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Abstract. This paper aims to present an approach to generalisation of
performance measures commonly used in binary classification to the field
of multinomial classification to use them in hyperparameter estimation
for various machine learning methods and similar techniques. The classi-
cal approach is to use a binary classification wherein each representative
of any incorrect class is considered as a representative of an umbrella
class being a union of all incorrect classes. Such an approach leads to
the removal of important information from the classification process and
therefore to the lower value of each experiment for the determination
of the gradient when trying to optimise hyperparameters. We propose
aggregated performance measures that can be thought of as an analogue
of classical ones. The proposed measures better represent the multino-
mial nature of such algorithms and obtain more valuable information
that allows selecting the correct direction while analysing the gradient
of the resulting measures.

Keywords: Multi-class classification · Multiclass classification ·
Multinomial classification · Performance · Sensitivity · Specificity ·
Accuracy

1 Introduction

Classification is one of the most popular problems in terms of the application
of machine learning [1,2] or generally, statistics-based techniques. It is widely
used in many different fields, from the classification of obstacles of flying UAVs
[3], to the classification of patients potentially suffering from neurodegenerative
diseases [4], to facial recognition [5]. Many classification algorithms are depen-
dant on hyperparameters, which have to be adjusted in order for the algorithm
to work properly in a given domain. This becomes computationally expensive if
multiple classifiers are used to lower the error probability [6]. Such adjustment
is rarely based on domain knowledge, often done in an automatic way by search-
ing the hyperparameter space for the optimum performance of the classification
obtained, which can also be a stop criterion for neural network training [7–9].
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Few measures of performance are as prevalent in terms of usage as a tool in
the evaluation of a specific parameterisation of the algorithm as the Accuracy
itself, defined in binary classification as a ratio of correctly evaluated data points
to all of them (Eq. 1). Its popularity is mainly caused by an easy interpretation
as a fraction which has been correctly classified. The main issue with using
Accuracy is that it is not very informative. Parameterisations that allow for
many possibly harmless false positives result in the same value as in the case of
equally many possibly disastrous false negatives and the other way around.

ACC =
TP + TN

TP + TN + FP + FN
(1)

To distinguish between such situations, True Positive Rate (TPR) and True
Negative Rate (TNR) are mostly used since [10]. TPR, often called Sensitivity or
Recall, is the rate of correct recognition of data points as members of a class they
belong with, to this number increased by the number of incorrect classifications
as another class (Eq. 2). TPR measures the ability of the parameterisation of an
algorithm to detect the important class while ignoring the incorrect detections.
This is important when a data point of a given class has to be detected to avoid
potential high cost, while incorrect detection can be dealt with.

TPR =
TP

TP + FN
(2)

True Negative Rate (Specificity), is defined as the rate of correctly rejected
data points with this value increased by the number of data points incorrectly
accepted as a given class (Eq. 3). This measure is useful when the cost of incorrect
detection of a given class is very high, while incorrectly omitting such detection
is not. Note that TNR ignores whether an algorithm can actually detect a given
class for the data points that belong to it, so the use of both TPR and TNR
together is important in most scenarios, with various ratio of importance.

TNR =
TN

TN + FP
(3)

The nature of those measures of performance is based on the problem of
binary classification, wherein only two classes exist; one representing a feature
and one that does not. They are however used as well in multinomial classifi-
cation, wherein each data point is considered correctly recognised if and only
if the predicted class is the actual one. In any other case, the data point is
labelled as incorrectly recognised, no matter whether the correct class will be
the second-best or the worst fit. Such a one-vs-all approach produces as many
results as cardinality of the set of classes |C|. While some research has been
done to aggregate measures for each class [11], the result in multi-value form
is not a clear indicator for the direction of change of hyperparameters in the
case of machine learning and therefore does not fulfil the necessary role. To use
those values as an indicator of whether a given hyperparameter value improved
or worsened classification, one has to aggregate those measures Mi in some way,
wherein the most obvious solution is to average them out, as in Eq. 4.
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M =
1

|K|
|K|∑

k=1

Mk (4)

Such an approach is called macro-averaging. [12] and [13] present macro-
averaged multinomial classification measures for Accuracy, Error Rate, Recall,
Precision, and Fscore. [12] also presents an alternative to macro-averaging in
form of the so-called micro-averaging, which is defined as in Eq. 5.

µ =
∑|K|

k=1 N(Mk)
∑|K|

k=1 D(Mk)
(5)

wherein by N(M) we mean the numerator of a given measure M and by D(M)
we mean its denominator. The difference between those kinds of averaging cor-
responds to resolving the problem of the equal contribution classes with varying
number of examples. In micro-averaging, more numerous classes fore which there
is a stronger belief that the value of measure represents the characteristics of the
problem, have a stronger influence over the aggregated measure. While such an
approach seems reasonable, the reason for classification might be based on the
assumption that the less-represented classes, e.g. uncommon diseases, are inter-
esting ones, so such approach might suppress the important objectives of the
classification. Further measures of multi-class performance are presented in [14],
mostly aggregations of simple measures presented in this paper.

Neither of those approaches to the aggregation of multi-class performance
measures solves the inherent problem of being an extension of a binary app-
roach. Therefore in many cases, the value of Mi (or µi) and M (or µ) does not
change. Consider a simple example. Let there be 3 classes, namely, K = {K1 =
“Cat”,K2 = “Dog”,K3 = “Rat”} and two sets of parameters, L and R. For
simplicity, consider a single data point for each class, as in Fig. 1.

For a binary classification problem, L and R give the same results, the pre-
dicted class is either correct (cat and dog) or incorrect (rat) so the measures
of performance are of equal value. Therefore, a change between L and R does
not provide any information about which is better for the given problem as if
both would produce the same result. That is, however, not the case. Typically,
classification produces a measure of similarity between the model of the class
and a given sample. The predicted class is the one that corresponds to the high-
est measure of similarity. Each data point can be described by the measures of
similarity for each class. As such, for each data point, there exists a list of classes
ordered in descending order by the similarity measure. While for the cat sample
the hyperparameters of the classification algorithm do produce the same results,
it is not true for all cases. The dog sample contains a different permutation of
classes, however, no additional information about how well the classification per-
forms is known. One might deduce that L parameterisation tends to represent
dogs and cats similarly, while R does that to a lower degree, but such infor-
mation is useful only in the case of human design. The third sample, wherein
the data point corresponding to a rat was labelled as a cat with both L and
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Fig. 1. Example of classification results for the multi-class problem with 3 classes and
one data point for each of them, represented by a circle. L and R are sets of parameters,
for each the order of labels from most probable to the least probable is presented.

R parameterisations, is, however, important. Note that in both cases the rat
sample was recognised as a cat, and therefore the binary approach would yield
the same result. The gradient of the performance measure would not indicate
which set of hyperparameters is better, whether L or R. It is however clear that
R performs better than L since K3 is the second rather than the third-best fit.
This additional information allows to select the correct direction in the hyper-
parameter space and to avoid the pitfalls associated with fluctuations related to
the change between the correct and incorrect estimation of a few data points as
a result of a slight adjustment to parameters.

In this paper, we propose a method of aggregating performance measures that
is dependant on the position of classes on the list of potential classes ordered by
the similarity measure. This allows for a better selection of the parameterisation
of a classification algorithm due to a higher sensitivity to the overall behaviour of
the method rather than only to the binarized result of classification being either
correct or incorrect in terms of the given sample. This approach is especially
useful whenever a human user is to determine the final result of classification
based on options selected by the algorithm, such as in the case of facial rei-
dentification or counselling systems. The presented approach can be placed in
the ontology of performance measures presented in [15]. The proposed solution
fits the second group in the first dimension, that is to say, it uses the confusion
matrix in conjunction with additional information - which can be thought of as
an extension of the confusion matrix in the third dimension by the threshold
value. In the second dimension, the best fit for our proposal is the extension of
the deterministic classifiers branch. The third dimension of ontology is defined
by the measure that is the basis for aggregated variant, that is, aggregated Accu-
racy corresponds to single-value measures, but the pair of Sensitivity-Specificity
corresponds to double-valued measures and so on. In the ontology tree, it is clear,
that the proposed method belongs to the branch defined by Multiclass Focus.
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2 Method

2.1 Classification of a Single Data Point

Let us consider a single data point oi which belongs to the set of all data points
∀i : oi ∈ O. Moreover, the data point oi belongs to the set of all data points
that share the same class Ok, which belongs to the set of all represented classes
∀k : k ∈ K, such that oi ∈ Ok and ∀k : Ok ⊂ O.

Let us, therefore, denote all correctly recognised data points of class k as a
set of true positives, i.e. TPk. Similarly, we will define data points belonging to
the class k but recognized as a different class as a set FPk.

In the classical approach, we would define the correct recognition as a result of
classification, wherein the list of similarity measures between oi ∈ Ok and models
of classes K contains the true class k on position pk(oi) such that pk(oi) = 1.
The set TPk would therefore consist of all such oi, which would be reflected in
its cardinality as in Eq. 6.

|TPk| =
∑

oi∈Ok

{
1, if pk(oi) = 1
0, otherwise

(6)

We can, however, use a broader definition of correct recognition. One could,
for example, assume that the correct recognition is defined by pk(oi) ≤ 2 so
that either of the first two positions is acceptable. That would be acceptable in
many scenarios, such as in the case where a human operator uses classification
to narrow the number of possibilities (e.g., in the case of facial recognition).
In such a case, several most probable classes are important, and the need for
pk(oi) = 1|k : oi ∈ Ok is limited. One could therefore use a threshold value t and
rewrite Eq. 6 as follows in Eq. 7.

|TPk,t| =
∑

oi∈Ok

{
1, if pk(oi) ≤ t

0, otherwise
(7)

Since every data point oi ∈ Ok belongs to either TPk,t or FNk,t for any given
t, one can easily define cardinality of FNk,t as follows in Eq. 8.

|FNk,t| = |Ok| − |TPk,t| (8)

Every point outside of Ok is either a true negative or a false positive. The
cardinality of the set of all true negatives for a given class and threshold |TNk,t|
can therefore be defined as in Eq. 9.

|TNk,t| =
∑

oi∈O−Ok

{
1, if pk(oi) > t

0, otherwise
(9)

This allows us to define the cardinality of the set of all false positives |FNk,t|
for a given class as in Eq. 10, knowing that Ok is composed of all true positives
and false negatives.
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|FPk,t| = |O| − |Ok| − |TNk,t| (10)

2.2 Aggregation Over Classes and Thresholds

Let us now consider one of the performance measures, namely, the True Positive
Rate as defined in Eq. 2. It can be redefined for a given class k at some threshold
t as in Eq. 11.

TPRk,t =
|TPk,t|

|TPk,t| + |FNk,t| (11)

Which allows us to redefine the intuitive aggregation of TPR over classes
based on Eq. 4 as in Eq. 12.

TPRt =
1

|K|
|K|∑

k=1

TPRk,t =
1

|K|
|K|∑

k=1

|TPk,t|
|TPk,t| + |FNk,t| (12)

While a domain might indicate that the value of t should be higher than 1,
using any given single number does not solve the problem of an uninformative
gradient. Actually, higher t tends to increase the problem due to the broader
range of parameterisation resulting in the same value. Instead of focusing on a
single value of t, we propose to aggregate the measure over all possible values,
so that the change of pk(oi) will result in the change of the value of the given
measure. Note that the effect on TPR of lower t values should never be lower
than the effect of higher t as in Eq. 13.

f(t)
f(t + 1)

> 1 (13)

If this is fulfilled, one can aggregate the measures over different t using a
simple sum as in Eq. 14.

M =
|K|−1∑

t=1

f(t)Mt (14)

Let us define f(t) = t−m for any m ≥ 0. The m parameter corresponds to
the influence of further positions on the measure. In the general case, we assume
that the value of m = 1 is quite universal, although specific domains might
benefit from adjusting it accordingly to domain demands. For the measure of
Sensitivity, Eq. 14 becomes therefore Eq. 15. Note that t = |K| means that every
data point will be considered as True Positive, no matter the pk(oi), so there is
no point in including it as it does not contain any information.

TPR =
|K|−1∑

t=1

TPRt

tm
=

1
|K|

|K|−1∑

t=1

∑

k

|TPk,t|
|Ok|tm (15)
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Substituting Eq. 7 in Eq. 15 one can change the order of summations over
classes and over the thresholds getting Eq. 16.

TPR =
1

|K|
∑

k

⎛

⎝ 1
|Ok|

|K|−1∑

t=1

(
1
tm

∑

oi∈Ok

{
1, if pk(oi) ≤ t

0, otherwise

)⎞

⎠ (16)

Similarly, the order of summations over thresholds and over data points of a
given class can be changed leading to the modification of the weight of a single
data point for the calculated measure as in Eq. 17.

TPR =
1

|K|
∑

k

⎛

⎝ 1
|Ok|

∑

oi∈Ok

|K|−1∑

t=1

{
1
tm , if pk(oi) ≤ t

0, otherwise

⎞

⎠ (17)

wherein the conditional case can be represented by a different initialisation of
the summation as in Eq. 18.

TPR =
1

|K|
∑

k

⎛

⎝ 1
|Ok|

∑

oi∈Ok

|K|−1∑

t=pk(oi)

1
tm

⎞

⎠ (18)

One can notice that the last summation in Eq. 17 is actually a difference
between two harmonic numbers as presented in Eq. 19, wherein vacuous sum-
mation defines Hm

0 . For generality, we use Hm to denote generalised harmonic
number of order m.

TPR =
1

|K|
∑

k

(
1

|Ok|
∑

oi∈Ok

(
Hm

|K|−1 − Hm
pk(oi)−1

))
(19)

Which can then be simplified to the form of Eq. 20.

TPR = Hm
|K|−1 − 1

|K|
∑

k

(
1

|Ok|
∑

oi∈Ok

Hm
pk(oi)−1

)
(20)

Notice that the summations do not consider the same data point twice, that
is to say, the calculation is actually linear (O(|O|)) in terms of complexity. The
values of Hm can be precalculated in an array, which allows for easy access. The
entirety of the value is therefore quite efficient to calculate, despite the added
complexity behind the aggregation of multiple thresholds.

2.3 Normalisation

While the inner sum of Eq. 20 is enough to control the direction of change in the
hyperparameter space, it might be beneficial to use a normalised version of the
aggregated TPR, especially when one wants to combine it with other measures,
as in the case of F1-score. The minimal value of the aggregated TPR is achieved
in the pessimistic case, whenever ∀i ∧ k : oi ∈ Ok, pk(oi) = |K|. It is easy to
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notice that in this particular case, the aggregated TPR is zero. The maximum
value is achieved whenever the perfect classification occurs - that is to say, when
∀i ∧ k : oi ∈ Ok, pk(oi) = 1 in which case the summation equals zero. Since the
first summand depends on the class count, the normalised aggregated TPR is
defined as in Eq. 21.

ˆTPR = 1 − 1
|K|Hm

|K|−1

∑

k

(
1

|Ok|
∑

oi∈Ok

Hm
pk(oi)−1

)
(21)

2.4 The Case of Specificity

We take a similar approach in the case of True Negative Rate defined in Eq. 3.
Redefined for a given class k at a given threshold t it becomes Eq. 22

TNRk,t =
|TNk,t|

|TNk,t| + |FPk,t| (22)

Which we aggregate over classes as in Eq. 23.

TNRt =
1

|K|
|K|∑

k=1

TNRk,t =
1

|K|
|K|∑

k=1

|TNk,t|
|TNk,t| + |FPk,t| (23)

This allows us to aggregate over different values of the threshold in Eq. 24 as
in the case of Sensitivity.

TNR =
|K|−1∑

t=1

TNRt

tm
=

1
|K|

|K|−1∑

t=1

∑

k

|TNk,t|
(|O| − |Ok|)tm (24)

Again, we substitute Eq. 9 in Eq. 24 and change the order of summations
getting Eq. 25.

TNR =
1

|K|
∑

k

⎛

⎝ 1
|O| − |Ok|

|K|−1∑

t=1

(
1
tm

∑

oi∈O−Ok

{
1, if pk(oi) > t

0, otherwise

)⎞

⎠ (25)

Changing the order of summations over thresholds and over data points out-
side of a given class leads again to the weight factor in condition as in Eq. 26.

TNR =
1

|K|
∑

k

⎛

⎝ 1
|O| − |Ok|

∑

oi∈O−Ok

|K|−1∑

t=1

{
1
tm , if pk(oi) > t

0, otherwise

⎞

⎠ (26)

Which can be represented as changing the range of summation as in Eq. 27.

TNR =
1

|K|
∑

k

⎛

⎝ 1
|O| − |Ok|

∑

oi∈O−Ok

pk(oi)−1∑

t=1

1
tm

⎞

⎠ (27)
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The last summation in Eq. 27 is a harmonic number as presented in Eq. 28,
wherein vacuous summation defines H0.

TNR =
1

|K|
∑

k

(
1

|O| − |Ok|
∑

oi∈O−Ok

Hm
pk(oi)−1

)
(28)

Notice again that the values of Hm can be precalculated in an array, simi-
larly to the per-class multiplier. The computational complexity can therefore be
defined as O((|K| − 1)|O|). It is also useful to note that the calculation of both
aggregated Sensitivity and aggregated Specificity can be easily combined.

The normalisation of aggregated TNR is quite more involved than in the
case of TPR. For most cases, it is enough to assume that the minimal value
is achieved when ∀i ∧ ∀k : oi /∈ Ok, pk(oi) = 1. In this case, the minimum
value would be zero. Similarly, the maximum value would be achieved when
∀i∧∀k : oi /∈ Ok, pk(oi) = |K|, which is to say that all incorrect classes would be
classified as least probable. That would lead to the normalised aggregated TNR
as in Eq. 29.

ˆTNR =
1

|K|Hm
|K|−1

∑

k

(
1

|O| − |Ok|
∑

oi∈O−Ok

Hm
pk(oi)−1

)
(29)

A careful reader will, however, notice that neither all classes can be classified
as best fit nor as the worst one. Perfect normalisation is, therefore, dependant
on the sizes of classes. The proposed normalisation will generally not achieve
neither 0 nor 1 in the general case.

2.5 The Compound Measure of Accuracy

Accuracy is often used as a single-value measure of the quality of classification.
This is especially true in the case of optimisation, where increasing specificity
and sensitivity at the same time might not be possible. Accuracy is therefore an
easy way to present the overall score. Let us, therefore, use the same approach
for Accuracy, which is a bit more complicated in its form. We start with a
redefinition of Eq. 1 for given class k and threshold t as presented in Eq. 30.

ACCk,t =
|TPk,t| + |TNk,t|

|TPk,t| + |TNk,t| + |FPk,t| + |FNk,t| (30)

We aggregate over |K| classes and |K| − 1 threshold values as in Eq. 31.

ACC =
|K|−1∑

t=1

ACCt

tm
=

1
|K|

|K|−1∑

t=1

∑

k

|TPk,t| + |TNk,t|
|O|tm (31)

In this case, we change the order of summations and then use both Eq. 7 and
Eq. 9 in Eq. 31 getting Eq. 32.
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ACC =
1

|K|
∑

k

1
|O|

|K|−1∑

t=1

1
tm

(
∑

oi∈Ok

{
1, if pk(oi) ≤ t

0, otherwise
+

∑

oi∈O−Ok

{
1, if pk(oi) > t

0, otherwise

)

(32)
Then we include the threshold factor in the conditional summations and

remove the conditions by changing the range of summations as in Eq. 33.

ACC =
1

|K||O|
∑

k

⎛

⎝
∑

oi∈Ok

|K|−1∑

t=pk(oi)

1
tm

+
∑

oi∈O−Ok

pk(oi)−1∑

t=1

1
tm

⎞

⎠ (33)

Which leads us to harmonic numbers in Eq. 34, wherein vacuous summation
defines H0.

ACC =
1

|K||O|
∑

k

(
∑

oi∈Ok

(
Hm

|K|−1 − Hm
pk(oi)−1

)
+

∑

oi∈O−Ok

Hm
pk(oi)−1

)
(34)

As in the case of Sensitivity, we can remove the constant factor from the
summation as in Eq. 35.

ACC =
Hm

|K|−1

|K| +
1

|K||O|
∑

k

(
∑

oi∈O−Ok

Hm
pk(oi)−1 −

∑

oi∈Ok

Hm
pk(oi)−1

)
(35)

Reversing the order of summations allows us to represent the result as in
Eq. 36.

ACC =
Hm

|K|−1

|K| +
1

|K||O|
∑

oi∈O

⎛

⎝
∑

k:oi /∈Ok

Hm
pk(oi)−1 −

∑

k:oi∈Ok

Hm
pk(oi)−1

⎞

⎠ (36)

Note that the first inner sum is actually the partial sum of generalised har-
monic numbers with the second inner sum removed. It can therefore be precal-
culated. It is clear if we rewrite it for m ∈ IN, where we can represent the sum of
generalised harmonic numbers as

∑n
i=1 H

m
i = (n+ 1)Hmn −H

(m−1)
n , obtaining

Eq. 37.

ACC =
Hm

|K|−1

|K| +
1

|K||O|
∑

oi∈O

(
(|K| + 1)Hm

|K| − H
(m−1)
|K| − 2Hm

pk:oi∈Ok
(oi)−1

)

(37)
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Which allows us to represent it as in Eq. 38.

ACC =
Hm

|K|−1 + (|K| + 1)Hm
|K| − H

(m−1)
|K|

|K| − 2
|K||O|

∑

oi∈O

Hm
pk:oi∈Ok

(oi)−1 (38)

Which, despite quite involved general case formulae, can be evaluated with
linear (O(|O|)) complexity. It is important to note, that for hyperparameter
optimisation, the constant part of Accuracy or other measures does not have to
be calculated at all, as the difference between compared classifiers will be fully
enclosed in the inner summation.

The minimal value of Accuracy occurs when each data point actual class has
been assigned the last position, that is ∀i, k : oi ∈ Ok, pk(oi) = |K|. In such a
case, we get Eq. 39.

ACC =
|K|Hm

|K| + 1
|K|m − H

(m−1)
|K|

|K| (39)

To put the minimal value at 0, we remove this factor and get Eq. 40.

ˆACC =
2Hm

|K|−1

|K| − 2
|K||O|

∑

oi∈O

Hm
pk:oi∈Ok

(oi)−1 (40)

Since the maximum value is dependant on the count of classes, we can further
assume that the best result is the one in which ∀i, k : oi ∈ Ok, pk(oi) = 1,
therefore the appropriately scaled, normalised aggregated Accuracy is in the
form as presented in Eq. 41.

ˆACC = 1 − 1
|O|Hm

|K|−1

∑

oi∈O

Hm
pk:oi∈Ok

(oi)−1 (41)

3 Discussion

In this paper, we present a modification to commonly used performance measures
that leverages the ordering of classes in multinomial classification. Instead of
using a one-vs-all approach, we aggregate the performance measure over multiple
thresholds of how we understand the correct classification, that is - on which
position a proper class should be to recognise the classification as the correct
one, which leads to two different effects.

The first effect is especially important in many real-life scenarios, wherein the
final decision is done by humans and the machine learning approach is used to
narrow the range of possibilities to consider. Such scenarios include facial recog-
nition, neurodegenerative disease diagnosis, and many others. In such a case, the
human operator receives a few best fitting classes and can examine the case fur-
ther. For example, recognising the few most probable identities based on facial
recognition among thousands of classes allows investigators to use additional
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information (such as clothing) to pinpoint the suspect. In the case of disease
diagnosis, this allows considering extra tests that will differentiate between a
few potential diseases or between the best fitting “healthy” class and the slightly
less probable disease that would remain ignored using binary classification. An
approach that considers not only the most probable result but also further ones
leads to an algorithm that positions the correct result as high as possible, even
if for some reason it might not be the best fit, while otherwise, the correct result
might be in the position that does not allow for recognition by a human operator.

The second effect is crucial for the process of machine learning. In the one-
vs-all approach to classification, adjustments to hyperparameters that result in
the change of the position of the correct label in the resulting ordering are
ignored. The only shift that actually matters is either improving the position
of the correct label to the first one or decreasing it from the first to any other.
Therefore, the difference between two values of the hyperparameter might either
be non-existent, even when the prediction of the correct class has improved from,
e.g., 100th to the 2nd class, or be driven by fluctuations of a few edge cases.
The true change of performance of multinomial classification is therefore hidden
and only a limited amount of information is used to control the adjustment
of hyperparameters, leading to the algorithm that manages to find a way to
differentiate a specific data set rather than capture the nature of the problem.
Leveraging information about further positions might result in faster convergence
and solutions that are less dependant on the training data.

It should be noted, that the presented approach does not stand in opposition
to the trend of aggregating multiple measures into one, such as in the case of
F-score or even to the extension of ROC curves to the multi-class case.
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