
Graph Classification via Graph Structure
Learning

Tu Huynh1,2, Tuyen Thanh Thi Ho1,2,3, and Bac Le1,2(B)

1 Faculty of Information Technology, University of Science, Ho Chi Minh City, Vietnam
tuyenhtt@ueh.edu.vn, lhbac@fit.hcmus.edu.vn
2 Vietnam National University, Ho Chi Minh City, Vietnam

3 University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam

Abstract. With the ability of representing structures and complex relationships
between data, graph learning is widely applied in many fields. The problem of
graph classification is important in graph analysis and learning. There are many
popular graph classification methods based on substructures such as graph ker-
nels or ones based on frequent subgraph mining. Graph kernels use handcraft
features, hence it is so poor generalization. The process of frequent subgraph min-
ing is NP-complete because we need to test isomorphism subgraph, so methods
based on frequent subgraph mining are ineffective. To address this limitation, in
this work, we proposed novel graph classification via graph structure learning,
which automatically learns hidden representations of substructures. Inspired by
doc2vec, a successful and efficient model in Natural Language Processing, graph
embedding uses rooted subgraph and topological features to learn representations
of graphs. Then, we can easily build a Machine Learning model to classify them.
We demonstrate our method on several benchmark datasets in comparison with
state-of-the-art baselines and show its advantages for classification tasks.

Keywords: Graph classification · Graph mining · Graph embedding

1 Introduction

In recent years, graph data has become increasingly popular and widely applied in many
fields such as biology (Protein-Protein interaction networks) [1], chemistry (molecu-
lar structures) [2], neuroscience (brain networks) [3, 4], social networks (networks of
friends) [5], and knowledge graphs [6, 7]. The power of graphs is their capacity to
represent complex entities and their relationships. Graph classification is an important
problem because of its wide range of applications including predicting whether a protein
structure is mutated, recognizing unknown compounds, etc.

Because traditional classification algorithms cannot be applied directly to graph data,
graph classification has become an independent sub-field. There are many popular graph
classification methods based on substructures such as graph kernels or ones based on
frequent subgraph mining. The core idea of the former is to extract information from

T. Huynh and T. T. T. Ho---Contributed equally to this work.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. T. Nguyen et al. (Eds.): ACIIDS 2022, LNAI 13758, pp. 269–281, 2022.
https://doi.org/10.1007/978-3-031-21967-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21967-2_22&domain=pdf
https://doi.org/10.1007/978-3-031-21967-2_22


270 T. Huynh et al.

substructures (such as subgraph, path, walk, etc.) and apply conventional classifiers. The
problem with this approach is in extracting information from substructures. There are
two lines of methods to extract information from substructures. First, graph kernels that
are based on kernel methods, work on graph elements such as walk or path. However,
these methods are difficult to find a suitable kernel function that captures the semantics
of the structure while being computationally tractable. The second group of substructure
methods aim at mining frequent subgraphs in graphs. The main drawback of this group
is time-consuming because of the high cost of subgraph mining step.

This paper addresses these limitations by using features learned automatically from
data instead of handcraft features in graph kernels. To overcome the NP-complete
problem in subgraph isomorphism testing, we could mine rooted subgraphs and apply
Weisfeiler-Lehman relabeling method proposed in Weisfeiler-Lehman graph kernel [8]
to find subgraphsmore effectively. Besides that, inspired by the recent success of doc2vec
[20] in NLP, which exploits howwords compose documents to learn their representation,
we adopt this idea to learn graph representation as a document and rooted subgraphs
as words. Specifically, we proposed a novel Graph Classification via Graph Structure
Learning (GC-GSL). First, GC-GSL extracts topological attributes and builds a sub-
graph “vocabulary” set of graphs. Then, to train graph embedding, a neural network is
designed to take a graph as input, and output is subgraphs appearing in the graph as well
as topological attributes extracted from the graph. Finally, a fundamental classifier is
trained for graph embedding.

We make the following main contributions:

• Weproposed aneural networkgraph embeddingmodel. Theneural networkmodelwill
automatically learn the graph embedding corresponding to each graph. The embedding
of the graph after learning not only reflects the characteristics of the graph itself but
also contains the relationship between the graphs.

• Through our experiments on several benchmark datasets, we demonstrate that GC-
GSL is highly competitive compared with the graph kernels and graph classification
methods based on feature vector construction.

The remainder of this article is structured as follows. Related work is listed in Sect. 2.
Section 3 introduces the proposed method from extracted topological attributes vec-
tor, mining rooted subgraphs to neural networks for graph embedding. The experimen-
tal results and discussions are presented in Sect. 4. Conclusions and future works are
presented in Sect. 5.

2 Related Works

Graph Kernels. Graph kernels [9] are one of the prominent methods in graph clas-
sification problems. Graph kernels evaluate the similarity between a pair of graphs by
recursively decomposing them into substructures (e.g. walks, paths, cycles, graphlets,
etc.) and defining a similarity function over the substructures (e.g. count the number
of similar substructures two graphs, etc.). Then, kernel methods (e.g. Support Vector
Machines [10], etc.) could be used to perform classification tasks. Random Walk Ker-
nels [11], the similarity of two graphs is calculated by counting the number of common



Graph Classification via Graph Structure Learning 271

walk labels of the two graphs. Shortest Path Kernels [12] first computes the shortest path
for each graph in the dataset. The kernel is defined as the sum over all pairs of shortest
path edges of two graphs and, using any positive definite kernel that is suitable on the
edges. Nikolentzos et al. [13] proposed a method to measure the similarity between pairs
of documents based on the Shortest Path Kernel method. In it, each document is repre-
sented by a graph of words. Cyclic Pattern Kernels [14] is based on the common number
of cycles occurring in both graphs. Since there is no known polynomial-time algorithm
to find all cycles in a graph, time-limited sampling and enumeration of cycles are used to
measure the similarity of a graph. Graphlet and Subgraph Kernels [15], similar graphs
should have similar subgraphs. Kernel graphlets measure the similarity of two graphs
as the dot product of the count vectors of all possible connected subgraphs of degreed.
Subtree Kernels [16] are based on common subtree patterns in graphs. To compare two
graphs, the subtree kernel compares all pairs of vertices from two graphs by iteratively
comparing their neighborhoods.

However, most of them still have some limitations. First, many of them do not
provide explicit graph embedding. They allow kernelized learning algorithms such as
Support Vector Machines [10] to work directly on graphs, without having to do fea-
ture extraction to transform them to fixed-length, real-valued feature vectors. Second,
these graph kernels use handcrafted features (e.g., shortest paths, graphlets, etc.) i.e.,
features determined manually with specific well-defined functions that help to extract
such substructures from graphs and thus yield poor generalization.

Graph Classification Based on Frequent Subgraph Mining. Constructing feature
vectors based on frequent subgraph mining consists of 3 steps. 1) mining the frequent
subgraph of graphs (e.g. Fast Frequent Subgraph Mining [27]), 2) filtering the subgraph
features (e.g. structure-based, semi-supervised learning, etc.), and 3) vectorize the graph
based on subgraph features. The key issue for classification efficiency of this method
is the selection of discriminative subgraph features. Fei and Huan [17] first used Fast
Frequent Subgraph Mining (FFSM) [27] to mine frequent subgraphs, then proposed an
embedding distance method to describe the feature consistency relationship between
subgraphs, which maps all frequent subgraphs into feature consistency graphs. Then,
the order of the nodes corresponding to the frequent subgraph in the consistency graph
is used to extract the feature subgraphs, so that the original graph has been converted
to the feature vector. Finally, Support Vector Machines [10] is used for classification.
Kong and Yu [18] use the gSpan algorithm [26] to mine the subgraphs and then propose
a feature evaluation criterion, called gSemi, to evaluate the subgraphs characteristic for
both labeled and unlabeled graphs and get the upper bound for gSemi to reduce the
subgraph search space. Then, a branch-and-bound algorithm is proposed to efficiently
find the optimal set of feature subgraphs, which is useful for graph classification.

However, there are still some challenges when classifying graphs based on frequent
subgraph mining. First, a large number of subgraphs are mined. Applying frequent sub-
graph mining algorithms on a set of graphs causes all subgraphs that occur more than
a particular threshold to be detected. These samples are numerous, and the number of
these samples depends on the data attribute and the defined threshold. The considerable
number of samples increases the uptime, makes the selection of valuable samples more
difficult and reduces scalability. Second, the process of frequent subgraph mining is



272 T. Huynh et al.

NP-complete. To determine the frequency of the subgraphs, we need to test the isomor-
phic subgraphs. If two subgraphs are the same in terms of connectivity, then they are
isomorphic. Isomorphism testing is an NP-complete problem [19], so it is expensive,
especially for large graphs.

3 Proposed Method: GC-GSL

Our graph classification method, which we name GC-GSL Graph Classification via
Graph Structure Learning, is based on the following key observation: two graphs are
similar if they have similar graph substructures. Inspired by doc2vec [20] to learn doc-
ument embedding, we extend the same to learn graph embeddings. Doc2Vec exploits
the way words/word sequences compose documents to learn their embedding. Similar
to doc2vec, in GC-GSL, we view a graph as a document and the rooted subgraphs in
the graph as words. In addition, PV-DBOW model in doc2vec [20] ignores the local
context of words, that is, the model only considers which words a document contains,
not the order of words in the document. Therefore, PV-DBOW model is very suitable
for graph embedding, where there is no sequential relationship between the rooted sub-
graphs. Besides, inGC-GSL, the topological attribute vector is added to the output layer
to help the model learn the general information of the graph. And after training the graph
embedding, a basic classification in Machine Learning is used for classification. In this
session, we discuss the main components and complexity of GC-GSL.

3.1 Extracting Topological Attribute Vector

The extracted topological attribute vector includes 16 features related to many different
feature groups of the graph from the statistical information, such as the number of nodes,
the number of edges, to structural features such as clustering, connectivity, centrality,
distance measure, and percentages of some typical node types.

f1 – Number of nodes.
f2 – Number of edges.
f3 – Average degree: the average value of the degree of all nodes in the graph.
f4 – Average neighbor degree: First, we calculate the average neighbor degree of each
node. Then we take the average over all the nodes of the graph.
f5 – Degree assortativity coefficient: Assortativity measures how similar the connec-
tions in a graph are to the node level. It is like the Pearson correlation coefficient but
measures the correlation between every pair of connected nodes.
f6 –Average clustering coefficient:The clustering coefficient is ameasure of the degree
to which nodes in a graph tend to cluster together.
f7 – Pagerank score: PageRank calculates the rank of nodes in a graph based on the
structure of incoming links.
f8 – Eigenvector centrality: Eigenvector centrality is a measure of the influence of a
node in a graph. It calculates the central position for a node based on the central position
of the neighboring nodes.



Graph Classification via Graph Structure Learning 273

f9 – Closeness centrality: Closeness centrality is a way of detecting nodes that can
propagate information very efficiently through a graph. Calculating the near center of a
node measures its average distance (inverse distance) to all other nodes.
f10 – Average betweenness centrality: Betweenness centrality measures the degree to
which a vertex lies on the path between other vertices.
f11 –Average effective eccentricity:The eccentricity of a node is themaximumdistance
from that node to all other nodes in the graph, whichmeans the longest path of all shortest
paths from that node to other nodes in the graph. Average effective eccentricity is the
average value of the effective eccentricity of all nodes in the graph.
f12 – Effective diameter: The effective diameter is the maximum effective eccentricity
of the graph, defined as the maximum value of the effective eccentricity over all nodes
in the graph.
f13 – Effective radius: The effective radius is the minimum effective eccentricity,
defined as the minimum value of the effective eccentricity over all nodes in the graph.
f14 – Percentage of central points:A central node is a node whose eccentricity is equal
to the effective radius of the graph.
f15 – Percentage of periphery points: Percentage of nodes in the set of nodes whose
eccentricity is equal to the effective diameter.
f16 – Percentage of endpoints: The ratio between the number of endpoints (leaf nodes)
and the total number of nodes in the graph is selected as a feature.

In extracting the topological attributes vector, if a certain graph in the dataset is dis-
connected and contains several components, we compute the mean for a given feature’s
overall components. Table 1 shows the topological attributes vector consisting of 16
features extracted from graph 0 in the MUTAG dataset.

Table 1. The topological attributes vector is extracted from graph 0 in the MUTAG dataset
consisting of 16 features from f1 to f16.

F f1 f2 f3 f4 f5 f6 f7 f8

V 17.00 19.00 2.24 2.47 −0.21 0.00 0.06 0.22

F f9 f10 f11 f12 f13 f14 f15 f16

V 0.29 0.17 6.82 9.00 5.00 0.24 0.18 0.12

3.2 Rooted Subgraph Mining

The main objective in this section is to build a “vocabulary” of rooted subgraphs (i.e.,
neighborhoods around everynodeup to a certain degree) of graphs like vocabulary in doc-
uments. Rooted subgraphs can be considered as fundamental components of any graph.
Other substructures are nodes, paths, walks, etc. but this paper uses rooted subgraphs
because they are non-linear and higher-order substructures, capturing more information
than other substructures.



274 T. Huynh et al.

To mine rooted subgraphs in graphs, we take each node in the graph as the root node,
then we find its neighborhood at a certain level d, from d = 0 (layer 1, the node itself) to
d = 3 (layer 4). After that, we aggregate all rooted subgraphs of four layers and remove
the repeated subgraphs to obtain a subgraph “vocabulary” set. After rooted subgraphs
are mined, we have to test the isomorphism of all the subgraphs to remove repeated ones.
The subgraph isomorphism test is an NP-complete problem, so it is time-consuming.
To solve this problem, we follow a well-known Weisfeiler-Lehman relabeling method
proposed in [8]. One iteration in Weisfeiler-Lehman relabeling consists of 4 steps:

• Step 1: Multiset-label determination. Determine the set of multiset-label for each
node in the graph. The multiset-label here is the set consisting of root node’s labels
and the labels of its neighbors.

• Step 2: Sorting each multiset. In this step, we sort the labels of neighboring nodes in
ascending order, then combine with that root node’s label and convert it into a string
of characters representing that node’s label.

• Step 3: Label compression.After we have determined and sorted the set of multiset-
labels, we map each multiset-label to a numeric character that has not appeared in the
previous labels to represent the label.

• Step 4: Relabeling. In this step, we use the mapping in Step 3 to relabel all nodes in
the graph.

3.3 Neural Network Graph Embedding

Figure 1 shows the architecture of the graph embedding neural network of GC-GSL,
this neural network is similar to the PV-DBOW model in doc2vec [20]. The input layer
gets a one-hot vector of graphs whose length is equal to the number of graphs in the
dataset. Next, there is only one hidden layer in the neural network, the number of neurons
of this hidden layer equals the dimensionality of feature vectors we expect after training
graph embedding. The embedding matrix between the input layer and hidden is the
embedding of the graphs we need to train. Finally, the output layer consists of two parts,
the first part is the topological attributes vector with 16 dimensions corresponding to 16
features of the graph. And the second part of the output layer is taken from the subgraph
“vocabulary” set. More formally, the second part of the output layer tries to maximize
the following objective:

J = logσ
(
vTg vsg′

)
+

∑k

i=1
logσ

(
−vTg vsgi

)
(1)

where vg is the embedding of graph g, and vsg′ is the embedding of a subgraph sg′ that
co-occurs in the graph g. sgi is a random sample from the subgraph “vocabulary” set
and does not appear in the graph g. σ(x) is sigmoid function, i.e., σ(x) = 1/(1 + e−x).

This graph embedding training is an unsupervised learning method, it only uses the
information and structures extracted from graphs including the topological attributes
vectors, the rooted subgraphs in graphs, and graphs themselves to be used for train-
ing. Therefore, it does not depend on graph labels, and only learns embedding through
substructures and information of graphs. Moreover, this graph embedding model auto-
matically learns the corresponding embedding for each graph, and the embedding that



Graph Classification via Graph Structure Learning 275

we get after training not only reflects the components of the graph itself but also reflects
information about relationships between graphs.

Fig. 1. Architecture of the graph embedding neural network.

3.4 Computational Complexity

GC-GSL consists of three main parts: the topological attributes vector extraction, the
subgraph “vocabulary” set construction, and graph embedding neural network.

In the algorithm to extract topological attributes vector, we use n to represent the
number of nodes andm to represent the number of edges of a graph. f1 and f2 are known,
so their cost is O(1). Degree-based features (f3, f4, f5 and f16) can be computed in linear
time O(m + n). Features depend on the eigen-decomposition of the graph (f7 and f8)
can be computed in O

(
n3

)
time in the worst case. The clustering coefficient of each node

calculated in the average time is is O
(
d2

) = ( 2m
n

)2
where d = 2m

n is the average degree.
Therefore, the average clustering coefficient (f6) on all nodes can be computed in time

O
(
m2

n

)
. Features calculated based on eccentricity (f9, f10, f11, f12, f13, f14 and f15)

are calculated from the SP matrix (Shortest Path Matrix) of all pairs of vertices. The SP
matrix can be calculated in O

(
n2 + mn

)
time. From this SP matrix, the features can be

computed in O
(
n2

)
time.



276 T. Huynh et al.

Building the subgraph “vocabulary” set requires a Breadth-First Search (BFS) algo-
rithm tomine the subgraph for each node computed in O(n), then theWeisfeiler-Lahman
relabeling algorithm is used to solve the subgraph isomorphism test problem computed
in O(lt) where l is the number of iterations and t is the size of multi-labels set in each
iteration.

Graph embedding neural network complexity of O(ES(NH + NHlog(V + F))),
where E is the number of epochs to train the model, S is the number of graphs in dataset,
N is the number of negative samples, H is the number of neurons in the hidden layer, V
is the size of the subgraph “vocabulary” set, F is the dimensionality of the topological
attributes vector.

4 Experiments

Datasets. Weuse sevenpopular benchmarkdatasets, including5bioinformatics datasets
of MUTAG, PROTEINS, NCI1, NCI109 and PTC_MR, and 2 social network datasets
of IMDB-BINARY and IMDB-MULTI [21], whose characteristics are summarized in
Table 2. MUTAG is a dataset of 188 nitro compounds labeled with respect to whether
they havemutagenic effects on bacteria. NCI1 andNCI109 datasets are two subsets of the
balanced dataset of screened chemical compounds for activity against non-small cell lung
cancer and ovarian cancer cell lines. PROTEINS is a dataset where nodes are Secondary
Structural Elements (SSEs), and edges represent neighborhood relationships in amino
acid sequences or in 3-dimension space. PTC_MR dataset records the carcinogenicity
of 344 chemical compounds in male rats. IMDB-BINARY and IMDB-MULTI are ego-
network collection of actors, where two actors in the same movies make an edge, and
the task is to infer the genre of an ego-network.

Table 2. Dataset statistics including the number of graphs (#graphs), the number of graph labels
(#classes), the average number of nodes (#nodes), the average number of edges (#edges), the
number of positive (#pos) and negative (#neg) samples.

#graphs #classes #nodes #edges #pos #neg

MUTAG 188 2 17.93 19.79 125 63

NCI1 4110 2 29.87 32.3 2057 2053

NCI109 4127 2 29.68 32.13 2079 2048

PROTEINS 1113 2 39.06 72.82 663 450

PTC_MR 344 2 14.29 14.69 192 152

IMDB-B 1000 2 19.77 96.53 500 500

IMDB-M 1500 3 13.00 65.94 - -



Graph Classification via Graph Structure Learning 277

Experiments and Configurations. In our experiment, the dimension of the hidden
layer in the neural network is chosen to be 128, the best results are obtained when the
topological attributes vector normalization method is z-score, the learning rate value is
0.003 and the number of epochs on seven data sets is 3000. The learning algorithm used
is Adam. The size of a mini-batch for all datasets is 512. The base classifier is Support
Vector Machines (SVM) [10]. Evaluation results are based on the results of 10 runs of
each graph classification algorithm, with each run using 10-fold cross-validation. The
final evaluation results are the mean and standard deviation of accuracy across all runs
of each algorithm on each dataset.

Baselines. Ourmethod is comparedwith state-of-the-art baselines includingWeisfeiler-
Lehman kernel (WL), [8] DeepWL [21], DeepDivergenceGraphKernels (DDGK) [22],
Anonymous walk embeddings (AWE) [23], Methods based on frequent subfragment
mining (FSG) [24, 25].

4.1 Results

Accuracy. Table 3 shows the average classification accuracy and standard deviation of
the three graph classification methods on five bioinformatics datasets and two social
network datasets. Overall, GC-GSL gives the best results on all the datasets compared
with the traditional graph kernels and graph classification based on frequent subgraph
mining. The accuracy of GC-GSL is better than FSG-Bin on all 7 datasets. Compared
with the other combination graph kernels and neural networks approaches such as Deep
WL, DDGK and AWE, results of GC-GSL are also good, especially on PROTEINS,
NCI1 and NCI109 datasets. In addition, 3 datasets MUTAG, NCI1 and NCI109 have
accuracy greater than 80%.

In summary, GC-GSL is highly effective on large datasets such as PROTEINS and
NCIs with the graph classification accuracy better than the other methods. Moreover, it
is robust and stable, which is implied by its small standard deviations. GC-GSL is the
most effective because it automatically learns information and structures of the graph
at both local and global levels. Moreover, in training graph embedding, GC-GSL also
learns the relationship between graphs.

Table 3. Average Accuracy (± std dev.) for our method GC-GSL and state-of-the-art baselines
on benchmark datasets. Bold font marks the best performance in a column.

MUTAG PROTEINS NCI1 NCI109 PTC_MR IMDB-B IMDB-M

WL 80.72 ± 3.00 72.92 ± 0.56 80.13 ± 0.50 80.22 ± 0.34 56.97 ± 2.01 – –

Deep WL 82.94 ± 2.68 73.30 ± 0.82 80.31 ± 0.46 80.32 ± 0.33 59.17 ± 1.56 – –

DDGK 91.58 ± 6.74 – 68.10 ± 2.30 – 63.14 ± 6.57 – –

AWE 87.87 ± 9.76 70.01 ± 2.52 62.72 ± 1.67 63.21 ± 1.42 59.14 ± 1.83 74.45 ± 5.83 51.54 ± 3.61

FSG-Bin 81.58 ± 0.08 71.61 ± 0.03 77.01 ± 0.03 74.58 ± 0.02 60.29 ± 0.05 64.40 ± 0.05 46.53 ± 0.04

GC-GSL 83.86 ± 2.16 76.55 ± 1.02 82.04 ± 0.45 81.86 ± 0.33 60.11 ± 1.17 68.46 ± 1.12 46.39 ± 0.44



278 T. Huynh et al.

Embedding. Through the graph embedding neural network, the graph dataset is trans-
formed into a set of embedding vectors corresponding to each graph, where each vector
has a length of 128. Therefore, to observe this result, the t-distributed Stochastic Neigh-
bor Embedding (t-SNE) algorithm is used for nonlinear dimensionality reduction on
the 128-dimensional embedding vectors into 2-dimensional vectors. Figure 2 shows the
visualization results after the graph embedding of 7 datasets in 2-dimensions with differ-
ent colored circles representing different categories of graphs in the dataset. We can see
that the visualization results ofMUTAG and PROTEINS datasets have a clear distinction
between the two classes. The visualization of NCI1 and NCI109 datasets, although as
explicit as MUTAG, is that a class is subdivided into many other sub-clusters and there
is a distinction between sub-clusters of two different classes. Particularly, PTC_MR
dataset, which distributes data of two different classes, is complex and intertwined.
IMDB-BINARY dataset has visual results quite like the NCI sets but is sparser. With

Fig. 2. The visualization of results after the graph embedding in 2-dimensions of five bioinfor-
matics datasets and two social network datasets.



Graph Classification via Graph Structure Learning 279

IMDB-MULTI dataset, it is easy to see the different partitions of the blue circles, the
green and orange circles distributed around the partitions of the blue circles. In conclu-
sion, graph embedding is trained based on substructures and feature information in the
graph, so graphs with similar substructures and information will be closer together.

4.2 Discussions

We discuss in terms of parts of GC-GSL. First, with the proposed topological attributes
vector, it helps the neural network that trains the graph embedding to learn more general
information about the graph. Although the topological attributes vector carries a variety
of information from many distinct aspects of the graph, these features only revolve
around the topology in the graph. In the graph, there is still other useful information
that has not been considered such as properties of nodes, edges, etc. For example, with
the analysis of social network problems, in addition to the connections between people,
personal information of each person such as gender, age, etc. is also extremely necessary.

Second, the rooted subgraph mining is more effective when applying the Weisfeiler-
Lehman relabeling method. However, these subgraphs are only local. This is the main
reason the topological attributes vector is proposed. It helps the neural network to train
graph embedding to learn more global information, but it only solves a part of the
problem that cannot be solved yet thoroughly.

Finally, the neural network used to train graph embedding, the training results are
effective. As we can see in Fig. 2, graphs with similar substructures will be closer to each
other, and graphswith different substructureswill be far away fromeach other. Therefore,
with these graph embedding results, the classification results on the embedding vectors
of the graphs will give satisfactory results (see Table 3). The results of the evaluation of
the measures on experimental datasets have confirmed this with some datasets having an
accuracy of over 80% and better than the other graph classification methods. Moreover,
with the results of graph embedding, in addition to being used for graph classification,
we can also use it for many other tasks at the graph level such as clustering, community
detection.

5 Conclusion

Based on the original idea of doc2vesc in NLP to automatically learn document embed-
ding, we applied it to graph data and proposed a novel graph classification method based
on graph structure learning named GC-GSL. GC-GSL helps us to solve the problem of
subgraph isomorphism testing as well as easily applied to real-world problemswith large
datasets and highly scalable without the need for complex implementation as in graph
kernels or graph classification based on frequent subgraphminingmethods. Experiments
on bioinformatics data sets and social networks have both good and effective results.

Although the results of GC-GSL are effective, there will still be limitations as men-
tioned in the discussion such as local subgraph problems, some other information in the
graph such as node, edge, etc. is still unexplored. Further improvement in classification
results by overcoming the above limitations is one of the probable future development
directions. On the other hand, this novel graph classification method also needs further
improvements in practical terms such as speed and scalability for larger datasets.



280 T. Huynh et al.

References

1. Szklarczyk, D., et al.: STRING v11: protein–protein association networks with increased
coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic
Acids Res. 47(D1), D607–D613 (2019)

2. Trinajstic, N.: Chemical Graph Theory. CRC Press (2018)
3. Siew, C.S., Wulff, D.U., Beckage, N.M., Kenett, Y.N.: Cognitive network science: a review of

research on cognition through the lens of network representations, processes, and dynamics.
Complexity 2019, 2108423 (2019)

4. Lanciano, T., Bonchi, F., Gionis, A.: Explainable classification of brain networks via con-
trast subgraphs. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 3308–3318 (2020)

5. Tabassum, S., Pereira, F.S., Fernandes, S., Gama, J.: Social network analysis: an overview.
Wiley Interdisc. Rev.: Data Min. Knowl. Discovery 8(5), e1256 (2018)

6. Chen, X., Jia, S., Xiang, Y.: A review: knowledge reasoning over knowledge graph. Expert
Syst. Appl. 141, 112948 (2020)

7. Domingo-Fernández, D., et al.: COVID-19 knowledge graph: a computable, multi-modal,
cause-and-effect knowledge model of COVID-19 pathophysiology. Bioinformatics 37(9),
1332–1334 (2021)

8. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.:
Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9), 2539–2561 (2011)

9. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw. Sci. 5(1),
1–42 (2019). https://doi.org/10.1007/s41109-019-0195-3

10. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell.
Syst, Technol. (TIST) 2(3), 1–27 (2011)

11. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J.
Mach. Learn. Res. 11, 1201–1242 (2010)

12. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Fifth IEEE International
Conference on Data Mining (ICDM’05), pp. 8-pp. IEEE (2005)

13. Nikolentzos, G., Meladianos, P., Rousseau, F., Stavrakas, Y., Vazirgiannis, M.: Shortest-path
graph kernels for document similarity. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 1890–1900 (2017)

14. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining. In:
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 158–167 (2004)

15. Shervashidze, N., Vishwanathan, S. V. N., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient
graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–
495. PMLR (2009)

16. Ramon, J., Gärtner, T.: Expressivity versus efficiency of graph kernels. In: Proceedings of the
First International Workshop on Mining Graphs, Trees and Sequences, pp. 65–74 (2003)

17. Fei, H., Huan, J.: Structure feature selection for graph classification. In: Proceedings of the
17th ACM Conference on Information and Knowledge Management, pp. 991–1000 (2008)

18. Kong, X., Yu, P.S.: Semi-supervised feature selection for graph classification. In: Proceedings
of the 16thACMSIGKDD international conference onKnowledge discovery and datamining,
pp. 793–802 (2010)

19. Schöning,U.:Graph isomorphism is in the lowhierarchy. J. Comput. Syst. Sci. 37(3), 312–323
(1988)

20. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International
Conference on Machine Learning, pp. 1188–1196. PMLR (2014)

https://doi.org/10.1007/s41109-019-0195-3


Graph Classification via Graph Structure Learning 281

21. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–
1374 (2015)

22. Al-Rfou, R., Perozzi, B., Zelle, D.: Ddgk: Learning graph representations for deep divergence
graph kernels. In: The World Wide Web Conference, pp. 37–48 (2019)

23. Ivanov, S., Burnaev, E.: Anonymous walk embeddings. In: International conference on
machine learning, pp. 2186–2195. PMLR (2018)

24. Rousseau, F., Kiagias, E., Vazirgiannis, M.: Text categorization as a graph classification prob-
lem. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 1702–1712 (2015)

25. Wang, H., et al.: Incremental subgraph feature selection for graph classification. IEEE Trans.
Knowl. Data Eng. 29(1), 128–142 (2016)

26. Yan, X., Han, J.: gSpan: graph-based substructure patternmining. In: 2002 IEEE International
Conference on Data Mining, 2002 Proceedings, pp. 721–724. IEEE (2002)

27. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the presence of
isomorphism. In: Third IEEE International Conference on Data Mining, pp. 549–552. IEEE
(2003)


	Graph Classification via Graph Structure Learning
	1 Introduction
	2 Related Works
	3 Proposed Method: GC-GSL
	3.1 Extracting Topological Attribute Vector
	3.2 Rooted Subgraph Mining
	3.3 Neural Network Graph Embedding
	3.4 Computational Complexity

	4 Experiments
	4.1 Results
	4.2 Discussions

	5 Conclusion
	References




