 2,27

aSum-100 27 282,46 819 1,75 – 17,40 55,63

aShuf-30 0,06 0,24 1,04 0,01 6,18 0,18 0,27

aShuf-40 0,16 0,84 3,73 0,04 26,86 0,49 0,74

aShuf-50 0,33 2,17 11,63 0,13 98,88 1,32 2,13

aShuf-100 17,7 353,5 1360 1,76 – 16,45 51,34

LP relaxation of LOP ref is of an excellent quality, which illustrates polyhe-
dral results and proven facets from [11]. In Table 2, LOP ref and SSB2 formu-
lations have the same values: except on three instances, LP relaxation are the
same (with a tolerance to numerical errors on the last digit). On instance num-
ber 27 in aUnif-20 and instances number 17 and 29 in aSum-20, SSB2 improves
the reference formulation around 0.01%, making a difference of one unit in the
integer ceil rounding of the continuous relaxation. With additional experiments,
the difference is only due to (3) instead of (12), no difference was observe adding
only (13). These results proves that LOP SSB2 is in theory strictly tighter than
LOP ref, but with small and rare improvements.

5.3 Comparing Branch and Bound Convergences

Now, we compare the impact of modeling LOP with LOP ref and LOP SSB2,
in the Branch&Bound (B&B) convergence. Table 5 analyzes the impact of Cplex
cuts and heuristics at the root node, before branching in the B&B tree. If
LOP SSB2 improves slightly LP relaxation quality, the open question is to deter-
mine if additional variables and constraints help modern ILP solvers detecting
other structures for cut generation, as in [4]. For LOP, computations at the root
node of B&B tree are much slower with SSB2, coherently with the higher number
of variables, but the efficiency of cuts and primal heuristics is significantly worse
with the heavier SSB2 formulation. Having a larger ILP model, slower matrix
operations for generation of cutting planes are needed by Cplex, and this stops
earlier cuts that would have been generated using LOP ref formulation, the size
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Table 5. Comparison of Lower Bounds (LB) and Upper Bounds (UB) of formulations
LOP ref and LOP SSB2 after Cplex cuts and heuristics at the root node (i.e. before
branching). Common UB with the LP relaxation are also provided for comparison.

LP UB LB time UB LB time

ref,SSB2 ref SSB2

aUnif-20 0,02% 0,00% 0,00% 0,1 0,00% 0,00% 0,4

aUnif-30 0,17% 0,00% 0,00% 1,5 0,09% 0,50% 14

aUnif-40 0,60% 0,44% 0,22% 30,5 0,52% 4,58% 159

aUnif-50 1,12% 0,96% 0,82% 212,9 0,98% 5,27% 1336

aUnif-100 3,17% 3,07% 5,49% 3600 3,15% 7,37% 3600

aSum-20 0,05% 0,00% 0,00% 0,12 0,00% 0,00% 0,55

aSum-30 0,31% 0,02% 0,02% 2,0 0,16% 0,79% 20

aSum-40 1,18% 0,75% 0,32% 64 0,95% 5,08% 296

aSum-50 2,25% 1,82% 0,95% 297 1,95% 6,72% 989

aSum-100 4,97% 4,82% 6,87% 3600 4,95% 9,62% 3600

aShuf-30 0,00% 0,00% 0,00% 0,14 0,00% 0,00% 0,86

aShuf-40 0,00% 0,00% 0,00% 0,37 0,00% 0,00% 2,9

aShuf-50 0,00% 0,00% 0,00% 0,90 0,00% 0,00% 8

aShuf-100 0,02% 0,02% 0,02% 477 0,02% 6,02% 3395

of ILP matrix is crucial here, contrary to [4]. Table 5 shows that few improve-
ment of LP relaxation is provided at the root node of B&B tree, cuts are not
very efficient to improve the LP relaxation, which was of a good quality. This
explains the difference in the B&B convergence in one hour allowing branching,
LOP ref formulation is largely superior. For some instances with N = 40 or
N = 50, LOP ref can converge in ten minutes whereas a significant gap between
lower and upper bounds remains after one hour for LOP SSB2. This definitively
validates the LOP ref formulation as baseline ILP model for [2].

5.4 Variable Fixing Heuristics

The excellent quality of the LP relaxation with LOP ref formulation allows to
use continuous solutions of LP relaxation to design primal heuristics as in [7].
Variable Fixing (VF) denotes here a heuristic reduction of the search space based
on the LP relaxation, to set integer values to variables in the ILP resolution. One
may use a VF preprocessing for variables with an integer value in the continuous
relaxation, expecting that these integer decisions are good. Generally, it makes a
difference to apply VF preprocessing on zeros and ones in the LP relaxation, as
in [7]. There are in general many possibilities of VF preprocessing, considering
also specific rules to select a subset of variable to fix [7].

For LOP, imposing xi,j = 1 (resp 0) implies xj,i = 0 (resp 1) with constraints
(2), so that fixing only ones or only zeros are equivalent to fix all the integer vari-
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ables, contrary to [7]. Note that constraints (3) may induce continuous solutions
xi,j = xj,k = xk,i = 2/3, so that rounding such variables induces infeasibility on
(3) constraints. This property does not hold when rounding to ones only vari-
ables that are superior to 0.7 Hence, two VF strategies were implemented, on one
hand fixing the integer value, and on the other hand considering the threshold for
rounding to 0.8. Actually, there were slight differences for these two strategies.
Experiments also used the quick MTZ relaxation, this significantly degraded the
performance of the VF heuristic.

Table 6 compares the gap to BKS and computation time using the VF pre-
processing to LOP ref formulation. For small and easy instances where LOP ref
gives optimal solutions, the degradation of the objective function is small with
the VF heuristic, speeding up significantly the computation time. For the largest
instances with N = 100, VF matheuristic is significantly better than the exact
resolution, illustrating the difficulty of the ILP solver to find good primal solu-
tions with its primal heuristics. The primal solutions of matheuristic are in this
case also significantly worse than the ones of LocalSolver, the VF speed up is
not sufficient to reach an advanced phase of the B&B convergence.

Table 6. Comparison of gaps to BKS and computation time of Cplex in ILP solving
using the reference formulation, without and with Variable Fixing (VF) preprocessing
on integer values in the LP relaxation of the reference formulation. BKS are optimums
for N � 40, for N � 50 BKS were given by LocalSolver

Instances LB time (sec) LB time (sec)

ref ref + VF

aUnif-20 0,00% 0,1 0,01% 0,04

aUnif-30 0,00% 1,5 0,04% 0,62

aUnif-40 0,00% 30,5 0,17% 13

aUnif-100 5,49% 3600 2,36% 3600

aSum-20 0,00% 0,13 0,05% 0,06

aSum-30 0,00% 2,1 0,09% 0,77

aSum-40 0,00% 63,5 0,43% 12,7

aSum-100 6,87% 3600 3,14% 3600

aShuf-30 0,00% 0,13 0,00% 0,03

aShuf-40 0,00% 0,37 0,00% 0,08

aShuf-50 0,00% 0,92 0,00% 0,12

aShuf-100 0,00% 1820 0,00% 35,7

6 Conclusions and Perspectives

If the reference ILP formulation seemed to be improvable using ATSP results,
only a slightly tighter ILP formulation is obtained after this reformulation work.
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Analyzing the ILP convergence with a modern ILP solver shows that the LP
relaxation is of an excellent quality with the reference formulation, but is fewly
improved after with cuts and branching. Note that these reformulation issues
were an open question raised by [12]. Also, primal heuristics are not efficient on
the problem, a basic VF matheuristic significantly improves the primal solutions
for difficult instances. Furthermore, this paper illustrates the graduated difficulty
of instances, structured instances from the biological application as median of
permutations are easier that random instances of LOP.

These results offer perspectives for the biological application also with the
extension with ties [1]. Matheuristics can be used in this context, combined to
specific reduction space operators related to the easier median of permutation
instances [1,14]. Perspectives are also to combine matheuristics and local search
approaches which are efficient for the problem, as shown by LocalSolver bench-
mark on this study, and also by [8,12], to solve larger instances (N � 100).
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