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Abstract. Stream clustering is a technique capable of identifying homo-
geneous groups of observations that continuously arrive in a digital
stream. In this work, we inherently refine a TF-IDF-based text stream
clustering algorithm by the introduction of an automated distance
threshold adaption technique for document insertion and cluster merg-
ing, improving the performance during distributional changes in the data
stream. By conducting a thorough evaluation study, we show that our
new fast approach outperforms state-of-the-art one-pass and batch-based
stream clustering algorithms on various existing benchmarking datasets
as well as a newly introduced dataset that poses additional challenges to
the community. Moreover, we find that current evaluation approaches in
the field of textual stream clustering are not adequate for a sound cluster-
ing performance assessment of evolving distributions. We thus demand
the utilization of time-based evaluation.

Keywords: Stream clustering + Text mining - Concept drift

1 Introduction

Nowadays, researchers are confronted with large amounts of poten-
tially unbounded data that have to be processed to extract desired information as
quickly as possible in (almost) real-time. Even worse, there is so much data avail-
able that algorithms can only iterate over the data once to ensure timely process-
ing leading to a new sub-domain of unsupervised learning: stream clustering [13].
In this work, we compare the performance of state-of-the art text-based stream
clustering algorithms on various challenging datasets. Moreover, we improve and
refine the initial draft of a textual stream clustering algorithm that we proposed
in [5] to analyze chats on the Twitch platform. We introduce a mechanism that
automatically determines the critical distance threshold parameter that controls
the creation of new clusters and develop a new strategy to merge existing clusters
close to each other. To validate the performance of our new approach, we conduct
a thorough comparison between this new algorithm which we call textClust and
existing state-of-the-art competitors on multiple datasets and evaluation metrics.
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We show that we outperform existing one-pass stream clustering algorithms and
even their computationally more complex batch-based alternatives. We identify
shortcomings of current evaluation approaches that do not account for concept
drift and propose time-based evaluation in upcoming studies.

Stream Clustering. Usually, stream clustering algorithms follow a widely
accepted two-phase approach [1]. First, incoming data is aggregated on-the-fly,
i.e., within an online phase. Here, not the complete dataset but only statistical
summaries of dense areas in data-space (text-documents with high similarity)
are kept for further analyses. These statistics are often referred to as micro-
clusters. While the online phase is continuously running, micro-clusters may be
re-clustered on demand and in an offline manner into so-called macro-clusters.
In this offline step, traditional clustering approaches can be applied, and it is
possible to iterate over the micro-clusters multiple times. An inherent property
of data streams is that the underlying data distribution may change over time
(also called concept drift). A comprehensive benchmark study between different
stream clustering algorithms was conducted in [4].

1.1 Recent Work on Textual Stream Clustering

Textual stream clustering algorithms can be broadly classified according to pro-
cessing mode and representation. The processing mode differentiates between
one-pass and batch-based approaches. While an established assumption in the
field is that streaming data must be processed and discarded afterward, some
recent works relax this strict assumption and allow for batch-processing. In each
batch, multiple iterations over the data are allowed [16]. Well-known represen-
tatives of this batch variant are the MStream algorithm presented by Yin et al.
[16], and DP-BMM by Chen et al. [6]. One-pass clustering only allows that a new
observation is processed once and has to be discarded after cluster assignment.
0SDM, EStream, and the textClust algorithm are all representatives of this type
of stream algorithms, although MStream and DP-BMM also offer a one-pass variant
that can be utilized (for MStream this variant is called MStreamF).

Next to the processing mode, textual stream clustering algorithms are differ-
entiated by their underlying representation of input documents. In vector-space
methods each document and also the corresponding clusters are represented
in a high-dimensional vector space using Term Frequency (TF) and Inverse
Document Frequency (IDF) based representations [2,5,8]. The cosine similarity
and the Euclidean distance are usually employed for calculating the proximity
between clusters and new documents. Most recent research endeavors focus on
model-based approaches, arguing that vector-space variants, in general, suffer
from high dimensionality. Moreover, it is argued that selecting an appropriate
distance threshold for deciding if a document is assigned to a cluster or not
is infeasible. On the other hand, model-based approaches assume that topics
(or clusters) emerge from an underlying generative model [6,9,17]. Those algo-
rithms try to infer the distributional parameters by various means, such as Gibbs
Sampling. Recently, Kumar et al. proposed a new stream clustering algorithm
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that explicitly targets short text content [9]. Their model-based 0SDM algorithm
follows the idea of several other approaches [6,9,17], which assume that (text)-
documents are constructed by a generative Dirichlet multinomial mixture model.

While MStream utilizes unigrams for text representation, DP-BMM uses
bigrams to overcome the data sparsity problem that often comes with short-
text processing. The authors of 0SDM extend these works by incorporating the
semantic importance of words via co-occurrence information. Thereupon, Rakib
et al. [11] improved the semantic clustering approach by utilizing pretrained doc-
ument embeddings for outlier detection. Xu et al. improve the original MStream
by considering topical correlations between different time steps (batches) with
the introduction of DCSS [15]. In very recent work, Rakib et al. introduce the
EStream online one-pass algorithm that dynamically computes similarity thresh-
olds by utilizing distributional properties of common feature similarities [12]. In
the following, we describe textClust in detail and moreover elaborate on signifi-
cant improvements of the original work, such as an automated distance threshold
selection.

2 Distance Based Clustering with Automatic Threshold
Determination (textClust)

text example input
clusters
n-grams ‘example(i) ‘ ‘input(l) ‘
(here: unigrams o IDF-TF,
and bigrams) example imput(D) .

IDF-TF,

Fig. 1. Visualisation of the insertion strategy. A new incoming text is tokenized and
n-grams and term frequencies created. Then, the IDF is computed from the term
frequencies of all existing clusters. This allows to compute the TF-IDF vectors in order
to measure the cosine similarity between the existing clusters and the new text.

textClust makes use of the common two-phase approach of stream cluster-
ing (see Sect. 1). First, an online component summarizes the stream in real-time,
resulting in several micro-clusters that represent dense areas in the data space.
In order to remove outdated clusters and merge similar clusters, a cleanup proce-
dure is executed periodically. Finally, when the algorithm is supposed to output
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the final topics, these micro-clusters are reclustered into a final set of macro-
clusters. textClust represents its micro-clusters mc as 3-tuples:

me = (TF,t,w) (1)

With me. TF, the cluster holds a vector of token term frequencies as n-grams.
The scalar mc.t depicts the last time the micro-cluster was updated and the
weight mc.w how often a new observation was merged into that cluster (indi-
rectly depicting cluster importance). Each time a new observation is merged into
an existing cluster, the respective weight increases by 1. To account for distribu-
tional changes (concept drift), the cluster weights are exponentially faded each
time a new observation appears in the data stream:

fw) i=w - 272w =) X5 0 400 >t (2)

The parameter A represents the fading (decay) factor, t,., the recent time
stamp, and ¢ the time of the last micro-cluster update. ¢44, specifies the interval
(number of new observations), after which a cleanup procedure and micro-cluster
merging are triggered. This cleanup procedure removes all micro-clusters below
a predefined weight threshold (i.e., clusters that were not recently updated)
from the clustering result, ensuring that outdated micro-clusters are ultimately
removed from the set of all existing clusters. The same fading method is applied
to the token level (term fading). All tokens within a micro-cluster (mc.TF)
have an associated weight which is updated and increased by one when a new
observation with the same token is merged into the cluster. To determine the dis-
tance between two micro-clusters or a micro-cluster and a new incoming text, the
inverse document frequency of a term is calculated over all micro-clusters (which
are assumed to represent all documents). To calculate the distance between two
of these sparse TF-IDF vectors a and b, initially, the cosine similarity is calcu-
lated by using the dot product:

a-b
llall2 - [16ll2
As the TF-IDF vectors contain positive frequencies, cos(w) € [0, 1], this leads to
the cosine distance

cos(f) = with 6 := Z(a,b) (3)

Deos(a,b) = 1 — cos(6). (4)

When a new observation arrives at the stream, a new virtual micro-cluster

MCnew s created (with w = 1), and its cosine distance to all other micro-clusters

is calculated. The closest micro-cluster is selected to be merged when its distance

falls below a predefined threshold ¢r. The merging process between both clusters

is realized by fading their weight according to the current time t,,,, and taking
the union of their term frequencies:

mer+mes = (L Uth tuou,  wy 27200 T oy 27 Ml (5

If, however, the distance threshold ¢r is not reached, the new virtual micro-
cluster is added to the set of all clusters. The hyperparameters tr, A, and t4q4p
have to be set in advance and especially ¢r highly influences the final clustering
result (see Sect. 3.4). textClust’s insertion strategy is displayed in Fig. 1.
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2.1 Automatic Tresholding During the Online Phase

One of the main limitations of similarity or distance-based stream clustering is
the adequate threshold (¢r) selection for micro-cluster assignments. In the pre-
liminary concept of our algorithm, a fixed distance threshold was used for (a)
deciding whether new observations are merged into the closest existing micro-
cluster and (b) for determining when existing micro-clusters should be merged
during the cleanup procedure. Experiments and several real-world applications
of the algorithm revealed that the threshold parameter highly influences the final
clustering result [3]. Intuitively, a distance threshold that is too large will result
in a small number of micro-clusters that contain diverse topics. On the contrary,
a threshold that is too small will result in multiple, small mixed-topic micro-
clusters. Selecting an adequate threshold is therefore imperative for achieving
good clustering results. However, as we are dealing with stream data that is
subject to distributional changes, we are additionally confronted with the prob-
lem that a fixed threshold may not be optimal along the entire stream.

Until now, when a new observation arrives at the stream, a new virtual micro-
cluster me,eq 18 created and textClust calculates the distance between mcyeqy
and each existing micro-cluster. If this distance is smaller than the previously
specified fixed threshold (¢r), the algorithm merges mc;,., into the closest cluster
(mcep). Otherwise, mcyeq, is added to the set of all micro-clusters. To automate
the threshold selection, we assume that we want to merge an observation into an
existing micro-cluster if it is sufficiently close to it compared to all other currently
existing micro-clusters. As the distance between me,,¢, and each existing micro-
cluster is already calculated during the online phase, we can easily record the
mean distance as:

1
o= m Z Deios(mepew, mc) (6)
mceMC\{mec }

where M C denotes the set of micro-clusters. The standard deviation o of those
distances results as:

1
=\ mermt X Desmenewme? | —2 ()
meeMC\{mce }

We can calculate both p and o by storing the (square) sum of all distances
leading to a new definition of the threshold ¢r as

tr=p—c-o. (8)

Intuitively, ¢r is set such that the observation’s distance to its closest micro-
cluster is smaller (within ¢ times sd) than the average distance to all other
micro-clusters. Thus, ¢r is always adjusted w.r.t. existing micro-cluster distances.
Hence, distributional changes in the stream are also reflected in a dynamic change
of the threshold, instead of using a fixed distance for the complete stream. In
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the calculation of i and o, we explicitly exclude the closest micro-cluster mc;
in order to avoid bias. Our experiments (see Sect.3.4) indicate that a constant
weight ¢ of 0.5 for o proved to produce very satisfying results for a variety of
different datasets.

A distance threshold is also required during the micro-cluster merging process
for cleaning purposes. Originally, textClust used the same fixed threshold as for
cluster assignment. For dynamic adaption, we now keep track of the minimum
distances D.,s w.r.t. merging observations into an existing micro-cluster:

Dmerge - Dmerge + Dcos (mcnewy chl), if Dcos (mcnewa mccl) <tr (9)

Intuitively, we collect a sum of distances for each time window that lead to
merging new observations rather than creating new micro-clusters. If two micro-
clusters are closer than the average observation merging distance, we assume that
they belong together and should be merged. The observation merging distance
may vary over time due to concept drift and our dynamic threshold adaption.
Therefore, we reset Dyyerge at the end of each cleanup procedure.

2.2 Algorithm Specification

The pseudo-code of our new online-component is shown in Algorithm 1. First,
the algorithm reads a new text @ from the stream (Line 3). As a preprocessing
step, the text is then converted to lower case and split into individual tokens
or words (Line 4). In contrast to the initial proposal of this algorithm, we also
remove all stop words from the input.

The remaining list of tokens is then used to construct n-grams and count
their frequency with 7, and 1,4, specifying the gram-range (Lines 5 — Line 6).
From the results we create a new virtual micro-cluster mcye,, (Line7). Before
computing the cosine similarity /distance, we also require the IDF vector across
all documents which are computed on-the-fly from the set of all existing clusters.
With the IDF vector we calculate the TF-IDF representations of each existing
and the new virtual micro-cluster mcye, allowing us to compute the cosine dis-
tance between them (Line 12). The closest micro-cluster becomes our candidate
for merging (Line 15).

Subsequently we check whether the candidate is sufficiently close to mcpeqw
such that both can be merged. Suppose its distance is not larger than ¢r, which
we compute from the mean and standard deviation (p, o) of all other micro-
cluster distances. In that case, we assume that the text fits into the cluster (u
and o are computed as specified in Line 16). We then merge the components
of Mcpeyw into the candidate cluster (Line 21). In order to update the weight
correctly, we first need to ensure that the cluster’s weight has been decayed to
the current time (Line 20). However, if the distance to the candidate is larger
than tr, mcye, does not fit the cluster sufficiently well. In this case, we add the
temporary micro-cluster mcpe, to the set of all clusters (Line 23). Note that
the set of micro-clusters MC will be empty initially. In this case, we can skip
the candidate selection and initialize a new cluster for @ directly. The cleanup
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Algorithm 1. textClust
Require: Nmin; Nmax; A, tgap, €
Initialize: MC =0,S =0

1: while stream is active do

2: tnow < current timestamp

3: Read new text & from stream at time t,ouw

4: Preprocess & (lowercase, tokenization and stopword removal)

5: Build n-grams from tokens Vn € {Nmin, - - -, Mmax }

6: tf <« Count frequency of n-grams

7: Mepew — (tf, tnow, 1) > cluster with weight one, Eq. (1)
8  p,0,Ds,Daes 0

9: if |MC| > 2 then > The first two observations are considered as separate clusters
10: idf < Calculate IDF from term-frequencies of micro-clusters in MC

11: for each micro-cluster mec € MC do

12: dist «— D¢os(mcpew, mc) > Cosine distance between TF-IDF vectors, Eq. (4)
13: Dy = Dg + dist

14: Dgs = Dy + dist?

15: mece; < closest micro-cluster according to cosine distance D o5

16: /L(—leg,ﬁ,ﬂ(—w/WDc,%—liz

17: tr«—pu—c-o

18: if Deos(mepew, meer) < tr then

19: Dimerge — Dmerge + Deos(Mcnew, meer)

20: MCel W — mcep.w - 2~ A Enow —meep 1) > fade weights (last update mce;.t) Eq. (2)
21: Merge mcpew into micro-cluster meg; > Eq. (5)
22: else

23: Add mcpeqw to set of micro-clusters M C

24: else

25: Add mcpew to set of micro-clusters MC

26: if thow mod tgep = 0 then

27: CLEANUP( - )

28: MERGE(Dmerge)

procedure which is responsible for cluster- and token fading, as well as micro-
cluster merging is triggered each 44, timesteps.

3 Experiments

3.1 Benchmarking Datasets

The most frequently used and accepted text-based stream datasets are News-T
and Tweets-T [16]. Recently, Rakib et al. combined both datasets to NT. Also,
they proposed a new dataset containing question titles from Stackoverflow
(S0-T), and combined it with NT into NTS. All datasets (except for SO-T) are
sorted by topics since it is argued that in a real-world application, topics usu-
ally emerge and disappear after some time [16]. However, we see that there is
still potential for additional evaluation sets that focus on different problems not
captured yet by research. In this work, we generate a new Twitter-based dataset
that is (a) significantly larger than the existing benchmarking data and (b) cap-
tures a low number of popular (trending) and intertwined topics on Twitter over
time. In contrast to existing benchmarking datasets, the captured data is close
to a real-world scenario, where raw social streams (including irrelevant posts) are
monitored, and cluster algorithms should reveal groups of similar topics (conver-
sations) in real-time. This allows us to investigate whether an algorithm works
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comparably well in a realistic setting and not only when, unrealistically, the text
is already preprocessed and sorted. Additionally, we include timestamp informa-
tion to enable clustering based on real-world throughput. We use the Twitter
APT to collect labelled data from the new dedicated Academic API and assume
that a filtered search result for one hashtag/trend represents a single topic dis-
tribution (one class). We query Tweets of different trending hashtags/topics on
the day they occur (we capture 24h of the day) and assign each tweet belong-
ing to the same hashtag to the same class. Data was collected from 10 different
topics/trends. Our new Trends-T dataset consists of 200.000 Tweets.

3.2 Experimental Setup

We evaluate textClust with ¢ = 0.5 for automated threshold adaption on five
different datasets frequently used in related literature for benchmarking pur-
poses. Additionally, we conduct a comparison of the algorithms on our new
Trends-T dataset. We compare the performance of the previously described
state-of-the-art stream clustering one-pass algorithms (EStream, 0SDM), as well
as four batch-based alternatives (MStreamF, DP-BMM, MS-Rakib and DCSS)
[6,10,11,16]. To establish a fair comparison, we use the deterministic one-pass
variants of these algorithms. We did not shuffle the datasets randomly, as most of
them are specifically constructed in a way such that topics only appear in specific
time windows (similar to real-world conversation scenarios). Upon inspection,
the previously introduced SO-T dataset exhibits unique characteristics. Topics
are globally shuffled and do not reveal true time-dependency. Secondly, there
are systematically more ground-truth clusters (10% of the total data stream vs.
less than 1% for the other datasets). Choosing the correct evaluation procedure
for a textual stream clustering scenario is not an easy task. We find that there
does not seem to exist consent in the literature on the procedure to be applied.
In practice, we observe the utilization of two different evaluation strategies. The
first evaluation method we will refer to as global evaluation. Each time a new
observation is assigned to a new cluster, the cluster’s ID is stored, and then the
clustering is updated. After the complete data-input stream has been clustered,
the different metrics are calculated on the stored clustering IDs and compared
to the ground-truth. This technique is quite accepted in literature, as it was
used in several recent works [6,11]. Second, there is an interval-based evaluation.
Here, the cluster results are split into equally sized batches (horizons), and all
evaluation metrics are calculated for each horizon individually. This allows for
tracking the performance of the algorithms over time. When applied, this app-
roach is usually conducted in addition to the global evaluation [9,16]. We argue
that all evaluation approaches should conduct such a time- or interval-based
evaluation procedure as a sole global evaluation is insufficient for determining
how algorithms can adapt to upcoming distributional changes (concept drift) and
often overestimate the actual performance. If, however, prediction quality and
robustness of the stream is focused, prequential [7] evaluation is recommended.
To establish a fair comparison, we use the reference parameter settings, spec-
ified by the authors and do not change them for all other datasets. For both
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batch-based algorithms (DP-BMM and MStreamF) the standard settings are often
optimized on one of the well-established baseline datasets (News-T or Tweets-T).
For 0SDM, we set o = 2¢™3, 3 = 4e~® and A = 6e~5. MStreamF uses a = 3e~2,
B =3e 2, iter = 10 (number of iterations) and the number of stored batches to
1. The EStream algorithm only consists of a single parameter which determines
the delete interval (DI). We set DI to 500, as proposed in the original work [12].
For textClust we only need two parameters, as the threshold is now dynamically
determined, i.e. we fix standard parameters A\ = le~2 and tgap = 200.

3.3 Evaluation Metrics

In this work, we focus on external evaluation metrics, i.e., metrics that use
ground-truth (a-priori) information. Moreover, we only evaluate micro-clusters
and leave the macro-cluster perspective to a future endeavor as all of the com-
peting algorithms are developed as pure online methods, only focusing on micro-
level. While there are internal cluster evaluation metrics such as the Silhouette
coefficient, the Dunn Index and other density-measures, we omit these in our
experimental evaluation since those evaluation metrics are intrinsic measures
that are usually biased towards certain cluster shapes (and thus favor those
algorithms which optimize towards them). For micro-cluster evaluation, we use
the homogeneity, completeness and Normalized Mutual Information (NMI) [14].
We employ the widely accepted normalized variant of Mutual Information (NMI)
for evaluation which scales the results to a range between 0 and 1 [14].

3.4 Experimental Results

In Table 1 the performances of the algorithms for both global and interval-based
evaluation are displayed for all datasets®. The horizon for the interval-based app-
roach is heuristically set to 1000 and the mean result of all horizons is calculated.
As textClust and EStream are deterministic, no repeated runs are necessary.
For the other algorithms we report the mean of 5 runs. Clearly, the NMI results
show that textClust outperforms existing algorithms on most of the exam-
ined datasets (News-T, Tweets-T, NT, NTS and Trends-T). An exception is the
new SO0-T dataset, where EStream produces slightly better results. Nonetheless,
textClust can compete in contrast to other approaches which seem to deterio-
rate over time (see Fig. 2). Interestingly and in accordance with previous publi-
cations, we find that completeness scores tend to be lower than the homogeneity
scores. This indicates that online clusters themselves are quite pure with low
entropy, but the topics themselves are distributed over multiple clusters instead
of a single one. We argue that this behavior does not necessarily exhibit wrong
clustering behavior or a bad clustering at all. To achieve a perfect completeness
score, each observation of a specific class must be assigned to the same clus-
ter. However, because of the dynamic nature of stream clustering algorithms,

L All evaluation scripts and results are made publicly available on Github: https://
github.com/Dennis1989 /text Clust-experiments.
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Table 1. Algorithm performance for global and interval-based mean evaluation. Top
performances are highlighted in bold.

Metric | Ns-T |Ts-T |[NT |NTS [SO-T [T-T |Ns-T |Ts-T |[NT |NTS |SO-T |T-T
Global results Mean results

DP-BMM 0.548 |0.395 |0.506 |0.453 |0.118 0.039 |0.875 0.913 |0.948 |0.895 |0.402 |0.229
MSTREAM 0.872 |0.872 |0.927 |0.875 0.120 |0.352 0.884 |0.910 |0.956 |0.885  0.359 | 0.524
MS-RAKIB 0.866 |0.948 | 0.9820.965 |0.632 |0.342 |0.839 0.956 0.982 0.931 |0.652 | 0.509
DCSS 0.916 |0.928 |0.949 |0.947 |0.314 |0.231 |0.874 |0.872 |0.917 |0.832 |0.121 | 0.027
OSDM Hom. 0.900 |0.939 |0.961 |0.903 |0.146 |0.373 |0.891 |0.957 0.982|0.900  0.168 |0.387
EStream 0.956 | 0.963 | 0.931 |0.930 |0.720 |0.381 0.949 0.966 |0.975 |0.967 0.6870.244
textClust-bigram 0.912 [0.941 |0.972 |0.9730.628 |0.927 |0.901 |0.959|0.960 |0.940 |0.611 |0.918
textClust-unigram 0.900 |0.937 |0.968 |0.960 |0.595 |0.929 |0.893 |0.953 |0.954 |0.905 |0.614 | 0.904
DP-BMM 0.718 |0.561 |0.769 |0.641 |0.351 |0.070 |0.791 |0.765 |0.691 |0.537 |0.953 |0.375
MSTREAM 0.870 |0.879 |0.873 |0.798 |0.387 |0.343 0.793 |0.798 |0.691 |0.535 |0.947 |0.475
MS-RAKIB 0.785 |0.689 |0.741 |0.674 0.705 |0.397 0.684 |0.570 |0.492 |0.370  0.963 |0.540
DCSS 0.820 |0.77 |0.887 |0.872 0.556 |0.097 0.750 |0.717 |0.713 |0.605  0.928 |0.097
0SDM Comp. |0.818 |0.764 |0.825 |0.732 | 0.726 | 0.232 0.726 |0.635 |0.604 |0.458 |0.956 | 0.298
EStream 0.757 |0.750 | 0.798 |0.686 | 0.730 0.119 |0.656 | 0.660 0.579 0.434 |0.964 |0.176
textClust-bigram 0.871[0.914 |0.908 |0.8430.706 |0.350 |0.798 |0.853 |0.751 |0.5880.966 |0.572
textClust-unigram 0.866 | 0.920 0.912 | 0.826 |0.697 | 0.412 0.800 0.864  0.758 0.583  0.967  0.585
DP-BMM 0.622 [0.463 |0.610 |0.531 |0.177 |0.050 |0.829 |0.828 |0.781 |0.640  0.565 | 0.281
MSTREAM 0.871 |0.875 |0.899 |0.834 |0.183 |0.347 |0.838 |0.846 |0.783 |0.632 |0.520 |0.496
MS-RAKIB 0.823 |0.798 |0.845 |0.794 |0.666 |0.368 0.750 |0.709 |0.638 |0.501 |0.777 |0.521
DCSS 0.860 |0.842 |0.916 |0.902 |0.401 |0.137 |0.787 |0.790 |0.787 |0.682 |0.211 |0.038
OSDM NMI | 0.857 |0.842 |0.888 |0.809 |0.243 |0.286 |0.796 0.759 |0.730 0.573 |0.283 |0.335
EStream 0.845 |0.843 |0.859 |0.789 |0.725 0.182 |0.773 0.780 0.709 |0.557 |0.802]0.203
textClust-bigram 0.8910.927 |0.939 |0.903 |0.665 |0.509 |0.845 0.898 |0.823 |0.687|0.748 |0.703
textClust-unigram 0.883 |0.929 0.939 0.887 0.601 |0.582 0.842 | 0.903 0.825 0.668 0.751 | 0.709

they tend to produce more micro-clusters than classes, decreasing overall com-
pleteness. This specifically holds for more complex datasets with a labelling that
captures broader topics like our new Trend-T dataset. An explanation for this
is that the labeling for these datasets is not perfect and only captures “global”
topics.

Figure2 displays the algorithm’s NMI performance in batches containing
1000 observations for all evaluation datasets. With this, we want to emphasize
the necessity to capture the performance over time, as we can identify potential
shortcomings of current techniques that lead to considerable performance dips
(especially in the context of NT and NTS). Manual inspection revealed that these
dips, which occur for each tested algorithm, are caused by batches that indicate a
radical decrease in the number of contained topics. In extreme cases, a batch only
consisted of one single topic resulting in a dip to 0 NMI. Interestingly, despite
capturing more context and thus being more computationally demanding, the
utilization of bigrams proved to be less efficient or only marginally better than
unigrams. This indicates that good clustering can already be achieved on a single
word level. Figure 2 again shows that textClust is always superior or en par with
the top-performing competitors when evaluated for different horizons.

Within an additional sensitivity analysis, we tested the influence on the
weight put on ¢ and how well our threshold adaption performed compared to
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Fig. 2. Algorithm’s NMI performance over time with a horizon of 1000.

the previously used fixed threshold selection. The left subplot indicates that
calculating the new threshold by using 0.5 times the standard deviation, leads
to good results. While 0.5 is not optimal for each of the tested datasets, we
consider it as a suitable standard configuration and an acceptable trade-off for
avoiding the manual selection of a hard-to-determine parameter. For the experi-
ments shown in the right subplot we executed textClust on all datasets with a
set of different fixed thresholds: ¢r € {0.1,..,1}. The resulting NMI score distri-
butions are displayed as boxplots and the NMI performance with our automated
threshold adaption (0.5 -0) is added in blue. It is evident that the performance
variance when searching for the weighting factor for ¢ is significantly smaller
than the performance variance during the threshold search, indicating that our
new parameter is more stable. In general, our fully automated threshold app-
roach leads to excellent clustering solutions that are clearly above the average
score achieved with this threshold search. However, we also observe that the
S0-T dataset behaves differently than the other evaluation datasets. While with
increasing o weight, the performance slowly decreases for all other data streams,
it increases for SO-T. Further inspection of this dataset revealed that the num-
ber of clusters in SO-T is unusually high, compared to the other ones (10% of
the number of observations). This leads to a situation, where good performance
can be simply achieved by creating a lot of micro-clusters. High weight on o
leads to low tr. Consequently, with higher weights, more micro-clusters are cre-
ated. However, it remains unclear whether the scenario of the SO-T dataset is
representative for the respective domain (Fig. 3).

Last, we inspected the runtime of all algorithms on each individual dataset
(Table 2). As described in the original paper, EStream was specifically designed
for rapid clustering. It is not surprising that this approach outperforms all other
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Table 2. Average algorithm runtime (in seconds)

Algorithm Ns-T | Ts-T | NT NTS SO-T Tr-T
DP-BMM 13.21|79.3 60.18 |86.32 | 420.00 |1901.20
MSTREAM 21.82 | 124.36 | 185.34 | 347.21 | 1588.14 | 4780.54
MS-RAKIB 32.37 | 102.29 | 143.00 | 210.60 | 711.34 | 10606.94
OSDM 20.09 | 122.77 | 94.38 | 138.96 | 754.41 | 5770.57
EStream 2.22 | 10.05 | 14.57 | 25.77 | 147.13 | 601.62
textClust-unigram | 9.06 | 30.45 | 37.14 | 60.75 | 165.18 | 605.01
textClust-bigram | 17.76 | 61.88 | 76.88 |114.24 | 344.44 | 1625.06

algorithms, including textClust. However, for the larger datasets such as SO-T
and Trends-T, textClust (especially the unigram variant) performs comparably
fast and almost achieves the same speed as EStream. All other algorithms are at
least two times slower than textClust. Since textClust outperforms EStream
on all datasets except one, we argue that we are confronted with a trade-off
between speed and clustering accuracy.

4 Discussion and Future Work

In this work, we significantly improved our draft of a textual stream cluster-
ing algorithm by tackling various shortcomings such as fixed distance threshold
settings during the online clustering. We showed that our improved approach
could not only compete but also outperform state-of-the-art textual clustering
algorithms in the field. Moreover, we proposed a new benchmarking dataset
that poses additional challenges and moves evaluation closer towards real-world
settings. Our evaluation results indicate that only evaluating the global cluster-
ing result is not sufficient and does not properly show algorithm adoption of
concept drift nor possible improvements. Moreover, we showed that global eval-
uation often overestimates the actual performance of the different algorithms.
We stress that the textual stream clustering community needs a standardized
evaluation procedure to enable fair comparison and an objective performance
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assessment of different algorithms. Future work will focus on finding suitable
and robust parameter settings for textClust across a large variety of textual
benchmark datasets based on sophisticated algorithm configuration procedures.
Ideally, the configuration framework should also allow for dynamic adjustments.
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