
Towards Efficient Discovery of Partial
Periodic Patterns in Columnar Temporal

Databases

Penugonda Ravikumar1,4(B) , Venus Vikranth Raj4 , Palla Likhitha1 ,
Rage Uday Kiran1,2,3 , Yutaka Watanobe1 , Sadanori Ito2 , Koji Zettsu2 ,

and Masashi Toyoda3

1 The University of Aizu, Fukushima, Japan
raviua138@gmail.com

2 National Institute of Information and Communications Technology, Tokyo, Japan
{ito,zettsu}@nict.go.jp

3 The University of Tokyo, Tokyo, Japan
toyoda@tkl.iis.u-tokyo.ac.jp

4 IIIT-RK Valley, RGUKT-Andhar Pradesh, Vempalli, India

Abstract. Finding partial periodic patterns in temporal databases is a
challenging problem of great importance in many real-world applications.
Most previous studies focused on finding these patterns in row tempo-
ral databases. To the best of our knowledge, there exists no study that
aims to find partial periodic patterns in columnar temporal databases.
One cannot ignore the importance of the knowledge that exists in very
large columnar temporal databases. It is because real-world big data
is widely stored in columnar temporal databases. With this motiva-
tion, this paper proposes an efficient algorithm, Partial Periodic Pattern-
Equivalence Class Transformation (3P-ECLAT), to find desired patterns
in a columnar temporal database. Experimental results on synthetic and
real-world databases demonstrate that 3P-ECLAT is not only memory
and runtime efficient but also highly scalable. Finally, we present the
usefulness of 3P-ECLAT with a case study on air pollution analytics.

Keywords: Pattern mining · Periodic patterns · Columnar databases

1 Introduction

The big data generated by real-world applications are naturally stored in row or
columnar databases. Row databases help the user write the data quickly, while
columnar databases facilitate the user to execute fast (aggregate) queries. Thus,
row databases are suitable for Online Transaction Processing (OLTP), while
columnar databases are suitable for Online Analytical Processing (OLAP). As
the objective of knowledge discovery in databases falls under OLAP, this paper
aims to find partial periodic patterns in columnar databases.

This research was funded by JSPS Kakenhi 21K12034.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. T. Nguyen et al. (Eds.): ACIIDS 2022, LNAI 13758, pp. 141–154, 2022.
https://doi.org/10.1007/978-3-031-21967-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21967-2_12&domain=pdf
http://orcid.org/0000-0001-9124-9781
http://orcid.org/0000-0003-4915-5946
http://orcid.org/0000-0003-3032-9061
http://orcid.org/0000-0002-5417-0289
http://orcid.org/0000-0002-0030-3859
http://orcid.org/0000-0002-8266-8463
http://orcid.org/0000-0003-4062-2376
http://orcid.org/0000-0001-9473-5531
https://doi.org/10.1007/978-3-031-21967-2_12

142 P. Ravikumar et al.

Partial periodic pattern mining [4] is an important knowledge discovery tech-
nique in data mining. It involves discovering all patterns in a temporal database
that satisfy the user-specified minimum periodic-support (minPS) and period-
icity (per) constraints. The minPS controls the minimum number of periodic
occurrences of a pattern in a database. The per controls the maximum inter-
arrival time of a pattern in the database. A classical application is air pollution
analytics. It involves identifying the geographical areas in which people were reg-
ularly exposed to harmful air pollutants, say PM2.5. A partial periodic pattern
discovered in our air pollution database is as follows:

{1591, 1266, 1250} [periodic-support = 23, periodicity = 3h].

The above pattern indicates that the people living close to the sensors, 1591,
1266, and 1250, were frequently and regularly (i.e., at least once every 3 h)
exposed to harmful levels of PM2.5. The produced information may help the
users for various purposes, such as alerting local authorities and introducing
new pollution control policies. (This application was further discussed as a case
study in the latter parts of this paper.)

Uday et al. [4] described the Partial Periodic Pattern-growth (3P-growth)
algorithm to find desired patterns in a temporal database. It is a depth-first
search algorithm that can find partial periodic patterns only in a row database.
In other words, this algorithm cannot find partial periodic patterns in a columnar
database. One can find partial periodic patterns by transforming a columnar
temporal database into a row database. However, we must avoid such näıve
transformation process due to its high computational cost. With this motivation,
this paper aims to develop an efficient algorithm that can find partial periodic
patterns in a columnar database.

Finding partial periodic patterns in columnar databases is non-trivial and
challenging due to the following reasons:

1. Zaki et al. [8] first discussed the importance of finding frequent patterns in
columnar databases. Besides, a depth-first search algorithm, called Equiv-
alence Class Transformation (ECLAT), was also described to find frequent
patterns in a columnar database. Unfortunately, we cannot directly use this
algorithm to find periodic-frequent patterns in a columnar database. It is
because the ECLAT algorithm completely disregards the temporal occurrence
information of an item in the database.

2. The space of items in a database gives raise to an itemset lattice. The size
of this lattice is 2n − 1, where n represents the total number of items in
a database. This lattice represents the search space for finding interesting
patterns. Reducing this vast search space is a challenging task.

This paper proposes a novel and generic ECLAT algorithm by addressing the
above two issues. Our algorithm finds the desired patterns by taking into account
the frequency and temporal occurrence information of the items in the data
Fig. 1.

The contributions of this paper are as follows: (i) This paper proposes a novel
algorithm to find partial periodic patterns in a columnar temporal database. We

Towards Efficient Discovery of Partial Periodic Patterns 143

Fig. 1. Search space of the items a, b and c. (a) Itemset lattice and (b) Depth first
search on the lattice

call our algorithm as Partial Periodic Pattern-Equivalence Class Transformation
(3P-ECLAT). (ii) To the best of our knowledge, this is the first algorithm that
aims to find partial periodic patterns in a columnar temporal database. A key
advantage of this algorithm over the state-of-the-art algorithms is that it can
also be employed to find partial periodic patterns in a horizontal database. (iii)
Experimental results on synthetic and real-world databases demonstrate that our
algorithm is not only memory and runtime efficient but also highly scalable. We
will also show that 3P-ECLAT even outperforms the state-of-the-art algorithm
while finding partial periodic patterns in a row database. (iv) Finally, we describe
the usefulness of our algorithm with a case study on air pollution data.

The rest of the paper is organized as follows. Section 2 reviews the work
related to our method. Section 3 introduces the model of the partial periodic
pattern. Section 4 presents the proposed algorithm. Section 5 shows the experi-
mental results. Section 6 concludes the paper with future research directions.

2 Related Work

Agrawal et al. [1] introduced the concept of frequent pattern mining to extract
useful information from the transactional databases. It has been used in many
domains, and several other algorithms have been developed. Luna et al. [5] con-
ducted a detailed survey on frequent pattern mining and presented the improve-
ments that happened in the past 25 years. However, frequent pattern mining is
inappropriate for identifying patterns that are regularly appearing in a database.

Tanbeer et al. [7] introduced the periodic-frequent pattern model to discover
temporal regularities in a database. Amphawan et al. [2] extended this model
to find top-K periodic-frequent patterns in a database. Amphawan et al. [3]
have also discussed novel measuring technique named approximate periodicity
to discover periodic-frequent patterns in a transactional database. Nofong et
al. [6] have proposed a novel two-stage approach to discover periodic-frequent
patterns efficiently. The widespread adoption and industrial application of this
model have been hindered by the following limitation: “Since the objective of
maxPer constraint to find all patterns that have maximum inter-arrival time no
more than maxPer, the model discover only those patterns that have exhibited

144 P. Ravikumar et al.

Table 1. Row database

ts items ts items

1 ace 7 bcd

2 bc 8 bf

3 bdef 9 abcd

4 abef 10 cd

5 acdf 11 abcd

6 abcd 12 abcd

Table 2. Columnar database

items items

ts a b c d e f ts a b c d e f

1 1 0 1 0 1 0 7 0 1 1 1 0 0

2 0 1 1 0 0 0 8 0 1 0 0 0 1

3 0 1 0 1 1 1 9 1 1 1 1 0 0

4 1 1 0 0 1 1 10 0 0 1 1 0 0

5 1 0 1 1 0 1 11 1 1 1 1 0 0

6 1 1 1 1 0 0 12 1 1 1 1 0 0

Table 3. List of ts of an
item

item TS-list

a 1, 4, 5, 6, 9, 11, 12

b 2, 3, 4, 6, 7, 8, 9, 11, 12

c 1, 2, 5, 6, 7, 9, 10, 11, 12

d 3, 5, 6, 7, 9, 10, 11, 12

e 1, 3, 4

f 3, 4, 5, 8

full periodic behavior in the database. In other words, this model fails to dis-
cover all those interesting patterns that have exhibited partial periodic behavior
in the database.” When confronted with this problem in the real-world applica-
tions, researchers have tried to find partially occurring periodic-frequent patterns
using constraints such as periodic-ratio, standard deviation, and average period,
Unfortunately, these extended models require too many input parameters and
are not practicable on large databases as the generated patterns do not satisfy
the downward closure property.

Uday et al. [4] described a novel model to discover partial periodic patterns in
a temporal database. Unlike the studies mentioned above, this model is easy to
use as it requires only two input parameters, and the generated patterns satisfy
the downward closure property. A pattern-growth algorithm, called 3P-growth,
was also described to find desired patterns in a temporal database. Unfortu-
nately, this algorithm can find partial periodic patterns only in row databases.
In this context, this paper aims to advance the state-of-the-art by proposing an
algorithm to find partial periodic patterns in a columnar database.

Overall, the proposed algorithm to find partial periodic patterns in a colum-
nar database is novel and distinct from existing studies.

3 The Model of Partial Periodic Pattern

Let I be the set of items. Let X ⊆ I be a pattern (or an itemset). A pattern
containing β, β ≥ 1, number of items is called a β-pattern. A transaction,
tk = (ts, Y) is a tuple, where ts ∈ R

+ represents the timestamp at which
the pattern Y has occurred. A temporal database TDB over I is a set of
transactions, i.e., TDB = {t1, · · · , tm}, m = |TDB|, where |TDB| can be
defined as the number of transactions in TDB. For a transaction tk = (ts, Y),
k ≥1, such that X ⊆ Y , it is said that X occurs in tk (or tk contains X) and
such a timestamp is denoted as tsX . Let TSX = {tsXj , · · · , tsXk }, j, k ∈ [1,m]
and j ≤ k, be an ordered set of timestamps where X has occurred in TDB.
The number of transactions containing X in TDB is defined as the support of
X and denoted as sup(X). That is, sup(X) = |TSX |.

Towards Efficient Discovery of Partial Periodic Patterns 145

Example 1. Let I = {a, b, c, d, e, f} be the set of items. A hypothetical row tem-
poral database generated from I is shown in Table 1. Without loss of generality,
this row temporal database can be represented as a columnar temporal database
as shown in Table 2 and which is also a binary columnar database. The tempo-
ral occurrences of each item in the entire database is shown in Table 3. The
set of items ‘b’ and ‘c’, i.e., {b, c} is a pattern. For brevity, we represent this
pattern as ‘bc’. This pattern contains two items. Therefore, it is 2-pattern. The
temporal database contains 12 transactions. Therefore, m = 12. The minimum
and maximum timestamps in this database are 1 and 12, respectively. There-
fore, tsmin = 1 and tsmax = 12. The pattern ‘bc’ appears at the timestamps
of 2, 6, 7, 9, 11, and 12. Therefore, the list of timestamps containing ‘bc’, i.e.,
TSbc = {2, 6, 7, 9, 11, 12}. The support of ‘bc,’ i.e., sup(bc) = |TSbc| = 6.

Definition 1 (Periodic appearance of pattern X). Let tsXj , tsXk ∈ TSX ,
1 ≤ j < k ≤ m, denote any two consecutive timestamps in TSX . An inter-
arrival time of X denoted as iatX = (tsXk − tsXj). Let IATX = {iatX1 , iatX2 ,-
· · · , iatXk }, k = sup(X) − 1, be the list of all inter-arrival times of X in TDB.
An inter-arrival time of X is said to be periodic (or interesting) if it is no
more than the user-specified period (per). That is, a iatXi ∈ IATX is said to be
periodic if iatXi ≤ per.

Example 2. The pattern ‘bc’ has initially appeared at the timestamps of 2 and
6. Thus, the difference between these two timestamps gives an inter-arrival time
of ‘bc.’ That is, iatbc1 = 4 (= 6− 2). Similarly, other inter-arrival times of ‘bc’ are
iatbc2 = 1 (= 7−6), iatbc3 = 2 (= 9−7), iatbc4 = 2 (= 11−9), and iatbc5 = 1 (= 12−
11). Therefore, the resultant IAT ab = {4, 1, 2, 2, 1}. If the user-specified per = 2,
then iatbc2 , iatbc3 , iatbc4 and iatbc5 are considered as the periodic occurrences of ‘bc’
in the data. In contrast, iatbc1 is not considered as a periodic occurrence of ‘bc’
because iatbc1 �≤ per.

Definition 2 (Period-support of pattern X). Let ÎATX be the set of all
inter-arrival times in IATX that have iatX ≤ per. That is, ÎATX ⊆ IATX

such that if ∃iatXk ∈ IATX : iatXk ≤ per, then iatXk ∈ ÎATX . The period-
support of X, denoted as PS(X) = |ÎATX |.
Example 3. Continuing with the previous example, ÎAT bc = {1, 2, 2, 1}. There-
fore, the period-support of ‘bc,’ i.e. PS(bc) = |ÎAT bc| = |{1, 2, 2, 1}| = 4.

Definition 3 (Partial periodic pattern X). A pattern X is said to be a
partial periodic pattern if PS(X) ≥ minPS, where minPS is the user-specified
minimum period-support.

Example 4. Continuing with the previous example, if the user-specified
minPS = 4, then ‘bc’ is a partial periodic pattern because PS(bc) ≥ minPS.
The complete set of partial periodic patterns discovered from Table 3 including
1-patterns’(in Fig. 2(f)) are shown in Fig. 3 without “sample”(i.e., Strikethrough)
mark on the text.

146 P. Ravikumar et al.

Fig. 2. Finding partial periodic patterns. (a) after scanning the first transaction, (b)
after scanning the second transaction, (c) after scanning the entire database, and (d)
final list of partial periodic patterns sorted in descending order of their PS (or the size
of TS-list) with the constraint minPS = 4 and per = 2

Definition 4 (Problem definition). Given a temporal database (TDB) and
the user-specified period (per) and minimum period-support (minPS) con-
straints, find all partial periodic patterns in TDB that have period-support no
less than minPS. The period-support of a pattern can be expressed in percentage
of (|TDB| − 1). The per can be expressed in percentage of (tsmax − tsmin). In
this paper, we employ the above definitions of the period and period-support for
brevity.

4 Proposed Algorithm

This section first describes the procedure for finding one-length partial periodic
patterns (or 1-patterns) and transforming row database to columnar database.
Next, we will explain the 3P-ECLAT algorithm to discover a complete set of
partial periodic patterns in columnar temporal databases. The 3P-ECLAT algo-
rithm employs Depth-First Search (DFS) and the downward closure property
(see Property 1) of partial periodic patterns to reduce the vast search space
effectively.

Property 1 (The downward closure property [7]). If Y is a partial periodic
pattern, then ∀X ⊂ Y and X �= ∅, X is also a partial periodic pattern.

4.1 3P-ECLAT Algorithm

Finding One Length Partial Periodic Patterns. Algorithm 1 describes
the procedure to find 1-patterns using 3P-list, which is a dictionary. We now
describe this algorithm’s working using the row database shown in Table 1. Let
minPS = 4 and per = 2.

We will scan the complete database once to generate 1-patterns and trans-
forming the row database to columnar database. The scan on the first transac-
tion, “1 : ace”, with tscur = 1 inserts the items a, c, and e in the 3P-list. The
timestamps of these items is set to 1 (= tscur). Similarly, PS and TSl values of

Towards Efficient Discovery of Partial Periodic Patterns 147

Fig. 3. Mining partial periodic patterns using DFS

these items were also set to 0 and 1, respectively (lines 5 and 6 in Algorithm 1).
The 3P-list generated after scanning the first transaction is shown in Fig. 2(a).
The scan on the second transaction, “2 : bc”, with tscur = 2 inserts the new
item b into the 3P-list by adding 2 (= tscur) in their TS-list. Simultaneously,
the PS and TSl values were set to 0 and 2, respectively. On the other hand,
2 (= tscur) was added to the TS-list of already existing item c with PS and TSl

set to 1 and 2, respectively (lines 7 and 8 in Algorithm 1). The 3P-list generated
after scanning the second transaction is shown in Fig. 2(b). A similar process is
repeated for the remaining transactions in the database. The final 3P-list gen-
erated after scanning the entire database is shown in Fig. 2(c). The pattern e
and f are pruned (using the Property 1) from the 3P-list as its PS value is
less than the user-specified minPS value (lines 10 and 11 in Algorithm 1). The
remaining patterns in the 3P-list are considered partial periodic patterns and
sorted in descending order of their PS values. The final 3P-list generated after
sorting the partial periodic patterns is shown in Fig. 2(d).

Finding Partial Periodic Patterns Using 3P-list. Algorithm 2 describes
the procedure for finding all partial periodic patterns in a database. We now
describe the working of this algorithm using the newly generated 3P-list.

We start with item b, which is the first pattern in the 3P-list (line 2 in Algo-
rithm 2). We record its PS, as shown in Fig. 3(a). Since b is a partial periodic
pattern, we move to its child node bc and generate its TS-list by performing
intersection of TS-lists of b and c, i.e., TSbc = TSb ∩ TSc (lines 3 and 4 in

148 P. Ravikumar et al.

Algorithm 1. PartialPeriodicItems(TDB: temporal database, minPS: period-
Support and per: period)
1: Let 3P-list=(X,TS-list(X)) be a dictionary that records the temporal occurrence

information of a pattern in a TDB. Let TSl be a temporary list to record the
timestamp of the last occurrence of an item in the database. Let PS be a temporary
list to record the periodic-support of an item in the database. Let i is an item in
any transaction t ∈ TDB and tscur is current time stamp of any item i ∈ t.

2: for each transaction t ∈ TDB do
3: if tscur is i’s first occurrence then
4: Insert i and its timestamp into the 3P-list.
5: Set TSl[i] = tscur and PSi = 0.
6: else
7: Add i’s timestamp in the 3P-list.
8: if (tscur − TSl[i]) ≤ per then
9: Set PSi + +.

10: Set TSl[i] = tscur.
11: for each item i in 3P-list do
12: if (PSi < minPS) then
13: Remove i from 3P-list.
14: Consider the remaining items in 3P-list as partial periodic items. Sort these items

in support descending order. Let L denote this sorted list of partial periodic items.

Algorithm 2). We record PS of bc, as shown in Fig. 3(b). We verify whether bc
is partial periodic or uninteresting pattern (line 5 in Algorithm 2). Since bc is
partial periodic pattern, we move to its child node bcd and generate its TS-list
by performing intersection of TS-lists of bc and d, i.e., TSbcd = TSbc ∩ TSd.
We record PS bcd, as shown in Fig. 3(c) and identified it as a partial periodic
pattern. We once again, move to its child node bcda and generate its TS-list by
performing intersection of TS-lists of bcd and a, i.e., TSbcda = TSbcd ∩ TSa. As
PS of bcda is less than the user-specified minPS, we will prune the pattern bcda
from the partial periodic patterns list as shown in Fig. 3(d). A similar process is
repeated for remaining nodes in the set-enumeration tree to find all partial peri-
odic patterns. The final list of partial periodic patterns generated from Table 1
are shown in Fig. 3(e). The above approach of finding partial periodic patterns
using the downward closure property is efficient because it effectively reduces
the search space and the computational cost.

5 Experimental Results

In this section, we first compare the 3P-ECLAT against the state-of-the-art
algorithm 3P-growth [4] and show that our algorithm is not only memory and
runtime efficient but also highly scalable as well. Next, we describe the usefulness
of our algorithm with a case study on air pollution data. Please note that 3P-
growth ran out of memory on this database. The algorithms 3P-growth and
3P-ECLAT were developed in Python 3.7 and executed on an Intel i5 2.6 GHz,

Towards Efficient Discovery of Partial Periodic Patterns 149

Table 4. Statistics of the databases

S.No Database Type Nature Transaction Length Total transactions

min avg max

1 Kosarak Real Sparse 2 9 2499 990000

2 T20I6d100k Synthetic Sparse 1 20 47 199844

3 Congestion Real Sparse 1 58 337 17856

4 Pollution Real Dense 11 460 971 1438

Algorithm 2. 3P-ECLAT(3P-List)
1: for each item i in 3P-List do
2: Set pi = ∅ and X = i;
3: for each item j that comes after i in the 3P-list do
4: Set Y = X ∪ j and TidY = TidX ∩ Tidj ;
5: Calculate Period-support of Y ;
6: if Period-support ≥ minPS then
7: Add Y to pi and Y is considered as partial periodic;
8: Store the Period-support of a partial periodic pattern Y ;
9: 3P-ECLAT(pi)

8GB RAM machine running Ubuntu 18.04 operating system. The experiments
have been conducted using synthetic (T20I6d100K) and real-world (Congestion
and Pollution) databases. The statistics of all the above databases were shown
in Table 4. The complete evaluation results, databases, and algorithms
have been provided through GitHub1 to verify the repeatability of our
experiments. We are not providing the Congestion databases on GitHub due
to confidential reasons.

5.1 Evaluation of Algorithms by Varying minPS

In this experiment, we evaluate 3P-growth and 3P-ECLAT algorithms perfor-
mance by varying only the minPS constraint in each of the databases. The Per
value in each of the databases will be set to a particular value. The minPS in
T20I6d100K,Congestion and Pollution databases has been set at 60%, 50%, and
50%, respectively.

Figure 4 shows the number of partial periodic patterns generated in
T20I6d100K, Congestion, and Pollution databases at different minPS values.
It can be observed that an increase in minPS has a negative effect on the gen-
eration of partial periodic patterns. It is because many patterns fail to satisfy
the increased minPS.

Figure 5 shows the runtime requirements of 3P-growth and 3P-ECLAT algo-
rithms in T20I6d100K, Congestion, and Pollution databases at different minPS
values. It can be observed that even though the runtime requirements of both
1 https://github.com/udayRage/pykit old/tree/master/traditional/3peclat.

https://github.com/udayRage/pykit_old/tree/master/traditional/3peclat

150 P. Ravikumar et al.

Fig. 4. Patterns evaluation of 3P-growth and 3P-ECLAT algorithms at constant Per

Fig. 5. Runtime evaluation of 3P-growth and 3P-ECLAT algorithms at constant Per

the algorithms decrease with the increase in minPS, the 3P-ECLAT algorithm
completed the mining process much faster than the 3P-growth algorithm in
both sparse and dense databases at any given minPS. More importantly, the
3P-ECLAT algorithm was several times faster than the 3P-growth algorithm,
especially at low minPS values.

Figure 6 shows the memory requirements of 3P-growth and 3P-ECLAT algo-
rithms in T20I6d100K, Congestion, and Pollution databases at different minPS
values. It can be observed that though an increase in minPS resulted in the
decrease of memory requirements for both the algorithms, the 3P-ECLAT algo-
rithm has consumed relatively very little memory in all databases at different
minPS values. More importantly, 3P-growth has taken a huge amount of mem-
ory, especially at low minPS values in all of the databases, and ran out of
memory in the Pollution database.

5.2 Evaluation of Algorithms by Varying Per

Figure 7 first graph shows the number of partial periodic patterns generated in
Congestion database at different Per values. It can be observed that an increase
in Per has increased the number of partial periodic patterns in both of the
algorithms.

Towards Efficient Discovery of Partial Periodic Patterns 151

Fig. 6. Memory evaluation of 3P-growth and 3P-ECLAT algorithms at constant Per

Fig. 7. Evaluation of 3P-growth and 3P-ECLAT algorithms using Congestion database

Figure 7 second graph shows the runtime requirements of 3P-growth and 3P-
ECLAT algorithms in Congestion database at different Per values. It can be
observed that though the runtime requirements of both the algorithms increase
with the increase in Per value, the 3P-ECLAT algorithm consumes relatively
less runtime than the 3P-growth algorithm.

Figure 7 third graph shows the memory requirements of 3P-growth and 3P-
ECLAT algorithms in Congestion database at different Per values. It can be
observed that though the memory requirements of both the algorithms increase
with Per, the 3P-ECLAT algorithm consumes very less memory than the 3P-
growth algorithm.

The minPS is set at 23% during the above evaluation. Similar results were
obtained during the experimentation on remaining databases. However, we have
confined this experiment to the Congestion database due to page limitations.

5.3 Scalability Test

The Kosarak database was divided into five portions of 0.2 million transactions
in each part, in order to check the performance of 3P-ECLAT against 3P-growth.
We have investigated the performance of 3P-growth and 3P-ECLAT algorithms
after accumulating each portion with previous parts. Figure 8 shows the runtime

152 P. Ravikumar et al.

Fig. 8. Scalability of 3P-growth and 3P-ECLAT

and memory requirements of both algorithms at different database sizes(i.e.,
increasing order of the size) when minPS = 1 (%) and Per = 1 (%). The
following two observations can be drawn from these figures: (i) Runtime and
memory requirements of 3P-growth and 3P-ECLAT algorithms increase almost
linearly with the increase in database size. (ii) At any given database size, 3P-
ECLAT consumes less runtime and memory as compared against the 3P-growth
algorithm.

5.4 A Case Study: Finding Areas Where People Have Been
Regularly Exposed to Hazardous Levels of PM2.5 Pollutant

The Ministry of Environment, Japan has set up a sensor network system, called
SORAMAME, to monitor air pollution throughout Japan, is shown in Fig. 9(a).
The raw data produced by these sensors i.e., quantitative columnar database
(see Fig. 9(b)) can be transformed into a binary columnar database, if the raw
data value is ≥15 (see Fig. 9(c)). The transformed data is provided to 3P-ECLAT
algorithm (see Fig. 9(d)) to identify all sets of sensor identifiers in which pollu-
tion levels are high (see Fig. 9(e)). The spatial locations of interesting patterns
generated from the Pollution database are visualized in Fig. 9(f). It can be
observed that most of the sensors in this figure are situated in the southeast of
Japan. Thus, it can be inferred that people working or living in the southeast
parts of Japan were periodically exposed to high levels of PM2.5. Such informa-
tion may be useful to the Ecologists in devising policies to control pollution and
improve public health. Please note that more in-depth studies, such as finding
high polluted areas on weekends or particular time intervals of a day, can also
be carried out with our algorithm efficiently.

Towards Efficient Discovery of Partial Periodic Patterns 153

Fig. 9. Finding partial periodic patterns in Pollution data. The terms ‘s1,’ ‘s2,’ · · ·
‘sn’ represents ‘sensor identifiers’ and ‘PS’ represents ‘periodic-support’

6 Conclusions and Future Work

This paper has proposed an efficient algorithm named Partial Periodic Pattern-
Equivalence Class Transformation (3P-ECLAT) to find partial periodic patterns
in columnar temporal databases. The performance of the 3P-ECLAT is veri-
fied by comparing it with a 3P-growth algorithm on different real-world and
synthetic databases. Experimental analysis shows that 3P-ECLAT exhibits high
performance in partial periodic pattern mining and can obtain all partial peri-
odic patterns faster and with less memory usage against the state-of-the-art
algorithm. We have also presented a case study to illustrate the usefulness of
generated patterns in a real-world application.

As part of future work, we would like to investigate parallel algorithms to find
periodic and fuzzy partial periodic patterns in very large temporal databases.
We will try to extend our model to the distributed environment and develop
novel pruning techniques to reduce the computation cost further.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: SIGMOD, pp. 207–216 (1993)

2. Amphawan, K., Lenca, P., Surarerks, A.: Mining top-k periodic-frequent pattern
from transactional databases without support threshold. In: Papasratorn, B., Chuti-
maskul, W., Porkaew, K., Vanijja, V. (eds.) IAIT 2009. CCIS, vol. 55, pp. 18–29.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10392-6 3

https://doi.org/10.1007/978-3-642-10392-6_3

154 P. Ravikumar et al.

3. Amphawan, K., Surarerks, A., Lenca, P.: Mining periodic-frequent itemsets with
approximate periodicity using interval transaction-ids list tree. In: 2010 Third Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 245–248 (2010)

4. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering partial periodic
itemsets in temporal databases. In: Proceedings of the 29th International Conference
on Scientific and Statistical Database Management. SSDBM ’17 (2017)

5. Luna, J.M., Fournier-Viger, P., Ventura, S.: Frequent itemset mining: a 25 years
review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9(6), e1329 (2019)

6. Nofong, V.M., Wondoh, J.: Towards fast and memory efficient discovery of periodic
frequent patterns. J. Inf. Telecommun. 3(4), 480–493 (2019)

7. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent
patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone,
N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–253. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2 24

8. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data
Eng. 12(3), 372–390 (2000)

https://doi.org/10.1007/978-3-642-01307-2_24

	Towards Efficient Discovery of Partial Periodic Patterns in Columnar Temporal Databases
	1 Introduction
	2 Related Work
	3 The Model of Partial Periodic Pattern
	4 Proposed Algorithm
	4.1 3P-ECLAT Algorithm

	5 Experimental Results
	5.1 Evaluation of Algorithms by Varying minPS
	5.2 Evaluation of Algorithms by Varying Per
	5.3 Scalability Test
	5.4 A Case Study: Finding Areas Where People Have Been Regularly Exposed to Hazardous Levels of PM2.5 Pollutant

	6 Conclusions and Future Work
	References

