
Extensions of the Diffie-Hellman Key
Agreement Protocol Based on Exponential

and Logarithmic Functions

Zbigniew Lipiński1 and Jolanta Mizera-Pietraszko2(B)

1 University of Opole, Opole, Poland
zlipinski@uni.opole.pl

2 Military University of Land Forces, Wroclaw, Poland

jolanta.mizera-pietraszko@awl.edu.pl

Abstract. We propose a method of constructing cryptographic key
exchange protocols of the Diffie-Hellman type based on the exponen-
tial and logarithmic functions over the multiplicative group of integers
modulo n. The security of the proposed protocols is based on the com-
putational difficulty of solving a set of congruence equations containing
a discrete logarithm. For the multiplicative group of integers modulo n
we define the non-commutative group of their automorphisms. On the
defined group we construct non-commutative key exchange protocol sim-
ilar to the Anshel-Anshel-Goldfeld key exchange scheme.

Keywords: Diffie-Hellman key agreement · Primitive roots of finite
filed · Non-commutative cryptography

1 Introduction

The Diffie-Hellman key exchange is one of the most utilized key agreement proto-
cols in the secure network communication. There are symmetric and asymmetric
(public) key exchange variants of the protocol. In case of the symmetric Diffie-
Hellman key exchange protocol the users A and B agree the modulus p being the
prime number and the primitive root r from the multiplicative group (Z/(p))∗

of integers modulo p. The user A selects the number a and the user B selects
the number b from (Z/(p))∗. Both communicating parties exchange the num-
bers ra mod p and rb mod p. The common key is ka,b = (rb)a = (ra)b mod p,
[1,2]. Security of the protocol is based on computational difficulty in determining
the value of discrete logarithm logr(ra) mod ϕ(p). The standard X9.42 defines
the Diffie-Hellman public key exchange scheme in which the private-public keys
is the pair (a, ga mod p), a, g ∈ (Z/(p))∗, [2]. According to the standard, the
modulo parameter should be a prime number of the form p = jq + 1, where
q is a large prime and j ≥ 2. The base g of the public key ga mod p is of the
form g = hj mod p, where h is any integer with 1 < h < p − 1 such that
hj mod p > 1. The base g does not have to be a generator of the cyclic group
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. T. Nguyen et al. (Eds.): ACIIDS 2022, LNAI 13758, pp. 569–581, 2022.
https://doi.org/10.1007/978-3-031-21967-2_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21967-2_46&domain=pdf
http://orcid.org/0000-0001-6722-4402
http://orcid.org/0000-0002-2298-5037
https://doi.org/10.1007/978-3-031-21967-2_46

570 Z. Lipiński and J. Mizera-Pietraszko

(Z/(p))∗. For j = 2 we obtain the so called ‘safe prime’ numbers p = 2q + 1,
where q is prime. The set of primitive roots S

(r)
2q+1 can be obtained by removing

from the group (Z/(2q + 1))∗ all elements raised to power two (the quadratic
residues) and removing the element 2q, which is the unique element such that
(2q)2 = 1 mod (2q + 1).

For the symmetric Diffie-Hellman key exchange protocol the crucial prob-
lem is determination of the primitive root elements from the group (Z/(p))∗.
Unfortunately, there is no general formula which allows to determine it. In the
preliminary section we discus the problem of finding the primitive root elements
in cyclic groups. In the Lemma we define the set of primitive roots in the group
(Z/(p))∗ as the common part of the complement of the sets of p-residues, see the
formula (2). This definition allows in an efficient way to construct algorithms for
searching the primitive root elements in cyclic groups. In the same section we
define four types of functions which permute the elements of the group (Z/(p))∗.
In Sect. 4 we propose the method of constructing Diffie-Hellman like key agree-
ment protocols based on defined exponential and monomial functions. The secu-
rity of the discussed protocols is based on the computational difficulty of solving
a set of congruence equations containing the discrete logarithm. The public key
exchange variants of the proposed protocols can be obtained straightforward.

With each of the defined functions we associate the subgroup of symmetric
group of p− 1 elements. In Sect. 5 we use these groups to construct a symmetric
key agreement protocol based on the idea of the Anshel-Anshel-Goldfeld (AAG)
key agreement scheme [3,4].

2 Related Work

The idea of using the non-abelian groups in cryptography has its origin in the
solutions of three famous problems in combinatorial group theory proposed by
M. Dehn in 1911, [5]. These are the word problem, the conjugacy problem and
the isomorphism problem for finitely presented groups, [6]. In [7] Wagner and
Magyarik devised the first public-key protocol based on the unsolvability of
the word problem for finitely presented groups. A non-deterministic public-key
cryptosystem based on the conjugacy problem on braid group, similar to the
Diffie-Hellman key exchange system, was proposed in [8]. The particular impor-
tance are the Anshel-Anshel-Goldfeld key agreement system and the public-key
cryptosystem proposed in [3,4,9]. The authors used the braid groups where the
word problem is easy to solve but the conjugacy problem is intractible. This is
due to the fact that on braid groups the best known algorithm to solve the con-
jugacy problem requires at least exponential running time. Proposed in Sect. 5
the symmetric key agreement protocol is based on the idea of the Anshel-Anshel-
Goldfeld (AAG) key agreement scheme.

In Sect. 4 we construct a familly of Diffie-Hellman like key agreement pro-
tocols based on exponential and monomial functions which permute the cyclic
group (Z/(p))∗. This is one of many generalization of the Diffie-Hellman key
exchange protocol. For example, in [10] it was proposed a generalization of the

Extensions of the Diffie-Hellman Key Agreement Protocol 571

Diffie-Hellman scheme called Algebraic generalization of Diffe-Hellman (AGDH).
Its security is based on the hardness of a solution of the homomorphic image
problem, which requires to compute the image of a given element under an
unknown homomorphism of two algebras selected as a encryption platform. In
[11] a matrix-based Diffie-Hellman key exchange protocol was proposed. The
security of the proposed protocol is based on exploiting of a non-invertible pub-
lic matrix in the key generating process. In [12] a polynomial time algorithm to
solve the Diffie-Hellman conjugacy problem in braid groups was proposed. Secu-
rity aspects of the algorithm was analysed and proved. In [13] was considered a
Diffie-Hellman like key exchange procedure which security is based on the diffi-
culty of computing discrete logarithms in a group matrices over noncommuta-
tive ring. In the algorithm the exponentiation is hidden by a matrix conjugation
which ensures it security. In [14] a new computational problem called the twin
Diffie-Hellman problem was proposed. The twin DH protocol allows to avoid
the problem of an attack on the public keys exchanged in the standard Diffie-
Hellman scheme. I. F. Blake and T. Garefalakis analyzed the complexity of the
discrete logarithm problem, the Diffie-Hellman and the decision DH problem,
[15]. The authors showed that if the decision DH problem is hard then comput-
ing the two most significant bits of the DH function is hard. In [16] the authors
analyze complexity of the Group Computational Diffe-Hellman and Decisional
Diffe-Hellman problems and their application in cryptographic protocols. The
security of the group Diffe-Hellman key exchange is discussed, [17]. In [18] the
authors apply the symbolic protocol analysis to cryptographic protocols which
utilize the exponentiation calculations on cyclic groups. Using this analysis sev-
eral security aspects of Diffie-Hellman like operations was proved.

3 Preliminaries

The multiplicative group (Z/(n))∗ is the set of elements from the ring Z/(n) of
integers modulo n coprime to n. The group (Z/(n))∗ is cyclic if and only if n is of
the type n = 1, 2, 4, pm, 2pm, where p is an odd prime number and m ≥ 1, [19].
The generators of (Z/(n))∗ are called primitive roots. The order of a primitive
root r ∈ (Z/(n))∗ is equal to the Euler totient function ϕ(n), i.e., ϕ(n) is the
smallest number such that rϕ(n) = 1 mod n. By S

(r)
n we denote the set of all

primitive roots in (Z/(n))∗. The cardinality of the set S
(r)
n equals to ϕ(ϕ(n)).

By (Z/ϕ(n))∗ we denote the multiplicative group of integers coprime to ϕ(n),
i.e., (Z/ϕ(n))∗ = {k ∈ Z/ϕ(n) : gcd(k, ϕ(n)) = 1}. For any i ∈ (Z/(n))∗ and
k ∈ (Z/ϕ(n))∗ the equation i · k = 0 mod ϕ(n) implies that i = 0 mod ϕ(n).
From this implication it follows that the set {ik mod n : i ∈ (Z/(n))∗} is equal
to (Z/(n))∗ and the elements rk mod n, for given primitive root r, generate the
whole set

S(r)
n = {rk mod n : k ∈ (Z/ϕ(n))∗}. (1)

Let p be a prime number and ϕ(p) = pa0
0 pa1

1 · · · pak

k , where p0 = 2. The element
g ∈ (Z/(p))∗ is a residue of degree pi modulo p if there exists a ∈ (Z/(p))∗ such

572 Z. Lipiński and J. Mizera-Pietraszko

that api = g mod p. By ((Z/(p))∗)pi we denote the group of pi-residues mod p
and by

(((Z/(p))∗)pi)C = (Z/(p))∗ \ ((Z/(p))∗)pi

the set of pi-non-residues, i.e., the complement of ((Z/(p))∗)pi in (Z/(p))∗. The
group ((Z/(p))∗)pi is a cyclic of order ϕ(p)/pi.

Lemma. For a prime number p and ϕ(p) = pa0
0 pa1

1 · · · pak

k the set of primitive
roots can be obtained from the formula

S(r)
p =

k⋂

i=0

(((Z/(p))∗)pi)C . (2)

Proof. Let g = rb, x = ra ∈ (Z/(p))∗ and xpi = g mod p for some root r. From
ra·pi = rb mod p it follows that a · pi = b mod ϕ(p). If gcd(b, ϕ(p)) = 1 then pi

does not divides b, which means that b ∈ (Z/ϕ(p))∗ and rb mod p ∈ S
(r)
p �.

The formula (2) states that for a primitive root r ∈ (Z/(p))∗ the set of congruence
equations xpi = r mod p, i ∈ [0, k] is not solvable. By

Gp
p0···pk

=
k⋂

i=0

((Z/(p))∗)pi = ((Z/(p))∗)p0p1···pk

we denote the intersection of all pi-residue groups ((Z/(p))∗)pi , i ∈ [0, k]. Because
any root r = re

0 mod p, where r0 ∈ S
(r)
p and e ∈ (Z/ϕ(p))∗, then the group

Gp
p0···pk leaves the set of roots invariant and acts on (Z/ϕ(p))∗ as translations

Tg(re
0) = g · re

0 = r
e+ind(g)
0 mod p,

where g ∈ Gp
p0···pk and ind(g) is the index of g. The order of the group

|Gp0p1···pk
| = ϕ(p)

p0p1···pk
.

One of the first algorithms which allow to find a primitive root was defined
by Gauss. In the algorithm it is used the fact that for the element g ∈ (Z/(p))∗

such that g(p−1)/pi �= 1 the orders of g(p−1)/pi and g(p−1)/p
ai
i are equal to

Ordp(g(p−1)/pi) = pi and Ordp(g(p−1)/p
ai
i) = pai

i respectively. If pi �= pj , then

by multiplying g
(p−1)/p

ai
i

i and g
(p−1)/p

aj
j

j one can obtain an element of order

Ordp(g
(p−1)/p

ai
i

i g
(p−1)/p

aj
j

j) = pai
i p

aj

j .
Gauss’s algorithm to find a primitive root.

1. Find the first pi-non-residue, i ∈ [0, k], i.e., the numbers gi such that
g
(p−1)/pi

i �= 1 mod p.

2. From the formula g
(p−1)/p

ai
i

i mod p determine the elements of order pai
i .

3. The product
∏k

i=0 g
(p−1)/p

ai
i

i mod p is a primitive root.

As an example of application of the Gauss’s algorithm we find a primitive root in
Z/(p)∗, where p = 4441. Because p−1 = 23 ·3·5·37, for each prime p0 = 2, p1 = 3,

Extensions of the Diffie-Hellman Key Agreement Protocol 573

p2 = 5, p3 = 37 the first 2th non-residue is 7, the first 3th, 5th and 37th non-
residue is 2. The element r = 74440/23 ·24440/3 ·24440/5 ·24440/37 = 2749 mod 4441
is a primitive root.

E. Bach modified the Gauss’s algorithm to the following form.

1. Find B ≥ 1 such that B log B = C log p, C = 30.
2. Factor p − 1 = pa0

0 . . . pas
s Q, where pi < B and Q are free of primes < B.

3. For each i = 0, . . . , s choose a prime gi ≤ 2(log p)2 such that g
(p−1)/pi

i �= 1.

4. For g =
∏s

i=0 g
(p−1)/p

ai
i

i construct the set
S = {g · q(p−1)/Q mod p : q is prime and q ≤ 5 (log p)4

(log log p)2 }.

In [20] E. Bach proved, assuming that the extended Riemann hypothesis is true,
that the algorithm computes the set S of residues mod p such that S contains a
primitive root and the cardinality of the set |S| is of order O((log p)4

(log log p)3). As an
example of application of E. Bach algorithm we find a primitive root in Z/(p)∗,
where p = 4441. For the prime number p = 4441 take C = 1, B = 5, p0 = 2,
p1 = 3 and write p − 1 = 23 · 3 · Q, where Q = 5 · 37 and g = 74440/23 · 24440/3 =
2690 mod 4441. For q = 2 the element r = g · q4440/Q = 2690 · 24440/185 =
3355 mod 4441 is a primitive root.

Table 1. The primitive roots in Z/(p)∗, p− 1 = 23 · 3 · 5 · 37.

pi-residue pi-non-residue primitive

mod p mod p root

p0 = 2 1, 2, 3, . . . 7, 11, 13, . . . (2 · 3)· 13, . . .

p1 = 3 1, 6, . . . 2, 3, 4, 5, 7, 9, 10, 12, 13, . . . 6·13, . . .

p2 = 5 1, 6, . . . 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, . . . 6·13, . . .

p3 = 37 1, 13, . . . 2, 3, . . . 13·(2 · 3), . . .

From the formula (2) and the fact that the product of two k-residues is k-
residue and the product of k-residue and k-non-residue is k-non-residue one can
find a non-prime primitive root following the rule. For each i ∈ [0, k] find a
pair (gi, g

′
i) of elements gi ∈ ((Z/(p))∗)pi and g′

i ∈ (((Z/(p))∗)pi)C such that
∀i∈[1,k] gi · g′

i = g0 · g′
0 mod p, then the common value is a primitive root. In the

Table 1 it was shown how to find a primitive root using proposed rule for p = 4441.
The best know unconditional estimate for the smallest primitive root is due to
Burgess [21]. Based on Burgess’s results in [22] Shparlinski constructed a deter-
ministic algorithm which finds a primitive root in a finite field Fp in time O(p

1
4+ε),

for any ε > 0. V. Shoup in [23], assuming the extended Riemann hypothesis proved
that the least primitive root gp is bounded by a polynomial in log p

gp = O(ω4(1 + log ω)4(log p)2) = O((log p)6),

where ω ≡ ω(p − 1) is the number of distinct prime factors of p − 1. E. Bach
conjectured that the least primitive root for prime p is O((log p)(log log p)), [24].

574 Z. Lipiński and J. Mizera-Pietraszko

Let us define four invertible functions on (Z/(p))∗ determined by elements of
the group ⎧

⎪⎪⎨

⎪⎪⎩

R(x) = rx mod p, r ∈ S
(r)
p ,

E(x) = xe mod p, e ∈ (Z/ϕ(p))∗,
M(x) = m · x mod p, m, x ∈ (Z/(p))∗,
Cn(x) mod p, gcd(n, p2 − −1) = 1,

(3)

where p is a prime number, Cn(x) are Chebyshev polynomials of the first kind,
[25]. The exponential function R(x) is determined by the primitive root r of the
group (Z/(p))∗. The monomial function E(x) is determined by the element e from
(Z/ϕ(p))∗. Each of the function (3) defines permutation of the set (Z/(p))∗. By
R, E, M , Cn we denote the permutation matrices determined by the functions
R(x), E(x), M(x), Cn(x). Composition of these functions corresponds to the
multiplication of permutation matrices. For example, the composition of two
functions R1(x) and R2(x), defined by R1 ◦ R2(x) = R2(R1(x)), corresponds to
the multiplication of matrices R1R2. We denote by G

(r)
p the permutation group

determined by the exponential functions R(x). By G
(e)
p , G

(m)
p , G

(C)
p we denote

the groups generated by the functions E(x), M(x) and Cn(x) respectively. The
group G

(r)
p is non-abelian, and G

(e)
p , G

(m)
p and G

(C)
p are abelian subgroups of

G
(r)
p for prime p > 11.

4 Extensions of Diffie-Hellman Protocol

The first extension of the Diffie-Hellman key exchange protocol utilises the expo-
nential and monomial functions defined in (3).

The DH r,e algorithm.
1. The users A and B agree the primitive root r from (Z/(p))∗ and the

element e ∈ (Z/ϕ(p))∗.
2. The user A selects a number a , calculates rae

mod p and sends it to B.
The user B selects a number b, calculates rbe mod p and sends it to A.

3. For given ae and rbe the user A calculates

kA = (rbe)ae

= rbeae

= r(ba)e mod p.

For given be and rae

the user B calculates

kB = (rae

)be = raebe = r(ab)e mod p.

The common key is ka,b = r(ab)e mod p.

Let’s illustrate the algorithm with a simple example on the (Z/(4441))∗ group.
Let r = 21, e = 53, a = 121, b = 61 ∈ (Z/(4441))∗ then ae = 3535, rbe = 3209
and be = 972, rae

= 862 mod 4441. The common key is kA = 32093535 = kB =
862972 = 385 mod 4441.

The attacker can intercept the numbers r, e and u = rae

mod p. To deci-
pher the number ae mod p he has to solve the logarithmic equation logr(u) =

Extensions of the Diffie-Hellman Key Agreement Protocol 575

w mod ϕ(p). Using encryption for multiple exponents {ei}i we force the attacker
to decipher the secret a, which require to solve set of equations logr(u) =
w mod ϕ(p), w = aei mod p with two unknown parameters w and a.

The next modification of the Diffie-Hellman protocol utilizes composition of
the exponential functions from (3).

The DH 2r algorithm.
1. The users A and B agree two primitive roots r1, r2 from (Z/(p))∗.
2. The user A selects a number a , calculates r

ra
2

1 mod p and sends it to
B.
The user B selects a number b , calculates r

rb
2

1 mod p and sends it to
A.

3. For given r
rb
2

1 mod p and ra
2 mod p the user A calculates

kA = (rrb
2

1)ra
2 = r

ra
2 rb

2
1 = r

ra+b
2

1 mod p.

For given r
ra
2

1 mod p and rb
2 mod p the user B calculates

kB = (rra
2

1)rb
2 = r

ra
2 rb

2
1 = r

ra+b
2

1 mod p.

The common key is ka,b = r
ra+b
2

1 mod p.

The following example illustrates how the algorithm works. Let r1 = 44, r2 =
94, a = 121, b = 61 ∈ (Z/(4441))∗ then r

rb
2

1 = 939, ra
2 = 3386 and r

ra
2

1 = 2593,
rb
2 = 3031, mod 4441. The common key is kA = 9393386 = kB = 25933031 = 450
mod 4441.

The attacker has the three numbers r1, r2 and u = r
ra
2

1 mod p. To decipher
the secret a he has to solve the set of two equations for discrete logarithm
logr1

(u) = w mod ϕ(p) and logr2
(w) = a mod ϕ(p) for unknown variables w and

a.
The third modification of the Diffie-Hellman protocol utilizes the inverse of

the exponential function and the monomial functions from (3).

The DH e,log algorithm.
1. The users A and B agree the primitive root r from (Z/(p))∗ and the

element e ∈ (Z/ϕ(p))∗.
2. The user A selects a primitive root ra, calculates (logra

(r))e mod ϕ(p)
and sends it to B.
The user B selects a primitive root rb, calculates (logrb

(r))e mod ϕ(p)
and sends it to A.

3. For given (logrb
(r))e and (logr(ra))e the user A calculates

kA = (logrb
(r))e(logr(ra))e = (logrb

(ra))e mod ϕ(p).

For given (logra
(r))e and (logr(rb))e the user B calculates

kB = (logra
(r))e(logr(rb))e = (logra

(rb))e mod ϕ(p).

Because (logrb
(ra))e = (logra

(rb))−e mod ϕ(p) the common key is

k(ra, rb) = (logrb
(ra))e mod ϕ(p).

576 Z. Lipiński and J. Mizera-Pietraszko

As an example we will calculate the common key k(ra, rb) on the (Z/(4441))∗

group. Let e = 53, r = 21, ra = 104, rb = 168 ∈ (Z/(4441))∗ then logrb
(r) =

2527, logr(ra) = 1913, logra
(r) = 3377, logr(rb) = 1063 mod 4440. Bacause

kA = 252753 191353 = 2231 and kB = 337753 106353 = 3431 mod 4440 then the
common key is k(ra, rb) = 2231 mod 4440.

The attacker has primitive root r, exponent e and ua = (logra
(r))e mod ϕ(p).

To determine ra it has to solve the set of equations ua = (wa)e mod ϕ(p) and
wa = logra

(r) mod ϕ(p) for two unknown variables wa and ra.

5 The Key Agreement Protocol on Permutation Group

Let us denote by V ((Z/(p))∗) the set of ordered ϕ(p)-tuples with elements from
the group (Z/(p))∗. By v0 = (1, . . . , ϕ(p)) ∈ V ((Z/(p))∗) we denote the tuple
ordered in ascending order. The functions from (3) define the permutation of
V ((Z/(p))∗)

⎧
⎪⎪⎨

⎪⎪⎩

Rv0 = (r1, . . . , rp−1) mod p, r ∈ S
(r)
p ,

Ev0 = (1e , . . . , (p − 1)e) mod p, e ∈ (Z/ϕ(p))∗,
Mv0 = (m · 1, . . . ,m · (p − 1)) mod p, m ∈ (Z/(p))∗,
Cnv0 = (Cn(1), . . . , Cn(p − 1)) mod p, gcd(n, p2 − −1) = 1.

(4)

The sets of matrices (4) we denote as S
(R)
p , S

(E)
p , S

(M)
p and S

(C)
p respectively.

From the composition rules of the functions Ri ◦ Rj(x) = r
rx
i

j mod p follows the

non-commutativity of the group G
(r)
p generated by the matrices R, i.e., RiRj �=

RjRi ∈ G
(r)
p . From the composition rules of the monomials Ei◦Ej(x) = (xei)ej =

xeiej mod p, x ∈ (Z/(p))∗, ei, ej ∈ (Z/ϕ(p))∗, follows the commutativity of the
group G

(e)
p , i.e., EiEj = EjEi. The matrices Mi, i ∈ [1, ϕ(p)] generate the finite

abelian group G
(m)
p isomorphic to (Z/(p))∗, called the automorphism group of

(Z/(p))∗, [26]. From the equation R ◦ E(x) = rxe = (re)x mod p it follows that
RE ∈ S

(R)
p which implies that G

(e)
p ⊂ G

(r)
p . The formula (1) written in terms of

matrices has the form
S(R)

p = {REi }ϕ(ϕ(p))
i=1 .

From the equations E ◦ M(x) = M(E(x)) = mxe mod p and M ◦ E(x) =
E(M(x)) = (mx)e mod p it follows that the abelian groups G

(e)
p and G

(m)
p does

not commute, i.e., [G(e)
p , G

(m)
p] �= 0. For n = 11 the group G

(r)
11 is the alternating

group of the set of ten elements. For prime number p > 11 the group G
(r)
p is the

symmetric group Sym((Z/(p))∗) of the set (Z/(p))∗. The orders of the groups
G

(e)
p and G

(m)
p are equal to ϕ(ϕ(p)) and ϕ(p) respectively.

The construction of the symmetric cryptographic key on the group G
(r)
p was

motivated by the AAG symmetric key exchange protocol, [3,4]. The crypto-
graphic key exchange we define by the formula

ka,b = a0bN+1a
−1
N+1b

−1
0 ,

Extensions of the Diffie-Hellman Key Agreement Protocol 577

where a0, bN+1, aN+1, b0 ∈ G
(r)
p . The construction of the protocol can be

explained on the following example. The users A and B agree the set of ele-
ments S(g) = {g0,1, g1,1, g1,2, g2,1} from the group G

(r)
p . The user A selects the

set Sa = {a0, a1, a2, a3}, such that a3 = g0,1g1,1g2,1, calculates

S(g)
a = {u0,1 = a0g0,1a

−1
1 ,

u1,1 = a1g1,1a
−1
2 ,

u1,2 = a1g1,2a
−1
2 ,

u2,1 = a2g2,1a
−1
3 }

and sends S
(g)
a to B. Similarly, the user B selects the set Sb = {b0, b1, b2, b3},

such that b3 = g0,1g1,2g2,1, calculates

S
(g)
b = {w0,1 = b0g0,1b

−1
1 ,

w1,1 = b1g1,1b
−1
2 ,

w1,2 = b1g1,2b
−1
2 ,

w2,1 = b2g2,1b
−1
3 }

and sends S
(g)
b to A. The user A, using the formula w0,1w1,1w2,1 = b0a3b

−1
3 ,

calculates the common key k−1
a,b = (b0a3b

−1
3 a−1

0)−1. The user B, using the formula
u0,1u1,2u2,1 = a0b3a

−1
3 , calculates the common key ka,b = (a0b3a

−1
3)b−1

0 . In
this trivial example, the attacker can easily calculate the cryptographic key ka,b

because for a given matrices g and u from the sets S(g), S
(g)
a to determine the

unknown variable a0 it’s enough to solve the set of equations
⎧
⎪⎪⎨

⎪⎪⎩

a0g0,1 = u0,1a1,
a1g1,1 = u1,1a2,
a1g1,2 = u1,2a2,
a2g2,1 = u2,1a3.

Because we know the formula a3 = g0,1g1,1g2,1 the set of equations can be
trivially solved. In the proposed algorithm, we hide the last variable in the set
Sa in order to make it difficult to find the element a0 and the key ka,b. To do
this, we introduce a graph Gcipher

2N which nodes are elements of the set

S(g)
x = {u0,1 = x0g0,1x

−1
1 ,

ui,1 = xigi,1x
−1
i+1,

ui,2 = xigi,2x
−1
i+1,

uN,1 = xNgN,1x
−1
N+1}N−1

i=1 ,

where xi, gi,1, gi,2 ∈ G
(r)
p . Example of the such graph Gcipher

6 build of six nodes
is shown on Fig. 1. A path

x1g1,1x
−1
2 x2g2,1x

−1
3

↗ ↘ ↗ ↘
x0g0,1x

−1
1 x3g3,1x

−1
4

↘ ↗ ↘ ↗
x1g1,2x

−1
2 x2g2,2x

−1
3

Fig. 1. The graph Gcipher
6 for generation of the cryptographic key.

pa(u) = (u0,1, . . . , (ui,1||ui,2), . . . , uN,1)

578 Z. Lipiński and J. Mizera-Pietraszko

from the root node u0,1 to the leaf node uN,1 defines uniquely the product of
matrices

x0 = u0,1 . . . (ui,1||ui,2) . . . uN,1, i ∈ [1, N − 1], (5)

from which follows the form of the aN+1 element

xN+1 = g0,1 . . . (gi,1||gi,2) . . . gN,1, i ∈ [1, N − 1]. (6)

The expression (gi,1||gi,2) means that in the product (6) either the matrix gi,1 or
gi,2 appears, depending on the selected path in Gcipher

2N . The number of possible
values for the matrix xN,1 is equal to the number of all possible paths from the
root node u0,1 to the leaf node uN,1. For the graph Gcipher

2N build of 2N nodes
there are 2N−1 such paths. For sufficiently large number of nodes in Gcipher

2N one
can regard the matrix xN+1 as unknown parameter. On Fig. 1, it is shown the
graph Gcipher

6 build of six nodes, N = 3, in which there are four paths between
the root and the leaf node. To calculate the key ka,b, calculated for two paths
pa(u) and pb(w) in the graph Gcipher

2N , the attacker should solve the set of matrix
equations {

xi g−1
i−1,1gi−1,2 = u−1

i−1,1ui−1,2 xi,

xi gi,1g
−1
i,2 = ui,1u

−1
i,2 xi, i ∈ [2, N],

(7)

where gi,1, gi,2, ui,1, ui,2 are known parameters. For a given solution xi = ai of
(7), using the formulas for ui,1, ui,2 from S

(g)
a and x = a−1

i xi we obtain the
following set of matrix equations

{
x g−1

i−1,1gi−1,2 = g−1
i−1,1gi−1,2 x

x gi,1g
−1
i,2 = gi,1g

−1
i,2 x, i ∈ [2, N]

(8)

If the solution of (8) is trivial then the solution of (7) is unique. For a non-trivial
solution g0 of the equations (8), also any matrix gk

0 is a solution of (8). The two
solutions ai and a′

i of (7) are related by the formula

a′
i = ai (g0)k, k ∈ [1, |g0|],

where g0 is the solution of (8), i.e., belongs to the centralizer Cgi,1g−1
i,2

of the

element gi,1g
−1
i,2 and |g0| is order of the element g0. If centralizers Cgi,1g−1

i,2
, i ∈

[2, N], are nontrivial then the solution of the set of equations (7) is not unique.
The security of the proposed algorithm depends on the difficulty of finding the
proper solution of the equations (7), i.e., depends on the number of solutions of
(7). Below we give the detailed description of the algorithm.

The key agreement algorithm in G
(r)
p .

1. The users A and B agree the set of elements S(g) = {g0,1, gi,1, gi,2,

gN,1}N−1
i=1 from the group G

(r)
p with non trivial centralizers Cgi,1g−1

i,2
.

2. The user A selects the set Sa = {ai}N+1
i=0 ⊂ G

(r)
p and the path pa(u)

in the graph Gcipher
2N , such that formula (5) for a0 is satisfied. The user

Extensions of the Diffie-Hellman Key Agreement Protocol 579

A calculates S
(g)
a = {u0,1, ui,1, ui,2, uN,1}N−1

i=1 and sends the set S
(g)
a to

the user B. Similarly, the user B selects the set Sb = {bi}N+1
i=0 ⊂ G

(r)
p ,

and the path pb(w) in the graph Gcipher
2N , such that formula (5) for b0 is

satisfied. The user B calculates S
(g)
b = {w0,1, wi,1, wi,2, wN,1}N−1

i=1 and
sends the set S

(g)
b to A.

3. For the selected path pa(u) the user A calculates k−1
a,b =

((b0aN+1b
−1
N+1)a

−1
0)−1.

For the selected pb(w) the user B calculates ka,b = (a0bN+1a
−1
N+1)b

−1
0 .

The common key is ka,b.

We apply the proposed algorithm to the group G
(r)
17 , which is isomorphic to

the symmetric group of the set of (Z/(17))∗. The graph Gcipher
8 , N = 4, is build

of eight nodes. There are 23 paths in Gcipher
8 . The agreed set S(g) and selected

secret sets Sa and Sa are

S(g) = {E3, E5, E7, E9, E11, E13, E15, E3},
Sa = {R14, R12, R11, R10, R7, E3E5E11E15E3},
Sb = {R3, R5, R7, R10, R11, E3E7E9E13E3},

where the matrices Rj ∈ G
(r)
17 are determined by the primitive roots j ∈ S

(r)
17

and Ei ∈ G
(e)
17 . The paths selected by the users A and B are

pa(u) = (u0,1, u1,1, u2,2, u3,2, u4,1),
pb(w) = (w0,1, w1,2, w2,1, w3,1, w4,1),

where ui,j = aigi,ja
−1
i+1 and wi,j = bigi,jb

−1
i+1, i ∈ [0, 4], j = 1, 2. The common

key calculated by communicating parties is given by the formula

ka,b = R14(E3E7E9E13E3)(E3E5E11E15E3)−1R−1
3 ,

and can be written in matrix form ka,bv0 = (3, 6, 9, 12, 15, 2, 5, 8, 11, 14, 1, 4, 7, 10,
13, 16), where v0 = (1, . . . , 16).

6 Conclusions

We proposed three cryptographic key exchange protocols of the Diffie-Hellman
type based on the exponential and logarithmic functions over the multiplicative
group of integers modulo prime number p. The security of the proposed pro-
tocols is based on the computational complexity in solving a set of congruence
equations containing the discrete logarithm. For the multiplicative group of inte-
ger numbers modulo p we constructed the non-commutative group G

(r)
p of their

automorphisms. On the defined group we constructed a non-commutative key
exchange protocol similar to the Anshel-Anshel-Goldfeld key exchange scheme.
The security of the proposed protocols is based on the difficulty of finding path
in a defined cipher graph Gcipher

2N build of 2N nodes and solution of the set of
certain matrix equations in G

(r)
p .

580 Z. Lipiński and J. Mizera-Pietraszko

References

1. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Trans. Inform.
Theor. IT-22(6), 644–654 (1976)

2. Rescorla, E.: Diffie-Hellman Key Agreement Method, RFC 2631, http://www.rfc-
editor.org (1999)

3. Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptog-
raphy. Math. Res. Lett. 6, 1–5 (1999)

4. Anshel, I., Anshel, M., Goldfeld, D.: Non-abelian key agreement protocols. Discrete
Appl. Math. 130, 3–12 (2003)

5. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Annalen 71, 116–
144 (1911)

6. Myasnikov, A., Shpilrain, V., Ushakov, A.: Non-commutative Cryptography and
Complexity of Group-theoretic Problems, Mathematical Surveys and Monographs,
vol. 177, AMS (2011)

7. Wagner, N.R., Magyarik, M.R.: A public-key cryptosystem based on the word
problem. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp.
19–36. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 3

8. Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New public-key
cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 166–183. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44598-6 10

9. Anshel, I., Anshel, M., Fisher, B., Goldfeld, D.: New key agreement protocols in
braid group Ccyptography. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 13–27. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 2

10. Partala, J.: Algebraic generalization of Diffe-Hellman key exchange. J. Math. Cryp-
tol. 12, 1–21 (2018)

11. Chefranov, A. G., Mahmoud, A. Y.: Commutative Matrix-based Diffie-Hellman-
Like Key-Exchange Protocol. In: Proceedings of the 28th International Symposium
on Computer and Information Sciences In: E. Gelenbe, R. Lent (eds.), Springer,
pp. 317–324, (2013). https://doi.org/10.1007/978-3-319-01604-7 31

12. Cheon, J.H., Jun, B.: A polynomial time algorithm for the braid Diffie-Hellman
Conjugacy Problem. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
212–225. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4 13

13. Eftekhari, M.: A Diffie-Hellman key exchange protocol using matrices over non-
commutative rings. Groups Complex. Cryptol. 4, 167–176 (2012)

14. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

15. Blake, I.F., Garefalakis, T.: On the complexity of the discrete logarithm and Diffie-
Hellman problems. J. Complexity 20, 148–170 (2004)

16. Bresson, E., Chevassut, O., Pointcheval, D.: The group Diffie-Hellman problems.
In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 325–338. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7 21

17. Steiner, M., Tsudik, G., Waidner, M.: Diffe-Hellman key distribution extended to
group communication. In: Proceedings of ACM CCS ’96, ACM Press, pp. 31–37
(1996)

18. Dougherty, D. J., Guttman, J. D.: Symbolic Protocol Analysis for Diffie-Hellman,
arXiv:1202.2168 (2012)

http://www.rfc-editor.org
http://www.rfc-editor.org
https://doi.org/10.1007/3-540-39568-7_3
https://doi.org/10.1007/3-540-44598-6_10
https://doi.org/10.1007/3-540-44598-6_10
https://doi.org/10.1007/3-540-45353-9_2
https://doi.org/10.1007/978-3-319-01604-7_31
https://doi.org/10.1007/978-3-540-45146-4_13
https://doi.org/10.1007/978-3-540-45146-4_13
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/3-540-36492-7_21
http://arxiv.org/abs/1202.2168

Extensions of the Diffie-Hellman Key Agreement Protocol 581

19. Niven, I. M., Zuckerman, H. S., Montgomery, H. L.: An introduction to the theory
of numbers, John Wiley & Sons (1991)

20. Bach, E.: Comments on search procedures for primitive roots. Math. Comp.
66(220), 1719–1727 (1997)

21. Burgess, D.A.: Character sums and primitive roots in finite fields. Proc. London
Math. Soe. 3(17), 11–25 (1967)

22. Shparlinski, I.: On finding primitive roots in finite fields. Theor. Comput. Sci. 157,
273–275 (1996)

23. Shoup, V.: Searching for Primitive Roots in Finite Fields. Math. Comput. 58(197),
369–380 (1992)

24. Bach, E., Shallit, J.: Algorithmic number theory, Volume I: Efficient Algorithms,
MIT Press (1996)

25. Lidl, R., Niederreiter, H., Cohn, P. M.: Finite Fields, Cambridge University Press
(1997)

26. Rose, H.E.: A Course on Finite Groups, Springer-Verlag (2009). https://doi.org/
10.1007/978-1-84882-889-6

https://doi.org/10.1007/978-1-84882-889-6
https://doi.org/10.1007/978-1-84882-889-6

	.26em plus .1em minus .1emExtensions of the Diffie-Hellman Key Agreement Protocol Based on Exponential and Logarithmic Functions
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Extensions of Diffie-Hellman Protocol
	5 The Key Agreement Protocol on Permutation Group
	6 Conclusions
	References

