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Abstract. CPU-GPU heterogeneous architectures are now commonly
used in a wide variety of computing systems from mobile devices to super-
computers. Maximizing the throughput for multi-programmed workloads
on such systems is indispensable as one single program typically cannot
fully exploit all avaiable resources. At the same time, power consumption
is a key issue and often requires optimizing power allocations to the CPU
and GPU while enforcing a total power constraint, in particular when
the power/thermal requirements are strict. The result is a system-wide
optimization problem with several knobs. In particular we focus on (1)
co-scheduling decisions, i.e., selecting programs to co-locate in a space
sharing manner; (2) resource partitioning on both CPUs and GPUs; and
(3) power capping on both CPUs and GPUs. We solve this problem using
predictive performance modeling using machine learning in order to coor-
dinately optimize the above knob setups. Our experiential results using a
real system show that our approach achieves up to 67% of speedup com-
pared to a time-sharing-based scheduling with a naive power capping
that evenly distributes power budgets across components.

Keywords: Co-scheduling · Resource partitioning · Power capping ·
CPU-GPU heterogeneous systems · Machine learning

1 Introduction

Heterogeneous CPU-GPU architecture are now broadly used in a wide variety of
computing systems, including mobile devices, PCs, datacenter servers, and HPC
systems. For instance, over 160 out of the 500 top-class supercomputers are now
GPU-accelerated systems (as of Jun 2022) [1]. This trend is driven by the end of
Dennard scaling [14], i.e., the exponential growth of single-thread performance in
microprocessors had ceased, and the industry rather shifted toward thread-level
parallelism and heterogeneous computing using domain specific accelerators [15].
GPUs are one of the most commonly used accelerators due to their wide range
of application areas, including image processing, scientific computing, artificial
intelligence and data mining.
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As computing systems are becoming more powerful and more heterogeneous
using a wide variety of resources, it also becoming more difficult to fully utilize
the entirety of compute resources by one single application. One reason behind
the trend is that it is not always easy to identify a large enough fraction of a
code that can be ported to GPUs (or any other accelerator) while balancing
loads across all the processing units (CPU, GPU, or any accelerators). Further,
the scalability of applications inside of a chip can be limited by various factors
such as intensive memory accesses and shared resource contentions, which can
induce a significant waste of compute resources.

Therefore, co-scheduling, i.e., co-locating multiple processes in a space
sharing manner, is a key feature to mitigate resource wastes and to maxi-
mize throughput on such systems, if the processes are complimentary in their
resource usage. To achieve the latter, a sophisticated mechanism to partition
resources at each component and allocate them accordingly to co-scheduled
processes is indispensable. Recent commercial CPUs and GPUs support such
resource partitioning features: (1) one can designate physical core allocations to
co-scheduled processes on CPUs; and (2) GPUs have begun to support hardware-
level resource partitioning features for co-locating multiple processes—one exam-
ple is NVIDIA’s Multi-Instance GPU (or MIG) feature that is supported in the
most recent high-end GPUs to enable co-locating multiple programs at the same
chip while partitioning it at the granularity of GPC [21].

Meanwhile, as power (or energy) consumption is now a first-order concern in
almost all the computing systems from embedded devices to HPC systems [10,
22,23], performance optimizations for modern computing systems, including co-
scheduling, must consider power optimization and in most cases also hard power
limits or constraints. Once a power constraint is set on a system, the power
budgets must be distributed to components accordingly so as to maximize the
performance while keeping the constraint. To realize such a mechanism, modern
CPUs and GPUs now support power capping features that set a power limit
at the granularity of chip (or even at a finer granularity for some hardware).

Driven by the above trends, this paper explicitly targets the combination of
co-scheduling, resource partitioning, and power capping on CPU-GPU hetero-
geneous systems, and provides a systematic solution to co-optimize them using
a machine-learning-based performance model as well as a graph-based schedul-
ing algorithm. Our model takes both application profiles and hardware knob
states into account as its inputs and returns the estimated performance of the
co-located applications as the output. More specifically, the profiles are based on
hardware performance counters, and the hardware knob states include resource
partitioning and power capping on both the CPU and GPU. We use this perfor-
mance model to estimate the best performance of different hardware setups for
a given application pair, which is used to determine the best co-scheduling pairs
in a graph-based algorithm, i.e., Edmonds’ algorithm [13].

The followings are the major contributions of this paper:

1. We comprehensively and systematically optimize (1) co-scheduling pair selec-
tions, (2) resource partitioning at both CPU and GPU, and (3) power budget-
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ing on both CPU and GPU, using a real CPU-GPU heterogeneous hardware
platform.

2. We define an optimization problem and provide a systematic solution to select
the best job pair and the best hardware setups including resource partitioning
and power capping on CPU/GPU.

3. We develop a machine-learning-based performance model that takes both
the characteristics of the co-located applications and the hardware states
(including partitioning and power capping on CPU/GPU) into account.

4. We solve the optimization problem by using the above performance model
building on the graph-based Edmonds’ algorithm.

5. We quantify the benefits of our approach by using a real hardware, and show
that we improve the system throughput by 67% compared to a time-sharing-
based scheduling with a naive power capping that evenly distributes the power
budgets across the CPU and GPU.

2 Related Work

Ever since multi-core processors appeared on the market, co-scheduling, resource
partitioning, and power capping have been studied. However, ours is the
first work that covers all of the following aspects simultaneously: (1) tar-
geting CPU-GPU heterogeneous systems; (2) comprehensively co-optimizing
co-scheduling pair selections, resource partitioning, and power capping, using
machine-learning-based performance modeling and a graph-based algorithm; and
(3) quantifying the benefits using a real hardware that is capable of both resource
partitioning and power capping at both the CPU and the discrete GPU.

M. Bhadauria et al. explored co-scheduling multi-threaded programs in a
space sharing manner using a multi-core processor [9]. S. Zhuravlev et al. focused
on the shared resource contention across co-located programs on multi-core
processors and proposed a scheduler-based solution to mitigate the interfer-
ence [26]. R. Cochran et al. proposed Pack & Cap that optimizes the scale
of multi-threaded applications via the thread packing technique while apply-
ing power capping [12]. Then, H. Sasaki et al. provided a sophisticated power-
performance optimization method that coordinates the thread packing technique
and DVFS for multi-programmed and multi-threaded environments [24]. These
seminal studies provided insightful ideas, however they did not target CPU-GPU
heterogeneous systems.

Few studies looked at the combination of co-scheduling and power capping on
CPU-GPU heterogeneous systems. Q. Zhu et al. worked on the combination of job
scheduling and power capping for integrated CPU-GPU systems [25], but they
did not cover the following aspects: resource partitioning inside of CPU/GPU;
and co-scheduling multiple processes on the GPU in a space sharing manner.
R. Azimi et al. developed a framework called PowerCoord that allocates power
budgets to components on CPU-GPU heterogeneous systems for co-scheduled
workloads [5], but their work did not target adjusting the resource partitions
as well. Recent hardware advances (e.g., NVIDIA MIG feature [4,21]) made it
possible to apply both the process co-location and resource partitioning on both
CPUs and GPUs, which opened up new optimization opportunities.



54 I. Saba et al.

There have been several studies that utilize machine learning (including lin-
ear regression) for performance/power modeling in the literature. B. Lee et al.
utilized the linear regression to predict performance for CPUs [18]. E. Ïpek et
al. conducted microarchitectural design space explorations using a neural net-
work [17]. B. Barnes et al. proposed a statistical approach to predict perfor-
mance of parallel applications [7]. H. Nagasaka et al. constructed a power con-
sumption model for GPUs that is based on the linear regression and hardware
performance counters [19]. Beyond these pioneering studies, machine-learning-
based approaches have been utilized also for more complicated system design and
optimization purposes such as: clock frequency setups at both CPU and GPU
at the same time on a CPU-GPU integrated chip [6]; power capping setups
on CPU, DRAM, and NVRAM [3]; coordination of thread/page mapping and
prefetcher configurations [8]; and CPU-GPU heterogeneous chip designs in the
industry [16]. We follow the literature and utilize a neural network that is tailored
to solve our new problem.

3 Motivation, Problem, and Solution Overview

3.1 Motivation: Technology Trends

Setting a power cap on a processor is a crucial feature and is now supported on a
variety of commercial CPUs and GPUs. One prominent use case for this feature
is to protect a chip from overheating and, instead of having to be conservative,
to adjust the needed settings to the machine environment such as the cooling
facility. Another prominent use case is enabling a hierarchical and cooperative
power budgeting across components or compute nodes while keeping a total
power constraint, which has been widely studied from standalone computers
to large-scale systems, including datacenters and supercomputers [10,22,23]. In
our work, we target CPU-GPU heterogeneous computing systems (or nodes)
and optimize the power cap setups on both CPU and GPU in order to maximize
performance under a total node power constraint.

As compute nodes are becoming fatter and systems more heterogeneous,
it is also becoming more difficult to fully utilize an entire node’s resources by
one single process. For instance, compute resources are typically under utilized
for memory-bound applications, while memory bandwidth is often wasted for
compute-bound applications. Further, some applications are suitable for running
on GPUs, but others are not. To improve resource utilization, mixing different
kinds of processes and co-scheduling (or co-locating) them on the node at the
same time while setting resource allocations accordingly at both the CPU and
GPU is a desired feature.

3.2 Problem Definition

Figure 1 illustrates the overall problem we target in this paper. Here, we assume
that we have one single job (or process) queue on the system (Q). We convert
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Fig. 1. Problem overview

the job queue into a list of job sets (or pairs) to co-schedule (JS1, JS2, · · · ).
Note these jobs are selected from inside of the window (W ) on the queue. The
concurrency, i.e., the maximum number of jobs launched at a time, is limited by
a given parameter (C), and we particularly target C = 2 in this paper, meaning
that no more than 2 CPU-GPU jobs will be co-scheduled at any given time.
This value was chosen as for higher values no polynomial-time algorithms for
job-set selection is known. We represent a set of these scheduling parameters as
SP = {C,W}. When launching/co-locating the ith job set (JSi), we optimize the
hardware knob configurations (HCi), i.e., resource partitioning on CPU/GPU
(Rc

i/R
g
i ) as well as the power cap setups on CPU/GPU (P c

i /P g
i ). Note, the

sum of the power caps must be less than or equal than the given total power
constraint Ptotal.

The following is the mathematical formulation as an optimization problem:

inputs Q = {J1, J2, · · · , JW}, Ptotal,SP
outputs LJS = {JS1, JS2, · · · },LHC = {HC1,HC2, · · · }

min
|LJS|∑

i=1

CoRunTime(JSi,HCi)

s.t. CoRunTime(JSi,HCi) ≤ SoloRunTime(JSi, Ptotal)
P c
i + P g

i ≤ Ptotal, 1 ≤ |JSi| ≤ C

(∀i : 1 ≤ i ≤ |LJS|(= |LHC|))
JS1 ∪ · · · ∪ JS|LJS| = Q, |JS1| + · · · + |JS|LJS|| = W

The inputs are the job queue, the total power cap setup, and the set of the
scheduling parameters. The outputs are the lists of job sets (LJS) and the asso-
ciated hardware configurations (LHC). The objective is to minimize the sum of
the co-run execution time (CoRunTime), each of which is a function of the
co-located jobs as well as the hardware configurations.

We take several constraints for this optimization problem into count: the first
is the requirement that the space-sharing co-run execution should take shorter
time than the time-sharing execution with exclusive solo-runs under the power
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Table 1. Definitions of parameters/functions

Parameter or Function Remarks

Q A list or queue of jobs: Q = {J1, J2, · · · , JW}
Ji ith job in the job list (or queue)

Ptotal The total power cap for the target computing node

SP A set of scheduling parameters: SP = {C,W}
C The maximum number of concurrently executed jobs

W The number of scheduling targets on the job queue

LJS A list of job sets to be co-scheduled: LJS = {JS1, JS2, · · · }
JSi ith set of jobs in LJS to be co-scheduled

LHC A list of hardware configurations associated with the job sets:

LHC = {HC1,HC2, · · · }
HCi The hardware configurations for ith job set: HCi = {Rc

i , R
g
i , P

c
i , P

g
i }

R∗
i (∗ = c/g) The resource partitioning setup on CPU/GPU for ith job set

P∗
i (∗ = c/g) The power cap set up on CPU/GPU for ith job set

CoRunTime(JSi, HCi) The total execution time when co-locating JSi with HCi

SoloRunTime(JSi, Ptotal) The total time when executing JSi in a time-sharing manner under the total

power cap (Ptotal); The power caps to CPU/GPU are optimized for each job

execution

Fig. 2. Workflow of our solution

cap (SoloRunTime)—otherwise we should not co-schedule them. The second
one is the power constraint, i.e., the sum of the CPU/GPU power caps must be
less than or equal to the total node power cap. The next constraint regulates the
concurrency on the system, i.e., the number of jobs in a set to be co-scheduled
(JSi) must be less than or equal to C. The last two constraints specify that
the list of job sets (LJS) must be created from the job queue (Q) in a mutu-
ally exclusive and collectively exhaustive manner. Note Table 1 summarizes the
parameters/functions used.

3.3 Solution Overview

Figure 2 depicts the overall workflow of our approach. As shown in the figure, it
consists of an offline (right) and an online part (left).

During the offline part, we train the coefficients of our performance model,
which we describe later in the paper, by using a predetermined benchmark set.
More specifically, by executing various job sets while changing the hardware
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configurations, we generate a large enough number of data sets, which are used
as inputs for the model training.

During the online part, we solve the optimization problem described in
Sect. 3.2. This solution process consists of three parts (from top to bottom), and
they work in a cooperative manner. We first determine the list of co-scheduling
job sets (LJS) and return it with the associated list of optimal hardware con-
figurations (LHC) (top part in the left figure). This component then commu-
nicates with the next stage (middle part in the left figure), i.e., continuously
sends a temporal job set (JS) and receives the estimated co-run execution time
(CoRunTime) along with the optimal hardware configurations (HC) and the
solo-run time (SoloRunTime), which are used for the scheduling decisions. The
component in the middle optimizes the hardware configurations (HC) for the
job set (JS) given by the previous component. More specifically, it continuously
sends the job set (JS) and a temporal hardware configuration (HC) to the third
part (bottom part in teh left figure) and receives the estimated slowdowns until
finding the optimal hardware configuration. The latter component estimates the
slowdowns for the given jobs (JS) with the given hardware configuration (HC)
by using the associated job profiles as well as the model coefficients obtained in
the offline model training. Here, we assume that the profile of a job is collected
beforehand during its first run without co-scheduling nor power capping1. The
details are described in the next section that provides also the definitions of
SoloRunAppT ime(Pmax), F

j
k , and Slowdown shown in the figure.

4 Modeling and Optimization

4.1 Slowdown Estimation for a Given Job Set and Hardware Setup

Metric Formulations: We first provide simple formulations for the metrics
appeared in Sect. 3.2 as follows:

CoRunTime(JS,HC) = max
Jj∈JS

CoRunAppT imej(JS,HC)

SoloRunTime(JS, Ptotal) =
∑

Jj∈JS

SoloRunAppT imej(Ptotal)

CoRunAppT imej(JS,HC) = Slowdownj(JS,HC) · SoloRunAppT imej(Pmax)
SoloRunAppT imej(Ptotal) = Slowdownj({Jj}, {Rc

max, R
g
max, OptP c

j , OptP g
j })

·SoloRunAppT imej(Pmax)

The parameters and functions used to formulate them are summarized in Table 2.
The first equation denotes that the total execution time when co-scheduling a
job set (JS) is determined by the longest execution time in the set. The second

1 In case no profile is available for a job, which we do not cover in the paper, we
can exclude it from the co-scheduling candidates at the first stage in the diagram
and execute it exclusively without power capping while obtaining the profile for the
future references.
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Table 2. Definitions of parameters or functions to formulate CoRunTime()/
SoloRunTime()

Parameter or Function Remarks

CoRunAppT imej(JS, HC) The execution time of jth job in a given job set (JS) when
co-scheduling JS under a given hardware setup (HC)

SoloRunAppT imej(Ptotal) The execution time of jth job in a given job set (JS) when its
exclusive solo run under a power cap (Ptotal)

Slowdownj(JS,HC) The slowdown ratio of jth job in a given job set (JS) caused

by co-scheduling JS under a given hardware setup (HC)

Jj jth job in a given job set (JS)—JS = {J1, J2, · · · }
R∗

max(∗ = c/g) The maximum resource allocation on CPU/GPU to a given
job

OptP ∗
j (∗ = c/g) The optimal power cap set up on CPU/GPU for jth job in a

set when exclusive solo run (OptP c
j +OptP g

j = Ptotal)

Pmax The maximum total power cap or TDP (Ptotal ≤ Pmax)

F j
k kth parameter to characterize the features of Jj, given by

hardware performance counters on both CPU and GPU

Fig. 3. General structure of our performance modeling (C = 2)

equation represents that the total execution time of time-shared scheduling is
simply the sum of the solo-run execution time of the jobs in the set. The third
equation shows that the execution time of a co-scheduled job (CoRunAppT imej)
is equal to the slowdown (Slowdownj) multiplied by the solo-run execution time
without power capping (SoloRunAppT imej(Pmax)). In the fourth one, the per-
formance degradation caused by power capping for a solo run can be described
by using the same slowdown function used in the third equation. In this paper,
the solo-run execution time without power capping is given by the associated
profile, and we predict the slowdown part in those last two equations.

Performance Modeling: Figure 3 illustrates the general structure to model
the slowdown function provided above. Here, we utilize a simple feedforward
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neural network (FNN) to estimate the slowdown for the first job (J1) in the job
set (JS) when co-scheduling. We regard the slowdown as a function of the job
features (F j

k ) of all the co-located jobs as well as the hardware configuration (HC)
to assess various factors such as scalability, interference, and resource allocations.
The job features here are the hardware performance counters collected from
both the CPU and GPU during the profile run described in Sect. 3.3. The exact
definitions for the job features used in our evaluation are listed in Sect. 5.1. As
for the slowdowns of the other co-located job(s), we simply reorder or replace
the input locations (i.e., exchange the location between J1 and Jj) and modify
the resource allocation parameters (R∗) accordingly so that the allocations are
associated with the new job order. Further, we also utilize the model to estimate
the impact of power capping on solo-run performance. To do so, we simply
designate HC = {Rc

max, R
g
max, OptP c

j , OptP g
j } as previously mentioned and set

all the job features other than the first job to zero in the model inputs. The
detailed network configurations such as the exact inputs, the layer setups, the
activation function, or the loss function are described in Sect. 5.1.

Fig. 4. Overview of graph-based job sets creation (W = 6, C = 2)

4.2 Hardware Setup Optimization for a Given Job Set

By using the performance model provided above, we optimize the hardware con-
figuration parameters (HC) for a given job set (JS) when co-scheduling. Here, we
attempt to pick up the best hardware configuration (HC) from all the possible
configurations so as to minimize CoRunTime(JS,HC). In this study, we simply
utilize the exhaustive search, i.e., testing all the possible HC for the model inputs
and choosing one that minimizes CoRunTime for the given job set (JS). This
is because the number of all the possible setups for HC on our target platform
(or other systems available today) is limited as described later in Sect. 5.1. If the
configuration space would explode in future systems, applying heuristic algo-
rithms (e.g., hill climbing) would be a promising option. In addition, we select
the pair of (OptP c

j , OptP g
j ) for each job (Jj) in a given job set so as to obtain

SoloRunTime(JS, Ptotal), for which we also explore in an exhaustive manner
under the constraint of OptP c

j + OptP g
j = Ptotal.

4.3 Job Sets Selection

We then make scheduling decisions using the above hardware setup optimization
functionality based on the results of our performance model. We regard the job
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Algorithm 1: Job Scheduling Procedure (C = 2)
Inputs: Q = {J1, · · · , JW }, Ptotal, SP = {C = 2,W}
Outputs: LJS = {JS1, JS2, · · · }, LHC = {HC1,HC2, · · · }

/* Initialization */
1 LJS ← ∅; LHC ← ∅;
2 Vortexes← Q; Edges← ∅; Weights← ∅; HWConfigs← ∅; CoRunFlags← ∅;

/* Graph creation */
3 for i = 1 → W do
4 for j = i + 1 → W do
5 Edges.push back({Ji,Jj}); // Append this job set
6 (HCco, CoRunTime) ← GetOptimalCoRunHWConfig(Ji,Jj);
7 (HCsolo1, HCsolo2, SoloRunTime) ← GetOptimalSoloRunHWConfig(Ji,Jj);

/* Append the weight and the HW config (incl. co-run or solo-runs) that
minimizes time for this job set */

8 if CoRunTime ≤ SoloRunTime then
9 Weights.push back(CoRunTime); CoRunFlags.push back(1);

HWConfigs.push back({HCco});
10 else
11 Weights.push back(SoloRunTime); CoRunFlags.push back(0);

HWConfigs.push back({HCsolo1, HCsolo2});
12 end

13 end

14 end
/* Job sets decision w/ Edmonds’ Algorithm */

15 L′
JS ← EdmondsAlgorithm(Vortexes, Edges, Weights);

16 L′
HC ← PickupSets(HWConfigs, L′

JS); // Pick the associated HW setups /w L′
JS

17 LFlag ← PickupSets(CoRunFlags, L′
JS); // Create a co-/solo-run flag list

/* Divide sets in L′
JS/L

′
HC if solo-run execution is better than co-scheduling */

18 while LFlag �= ∅ do
19 Flag ← LFlag.pop front(); JS ← L′

JS.pop front(); HC ← L′
HC.pop front();

20 if Flag = 1 then
21 LJS.push back(JS); LHC.push back(HC);
22 else
23 while JS �= ∅ do
24 J ← JS.pop front(); HCsolo ← HC.pop front();
25 LJS.push back({J}); LHC.push back({HCsolo});
26 end

27 end

28 end
29 return (LJS, LHC);

co-scheduling problem as a minimum weight perfect matching problem and solve
it using Edmonds’ algorithm [13]. Figure 4 depicts the overview of the solution. In
the figure, the vertices represent the jobs in the queue (Q = {J1, · · · , JW}), and
the weights represent the minimum execution time for the associated job sets. To
obtain each weight, we estimate both of the best CoRunTime and SoloRunTime
for each edge (or job pair) by using the model-based hardware configuration
optimization described above, and choose one from them so that the execution
time is minimized. Then, by using the graph, we create the list of job sets (LJS

= {JS1, JS2, · · · }) that includes all jobs in the queue in a mutually exclusive and
collectively exhaustive manner, while minimizing the sum of the weights of LJS.
This is a well-known minimum weight perfect matching problem and is identical
to the optimization problem defined in Sect. 3.2 except that a job set can be
executed in the time-sharing manner, which we can easily convert to meet the
problem definition in Sect. 3.2 by simply dividing such a job set into multiple
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job sets, all of which include only one job. The Edmonds’ algorithm provides
the optimal solution with polynomial time complexity, particularly when the
scheduling parameter set (SP) meets both of the following conditions: (1) W is
an even number; and (2) C is equal to 2 [13]. For the former, we simply set the
window size to an even number, and as for the latter, we focus on C = 2 to
limit the complexity as described before. Note that a more precise version of the
solution is described in Algorithm 1.

5 Evaluation

5.1 Evaluation Setup

Environment. For our evaluation, we use the platform summarized in Table 3.
Our approach is applicable when both the CPU and GPU are capable of both
resource partitioning and power capping. This is usually the case for most of
the commercial CPUs today, and we utilize an NVIDIA A100 GPU card that
supports the MIG feature and power capping [21].

Table 4 summarizes the resource partitioning and power capping settings
we explore in this evaluation. We allocate CPU cores in a compact fashion,
i.e., physically adjacent cores are assigned to the same program. We partition
the GPU into 3GPCs/4GPCs or 4GPCs/3GPCs, on which low level memory
hierarchies including L2 caches and memory modules are shared across all the
GPCs2. To collect performance counter values when profiling, we utilize Linux
perf [2] command for the CPU and NSight Compute [20] for the GPU. By using
these profiling frameworks, we collect the performance counter values listed in
Table 5. The definitions of these performance counters are the same as those
shown in the tools (Table 5).

Benchmarks and Dataset. We use the Rodinia benchmarks [11], which is a
well-known benchmark suite widely-used for various heterogeneous computing

Table 3. Evaluation system specifications

Name Remarks

CPU AMD Ryzen Threadripper 2990 WX, 32 cores

Main Memory DDR4 2933 MT/s x4ch, 64 GB (Total)

GPU NVIDIA A100 40 GB PCIe, 8GPCs

Operating system Ubuntu 20.04.4 LTS, Kernel Version 5.4.0-120-generic

Compiler and drivers GCC/G++ Version: 9.4.0, CUDA Version: 11.6,
Driver Version: 510.73.08

2 One GPC must be disabled when using MIG. Other partitioning options such as
1GPC/6GPCs or 2GPCs/5GPCs are not supported. We first create one GI with
7GPCs and then create CIs consisting of 3GPCs/4GPCs inside of it [4,21].
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Table 4. Power cap and partitioning setups

Variable Selections

Ptotal/Pmax 350, 400 [W]/500 [W]

P c∗ 100, 125, 150, 175, 200, 225, 250(max) [W]

P g
∗ 150, 175, 200, 225, 250(max) [W]

Rc∗ (# of cores for J1, # of cores for J2): (2,30), (8,24), (16,16), (24,8),
(30,2) (= co-runs), (32,0) (= solo-run, Rc

max)

Rg
∗ (# of GPCs for J1, # of GPCs for J2): (3,4), (4,3) (= co-runs),

(8,0) (= solo-run, Rg
max)

studies, as well as a synthetic compute-intensive dense matrix-vector multiplica-
tion program (matvec). In particular, from the Rodinia benchmark suite, we pick
up seven programs that utilize both CPU and GPU extensively/cooperatively.
Further, the matvec program uses both CPU and GPU in a cooperative manner,
i.e., a part of the computation is offloaded to GPU and the rest is performed on
CPU. We then create three different job queues (JobMix1, JobMix2, and Job-
Mix3 ) with different window sizes (W ) ranging from 4 to 8. The programs in the
queues are selected mutually-exclusively (and randomly for JobMix1/JobMix2 )
from the eight benchmarks.

We then generate the training/validation/test datasets by using the bench-
marks. More specifically, we randomly select 8 × 2=16 job pairs out of all the
possible 8C2 = 28 pairs and measure the co-scheduling slowdowns for each of
them while testing 100 different hardware setups that is identical to all the co-
run hardware setups that meet Ptotal = 350 or 400 [W] in Table 4. To validate the
performance model, we divide the dataset in the following way: the first 12 pairs
multiplied by 100 hardware configurations (= 2,400 data points) are used for the
training and validation; and the rest of the 800 data are used for the inference
testing. Note the above division process is based on random pair selections. The
training and validation here are corresponding to the offline procedure shown in
Fig. 2 in Sect. 3.3.

Neural Network Architecture and Training. Table 7 lists our neural net-
work architecture and training setups based on the general structure described
in Sect. 4.1. In our neural network, all the inputs are normalized between 0 and
1 (including the hardware configuration) in order to equalize the significance of
them, which ultimately helps the convergence. To normalize the resource parti-
tioning states (R∗

i ), we simply pick the first element that represents the number
of core or GPC allocation to the first job (J1), and then divide it by the max-
imum number of the resource allocation (32 for cores and 8 for GPCs in our
environment). We set up two hidden layers to well recognize the patterns in the
input values, which is better than relying on one single hidden layer for this pur-
pose. The rectified linear activation function is applied to all the layers except
for the input layer, and all the neurons in both the hidden layers and the out-
put have biases. The input layer is fully connected with the first hidden layer
in order to use the model while re-ordering the job inputs (see also Sect. 4.1).
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In our Python implementation, the training with the dataset described above
takes only few minutes, and the slowdown estimations for all the jobs in a job
set takes only 1.17 ms in total.

5.2 Experimental Results

Figure 5/6 demonstrate the total execution time comparisons across multiple
different scheduling and resource management polices for different total power
cap setup (Ptotal = 350, 400[W]). The vertical axis indicates the total execution
time, while the horizontal axis lists job queues (JobMix1 -JobMix3 ) in both the
figures. The details of the compared policies listed in the legends are as follows:
Time Sharing + Naive Pow Cap schedules jobs in the time-sharing manner
while setting up the power caps to the CPU and GPU equally; Time Sharing
+ Opt Pow Cap also utilizes the time-shared scheduling but the power caps are
set to the optimal; and Our Co-scheduling schedules jobs and configures the
hardware using our proposed approach. As shown in these figures, we achieve
significant speedups by up to 67.4% (= (108.8/65.0 − 1)*100) by using our
approach compared with Time Sharing + Naive Pow Cap. Note the hardware
partitioning is done only at the job launches, thus the overhead is negligible
here. Table 8 presents the list of job sets created by our approach for each queue
under different power capping. The job set selections can change depending on
the total power cap setup, which implies our approach can flexibly deal with
hardware environment changes, e.g., with changes in the power supply level.

We then compare the measured and estimated execution time (excluding
online scheduling time) for different power cap setups in Fig. 7/8. The X-axis
indicates the accumulated execution time of all the co-scheduled job sets created
from JobMix3 by using our approach. As shown in the figure, the estimated

Table 5. Collected performance counters (F)

Component Counters and Definitions

CPU F ∗
1 = cpu-util, F ∗

2 = context-switches, F ∗
3 = page-faults, F ∗

4 = IPC, F ∗
5 =

stalled-cycles, F ∗
6 = branch-misses, F ∗

7 = L1-dcache-load-misses, F ∗
8 =

L1-icache-load-misses, F ∗
9 = dTLB-load-misses, F ∗

10 = iTLB-load-misses

GPU F ∗
11 = Memory[%], F ∗

12 = DRAM Throughput[%], F ∗
13 = TEX cache

Throughout[%], F ∗
14 = LLC Throughput[%], F ∗

15 = Compute[%], F ∗
16 =

Waves per SM, F ∗
17 = Achieved Occupancy[%], and F ∗

18 = Warps per SM

Table 6. Tested job mixes

Name Job Mix

JobMix1 Q ={gaussian, lud, pathfinder, streamcluster}, C = 2, W = 4

JobMix2 Q ={gaussian, srad, hotspot, pathfinder, lavaMD, matvec}, C = 2,
W = 6

JobMix3 Q ={gaussian, srad, hotspot, lud, pathfinder, lavaMD,
streamcluster, matvec}, C = 2, W = 8
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Fig. 5. Execution time comparison
(Ptotal = 350[W ])

Fig. 6. Execution time comparison
(Ptotal = 400[W ])

Fig. 7. Comparison of measured vs
estimated time (JobMix3, Ptotal =
350[W ])

Fig. 8. Comparison of measured vs
estimated time (JobMix3, Ptotal =
400[W ])

execution times are close to the measured ones, and the total estimation error is
only 0.4% or 3.1% for Ptotal = 350 or 400, respectively. Note that our approach
achieves closer performance to the optimal as the error becomes smaller. This is
because the Edmonds’ algorithm returns the optimal scheduling job sets if the
performance estimation is 100% accurate.

Finally, we demonstrate the hardware setup decisions made by our sched-
uler in Figs. 9/10/11, in particular, for JobMix3 under the total power cap of
Ptotal = 350[W]. The X-axis indicates the job sets created from JobMix3 by
our approach, while the Y-axis represents the breakdown of power caps, core
allocations, or GPC allocations in Figs. 9, 10, or 11, respectively. As shown in
these figures, these hardware knobs are set very differently in accordance with
the characteristics of co-located jobs, including the task size on CPU/GPU,

Table 7. Model and training setups

Type Parameter List

Model [Input layer]= 4 HW config states (HC) + 18 HW counters (J1)
+ 18 HW counters (J2); [# of hidden layers]= 2; [# of
neurons in each hidden layers]= 18 (= # of HW counters);
[Layer connection]= Fully connected; [Activation function]=
Rectified Linear

Training [Learning rate]= 0.001; [Batch size]= 4; [Optimizer]=
Stochastic Gradient Descent; [# of epochs]= 200; [Loss

function]= Mean Square Error
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Table 8. Lists of job sets created by our approach

Ptotal Lists of Job Sets (LJS)

350 W (JobMix1 ): {gaussian-lud, pathfinder-streamcluster}, (JobMix2 ):
{gaussian-hotspot, pathfinder-lavaMD, matvec-srad}, (JobMix3 ):
{lavaMD-gaussian, lud-pathfinder, hotspot-streamcluster, matvec-srad}

400 W (JobMix1 ): {gaussain-lud, pathfinder-streamcluster}, (JobMix2 ):
{hotspot-lavaMD, srad-pathfinder, matvec-gaussian}, (JobMix3 ):
{gaussian-lud, srad-pathfinder, hotspot-streamcluster, lavaMD-matvec}

Fig. 9. Power cap setups
(JobMix3, Ptotal = 350[W ])

Fig. 10. Core allocation
(JobMix3, Ptotal = 350[W ])

Fig. 11. GPC allocation
(JobMix3, Ptotal = 350[W ])

the compute/memory intensity, and the interference on shared resources. As our
performance modeling can recognize these features well based on the correspond-
ing hardware performance counters and the well-structured neural network, our
approach achieves the significant performance improvement by up to 67%.

6 Conclusion

In this paper, we targeted co-scheduling, resource partitioning, and power cap-
ping comprehensively for CPU-GPU heterogeneous systems and proposed an
approach to optimize them, which consists of performance modeling and a graph-
based scheduling algorithm. We demonstrated how a machine learning model,
namely a neural network, can successfully be used to predict the performance
of co-scheduled applications, while using the application characteristics and par-
titioning/power states as inputs. We then moved on to the application pair
selections where we successfully applied Edmond’s algorithm to determine the
mathematically optimal pairing. The experimental result using a real system
shows that our approach improves the system throughput by up to 67% com-
pared with a time-sharing-based scheduling with a naive power capping that
evenly distributes power budgets on CPU/GPU.
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supported by the NVIDIA Academic Hardware Grant Program.
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