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Abstract. Smart Library Automation System is increasingly attractive
as an effective digital library system. Adapting automation in the library
helps reduce the duplication of work, time-saving, and boosts work effi-
ciency. One such significant feature is face recognition integrated. With
this application, the system can use face recognition to enter and get the
details of an end user. In recent years, face recognition has achieved many
prodigious accomplishments based on Deep Convolutional Neural Net-
works (DCNN). In addition to constructing large face datasets, designing
new effective DCNN architectures and loss functions are two trends to
improve the performance of face recognition systems. Therefore, many
studies have been published in state-of-the-art methods, making high-
accuracy face recognition systems more possible than days in the past.
However, it is still difficult for all research communities to train robust
face recognition models because it depends heavily on their resources.
This paper investigates and analyzes the effect of several effective loss
functions based on softmax. Moreover, we also evaluate how hyper-
parameter settings can impact the optimization process as well as the
final recognition performance of the model trained by re-implementing
these methods. The results of our experiments achieve state-of-the-art
figures, which show the proposed method’s massive potential in improv-
ing face recognition performance.
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1 Introduction

Face recognition (FR) has been a prominent and long-standing topic in the
research community. It is widely applied in numerous areas such as social secu-
rity, health, education, banking, retail, etc. FR plays a crucial role in auto-
mated library systems with a digital library. FR applications help save time and
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avoid repetitive book issuing and returning work. Since Convolutional Neural
Networks (CNN) have been proposed in recent years, the literature has wit-
nessed the innovation of Deep Convolutional Neural Networks (DCNN) archi-
tectures that achieve remarkable results consecutively. There are many modern
face datasets, such as MegaFace [10], MSIM [5], WebFace20M [26], ... which
encompass a huge amount of identities and samples are released. It creates many
chances for researchers to train effectively large and deep face recognition net-
works based DCNN such as [1,2,6,16] which present better performance than
the human capability in FR. However, it is not enough to satisfy the expectation
of the research community. Therefore, most recent researchers have focused on
improving the classification loss function, which plays a crucial role in learning
accurate FR models. Current popular loss functions for training DCNNs are
mostly softmax-based classification loss. Since the learned features with original
softmax loss cannot maximize inter-class variance and minimize the intra-class
variance of embedding feature vectors, researchers try to design new effective
loss functions based on it, which enhance discriminative power as well as still
remain basic requirements of softmax. [15,21,23] have proposed some effective
methods and gradually improved the accuracy by elaborating the objective of
learning.

Challenges: The modern methods for augmenting training datasets and opti-
mizing CNN architectures lead to significant achievements nowadays. However,
most FR models that get State-of-the-Art (SOTA) accuracy have been trained
on cost-strong computing hardware systems for a long time by experts. Unfor-
tunately, the academic community is not able to access these resources. Many of
them pragmatically own limited computational competence systems. In order to
construct the FR system from scratch, they have to adopt medium-size datasets,
customize DCNN architectures, and adjust the hyper-parameter settings for
training. All of these changes can lead to unexpected results. Choosing appreciate
loss functions is a easy way in order to improve performance of FR models. On
the other hand, academic community makes the effort to design an effective loss
function. Each loss function requires distinct constraints of data pre-processing,
modifying CNN architectures,... It is necessary to select loss functions that are
able to bring higher performance with respective lower implementation costs.

Contributions: From the aforementioned challenges, in this paper, we inves-
tigate state-of-the-art losses based on softmax, including CosFace, ArcFace,
and MagFace to verify and understand the efficiency of these loss function for
training deep neuron networks. Each function generally includes several hyper-
parameters, which substantially impact the final performance and is usually
difficult to tune. We conducted evaluation on several face benchmarks, including
LFW, CFP-FP, AgeDB-30, CALFW and CPLFW.

The remainder of this paper is organized as follows. In §2, we describe our
main problem and introduce some related work in FR. §3 presents our proposal.
In §4, we show our experiments, evaluate our proposed work, and provide some
comparisons. Finally, §5 gives the conclusions and future work.
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2 Problem Formulation and Related Work

2.1 Face Recognition

Face recognition aims to match an image of someone’s face to all their representa-
tions stored in the database. Typically, most FR systems have three components,
primarily face detection, feature extraction, and classification. Face detection is
a preprocessing stage that detects a unique face and aligns a face in the image.
Next, feature extraction, which takes input as preprocessed images, adopts a
DCNN to extract deep discriminative features. It returns an embedding vector
as the feature representation of a face.

The classification process contains precisely two sub-processes: (i) face ver-
ification: calculate the one-to-one similarity between two images to determine
where those pairs belong to the identical individual, and (i) face identification:
seek an individual by one-to-many computing similarities between a probe and
all images stored in a database to identify the specific identity of a face among
a set of the facial gallery. This paper mainly focuses on feature extraction and
classification in face verification tasks.

2.2 Loss Function for Deep Face Recognition

Up to now, prevailing loss functions for deep FR are mainly based on variants
of softmax loss. To address a defect in the pure softmax loss, which does not
run well in reducing the intra-class variation (i.e., making features of the same
class compact) [19], one of the most effective approaches obtained excellent per-
formance on FR is to add the margin into the primitive loss. We can split it into
two ways:

Adding Fized Margin into Softmax. Several efforts have been proposed to
enhance the discriminative power of the softmax loss by adding a fixed penalty
margin for training FR models [12,19]. Margin is added to implement the con-
straint: the maximum inter-class distance < the minimum inter-class distance +
margin. Then, learned features can be sufficiently discriminative. These meth-
ods succeed in enforcing intra-class compactness and inter-class discrepancy to
improve FR performance. At the same time, they can be implemented easily
with several uncomplicated code lines in the deep learning frameworks such as
Pytorch or Tensorflow.

Adding Adaptive Margin into Softmaz. Although the above methods have
reached the SOTA performance on a number of benchmarks, they still remain a
handful of drawbacks. One of them is that low-quality images may easily impact
the performance of these losses. Thus, more recently, many researchers have pro-
posed an adaptive margin strategy to automatically tune those hyper-parameters
to avoid putting too much faith in the fixed margin and generate more effective
supervision during training. Some of them improve inherent fixed margin-base
softmax loss functions to be more flexible [9,23]. In addition to the adaptive
margin, some others also proposed adding extra factors into the function as [13]
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for enhancing final recognition performance. Adding adaptive margin approach
attempts to adopt real data with an inconsistent inter-and intra-class variation.
It might limit the discriminative power and generalizability of the FR model
when using fixed marginal penalty softmax losses.

3 Analysis Approach

3.1 DCNN Architecture

Training facial recognition models can be divided into two stages: training and
testing. Specifically, as illustrated in Fig.1, face images from both training set
(a) and testing set (d) are processed to handle variations before feeding into
feature extraction. This process serves a purpose to alleviate the effect of the
environment’s condition on the performance of FR. During the training stage, a
DCNN (b) is utilized to extract deep discriminative features, DCNN returns an
embedding vector as a feature representation of a face. Like training stage, these
embedding vectors are handled in the testing stages. However, the classification
layer in the DCNN is often discarded at the testing stage. Next, during the
training stage, these features will be applied to a loss function (¢) which optimizes
deep discriminative features. That loss function is adopted to learn the FR model
accurately. After the in-depth features are extracted, face matching methods (e)
come to conduct the feature classification process. While face matching methods
take advantage of cosine or L2 distance, they are employed to compute similarity
scores among test images in the testing stage. All our experiments are conducted
based on the architecture that we demonstrated above.

Training Phase
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Fig. 1. Overview of training Deep Face Recognition model

Back to the problem mentioned earlier, we have to adopt the typical DCNN
architecture that is ResNet50 [6] as a feature extractor and use the moderate
public dataset, CASIA-WEBFACE in the training stage to be compatible with
our resources. Despite being competent for these possibilities, building a facial
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recognition system with superior performance to humans is like [18], and there
is a significant disparity between this system’s accuracy and SOTA solutions.
Achievements in studies of the loss function encourage us to apply these accom-
plishments to our situation as we search for ways to enhance our FR performance
without additional hardware setup requirements. As a result, the fundamental
direction we focus on in this paper is applying various loss functions to the
training model in order to enhance FR performance and achieve SOTA results.

3.2 Effective Loss Function Analysis

As mentioned in 2.2, the margin-based softmax loss functions are now widely
used for training FR models. Many new loss functions are published with SOTA
performance for a short period. However, not all of them can easily implement or
improve accuracy with our resources. Thus, we considered some functions with
two criteria: (i) do not require intricately prepared samples before being fed into
training; and (ii) avoid refining backbone unnecessarily and adding extra layers
excessively.

Based on these criteria, we determined to use three loss functions comprise
CosFace [20], ArcFace [3] and MagFace [13] for learning of DCNN model. Ideolog-
ically, to improve the discriminative competence, these loss functions implement
a margin penalty on primitive softmax loss. The difference is that CosFace and
ArcFace add a fixed margin while MagFace belongs to a category that adds
adaptive margin into softmax.

In detail, let D = {z;,y;}¥, where x; denotes an input image with its cor-
responding label y; and N is the number of images. In the training stage, after
being fed an image, the last fully connected layer of the neuron network returns
a d-dimensional embedding vector f; € R%. By defining the angle 6; between f;
and j-th class center w; € R? as wJTfi = |lwj|| || fil| cos 8;, CosFace, ArcFace can
be formulated as follows:

es(cos 0y, 7m)

es(coseyi—m) + 24# escos0;
I7Yi

&8 cos(Gyi +m)

L AreFace = — O 2
ArcFace g o cos(eyi +m) + Zj;éy- e8cosb; ( )

where m denotes the additive angular margin and s is the scaling parameter
multiplied due to the norm of w and x in the tenet of all these loss functions. It
is two key factors added into the Softmax to enhance performance. Specifically,
we fix [|w;|| = 1 by Ly normalization and presume that ||f;|| = s is fixed [20].
Compared with the Softmax, margin-based variants of the Softmax loss like
ArcFace and CosFace extends the decision boundary between different classes
in the cosine space by a specified m and the parameter s scales up the narrow
range of cosine distances, making the logits more discriminative.

In contrast, for MagFace, instead of using a specified scalar parameter as
margin, it introduces two auxiliary functions related to the magnitude a; = || f;||

(1)

»CCosFace = - log
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without normalization of each feature f;, the magnitude-aware angular margin
m(a;) and the regularizer g(a;) following a natural institute: High norm features
are easily recognizable and large margin pushes features of high norm closer to
class centers. With all previous notions, we define MagFace like:

e’ cos(@w +m(ai))

»CJWagFace = - log + )‘gg (al) (3)

e cos(Gyi +m(ai)) 4 Z i’ o5 cos b
JI7Yi

Ag indicates regularization losses weights. Two extra functions, m(.) and g(.),
are convex functions that are presented in the MagFace’s supplementary [13].
Due to word count constraints, we will not be able to cover everything in this
paper, so we recommend reading the original paper for setting details. Based
on Egs. 1, 2 and 3, it is easy to implement three loss functions through only
adjusting logits before passing it into softmax-cross entropy loss [3].

4 FEvaluation

We investigate the impact analysis of several effective loss functions by perform-
ing the deep experiment of FR using DCNN models.

4.1 Dataset Preparation

For training, we choose CASIA-WEBFACE [22] containing 494,414 images of
10,575 different individuals. For evaluating the performance of DCNN-based FR,
we choose several popular datasets such as LEFW [7], CFP-FP [17], AgeDB-30
[14], CALFW [25] and CPLFW [24]. In there, LFW, CFP-FP, and AgeDB-30 are
considered easy benchmarks and conversely, CALFW and CPLFW are higher
challenges because the image quality is considered the problematic benchmark.
For convenience, we fetch all datasets from the available source, InsightFace
(https://qgithub.com/deepinsight /insightface), in which all images are aligned to
112 x 112 in as the settings in ArcFace [3].

4.2 Model Training Configuration

DCNN Model Setting: All the DCNN models are trained from scratch. We
implemented a widely used CNN architecture, namely ResNet50, as a backbone
network. For training, we only augment training samples by random horizontal
flip. Each model is trained for 32 epochs with a batch size of 128. The initial
learning rate is set to 0.025 and divided by ten at 18, 28 epochs when the training
loss plateaus. SGD is adopted as our optimizer with momentum is 0.9, and the
weight decay parameter is set to 5e — 4. The drop ratio is fixed at 0.5 for all
settings. All experiments are conducted based on Pytorch framework [8] and all

the models are trained and validated for training and testing on an NVIDIA
Tesla T4 (16GB) GPU.
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Loss Function Hyper-parameters Setting: In ArcFace and CosFace, the
margin m is choose at 0.5 and 0.35 respectively as suggested in original papers.
For MagFace, there are five hyper-parameters must be selected thoroughly, as
mentioned in [13]. The upper bound and lower bound of magnitude are fixed
as l, = 10, u, = 110. Besides that, function m(a;) is described as a function
defined on [l,, u,] with m(ly) = L, m(ug) = uy,. By empirical experiment, I,
and u,, are set respectively to 0.45 and 0.8. )\, is specified to 20 as well. The
scale s has already been discussed sufficiently in several previous works [15,20],
so we directly fixed its values to 64 and will not discuss its effect further.

4.3 Results

Intending to analyze the effect of the loss function in the FR DCNN model, we
have built an experiment according to the method presented in Sect.3 with the
above settings. The accuracy [11] and equal error rate (ERR) metrics [4] are used
to evaluate and compare our model again other SOTA. The results of specific
evaluation and comparison of the accuracy of DCNN models with different loss
functions and baselines are presented below:

Table 1. Accuracy metric (%) of DCNN models on five benchmarks (“*” indicates the
result quoted from the original paper)

Method LFW | CFP-FP | AgeDB-30 | CALFW | CPLFW
HUMAN:-Individual 97.27 | — — 82.32 81.21
HUMAN-Fusion - — - 86.50 85.24
CASIA, R50, CosFace* [20] 99.33 | — - — —
CASIA, R50, ArcFace* [3] 99.53 | 95.56 95.15 — —
MS1M-V2 , R100, MagFace* [13] | 99.83 | 98.46 98.17 96.16 92.87
CASIA, R50, Softmax (our) 98.82 | 93.59 91.13 91.15 86.02
CASIA, R50, CosFace (our) 99.42 | 95.01 94.45 93.35 89.47
CASIA, R50, ArcFace (our) 99.43 | 95.12 94.88 93.88 88.98
CASIA, R50, MagFace (our) 99.43 | 95.11 94.55 93.82 89.27

Table 2. EER (%) of effective loss functions on all test datasets

Method LFW | CFP-FP | AgeDB-30 | CALFW | CPLFW
CosFace (our) | 0.65 |5.98 5.60 7.42 12.25
ArcFace (our) |0.63 6.18 5.45 7.20 12.76
MagFace (our) | 0.68 |5.90 5.68 7.23 12.70

Comparison between Effective Loss Functions and Softmax. For fur-
ther understanding of the effectiveness of adding margin into softmax, we also
implemented the original softmax function by the side of three proposed losses
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namely CosFace, ArcFace and MagFace. Results are presented in Table1. As a
baseline model, Softmax reached 98.82%, 93.59%, 91.13%, 91.15% and 86.02%
accuracy on all benchmarks are LEFW, CFP-FP, Age-30, CALFW and CPLFW
respectively. For all other losses, they outperformed Softmax on every bench-
mark. Compared Softmax, CosFace archived 0.6%, 1.42%, 3.32%, 2.20%, 3.45%
improvements on the respective LEFW, CFP-FP, Age-30, CALFW and CPLFW.
ArcFace also surpasses the baseline by 0.61%, 1.53%, 3.75%, 2.73% and 2.96%
on five benchmarks respectively. As well as two previous losses, MagFace out-
performed Softmax on all test datasets 0.61%, 1.52%, 3.42%, 2.67%, 3.25% con-
secutively. Those results clearly shown that the margin plays a key role in Cos-
Face, ArcFace and MagFace, strengthening the discriminating power of features.
Besides, our implementations for all three losses can lead to convergence without
observing any difficulty similar to the advantage of Softmax.

Comparison between Effective Loss Functions. Not only compare to Soft-
max, we also compare among our re-implementations including CosFace, Arc-
Face, MagFace based EER metrics in Table2. The result returned varied on
the different benchmarks. It is interesting that CosFace showed the best result
on the “hard test case”, CPLFW, 12.25%, while performed more poorly on the
rest of datasets. Otherwise it not surpass ArcFace and MagFace on other bench-
marks. As opposed to what we had anticipated, MagFace only performed well
in the CFP-FP benchmark and is good in CALFW. On the other hand, Arc-
Face is archived at its best in diverse age benchmarks: on AgeDB-30, it gains
5.45% EER, which is 0.15% lower than CosFace and 0.23% lower than MagFace.
Similarly, on LFW and CALFW, ArcFace also archives EER values which is
lower than CosFace and MagFace approximately about (0.03%-0.2%). It illumi-
nates that ArcFace can bring the discriminative power better than CosFace and
MagFace in our scenario.

Comparison with other Baselines. Besides Softmax, we also compare our re-
implementations with other published results : Human-Individual and Human-
Fusion as reported in Table 1. Firstly, our models easily outperformed HUMAN-
Individual on CALFW and CPLFW. They achieved accuracy better than 88% on
all of these benchmarks, whereas Human-Individual only achieved performance
less than 83% on both. Even on the easy benchmark LEW, our models completely
defeat competence of a individual about 2%. Moreover, compared to Human-
Fusion which is the third baseline, our models still did outperform it by increasing
about 3.0%-7.0% on CALFW and CPLFW. Those results shown us the power
of our proposed models that definitely replaces human in FR tasks.

4.4 Limitations

Apart from our achievements, we also reported the limitation of our re-
implementations compare to results in original papers. Although our CosFace-
based DCNN model achieves even higher than the original CosFace* 0.09% for
ACC, both ArcFace and MagFace re-implementations could not reach the same
results as the original papers. For the ArcFace-based DCNN model, our method
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has 99.43% of accuracy on LFW, which is 0.1% less than the ArcFace* as well as
CFP-FP and AgeDB-30. The difference in accuracy between our models and the
original ones comes mainly from the difference in computing infrastructure. For
instance, the ArcFace* used 4 GPU and set the batch size to 512 for training the
model. Finally, with MagFace*, they used larger datasets and a deeper backbone
network, so their results ultimately outperform others in Table 1.

5 Conclusion

In this paper, we have surveyed, analyzed, and identified the main challenges of
CNN-based face recognition concerning specifying the loss function. To tackle
these challenges independently, we re-implement and evaluate the three novel
effective loss functions, including CosFace, ArcFace, and MagFace. We demon-
strated the advantages of those loss functions, which perform better than their
original Softmax. Our deep experiments on recent popular datasets confirm that
the face recognition accuracy is clearly improved by using a suitable loss function.
Our re-implementations show significant results comparing other baselines on
five widely used benchmarks: LFW, CFP-FP, AgeDB-30, CALFW, and CPLFW.
Hence, it asserted the discriminative power of CosFace, ArcFace, and MagFace,
respectively, and the potential for deployment in the automated library system.

In future work, we will also be interested in other types of loss functions and
ensemble learning methods in order to build robust face recognition applications
capable of discriminating effectively in varied environments.
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