
Experiments with Solving Mountain Car
Problem Using State Discretization

and Q-Learning

Amelia Bădică1 , Costin Bădică1(B) , Mirjana Ivanović2 ,
and Doina Logofătu3

1 University of Craiova, Craiova, Romania
costin.badica@edu.ucv.ro

2 University of Novi Sad, Novi Sad, Serbia
3 Frankfurt University of Applied Sciences, Frankfurt am Main, Germany

Abstract. The aim of this paper is to explore the model of the Moun-
tain Car Problem. We provide insight into the physics behind the model.
We present some experimental results obtained by numerically simulat-
ing the model. We also propose a reinforcement learning approach for
deriving an optimal control policy combining model discretization and
Q-learning.

Keywords: Dynamic system · Mountain car problem · Q-learning ·
SARSA

1 Introduction

The Mountain Car Problem is a standard benchmark for experimenting with
reinforcement learning algorithms. Our aim is to provide new theoretical and
experimental insights into the Mountain Car Problem. Although this problem
has a tradition of more than three decades in the literature of reinforcement
learning, we could not find in the literature a complete and physically accurate
explanation of its dynamic model.

The main contributions of our work are outlined as follows: i) accurate pre-
sentation of the physics details of developing the dynamic model of the Mountain
Car Problem; ii) new insights into random walk experimental results obtained
for the Mountain Car Problem; iii) detailed investigation and comparison of
standard Q-learning and SARSA algorithms for solving the digitized version of
the Mountain Car Problem.

We start in Sect. 2 with a brief overview of related works on developments
of the Mountain Car model in the reinforcement learning literature. In the first
half of Sect. 3 we present the detailed development of the Mountain Car model
starting from the first principles from physics. In the second half of Sect. 3 we
present new insights into experimental results that we obtained by performing a
sequence of random walks on the Mountain Car Model. Section 4 is dedicated to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. T. Nguyen et al. (Eds.): ACIIDS 2022, LNAI 13757, pp. 142–155, 2022.
https://doi.org/10.1007/978-3-031-21743-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21743-2_12&domain=pdf
http://orcid.org/0000-0003-0137-9676
http://orcid.org/0000-0001-8480-9867
http://orcid.org/0000-0003-1946-0384
http://orcid.org/0000-0002-1678-3527
https://doi.org/10.1007/978-3-031-21743-2_12


Experiments with Mountain Car Problem 143

introduce the Q-learning and SARSA algorithms, our proposed implementations
as well as a discussion of the experimental results obtained. For the experiments
we have used a digitized (i.e. finite state) version of the Mountain Car Problem.
The last section concludes and points to future works.

2 Related Works

Although the Mountain Car Problem has been proposed more than 30 years
ago as a benchmark problem for optimal control and reinforcement learning
algorithms, we could not find in the scientific literature a complete and physically
accurate explanation of its dynamic model.

The Mountain Car Problem was firstly proposed in Moore’s PhD thesis [3,
Chapter 4.3] and was referenced in one of his early papers [4]. In these works, the
hill-shaped driving track of the car is described by a polynomial function that
defines the height of the hill depending on the horizontal vehicle location. More-
over, the model is using a continuous model for the speed of the car depending
on the pedal height.

The Moore’s proposed model is referenced in the experimental part of [5]
as benchmark for the reinforcement learning with replacing eligibility traces
approach. However, the details of the Mountain Car problem considered in this
work are not given in [5].

Another dynamic model of the Mountain Car Problem is presented in [6,
Chapter 4.5.2]. This model is closer to the model that we have used in our paper.
The shape of the hill is the same, but the values of the other parameters differ.
Moreover, although some physics details are included in the model presentation,
its complete physics explanation is missing.

OpenAI Gym is a software framework for bench-marking reinforcement learn-
ing algorithms [1]. On one hand it includes a number of dynamic models, and
on the other hand it allows definition of new models. Those models are defined
as environment model. The idea is that reinforcement learning algorithms are
encapsulated into agents that interact with the environment through a stan-
dard programming interface. OpenAI Gym includes two Mountain Car models:
“Mountain Car v0” that is similar to the model that we used in our paper and
“Mountain Car Continuous v0” that differs from our model by the fact that the
action space is continuous, rather than discrete.

Mountain Car Problem was used in many online tutorials that introduce the
practical programming of reinforcement learning algorithms. One such a video
tutorial is [8]. Here the author presents an approach for solving the Mountain
Car Problem included in OpenAI Gym using Q-learning and state discretization.
We have used it as a base implementation for our experiments. Nevertheless, we
extended this implementation in many directions (see Sect. 4).

Standard reference [7, Chapter 10.1] also includes a model of the Mountain
Car Problem that is similar to the one used in our paper. However, the details
of the physics of the model are missing. The model is introduced as a mathe-
matical object, suitable for experimenting with various reinforcement learning
algorithms.



144 A. Bădică et al.

3 Modeling the Mountain Car Problem

3.1 Physics of the Mountain Car Problem

The Mountain Car problem assumes an autonomous car driving on a one-
dimensional track that follows a mountain range described by the equation:

y = sin ωx for x ∈ [−3π

2ω
,

π

2ω
] (1)

Note that Eq. (1) describes a function that spans a full cycle of “sinus” func-
tion thus modeling a valley between a left and right hill. The car is supposed
to start its driving episode at initial position x0 somewhere in the valley in the
vicinity of − π

2ω and its goal is to climb the rightmost hill. The goal can be
described as the car reaching a location x ≥ xg, where the “goal position” xg is
a real value in the left vicinity of π

2ω .
The car engine is controlled by a thruster that can either thrust left or right

with equal force or no thrust at all. The force of the thruster is not strong enough
to defeat gravity and accelerate up the slope to the top of the right hill. The
solution assumes the movement of the car in the opposite direction to the goal
(i.e. to the left) to accumulate enough inertia to defeat the slope, even if slowing
down up to the top of the hill.

The standard physical environment of the Mountain Car is shown in Fig. 1.
In this case ω = 3.0 and the curve describing the mountain range y = sin 3x is
defined on interval [−π

2 , π
6 ] ≈ [−1.57, 0.52]. Note that in the standard Mountain

Car model, as defined in [7, Chapter 10.1] and [1], this interval is set to [−1.2, 0.6].
If the position of the car reaches a value below the lower bound then the location
is clipped to the lower bound and the car velocity is reset to 0. The goal of the
car is to reach the top of the hill at a location x ≥ 0.5. The initial position x0

is defined in the vicinity of −π
6 ≈ −0.52, while the initial velocity of the car is

set to 0. The current implementation from OpenAI Gym assumes that x0 is a
uniformly distributed random number in interval [−0.6,−0.4].

The dynamics of the car is described with the following equation in vector
format:

m · −→at =
−→
Ft +

−→
G +

−→
Ff (2)

Projecting Eq. (2) on the movement direction we obtain:

m · at cos θ = Ft · cos θ − m · g · sin θ − kf · vt · cos θ (3)

Note that g denotes the gravitational constant, m is the mass of the car
and kf represents the friction coefficient. Ft is the force of the thruster and it
represents the input that controls the dynamics of the model. Simplifying Eq. (3)
by m · cos θ we obtain:

at =
Ft

m
− g · tan θ − kf

m
· vt (4)

Note that tan θ is the slope of the tangent to the curve representing the
mountain range. If y = f(x) is the equation of this curve, it follows that tan θ =



Experiments with Mountain Car Problem 145

Fig. 1. Mountain car physical environment.

df(x)
dx (xt) = f ′(xt) = ω · cos ωxt. Substituting vt = ẋt and at = ẍt, Eq. (4)

becomes:
ẍt =

Ft

m
− g · ω · cos ωxt − kf

m
· ẋt (5)

Differential Eq. (5) gives the dynamics of the car under the control of the
thrust force. The system state is captured by the pair (xt, vt) = (xt, ẋt) contain-
ing the location and the velocity of the car in horizontal direction. The initial
state is (x0, 0) where x0 is the initial location of the car in the vicinity of − π

2ω .
This equation is usually presented in discretized form (6) with a time step h > 0
using Euler’s numerical integration method.

ẋt+h = ẋt + h · (Ft

m − g · ω · cos ωxt − kf

m · ẋt)
xt+h = xt + h · ẋt

(6)

Note that Eqs. (6) still represent a discrete time continuous model, as the
time is discrete but the states are continuous.

The aim of the Mountain Car problem is to reach the goal location on the
top of the right hill. Therefore each action of the car is rewarded accordingly. In
the weaker version of the problem it is assumed that the car does not know the
goal. So the only way to perceive the goal is when it was reached. Therefore the
car is rewarded a small negative value (usually −1) for each reached state that
does not achieve the goal.

3.2 Model Exploration Using Random Walk and Numerical
Simulation

In this section we provide an experimental investigation of the Mountain Car
model as defined by Eq. (6) using numerical simulation. We have performed



146 A. Bădică et al.

experiments using our own hand-crafted Mountain Car model. We chose this
approach after noticing that the simulation using our model was faster than the
one provided by OpenAI Gym.

We set the Mountain Car model parameters to obtain a mathematical
model similar to that included in OpenAI Gym [1] and standard reference ([7,
Chapter 10.1]):

ω = 3.0 m = 1000.0 g = 0.0025/3.0
kf = 0 h = 1.0 xg = 0.5
Ft ∈ {−1, 0, 1} xt ∈ [−1.2, 0.6] vt ∈ [−0.07, 0.07]

(7)

Note the bounds of position and velocity in Eqs. (6). While the bounds of
location are pretty obvious, taking into account Eq. (1), the bounds of velocity
are far from obvious. Therefore we decided to evaluate them experimentally
by performing a series of random walks in the Mountain Car model given by
Eqs. (6). Each random walk represents an episode of the simulation, in which
the car starts from the initial state and drives until reaching the goal state.

The simulation is described by Algorithm 1. This algorithms takes the Moun-
tain Car environment Env and the total number ITMAX of episodes and
returns the bounds of position and velocity (pmin, pmax, vmin, vmax), as well
as the vector Episodes containing the length of each episode. We assume that
the API of the Mountain Car environment supports the following methods:

– reset() that resets the environment to its initial state as a random value in
the vicinity of − π

2ω . This method returns the state and the value of done that
is reset to False.

– step(action) that takes an action from the action space and determines the
next state of the environment. If the goal is reached, flag done is set to True.

– random action() that returns an action of the car by sampling the action
space.

– Note that methods reset() and step(action) return also the reward, but this
is not used in Algorithm 1.

We have implemented Algorithm 1 in Python 3.7.3 on an x64-based PC with
a 2 cores/4 threads Intel i7-5500U CPU at 2.40 GHz and running Windows 10.

The total simulation time for 2000 episodes was 1057.793 s, i.e. approximately
18 min. Episode lengths were distributed in the interval [865, 324776] with an
average value of 42209.101 and standard deviation of 37989.213.

Figure 2 presents the 80 bins histogram of episode lengths. It is interesting
to observe that the shape of this histogram suggests a log-normal distribution
of the episode length [2]. This observation is also supported by the high value
obtained for the standard deviation that is typical for log-normal distribution.
However, observe that the shape is clipped and highly skewed to the left side,
as there is a strictly positive minimum length of an episode.

The minimum and maximum bounds of velocity that were recorded during
this simulation were vel min = −0.06587993 and vel max = 0.05977063, thus



Experiments with Mountain Car Problem 147

Algorithm 1.MountainCarRandomWalk(Env, ITMAX) algorithm for deter-
mining the position and velocity bounds in Mountain Car problem using a series
of random walks. The algorithms returns also the vector of lengths of each driving
episode from initial state to the goal state.
Require: Env. The environment model of the Mountain Car problem.

ITMAX The number of episodes.
Ensure: Episodes. Vector of lengths of each episode.

pmin, pmax, vmin, vmax. Position and velocity bounds.
1: Episodes ← []
2: (pmin, pmax, vmin, vmax) ← (0, 0, 0, 0)
3: for k = 1, ITMAX do
4: (p, v, done) ← Env.reset()
5: count ← 0
6: while ¬done do
7: action ← Env.random action()
8: (p, v, done) ← Env.step(action)
9: (pmin, pmax) ← (min(pmin, p),max(pmax, p))

10: (vmin, vmax) ← (min(vmin, p),max(vmax, p))
11: count ← count + 1
12: Episodes.append(count)
13: end while
14: end for
15: return Episodes, pmin, pmax, vmin, vmax

Fig. 2. The 80 bins histogram of episode length using data from 2000 episodes.



148 A. Bădică et al.

confirming the bounding box [−0.07, 0.07] set for the velocity in the Mountain
Car model. The bounds recorded for the position were pos min = −1.2 and
pos max = 0.52564615, again confirming expectations.

4 Optimal Control Using State Discretization
and Q-Learning

4.1 Q-Learning and SARSA Algorithms

We model our autonomous car as an intelligent agent that is able to perceive its
environment through sensors and act upon that environment through actuators,
as shown in Fig. 3. In particular we are interested to employ the technique of rein-
forcement learning to let the car “learn” an optimal acting policy through self-
driving episodes. Reinforcement learning aims to optimize agent action based on
action feedback as punishments and/or rewards. An agent percept in this model
will consist of a pair state, reward. The state represents the agent observation
of the environment state, while reward is a real value that locally estimates the
“goodness” of that state from the agent perspective.

Fig. 3. Elements of an intelligent agent.

The agent strategy specifies what the agent must do in each observed envi-
ronment state. If agent takes action a in state s then environment will transit
in state s′. We assume that the environment is Markovian, i.e. its next state
depends only on its current state and agent action. If E denotes the set of envi-
ronment states and A denotes the set of agent actions, the strategy is called
policy and it is defined as function π mapping each state to an action:

π : E → A (8)



Experiments with Mountain Car Problem 149

Let us assume that the reward of the agent by taking action a in state s is
denoted as R(s, a) and that the initial state of the environment is s0. An agent
following a given policy π will generate the following agent run:

r = s0
a0=π(s0)−−−−−−→ s1

a1=π(s1)−−−−−−→ . . .
an=π(sn)−−−−−−→ sn+1 . . . (9)

The utility perceived by the agent for the run [s0, a0, s1, a1, s2, a2 . . . ] accu-
mulates all the rewards that were perceived by the agent in each visited state.
We assume a potentially infinite horizon of the agent, i.e. the length of the agent
run is unbounded. As there are goal states, the agent run is terminated when a
goal state is reached. In order to guarantee the convergence of the agent utility
in the presence of unbounded runs, we assume a discounted additive utility of
the agent, defined as follows:

Uπ(s = s0) = U([s0, a0, s1, a1, . . . , sn, an, . . . ]) =
∑

n≥0

γn · R(sn, an) (10)

Equation (10) suggests the recursive definition of Uπ(s) for each transition

s
a=π(s)−−−−→ s′ given by Eq. (11).

Uπ(s) = R(s, a) + γ · Uπ(s′) (11)

Assuming that the discount factor is 0 < γ < 1 and the set of rewards
{R(s, a)}s∈E,a∈A is bounded, the utility of the agent is well defined by Eq. (10).

The aim of reinforcement learning is to determine the optimal policy π that
maximizes the value of Uπ(s) for all states s. The corresponding maximum value
U(s) represents the utility of the agent in state s by running its optimal policy.

U(s) = max
π(s)=a∈A

Uπ(s) (12)

Maximizing for π in Eq. (11) we obtain recurrence (13) for agent utility. This
is a model-based equation, as it explicitly uses the transition model s

a−→ s′ of
the environment. In a realistic setting, this model is not available to the agent.

U(s) = max
a∈A,s

a−→s′
(R(s, a) + γ · U(s′)) (13)

Q-learning aims to determine the values Q(s, a) that estimate the utility of
the agent when taking action a in environment state s. Then the optimal policy
is defined as:

π(s) = argmax
a∈A

Q(s, a) (14)

We can derive a model-based recursive equation defining Q values, following
Eq. (13). However, as we assume that the transition model of the environment is
not available, for the computation of Q values we shall use temporal difference
learning. If the currently observed state is s then the agent will choose a certain
action a using a given learning strategy. This produces reward R(s, a) and next



150 A. Bădică et al.

state s′. Then the value Q(s, a) is updated using Eq. (15). Hyper-parameter α
(learning rate) can be set to a constant small positive value or it can be computed
as the harmonic sequence αn = A/(B + C · n) (A,B,C are positive constants)
depending on the number n of times action a was taken in state s. Note that for
C = 0 the learning factor is constant α = A/B.

Q(s, a) = (1 − α) · QOLD(s, a) + α · QNEW (s, a)
= QOLD(s, a) + α · (QNEW (s, a) − QOLD(s, a)) (15)

We consider two related algorithms that follow Eq. (15) for updating Q values
for each observed transition:

– Q-learning that computes QNEW using Eq. (16).

QNEW (s, a) = R(s, a) + γ · max
a′∈A

Q(s′, a′) (16)

– SARSA that computes QNEW using Eq. (17). Here a′ is the agent action in
state s′ determined using the learning strategy.

QNEW (s, a) = R(s, a) + γ · Q(s′, a′) (17)

The learning algorithm follows an epsilon-Greedy strategy that mixes explo-
ration and exploitation. Exploration favors random actions, while exploitation
favors the locally best actions based on current Q value. The choice between
the two possibilities is determined by a Bernoulli experiment with a probability
0 ≤ ε ≤ 1. As the learning proceeds, ε is decreased so exploitation (i.e. Greedy
choice) is favored in the limit.

4.2 State Discretization

State discretization strategy follows the idea from [8]. Its effect is to transform
our discrete time continuous model (6) into a finite state model. The size of the
resulting model is controlled by the discretization step.

Let us consider a state variable with domain [a, b) and a natural number
n ∈ N representing the number of states of the finite state representation. The
discretization step is computed as h = (b−a)/n. Each value x ∈ [a, b) is mapped
to a natural number digi(x) ∈ {0, 1, . . . , n − 1} according to Eq. (18).

digi(x) = k ∈ {0, 1, . . . , n − 1} ⇐⇒ x ∈ Ik = [a + k · h, a + (k + 1) · h) (18)

Discretization in Q-learning is useful to control the size of the table Q[s, a].
In the Mountain Car problem there are two state variables: position and velocity.
If the finite state representation uses np positions and nv velocities then the size
of Q table is 3 · np · nv.

State discretization is used as follows. Before performing the update of the Q
values, the observed state is digitized. Then the action determination according
to the learning strategy and the update itself will use the digitized value of the
state. This basically means that for all states s ∈ Ik for which digi(s) = k the
algorithm will determine the same value in the Q table.



Experiments with Mountain Car Problem 151

4.3 Experimental Results

We have implemented the Q-learning and SARSA algorithms presented in this
section. The starting point of our implementation is [8]. We have extended the
implementation in many directions, as follows:

– We have added the SARSA algorithm, not present in [8].
– We have added our own implementation of the Mountain Car model, fol-

lowing the complete physical model developed in Sect. 3. Using our model,
the learning runs considerably faster than using the OpenAI Gym provided
model.

– We have added two additional visualizations of the optimal policy and of the
model exploration during learning process.

– We have added a procedure for evaluating the policy computed by the algo-
rithms.

A training session using either Q-learning or SARSA involves performing a
sequence of NE episodes. Each episode is a sequence of agent steps, following
the learning algorithm. An episode can finish either by reaching a maximum
preset number of steps NLE or by reaching the goal state. Differently from [8],
we imposed a significantly larger upper bound of each episode of the learning
session. This decision was taken based on the observation that more than 50%
of the episodes of a series of random walks actually reached the goal state after
a reasonable number of steps (below 30000).

The probability ε of selecting exploration versus exploitation starts from an
initial value εs and it is decreased at a constant rate after each episode until it
reaches the minimum value εf < εs. The rate of decrease is Δε = (εs − εf )/NE .

The policy determined by the learning algorithm was evaluated by running
a fixed number of episodes NTE , each with a maximum number of steps NTS .
Then we determined the percent of episodes that reached the goal state acc,
as well as their average length len. For each episode we recorded the value
of the accumulated rewards. Then we plotted the moving average of each Nm

consecutive accumulated rewards.
The description and the values of the parameters that we have used in our

experiments are summarized below:

– NE = 4000. Number of learning episodes.
– NLE = 30000. Maximum number of steps of a learning episode.
– εs = 0.6. εf = 0.01. Maximum (initial) and minimum (final) value of the

probability of selecting exploration versus exploitation during learning.
– NTE = 1000. Maximum number of episodes for testing the policy computed

by the learning algorithm.
– NTS = 500. Maximum number of steps of running each episode for testing

the policy computed by the learning algorithm.
– np, nv ∈ {10, 20, 30, 40}. Number of discretization steps for position and veloc-

ity.
– γ = 0.99. Discount factor.



152 A. Bădică et al.

– A = 1.0, B = 10.0, C = 0.01. Parameters of the harmonic learning factor αn.
– Nm = 50. Number of rewards used to compute and plot the moving average

of the accumulated rewards per each learning episode.

Our experimental results are presented in Tables 1 and 2. Each table entry is
defined for a specific value of the discretization parameters nl and nv. Topmost
halves of each table refer to Q-learning, while bottom half of each table refers
to SARSA.

Table 1 presents the accuracy (percentage of successful test episodes) and the
average length of the car trajectory (from successful episodes) generated by the
policy computed by the algorithm. First of all observe that all the 32 algorithm
runs produced an accuracy higher than 73%, only 3 runs produced an accuracy
below 80%, 6 runs produced an accuracy below 90% and 24 runs produced an
excellent accuracy higher than 95%. In 9 runs the accuracy was actually 100%.

The average of the length of the shortest trajectory was 140.99 and it was
obtained by SARSA algorithm for np = 20 and nv = 30 (shown in bold under-
lined in Table 1). Combined with the excellent accuracy 99.90%, clearly this case
can be considered as providing the best result among all the cases. Note also
that close and consistent results for np = 20 and nv = 30 were also obtained by
the Q-learning algorithm.

Table 1. Accuracy (acc) and average solution length (len) obtained with Q-learning
(top) and SARSA (bottom) algorithms.

np/nv 10 20 30 40

10 80.10%, 169.75 96.20%, 150.54 99.20%, 154.68 100%, 243.46

20 90.10%, 172.05 100%, 157.97 99.60%, 147.26 100%, 160.73

30 94.40%, 158.01 98.40%, 179.66 100%, 171.51 100%, 145.14

40 77.30%, 157.77 97.80%, 150.23 99.30%, 147.64 99.30%, 195.60

10 81.00%, 174.16 96.70%, 154.68 99.30%, 155.96 100%, 151.28

20 86.00%, 168.38 100%, 156.47 99.90%,140.99 73.50%, 154.38

30 95.50%, 165.31 98.50%, 157.80 100%, 168.21 100%, 149.57

40 76.30%, 208.01 97.90%, 147.78 99.70%, 176.92 95.10%, 184.15

Table 2 presents the total number of iterations performed by each experi-
mental case during learning. Note that the values were different as we did each
training episode until the goal state was reached, by setting a high value for the
maximum number of iterations per episode (to force closing really long-running
training episodes). The shortest number of iterations was done for training the
Q-learning algorithm for np = 20 and nv = 30. Moreover, in this case the accu-
racy of the solution was 100%. However, as regarding its optimality, The average
of the length of the shortest trajectory was 157.97 (see cell in bold underline in
Table 2), i.e. higher than the best case 140.99.



Experiments with Mountain Car Problem 153

In our opinion, the differences between the results obtained by Q-learning
and SARSA were not significant. Therefore, we also checked if there is some
statistical similarity in the results produced by the algorithms. We found a pos-
itive correlation (0.983) between the number of iterations produced by each
algorithm, as well as a positive correlation 0.686 between the accuracy of the
algorithms. However, the average lengths of the trajectories generated by the
solution policies were uncorrelated (0.038).

We also checked if there are any correlations between the results within each
algorithm. Among all the situation, we found interesting the negative correlation
between the number of iterations and the accuracy of the solution in both algo-
rithms (−0.46 for Q-learning and −0.33 for SARSA). One possible explanation
could maybe that the higher number of iterations indicates some difficulties in
the learning process, difficulties that are also explained by the lower accuracy of
the solution.

As part of our numerical simulation program for learning the optimal policy
and testing the solution, we have also developed three visualizations for pre-
senting: i) the convergence of the accumulated rewards during learning; ii) the
optimal policy; iii) the exploration done by the car agent during the learning
process.

Table 2. Number of iterations performed by Q-learning (top) and SARSA (bottom)
algorithms.

np/nv 10 20 30 40

10 1332618 1161777 1245702 1285570

20 1306056 1156701 1178533 1244548

30 1474829 1236062 1272904 1373627

40 1563608 1347271 1394002 1510739

10 1346977 1182048 1227957 1323528

20 1347295 1176168 1215110 1291964

30 1442344 1258570 1312203 1411848

40 1585404 1358674 1437671 1548015

Figure 4 presents the accumulated reward convergence process for the case
that we considered the best: SARSA with np = 20 and nv = 30.

Figure 5 presents the policy computed by SARSA algorithm with np = 20
and nv = 30. The color codes represents actions performed by the policy in
each state, while small rectangle patches represent the digitized states of the
Mountain Car model.

Figure 6 is an example plot showing how the car agent is exploring the envi-
ronment by taking push right moves. Similar visualizations were produced for
no push, push left as well as total number of actions taken by the agent car in
each state of the environment.



154 A. Bădică et al.

Fig. 4. Convergence of accumulated rewards during learning in SARSA with np = 20
and nv = 30, plotted as the moving average of results obtained for Nm = 50 consecutive
episodes.

Fig. 5. Policy computed by SARSA with np = 20 and nv = 30.

Fig. 6. Number of push right actions per state during SARSA learning for np = 20
and nv = 30.



Experiments with Mountain Car Problem 155

5 Conclusions and Future Work

In this paper we provided a theoretical and experimental analysis of the Moun-
tain Car Problem. We have explained the physics of the dynamic model of the
Mountain Car. We have used the model to perform a sequence of random walks in
order to better understand the problem. Then we have shown how the problem
can be solved by combining state discretization with Q-learning and SARSA
algorithms. We provide detailed experimental results regarding the computa-
tional effort incurred by these algorithms, as well as the accuracy and optimal-
ity of the solutions produced by the algorithms. As future work, this research
can be extended by: i) incorporating different reinforcement learning algorithms
for the Mountain Car problem; ii) providing similar analysis for other standard
benchmark problems in reinforcement learning.

References

1. Brockman, G., et al.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)
2. Limpert, E., Stahel, W.A., Abbt, M.: Log-normal Distributions across the sciences:

keys and clues: on the charms of statistics, and how mechanical models resembling
gambling machines offer a link to a handy way to characterize log-normal distribu-
tions, which can provide deeper insight into variability and probability-normal or
log-normal: that is the question. BioScience 51(5), 341–352 (2001). https://doi.org/
10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2

3. Moore, A.W.: Efficient memory-based learning for robot control. Ph.D. thesis, Com-
puter Laboratory, University of Cambridge, Cambridge CB3 0FD, United Kingdom
(October 1990)

4. Moore, A.W.: Variable resolution dynamic programming: efficiently learning action
maps in multivariate real-valued state-spaces. In: Birnbaum, L.A., Collins, G.C.
(eds.) Machine Learning Proceedings 1991, pp. 333–337. Morgan Kaufmann, San
Francisco (1991). https://doi.org/10.1016/B978-1-55860-200-7.50069-6

5. Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing eligibility traces.
Mach. Learn. 22(1), 123–158 (1996). https://doi.org/10.1023/A:1018012322525

6. Sugiyama, M.: Statistical Reinforcement Learning. Modern Machine Learning
Approaches. Chapman and Hall/CRC, Boca Raton (2015)

7. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The
MIT Press, Cambridge (2020)

8. Tabor, P.: Q learning with just NumPy. Solving the mountain car. Tutorial (2019).
https://www.youtube.com/watch?v=rBzOyjywtPw&t=3s. Accessed 7 Jan 2022

http://arxiv.org/abs/1606.01540
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
https://doi.org/10.1016/B978-1-55860-200-7.50069-6
https://doi.org/10.1023/A:1018012322525
https://www.youtube.com/watch?v=rBzOyjywtPw&t=3s

	Experiments with Solving Mountain Car Problem Using State Discretization and Q-Learning
	1 Introduction
	2 Related Works
	3 Modeling the Mountain Car Problem
	3.1 Physics of the Mountain Car Problem
	3.2 Model Exploration Using Random Walk and Numerical Simulation

	4 Optimal Control Using State Discretization and Q-Learning
	4.1 Q-Learning and SARSA Algorithms
	4.2 State Discretization
	4.3 Experimental Results

	5 Conclusions and Future Work
	References




