)

Check for
updates

YAMAML: An Application Profile Based
Lightweight RDF Mapping Language

Nishad Thalhath'®)@®, Mitsuharu Nagamori?®, and Tetsuo Sakaguchi?

! Graduate School of Library, Information and Media Studies, Tsukuba, Japan
nishad@slis.tsukuba.ac. jp
2 Faculty of Library, Information and Media Studies, University of Tsukuba,
Tsukuba, Japan
{nagamori,saka}@slis.tsukuba.ac.jp
https://www.slis.tsukuba.ac.jp

Abstract. YAMA Mapping Language (YAMAML) is a lightweight
mapping language for generating RDF. YAMAML is based on Yet
Another Metadata Application Profiles (YAMA). YAMA is an extensible
intermediary application profile authoring format for generating applica-
tion profile expressions. Application profiles are a combination of vocab-
ularies, which are mixed and matched from different namespaces and
optimized for a particular local application. YAMA is based on Descrip-
tion Set Profiles (DSP), a Dublin Core Application Profiles constraint
language. YAMA is implemented on YAML, one of the most human-
readable data serialization formats. As a superset of JSON, YAML is
highly interoperable and has parsers and emitters in all major program-
ming languages. It adapts the basic application profile elements from
YAMA and is designed as a simplified markup language to map non-
RDF data structures to RDF and generate corresponding RDF based
on the application profile. It is proposed as an intermediary format for
generating RDF, but not as an RDF representation syntax. The authors
demonstrate the capability of YAMAML by developing a basic specifi-
cation and proof of concept implementations.

Keywords: Metadata + Application profiles - YAMA - RDF -
Mapping language + Semantic web - Linked data

1 Introduction

The Resource Description Framework (RDF) is a standard directed labeled
graph data format for representing information on the Semantic Web, an exten-
sion of the web. RDF is expressed in triples, consisting of a subject, a predicate,
and an object [9]. RDF concept and related specifications were introduced by
the World Wide Web Consortium (W3C) and are maintained by the W3C. The
important formats of RDF include RDF/XML, RDFa, JSON-LD, and Turtle.
The main difference between RDF and other data formats is that RDF uses a
directed graph model, allowing for more flexible and powerful data representa-
tions. The advantages of RDF include its flexibility, extensibility, and interoper-
ability. RDF has importance in the modern web because it provides a standard

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y.-H. Tseng et al. (Eds.): ICADL 2022, LNCS 13636, pp. 412-420, 2022.
https://doi.org/10.1007/978-3-031-21756-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21756-2_32&domain=pdf
http://orcid.org/0000-0001-9845-9714
http://orcid.org/0000-0002-9545-7825
http://orcid.org/0000-0002-2055-5594
https://doi.org/10.1007/978-3-031-21756-2_32

YAMAML: An Application Profile Based RDF Mapping Language 413

way to represent data that can be shared across different applications and plat-
forms.

The difference between RDF and other data formats like csv and json is that
RDF is a graph based data format. This means that data is represented as a set
of interconnected nodes in a graph, as opposed to being represented as a table
or set of key-value pairs. RDF is also a standard format, which means that there
are well-defined rules for how data should be represented in RDF. This makes
it easier to exchange data between different systems, and to query data using
standard tools.

YAMA Mapping Language (YAMAML) is proposed to improve 5-star level!
data publication with the notion that a profile-driven RDF generation can
streamline the process by mapping multiple non-RDF sources to an RDF appli-
cation profile of varying complexities.

1.1 Application Profiles, DCAP and DSP

Application profiles, often called Metadata Application Profiles, are a combina-
tion of vocabularies, which are mixed and matched from different namespaces
and optimized for a particular local application [3]. Application profiles express
the terms taken from other namespaces and the structural use of those terms
in the local instance data. Application profiles also express constraints on those
terms so that the data can be validated as well.

A Dublin Core Application Profile (DCAP) specifies how some metadata
description sets are constructed. It includes information on the terms used in
the description sets, how they are deployed, and constraints on the values and
datatypes of the properties used. A DCAP is a declaration specifying which
metadata terms an organization, information provider, or user community uses
in its metadata. DCAPs can be used to document the semantics and constraints
used for a set of metadata records or instance data. A DCAP can promote
interoperability between different metadata models and harmonize metadata
practices among different communities. A DCAP can also help communities of
implementers harmonize metadata practice among themselves.

The Singapore Framework for Dublin Core Application Profiles [7] is a set
of standards for designing metadata applications that are interoperable and
reusable. The standards form a basis for reviewing Application Profiles for docu-
mentary completeness and conformance with Web-architectural principles. The
standards define a set of descriptive components that are necessary or useful
for documenting an Application Profile. The standards also describe how these
documentary standards relate to standard domain models and Semantic Web
foundation standards.

Description Set Profiles (DSP) is a constraint language for Dublin Core
Application Profiles [6]. DSP is based on the DCMI Abstract Model (DCAM),
which defines Description Set, Description, and Statement [8]. A DSP defines
constraints on Description Sets, Descriptions, and Statements. Description Set

! https://www.w3.org/Designlssues/LinkedData.

https://www.w3.org/DesignIssues/LinkedData

414 N. Thalhath et al.

Templates hold one or more Description Templates composed of Statement
Constraints. DSP supports the RDF-oriented data design with properties and
datatypes.

1.2 Yet Another Metadata Application Profile (YAMA)

Yet Another Metadata Application Profile (YAMA) is a user-friendly interopera-
ble preprocessor for creating, maintaining, and publishing Metadata Application
Profiles [12], developed to be a direct adaption of DublinCore DSP. It is heavily
inspired by the Simple-DSP (SDSP) format [5] for the MetaBridge project.?.
Even though it helps to produce various formats and standards to express the
application profiles, YAMA is not defined as a new standard for application pro-
files but as an easy-to-use preprocessor to create standard application profile
formats; extensible [11] with custom elements and structure with a syntax based
on YAML 1.2 specification®. However, it is parsable with any YAML 1.2 parser;
the processing capabilities of the profile depend on implementations.

YAMAML is built with a minimal YAMA application profile concept, that
a standard RDF can be expressed in an application profile with descriptions
and statements.

1.3 Related Works

There are different attempts for Application Profiles and RDF mapping lan-
guages. A brief overview of the state-of-the-art is provided below.

DC Tabular Application Profiles (DC TAP) is a way to create appli-
cation profiles in the form of tables. These tables can be read by humans and
saved in a CSV format, which can be read by a computer program.*

Tarql: SPARQL for Tables is a command-line tool that uses SPARQL 1.1
syntax to convert CSV files to RDF.?

LinkML is a flexible modeling language that allows authors to create
schemas in YAML that describe the structure of data. LinkML is also a frame-
work for working with and validating data in a variety of formats (JSON, RDF,
TSV) and can be used to compile LinkML schemas to other frameworks.®

R2RML is a language expressing customized mappings from relational
databases to RDF datasets. [1] This language allows different mapping imple-
mentations, such as creating a virtual SPARQL endpoint over the mapped rela-
tional data, generating RDF dumps, or offering a Linked Data interface.

RDF Mapping Language (RML) is a mapping language that can express
customized mapping rules from heterogeneous data structures and serializations
to the RDF data model. RML is defined as a superset of the W3C-standardized
mapping language R2RML [2].

https://metabridge.jp/.
https://yaml.org/spec/1.2.2/.
https://github.com/dcmi/dctap.
http://tarql.github.io.
https://linkml.io.

D otk W N

https://metabridge.jp/
https://yaml.org/spec/1.2.2/
https://github.com/dcmi/dctap
http://tarql.github.io
https://linkml.io

YAMAML: An Application Profile Based RDF Mapping Language 415

YARRRML is a human-readable text-based representation for declarative
Linked Data generation rules. It is a subset of YAML that can be used to rep-
resent R2RML and RML rules.”

CSV2RDF defines the procedures and rules for converting tabular data into
RDF, including how metadata annotations can describe the structure, meaning,
and interrelation of tabular data. [10]

RDF Transform is an extension for OpenRefine® that allows users to trans-
form data into RDF formats. The RDF Transform extension provides a graphical
user interface (GUI) for transforming OpenRefine project data to RDF-based
formats. The transform maps the data with a template graph designed using the
GUL?

Among these attempts, DC TAP is to devise a method of creating application
profiles in tabular format. Other mapping language attempts are for generating
RDF data from different types of input sources, but they are not oriented to
application profiles. Considering these facts, YAMAML is a novel approach in
devising an RDF mapping language based on application profiles.

2 Methods

The major goals of this attempt are :

1. Derive a subset of YAMA to express minimal RDF as an application profile.

2. Use the derived subset as a general purpose RDF data mapping language,
suitable for both RDF generation and minimal profiling.

3. Use data mapping in a descriptive and opinionated format to make RDF
mapping easier.

4. Develop a set of ready-to-use and simplified tooling for basic RDF generation.

2.1 Modeling Application Profile of RDF with Data Mapping

Application profiles are constrainers as well as explainers of the data. A typical
YAMA application profile also includes constraining options to help generate
data validation formats and ensure data quality. These constraining elements,
such as cardinality and value constraints, are not part of the modeling or gen-
erating RDF, but they help generate RDF validation formats such as Shape
Expressions (ShEx)!? and Shapes Constraint Language (SHACL) [4]. For mod-
eling a minimal application profile for RDF, YAMA constraining elements were
avoided for the YAMAML subset. Also, an application profile is intended to
generate human-readable documentation of the profile. Explainer elements such
as labels and notes were removed from the YAMA profile to create the subset.

" https://rmlio/yarrrml/.
8 https://github.com/AtesComp /rdf-transform.
° https://openrefine.org.

10 https://shex.io.

https://rml.io/yarrrml/
https://github.com/AtesComp/rdf-transform
https://openrefine.org
https://shex.io

416 N. Thalhath et al.

So the subset required to explain minimal RDF application profile structure is
limited to ’descriptions’ and ’statements’ with essential parameters.

Minimal YAMA application profile, which is based on DSP is adapted for
YAMAL as well. A basic overview of YAMAML mapping of the application
profile to data is explained in Figure 1.

Application Profile Mapping Data

description ————» ID Mapping —»

Data
Saurce(s)

statement Value Mapping

Fig. 1. YAMAML mapping overview - basic application profile and data mapping.

2.2 Data Mapping

YAMAML'’s data mapping is designed as multi-source capable, so users can use
many data sources to generate a single RDF. The sources can be heterogeneous
and require only a proper mapping to ID, so various data sources can be mixed
and matched to create RDF of any level of complexity. A detailed description of
all mapping elements is provided in Table 1.

YAMAML adapts all basic YAML collections from YAMA. Other than the
YAMA collections base, namespaces, descriptions, and defaults, a special data
collection is defined as a data holder. This optional collection container can store
structured data as YAML or JSON. Since YAML is a superset of JSON, valid
JSON is treated as valid YAML. All basic collection containers are explained in
Table 2.

3 Results

YAMAML basic tooling and documentation are published at https://yamaml.
org. The command line (CLI) toolkit can be used to generate relatively big and
complex RDF. The playground web app is an in-browser environment, so it may
not be sufficient for generating massive RDFs, but it will help to understand
the basic implementation. A simple example of converting a basic CSV dataset
is illustrated in Fig.2. The command line tools for YAMAML are written in
Javascript for Deno runtime.

https://yamaml.org
https://yamaml.org

YAMAML: An Application Profile Based RDF Mapping Language 417

Table 1. Elements in YAMAML data mapping

Element | Description Type | Required | Examples

source Path of the data source string | yes /path/to/example.csv http://ex.
tld/ex.csv

type Type of the data source string | yes Csv,xlsx,yaml,json

path Path to the data element string | yes CSV column name, JSON/YAML
key path

strip Strip one or a group of characters, | list no [-," "

given as a list of strings

replace |Replace one or a group of list no [fo,11," ", -11
characters with the given value.
This should be a list of replace
pair as a list

separator | A separator character to split the |string no , or |
given values into a group of values

prepend | Prepend a text string to the value |string|no

append Append a text string to the value |string|no

YAMA is an extensible application profile authoring environment. It was
extended to cover many use-cases like versioning, application profile change log
management, and provenance [13]. YAMA can be used to generate application
profile expressions, documentation, and validation schemas, and now with the
data mapping, it can also be an RDF generator. This attempt to subset YAMA
as an RDF mapping language is aiding YAMA to be an application profile ecosys-
tem for Semantic Web and Linked Data.

3.1 Comparison with State of the Art

DC TAP is focused more on authoring application profiles in a tabular way and
is not extensible as YAMA. So it may not cover the use-case of RDF genera-
tion. Though DCTAP and YAMA are primarily based on Dublincore applica-
tion profiles, YAMA follows the DC-DSP approach in modeling profiles. Thus
YAMAML is modeled with a basic DC-DSP structure. Tarql requires a practical
knowledge of SPARQL to map CSV to RDF. This is the potential limitation,
where YAMAML is relatively simple to author a mapping. Though LinkML
uses YAML as the serialization format, it has a steep learning curve. The same
challenge is with YARRRML, which demands proper knowledge of R2ML and
RML concepts. CSV2RDF requires CSVW to map the data, and it would be
challenging to model complex RDF structures with CSVW. OpenRefine is the
easiest option for RDF conversion with powerful data transformation capabili-
ties. It has a user-friendly GUI and a sound reconciliation system with Wikidata
support. OpenRefine RDF addon requires modeling the data in a certain way,
which is not correctly equivalent to the application profile. In short, with all lim-
itations, YAMAML tries to be a minimal, easy-to-use application profile-based
RDF mapping language.

http://ex.tld/ex.csv
http://ex.tld/ex.csv

418 N. Thalhath et al.

Table 2. YAMAML Containers

Component Description

base Same as RDF base, preferred a URI as value and will be treated as
the base of the generated RDF

namespaces A discriminatory of key-value pairs indicating prefix and URI of the
namespace

descriptions | Same as YAMA descriptions, which holds the basic application
profile in YAMA format

defaults An optional container for declaring default values for the
descriptions and data mapping
data An optional YAMAML-specific structured data holder. Data can be

serialized in JSON or YAML format. If the data can be included
within the YAMAML file instead of external sources, this data
holder can be used for that

4 Discussion

YAMA is proposed as an extensible format [11] so that it can be extended to
cover more use-cases and specific needs. With YAML’s flexibility, it can be a
handy format for various RDF and linked data-related projects. Most of these
requirements need custom tooling, which can help grow YAMA as an applica-
tion profile ecosystem. So the authors believe that an RDF generation mapping
language will be an added advantage in adapting YAMA for many real-world
scenarios.

4.1 Limitations of This Approach

YAMAML mapping depends on declaring IDs for the descriptions; at least the
main or initial description requires an ID mapping. ID can be any common data
element similar to the primary key and foreign key concept of traditional rela-
tional database systems. This approach is a significant limitation and forces the
users to pre-process their data with proper relationships. Another issue is that
modeling complex RDF will require essential skills and time. Since YAMAML
tries to be simple enough for basic uses, many advanced use-cases and edge cases
were not considered in the design decisions. Though YAMAML can be used to
map linked data using IRI stems, it is not intended to do a reconciliation of
entities to any linked dataset. Tools like OpenRefine can do reconciliation and
RDF generation from a GUI environment.

YAMAML: An Application Profile Based RDF Mapping Language 419

A. Tabular Data

A B c D E F G
1 ID name familyName firstName parents children knows
2 sheldon-cooper Sheldon Cooper Cooper Sheldon mary-cooper leonard-hofstadter
3 mary-cooper Mary Cooper Cooper Mary sheldon-cooper
4 leonard-hofstadter Leonard Hofstadter Leonard sheldon-cooper, mary-cooper
B. YAMAML C. Generated RDF
%YAML 1.2
o @base <http://purl.org/yaml-1d/examples/data/tbht/8.1/> .
base: "http://purl.org/yaml-1d/examples/data/tbbt/0.1/" @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix schema: <http://schema.org/> .
namespaces: @prefix xsd: <http://www.w3.org/2001/XMLSchema#s .
foaf: http://xmlns.com/foaf/e.1/
schema: http://schema.ozrg/ <sheldon-cooper> a foaf:Person ;

xsd: http://www.w3.0rg/2001/XMLSchema# foaf:name "Sheldon Cooper"@en ;

foaf:familyName "Cooper"@en ;
foaf:firstName "Sheldon"@en ;
schema:parent <mary-cooper> ;

descriptions:
character: # Character
a: foaf:Person

id: foaf:knows <leonard-hofstadters .
mapping:
source: thbt_cast.csv <mary-cooper> a foaf:Person ;
type: csv foaf:name "Mary Cooper"@en-;
path: ID

foaf:familyName "Cooper”@en ;
Statements in character foaf:firstlame "Wary“gen ;
schema:children <sheldon-cooper> .

statements:
name: # Name of the character

property: foaf:name <leonard-hofstadter> a foaf:Person ;

type: literal foaf:name "Leonard"@en ;

datafvw&: xsd:string foaf:familyName "Hofstadter"@en ;

mapping: foaf: firstName "Leonard"@en ;
source: tbbt_cast.csv

foaf :knows <mary-cooper>, <sheldon-cooper> .|

type: csv
path: name

More statements ...

A. A CSV file named thbt_cast.csv

knows: # This character knows
property: foaf:knows

type: IRI B. Part of the original YAMAML used for
mapping: generating C.

source: tbbt_cast.csv

type: csv

C. RDF generated using YAMAML CLI tool

path: knows
seperator: ","

Fig. 2. YAMAML mapping example - a simplified example to demonstrate application
profile mapping to a single CSV file with minimal data.

5 Conclusion

There are various tools and mapping languages for RDF, though some have high
learning curves, and some are complex for basic use-cases. GUl-oriented tools
like OpenRefine helps novice users to convert their data to RDF. The adaption of
RDF will be less painstaking and popular if there are many tools from which the
users can freely choose something that suits their needs. Many of these attempts
have overlapping feature sets but still provide many unique features and options.
The authors are optimistic that more accessible tools will eventually help to grow
semantic web-oriented data sharing and expand the linked data cloud with more
5-star open data.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
21K12579.

420

N. Thalhath et al.

References

10.

11.

12.

13.

. Das, S., Cyganiak, R., Sundara, S.: R2RML: RDB to RDF mapping language.

W3C recommendation, W3C (2012). https://www.w3.org/TR/2012/REC-r2rml-
20120927/

Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., de Walle, R.V.:
RML: A generic language for integrated RDF mappings of heterogeneous data. In:
LDOW (2014)

Heery, R., Patel, M.: Application profiles: mixing and matching metadata schemas.
Ariadne 25 (2000). http://www.ariadne.ac.uk/issue/25/app-profiles/
Kontokostas, D., Knublauch, H.: Shapes constraint language (SHACL). W3C rec-
ommendation, W3C (2017). https://www.w3.org/TR/2017/REC-shacl-20170720/
Nagamori, M., Kanzaki, M., Torigoshi, N., Sugimoto, S.: Meta-bridge: a develop-
ment of metadata information infrastructure in Japan. In: Proceedings Interna-
tional Conference on Dublin Core and Metadata Applications 2011, p. 6 (2011)
Nilsson, M.: DCMI: description set profiles: a constraint language for dublin core
application profiles (2008). http://www.dublincore.org/specifications/dublin-core/
dc-dsp/

Nilsson, M., Baker, T., Johnston, P.: DCMI: the Singapore framework for Dublin
core application profiles (2008). http://dublincore.org/specifications/dublin-core/
singapore-framework/

Powell, A., Nilsson, M., Naeve, A., Johnston, P., Baker, T.: DCMI: DCMI
abstract model (2007). http://www.dublincore.org/specifications/dublin-core/
abstract-model/

Raimond, Y., Schreiber, G.: RDF 1.1 primer. W3C note, W3C (2014). https://
www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

Tandy, J., Herman, I., Kellogg, G.: Generating RDF from tabular data on the
web. W3C recommendation, W3C (2015). https://www.w3.org/TR/2015/REC-
csv2rdf-20151217/

Thalhath, N., Nagamori, M., Sakaguchi, T., Sugimoto, S.: Authoring formats
and their extensibility for application profiles. In: Jatowt, A., Maeda, A., Syn,
S.Y. (eds.) ICADL 2019. LNCS, vol. 11853, pp. 116-122. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34058-2_12

Thalhath, N., Nagamori, M., Sakaguchi, T., Sugimoto, S.: Yet another metadata
application profile (YAMA): authoring, versioning and publishing of application
profiles. In: International Conference on Dublin Core and Metadata Applications,
pp. 114-125 (2019). https://dcpapers.dublincore.org/pubs/article/view /4055
Thalhath, N., Nagamori, M., Sakaguchi, T., Sugimoto, S.: Metadata application
profile provenance with extensible authoring format and PAV ontology. In: Wang,
X., Lisi, F.A., Xiao, G., Botoeva, E. (eds.) JIST 2019. LNCS, vol. 12032, pp. 353~
368. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41407-8_23

https://www.w3.org/TR/2012/REC-r2rml-20120927/
https://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.ariadne.ac.uk/issue/25/app-profiles/
https://www.w3.org/TR/2017/REC-shacl-20170720/
http://www.dublincore.org/specifications/dublin-core/dc-dsp/
http://www.dublincore.org/specifications/dublin-core/dc-dsp/
http://dublincore.org/specifications/dublin-core/singapore-framework/
http://dublincore.org/specifications/dublin-core/singapore-framework/
http://www.dublincore.org/specifications/dublin-core/abstract-model/
http://www.dublincore.org/specifications/dublin-core/abstract-model/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2015/REC-csv2rdf-20151217/
https://www.w3.org/TR/2015/REC-csv2rdf-20151217/
https://doi.org/10.1007/978-3-030-34058-2_12
https://dcpapers.dublincore.org/pubs/article/view/4055
https://doi.org/10.1007/978-3-030-41407-8_23

	YAMAML: An Application Profile Based Lightweight RDF Mapping Language*-12pt
	1 Introduction
	1.1 Application Profiles, DCAP and DSP
	1.2 Yet Another Metadata Application Profile (YAMA)
	1.3 Related Works

	2 Methods
	2.1 Modeling Application Profile of RDF with Data Mapping
	2.2 Data Mapping

	3 Results
	3.1 Comparison with State of the Art

	4 Discussion
	4.1 Limitations of This Approach

	5 Conclusion
	References

