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Abstract. Ozone (O3) is an air pollutant that has harmful effects in
human health when its concentration exceeds a certain level. Therefore,
it is important to advance in methods that can appropriately predict
O3 levels. In this paper we present a new model to estimate 4 h, 12 h,
24 h, 48 h and 72 h ahead O3 concentration levels. We rely on Deep
Transformer Networks. Interestingly enough, these models were origi-
nally developed to be used in Natural Language Processing applications
but we show that they can be successfully used in classification problems.
In order to evaluate the usefulness of our model, we applied it to predict
O3 levels in the centre of Madrid. We compare the results of our model
with four baseline models: two LSTMs and two MLPs. Accuracy (Acc)
and Balanced Accuracy (BAC) are the metrics employed to evaluate
the goodness of all the models. The results clearly show that our Deep
Transformer based Network obtains the best results.

Keywords: Air quality prediction · Deep learning · Transformer
networks

1 Introduction

Air pollution is one of the major problems currently faced by humanity. It causes
seven million deaths every year according to international organisms [5]. Pollu-
tants like ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon
monoxide (CO) and particulates matter (PM2.5, PM10) are some of the most
common air pollutants [4]. They are also the pollutant included in the air quality
index measurement. In this paper we focus on O3 (ozone). Ozone is a colourless
gas located in the atmosphere. It is one of the most common existing pollutants
and, as such, it is one of the pollutants taken into account to determine the air
quality index. The exposure to this pollutant has severe effects in human health
such as eyes and nose irritation and inflammation, lung function reduction, exac-
erbation of respiratory diseases and increased susceptibility to diseases infection,
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among others [4]. Ozone concentration levels depend on complex processes that
happen in the atmosphere. Precursor gases, such as nitrogen oxides, are chemi-
cally transformed into ozone when they are exposed to solar light. Since sunlight
is needed for ozone formation, its concentration highly depends on the time of
the day and on the current meteorological conditions. Moreover, human emission
of these precursor pollutants by fabrics and traffic have affected the increase of
ozone concentration in the last decades. Most major cities around the world have
specific protocols to deal with high concentrations of pollutants. In the case of
Madrid, used in this paper as case study, when the O3 concentration exceeds a
certain level, the authorities take measures to reduce the O3 effects in population.
These measures range from recommendations to reduce physical exercise outdoors
for vulnerable people to prohibitions of outdoor activities, specially sport activi-
ties [2]. Therefore, it is very important to be able to estimate future O3 levels in
order to alert the population of possible future recommendations or restrictions.

We present a new model to predict the O3 concentration level. Our approach
applies a novel Transformers-based model to predict the O3 concentration level.
Unlike classical time series forecasting models, Transformers do not process the
data ordered. On the contrary, they process the entire sequence and use self-
attention techniques to find dependencies between variables. We considered an
optimised Transformers-based model and our preliminary experiments revealed
that it was a good candidate to overcome the accuracy and the balanced accuracy
of usual time series classification networks such as MLP or LSTM.

In order to evaluate the usefulness of our proposal, we compare its results with
the ones produced by four neural network baselines models. We also make an anal-
ysis of the variation of the model accuracy and balanced accuracy depending on
the modification of three hyperparameters in short-term and in long-term cases.
For this, we use as case of study the task of predicting O3 levels in the centre of
Madrid for the next 4, 12, 24, 48 and 72 h. We consider a total of fourteen pre-
dictors variables. Our results show that our proposal is better than the baseline
models based on the evaluation metrics. In average, the balanced accuracy of our
proposal is 4.3% better than the one corresponding to the best baseline model.

The rest of the paper is organised as follows. Section 2 reviews related work. In
Sect. 3 we present background concepts such as the baseline models and different
evaluation metrics that we use. In Sect. 4 we present the main characteristics of the
problem that we want to solve and of the model that we construct to confront the
problem. In Sect. 5 we present our experiments and discuss the obtained results.
Finally, in Sect. 6, we give conclusions and outline some directions for future work.

2 Related Work

Several studies have used either statistical machine learning techniques or deep
learning models to forecast pollutant concentrations. Paoli et al. [19] develop an
optimised MLP network to forecast O3 concentration in Corsica. This model is
more accurate than other baseline models and properly detects ozone peaks. Li
et al. [15] propose a Random Forest model, leveraging its capacity to work with
numerical and non-numerical variables, to predict the concentration of three air
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pollutants. Other models have been developed to forecast pollutant concentra-
tions such as an improved ARIMA (Liu et al.) [16], LSTM networks (Seng et al.
[21]) and multi-linear regression (Jato-Espino et al.) [13]. In addition to machine
learning techniques, collective information can be compiled to forecast air quality.
Palak et al. [18] present a collective framework to predict air pollution in places
where no meters are available. The combination of monitoring and CEP is also a
good approach to forecast air quality. In this line, Dı́az et al. [8] considered Petri
Nets while Corral-Plaza et al. [7] and Semlali et al. [20] used an IoT approach.

Our approach is based on Transformer Networks. Transformers were pro-
posed by Vaswani et al. [22]. Originally, they were developed as a Natural Lan-
guage Processing tool that improves classical LSTM networks and Recurrent
Neural Networks (RNN) in tasks such as text classification and translation. Its
potential is based on self-attention layers, which estimate the attention weights
between input variables. In recent years, Transformers have been used to solve
tasks in other fields such as image recognition, multi-class classification and time
series prediction. Wu et al. [23] present a deep model based on Transformers to
influenza-like illness forecasting. Results show that the proposed method is more
precise than baseline methods such as LSTM or ARIMA. Dosovitsky et al. [9]
show that a pure Transformer application can overcome classical CNNs in image
classification tasks.

To the best of our knowledge, Deep Transformer based Models have not been
used to analyse air pollutants. Although machine learning techniques have been
used to forecast ozone concentration values [6,19] (that is, as part of a regression
model), we are not aware of their use to predict ozone levels as such (that is, as
part of a classification model).

3 Preliminaries

In this section we will review some concepts that we will use along the paper.
Specifically, we will discuss the baseline models that will be used to compare our
approach with and the evaluation metrics that will be used to measure different
models quality.

3.1 Baseline Models

In order to assess the usefulness of our approach, we will compare it with two
classical algorithms that are very suitable to solve the same problem: LSTM
networks and MLP networks. Although these models were defined some time
ago, they are currently and frequently used both to predict the behaviour of
complex systems and as baseline models [10,14,17].

MLP Networks [12]. An MLP network is a computational model inspired by a
human brain whose objective is to find relationships between data. It is com-
posed by three types of layers: input layer, hidden layer and output layer. The
input layer receives the input data to be processed. A number of hidden lay-
ers are placed between the input and output layers. Data flows from input to
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output in forward direction. Each layer is composed by a number of simple pro-
cessing elements called neurons. Neurons are trained using the back-propagation
learning algorithm to minimise a loss function.

The mathematical operations that occur in every neuron in hidden and out-
put layers are, respectively, given by the following expressions:

Hx = f(b1 + W1 · x) Ox = f ′(b2 + Hx · W2)

being x an input vector, b1 and b2 bias vectors, W1 and W2 weight matrices
and f and f ′ activation functions. Usual activation functions are the RELU and
sigmoid functions.

RELU(a) = max(0, a) Sig(a) =
1

1 + e−a
,

where a is the input data.
Hyperparameters such as the number of hidden layers (h), number of neurons

in each hidden layer (hn), number of epochs (ep), dropout rate (dr), learning rate
(lr), and batch size (bs) are optimised to get the best accuracy in MLP networks.

LSTM Networks [24]. An RNN network does not have a defined layers structure.
Actually, it allows random connections between neurons, developing temporality
and providing memory to the network. This makes RNNs well suited algorithms
in fields such as Natural Language Processing and sequence data processing.
However, if a long context is needed, we have the long-term dependencies prob-
lem, that is, the gradual forgetfulness of previous information of the network. In
order to solve it, LSTM networks were developed.

The key to LSTMs is the cell state (Ct) that runs straight down the entire
chain. The information flows along it almost without modifications. The LSTM
either updates or discards information in the cell state by using structures called
gates. These gates are composed by a sigmoid layer, which outputs a number
between 0 and 1 that indicates how much information must be let through, and
a multiplicative element. LSTM cells have three gates: input gate (it), forget
gate (ft) and output gate (ot). The mathematical operations that occur in each
gate are as follows:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bC)

Ct = ft · Ct−1 + it · C̃t

ot = σ(Wo[ht−1, xt] + bo)

ht = ot · tanh(Ct)

where xt is the input data in time t, ht is the hidden state in time t, each Wx is
a weight matrix and each bx is a bias vector.

Hyperparameters such as the number of neurons in LSTM layer (n), num-
ber of epochs (ep), dropout rate (dr), learning rate (lr) and batch size (bs) are
optimised to get the best accuracy in the LSTM network.
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3.2 Performance Evaluation Metrics

We will consider accuracy (Acc) because it is the most used evaluation measure
in multi label classification models [11]. In addition, as in all cases our data is
imbalanced, we will also use Balanced Accuracy (BAC), which gives the same
weight to all the categories. Given m ∈ IN, let M be an m×m confusion matrix.
The formal definitions of these measures are:

Acc =

m∑

k=1

Mk,k

m∑

k=1

m∑

i=1

Mk,i

BAC =

m∑

k=1

Mk,k∑m
i=1 Mk,i

m

Intuitively, Acc is the ratio between the number of correctly predicted observa-
tions and total number of observations, while BAC computes these ratios for
each category.

4 Problem Description and Our Model

In this section we present the main concepts underlying our case of study. We
also present a definition and description of our Deep Transformer based Network.
Finally, we set the hyperparameters of each baseline model that will be used to
compare with our model.

4.1 Problem Description

In order to evaluate the proposal model, we decided to use pollutant data because
its concentration usually depends on a great amount of factors such as meteorol-
ogy, industrial emissions, transportation and use of chemical products. Among
the different pollutants, we choose ozone because it has a behaviour along the
year that diverges from the rest of pollutants influencing the Air Quality Index.
We wish to evaluate the goodness of our proposal in a classification problem
and using a previous standard that we cannot influence. Therefore, we cate-
gorise ozone values but take into account its hazard as determined by official
standards of Madrid Council [2].

The ozone concentration level predicting problem is formulated as a super-
vised machine learning task. Specifically, our goal is to predict the category of
the target variable y in k hours time, that is, y(h + k). We will use a vector
of 56 predictor variables, 14 by hour, and using the last 4 available values. We
have 12 continuous hourly predictor variables and 2 (both calendar variables)
categorical ones. The target variable is a categorical one. Table 1 shows all the
predictor variables (* denotes a categorical variable).
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Table 1. Predictor variables by type

Type Variables

Pollutant NO,CO,NO2, NOX,SO2, O3

Meteorological rain,maxtemp,mintemp,medtemp,maxpress,minpress

Calendar week day∗, type of day∗

Fig. 1. City of Madrid. The red mark points at ‘Plaza del Carmen Station’ while the
blue one points at ‘El Retiro Station’. (Color figure online)

Our proposal, as well as the baseline models, will be evaluated in a real case
study. Specifically, we consider data collected in Madrid from 01/01/2017 to
31/07/2021. Pollutant data is hourly collected by dedicated sensors, placed in
stations distributed in the city, and it is publicly available at the Madrid City
Hall website [2] database. We also use this database to extract calendar data.
In addition, meteorological data can be extracted from AEMET [1], the State
Meteorology Agency of Spain. We transform daily variables in hourly variables
to standardise all of them. We consider two stations located in the centre of
Madrid (see Fig. 1): ‘Plaza del Carmen Station’ and ‘El Retiro’.

Data has been pre-processed by inputting previous observation variable val-
ues in not available and outliers values. All the variables have also been scaled.
Ozone continuous data runs from 0µg/m3 to 373µg/m3. Following the guideline
of Madrid City Hall, we classify it in a three class target variable. In Table 2 we
show the categories chosen and the number of existing observations in each of
them. We obtain a final data-set with 38.064 observations.

Table 2. Ozone levels

Category (values) Ozone state Number of observations

0 (0–60) Good 26.985

1 (60–120) Medium 10.509

2 (>120) Harmful 570
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4.2 Deep Transformer Based Models

In this section we describe the main characteristics of our model, which is based
on Deep Transformer Networks [22]. The model architecture is composed by a
number of Transformer encoder networks (num transformers) and a final MLP
network to make the classification. Each transformer encoder is composed by
a normalisation layer, which applies a transformation to maintain the mean of
the previous layer activation close to 0 and the standard deviation close to 1.
Then, we add the essence of the Transformer model: an attention layer. It uses
an attention mechanism to learn the contextual relation between variables. This
mechanism avoids the requirement of the recurrent connections in the neural
network. This layer has a set of hyperparameters, which must be controlled,
such as the number of attention heads (num head). A number of heads greater
than 1 (Multi-Head Attention) allows the model to jointly attend to information
from different sub-spaces of representation at different positions [22]. The size
of each one (head size) and the dropout probability (dropout) are other hyper-
parameters to consider. The next step is to add the feed forward part of the
transformer encoder, which is composed by a normalisation layer and by two
one dimension convolutional layers with a kernel size equal to one. A dropout
probability is applied in the first convolutional layer, which works with a ReLU
activation function. The convolutional layers create a convolutional kernel with
the normalisation layer, in this case, in a temporal dimension t = 1. In the
first convolutional layer, the number of output filters is chosen by the filters
hyperparameter. In the second one, the number of output filters is equal to the
dimension of the input shape. In order to reduce the output tensor of the set of
Transformer Encoders, we add a one dimension Average Pooling Layer. Finally,
we add an MLP network to make the classification. This MLP uses ReLU as
activation function in the hidden layer and softmax as activation function in the
output layer. We also apply here a dropout probability (mlp dropout). MLP has
just one hidden layer. The number of neurons in the hidden layer of the MLP
(hid layer) is a hyperparameter to consider.

In order to train the network we use the gradient descent learning method.
We apply also an Early Stopping, which is a regulation method to stop the
training when the error diminution between two consecutive iterations is less
than a previously set threshold (usually, 0.0001).

The chosen loss function has been the sparse categorical cross-entropy and
we consider Adam as weights optimiser. The number of epochs and the batch
size will be two of the hyperparameters to fit.

We use python, specifically the keras library, to implement our model.
In Fig. 2 we use Netron [3] to show the structure of our Deep Transformer

based Network with the following hyperparameters: num transformers = 1,
num head = 2, head size = 2, dropout = 0.2, filters = 1, mlp dropout = 0.15
and hid layer = 500. In order to reduce the size of the graphical represen-
tation, we use low hyperparameters values. The interested reader can visit
https://github.com/MMH1997/TransformerNetworks where it is possible to see

https://github.com/MMH1997/TransformerNetworks
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the architecture with other hyperparameters and deeply analyse each component
of the model.

4.3 MLP and LSTM Networks

In this section we describe the baseline models with which we will compare our
proposal. In order to make an unbiased comparison, we compare our proposal
with two LSTMs and two MLPs, with respectively more/less trainable parame-
ters than our proposal. We use the keras library in python to implement these
models.

(a) Part a. (b) Part b.

Fig. 2. Deep transformer based model structure

– MLP networks. The first MLP model (MLP1 ) has h = 5 hidden layers. The
number of neurons in each hidden layer are 512, 256, 128, 32 and 32. It results
in a total of 198.691 trainable parameters. The second MLP model (MLP2 )
also has h = 5 hidden layers. The number of neurons in each hidden layer are
64, 64, 16, 8 and 8. It results in a total of 9.083 trainable parameters.
Both models have the following hyperparameters: ep = 25, dr = 0.2, lr =
0.0001 and bs = 16. Each hidden layer is activated by a ReLU function and
the output layer by a softmax function. Both output layers have three neurons
(each of them returns the probability of each category). In both models, the
loss function has been sparse categorical cross-entropy.
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– LSTM networks. Our first LSTM model (LSTM1 ) has n = 150 neurons
in the LSTM layer. This layer is connected to three hidden layers having,
respectively 15, 5 and 5 neurons. Hidden layers are activated by a ReLU
function. Again, the output layer has three neurons (each of them returns
the probability of each category) and is activated by a softmax function. This
model has a total of 123.593 trainable parameters. Our second LSTM model
(LSTM2 ) has n = 12 neurons in the LSTM layer. This layer is connected to
an output layer that has three neurons and is activated by a softmax function.
This model only has 3.251 trainable parameters.
Both models have the following hyperparameters: ep = 25, dr = 0.2, lr =
0.0001 and bs = 16. In these two models, the loss function has also been the
sparse categorical cross-entropy.

Table 3. Acc by model and time in advance

Model 4 h 12 h 24 h 48 h 72 h Average

Proposal 0.891 0.730 0.772 0.753 0.753 0.776

LSTM1 0.872 0.642 0.753 0.716 0.700 0.729

LSTM2 0.881 0.651 0.762 0.741 0.722 0.744

MLP1 0.891 0.707 0.768 0.747 0.736 0.765

MLP2 0.882 0.701 0.771 0.757 0.730 0.764

Table 4. BAC by model and time in advance

Model 4 h 12 h 24 h 48 h 72 h Average

Proposal 0.816 0.471 0.570 0.484 0.480 0.540

LSTM1 0.730 0.346 0.467 0.428 0.411 0.448

LSTM2 0.705 0.351 0.491 0.467 0.446 0.467

MLP1 0.819 0.462 0.520 0.471 0.451 0.518

MLP2 0.686 0.429 0.517 0.482 0.437 0.496

5 Experiments

In this section we present the experiments that we performed to validate our
model. In all the experiments we used 75% of the observations as training
set and 25% of the observations as testing set. Since the difference between
the results is not very large, in order to reduce the error we compute the
average of 20 repetitions of the experiment. The programming code and data
used in these experiments are freely available at https://github.com/MMH1997/
TransformerNetworks.

https://github.com/MMH1997/TransformerNetworks
https://github.com/MMH1997/TransformerNetworks
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5.1 Comparison Between Models

We apply the proposed model and the baseline models to predict the categories
in the next 4, 12, 24, 48 and 72 h. In this experiment, we use the following
hyperparameters in the Deep Transformer based Model: num transformers =
2, num head = 15, head size = 5, dropout = 0.2, filters = 25, mlp dropout =
0.15, hid layer = 5000, bs = 8 and epochs = 25. This choice results in a total of
65.375 trainable parameters.

Comparing the model with the previously defined MLP and LSTM networks,
we appreciate that, in general, our developed model obtains better results, par-
ticularly in long-term cases. In terms of accuracy (see Table 3), our model obtains
higher accuracy than all the baselines models, except in the 4 h case, where it
obtains the same accuracy as MLP1, and in the 12 h case, where our model is
slightly worse than MLP2. In terms of Balanced Accuracy (see Table 4), the
proposed model obtains the best accuracy in all cases except in the 4 h case,
where our model is worse than MLP1. It is worth to mention the 24 h case,
where the difference between the BAC of the proposed model and the one of
the baseline models is greater than 5 points. We think that this is due, in part,
to the capability of our model to detect minority class cases, while the baseline
models are not able to detect them when predicting 24 h in advance.

By the resolve of the task, the presence of a minority class in our data which
implies the called imbalanced class problem must taken into account. We have
tried to solve this problem by applying typical techniques to diminish it such
as over-sampling, under-sampling or re-sampling. However, none of them were
effective, probably due to the high number of variables and the dynamism in
data. This ineffectiveness was reflected on the inability of all models (proposed
and baseline) to get a BAC higher than 0.33, that is, models just classify all the
observations in the same category.

The obtained values show the typical increase of Acc and BAC as time in
advance is reduced, that is, we expect better results in predictions 4 h in advance
than in predictions in a longer time. However, this pattern does not hold if
we consider the 12 h case. In fact, there is a clear reduction of Acc and BAC
in all models with respect to the 24 h or 48 h cases. After a careful review of
the factors that influence ozone concentration, we realised that meteorological
data, in particular and as we advanced in the introduction of the paper the
presence/absence of solar light, are very relevant. In more technical terms, the
correlation between the values of the predictors at time t and the ones at times
t − 24 and t − 48 is higher than the corresponding to time t − 12. In fact,
the difference of several predictor variables in the 12 h case is usually high, not
only concerning meteorological variables but also other pollutant concentrations
(NO, CO, SO2, NO2, NOX). For example, in most cases, the average value of
these pollutants at noon is the double than the average value at midnight.

In the next experiments, we will analyse the optimisation of the proposal
model hyperparameters.
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5.2 Hyperparameters Optimisation

In this section we will analyse the evolution of BAC and Acc depending of
the values of three hyperparameters: num head, head size and filters. We per-
formed two sets of experiments: prediction 4 h in advance and prediction 24 h in
advance. We chose these two cases because they are the shortest term and the
most typical prediction (what will happen the next day at the same time). It is
worth to mention that our preliminary experiments showed a similar behaviour
for, on the one hand, all short term cases and, on the other hand, all long term
cases.

The following values were chosen to evaluate each hyperparameter:

– num head: 3, 6, 9, 12, 15, 18;
– head size: 3, 6, 9, 12, 15, 18;
– filters: 5, 10, 15, 20, 25.

The rest of hyperparameters used in this experiment are set to:
num transformers = 1, dropout = 0.2, mlp dropout = 0.15, hid layer = 5000,
bs = 8 and epochs = 25. Finally, the number of trainable parameters in the
combinations range from 27.947 to 101.712.

We have evaluated BAC and Acc in all the possible combinations of the
hyperparameters values previously mentioned. In order to provide a unique result
for each experiment, we compute the average value of the metrics evaluated for
each hyperparameter value. For example, if we fix head size = 6, we compute
the average of all the values returned from the 30 experiments corresponding to
all the combinations of num head and filters such that head size = 6. In the
two cases studies, Acc values remain almost constant with the hyperparameters
modifications. Therefore, we focus our analysis on the variations of BAC values.

The experiments corresponding to the 4 h in advance case clearly show that
low values of head size and num head return higher values of BAC. If we con-
sider filters, we observe that the maximum BAC values are achieved when
filters = 10. In higher filters values, BAC values remain constant. Inter-
estingly enough, the absolute maximum BAC value (0.8228) is achieved in a
combination of hyperparameters values that does not correspond to the general
conclusions: head size = 18, num head = 15 and filters = 25.

If we consider the 24 h in advance case, we observe that an increase of
head size values suggest a small decrease of BAC. Unlike the previous case,
maximum BAC values are achieved when num head = 15. For higher val-
ues, BAC seems remain constant. Maximum BAC values are achieved when
filters = 15. However, experiments show that changes in filters values do not
imply significant modifications in BAC. Unlike the previous case, the absolute
maximum BAC value seems correspond to the general conclusions. It is achieved
when head size = 9, num head = 15 and filters = 5.
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(a) head size (b) num head (c) filters

Fig. 3. BAC percentage change by hyperparameter value in short-term and long-term
cases.

In Fig. 3 we show how the obtained values vary. From these results we can
extract the following conclusions:

– The variation of BAC values depending on the performance of head size is
similar in both the short term and long term cases.

– In short term cases, an increase of num head suggests an increase of BAC.
However, in long term cases, the increase in the value of the hyperparameter
suggests a decrease of BAC values.

– In long term cases, the modification of filters values seems to have no effect
in BAC. In contrast, in short term cases, its increase implies an increase of
BAC.

6 Conclusions and Future Work

In this paper, we have proposed a novel Deep Transformer based Network to
classify the ozone levels in the centre of Madrid using fourteen predictor vari-
ables. Our experiments show that this model overcomes, in general terms, the
accuracy and the balanced accuracy of four baselines neural network models.
The capability of the proposed model to detect minority class observations, par-
ticularly, in 24 h in advance case is one of the main advantages of proposed model
respect to the baseline methods.

We have also made an analysis of three hyperparameters of the proposal
model in short term and in long term cases. This analysis suggests us that the
behaviour of balanced accuracy depending on hyperparameters modifications
differs between long term and short term cases.

We consider some lines for future work. First, in order to increase accuracy,
we would like to perform a deeper analysis on the optimisation of the hyper-
parameters, in particular, concerning whether we need similar adjustments for
short-term and long-term prediction. For example, in Fig. 3 we can see that
headsize has a similar behaviour in both cases, while it is very different for
num head and filters. Second, taking into account the high quality of the pro-
posed model, we would like to produce a similar model for other data. In partic-
ular, we would like to apply this model to the rest of pollutants included in the
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air quality index measurement so that it is possible to classify them by levels.
Combining this idea with Complex Event Processing technologies, air quality
index could be accurately predicted. We would also like to adapt our model to
other air quality indexes that, in particular, might have data in a format that
it is not compatible with the one that we have used. Finally, we would like to
compare our proposal with other classification models such as Random Forest,
ARIMA and Support Vector Machine.
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