)

Check for
updates

1

Inverse text normalization is a natural language processing (NLP) task of con-
verting a token sequence in spoken form (source sentence) to the corresponding
written form (target sentence), which is applied to most speech recognition sys-
tems. Figure 1 depicts the pipeline of a spoken dialogue system with ITN. ITN
is the inverse problem of text normalization (TN), which transforms the written
form into spoken form. However, different from the exploitation of promising
methods for TN problem in recent years [6], there are not many remarkable

Neural Inverse Text Normalization with
Numerical Recognition for Low Resource
Scenarios

Tuan Anh Phan'2, Ngoc Dung Nguyen', Huong Le Thanh?,
and Khac-Hoai Nam Bui' (0

! Viettel Cyberspace Center, Viettel Group, Hanoi, Vietnam
{anhpt161,dungnn7 ,nambkh}@viettel.com.vn
2 Hanoi University of Science and Technology, Hanoi, Vietnam
huonglt@soict.hust.edu.vn

Abstract. Neural inverse text normalization (ITN) has recently become
an emerging approach for automatic speech recognition in terms of post-
processing for readability. In particular, leveraging ITN by using neural
network models has achieved remarkable results instead of relying on the
accuracy of manual rules. However, ITN is a highly language-dependent
task that is especially tricky in ambiguous languages. In this study, we
focus on improving the performance of ITN tasks by adopting the com-
bination of neural network models and rule-based systems. Specifically,
we first use a seq2seq model to detect numerical segments (e.g., cardi-
nals, ordinals, and date) of input sentences. Then, detected segments are
converted into the written form using rule-based systems. Technically, a
major difference in our method is that we only use neural network models
to detect numerical segments, which is able to deal with the low resource
and ambiguous scenarios of target languages. Regarding the experiment,
we evaluate different languages in order to indicate the advantages of the
proposed method. Accordingly, empirical evaluations provide promising
results for our method compared with state-of-the-art models in this
research field, especially in the case of low resource scenarios.

Keywords: Inverse text normalization - Automatic speech
recognition + Neural network models - Rule based systems

Introduction

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. T. Nguyen et al. (Eds.): ACIIDS 2022, LNAI 13757, pp. 582-594, 2022.
https://doi.org/10.1007/978-3-031-21743-2_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21743-2_47&domain=pdf
http://orcid.org/0000-0002-3427-8460
https://doi.org/10.1007/978-3-031-21743-2_47

Neural Inverse Text Normalization with Numerical Recognition 583

‘0' ASR System Spoken-form H Data Preprocessing
Speech Signal
A
— |4[Written-form H INT Problem }——@
Textfile

Language Models

Fig. 1. ITN in spoken dialogue systems.

achievements for the ITN problem, which is regarded as one of the most chal-
lenging NLP tasks.

The conventional approach for addressing ITN is rule-based systems, for
instance, finite state transducer (FST) based models [2], which have proved the
competitive results [15]. However, the major problem with this approach is the
scalability problem, which requires complex accurate transformation rules [14].
Recently, Neural ITN has become an emerging issue in this research field, by
exploiting the power of neural networks (NN) for ITN tasks. Specifically, NN-
based models, typically seq2seq, have achieved high performances and become
state-of-the-art models for the ITN problem [3,7,10]. Nevertheless, as we mention
above, ITN is a highly language-dependent task and requires linguistic knowl-
edge. In this regard, the data-hungry problem (i.e., low resource scenarios) is
an open issue that needs to take into account for improving performance. Fur-
thermore, due to the significant difference between written and spoken forms,
handling numbers with minimal error is a central problem in this research field.
In particular, to be able to read the numeric values, the models should be
worked on both consecutive tasks such as recognizing the parts that belong
to numeric values and combining those parts to precise numbers. Specifically, in
the shortage-data situation, models might lack information for the training stage
in order to recognize and transform numerical segments, which is the cause of
the bad performance of ITN. Using pre-trained embedding models (e.g., BERT,
GPT3,...) can improve performance. However, for real-world systems, this issue
is inefficient due to the cost of memory and time calculation.

In this study, we take an investigation to improve the performance of Neural
ITN in terms of low resources and ambiguous scenarios. Particularly, for for-
matting number problems, conventional seq2seq models might fail to generate
sequentially character by character digit, which often appears in long numbers
(e.g., phone numbers, big cardinal). For example, the number ‘one billion and
eight” must be converted to 10 sequential character: ‘1 00000 0 0 0 8. More-
over, the poverty of data in the training process can cause this issue more worse

584 T. A. Phan et al.

in case the considered languages have lots of ambiguous semantics between num-
bers and words. For instance, in Vietnamese, the word ‘khong’ (English translate:
no) can be a digit ‘0’, but also used to indicate a negative opinion. Table 1 illus-
trates several examples of the ambiguous semantic problem in the Vietnamese
language.

Table 1. Examples of the ambiguous semantic problem in Vietnamese language. The
bold parts are ambiguous words.

Spoken form (English translation) Number|Word
toi khéng thich cai banh nay (I do not like this cake) v
khéng 14 s6 ty nhien nhdé nhat -(zero is the smallest natural number)|v’

nam mot nghin chin trdm chin bay (nineteen ninety-seven) v
nam mudi nghin (fifty thousand) v

chin qta tdo (nine apples) v

qué tao chin (a ripe apple) v

In this paper, the proposed framework includes two stages: i) In the first
stage, we use a neural network model to detect numerically segments in each
sentence; ii) Then, the output of the first phase is converted into the written
form by using a set of rules. Accordingly, the main difference compared with
previous works is that we use the neural network to detect numerical segments
in each sentence as the first phase. Reading number is processed in the second
stage by a set of rules, which is able to supply substantial information for the
system without requiring much data to learn as end-to-end models. Generally,
the main contributions of our method are threefold as follows:

— We propose a novel hybrid approach by combining a neural network with a
rule-based system, which is able to deal with ITN problems in terms of low
resources and ambiguous scenarios.

— We evaluate the proposed methods in two different languages such as English
and Vietnamese with promising results. Specifically, our method can extend
easily to other languages without requiring any linguistics knowledge.

— We present a pipeline to build an ITN model for Vietnamese. To the best
of our knowledge, this is the first study of the ITN problem for Vietnamese
speech systems.

The rest of the paper is organized as: Section 2 presents the literature review
and background of our study. Our methodology is proposed in Sect. 3. We report
and analyze the evaluated results in Sect.4. Section 5 concludes our work and
discusses the future work regarding this study.

Neural Inverse Text Normalization with Numerical Recognition 585

2 Literature Review

The research on ITN is closely related to the TN problem in which recent works
can be classified into three approaches, which are sequentially described as fol-
lows:

2.1 Rule-Based Systems

Most ASR and Text-to-Speech (TTS) systems are based on Weighted FST gram-
mar for the TN problem. Kestrel, a component of the Google T'TS synthesis sys-
tem [2], has achieved around 99.9% on the Google TN test dataset. For ITN, the
set of rules in [7] achieves 99% on internal data from a virtual assistant applica-
tion. In order to develop products, Zhang et al. introduce an open-source python
WPFST-based library [15], which includes two-stage normalization pipeline that
first detects semiotic tokens (classification) and then converts these to written
form (verbalization). Both stages consume a single WFST grammar. The major
problem is that this approach requires significant effort and time to scale the
system across languages, especially linguists experiences.

2.2 Neural Network Models

Recurrent Neural Network (RNN)-based seq2seq models [11], have been adopted
for reducing manual processes. Sproat et al. [9] considers the TN problem as a
machine translation task and develop an RNN-based seq2seq model trained on
window-based data. Specifically, an input sentence is regarded as a sequence
of characters, and the output sentence is a sequence of words. Furthermore,
since the length of sequence input problem, they split a sentence into chunks
with window size equals three for creating sample training in which normalized
tokens are marked by distinctive begin tag <norm> and end tag </norm>. In
this regard, this approach is able to limit the number of input and output nodes
to something reasonable. Their architecture neural network follows closely that
of [1]. Sequentially, Sevinj et al. [13] proposed a novel end-to-end Convolutional
Neural Network (CNN) architecture with residual connections for the TN task.
Particularly, they consider the TN problem as the classification problem which
includes two stages: i) First, the input sentence is segmented into chunks, which is
similar to [9] and use a CNN-based model to label each chunk into corresponding
class based on scores of soft-max function; ii) After the classification stage, they
apply rule-based methods depending on each class.

Recently, Transformer is a new seq2seq structure, which has achieved high
performance for most NLP tasks [12]. Accordingly, the work in [10] has shown
the advantage of Transformer compared with RNN-based models in the ITN
problem. Figure 2 depicts a general architecture of Transformer.

Particularly, the model handles the input into three kinds of vectors (i.e., Key,
Value, and Query vectors), which are driven by multiplying the input embedding
with three matrices that we trained during the training process. Furthermore,

586 T. A. Phan et al.

[Output probabilities]

T

[Linear + Sofrmax]
T

Decoder \

Feed Forward ’

@coder \

Multihead Attention ’ Nx

Feed Forward

¥

Add & Norm

Masked Multihead Attention

Multihead Attention K] /
— J

Position encodmg}—EB—[lnpul embeddlng] Output
T T (Shifted right)

Input

—

—=

Fig. 2. The general architecture of Transformer. The encoder layer is built by 6 iden-
tical components which contain one multi-head attention layer with a fully connected
network. These two sub-layers are equipped with residual connection as well as layer
normalization. The decoder layer is more complicated and also includes 6 components
stacked. Each component includes three connected sub-layers in which two sub-layers
of multi-head self-attention and one sub-layer of fully-connected neural network.

Positional Encoding is adopted to the model for the sequence order, and Self-
Attention with multi-head is applied for allowing the model to jointly attend
to inform different representation sub-spaces at different positions. Sequentially,
the log conditional probability can be interpreted as follows:

t=N
logP(ylz) = logP(y:ly<i, =) (1)

t=1

Furthermore, although there is no out-of-vocab (OOV) problem of the input
by using the window-based seq2seq model, however, it is able to occur in the
decode. In this regard, Courtney et al. [5] propose a new method for directly
translating the input written-form to output spoken form without tagger or
window-based segment. Accordingly, in order to handle OOV on both sides, the
study uses the subword method [8] to decompose words into subparts, which have
been proved the capability in open-vocabulary speech recognition and machine
translation tasks.

Neural Inverse Text Normalization with Numerical Recognition 587

2.3 Hybrid Models

Employing a weak covering grammar to filter and correct the misreading of NN
models. Pusateri et al. [7] presents a data-driven approach for ITN problems
by a set of simple rules and a few hand- crafted grammars to cast ITN as a
labeling problem. Then, a bi-directional LSTM model is adopted for solving
the classification problem. [10] propose a neural solution for ITN by combining
transformer-based seq2seq models and FST-based text normalization techniques
for data preparation. Specifically, similar to [5], they implement a word and
subword-based seq2seq neural network models except reversing the order of input
sentence and output sentence. Accordingly, integrating Neural ITN with an FST
is able to overcome common recoverable errors in production environments.

3 Methodology

3.1 General Framework

In this paper, we propose a novel hybrid model Neural ITN problem using
seq2seq neural network and rule base systems by considering the ITN task as
the Machine Translation (MT) task. Figure3 describe general our framework,
which includes two main stages.

[Sentence in Spoken-form
the population as of the
ASR System canada twenty eleven Neural Network
\IJ census was one Model
thousand one hundred
twenty
Speech Signal

Output Sentence

Sentence in Written-form

the population as of the
. canada <DATE> twen!
the ZOD;AE;HO" as of the Rule-based Systems eleven </DATE> censnﬁ
lcanada census was
was <CARDINAL> one
1120 thousand one hundred
twenty </CARDINAL>

Fig. 3. The general framework of the proposed method for the Neural ITN approach

Specifically, in the first stage, each sentence is put into a transformer-based
seq2seq model for detecting numerical segments by using tag <n> and </n>, in
which n represents a numerical classes (e.g., DATE, CARDINAL, ORDINAL).
Then, a set of rules is employed to convert tokens, which be wrapped by tag
to number, into the written form. Otherwise, all parts of a sentence, which are
not in the tag are conserved. Particularly, instead of using a neural network to
directly translate numbers [9], we only use NN to detect numerical segments.
Essentially, NN is only utilized for distinguishing which is in the number and
which is not. After that, when the model has candidates for numbers, they are

588 T. A. Phan et al.

transformed to the correct form by the set of rules. Consequentially, the model
is able to read accurately numbers in sentences.

For example, if we have input spoken sentence: ‘the population as of the
canada twenty eleven census was one thousand one hundred twenty’. After pass
through this sequence to NN model, the output will be formalized as: ‘the
population as of the canada <DATE> twenty eleven </DATE> census was
<CARDINAL> one thousand one hundred twenty </CARDINAL> . As result,
numerical phrases ‘twenty eleven’ and ‘one thousand one hundred twenty’ are
wrapped, and transformed to written form by rules: ‘27" and ‘1120’ based on
two class DATE and CARDINAL. A set of rules, which are utilized can be con-
sidered as the replacement for a great deal of knowledge in the training process.

3.2 Data Creation Process

Since there is no publicly available data for training ITN, following the work in
[10], we employ a novel data generation pipeline for ITN using the TTS system.
Figure 4 shows the main steps of our data creation process, which are sequentially
described as follows:

Collecting Raw Data
(Yesterday, the sun raises in 6am)

l

Detecting and Wrapping number
(Yesterday , the sun raises in <n> 6am </n>)

l

Getting output sentence by TTS system
(Yesterday , the sun raises in <n>sixam </n>.)

|
| }

. Output Sentence
Data Processing W ktarget: Yesterday , the sun raises in <n> s%

(vesterday the sun raises in six a m)

am<n>.)
input Sentence source: yesterday t;.ea IsrurI)D ?atl::: 7n sixam
'source: yesterday the sun raises in six a m, i . : : .
(source: y y un raises in six a m) - target: Yesterday , the sun raises in <n> six am </n> .

Fig. 4. Data creation process for training seq2seq model

— Step 1: Crawling/downloading raw data from published websites.
— Step 2: Cleaning raw data (e.g., removing HTML, CSS, and so on), and
removing noise documents.

Neural Inverse Text Normalization with Numerical Recognition 589

— Step 3: Detecting non-standard words, for instance, alphabet (e.g ‘David’) or
number (e.g ‘2017’), in sentence. For handling alphabet words, we split them
into characters (extremely subword) and bound them by using tag <oov> and
</oov>. For handling numerical words, we split them into sequence digits
and bound them by couple tag <n> and </n>.

— Step 4: Passing output sentences through TTS systems (e.g., Google TTS).

— Step 5: The output sentences from TTS systems are used as target sentences
for NN models. For creating source sentences, we remove punctuation, tag
<n>, lower all tokens, and only preserve tag <oov> similar to the spoken
form.

— Step 6: Saving data to file, simultaneously.

3.3 Training Model

As we mention above, we model the ITN as an MT problem where the source
and target are the output of spoken form and the detected segments of text,
respectively. For NN models, we implement two training models which are RNN-
based and transformer-based seq2seq models. Specifically, for the RNN model,
we employ a stacked bi-direction long short term memory network (bi-LSTM)
as encoder and a stacked long short term memory network (LSTM) as decoder,
respectively [1]. Regarding the non-recurrent model, we implement a transformer
model based on the work in [12]. Additionally, the source and target sentences
are segmented into subword sequences [5].

3.4 Rule-Based Systems

The output of NN models with detected segments is transformed into the written
form using a set of rules. Table 2 demonstrates an example with the input is the
output sequence of the first stage and final outputs of this process.

Table 2. An example output in second stage. Tokens labeled by NONE is conserved,
while tokens are bounded by numerical tag (eg. CARDINAL) will be rewritten under
using rules.

Spoken-form | Label After label Written-form
He NONE he he

Collected NONE collected collected
Four CARDINAL start < CARDINAL> 400000

Hundred CARDINAL in four hundred thousand
Thousand | CARDINAL end | (/CARDINAL)
Records NONE records records

Specifically, the input sentence is segmented and specified by labels using
post-processing grammar. Sequentially, with each numerical token, we used the

590 T. A. Phan et al.

word2numberl python package' for converting spoken numbers into written
numbers. In particular, since the tool works only for positive numbers and the
largest value is limited to 999,999,999,999, we extended the tool in order to
handle negative cardinals and larger numbers. Moreover, we also construct the
python modules for reading the number, which belongs to other classes such as
MEASURE, DATE, PHONE, TIME... and so on based on the aforementioned
extended tool.

4 Experiment

4.1 Dataset

Regarding evaluation datasets, we test our method on two different language
datasets such as English and Vietnamese, which are extracted from publicly
available data sources as follows:

— English Dataset: the original version consists of 1.1 billion words of English
text from Wikipedia, divided across 100 files. The normalized text is obtained
by running through Google TTS system’s Kestrel text normalization system
[2]. In this study, we use the first file which contains approximately 4 million
samples for our experiments. We split randomly the file into two parts in
which the first part includes 1 million sentences for training data, and the
second part contains 50,000 sentences for testing. For the ITN dataset, we
conserved all tokens of sentences and swapped input and output.

— Vietnamese Dataset: the raw dataset is extracted from the largely pub-
lished source?. After that, we decode them as UTF-8 and remove all sentences
including tags (e.g., Html and CSS). We also extracted 1 million and 50,000
sentences for training and testing data, respectively. Sequentially, we exe-
cute the dataset through Viettel TTS System?®. For formatting into the ITN
dataset, we construct the data following the pipeline in Sect. 3.2.

Since our study focuses on low resource scenarios, we divide the training data into
various numbers of samples such as 100 k, 200 k, 500 k, and 1000 k, respectively,
in order to evaluate the advantage of the proposed method. Specifically, Table 3
illustrates the size of training, validation, and vocab size of the training datasets.

4.2 Baseline Models and Hyperparameter Configuration

Regarding baseline models, we implement two well-known NN models such as
RNN and Transformer. Specifically, the Neural ITN is regarded as the MT prob-
lem. Furthermore, all models are implemented with the subword approach, which
has proven the better performance [5]. Particularly, the baseline models are
sequentially configured as follows:

! https://pypi.org/project /word2number/.
2 https://github.com/binhvq/news-corpus.
3 https://viettelgroup.ai/.

https://pypi.org/project/word2number/
https://github.com/binhvq/news-corpus
https://viettelgroup.ai/

Neural Inverse Text Normalization with Numerical Recognition 591

Table 3. Size of training datasets with 20% for validation.

Language | Dataset | Training | Validation | Vocabulary size
English 100 k |80k 20 k 35903

200 k 160 k 40 k 47328

500 k | 400 k 100 k 65079

1000 k | 800 k 200 k 80585
Vietnamese | 100 k 80 k 20 k 7223

200 k 160 k 40 k 8225

500 k | 400 k 100 k 10400

1000 k | 800 k 200 k 11657

— RNN Model: For the recurrent seq2seq baseline model, we use Encoder-
Decoder architecture with RNN-Encoder consisting of two bi-directional long
short-term memory (Bi-LSTM) layers and two LSTM layers for the decoder.
Both encoder and decoder contain 512 hidden states. Global attention mech-
anisms [4] is implemented in Decoder.

— Transformer Model: For the non-recurrent seq2seq baseline model, we
implement the architecture, which is similar to [12]. Specifically, we employ
the subword-transformer model with 6 layers for both Encoder and Decoder.
Each sub-layer block contains a 512-dimension vector hidden state. Further-
more, the number of multi-head self-attention is set to 8.

Consequentially, we execute our proposed method with two versions by adopting
two aforementioned baseline models for the first phase of segment detection,
respectively. For the hyperparameter configuration, we use Adam optimizer with
learning rate annealing and the initial value is 0.01, and dropout is set to 0.1.
All models are trained with 100k timesteps, early stop is used on validation loss.

4.3 Evaluation Metrics

Bi Lingual Evaluation Understudy (BLEU) is the popular way to measure
the performance of a machine translation system, which is calculated as:

n—grams
BLEU = BP exp (> wy logpn> (2)

n=1

where P, is the modified n-grams precision and w,, denotes the uniform weight.
BP refers to the brevity, which can be calculated as follows:

BP—{L) if ¢jr. 3)

el=¢, otherwise.

where ¢ and r refers the candidate and reference sentences, respectively.

592 T. A. Phan et al.

Word Error Rate (WER) is a common metric of the performance of speech
recognition or machine translation system, which is calculated as:

S+D+1
WER= o5& @

where S, D, I, C'" are the number of substitutions, deletions, insertions, and
correct words, respectively.

4.4 Result Analysis

Table 4 shows the comparison results of our experiments on the test set, which
bold parts are the best results.

Table 4. Comparison of models on test set with BLEU and WER scores. Bold texts
indicate the best results.

Lang | Training data | Metric | RNN | Trans | Our(RNN) | Our(Trans)
= 100k BLEU | 0.7405 | 0.7048 |0.8334 0.741
£ WER | 0.1467|0.1561 | 0.1017 | 0.152
M 200k BLEU 0.7909 | 0.7919 | 0.8353 0.8188
WER |0.1129|0.1033 | 0.112 0.1003
500k BLEU | 0.7706 | 0.8558 | 0.8377 0.8394
WER |0.128 |0.0708 | 0.1009 0.0874
1000k BLEU | 0.7959 | 0.9138 | 0.848 0.8933
WER |0.1087 | 0.0405 | 0.0953 0.0517
% 100 k BLEU | 0.6422 | 0.6755 | 0.7019 0.6774
% WER |0.2495|0.2447 | 0.1897 0.2029
E 200 k BLEU | 0.6794 | 0.7201 |0.7144 0.7286
> WER |0.2111]0.2101 |0.184 0.1774
500 k BLEU | 0.6921 | 0.7447 | 0.718 0.7667
WER |0.2016 | 0.1767 | 0.1784 0.1327
1000 k BLEU 0.6777|0.7594 | 0.711 0.7885
WER |0.2103]0.1821 |0.1817 0.1199

Note that for the BLEU score, the higher is the better, contrary to the case
of WER score. Accordingly, there are several issues we can summarize based on
the results as follows:

— Our method outperforms baseline models in the case of low resource scenarios
(i.e., 100 k and 200 k) and is able to achieve competitive results in the case
of higher resources (i.e., 500 k and 1000 k) with the English language. The
experiment results indicate that when the number of the training sample is
low, using two stages is able to cover several prediction errors in end-to-end
models.

Neural Inverse Text Normalization with Numerical Recognition 593

— For the Vietnamese language, our method is able to achieve the best results
in all cases. The reason is that different from English, the numerical classes
in Vietnamese are more ambiguous in Spoken-form (as shown in Table 1),
in which the end-to-end modes are not able to distinguish the ambiguous
problem between numerical classes in Vietnamese.

— Recurrent-based seq2seq models with attention achieve better performance
compared with Transformer in the case of low resource scenarios. Meanwhile,
Transformer-based models are able to achieve the best results by increasing
the number of training samples. Therefore, combining two methods (hybrid
models) is able to improve the performance. We take this issue as our future
work regarding this study.

5 Conclusion

In this study, we introduce a new method for the neural ITN approach. Specif-
ically, the difference from previous works, we divide the neural ITN problem
into two stages. Particularly, in the first stage, neural models are used to detect
numerical segments. Sequentially, the written form is extracted based on a set
of rules in the second stage. In this regard, our method is able to deal with the
low resource scenarios, where there is not much available data for training. Fur-
thermore, we showed that our method can be easily extended to other languages
without linguistic knowledge requirements. The evaluation of two different lan-
guage datasets (i.e., English and Vietnamese) with different sizes of training
samples (i.e., 100 k, 200 k, 500 k, and 1000 k) indicates that our method is able
to achieve comparable results in the English language, and the highest results
in Vietnamese languages. Regarding the future work of this study, we focus on
extending the model with deeper architectures, for instance, 12 layers of Trans-
former, and combine models, including pre-trained models for improving the
performance of Neural ITN problem.

References

1. Chan, W., Jaitly, N., Le, Q.V., Vinyals, O.: Listen, attend and spell: a neural
network for large vocabulary conversational speech recognition. In: Proceeding
of the 41st International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4960-4964. IEEE (2016). https://doi.org/10.1109/ICASSP.2016.
7472621

2. Ebden, P., Sproat, R.: The kestrel TTS text normalization system. Nat. Lang. Eng.
21(3), 333-353 (2015). https://doi.org/10.1017/S1351324914000175

3. Thori, M., Takashima, A., Masumura, R.: Large-context pointer-generator networks
for spoken-to-written style conversion. In: Proceeding of the 45th International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8189-8193.
IEEE (2020). https://doi.org/10.1109/ICASSP40776.2020.9053930

4. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-
ral machine translation. In: Proceeding of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 1412-1421. The Association
for Computational Linguistics (2015). https://doi.org/10.18653/v1/d15-1166

https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1017/S1351324914000175
https://doi.org/10.1109/ICASSP40776.2020.9053930
https://doi.org/10.18653/v1/d15-1166

594

5.

10.

11.

12.

13.

14.

15.

T. A. Phan et al.

Mansfield, C., Sun, M., Liu, Y., Gandhe, A., Hoffmeister, B.: Neural text nor-
malization with subword units. In: Proceedings of the 17th Annual Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT), pp. 190-196. Association for
Computational Linguistics (2019). https://doi.org/10.18653/v1/N19-2024

. Pramanik, S., Hussain, A.: Text normalization using memory augmented neural

networks. Speech Commun. 109, 15-23 (2019). https://doi.org/10.1016/j.specom.
2019.02.003

Pusateri, E., Ambati, B.R., Brooks, E., Platek, O., McAllaster, D., Nagesha, V.: A
mostly data-driven approach to inverse text normalization. In: Proceeding of the
18th Annual Conference of the International Speech Communication Association
(Interspeech), pp. 2784-2788. ISCA (2017)

Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 1715-1725. Association for Computational
Linguistics (2016). https://doi.org/10.18653/v1,/P16-1162

Sproat, R., Jaitly, N.: An RNN model of text normalization. In: Proceeding of the
18th Annual Conference of the International Speech Communication Association
(Interspeech), pp. 754-758. ISCA (2017)

Sunkara, M., Shivade, C., Bodapati, S., Kirchhoff, K.: Neural inverse text normal-
ization. In: Proceeding of the 46th International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 7573-7577. IEEE (2021). https://doi.org/10.
1109/ICASSP39728.2021.9414912

Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural net-
works. In: Proceeding of the Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing System (NeurIPS), pp.
3104-3112 (2014)

Vaswani, A.; et al.: Attention is all you need. In: Proceeding of the Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Informa-
tion Processing System (NeurIPS), pp. 5998-6008 (2017)

Yolchuyeva, S., Németh, G., Gyires-Téth, B.: Text normalization with convolu-
tional neural networks. Int. J. Speech Technol. 21(3), 589-600 (2018). https://doi.
org/10.1007/s10772-018-9521-x

Zhang, H., et al.: Neural models of text normalization for speech applications.
Comput. Linguist. 45(2), 293-337 (2019). https://doi.org/10.1162/coli_a_00349
Zhang, Y., Bakhturina, E., Gorman, K., Ginsburg, B.: Nemo inverse text normal-
ization: from development to production. CoRR abs/2104.05055 (2021)

https://doi.org/10.18653/v1/N19-2024
https://doi.org/10.1016/j.specom.2019.02.003
https://doi.org/10.1016/j.specom.2019.02.003
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1109/ICASSP39728.2021.9414912
https://doi.org/10.1109/ICASSP39728.2021.9414912
https://doi.org/10.1007/s10772-018-9521-x
https://doi.org/10.1007/s10772-018-9521-x
https://doi.org/10.1162/coli_a_00349

	Neural Inverse Text Normalization with Numerical Recognition for Low Resource Scenarios
	1 Introduction
	2 Literature Review
	2.1 Rule-Based Systems
	2.2 Neural Network Models
	2.3 Hybrid Models

	3 Methodology
	3.1 General Framework
	3.2 Data Creation Process
	3.3 Training Model
	3.4 Rule-Based Systems

	4 Experiment
	4.1 Dataset
	4.2 Baseline Models and Hyperparameter Configuration
	4.3 Evaluation Metrics
	4.4 Result Analysis

	5 Conclusion
	References

