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Abstract. Visual localization uses images to regress camera position and orien-
tation. It has many applications in computer vision such as autonomous driving,
augmented reality (AR) and virtual reality (VR), and so on. The convolutional
neural network simulates biological vision and has a good image feature extrac-
tion ability, so using it in visual localization can improve regression accuracy.
Although our team has built an image indoor localization model for Southern
Branch of the National Palace Museum, this paper tries to use new network and
loss function to achieve better positioning accuracy. In this paper, we use ResNet-
50 as backbone network, and change the output layer to 3-dimensional position
and 4-dimensional orientation quaternion, and use learnable weights loss function.
We compare different pretrained models and normalization methods, and the best
result improves the positioning accuracy by about 60%.
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1 Introduction

With the mature development of global navigation satellite system (GNSS), people can
obtain accurate ground position information through GNSS and provide various appli-
cations. If it is indoor, satellite positioning will fail, so indoor positioning technology is
to solve the positioning problem when there is no satellite signal. Common technologies
for indoor positioning include inertial navigation and wireless positioning. Inertial navi-
gation uses an inertial measurement unit (IMU) to assist in positioning. IMU includes an
accelerometer and a gyroscope, which can measure the change in pose of an object. The
pose at this moment can be obtained by adding the pose change obtained by the mea-
surement to the pose at previous moment. This method requires a given initial value, and
as time increases, it will accumulate errors and make later trajectory drift. Positioning
accuracy depends on the price of IMU. If higher positioning accuracy is required, IMU
is more expensive. Wireless positioning, such as infrared, Wi-Fi, Beacon, ZigBee, etc.,
is to arrange wireless transmitters in indoor field. User uses wireless receiver to measure
the strength of wireless signal from each transmitter to calculate the user’s location.
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This method needs to arrange transmitters in advance, and wireless signal is susceptible
to interference and positioning failure. Visual localization uses visual characteristics of
image to compare the features with images of database or 3D model of the field, and
then calculate camera pose of the image. This method needs to collect many images
or build a 3D model in advance, but there will be no accumulation of errors and less
susceptible to interference. At present, visual localization has been widely used in the
field of computer vision, such as robot positioning and navigation, autonomous driving,
augmented reality (AR) and virtual reality (VR), and so on.

Visual localization methods can be roughly divided into the following three cate-
gories: image retrieval, learning model and 3D structure [19]. Image retrieval collects
many images and their poses, and stores in a database. When positioning, an input
image is compared with images in the database for similarity, and the camera poses are
interpolated from similar images. This method is simple, fast, and easy to implement,
but the accuracy is poor. Learning model is divided into training and testing stage. On
training stage, we also need to collect many images and their poses to train the model
to learn to regress camera pose. On testing stage, we only need to input an image to
the model to get the camera pose. This method is more accurate than image retrieval,
but it takes time to train model first. 3D structure will first establish a 3D model of the
scene. During positioning, it will establish the match between two-dimensional feature
points of the image and three-dimensional feature points of the 3D model, and then cal-
culate the camera pose. This method has the highest accuracy, but the calculation time
is longer and with the larger 3D model is, the longer the time is, and it fails easily in
positioning on images with textureless features. Due to the rapid development of deep
learning in recent years, convolutional neural networks (CNN) have been successfully
applied to various visual tasks, such as image classification, object detection, etc. CNN
simulates biological vision and has good image feature extraction capability, so the use
of CNN in visual localization can more effectively extract features and improve accu-
racy of regression. At present, more and more scientists have invested in research of
visual localization based on deep learning [20], showing that CNN is more capable of
processing textureless features, and showing the accuracy of CNN visual localization
can approach or even exceed those methods based on 3D structure and have real-time
prediction speed simultaneously [16, 17].

Although our team has established an image indoor localization model based on deep
learning for Southern Branch of the National Palace Museum [ 18], a better convolutional
neural network and visual localization loss function have been proposed later, so this
paper tries to use a new network and loss function to achieve better positioning accuracy.
We use ResNet-50 as backbone network [5], change the output layer to a 7-dimensional
camera pose, including a 3-dimensional position and a 4-dimensional orientation quater-
nion, and use learnable weights to combine position and orientation in loss function [8].
We Compare with last year results of our team’s experiment in Southern Branch of the
National Palace Museum, the best result in this paper improves positioning accuracy by
about 60%.

In the following papers, Chapter 2 summarizes related works on CNN and deep
learning-based visual localization. Chapter 3 describes the visual localization model
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of this paper, including CNN architecture and loss function. Chapter 4 analyzes the
experiments of pretrained model, normalization method and loss function.

2 Related Work

2.1 Convolutional Neural Network

LeCun etal. proposed the first CNN LeNet in 1998, which is composed of 2 convolutional
layers and 3 fully connected layers [1]. Convolutional layers will downsample feature
maps to reduce the size. The network uses convolution operations to extract image
features, and automatically learns the parameters of convolution kernel through gradient
calculation and backpropagation, so that the network learns to extract relevant features.
With upgrading of computer hardware and emergence of big data, CNN has gained
attention and caused a deep learning boom. Krizhevsky et al. proposed AlexNet in
2012, which is composed of 5 convolutional layers and 3 fully connected layers [2],
and proposed ReLU activation function which accelerates network convergence and
dropout method which reduces network overfitting. VGG proposed by Simonyan et al.
in 2014 has a deeper network architecture [3]. For example, VGG16 is composed of
13 convolutional layers and 3 fully connected layers. In the same year, Google team
Szegedy and others proposed GoogLeNet, not only to deepen the network, but also to
increase the width by Inception architecture [4]. The same convolution layer extracts
features of different scales through convolution kernels of different sizes, which helps
to improve network performance. When the number of network layers increases, it is
easy to cause the problem of back propagation gradient disappearance. In 2016, He et al.
proposed residual learning to enable neural networks to have a deeper architecture such
as the deepest ResNet has 152 layers [5]. Different from the network directly outputs
features, residual network learns residual features and adds to the input as output features.
Compared with the original direct learning features, residual learning is more stable.
When residuals are zero, the network layer only performs identical mapping and will
not degrade network performance. This paper will use ResNet as CNN model for visual
localization, enabling CNN to have a deeper architecture to improve the performance of
feature extraction.

2.2 Visual Localization Based on Deep Learning

In 2015, Kendall et al. first proposed PoseNet, a camera poses regression model based
on GoogLeNet [6]. Pose includes 3-dimensional position and 4-dimensional orientation
quaternion. The authors proved that transfer learning can reduce training time and achieve
lower error. The following year, Kendall et al. used Bayesian CNN to estimate uncer-
tainty of the model [7], detected whether there are scenes in the inputimage, and improved
location accuracy of large-scale outdoor datasets. In 2017, Kendall et al. proposed learn-
able weights loss function to combine position and orientation to balance scale difference
between position and quaternion values [8]. Wu et al. and Naseer et al. branched network
into two parts to respectively output position and orientation [9, 10], and proposed data
augmentation to increase the diversity of dataset by synthesizing images. Wu et al. further
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used trigonometric function to solve that orientation has periodic problems [9]. Wangetal.
and Clark et al. proposed a model combining recurrent neural network (RNN) [11, 12].
The model connects two LSTM (Long Short-Term Memory) layers after CNN to extract
temporal features. The model Clark et al. proposed specifically uses two-way LSTM (Bi-
LSTM) and adopts mixture density network to output pose distribution to solve perceptual
aliasing problem [12]. Walch et al. combined LSTM in different way [13]. The authors
thought that high dimensionality of the output from fully connected layer at the end of
PoseNet may cause overfitting, so they design a different form of LSTM to reduce the
dimensionality and select useful features for pose regression. Melekhov et al. proposed
an hourglass-shaped encoder-decoder network [14]. Similar to fully convolutional net-
work, hourglass network deconvolves feature maps to recover size, to maintain detailed
features. In 2018, Brahmbhatt et al. proposed MapNet [15], which adds a restriction on
relative pose between two images in loss function and uses additional sensor data such
as IMU and GNSS to train MapNet without pose groundtruth. On testing stage, MapNet
combines with pose graph optimization (PGO) to smooth the predicted trajectory. Valada
et al. proposed VLocNet, which combines visual localization and visual odometry with
multi-task learning [ 16]. Both tasks base on ResNet and share weighs. VLocNet adds last
pose prediction as feature into the model. The authors proposed a loss function to consider
relative pose of continuous images. In the same year, Radwan et al. improved VLocNet
and proposed VLocNet + -+, which additionally considers semantic segmentation tasks
[17].Researches after 2020 apply the latestdeep learning technology to visual localization.
GrNet uses graph neural network (GNN) to aggregate information from nearby images
[21]. AtLoc builds the network with self-attention [22]. MS-Transformer builds the net-
work with transformer, and the network can locate in multi-scenes [23]. This paper will
use learnable weights loss function to automatically learn the weights of positions and
quaternions to balance scale difference.

3 Proposed Method

The model we proposed is composed of a CNN. The input is a 224 x 224 RGB image
and the output is 7-dimensional camera pose. We use ImageNet pretrained model to
speed up network convergence and achieve better performance. We perform z-score
normalization on input image, so that training data can be scaled to the same scale,
which is helpful for network to learn features.

3.1 Network Architecture

This paper uses ResNet as backbone network to extract image features [5], and its
architecture is shown in Fig. 1. Convolution is mainly divided into 5 layers, and stride
= 2 is used between each layer to reduce feature map. The Brackets in Fig. 1 are
residual units. The second to fifth large layers are composed of several residual units.
Global average pooling layer reduces feature maps to one-dimensional vector and then
connects to output layer. ResNet was originally designed for image classification task.
The architecture in Fig. 1 is used on ImageNet dataset with 1000 categories, so the
dimension of output layer is 1000. After convolution layers extract image features, we
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need to regress camera pose, so we change the dimension of output layer to 7, including
3-dimensional position and 4-dimensional orientation quaternion, and removed softmax
layer.

layer name | output size 18-layer | 34-layer ] 50-layer 101-layer 152-layer
convl 112x112 Tx7, 64, stride 2
3x3 max pool, stride 2
[ 1x1,64 ] [ 1x1,64 ] [ 1x1,64 ]
- : . )
convax | 36%36 [;:;2 ]xZ [;zgz x3 | | 3x3.64 |x3 3x3,64 | x3 3x3,64 | x3
‘ : | 1x1,256 | | 1x1,256 | | 1x1,256 |
[ 1x1,128 ] [ 1x1,128 [ 1x1,128 ]
2 2!
conv3_x 28x28 [ 2;3‘ i;i ]XZ [ .3(:2 ::g ]x4 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
S SE R | 1x1,512 | | 1x1,512 | | 1x1,512 |
[ 1x1,256 ] [ 1x1,256 ] [ 1x1,256 ]
2 2 d .
convdx | 14x14 [ ;z; 522 ]xl [ ;i; Z;g ]xé 3x3,256 | x6 || 3x3,256 |x23 || 3x3,256 |x36
: : | 1x1,1024 | 1x1,1024 | 1x1,1024 |
[ 1x1,512 ] [ 1x1,512 [ 1x1,512
comSx | 7x7 [ e ]x'.’ [ . ]x3 3x3,512 [x3 | | 3x3,512 [x3 || 3x3,512 |x3
s R | 1x1,2048 | | 1x1,2048 | | 1x1,2048 |
I1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° [ 36x10° | 3.8x10° [ 7.6x10° 11.3x10°

Fig. 1. ResNet architecture (excerpt from [5])

Residual unit treats learned features as residuals. When input is x and learned residual
is F(x), add the input x and the residual F(x) so that final output feature is F(x) + x,
When the residual is zero, performance of the network will not be degraded, to solve
disappearance or explosion of gradient caused by too many network layers.

Itcan be seen from Fig. 1 that when the size of feature maps reduces a half, the number
of feature maps doubles. This principle is to maintain the complexity of network, but it
will cause the input and output between residual units cannot be added due to different
dimensions. Therefore, He et al. use 1 x 1 convolution to transform the input dimension
to make it the same as the output dimension.

3.2 Loss Function

We give the ground truth of position and orientation quaternion of each image in the
training dataset. The network learns to regress camera pose by supervised learning,
such as loss function (1). L, is the loss function of position, £, is the loss function of
quaternion, and y is norm. We divide predicted quaternion by its vector length to make
it a unit quaternion.

~
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Due to the different unit of position and quaternion, £, and £, have different scale. If
we direct add £, and L, as loss function, training may be difficult to output the optimal
position and orientation. In PoseNet, the authors use a scale factor 8 to balance £, and
Ly [6]:
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However, finding the best B requires a lot of experiments, which is time-consuming,
and there will has different optimal 8 depending on training scene. Kendall et al. later
proposed a method which automatically learns the weights of loss function between
multi-tasks and apply it to camera pose regression [8]. It treats position and orientation
regression as two tasks and using homoscedastic uncertainty between tasks as the weight
of £ and £,. Homoscedastic uncertainty is a measure of uncertainty which is not
dependent on input data. It stays constant for all input data and varies between different
tasks. With this property, we can take homoscedastic uncertainty as the weight to combine
losses of different tasks. The final loss function used in this paper is shown as Eq. (3).
5y and 5, are related to homoscedastic uncertainty, and they are automatic learning
parameters. Only initial values need to be set, and then the best values will be found
after network training converges.

L=Lee™ 45,4 Loe ™0+ 5, 3)

4 Experiments

This paper uses the dataset of Southern Branch of the National Palace Museum our team
collected before [18]. The dataset has a total of 46,584 images, including 862 positions,
and each position has 54 orientations. Our team collects scene images and their camera
poses through indoor mobile mapping platform, which is divided into mapping system
and positioning system. The mapping system uses the LadyBug5 panoramic camera,
which can take images from 6 angles at the same time, stitch them into a panoramic
image and then simulate it as mobile phone images; The positioning system includes
IMU and GNSS instruments. It can obtain outdoor position through receiving GNSS
signals and indoor position through IMU. This paper uses last year’s experimental results
as a benchmark for comparison. Last year, our team used GoogleNet as backbone
network and used Places dataset pretrained model which pretrained for 800 iterations.
The normalization method of input data was subtracting mean image of training dataset.
The loss function only considered position, and the positioning error of training 30,000
iterations is 0.38 m.

This paper uses ResNet-50 as backbone network for experiments, and compares the
effects of different pretrained models, image normalization methods and loss functions
on positioning error. The following experiments use Zenfone 2 simulation image of
Southern Branch of the National Palace Museum. Image input size is 224 x 224. All
images are randomly cut into 5 parts for 5-fold cross validation. The following results are
median of 5 experiments. Each experiment is trained for 300 epochs (about 100,000 iter-
ations). This paper uses GeForce RTX 3090 for network training, and a cross validation
training takes about 40 h.
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(a) Mobile mapping platform (b) Examples of the dataset

Fig. 2. Southern branch of the National Palace Museum dataset
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Fig. 3. Position error of different pretrained models

4.1 Pretrained Model

First, we want to find the best pretrained model. We first replace backbone network of the
benchmark with ResNet-50, and then load different pretrained models. The positioning
error comparison of different pretrained models is shown in Fig. 3. Baseline is the
benchmark experiment. The result shows that the error of Places (800i) (Places dataset
pretrained model pretrained for 800 iterations) and None (without pretrained model)
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have no significant difference, which means that only pretraining 800 iterations does not
achieve the effect of transfer learning. Place (Places dataset pretrained model pretrained
to convergence) has the highest error, and ImageNet pretraining effect is the best, the
error is 0.24 m. We believe that the reason may be the difference between two pretrained
model tasks. Places dataset is scene recognition task, and ImageNet dataset is image
recognition task. The feature extracted by image recognition relative to scene recognition
is more related to visual localization. Using ImageNet pretrained model can accelerate
the network convergence and achieve better accuracy.
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Fig. 4. Position error of different normalization methods

4.2 Normalization

We use ImageNet pretrained model and then want to find the best normalization method.
The positioning error comparison of different normalization methods is shown in Fig. 4.
Mean image subtraction is that input image subtracts mean image of training dataset,
image mean subtraction is that input image subtracts mean RGB value of training dataset
by channels, and z-score is that input image subtracts RGB mean and divides by RGB
standard deviation. From the result, although mean image subtraction is relatively stable,
itis found that three normalization methods have no obvious difference, which means that
normalization has little effect on visual localization of Southern Branch of the National
Palace Museum. Because z-score is common use and it has lowest error 0.22 m, we use
z-score normalization for the next experiment.
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Fig. 6. Orientation error of different loss functions

4.3 Loss Function

In this section, we want to investigate the influence of different loss functions on posi-
tioning error. As shown in Figs. 5 and 6, we design four loss functions as shown in
Egs. 4, 5, 6, 7. The results show that the error of PoseNet (beta = 0) is relatively higher
than the other three. It means that regressing position and orientation at the same time
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helps to reduce positioning error. We believe that the features extracted by regressing
orientation are related to positioning. The position and orientation error of PoseNet2 are
the lowest. The position error is 0.15 m, and the orientation error is 0.57°, which means
that the loss function with learnable weights combined with position and orientation can
effectively balance the scale between the two. The error of PoseNet2 (MSE) with square
term is higher than that of PoseNet2. We speculate that the reason is the square term is
more susceptible to errors, and the loss function cannot accurately reflect the difference
between predicted value and ground truth.

1. PoseNet (beta = 0): Only consider position [6].

f=be )+ﬁ< HIOZ =’ ¥

2. PoseNet (beta = 500): Use the same value as the original paper [6].

L=(x— )+ﬂ( |H02 =500 (5)

3. PoseNet2: Use the same initial values of parameters as the original paper [8].

£x=|x_)%v£q: q_i s
l4
L=Loe™ 454 Lye 45,8, =0,5,=-3 (6)
4. PoseNet2 (MSE): Replace MAE with MSE [8].
\2
2 q
L, = (x—x) Ly = (q— = ) ,
la]
L= Lo 454 Lge™50 45,5, = 0,5, = 3 (7)

We summarize the last epoch results of all experiments in Table 1. The lowest position
error is 0.15 m, which uses ResNet-50, ImageNet pretrained model, z-score normaliza-
tion and learnable weights loss function. Compared with the baseline, 0.38 m, which
uses GoogLeNet, Places dataset pretrained model which pretrained for 800 iterations,
mean image subtraction and position loss function, we reduce the error by about 60%.
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Table 1. Comparison of position median error with all experiments

Pretrained model | None Places (8001) Places ImageNet
0.2942 m 0.3223 m 0.7003 m 0.2665 m
Normalization Mean image | Image mean subtraction Z-Score
subtraction
0.2665 m 0.2844 m 0.2218 m
Loss function PoseNet (8 = | PoseNet (8 = 500) | PoseNet2 |PoseNet2 (MSE)
0)
0.2218 m 0.2139 m 0.1501 m 0.2136 m

5 Conclusion and Future Work

This paper adopts new CNN model and loss function for visual localization of Southern
Branch of the National Palace Museum. In terms of CNN, we use ResNet to replace
the original GoogLeNet. Residual learning of ResNet enables CNN to have deeper
architecture and improve performance. We also changed the output to regress position
and orientation quaternion simultaneously, which the experiment result shows that can
have better position accuracy than only regressing position. In terms of loss function,
we use the loss function of learning weight which can automatically balance the scale
difference between position and quaternion. Compared with the experiment result of
South Branch of the Palace Museum last year, position accuracy has been improved
by about 60%. In the future, we will combine visual localization with other related
visual tasks such as visual odometry by multi-task learning. The features of related
tasks will increase the performance of visual localization. We will also combine 3D
information such as depth maps to learn 3D features of scene or add constraints to assist
in localization.
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