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Abstract. Shneiderman’s Human-Centered Artificial Intelligence (HCAI) frame-
work suggests that high human control of automation is necessary to create reli-
able, safe, and trustworthy systems. The HCAI framework demonstrates that there
is no need to sacrifice human control when incorporating higher levels of automa-
tion. We propose that Shneiderman’s two-dimensional framework is static and
unable to incorporate contextual factors such as the decision for a human-in-the-
loop system, cognitive limitations of the user, and user characteristics. The HCAI
framework, while an essential foundation, ought to reflect the flexibility of Al
systems, while meeting individual differences and situational requirements.

Keywords: HCAI - Artificial Intelligence - Automation

1 Introduction

Artificial Intelligence (Al) is a system that performs a specific task, drawing on a single
human ability such as visual perception, reasoning, and understanding context [1]. Al
is of the utmost importance and continues to improve. Al’s history is one of hope and
fantasy [2]. In recent years, basic research on Al has been focusing on robots and
pattern recognition [3]. Major companies have begun incorporating Al into their systems.
For example, Microsoft announced real-time translation robots and image recognition
products, along with Facebook. Amazon has incorporated autonomous robots into its
delivery system. In addition, many universities are helping develop Al, leading to the
creation of robot cars, cleaning robots, and four-foot walking robots [3]. These recent
advancements often blur the boundaries between autonomy and automation systems.
Automation varies across levels and stages [6]. The most widely used framework
describing the levels of automation is Sheridan and Verplank’s Framework, which bases
the levels of automation on a continuum that ranges from low (Level 1) to high (Level
10) [4, 7]. As the autonomy of automation increases, so does the level of automation.
Thus, autonomy in the automation is highest at the highest level of automation. A trade-
off between human control and autonomy is implicit in this framework; if the amount
of human input needed increases, the level of automation lowers. Thus, high human
control is at the lowest level of automation. In addition to levels of automation, there
are 4 different stages of automation [5, 6]. Stage 1 of automation consists of acquiring
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information from the environment. Stage 2 consists of using the information and analyz-
ing it. Stage 3 occurs when the automation chooses or decides a course of action based
on the previous analysis. Stage 4 carries out the chosen action. It is important to note
that levels of automation can vary within each stage of automation. Thus, there are two
dimensions, where a higher level and later stage equate to more automation [6].

Shneiderman introduces a topic referred to as Human-Centered Artificial Intelligence
(HCAI). HCAI explores the interaction between HCI with Al. Shneiderman’s definition
of Al suggests that Al systems can perceive, think, decide, and act. Such systems can
analyze emotions, adapt to a changing environment, and have equal status to a human
being [8-10]. Classically, the goal of HCAI is to maintain a human-centered view,
creating a future where technology is built around human control to create a reliable,
safe, and trustworthy (RST) environment. Doing so will keep humans in power by
creating systems that allow high levels of human control and high levels of automation.
Thus, devices should be made to amplify human ability, empower people, and ensure
human control [8§-10]. As a result, technology should not be looked at as divine beings,
but as a tool or appliance, that allows humans to enhance their abilities. Shneiderman
provides this framework to overcome the stigma around more automation leading to less
human control. Shneiderman refers to HCAI as the Second Copernican Revolution [10].
Similar to how many believed earth was the center of the solar system before Copernicus
developed a sun-centered model. Shneiderman wants researchers and designers to move
away from the mindset of Al being the focal point, and humans revolving around Al,
and instead lean towards a human-centered model. Thus, instead of focusing on how to
improve Al and machine autonomy, we should focus on improving the user experience.
Shneiderman believes that an HCAI approach will eliminate the fear associated with a
future of autonomous robots taking over the world, or on a much smaller scale, taking
over jobs. He noted that just because humans are of focus, does not mean that designers
should build products that emulate the appearance or behavior of a human. Such products
tend to lead to fear.

While designing Al around the needs of the user is an important consideration
for RST environments, our motivation is to expand the conversation beyond a two-
dimensional framework. This paper contributes to the expansion as a translation of
human factors literature from automation to the HCAI framework. We believe that it is
important to highlight the process underlying the high human and automation control
quadrant to have a better understanding of designing automation around the human. We
do not seek to replace the framework but instead enrich the conversation with human
factors considerations.

We would like to address that Shneiderman’s definition of Alis broad. This definition
includes Al with machine learning algorithms and adaptive systems, but also automation
in general [8]. Although the argument can be made that the boundary between Al and
automation is fuzzy, we believe there should be a distinction between automation that
uses sensors and Al capable of learning and making decisions.

Furthermore, human interaction with Al will be different depending on how the Al
functions. As van Berkel and colleagues suggested, there are three paradigms of human
interaction with Al: intermittent, continuous, and proactive [34]. Intermittent interaction
is described as a conversation where a user inputs a cue, the Al responds then the user will
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react. Continuous interaction is like commentary where user input is now continuously
monitored and given suggestions by Al. Proactive interaction has the Al monitoring
the environment with sensors and can complete make decisions and act with or without
human input. High human control is desirable for intermittent and continuous human-
Al interaction, but perhaps less critical with proactive human-Al interaction in cases
that are not time sensitive and safety critical. Perhaps what we seek with proactive Al
interaction is not control but coordination by having Al that are transparent. Although
Shneiderman believes in a teammate fallacy when designing Al [10], there is evidence
suggesting that user perception and expectation of teamwork exist for users [35].

Although we believe there is a distinction between Al and automation there is still
a strong connection that should not be ignored. Indeed, The HCAI framework is a
beneficial framework for designing automation and Al for RST systems. However, we
suggest that this framework can be enriched with human factors considerations. We that a
two-dimensional approach to Al does not consider contextual factors such as the decision
for ahuman-in-the-loop system, cognitive limitations of the user, and user characteristics.
We highlight that human control over automation is a continuous process where the
operator observes the feedback from the current system and adjusts the automation when
necessary. As with all new frameworks, there are assumptions that must be carefully
considered to grow their utility.

2 Context of Human-in-the-Loop

Wickens and colleagues suggest four purposes of automation: performing functions that
humans cannot perform due to inherent limitations, alleviating high workload of tasks
that humans can perform, augmenting or assisting in human performance, and economic
reasons [11]. The HCAI framework accounts for alleviating humans of workload and
augmenting human performance but disregards the other purposes of automation. It may
be advantageous to consider the purpose of the automation before human involvement.

When referring to a system that involves human-in-the-loop, the human controls the
Al and monitors the situation [12]. Human-in-the-loop is most beneficial in dynamic
environments where a failure of the Al can lead to disastrous consequences in time-
sensitive or safety-critical situations. To operate in these environments, Al needs open-
world algorithms. These algorithms enable the AI to update their database about
unknown objects and are capable of decision-making using this information. Exam-
ple situations where Al benefits from human-in-the-loop are Urban Search and Rescue
(USAR) scenarios and adversarial tampering.

USAR scenarios consist of a human-robot team where humans understand the phys-
ical layout of a building but are physically removed from the environment. The robot
is sent in with established goals, perceives environmental stimuli, and communicates
acquired information. Humans choose to update the initial goal based on new informa-
tion [13]. This scenario fits Shneiderman’s HCAI ideal, where high human and automa-
tion control are desirable. Due to unknown elements, there are situations where the Al
misinterprets a signal or incorrectly changes the goal of the mission. When humans
monitor the Al, ideally all false alarms will be filtered out, and correct detections will
be dealt with appropriately.
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Adversarial tampering is another situation where it is beneficial for human-in-the-
loop with Al. The Al needs state-of-the-art out-of-distribution detectors (OOD) to
accomplish open-world algorithms. This is incorporated with a type of machine learn-
ing that is used to filter out unwanted or ambiguous inputs in dynamic environments.
However, even with state-of-the-art OODs, Sehwag and colleagues found these OODs
can be evaded or manipulated with relative ease [14]. Therefore, it is beneficial to have
human-in-the-loop when malicious intent is known because humans can monitor the
situation for Al failures.

Although there are situations where high human control is beneficial, there will
be times where it is not beneficial or even necessary. For scenarios such as economic
purposes, enabling humans to perform tasks they are unable to accomplish, or decision-
making made by users who do not fully understand Al it would be beneficial to exclude
humans from the system. Although transparency of the Al may keep human involve-
ment in some of these scenarios, we assume that there is a complex interaction of the
user with Al preventing ease of implementing transparency, such as a proactive inter-
action paradigm described earlier [34]. Human-out-of-the-loop systems have no human
in physical control nor monitoring the situation or have humans in physical control
but not monitoring the situation [12]. These systems thrive in static environments with
predictable conditions. This is due to most Al algorithms running on a closed-world
assumption [15]. This logic indicates that unknown objects are not important, which in
return cannot be processed by the algorithm under any circumstance. Situations where
time is unlimited, and decisions made by Al will not result in endangering life could ben-
efit from removing the human from the system. Detection of malware is a situation where
keeping humans out of decision-making could increase cyber security. Older versions
of anti-virus programs require users to make decisions about every virus encountered.
When a user is not an expert in cyber security, this may lead to incorrect decisions. For-
tunately, modern software can automatically block or quarantine infected files. Machine
learning techniques can be incorporated to detect new and advanced malware [16]. In
this situation, high levels of human control could lead to less cyber security when the
user has a minimum understanding of malware.

At home service robots demonstrate a situation where a dynamic environment can
incorporate Al and humans-out-of-the-loop. This situation can provide certain humans
with a service that they cannot perform. For example, if a person cannot walk in their
home without assistance, the service robot can deliver a requested item. The user can
give a command to the robot requesting an unknown item or retrieving an item when the
location is unknown [15]. The user has control over the robot but is unable to monitor
the robot’s decision making. For example, when trying to retrieve a water bottle from a
different room the robot will have to decide where to look. When the robot is incorrect,
it can update its databank and try again until the correct decision is made. These low
consequence situations enable a human-out-of-the-loop system.

3 Cognitive Limitations

To maintain a high level of human control and automation control, Shneiderman pro-
vided suggestions for redesigning various products or services based on the Prometheus
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Principles [8]. Shneiderman’s principle emphasized providing informative feedback on
the visual interface allowing users to understand and control the automated system. For
example, patient-controlled analgesia devices can be designed to allow sensory feedback
while the patients control the pain medication, creating RST systems. Indeed, providing
informative feedback can potentially achieve a high level of human control and automa-
tion control. However, in a multitasking environment, maintaining high levels of human
control can be challenging due to the user’s cognitive limitations. Notably, implement-
ing Al can potentially direct the user’s attention away from the primary task since users
are tasked to monitor the Al [17], degrading primary task performance. The high level
of automation could constrain the operators from performing multiple tasks in various
professional environments, including air traffic control [18] and aircraft cockpit [19-22].
It is critical to consider the attentional limitations of highly automated systems within
the context of HCAI framework.

Air traffic controllers typically monitor the aircraft and navigate the aircraft to the
right path. Implementing automated alert systems to air traffic control can direct the air
traffic controllers to critical events on the visual screen. However, the automated alert
system could disrupt the air traffic controller’s primary task, directing attention away
from the primary task and degrading primary task performance [18]. Alternatively, pilots
operating the aircraft could overlook the automated alert system’s notification due to
the reliability of the automation [19, 20] and the attentional demand imposed by the
primary task [21, 22]. Several incident reports indicated that implementing high levels
of automation control allowed operators to behave counterproductively. For example,
the National Transportation Safety Board [23] reported that Asiana Airlines Flight 214
collided at San Francisco International Airport, resulting from the pilot’s misuse of
the autothrottle system. Specifically, the pilot failed to recognize that the autothrottle
system did not control the airspeed while approaching the runway. The pilot’s misuse
of the autothrottle system is attributed by the pilot’s overreliance on the automation [20,
24]. In aviation, Al has been widely used to optimize various tasks such as a pilot’s flight
operation. However, the reliability of Al and the attentional demand of the concurrent task
could potentially constrain the system from establishing high levels of human control and
automation control. This challenge can be best described by referring to the theoretical
framework of attention allocation.

Theoretical models of attention allocation could potentially explain the degraded
performance in a multitasking environment involving high levels of human control and
automation control. Particularly, the unitary resource model of attention [11, 25] could
indicate possible limitations of the HCAI framework. The unitary resource model of
attention indicates that users have limited attentional resources to allocate to a particular
task [11, 25]. Attentional resources refer to a unitary group of mental energy that is
allocated to different information processing stages, supporting the user’s mental pro-
cessing [25]. Within the unitary resource model of attention, task performance depends
on the correspondence between the attentional demand imposed by the task and the
number of attentional resources. Particularly, users’ task performance can degrade when
the attentional resources supplied does not suffice the attentional demand. Alternatively,
users can establish successful task performance when the attentional resources supplied
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suffice the attention demand. Although the attentional limitation for using highly auto-
mated Al systems may not be apparent in a single task environment, implementing in
a multitasking environment could potentially degrade the user’s task performance due
to the high attentional demand for monitoring the Al. Based on the unitary resource
model of attention, system designers are challenged to alleviate the attentional demand
imposed by the automated task in a multitasking environment. Thus, it is critical to con-
sider alternative approaches to address the cognitive limitation for implementing RST
systems in multitasking environments. One consideration for maintaining high levels of
human control and high levels of automation is to reduce the complexity of the automa-
tion. The complexity of the automation is a critical factor that increases the attentional
demand of the automated task [17]. Designing simpler automated systems could poten-
tially reduce the attentional demand, allowing RST systems to maintain high levels of
human control and automation control.

4 User Characteristics

Research on human-automation interaction has centered on professional users in tightly
controlled (and regulated) safety-critical fields such as aviation, air traffic control, nuclear
power, patient care, and military technology [26]. Embedded in most of this research
is an implicit or explicit expectation that operators of automated systems are highly
qualified, knowledgeable, and invested in avoiding adverse outcomes. The concept of
having high levels of automation and high levels of human control in this context is
feasible; experts by the very nature of their experience can leverage complicated, inter-
dependent automated systems to fit their needs and goals. However, more and more,
we are seeing Al and automation applications seeping into everyday life, fundamentally
changing who uses these systems. The ubiquity of Al means that people with a variety of
attitudes, experiences, and characteristics will be interacting with these systems; some
users may be less able or interested in modifying or controlling the automated systems.
Unlike professional automation operators, everyday automation users will most likely
not tolerate extensive, mandatory training on automation capabilities or Al functional-
ity. Everyday users’ potential lack of investment in the Al systems they use or how they
operate does not mean that we should exclude them from the automation control nar-
rative. Indeed, incorporating (and anticipating) casual users’ characteristics, attitudes
and capabilities can help us design more inclusive and personalized Al systems that
minimize the possibility of user misuse and societal backlash.

Although most consumer products that leverage Al are seemingly low stakes (inac-
curate autocorrect may be annoying, but rarely results in injury or death), automated
vehicles are expected to use Al to integrate information gained from vehicle and infras-
tructure sensors to constantly update existing road environment maps and allow vehi-
cles to make real-time routing decisions. Advanced driver assistance systems (ADAS)
demonstrate how consumers use and approach emerging technologies and can provide
lessons for the future deployment of highly automated vehicles and Al applications in
general.

First, there is the challenge, mentioned above, of ADAS becoming ubiquitous in new
cars. For example, all new Toyota vehicles come with their proprietary suite of ADAS
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functions (i.e., Toyota Safety Sense) standards, even at the most basic trim levels. Such
a wide implementation of ADAS features like lane-keeping assist, forward collision
warning, and blind-spot detection is expected to save lives and prevent injuries [27],
but against this, we also must weigh how people with little to no interest in advanced
technologies will use these features. In a survey, most drivers (83%) could not predict
how adaptive cruise control would function in a particular situation [28]. A full 40% of
respondents reported that features in their vehicle had acted in a way that they did not
anticipate, with most respondents reporting that they did not engage in any additional
information seeking behavior about their vehicle’s advanced features. Such disengage-
ment may signal casual users will exert less control over automated systems, either
because they do not possess the knowledge to do so or because they simply are not
interested in doing so.

Second, there is the potential for individual users to reject or discount automated
systems when they fail to meet their performance expectations. It should be a goal of
Al system designers to instill the appropriate amount of trust in automated features;
too much trust may result in overreliance, too little would result in complete disuse.
Repeated exposure to the emerging technology may be the best way to ensure proper
calibration of trust and use. In an 18-month longitudinal study, drivers of a vehicle with
ADAS features gradually adopted most of the advanced vehicle features while at the
same time acknowledging the limitations of the features [29].

Finally, we must acknowledge and anticipate broader societal backlash to Al, espe-
cially once the technology becomes ubiquitous. Generally, Al has limited transparency,
especially to the passive user [30]. This lack of transparency may lead to concerns about
privacy and prioritization of technology over people which may translate into negative
attitudes towards Al. Establishing unbiased organizations to evaluate the ethics of Al
is one route to prevent this wider backlash [9]. Shneiderman’s framework argues that
automation should serve the user, not the other way around, but it is essential to consider
how Al serves an individual user may not necessarily serve the wider public.

The notion of individual differences in terms of attitudes, experience, and character-
istics in the context of Al has not been widely considered. Incorporating these factors
into the design and deployment of Al can help us increase the personalization and flexi-
bility of Al systems to ensure optimal adoption while still ensuring that humans are fully
in control.

5 Future Directions: Dynamic Automation and Human Control

As Al becomes sophisticated and users and contexts become varied, a static frame-
work illustrating human-Al interaction may become outdated. Modern frameworks
need to focus on human-in-the-loop components, operator limitations, and individual
characteristics (i.e., attitudes, experiences, characteristics).

A user’s attitudes, experiences, and characteristics will influence how they deploy
automation (Fig. 1). If they opt to deploy a high level of automation, they can still retain
a high level of control over the task by choosing to remain in-the-loop. The decision
for the user to retain control or completely hand over control to automation will be
influenced by contextual factors such as whether the environment is dynamic or static,
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if the user has sufficient automation experience, if the automation is being deployed in a
safety-critical setting, and the transparency of the system (Fig. 2). However, this decision
does not have to be static. Depending on the demands of the task, and the goals of the
user, the operator has the flexibility to continually adjust the level of automation that
they use. By continuously monitoring and analyzing automation performance, the user
can adjust what level of automation they deploy and their level of control, resulting in a
feedback loop. This feedback loop will be greatly impacted by the attentional resources
available to the operator, allowing them to acquire information about the automation
performance and choose appropriate levels of automation. However, concurrent tasks
may take attentional resources away from monitoring and adjusting the automation level
and control (Fig. 3).

Relevant Information

User's goal
Task demand
Automation's reliability

Lser Human Automation
Characteristics ——— ——— Automation Level

Attitudes Control Decisions

Experiences
Characteristics
Low

Fig. 1. Dynamic automation and human control based on user characteristics

Interaction of
Contextual Variables

Dynamic Environmental factors Static

Expert - Automation experience ‘ Novice

Yes Safety-critical setting No

Transparent Transparent System Not Transparent
Human-in-the-loop Human-out-of-the-loop

Fig. 2. Context that influences human-in-the-loop decision-making
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Sensory Perception/  Decision Response
Processing —> Working — Making — gglection
Memory l

Concurrent

Attentional
Task

Resources

Fig. 3. Attentional resources portrayed with a simple human information processing model

Shneiderman [8] provides a scenario where automated vehicles can achieve a RST
environment with high levels of human and computer control by designing a system
that leads to an air traffic control equivalent for managing vehicles on the roadway.
This scenario suggests that humans working from a remote station would manage traffic
flow by changing speed limits in response to congestion and weather conditions. The
HCALI framework encourages roadway safety engineers to transform conventional speed
limits without considering human attentional limitations. Driving safely requires years
of experience. During which time, operators form expectations to manage information
overload. Making speed limits variable will demand continuous attentional resources.
The operator of the vehicle will have to search for and verify ever-changing signage.
When making critical decisions, dynamic changes in roadway conditions can negatively
affect situation awareness [31]. In the worst-case scenario, changing conditions might
cause an accident as drivers entering a different road will not be aware of the changes
[32, 33]. They might enter a blind corner and accelerate as usual only to find traffic
traveling significantly slower than expected. The road is wet, and their truck slides out
of control while braking, resulting in a collision. As we approach this scenario with our
dynamic approach in mind, we understand that human controlled traffic systems need
to communicate with drivers like air traffic controllers do with pilots. Now drivers will
need to monitor tower communications instead of talking on the phone or listening to
music. Maintaining situational awareness will require additional training and, in some
cases, a heavier cognitive load [17, 18].

A dynamic approach acknowledges that a two-dimensional framework between the
level of automation and human control may not be sufficient in capturing the complexities
of how people use Al systems. Al is open and dynamic; it is reasonable to assume that
users’ deployment and approach to Al will be equally as flexible. There are fundamental
assumptions that needed to be made for this dynamic framework on human control and
automation level. First, there is limited research on human-AlI interaction, especially
in regard to the level of automation. Second, understanding the impact of contextual
variables, such as the environment, on users’ automation control decisions needs to
be further explored. Design recommendations from the trust and automation literature
may be a good place to understand how users interact with automation. For example,
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Hoff and Bashir have identified multiple factors that influence trust such as transparency
of feedback and ease of use [36]. Finally, the exact delineation of “high” and “low”
automation levels may vary according to the context of Al. Future clarification may lead
to the evolution of the HCAI framework.

6 Conclusions

Shneiderman’s goal was to focus on designing Al that serves as tools/appliances to
improve the user experience. HCAI framework argues that Al users do not need to
sacrifice control even at high levels of automation; however, this framework does not
incorporate situational, personal, or attentional context. As we stated previously, there
are times when user preference or the environment determines when it is more beneficial
to have humans in-the-loop or out-of-the-loop. Therefore, future work needs to expand
on the HCAI framework by allowing the user to continually consider their context and
attentional demand, allowing for more flexible use of Al
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