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Abstract. Extensive bedside monitoring in Intensive Care Units (ICUs)
has resulted in complex temporal data regarding patient physiology,
which presents an upscale context for clinical data analysis. In the other
hand, identifying the time-series patterns within these data may provide
a high aptitude to predict clinical events. Hence, we investigate, during
this work, the implementation of an automatic data-driven system, which
analyzes large amounts of multivariate temporal data derived from Elec-
tronic Health Records (EHRs), and extracts high-level information so as
to predict in-hospital mortality and Length of Stay (LOS) early. Practi-
cally, we investigate the applicability of LSTM network by reducing the
time-frame to 6-hour so as to enhance clinical tasks. The experimental
results highlight the efficiency of LSTM model with rigorous multivariate
time-series measurements for building real-world prediction engines.

Keywords: Electronic health record - Multivariate time-series data -
MIMIC-III

1 Introduction

An ICU serves patients with severe complications or life-threatening injuries,
which involve constant care in order to maintain normal bodily functions. To
improve hospital services, it seems important to adequately select patients to be
admitted to ICUs early on. In an ICU, the patient is monitored using Electronic
Health Record (EHR) systems, entering many medical data a day including phys-
iological measurements. Finding statistic models in these measurements has the
potential to provide a high aptitude for more accurate and earlier predictions
of future clinical events. This might not only help clinicians make more effec-
tive medical decisions but also facilitate an economical allocation of hospital
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resources. Naturally, mortality prediction and Length of Stay (LOS), are mainly
performed with an interest in the prediction of possible outcomes, which are
the death or survival of the patient, and for how long a patient may remain in
the intensive units. Nevertheless, most available mortality and LOS prediction
systems [1-4] in the literature were designed for at least 24-hour to provide a
real-time or retrospective prediction on patients’ mortality. To enhance predic-
tion for early diagnosis, the main objective of this paper is to develop an end-to-
end approach based on deep learning models, within a data mining framework,
specifically intended for predicting mortality and LOS, based on multivariate
time-series physiological measurements from the first few hours of admission, in
particular after the first 6 h of a patient’s acceptance in the ICU. The rest of the
paper is organized as follows: Sect. 2 provides a comprehensive literature review
on the state-of-the-art works. Section 3 details the process of dataset collection
and preparation. Section 4 discuss the proposed model and presents its configu-
ration and implementation tools. To consider the effectiveness of the proposed
method, Sect. 5 deals with experiments. Ultimately, Sect. 6 concludes the paper
and highlights the fundamental contributions.

2 Related Works

Over the past few decades, substantial researches are undertaken to affect pre-
dicting mortality risk and LOS tasks. A number of the more frequently used
mortality prediction models in an ICU setting include SAPS-II [1] and SOFA
[2]. SAPS-II was designed to estimate the probability of mortality, while SOFA
was wont to describe organ dysfunction. Using the primary 24-hour patient phys-
iological measurements, these scores are only designed to form one prediction.
As a result, it’s unknown how well each system predicts mortality following the
primary day of admission. Moreover, it seems intuitively likely that straight-
forward clinical judgment also will discriminate more effectively as time passes.
Existing tools are therefore slow to succeed in useful discriminatory effectiveness
and aren’t generally felt by clinicians to be useful to help decision-making once
they will discriminate.

Adding to severity scores, several authors have converged on management
mortality risk, as an example, Pirracchio et al. [4] aimed to develop a scoring
procedure to predict mortality in ICUs supported Super-Learner (SL) model.
They have proved that the SL method improved performance. However, the
authors evaluated the performance of SL using data recorded within the pri-
mary 24-hour. Moreover, Darabi et al. [5] developed a model supported Gradi-
ent Boosted Tree (GBT) and Convolutional Neural Network (CNN) to estimate
the mortality risk of patients admitted to ICUs. Their results prove usability a
smaller number of features which will generate satisfactory outcomes for GBT,
unlike, CNN that need a wealthy amount of knowledge for training. However,
their model was designed within the period of 30-day after admittance.

In addition to mortality risk prediction, few researchers have converged to
estimate LOS. Mentioning Gentimis et al. [6] who explored the utilization of
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Neural Network (NN) for predicting the entire LOS of a patient within the
hospital. The predictive model outperforms machine learning models. However,
the studied scenarios considered time-frames > 5 days, or < 5 days, to validate
the potency of the model. Furthermore, Zebin et al. [7] applied an Auto-Encoder
(AE) along side a dense neural network technique attempted at identifying short
and long stays for patients. The proposed model improved the performance com-
pared to employing a simplistic dense neural network for the classification task.
However, their assessment results were validated using recordings observed after
24 h of admission.

To conclude, all the above-mentioned works only focused on predicting the
risk of mortality and LOS for patients who required intensive care within a
minimum of 24-hour of their ICU admission [3-5,8,9]. The challenge, therefore,
lies within the early hours of a patient’s admission, for instance, the primary 6
and 12h. Additionally, not all critically ill patients can enjoy ICU admission.
Hence, determining the priority of patients’ treatments by the severity of their
condition is crucial because the ICU is extremely costly with limited resources.
The challenge, therefore, lies in triaging patients consistent with their medical
conditions, while estimating their expected time of hospitalization. Adding to the
present , most research has centered on the evaluation of the efficiency of their
predictive models using univariate time-series data and that they didn’t consider
the potency of multivariate time-series records for improving the accuracy and
therefore the efficiency of time-series modeling [10].

3 Dataset

This effort is conducted over the well-known publicly available, large-scale ICU
database, the MIMIC-IIT [11], which presents a single-center electronic database
developed by the MIT Lab for Computational Physiology, comprising health
data related to 61.532 ICU admissions of 46.520 distinct de-identified patients
admitted between 2012 and 2020.

3.1 Feature Engineering

Every day, different vital signs measurements are computed and analyzed dur-
ing intensive stays. In this proceeding, we focused primarily, in hidden patterns
within ICU time-series data and investigated the hypothesis that there is much
useful knowledge in motifs within these data that can aid to improve prediction
clinical tasks. This hypothesis is motivated by observations considered within
several studies, for example, in [12], we found that in the event of a lack of oxy-
gen transport, measurements in this time-frame of associated variables increase
the risk of death. We therefore explored some temporal variables defined in acu-
ity severity scoring systems and added others since they have proven to possess
a powerful effect in predicting mortality and hence LOS [13]. These variables
include “heart rate”, “systolic BP”, “diastolic BP”, “mean BP”, “respiratory
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rate”, “oxygen saturation”, “glasgow coma score”, “blood urea nitrogen”, “tem-
perature”, “white blood cells”, and last not least “bilirubin”.

Some of the foremost pertinent measurements could also be obtained using
information available within the earliest phase [3]. So, we’ve extracted features
for the primary 6 hours for every ICU stay. We have also extracted features
for the 12 and 24h so as to verify the effectiveness of the proposed model in
maintaining its accuracy for long periods.

3.2 Feature Preprocessing

EHRs contain valuable information for estimating mortality risk and discharge
time for ICU patients, but substantial missing and imbalanced data present
mutual problems for the development and implementation of a prediction model.
Hence, the subsequent two issues were identified and handled accordingly.

Missing Data Imputation. The percent of missing values for certain features
is higher than 50%. To manage this problem, data imputation was performed
including two strategies: we start by filling them using linear interpolation on
each multivariate time-series data. Some observations are still missing after this
imputation since there are missing data for certain variables. Hence, we impute
missing observations using the Mean as the second strategy.

Imbalanced Data Regulation. The number of patients who passed away
inside the intensive department is relatively small in comparison with the number
of patients who survived, yielding an imbalanced dataset. To manage this prob-
lem, re-sampling methods were adopted since they are less sensitive to outliers
than other techniques like Cost-sensitive classifiers [14] and Automatic support
vector data description [15]. Two of the most common categories of re-sampling
methods are under-sampling and over-sampling strategies. The former remove
observations from the training dataset that belong to the dominant class, while
the latter duplicate samples that belong to the lesser class, thus increasing its
impact within the training process. We have applied the former on the dataset
since the latter would make models inflexible in learning during the training
process by causing overfitting. As a result, the size of the data was reduced from
33.6 Mo to 7.76 Mo, from 66,7 Mo to 15 Mo and from 129 Mo to 29 Mo, over
the 6-hour, 12-hour and 24-hour time-frames, respectively.

4 Methodology

The idea behind time-series prediction is to predict future events supported past
values with reference to historical measurements and associated patterns. Turn-
ing to the philosophy of the research methodology, we would like to hold relevant
information throughout the processing of medical data sequences, as physiologi-
cal variables begin to decrease or increase over a period of your time, thus making
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it possible to predict future outcomes associated with patient conditions in care
units. To reach these specific goals, a typical two-stage architecture is presented
in Fig. 1.
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a specific patient P;

Fig. 1. A summary structure of two-stage architecture: within the first stage, a binary
classifier is trained to predict mortality. Then, if the mortality is predicted to be posi-
tive, the model would further provide an estimation about LOS.

The philosophy behind the defined architecture is detailed as follows: we
start by interpreting multivariate time-series of 11 past clinical records for each
patient P;:

Pi N Xl,tkaXQ,tka"',Xll,tk (1)

with £k = 1,...,n and n € {6-hour, 12-hour, 24-hour}. In the first stage, a

binary classifier is trained to predict the risk of mortality. In a mathematical
interpretation we identify:

0, survivors group
Class = i
1, non-survivors group.

Therefore, we define a knowledge set of two exclusion criteria: we start by fil-
tering by 16 < age < 89 [8]. Then, we exclude ICU stays of but one hour to get
rid of obscurity in data due to unusual short stays. After filtering, we observe
49.632 ICU stays of 36.343 patients. While a multi-class classifier is trained at
the second stage using a similar vital signs so as to predict LOS for those that
are predicted dead in stage 1. Accordingly, we filter the ICU stays with death
time < 0. As a result, 5.718 in-hospital mortalities were obtained. We then label
each data to at least one of the four classes represented below:

if death_time_hours < 6,

if 6 < death_time_hours < 12,
if 12 < death_time_hours < 24,
otherwise.

Class =

w N o~ O
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The proposed model will predict outcomes values by identifying short-
term (6h/12h) and long-term (24h) dependencies. For this purpose, we have
employed the LSTM architecture [19]. This type of network improves the sim-
ple Multilayer Perceptron (MLP) network by including an output that depends
on historical learned informations. The LSTM architecture is characterized by
hidden units, called memory blocks. These units allow the network to remember
information over short/long sequences. Moreover, these gates allow the LSTM
model to beat the issues that inhibit the training of other deep models includ-
ing RNNs and MLPs. This, and therefore the impressive results that may be
achieved, are the rationale for its popularity on an outsized sort of problems
[16,17).

4.1 Model Configuration

The efficient implementation of deep learning requires the selection and opti-
mization of many hyperparameters, as well as extensive trial and error to find
the optimal values. In order to assess the advanced performance, data is divided
into training, test and validation sets; The training set is being used to train
learning classifier; the validation set is used to fine-tune the parameters and
estimate the behavior of the classifier; and the test set is going to be used to
determine the efficiency of the classifier. Once data is splitted, we tune models
using K-fold cross-validation. In this study, we set K = 3. The implemented
LSTM model used Tanh activation function in the hidden layers and Sigmoid
activation function in the output layer. Dropout with a rate of 0.2 is used as a
regularization technique for weight optimization. In our model, a learning rate
of 16793 is used, the number of epochs to train is set to 60 and the batch size is
set to 100.

4.2 Model Implementation

In this work, the model was implemented using Keras framework, with Tensor-
Flow backend. The implementation part of the proposed model consists of two
stages:

1. Feature Engineering: we chose big data tool like Apache Hive 2.1.0 on
Microsoft Azure remote cluster (2 head nodes and 1 worker node, each with
200 GB space, 14 GB RAM, and 4 processors), to perform data preprocessing
and feature engineering.

2. Deep Learning using Colaboratory.

We also used Python and several packages for efficient model testing, hyperpa-
rameter tuning and model evaluation including: Pandas, NumPy, SciPy, Scikit-
learn, Matplotlib, Seaborn.
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5 Experimental Results

In this section, we describe the results of our experiments by evaluating the
LSTM model against the traditional state of the art acuity scores and machine
learning approaches that were used to predict possible future clinical events
supported time-series measurements, including SOFA score, SAPS-II score, SL,
SVM, LR, NB and CNN. Individual sets of parameters were tuned using 3-fold
cross-validation to evaluate the potency of every fixed model. Experiments were
conducted under three settings: using temporal physiological measures within
6-hour, 12-hour, and 24-hour time-frames. It’s worth noting that SAPS-II and
SOFA acuity scores use the primary 24 h of data to evaluate patient severity of
illness.

For binary-classifier, we opt for Fl-score and MCC metrics to evaluate the
effectiveness of the model. In gist, these two metrics were chosen because they
provide a more realistic measure of a model’s performance, and hence they are
robust for binary classification problems [18].

Results outputs of different classifiers are presented in Table 1. In the light
of the obtained results, fitting an LSTM model on the multivariate time-series
records within a 6-hour time-frame has improved the prediction of early diagnosis
of mortality risk for patients who remained in intensive departments. In fact, it
is often seen from Table 1 that the LSTM model under the tuned configuration
features a higher F1-score and MCC compare to the opposite mortality predictive
approaches, which approved that the performance of the LSTM model is more
consistent. Although the CNN model has attained a better Fl-score and MCC
within a 24-hour time-frame, the LSTM model outperformed it within 6-hour
and 12-hour time-frames, validating its potency in predicting mortality risk as
soon as possible following the admission of patients to the critical units.

Table 1. Mortality prediction performance for binary-classification approaches (The
best performing model is highlighted in bold).

Classifier | Observation periods

6-hour 12-hour 24-hour

F1-score | MCC | F1-score | MCC | Fl-score | MCC
SAPS-II |- - - - 0.41 0.33
SOFA - - - - 0.06 0.14
NB 0.44 0.36 |0.55 0.49 |0.55 0.49
LR 0.09 0.20 | 0.14 0.25 |0.17 0.28
SVM 0.33 0.20 | 0.30 0.18 0.27 0.17
SL 0.55 0.57 | 0.65 0.66 | 0.67 0.68
CNN 0.92 091 10.97 0.96 |0.99 0.99
LSTM 0.96 0.95 1 0.97 0.97 0.96 0.96
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Regarding multi-class classification, the average of the evaluation measures
can provides a view on the overall results for the potency of LSTM fitted on the
data aggregated over 6-hour within the prediction of LOS compared to those
aggregated over 12-hour and 24-hour time-frames. Two major names to refer to
averaged results are micro-average and macro-average. In gist, a macro-average
will compute the metric independently for every class then take the average,
whereas a micro-average will aggregate the contributions of whole classes to com-
pute the average metric. Figure 2 summarizes Micro and Macro-average results
for AUROC metrics and confirms that multivariate time-series data aggregated
over a 6-hour time-frame offer rigorous multi-classification results compared with
12-hour and 24-hour time-frames that indicate slight improvement results.
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Fig. 2. ROC curves of the LSTM model fitted on data aggregated over 6-hour (in the
left), 12-hour (in the middle), and 24-hour time-frames (in the right), applied for the
multi-classification problem.

6 Conclusion and Future Works

Enhancing the excellence of care for patients and predicting future outcomes are
the foremost important targets in critical care research. In this paper, and by
deploying multivariate time-series data obtained from EHR-database MIMIC-
III, we reveal that the LSTM model systematically outperforms all opposing
predictive models of mortality using physiological measures observed during 6
and 12 h. These positive results recommend that access to the patient’s physio-
logical data trajectory as early as possible could enhance the potential in moni-
toring and predicting possible future events concerning the patient’s conditions
in ICUs. In future work, we arrange to apply the proposed model in other clin-
ical tasks including early triage and risk assessment, prediction of physiologic
decompensation, and identification of high-cost patients.
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