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To Stefan Napel
on the occasion of his 50th birthday.



Preface

Collective decisions affect our economic, political, and social lives almost daily.
They are not only important in large-scale elections, but also in small groups such
as management boards, government cabinets, panels of judges, expert committees,
job hiring committees, and multinational organizations. Applications range widely,
from analyzing the complicated institutional rules employed by the European Union
to the responsibility-based distribution of cartel damages or the design of webpage
rankings.

Over the past 20 years, Stefan Napel has helped to improve our understanding of
the interdisciplinary links of collective decision-making. He has publishedmore than
50 papers, many of them in leading academic journals. His keen mind and pursuit of
new knowledge have been an inspiration for all of us. But most of all, we are pleased
that over the years he has becomemore than a co-author and an academic teacher:We
are proud to call him our friend. His 50th birthday provides a perfect opportunity to
review recent contributions to the longhistory of collective decision-making research,
to highlight the interdisciplinary aspect of the discipline, and to look ahead to its
promising future by pointing to unanswered questions that can only be resolved
through collaborative efforts. This intention is also summarized by the volume’s
subtitle Interdisciplinary Perspectives for the 21st Century: a comprehensive look at
current research by economists, mathematicians, computer scientists, philosophers,
and political scientists on the design and implications of collective decisions.

Bayreuth, Germany
Aarhus, Denmark
Bayreuth, Germany
July 2022
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Nicola Maaser

Alexander Mayer
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Introduction

Sascha Kurz, Nicola Maaser, and Alexander Mayer

After long being dominated by the social sciences, the analysis of collective decision-
making has evolved into a thoroughly multidisciplinary field of research. It now
attracts not only interest in economics, political science, and psychology, but also in
applied mathematics, computer science, philosophy, and even biology.

One important strand of literature is rooted in modern social choice theory, a
field pioneered by Duncan Black and Nobel laureates Kenneth Arrow and Amartya
Sen (see, e.g., Arrow et al., 2002, 2011). This tradition is broadly concerned with
the aggregation of individual preferences and information into group decisions that
realize some exogenous social goal such as welfare maximization or a notion of fair-
ness. It has developed dynamic offshoots such as, e.g., computational social choice,
which applies techniques originally developed in computer science to social choice
mechanisms (such as determining the computational complexity of manipulation
in elections) and concepts from social choice to computing (such as the design of
webpage rankings). For an accessible and comprehensive overview of the rapidly
growing field of computational social choice, see Brandt et al. (2016). In contrast
to the classical economic view that markets are merely a device to coordinate and
allocate the resources of heterogeneous agents based on their individual (and usually
diverging) preferences, methods of collective decision-making focus on coordina-
tion mechanisms that do not follow a market logic to define social objectives based
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2 S. Kurz et al.

on individual preferences. Typical topics include, but are not limited to, the analysis
of voting procedures, fair division, matching problems, and more recently, modern
recommender systems, interactive democracy, and deliberation.

A second strand of literature, pursued in particular by political scientists and
economists, relates collective choices to the incentives of the individuals. One way
to do so is to use bargaining models that apply non-cooperative game theory. This
approach allows for the inclusion of institutional details to generate empirically
testable hypotheses about, e.g., legislative and parliamentary policy outcomes from
a comparative perspective. Approaches from organization theory allow predictions
about how the structure of a group affects its decision-making performance. For
example, are ethnically diverse bureaucracies better at public service delivery? Is
there an optimal committee size to achieve well-informed collective decisions?

The two traditions described above increasingly intertwine, taking on board ideas
from other disciplines such as philosophy and evolutionary biology (see, e.g., Seeley
2010, for a study on collective decision-making and “voting” among honeybees).
Moreover, many topics that are best addressed with the tools and perspectives of
multiple disciplines have only recently received greater attention from the scientific
community (e.g., multi-winner elections, interactive democracy, big data). We see
each of the above as examples of timely topics holding new challenges that require
interdisciplinary efforts, using foundational, methodological, empirical, and experi-
mental tools and approaches.

This volume is a collection of twenty-one invited peer-reviewed contributions
from researchers across disciplines. We have grouped the articles into five parts, but
our choice of taxonomy should not disguise the often very large overlap between
these parts.

Part I, Social Choice, is devoted to the underpinnings and recent developments in
social choice theory. Hannu Nurmi sets the scene with his chapter “Building Bridges
Over the Great Divide”. He discusses some methods aiming to reconcile Borda’s
and Condorcet’s winning intuitions in the theory of voting. He begins with a brief
summary of the advantages and disadvantages of binary and positional voting rules.
He then reviews in some detail Black’s, Nanson’s, and Dodgson’s rules as well as
relatively recently introduced methods based on the super-covering relation over the
candidate set. These are evaluated in terms of some well-known choice-theoretic
criteria.

In the chapter “Social Unacceptability for Simple Voting Procedures”, Ahmad
Awde, Mostapha Diss, Eric Kamwa, Julien Yves Rolland, and Abdelmonaim Tlidi
investigate the notion of “socially unacceptable” candidates from a computational
perspective. Since the existence of socially unacceptable candidates is not always
guaranteed, they determine the probability that such candidates exist given the num-
ber of running candidates and the size of the electorate. Moreover, they evaluate how
often prominent voting procedures can elect a socially unacceptable candidate.

In “Probability of Majority Inversion with Three States and Interval Preferences”,
SergueiKaniovski andAlexander Zaigraev examine the probability ofmajority inver-
sion in a two-stage electoral process with three states. They extend May’s model to
state-specific general interval preferences and population weights and investigate

http://dx.doi.org/10.1007/978-3-031-21696-1_2
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the effects of variation in population weights and the effects of variance and bias in
preferences on the inversion probability. The numerical sensitivity analysis for the
probability of inversion is conducted using an exact formula under general interval
preferences in the three states with different population weights.

Markus Brill and Vincent Conitzer study the incentives of candidates to run in
an election in the chapter “Strategic Voting and Strategic Candidacy”. Most work
on this topic assumes that strategizing only takes place among candidates, whereas
voters vote truthfully. Markus Brill and Vincent Conitzer extend the analysis to
include strategic behavior on the part of the voters. They also study cases where only
candidates or only voters are strategic.

In the chapter “Meta-Agreement andRational Single-PeakedPreferences”,Olivier
Roy and Maher Jakob Abou Zeid revisit the claim that rationality requires partici-
pants in deliberation to form single-peaked preferences once they have reachedmeta-
agreements. They provide two different arguments that cast doubts on this claim and
show that to the extent that deliberation fosters the formation of meta-agreements
and single-peaked preferences, the bridge between these two notions might not be
solely a matter of rational preference formation.

In “On the Individual and Coalitional Manipulability of q-Paretian Social Choice
Rules”, Fuad Aleskerov, Alexander Ivanov, Daniel Karabekyan, and Vyacheslav
Yakuba study the degree of individual and coalitional manipulability of q-Paretian
social rules. For the cases of three, four, andfive alternatives and for the agent numbers
ranging from three to one hundred, they use computer modeling to calculate various
well-known manipulability indices.

Part II, Weighted Voting, comprises four chapters that deal with weighted voting
decisions. In the chapter “Efficiency, Decisiveness, and Success in Weighted Voting
Systems: Collective Behavior and Voting Measures”, Werner Kirsch defines and
investigates a large class of voting measures with respect to their efficiency and
success in weighted voting systems. This class can be characterized as those voting
measures which are invariant under permuting the voters and which allow a natural
extension to an arbitrary number of voters. The class includes the prominent Penrose-
Banzhaf and Shapley-Shubik measures.

The chapter of Josep Freixas and Montserrat Pons, “All Power Structures are
Achievable in Basic Weighted Games”, proves that for each achievable hierarchy of
power for weighted games there is a handy weighted game fulfilling three desirable
properties. A representation of this type is ideal for the design of a weighted game
with a given hierarchy. Moreover, they show that the subclass of weighted games
with these properties is considerably smaller than the class of weighted games.

In the chapter “Bargaining in Legislatures: A New Donation Paradox”, Maria
Montero considers a model of legislative bargaining and shows that it is possible for
a player to donate part of its proposing probability to another player and be better off
as a result. Thus, even though actually being selected to propose is always valuable
ex post, having a higher probability of being proposer may be harmful in equilibrium.

In their chapter “Egalitarian Collective Decisions as Good Corporate Gover-
nance”, Federica Alberti, Werner Güth, Hartmut Kliemt, and Kei Tsutsui translate
substantive normative premises of stakeholder value approaches into operational

http://dx.doi.org/10.1007/978-3-031-21696-1_7
http://dx.doi.org/10.1007/978-3-031-21696-1_8
http://dx.doi.org/10.1007/978-3-031-21696-1_9
http://dx.doi.org/10.1007/978-3-031-21696-1_11
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axioms that characterize a class of collective decision mechanisms. They challenge
stakeholder theorists and critics of shareholder value approaches, who may find the
implied characterization unattractive, to come up with alternative collective decision
mechanisms or a modified set of values.

Part III, Interpretation and Measurement of Power, revisits some classical power
indices and applies them in very different scenarios. It startswith the chapter by Frank
Huettner and Dominik Karos “Liability Situations with Successive Tortfeasors”.
They consider successive torts—i.e., torts that involve a causality chain—and show
that simple and intuitive principles, which are well known in tort law, uniquely
define an allocation scheme that reflects tortfeasors’ responsibility. They show that
this scheme incentivizes agents to exhibit a certain level of care, creating an efficient
prevention of accidents. Then, Huettner andKaros describe the unique rule according
to which a liability situation has to be adjusted after a partial settlement such that
incentives to settle early are created.

In the chapter “Solidarity and Fair Taxation in TUGames”, André Casajus consid-
ers an analytic formulation of the class of efficient, linear, and symmetric values for
TU games that rests on the linear representation of TU games by unanimity games.
Unlike most of the other formulae for this class, his formula allows for an economic
interpretation in terms of taxing the Shapley payoffs of unanimity games. He iden-
tifies those parameters for which the values behave in an economically sound way.
That is, he indicates requirements on fair taxation in TU games by which solidarity
among players is expressed.

Encarnación Algaba, Andrea Prieto, Alejandro Saavedra-Nieves, and Herbert
Hamers introduce in their chapter “Analyzing the Zerkani Network with the Owen
Value” a new centrality measure based on the Owen value to rank members in covert
networks. In particular, they consider the Zerkani network responsible for the Paris
attacks of November 2015 and the Brussels attack of March 2016. They consider
two different appropriate cooperative games defined on the Zerkani network and
calculate for each game the Owen value. This provides a ranking of the members in
the Zerkani network.

In “The Power of Closeness in a Network”, Manfred Holler and Florian Rupp
consider the question ofwhether it is profitable for aweaker player to be closely linked
to a strong (i.e., powerful) player andwhether it ismore beneficial to a powerful player
to be closely linked with a weak player than with a strong player. They demonstrate
that power (as based on the Public Good index) is a non-local concept indicating
that strong players form a “hot-region” about the strongest player. They present an
easy-to-perform algorithm for the computer-based determination of the Public Good
index on networks that allows to study voting power in small networks.

In the chapter “Political Power on a Line Graph”, René van den Brink, Gerard
van der Laan, Marina Uzunova, and Valeri Vasil’ev consider situations of majority
voting, where the players are ordered on a line graph based, e.g., on ideological or
political preferences over various policy dimensions. Motivated by the observation
that a number of solutions for line graph games (interpreted as power indices) either
are not core stable, or do not reward intermediate veto players, they axiomatically
characterize two alternative indices that are core stable and reward all veto players.

http://dx.doi.org/10.1007/978-3-031-21696-1_14
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Part IV, EU, consists of four papers that analyze decision-making in the Euro-
pean Union from different perspectives. In “Double Proportionality for the European
Parliament: The Tandem System”, Jo Leinen and Friedrich Pukelsheim consider the
doubly proportional electoral system for the European Parliament. This tandem sys-
tem offers a forum for europarties to contest an election with power, visibility and
influence. They show that the system satisfies the “one person, one vote” princi-
ple and the principle of degressive representation. Moreover, it respects the EU’s
subsidiarity principle.

In “Explaining Contestation: Votes in the Council of the European Union”, Arash
Pourebrahimi, Peter van Roozendaal, and Madeleine Hosli study voting behavior
in the Council of the European Union using more than 1229 legislative decisions
taken in the Council from 2010 to 2021. They investigate the impact of different
independent variables on member states’ voting behavior: net contributions to the
EU budget, voting power, left-right policy positions, and finally, the distance of a
member state’s ideological position from the position of the winning coalition under
the qualified majority voting rule.

In their chapter “Codecision in Context Revisited: The Implications of Brexit”,
Nicola Maaser and Alexander Mayer analyze the implications of the UK’s leave
from the EU for the distribution of power between the Council of the EU and the
European Parliament and within the Council under the EU’s codecision procedure.
They model the codecision procedure as a bargaining game between the Parliament
and the Council under various a priori preference assumptions. They find that the
withdrawal of the UK has no significant effect on the power distribution between the
Parliament and the Council and that it is mainly the large member states that benefit
from the UK’s leave.

Finally, Part V, Field Experiments and Quasi-Experiments, collects experimental
approaches to voting andpolitical decisions. Experimentalmethods havebeen rapidly
developing in economics and political science over the past few years, especially in
the field of electoral behavior. Christian Klamler’s chapter “Proximity-Based Prefer-
ences andTheir ImplicationsBased onData from the Styrian Parliamentary Elections
in 2019” applies a proximity-based approach using exit poll data. He shows that (i) a
single-peaked model does not perfectly fit the data, and (ii) declared preferences and
proximity-based preferences differ significantly (which indicates that other factors
do play a role in determining voters’ preferences). Klamler then specifies the actual
impact of those other factors on the election results.

In the chapter “Participation in Voting Over Budget Allocations: A Field Experi-
ment”, Clemens Puppe and Jana Rollmann study the effect on the participation rate
of employing different voting rules (in particular, the mean rule and the median rule).
They report the results of a field experiment in which subjects could allocate money
to fund two different public projects. Their results shed important light on the use of
different voting rules in the context of budget allocation in practice.

In “The Office Makes the Politician”, David Stadelmann explores behavioral
changes regarding the political representation of voters by leveraging data from the
two Houses of Parliament in Switzerland. He provides evidence that is consistent
with the existence of an incentive effect of the office itself which acts on politicians

http://dx.doi.org/10.1007/978-3-031-21696-1_17
http://dx.doi.org/10.1007/978-3-031-21696-1_21


6 S. Kurz et al.

to fulfill public expectations. Such an incentive effect, termed a “Thomas Becket
incentive”, would be complementary to the established relevance of elections as a
selection and incentive device.

We hope that this volume can fulfill its ambitious purpose and give a comprehen-
sive overview of the interdisciplinary state-of-the-art research on collective decision-
making.
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Building Bridges Over the Great Divide

Hannu Nurmi

Abstract We discuss some methods aiming to reconcile Borda’s and Condorcet’s
winning intuitions in the theory of voting. We begin with a brief summary of the
advantages and disadvantages of binary and positional voting rules. We then review
in somedetail Black’s,Nanson’s andDodgson’s rules aswell as the relatively recently
introduced methods based on supercovering relation over the candidate set. These
are evaluated in terms of some well-known choice–theoretic criteria.

1 Introduction

The theory of voting is largely based on the social choice theory. Much of the theory
deals with various norms and their compatibility. When rules are compared with
each other, the norms are typically invoked to prioritize one rule over the other.
Occasionally, the rules are viewed as instruments for attaining specific goals of the
voters. In their recentwork, the honoree of this volume togetherwith his collaborators
have pursued this strategic approach to rule selection (Kurz et al., 2020; Mayer and
Napel, 2020; Kurz et al., 2021). The underlying assumption of this work is that the
participants in institution design are interested in maximizing their influence over
the decision making outcomes and—to the extent various rules tend to favor actors
of different sizes—the actors form their preference over the rules accordingly. Napel
and his associates have thus opened a new perspective to voting rule selection, one
that combines voting power with social choice. While I commend these authors for
their fresh ideas and am quite optimistic about the prospects of the approach, I will
here focus on the more traditional way of looking at rule selection problems.

One of the perennial themes—dating back to the later eighteenth century, the
“Golden Age of Social Choice” (McLean and Urken, 1995)—in the theory of voting
is the discrepancy between positional and binary voting rules. In the former class, the
winners are determined on the basis of the positions of alternatives in the preference
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rankings of voters, whereas in the latter, the performance in pairwise comparisons
is of paramount importance in selecting the winners. The basic intuition behind
the binary winners is that whichever alternative defeats all the others in pairwise
comparisons ought to be the winner. The obvious drawback of this intuition is that
it is not always applicable. Over time, various rules were invented, some of them
specifically aimed at guaranteeing that a winning set of alternatives always be found
while making sure that this set reduces to a singleton consisting of the alternative that
beats all others in pairwise comparisons—should such an alternative be found—is
elected. Such an alternative is called the Condorcet winner. Accordingly, the rules
based on this principle are called Condorcet extensions and the principle itself the
Condorcet principle.

The positional rules (a.k.a. scoring rules) are not based on a common overarching
principle. Rather, they constitute a heterogeneous class of aggregation methods. The
best-known rules in this class are the plurality voting and the Borda count. The
former elects the alternative ranked first by more voters than any other alternative,
while the latter assigns points tom alternatives so that a voter givesm − 1 points to an
alternative ranked first, m − 2 to an alternative ranked second, etc. The sum of points
given by all voters to alternative x give the Borda score of x . The alternative with the
largest Borda score is the winner, and the order of magnitude of the scores indicates
the Borda ranking. Obviously, the plurality voting utilizes only a very limited amount
of the information given by the individual rankings, whereas the Borda count takes
into account all preference positions.

The discrepancy between the Condorcet principle and Borda count (and implicitly
also between the former and plurality voting) was established very early by Marquis
de Condorcet (McLean and Urken, 1995). Over the past few decades, the Condorcet
principle has often been elevated to the status of one of the most important social
choice desiderata (Riker, 1982; McLean, 1991; Felsenthal and Machover, 1992).
This view has by no means been universally adopted. Notably, Saari has presented a
strong defense for the Borda count (Saari, 1995, 2003). Both intuitions have virtues
and drawbacks some of which will be briefly discussed in the next section. However,
our main focus is on rules that aim to reconcile the two intuitions in voting rules
by invoking positional information while not losing sight of the Condorcet winner
intuition.

2 The Main Pros and Cons of Binary and Positional Rules

The main virtues of binary rules are:

1. Simplicity for the voters: only pairwise comparisons of alternatives are called for.
2. They aim at electing ‘obvious’ winners: Condorcet winners.
3. When a Condorcet winner exists, it is the winner in all subsets of alternatives as

well.
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Table 1 Condorcet winner C has the smallest number of first ranks

4 voters 3 voters 2 voters

A B D

C C C

B A B

D D A

Table 2 Fishburn’s example

1 voter 1 voter 1 voter 1 voter 1 voter 1 voter 1 voter

w w w a a a b

a a a b b w w

b b b w w b a

4. When a Condorcet winner exists, the rules are positively involved (Saari, 1995)
or, equivalently, invulnerable to the P-TOP paradox (Felsenthal and Tideman,
2013).1

As defined by Saari (1995, p. 216):

A procedure is positively involved if when c j is the selected outcome from a profile and
when a group of voters, all of the same voter type with c j top-ranked, join the group, c j
remains the selected candidate.

Simplicity, the first virtue of binary rules, is obvious, but begs the question of
why the voters are in general supposed to be endowed with complete and transitive
preference relations over the alternatives if the information contained in the prefer-
ence rankings is not utilized in social choices. In fact, all pairwise comparisons could
be implemented even in cases of cyclic preference relations. Similarly, the second
virtue is debatable. There are situations where the Condorcet winner is intuitively
less plausible than a plurality one as shown in Table1 where the Condorcet winner
C is ranked first by no voters, while the plurality winner A is ranked first by nearly a
half of the electorate. In an effort to discredit the Borda count Marquis de Condorcet
came up with an example which—in somewhat counterproductive fashion—may be
used to undermine the general plausibility of the Condorcet winner. The example is
discussed by Black (1958, pp. 176–177). A somewhat simplified version devised by
(Fishburn, 1974, p. 544) is reproduced in Table2.

In Table2 w is the Condorcet winner, but a seems more plausible on the grounds
that it is placed first by equally many voters asw, and second by strictly more voters
than w and last by only one voter, while w is ranked last by two voters. Thus, a
positionally dominates (weakly) w, the Condorcet winner.

1 Pérez’s invulnerability to the positive strong no-show paradox (Pérez, 2001, p. 602) refers to the
same property.
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Table 3 Max-min elects the absolute loser D

Profile Pairwise matrix

2
voters

3
voters

3
voters

1 voter 2
voters

A B C D row
min.

D D C B A A – 4 8 6 4

A B B A C B 7 – 4 6 4

C A A C B C 3 7 – 6 3

B C D D D D 5 5 5 – 5

The third virtue follows directly from the definition of the Condorcet winner. It
is a distinguishing property of Condorcet extensions. The fourth virtue pertains to
the invulnerability of the P-TOP paradox. This occurs in a situation where a winning
candidate x becomes a non-winner if a group of voters all ranking x first joins the
electorate, ceteris paribus. When a Condorcet winner exists and is therefore elected
in the original profile, it also remains the Condorcet winner in the augmented profile
and is by definition elected in the latter profile as well. Hence, the P-TOP paradox
cannot inflict the Condorcet extensions in Condorcet domains, i.e., in settings where
a Condorcet winner exists. As will be seen shortly, though, this invulnerability does
not extend to all Condorcet extensions outside the Condorcet domains (Richelson,
1978, p. 174).

The virtues are counterbalanced by some important flaws:

1. The Condorcet winner may not be first ranked by any voter.
2. There are Condorcet extensions that (in the absence of a Condorcet winner) may

elect a Condorcet loser, i.e., a candidate that would be defeated by all other
alternatives in pairwise majority comparisons.

3. Some Condorcet extensions may even elect an absolute loser, i.e., a candidate
ranked last by at least 50% of the voters.

4. They may behave strangely under adding or removing of Condorcet components.
5. The Condorcet extensions are vulnerable to the no-show paradox (Moulin, 1988).

The first possibility is demonstrated by Table1. The second and third one are
shown in Table3 where the rankings of 11 voters over four candidates are exhibited.
Since in Table3, D is ranked last by six voters, it is the absolute loser. The pairwise
comparisonmatrix on the right-hand part of the table represents the votes given to the
candidate represented by the row when confronted with the candidate represented
by the column. The minimum entries on each row are written in the right-most
column. The max-min rule elects the candidate with the largest minimum support
in pairwise comparisons. In this case, it is D, the absolute loser. Similar example
can be constructed for Dodgson’s rule, i.e., a method that elects the candidate that—
given a preference profile—is closest to being the Condorcet winner with closeness
measured by the binary inversion metric (Nurmi, 2004, p. 10).

The fourth flaw refers to the possibility that—starting from a profile with a Con-
dorcet winner—an addition or removal of a set of voters whose preference form a
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Condorcet cycle (A beats B, B beats C and C beats A with identical margins) may
replace the original Condorcet winner with another one. So, while it is well known
that the Borda count and other positional procedures are not robust under adding
or removing candidates, the Condorcet extensions are not robust under adding or
removing of sets of voters with preferences constituting a perfect tie (Saari, 1995;
Nurmi, 1999).

A serious drawback of the Condorcet extensions is their vulnerability to the no-
show paradox (Moulin, 1988). Although discussed by election practitioners more
than a hundred years ago (Meredith, 1913), the paradox was not systematically
analyzed until early 1980s by Fishburn and Brams (1983). It is a nonmonotonicity-
related property that refers to a counterintuitive response of a procedure to certain
types of changes in the electorate. To wit, it may happen that a group of voters with
identical preference rankingswill bring about theirworst outcome by voting,whereas
by abstaining, ceteris paribus, a preferable outcome (for them) would ensue. This
possibility is called the no-show paradox by Fishburn and Brams. It is also known as
the P-BOT paradox (Felsenthal and Tideman, 2013) or the negative strong no-show
paradox (Pérez, 2001). To quote Fishburn and Brams (1983, p. 207), this paradox
occurs when

[t]he addition of identical ballots with candidate x ranked last may change the winner from
another candidate to x .

It should be emphasized that the no-show paradox is a possibility that pertains to
electorates that change in size, to be distinguished from the standard monotonicity
properties which are related to changes in a fixed electorate.

3 Some Attempts to Reconcile Binary and Positional
Intuitions

One would expect that the Condorcet extensions lose much of their practical appeal
if the very core concept of them, the Condorcet winner, turns out to be defective as
a general solution. Yet, many a voting theorist has over the past decades believed
in the tenability of those methods. Hence, many Condorcet-inspired methods have
been invented, some of them aiming at building bridges over the binary-positional
divide. We now turn to some of these methods.

3.1 Black’s Rule

The most straightforward attempt to reconcile Borda’ and Condorcet’s solutions was
proposed by Black in his magnum opus (Black, 1958). The rule is simple enough:
given a profile of rankings, elect the Condorcet winner if one exists, otherwise elect
the Borda winner. It has the two first-mentioned virtues of Condorcet extensions,
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Table 4 Black’s rule is vulnerable to the P-TOP

3 voters 3 voters 4 voters 3 voters 1 voter

D E C D E

E A D E B

A C E B A

B B A C D

C D B A C

Table 5 Black’s rule is vulnerable to P-BOT

4 voters 3 voters 1 voter

B C A

C A + B

A B C

but fails on the last two in case the Condorcet winner does not exist in the profile
at hand. This has been discussed under truncated point-total paradox by Fishburn
(1974, p. 538) and generalized by Saari (2001, p. 36). This failure is due to there
being no Condorcet winner at the outset whereby the Borda count kicks in. Should
there be a Condorcet winner, it would, by definition, remain one is all subsets it
belongs to. Black’s rule is also vulnerable to the P-TOP paradox, again provided
that no Condorcet winner exists in the profile under study. This appears to be first
discovered by Richelson (1978, p. 174). Table4 gives an example (Felsenthal and
Nurmi, 2017, pp. 74–75). It involves 14 voters and five candidates.2

As there is no Condorcet winner in this profile, Black’s rule yields the Borda
winner, E. Suppose now that this electorate is augmentedwith twovoterswith ranking
EBADC. In the augmented profile, Black’s rule results in the Condorcet winner D.
Hence, we have an instance of the P-TOP paradox.

As all Condorcet extensions, also Black’s rule is vulnerable to the no-show para-
dox as defined by Fishburn and Brams. Table5 demonstrates that Black’s rule may
lead to an instance of the no-show paradox.3 In the 7-voter profile on the left-hand
side, there is a Condorcet and, hence, a Black winner, viz. B. Suppose now that
one voter with the ABC ranking joins the electorate (perhaps eager to improve the
chances of his/her first-ranked A vis-à-vis his/her next to last ranked B). The ensuing
outcome under Black’s rule now becomes C, the last-ranked candidate of the entrant
voter. So by voting this, voter makes the outcome the worst possible one from his/her
point of view.

2 Two much simpler examples each involving only three candidates and nine voters are presented
in Brandt et al. (2022) in the context of reinforcement and no-show (Sect. 4.7).
3 This example somewhat simplifies the one given in Felsenthal and Nurmi (2017, p. 75). A similar
result is obtained in Brandt et al. (2022).
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Table 6 Nanson’s rule and a Condorcet component

2 voters 1 voter 2 voters 2 voters 2 voters

A B A B C

B C + C A B

C A B C A

3.2 Nanson’s and Baldwin’s Rules

About a hundred years after the publication of Condorcet’s major work on voting
theory (Condorcet, 1785), E. J. Nanson came up with an ingenious proposal to
combine Condorcet’s and Borda’s winner intuitions without switching between two
different methods, as Black chose to suggest (Nanson, 1883). Nanson observed a
connection between the Condorcet winner and the Borda count: while the Condorcet
winner may not always coincide with the candidate with the largest Borda score,
its Borda score cannot be the smallest, either. Thus, if one eliminates the alternative
with the smallest Borda score, one can rest assured that the Condorcet winner (if one
exists) remains among the non-eliminated candidates. Since the Condorcet winner—
by definition—defeats all the other candidates, it remains one in all subsets of the
original candidate set. Thus, repeating the elimination process guarantees that the
eventual Condorcet winner remains among the non-eliminated ones. Furthermore,
Nanson noticed that the elimination process can be sped up without jeopardizing
the choice of a Condorcet winner. To wit, he noticed that a Condorcet winner can
never have an average or smaller Borda score. Hence, by eliminating on each round
those candidates with an average or smaller Borda score, one can avoid eliminating
an eventual Condorcet winner.

Given a preference profile, Nanson’s rule singles out as the winner the candidate
that survives the elimination process based onBorda scores. So, in contrast to Black’s
rule which relies on both Cordorcet’s and Borda’s intuitions, Nanson’s rule resorts to
only one principle, the Borda count. As Borda noted in his presentation in late 18th
century (de Borda, 1781), his method can be implemented via pairwise comparisons
of candidates. Thus, Nanson’s rule is equally simple for the voter as the other pairwise
comparison methods. The crucial difference is that in the determination of Borda
results the size of support for candidates in pairwise comparisons is essential, whereas
inmost other pairwisemethods the essential information iswhether or not a candidate
defeats another candidate in a pairwise contest. By design, Nanson’s rule also elects
the Condorcet winner when one exists.

Even though the Borda scores of the candidates in a Condorcet component are
identical, adding or removing such a Condorcet component can change the outcome
under Nanson’s rule. This is shown in Table6.

In the 3-voter profile on the left, there is a (strong) Condorcet and, therefore, a
Nanson winner, A (after C and then B have been eliminated). The 6- voter profile
on the right constitutes a Condorcet component where each candidate is ranked first,
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Table 7 Baldwin versus Nanson

3 voters 3 voters 1 voter

A C B

B A C

C B A

second and third by equally many voters. Yet, in the combined 9-voter profile, B
emerges as the Nanson winner (after C and B have been eliminated).) Nanson’s rule
is vulnerable to both P-TOP and P-BOT paradoxes (Felsenthal and Nurmi, 2017, pp.
58–60).4

Baldwin’smethodwas apparently intended as a practicalmodification ofNanson’s
rule (Baldwin, 1926). It is also a Borda elimination rule, but instead of eliminating
on each round all candidates with the average or smaller Borda score, Baldwin’s
rule eliminates the candidate(s) with the minimum Borda score.5 Thus computing
the winner takes in general more—often far more—eliminations rounds. The feature
that Nanson regarded most important, viz. that the eventual Condorcet winner not
be eliminated, characterizes Baldwin’s rule as well since obviously the Condorcet
winner cannot have the smallest Borda score at any stage of the process. Baldwin’s
and Nanson’s are, however, distinct rules as can be seen in Table7. As A is the only
candidate with strictly larger than average Borda score, it is elected under Nanson’s
rule. By the same token, B with the smallest average is eliminated under Baldwin’s
rule, whereupon C beats A and gets elected using the latter rule.

While not always ending up with the same outcomes in all profiles, Baldwin’s
and Nanson’s rules by and large satisfy the same desiderata of social choice rules.

3.3 Dodgson’s Rule

Dodgson’s rule emphasizes the plausibility of the Condorcet winner as a solution
concept to the degree that it determines the winner in terms of ‘closeness’ to the Con-
dorcet winner: whichever candidate needs the smallest number of preference changes
in the electorate to become the Condorcet winner is the winner (Black, 1958, pp.
222–234).6 It is the determination of closeness that invokes positional information

4 Brandt et al. provide simpler examples of these and other paradoxes (Brandt et al., 2022).
5 Perhaps a better-known term for Baldwin’s rule is Borda elimination rule (BER)(Smaoui et al.,
2016).
6 Associating C. L. Dodgson (a.k.a. Lewis Carrol) with the rule described in this subsection has
plausibly been called into question by, e.g., Fishburn (1977, pp. 474–475). Indeed, what is known
as the Dodgson rule is just one of several proposed by him (Black, 1958). Also Tideman has doubts
about the plausibility of associating Dodgson with this rule (Tideman, 1987). See Brandt (2009).
Keeping these caveats in mind we shall, however, conform to the standard usage of the concept of
Dodgson’s rule.
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Table 8 Dodgson winner is not the winner is all subsets of candidates

10 voters 7 voters 1 voter 7 voters 4 voters

D B B C D

A C A A C

B A C B A

C D D D B

in computing the Dodgson winner. In short, one determines the minimum number
of pairwise preference switches required to make any given candidate the Condorcet
winner. We call this minimum the Dodgson score of the candidate in a given profile.
The candidate with the smallest Dodgson score is the winner. Obviously, if a Con-
dorcet winner exists in a profile, it requires zero switches to become one, while all
other candidates need more switches. Hence, Dodgson’s rule is a Condorcet exten-
sion.

Despite being a Condorcet extension, Dodgson’s rule cannot be implemented
solely on the basis of information obtained from pairwise comparisons. A full pref-
erence ranking is called for to determine the minimum number of binary switches
required to make any given candidate a Condorcet winner. Thus, the simplicity of
voter input characterizing many Condorcet extensions is not present in Dodgson’s
rule. However, the other virtues of pairwise procedures mentioned above apply to
this rule. With a Condorcet winner absent in a profile, all these virtues evaporate.
Table8 is reproduced from Nurmi (2004, p. 10) where it was used to demonstrate
that the rule can elect an absolute loser, i.e., a candidate ranked last by more than
50% of the voters. This profile can also be used to show that Dodgson’s winner is
not necessarily the winner in all subsets of the candidate set. To wit, while D is the
Dodgson winner in the Table8 profile, it is not the winner in the subset consisting of
A, C and D; in the latter, C is the Condorcet and hence Dogdson winner.

When a Condorcet winner exists in a profile, Dodgson’s rule cannot lead to a P-
TOP paradox. In the absence of a Condorcet winner, on the other hand, an instance of
the P-TOP paradox can occur. Table9 reproduced from Felsenthal and Nurmi (2017,
p. 55) illustrates. This is admittedly a massive electorate voting on a large set of
candidates, but the point is that Dodgson’s rule is not in principle exempt from the P-
TOP paradox. In the 100-voter profile on left side, there is no Condorcet winner, but
A becomes one after the smallest number of pairwise preference switches between
adjacent candidates. Adding now 10 voters with the preference ranking AB EC D,
ceteris paribus, leads to a profile where B requires less preference switches between
adjacent candidates than A or any other candidate to become the Condorcet winner.

Dodgson’s rule can also lead to the P-BOT paradox, even in relatively small
electorates. Table10 illustrates. In the 9-voter profile on the left-hand side, B is
the (strong) Condorcet winner and thus also the Dodgson winner. If we augment the
electorate with three voters each with the ADBC ranking, C emerges as the Dodgson
winner.
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Table 9 Dodgson’s rule and the P-TOP paradox (Felsenthal and Nurmi, 2017, p. 55)

42 voters 26 voters 21 voters 11 voters 10 voters

B A E E A

A E D A B

C C B B E

D B A D C

E D C C D

Table 10 Dodgson’s rule and the P-BOT paradox (Felsenthal and Nurmi, 2017, p. 57)

5 voters 4 voters 3 voters

B C A

C D + D

D A B

A B C

Table 11 Dodgson’s rule fails on homogeneity: starting profile (Brandt, 2009, p. 460)

2 voters 2 voters 2 voters 2 voters 2 voters 1 voter 1 voter

D B C D A A D

C C A B B D A

A A B C C B B

B D D A D C C

Perhaps it is worth pointing out a peculiar property of Dodgson’s rule, a property
not shared by many other commonly known rules, viz. non-homogeneity. A rule is
homogeneous if for any two profiles R and R′ such that sizes of voter groups in R
are copied n times to form R′, the outcomes resulting from the application of the
rule are identical in R and R′. To cite Smith (1973, p. 1029):

Homogeneity seems an extremely natural requirement; if each voter suddenly splits into m
voters each of whom has the same preferences as the original, it would be hard to imagine
how “the collective preference” would change.

In the case of Dodgson’s rule, such a change is, however, possible. Brandt (2009)
gives an example (Table11) involving 12 voters and four candidates.

Since there is no Condorcet winner, one looks for the minimum number of binary
preference switches required to make various candidates the Condorcet winner. It
turns out that one needs only three preference switches lifting A ahead of C among
the eight left-most voters tomakeA the Condorcet winner, whereasmaking any other
candidate the Condorcet winner would call for strictly more changes. Thus, A is the
Dodgson winner in Table11. Consider now a profile where the size of each voter
group in Table11 is multiplied by three. In the ensuing 36-voter profile candidate D
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requires the smallest number of preference switches between adjacent candidates to
become the Condorcet winner. Thus, D is the Dodgson winner. This demonstrates
the non-homogeneity of Dodgson’s rule.

Non-homogeneity is a bizarre property of a voting rule.7 Therefore, it is nice to
know that not many voting rules are non-homogeneous. In the next subsection, we
shall, however, discuss another non-homogenous rule that aims at bridging the gap
between the Condorcet and positional intuitions.

3.4 Rules Based on Supercovering Relation

Tournament solutions have played a significant role in voting theory, e.g., in defin-
ing solution concepts for voting games (Miller, 1980; Moulin, 1986). In relatively
recent papers, Pérez-Fernández and De Baets define new solution concepts based on
supercovering and superdomination relation defined over preference profiles (Pérez-
Fernández and De Baets, 2018a). These authors aim at finding solution concepts
combining–to the extent possible–the insights of Borda and Condorcet.8 We start
with a couple of definitions for more precision and elaboration, see Pèrez-Fernàndez
and De Baets (2018a).

Let A be the set of alternatives and n(a, b) the number of voters preferring a to b.
Let us assume that all individual preferences are strict (no ties). The first definition
introduces the crucial concept of supercovering.

Definition 1 a supercoversb if (i)n(a, b) > n(b, a) and (ii)n(a, x) ≥ n(b, x),∀x ∈
A.

In other words, a candidate supercovers another if it beats the latter and, moreover,
has at least an equal support as the latter against any other candidate. This should
be distinguished from the more traditional notion of covering which requires the
covering candidate to defeat the covered one and, moreover, to defeat all candidates
defeated by the latter. The supercovering relation invokes ‘Bordaesque’ aspects—the
size of support—instead of just the dichotomy: defeating or not defeating. The next
definition introduces the corresponding concept of winning.

Definition 2 a is the pairwise winner if a supercovers all other candidates.

This seems to be a strengthening of the Condorcet winner. Indeed, the pairwise
winner is a special case of the Condorcet winner or a sufficient(albeit not a necessary)

7 That the use of a non-homogeneous voting rule makes the outcomes depend not only on the
distribution of voters over preference rankings but also on the number of voters, obviously suggests
that various participants may have different interests in the size of the voting body. This aspect
relates the study of power to the institution design as pursued by the honoree of this volume and
his associates.
8 In a companion article, the same authors define and analyze solutions based on superdomination
relation (Pérez-Fernández and De Baets, 2018b). Our focus in this paper is on the supercovering
relation and the associated solutions.



20 H. Nurmi

condition for the existence of the latter. The Condorcet winner may or may not
satisfy (ii) above and, consequently, may or may not supercover one or more other
candidates. The Borda winner, in turn, may satisfy neither (i) nor (ii) and thus exist
without there being a pairwise winner (Pérez-Fernández and De Baets, 2018a, Thm.
2). Conversely, the pairwise winner is necessarily the Borda winner. So, the pairwise
winner is a special case of both Borda and Condorcet winners. Since it is unique,
it follows that when it exists, it coincides with both Borda and Condorcet winner.
As a solution concept, the pairwise winner would, thus, perfectly combine Borda’s
and Condorcet’s intuitions of winning candidates. The drawback, obviously, is that
the pairwise winner is relatively unlikely to exist. After all, it is less common than
the Condorcet winner and much less common than the Borda winner. Hence, a more
applicable solution would come in handy. The following definition suggests one such
concept.

Definition 3 The unsupercovered set consists of candidates that are supercovered
by no other candidate.

This set has the advantage of being always nonempty, but is often quite large and
thus not helpful in singling out winners. Pérez-Fernández and De Baets therefore
come up with another subset of candidates: the P-optimal ones.

Definition 4 P-score of a candidate measures its distance from being a pairwise
winner. P(a) tallies the number of pairwise switches on a’s row in the pairwise
comparison matrix that are required to make (i) n(a, x) greater than half of the
voters for all x ∈ A, and (ii) to make n(a, y) = maxx n(x, y). P-optimal candidates
are those with minimum P-scores.

Some properties of the P-optimal candidates:

1. P-optimal candidates are always unsupercovered, i.e., no candidate supercovers
them

2. if a pairwise winner exists, it is the unique unsupercovered and P-optimal candi-
date

3. P-optimal candidate may not coincide with the Condorcet winner (not even with
a strong one) (Pérez-Fernández and De Baets, 2018a, p. 338))

4. P-optimal candidate may not coincide with a (strong) Condorcet winner that is
simultaneously the Borda one (Table12)

Table 12 The Borda and strong Condorcet winner is not P-optimal

9 voters 4 voters a b c B-score P-score

a b a – 9 9 18 P(a) = 4 (= 0 + 4)

b c b 4 – 13 17 P(b) = 3(= 3 + 0)

c a c 4 0 – 4 P(c) = 12 (= 3 + 9)
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Table 13 Non-homogeneity of P-optimal outcomes: initial profile

3 1 2 1 1 1 1 a b c d P-score

b b c a b c d a – 4 5 9 P(a)=3

a a a c c a c b 6 – 5 7 P(b)=3

c d b d a d b c 5 5 – 8 P(c)= 3

d c d b d b a d 1 3 2 – P(d)=12

Table 14 Non-homogeneity of P-optimal outcomes: expanded profile

6 2 4 2 2 2 2 a b c d P-score

b b c a b c d a – 8 10 18 P(a)=4

a a a c c a c b 12 – 10 14 P(b)=5

c d b d a d b c 10 10 – 16 P(c)= 5

d c d b d b a d 2 6 4 – P(d)=22

Property 4 demonstrates that the rule of searching for P-optimal candidates can
radically part company with both Borda and Condorcet winners: it can result in a
different outcome in situations where the Borda winner results in the same outcome
as the strong Condorcet winner.

As Dodgson’s rule, also the search for P-optimal candidates is associated with a
bizarre twist: non-homogeneity. Table13 which is slight modification of an example
presented by Pèrez-Fernàndez and De Baets (2018a, p. 350) illustrates.

In this setting, a, b and c are elected. Suppose now that each unanimous voter
group has twice the number of members as in Table13 so that the profile of Table14
ensues.

Now a becomes the unique P-optimal alternative.
On the positive side, it seems that the search for P-optimal candidates is invulner-

able to the P-BOT paradox. To sketch an argument to support this, consider a profile
where y is the winner and x is not the winner. Suppose that a group of unanimous vot-
ers, each ranking x last in their preferences, joins the electorate, ceteris paribus. The
new pairwise comparison matrix changes accordingly. In fact, the only unchanged
row is the one representing x’s comparisons. The P-scores tally the distances from
the column maxima and from the winning threshold. Thus, x’s P-score cannot be
smaller in the expanded electorate than in the original. In particular, it cannot be
smaller than y’s P-score because the latter received additional support at least in the
x vs. y comparison. Hence, x cannot be a P-optimal candidate.
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Table 15 Summary of some features examined

P-optimal Nanson Dodgson Black

Condorcet winner elected No Yes Yes Yes

Majority winner elected No Yes Yes Yes

Monotonicity Yes No No Yes

Homogeneity No Yes No Yes

P-BOT invulnerability Yes No No No

4 Concluding Remarks

Table15 gives a summary of some features of the rules discussed.9 It should be
emphasized, though, that this is a very limited set of performance evaluation crite-
ria. This set is motivated by the pros and cons related to pairwise comparison rules
discussed in the second section above. The intuitively plausible property of mono-
tonicity has not been discussed in the preceding. In the present context, it refers to
the property of a rule according to which additional support within a fixed electorate,
ceteris paribus, never renders winners into no-winners. In other words, if x wins
under a given rule in profile P of preferences, it also wins if the P is changed so that
the position of x is improved in some voters’ preferences and no other changes are
made. That is, additional support within a given electorate never harms the winner.
The nonmonotonicity of Dodgson’s and Nanson’s rules as well as the monotonicity
of Black’s rule have been established in Felsenthal and Nurmi (2017, p. 96, 104),
and Fishburn (1977, p. 478) the monotonicity of the search for P-optimal candidates
has been shown in Pèrez-Fernàndez and De Baets (2018a, p. 349).

The best performing rule in this very restricted evaluation is Black’s. It is basically
a lexical application of two incompatible criteria with Condorcet’s given the priority.
In a way, it is no compromise at all. The same is true of Dodgson which introduces
the positional aspect by defining a distance measure in profiles. Nanson’s rule is an
insightful utilization of a connection between the Borda scores and Condorcet win-
ners: while the latter may not coincide with the Borda winners, their scores always
exceed the average Borda scores of the candidates. Hence, both rules are present
in the Nanson elimination process that always leads to the Condorcet winner if one
originally exists. The bridge connecting the Borda and Condorcet intuitions is, how-
ever, not ‘smooth’: as Dodgson’ rule Nanson’s is non-monotonic and together with
other Condorcet extensions here, vulnerable to the P-BOT paradox. Unlike Dodgson,
it satisfies the most natural condition of homogeneity. In terms of monotonicity and
invulnerability to the P-BOT paradox, the search for P-optimal candidates does very
well. Its main flaw is non-homogeneity and the possibility for quite radical departure
from both the Borda and Condorcet winners.

9 The labels of criteria in the first column are phrased so as to make ‘yes’ a preferable value to ‘no’.
So, the more ‘yes’ values assigned to a rule, the better its performance in terms of this evaluation.
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Many important aspects of the Borda-Condorcet controversy have been glossed
over in the preceding. It is well-known that for showing the incompatibility of a rule
with a criterion, all one needs is an example where the former leads to a choice not
allowed by the latter. But how likely is one to encounter such an example?What is the
minimum number of candidates and voters required for it? Many important results
have already been achieved by Brandt and his associates using integer programming
and Ehrhart theory (Brandt et al., 2019, 2022). Computing similar minimal exam-
ples of radical (in some precise sense) discrepancies between choices resulting from
various voting rules would seem feasible and worthwhile if for no other reason than
to find out the practical relevance of the study of voting rules. Perhaps the preced-
ing could motivate another line of inquiry: are there fairness or power distribution
differences between methods aimed at building bridges over the Borda–Condorcet
divide? I am sure the honoree of this volume and his associates could provide useful
insights on this question.

Acknowledgements The author wishes to thank Manfred J. Holler and Sascha Kurz for numerous
constructive comments on an earlier draft.
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Abstract A candidate is said to be socially acceptable if the number of voters
who rank her among the most preferred half of the candidates is at least as large
as the number of voters who rank her among the least preferred half (Mahajne
& Volji in Soc Choice Welfare 51:223–233, 2018). For every voting profile, there
always exists at least one socially acceptable candidate. This candidate may not
be elected by some well-known voting rules. In some cases, the voting rules may
even lead to the election of a socially unacceptable candidate, that is a candidate
such that the number of voters who rank her among the most preferred half of
the candidates is strictly less than the number of voters who rank her among the
least preferred half. In this paper, our contribution is twofold. First, since the exis-
tence of socially unacceptable candidates is not always guaranteed, we determine
the probabilities that such candidates exist given the number of the running can-
didates and the size of the electorate. Second, we evaluate how often the Plurality
rule, the Negative Plurality rule, the Borda rule and their two-round versions can
elect a socially unacceptable candidate. We perform our simulations under both the
Impartial Culture and the Impartial Anonymous Culture, two assumptions which
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are widely used when studying the likelihood of voting events. Our results show
that as the number of candidates increases, it becomes almost assured to have
at least one socially unacceptable candidate; in some cases, the probability that
half of the candidates in the running are socially unacceptable approaches or even
exceeds 50%. It also turns out that the extent to which a socially unacceptable can-
didate is selected depends strongly on the voting rule, the underlying distribution
of voters’ preferences, the number of voters and the number of competing candi-
dates.

1 Introduction

Assuming that voters have strict rankings (without indifference) on all running can-
didates, Mahajne & Volij (2018) introduce the concept of a socially acceptable can-
didate, which is a candidate whom at least half of the voters rank higher than at least
half of the candidates in their rankings. The concept of social acceptability reflects
a certain dichotomy in voters’ preferences: the “good” or “desirable” candidates are
above the line, and the “less good” or “undesirable” are below the line. Thus, being
a socially unacceptable candidate means that a majority of voters may be uncom-
fortable with the election of such a candidate. The notion of social acceptability can
be used, for instance, in the context of screening where we wish to keep the “most
desirable” candidates while reassuring ourself that the chosen candidate would at
least be acceptable. Mahajne & Volij (2018) show that there always exists at least
one socially acceptable candidate for every preference profile; however, such a can-
didate may not be elected under some scoring rules, with the exception of a new
scoring rule, the half accepted-half rejected (HAHR) rule. Furthermore, Mahajne &
Volij (2019) show that a socially acceptable candidate may not be a q−Condorcet
winner1 and they identify some restricted preference domains that guarantee that any
q−Condorcet winner is socially acceptable as a function of the threshold q. Diss &
Mahajne (2020) extend the concept of social acceptability to multi-winner elections,
i.e., when the goal is to select a given group of candidates, and perform the same
analysis as Mahajne & Volij (2019) in that context.

Among the wide range of existing voting rules, scoring rules and scoring runoff
rules are the most common in the literature and in practice. Under scoring rules,
each voter ranks all of the alternatives from her most preferred to her least preferred
candidate; then, points are awarded to candidates according to their position in voters’
rankings. The score of a given candidate is defined by the total number of points
received by that candidate taking into account all of the voters; the overall winner of
the election is the candidate having the highest score. The most popular scoring rules
are the Plurality rule, the Negative Plurality rule and the Borda rule. Although these
rules are quite popular, they suffer from a number of limitations. For an overview of

1 A q−Condorcet winner is a candidate who is preferred to each of the other candidates in pairwise
majority comparisons by a fraction q of the total number of voters with 1/2 ≤ q < 1.
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these limitations, the reader can refer, among others, to Felsenthal (2012), Gehrlein
& Lepelley (2011, 2017) and Nurmi (1999) or to the recent book edited by Diss and
Merlin (Diss & Merlin, 2021).

It is well known from the debate between de Borda (1781) and Condorcet (1785)
that scoring rules may lead to the Condorcet winner paradox, i.e., they may fail to
elect the Condorcet winner. When she exists, the Condorcet winner is a candidate
who is preferred to each of the other competitors by a majority of voters. Scoring
rules may also lead to the Condorcet loser paradox, as they may elect the Condorcet
loser, a candidate defeated in pairwise comparisons by each of the other candidates.
Even worse, a candidate ranked first by an absolute majority of the voters may
not be elected (the absolute majority winner paradox) whereas a candidate ranked
last by an absolute majority of the voters may be elected (the absolute majority
loser paradox).2 Avoiding the aforementioned paradoxes can be considered as an
attempt to guarantee the election of a candidate supported by an “acceptable”majority
of the electorate or to avoid the victory of a candidate who would be supported
by only a given “minority”. Note that the existence of a Condorcet winner is not
always guaranteed, whereas this is always the case for at least one socially acceptable
candidate.

As mentioned above, a socially acceptable candidate may not win under some
scoring rules; these rules may in some cases instead select a socially unacceptable
candidate. Note that unlike the assured existence of at least one socially acceptable
candidate for any preference profile, the existence of a socially unacceptable candi-
date is not always guaranteed. If there is at least one socially unacceptable candidate,
the fact is that a majority consensus leans in favor of the socially acceptable candi-
date(s) over the socially unacceptable candidate(s). It therefore appears that in such
a case the election of a socially unacceptable candidate corresponds to an undesir-
able scenario. Since such scenarios can occur under some scoring rules, our goal
in this paper is to find out if this is frequent or not. More exactly, we evaluate the
probability that the Plurality rule, the Negative Plurality rule, the Borda rule, and
their two-round versions select a socially unacceptable candidate. Prior to that, we
determine the probabilities that a given number of socially unacceptable candidates
exist. We focus on elections with a number of candidates in the set {3, 4, 5, 6, 10, 15}
for some values of the number of voters between 10 and 100,000. We perform our
analysis by running simulations under both the Impartial Culture and the Impar-
tial Anonymous Culture, which are two widely used assumptions when studying
the likelihood of voting events. We will say more about these assumptions in the
sequel.

Our results show that as the number of candidates increases, it becomes almost
assured to have at least one socially unacceptable candidate; in some case, the proba-
bility that half of the candidates in the running are socially unacceptable approaches
or even exceeds 50%. It also turns out that the extent to which a socially unacceptable
candidate is selected depends strongly on the voting rule, the underlying distribution
of voters’ preferences, the number of voters, and the number of competing candidates.

2 See for instance Diss et al. (2018).
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The rest of the paper is organized as follows: Sect. 2 is devoted to definitions and
to the basic notations that set the framework for our analysis; in this section, we will
also present our simulationmethodology.We present our probability results in Sect. 3
for each of the two preference models under consideration. Section4 concludes.

2 Definitions

2.1 Preferences and Social Unacceptability

Let A = {a1, . . . , aK } be a set of K (K ≥ 3) candidates and N = {1, . . . , n} a set of
n (n ≥ 2) voters. We denote by R the set of binary relations on A, and P the subset of
complete, transitive, and antisymmetric binary relations on A. A preference profile
is a mapping π = (�1, . . . ,�n) of preference relations on A to the voters in N .
For each voter, i ∈ N , �i represents i’s preference relation over the candidates in
A. We denote by Pn the set of preference profiles. A voting situation is a K !-tuple
ñ = (n1, n2, . . . , nK !) that indicates the total number nt of voters casting each of the
K ! complete linear orders such that

∑K !
t=1 nt = n.

For every subset of preference relations C ⊆ P, we denote by μπ(C) = |{i ∈
N :�i∈ C}| the number of voters whose preferences are in C . For any preference
profile π ∈ Pn , the rank of a candidate a in the preference relation � is defined as
follows: rank�(a) = K − |{a′ ∈ A : a � a′}|. Candidates whose ranks in the pref-
erence relation � are less than (K + 1)/2 are said to be placed above the line, those
whose ranks in the preference relation � are greater than (K + 1)/2 are said to
be placed below the line, and those whose ranks in the preference relation � are
equal to (K + 1)/2 are said to be placed on the line. In the preference ranking
a1 � a2 � a3 � a4 � a5, for instance, candidates a1 and a2 are above the line while
candidates a4 and a5 are below the line, and candidate a3 is ranked on the line. It is
obvious that there are no candidates on the line when the number of candidates is
even.

We can now define the concept of social (un)acceptability as introduced byMaha-
jne & Volij (2018) for single-winner elections.

Definition 1 Letπ ∈ Pn be a profile of preference relations, and let a ∈ A be a given
candidate. We say that a is socially unacceptable with respect to π if the number
of voters that place her below the line is strictly greater than the number of voters
that place her above the line, otherwise a is called socially acceptable. Formally, a
is socially unacceptable with respect to π if and only if

μπ

({
�: rank�(a) < (K + 1)/2

})

< μπ

({
�: rank�(a) > (K + 1)/2

})

.

For illustration, let us consider the following simple example.



Social Unacceptability for Simple Voting Procedures 29

Example 1 Consider an election such that A = {a1, a2, a3, a4} and N = {1, . . . , 7}
with the following profile:

π =

⎡

⎢
⎢
⎣

a1 a1 a1 a2 a2 a3 a4
a2 a2 a3 a3 a4 a4 a3
a3 a4 a4 a1 a1 a1 a1
a4 a3 a2 a4 a3 a2 a2

⎤

⎥
⎥
⎦

The first column in π represents the preference relation of voter 1, the second one is
the preference relation of voter 2 and so on. In this election, a1 and a4 are socially
unacceptable candidates since they are ranked below the line by four voterswhile only
three voters rank them above the line; a2 and a3 are socially acceptable candidates
since they are ranked above the line by four voters while only three voters rank them
below the line. Notice that if we erase �4 in the above preference profile, we end up
with a profile where there is no socially unacceptable candidate.

2.2 Voting Rules

Given a preference profile π ∈ Pn , a scoring voting rule is characterized by a list S =
{S1, S2, . . . , SK } meaning that each voter i ∈ N assigns St points to the candidate
that is ranked t-th in her preference relation with t = 1, . . . , K . The scoring rule
associated with the list S chooses the candidate(s) having the maximum total score.
The well-known scoring rules under consideration in this paper are the following:

Plurality rule (PR): The Plurality score of a given candidate is the total number
of voters who rank this candidate at the top of their rankings. In other words, the
Plurality rule corresponds to the list S = (1, 0, . . . , 0, 0).

Negative Plurality rule (NPR): This rule picks the candidate with the lowest
number of last places in voters’ rankings; the vector of scores is given by
S = (1, 1, . . . , 1, 0).3

Borda rule (BR): This rule gives K − t points to a candidate each time she is ranked
t-th; the vector of scores is given by S = (K − 1, K − 2, . . . , 1, 0).

We also consider a runoff version of each of the above scoring rules. Runoff
rules are variously defined. Some will eliminate candidates one by one and others
by blocks. In the case of a one-by-one elimination, the candidate with the lowest
score is eliminated in each round; this is for example the case with the Baldwin
rule (Baldwin, 1926) which at each round eliminates the candidate with the lowest
Borda score. For block eliminations, the candidate(s) whose score does not meet a
given threshold are eliminated in each round; this is the case for the Nanson rule

3 This rule is also known as anti-plurality or veto.
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(Nanson, 1883) or Kim-Roush voting rule (Kim & Roush, 1996).4 For simplicity,
we define runoff rules here as involving only two rounds: only the two candidates
with the highest scores in the first round qualify for the second round. The winner
will therefore be the candidate who wins the majority duel that governs the second
round. The runoff rules that we consider in the paper at hand are therefore defined
as follows:

Pluralitywith runoff (PRR):Amajority duel pits the twocandidateswith the highest
plurality scores against each other and the one who wins this duel is declared the
winner.

Negative Plurality with runoff (NPRR): The two candidates who have been ranked
last by the voters the fewest times in their rankings find themselves in a majority
duel in the second round. The winner of this duel is declared the winner of NPRR.

Borda with runoff (BRR): The winner under this rule is the candidate who wins
the majority duel between the two candidates with the highest Borda scores in the
first round.

It is worth noting that whenever it is necessary to handle ties, we use the alphanu-
merical order. Note also thatMahajne&Volij (2018) introduced a scoring rule, called
the half accepted-half rejected (HAHR), which always selects a socially acceptable
candidate (and never selects a socially unacceptable candidate). HAHR assigns 1
point to the candidates placed above the line, −1 point to candidates below the line,
and a score of 0 to the candidate (if there is one) on the line. Given a ranking t in
a voter’s preference relation, HAHR is formally defined by the scores St defined as
follows:

St =

⎧
⎪⎨

⎪⎩

1 if t < K+1
2

0 if t = K+1
2

−1 if t > K+1
2

The HAHR winner is the candidate with the highest total score. Notice that given
a scalar α and β, a 1 × K matrix of ones, the scoring rules associated with the scores
St and with the scores αSt + β define one and the same rule. It then follows that
for K even, HAHR is equivalent to the well-known K

2 -approval rule; i.e., each voter
casts a vote for half of the competing candidates. For the particular case of K = 3,
HAHR is equivalent to the Borda rule.

To motivate our subject, let us reconsider the preferences of Example 1. One can
check in this example that candidate a1 who is socially unacceptable is elected under
each of our three scoring rules and also under the three two-round rules. Thus, our
voting rules in this example elect a socially unacceptable candidate even though
there are two socially acceptable candidates. Example 1 can be used to construct

4 At each round of the Nanson rule, all the candidates with less than the average Borda score are
eliminated. The Kim-Roush voting rule eliminates those candidates having a score lower than the
average Negative Plurality score.
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profiles with any number of candidates such that our voting rules elect a socially
unacceptable candidate.

2.3 Probability Models and Simulation Methodology

2.3.1 Probability Models

When computing theoretical probabilities of voting events (e.g., a paradoxical event
such as the Condorcet’s paradox), assumptions are needed on the distribution of
voting situations or profiles. This is made through statistical models. In this paper,
we address our subject by assuming the following two models which are among
the most common in the literature: the Impartial Culture (IC) and the Impartial
Anonymous Culture (IAC).

IC was first introduced in the social choice literature by Guilbaud (1952); this
model assumes that every preference profile is equally likely to occur; each voter
chooses her preference according to a uniform probability distribution and gives a
probability of 1

K ! for each ranking to be chosen independently. The likelihood of a
given voting situation ñ = (n1, n2, . . . , nK !) is given by n!

∏K !
i=1 ni !

× (K !)−n .

IACwas introduced by Kuga&Nagatani (1974) and Gehrlein & Fishburn (1976);
this model assumes that all voting situations with n voters are equally likely to be
observed. Under this model, the likelihood of a given voting event is equal to the
ratio between the number of voting situations in which the event may occur over
the total number of possible voting situations. The total number of possible voting
situations with K candidates is given by the polynomial

(n+K !−1
K !−1

)
. To determine the

number of voting situations associated with a given voting event, several techniques,
mathematical tools and algorithms have been proposed. For more details, we refer
the reader to Bruns & Ichim (2021), Schürmann (2013), Cervone et al. (2005) and
Wilson & Pritchard (2007).

The two models have been used over time in an impressive number of works. For
a non-exhaustive overview of the use and technical developments around these two
models, the reader can refer to the recent books edited by Diss and Merlin (Diss &
Merlin, 2021) and Gehrlein and Lepelley (Gehrlein & Lepelley, 2011, 2017). Note
that the techniques and algorithms mentioned above have a limit, namely the number
of candidates. They are adapted for calculations involving at most four candidates;
depending on the case, the calculation time can be quite variable (from one second
to almost weeks). Since our analysis involves voting situations with more than four
candidates, we have opted for simulations to get around these limitations.We present
in the following the methodology that supports these simulations.
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2.3.2 Simulation Methodology

Simulations under IC and IAC models have been produced using a handcrafted
Python framework.5 The simulation method has been based on the PrefLib code by
Mattei&Walsh (2013), a reference library onpreference data and algorithms for com-
putational social choice. IC and IAC models have been extracted with modifications
restricted to the random number generator. We then added the evaluations required
for the socially unacceptable observations. A thorough selection has been performed
to certify that no pre-existing preference data is used by any included algorithms. As
such, the Python simulations are only based on random generation of preferences
following IC or IAC models. The 128-bit implementation of the O’Neill’s permuta-
tion congruential generator has been used as a pseudo-random generator (O’Neill,
2014) producing double-precision floating-point numbers with a period of 2128.

The simulations proceed as follows: A number of candidates K , a number of
voters n and a model (IC or IAC) is selected. A number I of preferences is produced
randomly (the specific number can be different, as discussed below). Storing selected
candidates and preferences, the set of socially unacceptable candidates selected for
different values of the input parameters can be built. For each simulation, the results
of the six voting rules described in Sect. 2.2 are investigated and the probabilities of
observing the different cardinal values is computed. Results are discussed in Sect. 3.

Due to the formulation of the algorithms, and the intrinsic behavior of IC and
IAC models, computation time increases sharply with values of K and n. As for the
number I of generations, this is the main contributor in the computation times and
its value restricts the maximum precision that can be expected for the probabilities
of interest. To assess that dependency, we used the case of the IC model, K = 10
candidates, n = 100 voters and computed a test probability for increasing values of
I preference generations. The variable tested is the probability to observe a set of
socially unacceptable candidates selected with a cardinal value of 5. The results of
this numerical calibration are shown in Table1.6

The effect of I on computation time is linear, as expected for a single threaded
implementation. Following those observations and due to time constraints, it has
been decided to restrict some cases of the parametric study to a lower value of
I.7 Concerning precision, if I =1,000,000 is taken as a reference, a reduction of
generations by a factor of 10 leads to a relative difference of only 0.06% and a factor
of 100 scales to a relative difference of 0.13%. The same study applied to other values
of n and K shows similar results.

In regards of computational resources, memory consumption is not a factor in
these CPU-bound simulations, neither are the memory bus speed or width. It is to be
noted, however, that as of now no optimization aiming for a reduction of computation

5 Code base is available at https://plmlab.math.cnrs.fr/jrolland/social-unacceptability-freezed-
code.
6 Precision is expressed as relative error Erel to the most precise case, in percentages.
7 All simulations for K = 15 as well as the specific case of IACmodel, n = 100,000 and K ∈ {6, 10}
have been performed with a limited I =100,000 generations.

https://plmlab.math.cnrs.fr/jrolland/social-unacceptability-freezed-code
https://plmlab.math.cnrs.fr/jrolland/social-unacceptability-freezed-code
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Table 1 Computation times t (in seconds) and precision of the simulations over the number I of
preferences generated.

I 10 100 1000 10,000 100,000 1,000,000

log(t) −0.62 0.34 1.32 2.32 3.32 4.56

Erel 21.26% 28.61% 3.41% 0.13% 0.06% –

times has been implemented in the Python framework. Computations for this study
have been performed on two infrastructures: the LmB local computing facilities (Intel
Xeon CPU - 3.20GHz) and supercomputer facilities of the Mésocentre de calcul de
Franche-Comté (Intel Xeon CPU-2.67GHz).

3 Results

3.1 The Probability that a Fixed Number of Socially
Unacceptable Candidates Exist

It is useful to note that with K candidates in the running, the number of socially
unacceptable candidates can vary from 0 to K − 1. Since there is always at least one
socially acceptable candidate, it is therefore impossible to have a voting situation
in which all candidates are socially unacceptable. In this section, we investigate the
proportion of voting situations inwhich one ormore socially unacceptable candidates
exist.

For a number of candidates K ∈ {3, 4, 5, 6, 10, 15} and a number of voters n
between 10 and 100,000, we compute the probability that a fixed number of socially
unacceptable candidates exist. Let us denote by P( j) the probability that exactly
j socially unacceptable candidates exist. For space constraints, detailed results of
numerical probabilities are provided in online supplementary material.8 Figures1
and 2 present in a synthetic way the results that we obtain under both IAC and
IC. For better readability, the colors indicate in each case the number of socially
unacceptable candidates.

First of all, we point out some general observations that emerge from our simu-
lations. Whether under IC or IAC, the probabilities show similarities in their trend.
Under both models, we notice that as n increases, P( j) tends to decrease for j < K

2
and tend to increase when j > K

2 . We also observe that for any given value of
K ∈ {3, 4, 5, 15} and n, P( j) tends to increase for a j lower than j� = � K

2 	 the
value for which P( j) is maximum and then decrease beyond that. We have a similar
pattern for K ∈ {6, 15} except that j� is sometimes j� = K

2 − 1 or j� = K
2 . More

8 This supplementary material is available at https://plmlab.math.cnrs.fr/jrolland/social-
unacceptability-freezed-code/-/blob/master/Supplementary_materials/tables.pdf.

https://plmlab.math.cnrs.fr/jrolland/social-unacceptability-freezed-code/-/blob/master/Supplementary_materials/tables.pdf
https://plmlab.math.cnrs.fr/jrolland/social-unacceptability-freezed-code/-/blob/master/Supplementary_materials/tables.pdf
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Fig. 1 Probabilities that a fixed number of socially unacceptable candidates exist under IACmodel
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Fig. 2 Probabilities that a fixed number of socially unacceptable candidates exist under IC model
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precisely, when K = 6, we get j� = 2 when n ∈ {10, 20} while j� = 3 for the other
values of n; for K = 10, we get j� = 4 when n ∈ {10, 20, 50} and j� = 5 for the
other values of n. We also notice that for an even number of candidates, P( j) evolves
both with the parity of the number of voters and with the parity of the number of
socially unacceptable candidates.

We now turn to some probabilities that the reader will find online through the
link provided above. If we look at the case of three-candidate elections (K = 3), we
find that with ten voters there is about a 1.1% chance under IAC and about a 2.65%
chance under IC that no socially unacceptable candidate exists. Thus, with such an
electorate, there is a nearly 97% chance that there is at least one socially unacceptable
candidate. This last conclusion is valid for all other values of n that we consider. We
also note that for K = 3, with at least 50 voters, we reach and even exceed the 40%
chance that 2 of the 3 candidates are socially unacceptable. For K ∈ {4, 6, 10}, there
is at least a 98% chance that there is at least one socially unacceptable candidate;
furthermore, for n ∈ {15, 25, 55, 105, 1005, 100,000} the probabilities that there is
no socially unacceptable candidates are very low or even zero. For K = 15, our
results indicate that there are always at least 3 (2 for some values of n) socially
unacceptable candidates; the maximum number of socially unacceptable candidates
is 12 (11 for some values of n) under IAC and 13 (or even 11 or 12 for some values
of n) under IC.

In sum, it seems to emerge from our simulations that for voting situations with
less than ten candidates, half of the candidates in contention may (in nearly 50%
of the cases or even more) be socially unacceptable; also, as the number of candi-
dates increases, it becomes almost assured to have at least one socially unacceptable
candidate.

3.2 The Probability that Some Voting Rules Select a Socially
Unacceptable Candidate

The probabilities obtained in the previous section led us to the conclusion that the
existence of at least one socially unacceptable candidate is almost assured for the
studied voting situations. Earlier, we argued that the election of a socially unaccept-
able candidate is problematic because of the consensus on her status compared to
that of a socially acceptable candidate. It was therefore important to verify whether
the election of a socially unacceptable candidate is a rare oddity or not. As such, we
computed the probabilities that a socially unacceptable candidate would be elected
under PR, NPR, BR, PRR, NPRR and BRR introduced and defined above. Figures3
and 4 show these probabilities under IAC and IC, respectively.

The first observation that emerges under both IC and IAC is that for all values of
K and n, NPR appears among the voting rules to be the most likely to lead to the
election of a socially unacceptable candidate; it is followed by PR, which dominates
NPRR, and then PRR. BR stands out as the rule least likely to lead to the election of
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Fig. 3 Probability that some voting rules elect a socially unacceptable candidate under IAC model
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Fig. 4 Probability that some voting rules elect a socially unacceptable candidate under IC model
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a socially unacceptable candidate. Let us take a closer look at the behavior of each
of our rules by stressing the salient points.

With PR, for each value of K , the probabilities tend to evolve according to the
parity of the number of voters. More precisely, except for K = 3 or K = 5, they
tend to increase with even n and to decrease with odd n. For K = 3, the probabilities
increase from 4.4% under IAC (5.9% under IC) with n = 10 to nearly 5.5% under
IAC (9.4% under IC) with n = 100,000. For K = 5, we notice that the probabilities
increase for n ∈ {10, 20, 15, 25} under IAC and start decreasing for the other values
of n, whereas, under IC we note a growth according to the parity of n. If we consider
large values of n, the probabilities under PR tend to increase with K : we go from
5.5% under IAC (9.4% under IC) for K = 3 to nearly 30% (under IAC and IC) for
K = 15. Thus, with PR, an increase in the number of candidates in the running may
result into a greater possibility of electing a socially unacceptable candidate.

Under BR, the evolution of the probabilities follows an almost similar pattern
under IAC and IC. The zero probabilities for K = 3 are well in line with the fact that
BR never elects a socially unacceptable candidate since it is equivalent to HAHR.
For K = 4, the probabilities tend to increase when n is even and to decrease when
n is odd. For the other values of K , the probabilities all tend to increase according
to the parity of n. We also note that it is for K = 4 that the probabilities are the
highest under BR. We cannot clearly say, as we did with PR, how the probabilities
evolve when we increase K . The fact is that when we go from K = 4 to K = 5,
the probabilities tend on average to decrease significantly; they tend on average to
increase significantly when we go from K = 5 to K = 6 and then we note a decrease
with K = 10 and K = 15.

The pattern of probabilities obtained with NPR differs for some values of K
depending on whether one is under IAC or IC. For instance, when K = 3, while the
probabilities decrease with the parity of n under IC, they tend under IAC to decrease
with n even and to increase for n odd; when K = 4, the probabilities decrease with
the parity of n under IAC while they tend under IC to decrease with n odd and to
increase for n even. When K = 10, the probabilities decrease with the parity of n
under IAC while under IC they tend to increase with the parity of n. Even if the
probabilities tend on average to increase when going from K = 3 to K = 4, and
to decrease slightly when going from K = 4 to K = 5, the tendency that seems to
emerge is the following: the more the number of candidates increases, the more the
possibility of electing a socially unacceptable candidate increases. For all values of
n considered, the probabilities seem the highest for K = 15: we approach 98% for
n = 10 and 31% for n = 100,000.

In contrast to one-shot scoring rules, each of the runoff rules has, for a given K ,
a very similar behavior under IAC and IC: the probabilities obtained under each of
these models are quite close. The probabilities tend to increase with the parity of n
for each value of K : for all values of n, the probabilities are higher when K = 4
where they average around 6% and they are lower when K = 15 where they average
around 0.5%. Also, given n, the probabilities tend to evolve with the parity of K .
With K = 4, the probabilities grow from about 3.3% with 10 voters to nearly 7%
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with 100,000 voters; when K = 15, they grow from about 0.19% with 10 voters to
nearly 0.5% with 100,000 voters.

With PRR, when K = 3 or 6, the probabilities seem to increase for odd n and to
decrease for even n. For other values of K , they simply tend to increasewith the parity
of n. They also tend on average to increase with K . We note that the probabilities are
on average highest for K = 15 where they grow from almost 14.7% with 10 voters
to about 16.9% with 100,000 voters. The probabilities are lowest for K = 3 where
we reach a little over 4% with 100,000 voters.

Under IC, the probabilities with NPRR show a pattern of evolution quite close to
what we have with PRR. The observation is the same under IAC except for K = 3
where the pattern is quite close to that of BRR. However, the probabilities are still
higher than with BRR. From the similarity in the pattern of evolution of probabilities
between NPRR and PRR, it is only for K = 10 and K = 15 that NPRR has higher
probabilities than PRR. We notice with NPRR that except for K = 15 where the
probabilities decrease with the parity of n, the probabilities tend to increase with the
parity of n for all other values of K . Also, given n, they tend to increase with K .

To summarize, it appears that, for the rules under consideration, the probabilities
of electing a socially unacceptable candidate tend to evolve both with the size of
the electorate (notably its parity) and the number of candidates; BR stands out as
the least likely to elect a socially unacceptable candidate. One argument that can
be put forward concerning NPR’s poor performance compared to the other rules is
that it does not discriminate between a voter’s top K − 1 candidates; thus, it is very
likely that an candidate who is never ranked last and never ranked in the top half gets
elected. We can also add that PR does not discriminate between the bottom K − 1
candidates, so it is likely that a candidate ranked at the top of voters’ preferences
wins while being ranked below the line by more than half of the voters. It seems to us
that the performance of BR compared to the other rules is due to the fact that it really
discriminates between the candidates by giving fewer points to a candidate below the
line than to a candidate above the line; this implies “on average” that an unacceptable
candidate is less likely to score better than an acceptable candidate. Nonetheless, how
to explain that PRR and NPRR have quite similar behavior and perform better than
their one-shot versions respectively?Why do we have the opposite behavior between
BR and BRR? It seems to us that, at this stage of our analysis, it would be very daring
to pronounce in a general way because things are not as simple as one might think.
We also realize from the graph for K = 15, that for n very large, all the rules tend to
have a closer behavior. Exploring situations with more candidates or exploiting real
data could guide us in finer conclusions.

4 Concluding Remarks

The objective of this paper is, on the one hand, to account for the probabilities that
a fixed number of socially unacceptable candidates exist. On the other hand, we
wanted to determine the propensities of some popular scoring rules to elect such
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candidates when they exist. Using simulations under IAC and IC, we investigated
voting situations with a number of candidates between 3 and 15 candidates and an
electorate between 10 and 100,000 voters. Our analysis reveals under both IC and
IAC that the probabilities that a fixed number of socially unacceptable candidates
exist tends to decrease as the size of the electorate increases. Furthermore, there is
a high probability that in some cases nearly half of the candidates will be socially
unacceptable. As for the propensity of the voting rules to elect a socially unacceptable
candidate, the Negative Plurality rule emerges as the most likely while the Borda rule
is the least likely. In addition, the probabilities tend to evolve according to the parity
of the number of voters.

This paper has then allowed us to highlight another property of the Borda rule and
of its two-round version. They are the least likely to elect a socially unacceptable
candidate when she exists compared to the other scoring rules and their two-round
versions considered in the paper at hand. Note that a possible extension of this paper
could therefore be to question the variation of our probabilities when the socially
unacceptable candidate that is elected is a Condorcet winner (resp. a Condorcet loser)
given that such a candidate exists. It would also be interesting to extend the notion
of social acceptability to other situations than the one requiring a 50-50 splitting of
individual preferences (e.g., top or bottom third, etc.).
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Probability of Majority Inversion with
Three States and Interval Preferences

Serguei Kaniovski and Alexander Zaigraev

Abstract We examine the probability of majority inversion in a two-stage electoral
process with three states. We extend May’s model to state-specific general interval
preferences and populationweights and examine the effects of variation in population
weights, and the effects of variance and bias in preferences on the inversion probabil-
ity. This numerical sensitivity analysis for inversion probability is conducted using
an exact formula under general interval preferences in the three states with different
population weights.

1 Introduction

The main disadvantage of two-stage electoral voting is that the margin of victory in
the second and final stage misrepresents the margin of victory in the first-stage based
on the nationwide level of support. Themost serious type ofmisrepresentation occurs
when the outcome of the election contradicts the nationwide majority, or when the
majority of voters wants a different outcome than the one obtained. This situation is
known as majority inversion.

Figure 1 illustrates the phenomenon of majority inversion.1 The total population
of 300 voters is evenly distributed among three states. The two candidates A (red)
and B (blue) differ in their popularity. The total size of the blue faction (140 voters)
is smaller than that of the red faction (160 voters). Since all of a state’s second-
stage votes go (as a bloc) to the candidate with a majority of voters in that state,
candidate B receives two votes, while candidate A receives a single vote. Majority
inversion occurs because B wins the election by winning a majority of states in the

1This figure is borrowed from Zaigraev and Kaniovski (2020).
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e-mail: alzaig@mat.umk.pl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Kurz et al. (eds.), Advances in Collective Decision Making, Studies in Choice
and Welfare, https://doi.org/10.1007/978-3-031-21696-1_4

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21696-1_4&domain=pdf
mailto:serguei.kaniovski@wifo.ac.at
mailto:alzaig@mat.umk.pl
https://doi.org/10.1007/978-3-031-21696-1_4


44 S. Kaniovski and A. Zaigraev

Fig. 1 Majority inversion
with three states
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second-stage (electoral vote), but not a nationwidemajority of voters in the first-stage
(popular vote). This undermines the democratic legitimacy of the election outcome,
as A would beat B in a hypothetical direct election. This example assumes that the
voting rule is simple majority and the second-tier votes are unweighted.

The problem of estimating the probability of majority inversion in a formal
stochastic two-stage binary voting model has received considerable attention in the
literature. It is fair to say that this problem is one of the oldest in the formal analysis
of voting systems, dating back to the contribution by May (1948). May presented
computations of the inversion probability in an idealized stochastic voting model, in
which all states (constituencies) are of equal population size and the level of support
for each candidates follow a standard continuous uniform distribution. This is the
standard model, for which May computes the inversion probability for a small num-
ber of states and its limit when the number of states tends to infinity. In the recent
years, several groups of researchers have been able to quantify or approximate the
inversion probability under more general stochastic settings, such as the heteroge-
neous three-state two-stage voting system studied in this paper, or asymptotically for
a large number of states (Sect. 3).

Formal analysis of stochastic voting systems encompasses a structural and a
stochastic element. Both elements jointly define the set of elementary voting out-
comes in the model and the probabilities of their occurrence. The structural element
features the deterministic parameters of the voting system, such as the number of
voters and the number of states, the weighting scheme at the second-stage of the pro-
cedure or the voting rules (majority thresholds) applied at each stage. The stochastic
element of the model reflects voter behavior as an expression of voter preferences
over the outcomes. By assuming that actual votes or the fraction of voters support-
ing a candidate or turnout are random variables, the stochastic element introduces
uncertainty into the voting model and makes it necessary to consider probabilities of
events. The main event under the consideration is the situation of majority inversion.
The standard model assumes homogeneity of preference distribution across states
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and equality of their sizes.2 These two assumptions allow May to compute the prob-
ability of majority inversion for a small number of states, which of course includes
the case of three states (1/8), and the limit of this probability when the number of
identical states tends to infinity (1/6). Section 2 discusses May’s model in light of
alternative stochastic voting models.

The aim of this paper is to investigate how heterogeneity in the fraction of voters
supporting a candidate and population sizes affects the magnitude of the inversion
probability in a general model with three states, keeping the standard model as
a benchmark. Relaxing the assumption of homogeneous preferences allows us to
examine how variances and biases in the preference distributions affect the inversion
probability and how these effects interact with the distribution of population weights
defined in the next section. To this end, we first generalize May’s model by allowing
distinct population weights and preference distributions, where the latter belong to
rich class of uniform distributions. We call this setting the general interval model
(Sect. 4). The analysis generalizes the results for the interval model obtained in
Feix et al. (2004) for the case of three states. We then derive an exact formula for the
probability ofmajority inversion as a function ofmodel parameters (support intervals,
population weights). This problem is stated in Sect. 5, whereas the solution can be
found in the appendix. The conclusions concerning the influence of variance and bias
on the inversion probability are based on numerical simulations that use the formula
for the inversion probability. Section 6 discusses the simulation results and Sect. 7
summarizes the findings.

2 May’s Model and Its Alternatives

Modern voting theory seems to have forgotten, rediscovered, and validated May’s
seminal contribution (May, 1948). To show some connections between the different
contributions in the literature, let us state a more general version of May’s model
that allows for weighted voting. Let the number of states be n (n is odd, n > 1). The
voters face two alternatives, A and B. For each state i , i = 1, 2, . . . , n,

1. the population (first-stage) weight is wi > 0, such that
∑n

i=1 wi = 1,
2. the voting (second-stage) weight is vi > 0, such that

∑n
i=1 vi = 1,

3. the share of voters who support A is a uniformly distributed random variable
πi ∼ U (0, 1), such that π1, . . . , πn are independent.

The population weight of a state, wi , is the number of voters in that state divided
by the total number of voters in the country (the electorate). The voting weight of a
state, vi , is the number of (electoral) votes the state has in the second-stage of the
voting procedure divided by the total number of such votes. The aim is to compute
the inversion probability in the case of three states (n = 3). This is the minimal

2 The term ‘homogeneity’ was introduced by Straffin (1977) in his probabilistic interpretations of
classical measures of voting power (Sect. 2).
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number of states required for inversions to occur. May solved this problem under
the assumption that all population weights and voting weights are equal, i.e., wi =
vi = 1/n, so that the states are completely identical (homogeneity). For n = 3, the
inversion probability for varying population and voting weights has been computed
in Kaniovski and Zaigraev (2018). In the variations of the above model studied in
Sect. 4, we only require that no state commands at least half of the second-stage
votes (max{vi } < 1/2). This implies the absence of a dictator state in the sense of
the above condition.

The third assumption comes from May’s idea to approach the problem of esti-
mating the probability of majority inversion in large electorates using asymptotic
analysis with respect to total population. The stochastic voting model describes the
fraction of supporters of A in each state, rather than the behavior of an individual
voter. Nevertheless, the choice of a uniform distribution for the fraction of supporters
is not arbitrary. It has a micro foundation in the general stochastic setting that can be
called the beta-binomial model of voting. In a state withm voters, let the probability
that a voter supports candidate A be drawn from a continuous uniform distribution
U (0, 1). This probability is then assigned as the probability of success to a binomial
random variable S representing the number of supporters of A in that state. The ran-
dom variable S follows a discrete uniform distribution on [0, 1, . . . ,m − 1,m] and
the fraction of voters who support A, or S/m, follows a discrete uniform distribu-
tion on [0, 1/m, . . . , (m − 1)/m, 1]. The latter becomes continuous in the limit as
m → ∞. This asymptotic shortcut allows to shift the focus from individual voting
outcomes on the level of voters to aggregate voting outcomes on the level of states.
In theoretical voting literature the above setting is known as Impartial Anonymous
Culture (IAC). In statistics, this model is known as the beta-binomial model, as the
uniform distribution is a special case of the Beta distribution (Beta(1,1)). In a fully
general beta-binomial model, the support probability would be drawn from a general
two-parameter Beta distribution (see, e.g, Casella and Berger 2002, Sect. 4.4).

The IAC or the beta-binomial model or the homogeneity assumption by Straffin
(1977) holds a prominent place in the voting power theory.3 The IAC is consistent
with the pivot model of the Shapley-Shubik Index (SSI)—one of the two classic
measures of voting power that is deeply rooted in the cooperative game theory. If
the voters have a common probability of supporting candidate A and their votes are
independent conditioned on the common probability, then the probability of a voter
being decisive (pivotal) equals the SSI for that voter. Unconditionally, the votes are
positively correlated because they have the same probability of being in favor of a
candidate [see Felsenthal and Machover (1998) and De Mouzon et al. (2020)].4

In a recent theoretical study, Kurz and Napel (2018) show that stochastic indepen-
dence of the votes can be replaced by aweaker exchangeability assumption. The votes

3 For a comprehensive treatment of the theory of the measurement of voting power, see Felsenthal
and Machover (1998). A survey and a discussion of the recent developments can be found in Napel
(2019). For an outlook and a research agenda, see Kurz et al. (2015).
4 Felsenthal and Machover (1998) furnish a proof of this fact, which is also discussed in Kaniovski
(2008).
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are exchangeable if their joint probability distribution is invariant to permutations—
a certain anonymity property. This property is a necessary and sufficient condition
for the voter probability of being decisive in bringing about the desired outcome,
or being instrumental in the sense of Downs (1957), to be consistent with the SSI
index. Exchangeability is a interesting property that also appears to be useful in
the literature on Condorcet Jury Theorem (CJT), where it enters a binomial voting
model based on the Bahadur parametrization (Bahadur, 1961). The parametrization
provides a closed-form expression for the joint probability distribution as a function
of the marginal probabilities and correlation coefficients between the votes, but the
number of parameters it therefore requires is prohibitively high. This number can
be significantly reduced by assuming exchangeability. This is achieved by assum-
ing that all marginal probabilities and all correlation coefficients of the same order
are equal, which is the case when all second-order or pairwise correlation coeffi-
cients are the same for each pair and all higher-order correlations equal to zero.5

The above methodology opens a way of generalizing the binomial voting model
to correlated votes. The literature on the CJT studies the probability of a correct
response from a majority of expert opinions as sums of their binary votes. It can be
shown that correlation between the experts can impair their ability to make correct
collective decisions Kaniovski and Zaigraev (2011). Sums of exchangeable binary
random variables have been studied in Zaigraev and Kaniovski (2010) and votes as
exchangeable binary random variables have been studied in the context of the CJT
in Zaigraev and Kaniovski (2012). Exchangeable votes have been discussed in the
context of voting power in a simulation study by Kaniovski and Das (2015).

The main difference between the setting in Kurz and Napel (2018) and the models
in the literature on CJT is that the latter derive exchangeability from a generalization
of another probabilistic voting model known as Impartial Culture (IC). The ICmodel
is consistent with Banzhaf’s absolute measure of voting power, which is used in the
literature on fair representation in two-tiered electoral systems, where the famous
Penrose square root law (Penrose, 1946) has attracted considerable theoretical and
even political attention in the context of the distribution of voting weights in the
Council of the European Union (Kirsch, 2007).6 Optimal weighting schemes at the
second (electoral) stage of the two-stage voting procedure can be studied in the simple
setting of May’s model, but the number of states must be higher than three. This is
because in the case of three states the assumption that no single state commands a
majority of electoral votes makes the probability of majority inversion independent
of the weighting scheme at the second-stage. In this situation any two states win the
election. Therefore, changes in the weighting scheme at the second-stage have no

5 For a definition of higher-order correlation coefficients, see Bahadur (1961) and Zaigraev andKan-
iovski (2013). The second paper provides examples illustrating the use of the Bahadur parametriza-
tion in reliability theory and decision theory.
6 The literature on fair representation in two-stage voting systems is comprehensive and lies outside
of the present scope. The reader is referred to the classic treatment in Felsenthal and Machover
(1998) and a simulation study in Maaser and Napel (2012). For a recent development, see, e.g.,
Kurz et al. (2017).
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effect on the inversion probability in the case of three states, at least four states are
required.

Distribution of the fraction of voters who support candidate A reflects preferences
of the voters with respect to the candidates on the ballot. In the case of the standard
uniform distribution, the model imposes minimal assumptions on the preferences.
The model effectively assumes that each voter is indifferent, his or her choice is
agnostic and neutral. The extension of the model studies variation in the level of
support in each state, allowing for heterogeneous preferences in states that can also
differ in their relative sizes (population weights). Whether preferences should be
taken into account when measuring voting power is a matter of debate.7 Felsenthal
andMachover (2004) argue that a powermeasure should reflect a priori voting power.
A priori power follows from the system of decision-making rules, such as voting
weights and voting rules, rather than behavior of the voters. The a priori perspective
can be based purely on cooperative game theory without a stochastic voting model
consistent with it. However, if such companion stochastic model exists, as in the
case of the classical measures of voting power, it is very limited (Straffin, 1977).
The simple generalization of the May’s model in Sect. 4 allows different states to
have different probabilities of support. This departure is warranted and needed since
majority inversion is a probabilistic phenomenon,whereas the same is not necessarily
true for voting power.

3 Studies on Inversion Probability

May (1948) provided an exact analysis for the model with a small number of vot-
ers and states, and asymptotic approximations when at least one of those numbers
becomes large. May showed that the probability of majority reversal in a two-stage
electoral system with three states is equal to 1/8, as the number of voters tends to
infinity and the density of the fraction of supporters becomes continuously uniform.
The probability rises to 1/6 as the number of states tends to infinity. The recent
theoretical literature tends to focus on either the exact calculation or the asymptotic
analysis, as the required methodologies tend to diverge.

These early results have been confirmed in Feix et al. (2004), who obtain the
same probability for the case of three and five states under IAC assumption, which is
consistent with May’s stochastic model. Lepelley et al. (2011) extend the asymptotic
analysis and provide numerical simulations when the number of states is large. The
IACassumes that the votes are independent, conditionally on the commonprobability
of support—this applies to any two voters in each state and any two voters from
different states. Unconditionally, any two votes from the same state are positively
correlated. The recent paper by DeMouzon et al. (2020) extends this setting to allow
for correlation across the states. They study the probability of majority inversion in

7 For a debate on the role of preferences in the measurement of voting power, the reader is referred
to the following series of articles: Napel and Widgrén (2004a, b), Braham and Holler (2005a, b).
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a model with three equally-sized states, the rate of convergence and the bounds for
this probability as the number of states increases, under the assumption that any two
votes (including votes from different states) in the electorate correlate. To simplify
the already very complex computations, it is assumed that the states have identical
population size, that simple majority rule is universally used and that the votes in the
second-stage are unweighted. The IC assumption has also been studied in the existing
literature. For example, Lepelley et al. (2014) show that under the IC assumption, the
Penrose Square Root Law does not minimize the probability of majority inversion in
the case of three states. Equalizing the ratio of the indirect voting powers in two-stage
voting systems by assigning second-tier (electoral) votes proportionally to the ratio
of the square-roots of population sizes does not minimize the inversion probability.

The case of three states has been analyzed in Kaniovski and Zaigraev (2018) for
the general statement of May’s model defined at the top of the previous section.
This model features distinct voting weights in the second-stage and unequal pop-
ulation weights for the states. The probability of majority inversion takes the form
of a quotient of two polynomials, with several distinct cases depending on the exis-
tence of a dominant voting or population weight and the weighting scheme at the
second-stage of the process. The paper computes this probability and shows that
inequality in the size distribution of states increases the inversion probability. The
assumption of a general weighting scheme encompasses three common weighting
schemes: equal voting and population weights (May’s model), equal voting weights
but distinct population weights (Westminster) and all voting weights equal to their
respective population weights (US Electoral College). The last case is an example of
a proportional weighting scheme, however, the general model allows any weighting
scheme in which all voting weights and all population weights differ. The paper by
Zaigraev and Kaniovski (2020) relaxes the assumption of simple majority as a voting
rule by introducing arbitrary majority thresholds.

Turning to the papers on asymptotic analysis of the inversion probability, it should
be noted that many asymptotic results are published together with exact calculations
for small-scale problems, see, e.g., Lepelley et al. (2011). These asymptotic results
are analytically obtained or uncovered by numerical simulations. The asymptotic
analysis in Lepelley et al. (2011) shows that for independent and identically dis-
tributed votes the distribution of a normalized margin of victory in each state tends
to a normal law. The limit value can be approximated by simulations, as in Feix
et al. (2004), or analytically, as in Kikuchi (2016). The paper by Feix et al. (2021)
offers a numerical analysis of different weighting schemes in the context of inversion
probability that includes several stochastic voting models, while maintaining simple
majority rule. The above papers are based on the classic voting models. A recent
paper by Kaniovski and Zaigraev (2022) shows how to compute the full spectrum of
feasible limit values of the inversion probability under a different stochastic voting
model called a general binomial model. The general binomial model assumes a bino-
mial model specific to each state, states of different population sizes and arbitrary
voting quotas in both stages of the voting procedure. The asymptotic setting assumes
that the number of voters tends to infinity in a way that preserved the relative sizes of
the states (population weights). In this approach, population uncertainty disappears
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in the limit and the limit value can be obtained using combinatorial considerations
and normal approximations.

4 The General Interval Model

The standard model by May assumes that in each state the share of voters endorsing
candidate A, denoted by π , follows a standard continuous uniform distribution on
a unit interval U (0, 1). This distribution reflects the distribution of preferences with
respect to the candidates on the ballot in each state. The standard uniform distribution
is consistent with the indifference between the two candidates. The expected share
of supporters E(π) = 1/2 implies B(π) = |E(π) − 1/2| = 0. The latter quantity
can be referred to as the absolute bias in the preference distribution. In the standard
model, there is no bias and the variance of the share of supporters is equal toVar(π) =
1/12. The standard model thus reflects the absence of any prior knowledge of voter
preferences, resembling the probability models underlying a priori reasoning behind
the classical measures of voting power.

The absence of bias and the constancy of variance preclude the analysis of the
effect of their variation on the inversion probability, which is the intent of the present
paper. We therefore introduce a generalization of the standard model that allows for
positive absolute biases and different variances in the preference distributions, while
keeping the exact calculation of the inversion probability in the case of three states
manageable. This allows us to introduce different preference distributions in each
of the three states. The second generalization relaxes the assumption of identical
population sizes. To resulting generalized model is referred to as the interval model.
This model allows us to study how heterogeneity among the states in preferences and
sizes affects the probability of majority inversion in a two-stage electoral procedure
with three states.

The interval model assumes that the share of voters endorsing candidate A follows
a continuous uniform distributionwith a subset of the unit interval as the support. The
usual definition of such distribution is based on the endpoints of the support interval
of the probability density function, in the standard case 0 and 1. We parametrize
the support interval using the lengths of the sub-intervals, or segments, to the left
l ∈ (0, 1/2] and to the right r ∈ (0, 1/2] of the point 1/2 (Fig. 2). We would thus
write π ∼ U (1/2 − l, 1/2 + r), emphasizing the fact that the two parameters l and
r are not the endpoints of the support interval but the distances from its endpoints to
the point 1/2.

There are several reasons for including the point 1/2 in the support. Doing so
precludes deterministic and unanimous collective decisions in the state, while still
allowing for expected indifference as an important special case. The second reason is
that the above parametrization allows for a more compact presentation of the inverse
probability calculations, as compared to a parametrization based on the endpoints of
the support interval.
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In the interval model, the share of supporters is distributed uniformly in the inter-
val of length l + r , encompassing the standard density as a special case l = r = 1/2.
This model is more flexible than the standard one, because it allows us to introduce
a positive absolute bias in the preference distribution. In view of the expected value
E(π) = (1 − l + r)/2, the absolute bias is equal to B(π) = |l − r |/2 and the vari-
ance is equal to Var(π) = (l + r)2/12. The admissible values for the absolute bias
belong to the interval [0, 1/4), whereas the variance belongs to the interval (0, 1/12].

The interval model introduces two additional features that are considered accept-
able side effects given the flexibility of the distribution inmodeling bias and variance.
It precludes extreme levels of support, as the share of voters supporting candidate
A cannot be lower than 1/2 − l or higher than 1/2 + r . The second, more tech-
nical, point is that in the general interval model, the distribution of the share of
voters supporting candidate A is different from the distribution of the share of voters
supporting candidate B. The property of the standard distribution that π ∼ U (0, 1)
implies (1 − π) ∼ U (0, 1) does not hold under the general interval model, unless
l = r .

We relax the homogeneity assumption by allowing for different preference distri-
butions and difference population sizes. The model is thus specified by three vectors
of parameters, the vector of population weights (w1, w2, w3), such that wi ∈ (0, 1)
for i = 1, 2, 3 andw1 + w2 + w3 = 1, and the two vectors of preference parameters
(l1, l2, l3) and (r1, r2, r3), such that li , ri ∈ (0, 1/2] for i = 1, 2, 3. The probability of
majority inversion P becomes a function of the three parameter vectors (w1, w2, w3),
(l1, l2, l3) and (r1, r2, r3).

In the special case of homogenous preferences given by l = l1 = l2 = l3 and
r = r1 = r2 = r3, the following parametrization of our model: (r − l)/2 = E , (r +
l)/2 = D yields the model in Feix et al. (2004), who examine how the quantity p =
E/D = (r − l)/(r + l) affects the probability of majority inversion for p > 0 (Feix
et al., 2004, Proposition 5). We relax this restriction on the sign of the fraction p and
allow preferences to shift left (r < l) or right (r > l) relative to the midpoint 1/2. In
Sect. 6.3 of this paper, we compute the inversion probability under the homogeneous
preferences for all cases.
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5 Inversion Probability

Before proceeding with the calculation of the inversion probability, it is important
to remember the assumption that no state can dictate the election outcome by com-
manding the majority of electoral votes. Under this assumption, a majority inversion
can only occur when the outcome is backed by two electoral votes. This can happen
in one of the six mutually exclusive election scenarios. In the first three scenarios,
candidate A wins the election at the expense of candidate B by winning two of the
three states despite failing to achieve a nationwide majority. In the remaining three
scenarios, the roles are reversed and A becomes the victim of majority inversion.
Calculating the inversion probability under general interval model requires evaluat-
ing the probability of these six scenarios, each of which can be defined by a system
of inequalities.

Let xi = πi − 0.5, so that xi ∼ U (−li , ri ) for i = 1, 2, 3. Then,

P1 = P(w1x1 + w2x2 + w3x3 < 0, x1 ∈ (−l1, 0), x2 ∈ (0, r2), x3 ∈ (0, r3)),

P2 = P(w1x1 + w2x2 + w3x3 < 0, x1 ∈ (0, r1), x2 ∈ (−l2, 0), x3 ∈ (0, r3)),

P3 = P(w1x1 + w2x2 + w3x3 < 0, x1 ∈ (0, r1), x2 ∈ (0, r2), x3 ∈ (−l3, 0)),

P4 = P(w1x1 + w2x2 + w3x3 > 0, x1 ∈ (0, r1), x2 ∈ (−l2, 0), x3 ∈ (−l3, 0)),

P5 = P(w1x1 + w2x2 + w3x3 > 0, x1 ∈ (−l1, 0), x2 ∈ (0, r2), x3 ∈ (−l3, 0)),

P6 = P(w1x1 + w2x2 + w3x3 > 0, x1 ∈ (−l1, 0), x2 ∈ (−l2, 0), x3 ∈ (0, r3)).

The first inequality reflects the outcome of the popular vote, whereas the remain-
ing inequalities reflect the voting outcomes in the three states. The above inversion
scenarios represent mutually exclusive events, so the inversion probability as the
probability of occurrence of one of the six scenarios is equal to the sum of their
probabilities:

P =
6∑

i=1

Pi . (1)

Computing each probability requires evaluating the volumes of the polytopes
A1, A2, . . . , A6, each of which equals to the following triple integral:

Pi = 1

w1w2w3(l1 + r1)(l2 + r2)(l3 + r3)

∫ ∫ ∫

Ai

dxdydz, (2)

where Ai for i = 1, 2, . . . , 6 are defined as
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A1 = {(x, y, z) : x ∈ (0, w1l1), y ∈ (0, w2r2), z ∈ (0, w3r3), x > y + z},
A2 = {(x, y, z) : x ∈ (0, w1r1), y ∈ (0, w2l2), z ∈ (0, w3r3), y > x + z},
A3 = {(x, y, z) : x ∈ (0, w1r1), y ∈ (0, w2r2), z ∈ (0, w3l3), z > x + y},
A4 = {(x, y, z) : x ∈ (0, w1r1), y ∈ (0, w2l2), z ∈ (0, w3l3), x > y + z},
A5 = {(x, y, z) : x ∈ (0, w1l1), y ∈ (0, w2r2), z ∈ (0, w3l3), y > x + z},
A6 = {(x, y, z) : x ∈ (0, w1l1), y ∈ (0, w2l2), z ∈ (0, w3r3), z > x + y}.

Such integrals evaluate to a quotient of polynomials in the model parameters.
In the appendix, we evaluate the integral in (2) by first converting it to a double
integral. The evaluation of the six integrals appears tedious. However, as is shown in
the appendix, once the first of the six probabilities has been computed, the remaining
five probabilities can be obtained by parameter swaps.

The formula for the inverse probability as the sum of the six probabilities (2)
obtained in the appendix remains valid as long as no state commands the majority of
electoral votes at the second-stage of the voting procedure. In particular, the formula
remains valid if more than half of the total population resides in a single state, but
the largest state does not command the majority of electoral votes. If the population
weight of the state exceeds 1/2, this state dictates the outcome of the popular vote,
but not the outcome of the electoral vote and the final election outcome.

6 Numerical Simulations

The exact expression for the inversion probability under the general interval model
and the calculations in the appendix show that it is a complex function of the model
parameters, where the parameters related to the distribution of preferences interact
with the distribution of population weights in a nontrivial way. The nine param-
eters are collected in three vectors, one containing the population weights and the
remaining two containing the parameters related to the three preference distributions.

To disentangle the effects of the nine parameters on the inversion probability, we
propose a series of numerical simulations that isolate certain effects on the inversion
probability by keeping the remaining effects as simple as possible. The simulations
consider different voting scenarios by varying the inputswhile using an exact formula
for the inversion probability to produce the output. The simulations are performed
using pseudo-randomly generated sets of parameters.

Since the model parameters are collected in three vectors, we do not consider
the effect of individual parameters on the inversion probability. Such an analysis
would require an excessive number of dimensions, making it difficult to present the
results in two-dimensional figures or tables in a reasonably informative way. Instead,
we summarize the model parameters along three dimensions that are conceptually
relevant to our study. These dimensions are the inequality in the population weights,
the average variance and the average absolute bias of the preference distributions.
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6.1 Inequality in Population Weights

The Gini coefficient is a popular inequality measure that can be used to express
the degree of inequality as a function of population weights.8 For a general input
vector of non-negative elements (w1, w2, . . . , wn), the Gini coefficient takes values
between zero and one:

G(w1, w2, . . . , wn) = 2
∑n

i=1(n − i + 1)wi

n
∑n

i=1 wi
− n + 1

n

for w1 � w2 � · · · � wn−1 � wn � 0.
The value of zero indicates the equality ofweights, whereas the value of (n − 1)/n

indicates the maximal inequality of weights, or when the population is concentrated
in a single state.

For three population weights, the bound on the weights simplify the expression
for the Gini coefficient:

G(w1, w2, w3) = 2(w1 − w3)

3
, (3)

taking the minimal value of zero for w1 = w2 = w3 = 1/3, and the maximal value
of 2/3 for w1 = 1 and w2 = w3 = 0.

The simulations for the distribution of population weights are based on pseudo-
random draws from a three-dimensional Dirichlet distribution. The Dirichlet dis-
tribution is a common choice for generating shares that need to sum to unity. The
probability density of a three-point Dirichlet distribution reads:

f (x1, x2, x3;α1, α2, α3) = xα1−1
1 xα2−1

2 xα3−1
3

Beta(α1, α2, α3)
,

where xi > 0 for i = 1, 2, 3 and x1 + x2 + x3 = 1. The normalizing constant con-
tains a multivariate beta function. The chosen set of parameter α1 = α2 = α3 = 1
ensures that the expected value of a random vector of population weights equals to
the vector (1/3, 1/3, 1/3), for which the inversion probability equals 1/8.

The top panels (a) and (b) of Fig. 3 show that the inversion probability tends
to increase from 1/8 to 1/4 with increasing inequality in the population weights.
The lower bound for the inversion probability corresponds to May’s model in which
the preferences are standard, l1 = l2 = l3 = r1 = r2 = r3 = 1/2, and the states have
equal population weights, w1 = w2 = w3 = 1/3. This set of parameters minimizes
the probability ofmajority inversion,whosemagnitude agreeswith the value obtained
by May. It is evident that the simulated inversion probabilities scatter in a relatively
narrow range for a given value of the Gini coefficient. The fact that for the standard
model with three (not necessarily equally-sized) states, the inversion probability

8 The book byYitzhaki and Schechtman (2013) gives an overview on themeasurement of inequality.
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increases with the inequality in the population weights has been established in Kan-
iovski andZaigraev (2018),who show that the inversion probability is a Schur-convex
function of population weights if there is no state commands the majority of electoral
votes. Schur-convexity ensures that transferring population from a small to a large
state strictly increases the degree of inequality, which is a natural property for an
inequality measure.9

The difference between the top left and the top right panel of Fig. 3 lies in the
range of admissible values for the largest population weight. In the left panel, there
is no state with an absolute majority of popular votes, so that the largest population
weight is smaller than 1/2, whereas in the right panel the largest population weight
max{wi } � 1/2. The size of the leading population weight constrains the range of
attainable values for the Gini coefficient, but more importantly, it increases the lower
bound on the inversion probability and the spread of the simulated probability for
higher values of the Gini coefficient. If the largest population weight is not smaller
than 1/2, theminimal value of theGini coefficient and that of the inversion probability
both equal to 1/6. In the following simulations we assume the absence of a dictator
state, so that the largest state has less than one half of the total population.

The bottompanels (c) and (d) of Fig. 3 show the variation of the inversion probabil-
ity with the largest population weight. In the bottom left panel, the largest population
weight varies up to 1/2. In the lower right panel, the largest weight exceeds 1/2. The
bottom panels show a similar picture to the upper panels, which is not surprising
since the Gini coefficient rescales the difference between the largest and the smallest
weight.

6.2 The Average Variance

Let us now turn to the effect of the parameters of the preference distributions on the
inversion probability, focusing on the variance averaged over the three states. The
average variance is defined as follows:

V (l1, l2, l3, r1, r2, r3) = 1

3

3∑

i=1

Var(πi ) = 1

36

3∑

i=1

(li + ri )
2, (4)

where the variance in state i , i = 1, 2, 3, is equal to Var(πi ) = (li + ri )2/12, as was
already noted in Sect. 4. Higher average variance implies more uncertainty with
respect to the outcome of the popular vote.

Let li = ri for i = 1, 2, 3, so that the distributions in each state have different
variances but are unbiased. The simulations with respect to the average variance
in Fig. 4 show no systematic relationship between the average variance and the

9 For details on the theory of majorization and Schur-convexity, we refer the reader to the book by
Marshall et al. (2011).
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Fig. 3 Inequality in population weights

inversion probability, regardless the distribution of populationweights. The scatter of
the simulated inversion probabilities in the left panel with equal population weights
is roughly similar to the one in the right panel with random population weights
drawn from the Dirichlet distribution. However, it is evident that increasing the
uncertainty of the election outcome by increasing the average variance raises the
inversion probability above its value in the standard model with equally-sized states
(1/8). The inversion probability now lies between 1/8 and 1/4.

The simulation results for the inversion probability can be verified analytically
using the formulas provided in the appendix. In addition to li = ri , for i = 1, 2, 3,
assume, without any loss of generality, thatw1l1 � w2l2 � w3l3. The inversion prob-
ability reads

P =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w1l1−w2l2
8w3l3

+ w1l1−w3l3
8w2l2

+ w2l2−w3l3
8w1l1

− w2
1l

2
1

24w2l2w3l3
+ w2

2 l
2
2

24w1l1w3l3
+ w2

3 l
2
3

8w1l1w2l2
if w1l1 < w2l2 + w3l3,

1
4 − w3l3

4w1l1

(
1 − w3l3

3w2l2

)
if w1l1 � w2l2 + w3l3.

Theabove formula is essentially the sameas the formula forMay’s parametrization
li = ri = 1/2 in Kaniovski and Zaigraev (2018, Corollary 1), and Feix et al. (2004,
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Fig. 4 Average variance in preferences

Proposition 5). The assumption li = ri < 1/2 yields the same inversion probability as
li = ri = 1/2, but after rescaling the populationweights. In the case of homogeneous
and symmetric preferences (equal intervals, symmetric about 1/2), constraining the
support of a preference distribution is equivalent to rescaling the population weights.

The sets of parameters for the variance simulation are chosen such that the prefer-
ences are unbiased, i.e. li = ri for all three states. This is made to exclude the effect
of the bias. In the next simulations, we allow for a random bias in each state.

6.3 The Average Absolute Bias

Assume that li + ri = 1/2, so that the variance is Var(πi ) = 1/48 and admissible
values for the absolute bias B(πi ) = |li − ri |/2 defined in Sect. 4 belongs to the
interval (0, 1/4). Define average absolute bias as

B(l1, l2, l3, r1, r2, r3) = 1

3

3∑

i=1

B(πi ) = 1

6

3∑

i=1

|li − ri |. (5)

Positive average absolute bias implies that the voters are not indifferent between
the two candidates, with the expected share of the voters supporting candidate A
being lower or higher than 1/2. Let us first assume that all states have the same
set of distributional parameters li = l and ri = r for all i = 1, 2, 3. Assuming equal
populationweightsmakes the three states completely identical,with each state having
a bias in the preference distribution given by |l − r |/2.

In the model with equally-sized states, increasing the average absolute bias tends
to decrease the inversion probability (top left panel of Fig. 5). This relationship is not
monotonic, with the inversion probability taking its maximum value 17/128 (which
is larger than 1/8) at the value of the average absolute bias of (l + r)/8 = 1/16.
The inversion probability first increases with the average absolute bias above the
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benchmark value of 1/8, but then rapidly converges to zero as the average absolute
bias tends to its maximum value of 1/4. The top right panel of Fig. 5 shows the
distortion in the relationship between the average absolute bias and the inversion
probability introduced by varying the population weights.

Let us now consider the most general parametrization for homogeneous states:
w1 = w2 = w3, l = l1 = l2 = l3, r = r1 = r2 = r3. The probability of majority
inversion reads:

P =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

l2(6r−5l)
2(l+r)3 if l � r

2 ,

l3+r3−2(r−l)3

2(l+r)3 if r
2 < l < r,

l3+r3−2(l−r)3

2(l+r)3 if r � l < 2r,

r2(6l−5r)
2(l+r)3 if l � 2r.

The upper two equations correspond to the two equations in Feix et al. (2004,
Proposition 5), which in their parametrization cover the case p = E/D > 0, or r >

l in our parametrization. The lower two equations complete the formulas for the
inversion probability with the case p = E/D < 0, or r < l. The first two expressions
for the inversion probability correspond to the case p > 0, whereas the last two
expressions equal the first two when the parametrization yields −p instead of p.

Note that in all the above models, it is assumed that the voting quota is equal to
1/2. This canonical choice of the voting quota corresponds to simple majority rule
in both stages of the two-stage voting procedure. However, there is an interesting
relationship between the parameter values related to the distribution of preferences
thatmaximize the inversion probability in the interval preferencemodel and the effect
of raising the voting quota from simple majority (q = 1/2) to qualified majority
(q > 1/2). The maximum value of the inversion probability 17/128 is attained for
the parametrization 5l = 3r , which implies a asymmetric preference interval around
1/2. Thismaximumvaluewas previously obtained inZaigraev andKaniovski (2020),
who study the effect of varying the voting quota on the inversion probability inMay’s
model with equally-sized states, i.e., for l = r = 1/2 and w1 = w2 = w3 = 1/3. In
the May’s setting, the effect of increasing the voting quota from 1/2 to 1 on the
inversion probability is non-monotonic. The inversion probability first increases from
May’s calculated value of 1/8 to 17/128 as the quota increases from 1/2 to 5/8, and
then decreases to 0 as the quota tends to 1. This shows that different parametrizations
of the interval model can lead to the same inversion probability, either by rescaling
the population weights, as was noted in Sect. 6.2, or by varying the voting quota.

The bottom panels in Fig. 5 assume heterogeneity among the states by removing
the constraints li = l and ri = r , while still retaining the constraints li + ri = 1/2
for all i = 1, 2, 3. They show that increasing the average absolute bias can either
increase or decrease the inversion probability, but that would definitely increase its
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Fig. 5 Average absolute bias in preferences

spread. The spread is further increased by variation in the population weights, as is
illustrated by the bottom right panel of Fig. 5.

Thefinal round of simulations in Fig. 6 shows that the simultaneous variation in the
variances and biases of the preference distributions blurs the strong individual effect
of bias on the probability of majority inversion uncovered above. This underscores
the benefit of considering incremental variation in model parameters coupled with
precise measurement of inversion probability. We calculate the inversion probability
precisely because we rely on a closed-form expression for the inversion probability,
rather than on a statistical estimate of this probability obtained from the frequency
of majority inversions in a random samples of voting scenarios. It is important to
emphasize that the above numerical simulations are based on a suitably chosen
random inputs, such pseudo-random population weights drawn from a three-point
Dirichlet distribution, but the inversion probability as the output is computed in a
deterministic way.

A comparison of Fig. 4 with the top panels of Fig. 6 shows that introducing bias
increases the spread of inversion probabilities. Introducing variance has a similar
effect, as can be seen from a comparison of the bottom panels of Fig. 5 with the
bottom panels of Fig. 6, especially for small average absolute biases.
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Fig. 6 Average variance and absolute bias in preferences

7 Summary

This paper shows how heterogeneity among the states in preferences and sizes affects
the probability of majority inversion in a two-stage electoral procedure with three
states. To this end, we first generalize May’s model to state-specific interval prefer-
ences and population weights. In a second step, we examine the effects of variation
in population weights and the effects of variance and bias in preferences on the
inversion probability using random voting scenarios and an exact formula for the
inversion probability.

Interval preferences generalize the probabilistic model of May that is based on
the standard continuous uniform distribution for the proportion of supporters. The
assumption of a standard continuous uniform distribution on the entire unit inter-
val fixes the expected proportion of supporters at 1/2 and its variance at 1/12.
By doing so, it rules out biases in the preference distribution (deviations from the
indifference point 1/2) and differences in the preference distribution among the
states. The interval preference model assumes that the proportion of supporters in
each state is uniformly distributed on a sub-interval of the unit interval that con-
tains the indifference point 1/2. This assumption allows us to stretch and shift the
support of the preference distribution. This, in turn, allows us to study changes
in
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1. the variance of the preference distribution belongs to the interval (0, 1/12],
2. the absolute bias in the preference distribution belongs to the interval [0, 1/4),
3. the preference distributions for the three states.

The first generalization of May’s model allows the states to have different pref-
erence distributions. The second generalization allows the states to vary in their
population sizes, expressed by population weights. Together they allow for hetero-
geneity among the states in both preferences and sizes. The only element of May’s
model that we retain is the simple majority voting rule at both stages of the two-stage
voting procedure.

In the reference case of May’s model with three states, the inversion probability
is equal to 1/8. The numerical results for general interval model show that

1. the inequality of population weights measured by the Gini coefficient in general
increases the inversion probability from 1/8 to 1/4,

2. for equally-sized states, lower average variance of the preference distributions
(from the interval (0, 1/12] versus 1/12 in the standard model) can lead to an
increase of the inversion probability up to 1/4. The dispersion of the inver-
sion probability versus the average variance indicates that the magnitude of this
increase is not systematically related to the average variance of the preference
distributions in the three states,

3. in the case of equal states, increasing the average absolute bias in the interval
[0, 1/4) in general decreases the inversion probability in a nonlinear manner
from 1/8 to 0. Keeping the distributional parameters equal among the states
but changing their population weights introduces some variation in the inversion
probability but does not change the overall conclusion. In fully heterogeneous
states (preferences and sizes), increasing the average absolute bias can increase
or decrease the inversion probability, but it definitely increases the spread of the
inversion probability.

On a final note, we would like to emphasize that the above model has the obvi-
ous limitation of having a minimal number of states required for studying the phe-
nomenon of majority inversion and assuming a particular distribution of preferences.
Both limitations arise from the fact that we were aiming for a closed-form expres-
sion for the inversion probability as a function of the model parameters. The uniform
distribution in the interval model can be replaced by other distributions, for example
a triangular distribution, with a manageable increase in computational complexity
associated with the need to evaluate a triple integral. However, the analysis of higher
dimensional models or models with more flexible preference distributions, for exam-
ple, the Beta distribution, must rely on numerical simulations. The same applies to
models that assume a qualified majority as the voting rule, as may be the case with
referendums where the status quo enjoys increased constitutional protection.

Acknowledgements Wewould like to thank the two anonymous reviewers for their comments and
suggestions on the first draft.
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Appendix: Computation of the Inversion Probability

The following exposition shows the essential steps in computing the inversion prob-
ability in the case of three states as a function of the population weights {wi } and the
preference parameters {li } and {ri }, wherewi > 0 and ri , li ∈ (0, 1/2] for i = 1, 2, 3
and w1 + w2 + w3 = 1.

Probability P1

Consider

P1 = C
∫ ∫ ∫

A1

dxdydz,

where C = 1
w1w2w3d1d2d3

, di = li + ri for i = 1, 2, 3 and

A1 = {(x, y, z) : x ∈ (0, w1l1), y ∈ (0, w2r2), z ∈ (0, w3r3), x > y + z}.

Eliminating x yields

P1 = C
∫ ∫

A′
1

[w1l1 − z − y]dydz,

where A′
1 = {(y, z) : y ∈ (0, w2r2), z ∈ (0, w3r3), y + z < w1l1}.

Double integrals such as the above evaluate to a quotient of polynomials. A prac-
tical difficulty in evaluating the integral lies in the number of cases that must be
considered. However, once P1 has been computed for all the cases, the remaining
probabilities P2, P3, . . . , P6 can be computed by direct substitutions into the formula
for P1 and the corresponding inequalities. The three (mutually exclusive) cases are:

Case 1: w1l1 � w2r2 + w3r3

P1 = C

w3r3∫

0

w2r2∫

0

[w1l1 − z − y]dydz = C

w3r3∫

0

[

w1l1w2r2 − w2
2r

2
2

2
− w2r2z

]

dz

=C

[

w1l1w2r2w3r3 − w2
2r

2
2w3r3
2

− w2r2w2
3r

2
3

2

]

= l1r2r3
d1d2d3

− r2r3(w2r2 + w3r3)

2w1d1d2d3
.

Case 2: w1l1 < w2r2 + w3r3, w1l1 � w2r2
Let m = min{w3r3, w1l1}. Then,
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P1 = C

m∫

0

w1l1−z∫

0

[w1l1 − z − y]dydz = C

m∫

0

(w1l1 − z)2

2
dz

= C

6

(
w3

1l
3
1 − (w1l1 − m)3

) = Cw1l1m(w1l1 − m)

2
+ Cm3

6
,

or

P1 =

⎧
⎪⎨

⎪⎩

l1r3[w1l1−w3r3]
2w2d1d2d3

+ w2
3r

3
3

6w1w2d1d2d3
if w1l1 > w3r3,

w2
1l

3
1

6w2w3d1d2d3
if w1l1 � w3r3.

Case 3: w1l1 < w2r2 + w3r3, w1l1 > w2r2
Let m = min{w3r3, w1l1}. Then,

P1 = C

⎡

⎣

w1l1−w2r2∫

0

w2r2∫

0

[w1l1−z−y]dydz +
m∫

w1l1−w2r2

w1l1−z∫

0

[w1l1−z−y]dydz
⎤

⎦

= C

⎡

⎣

w1l1−w2r2∫

0

[

w1l1w2r2 − w2
2r

2
2

2
− w2r2z

]

dz +
m∫

w1l1−w2r2

(w1l1 − z)2

2
dz

⎤

⎦

= C

[(

w1l1w2r2 − w2
2r

2
2

2

)

(w1l1 − w2r2) − w2r2(w1l1 − w2r2)2

2

+w3
2r

3
2

6
− (w1l1 − m)3

6

]

= C

[
w1l1w2r2(w1l1 − w2r2)

2
+ w3

2r
3
2

6
− w3

1l
3
1

6
+ m3

6
+ w1l1m(w1l1 − m)

2

]

,

or

P1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l1r2[w1l1−w2r2]
2w3d1d2d3

+ l1r3[w1l1−w3r3]
2w2d1d2d3

− w2
1 l

3
1

6w2w3d1d2d3

+ w2
2r

3
2

6w1w3d1d2d3
+ w2

3r
3
3

6w1w2d1d2d3
if w1l1 > w3r3,

l1r2[w1l1−w2r2]
2w3d1d2d3

+ w2
2r

3
2

6w1w3d1d2d3
if w1l1 � w3r3.

The Remaining Probabilities

For any two parameters a and b, define a parameter swap a ↔ b as a mutual substi-
tution of a for b and b for a. The remaining five probabilities can be obtained by the
following parameter swaps:
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P2 = P1 for w1 ↔ w2, l1 ↔ l2, r1 ↔ r2,

P3 = P1 for w1 ↔ w3, l1 ↔ l3, r1 ↔ r3,

P4 = P1 for l1 ↔ r1, l2 ↔ r2, l3 ↔ r3,

P5 = P2 for l1 ↔ r1, l2 ↔ r2, l3 ↔ r3,

P6 = P3 for l1 ↔ r1, l2 ↔ r2, l3 ↔ r3.

Probability P2

For w2l2 � w1r1 + w3r3,

P2 = r1l2r3
d1d2d3

− r1r3(w1r1 + w3r3)

2w2d1d2d3
.

For w2l2 < w1r1 + w3r3, w2l2 � w1r1,

P2 =

⎧
⎪⎨

⎪⎩

l2r3[w2l2−w3r3]
2w1d1d2d3

+ w2
3r

3
3

6w1w2d1d2d3
if w2l2 > w3r3,

w2
2 l

3
2

6w1w3d1d2d3
if w2l2 � w3r3.

For w2l2 < w1r1 + w3r3, w2l2 > w1r1,

P2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r1l2[w2l2−w1r1]
2w3d1d2d3

+ l2r3[w2l2−w3r3]
2w1d1d2d3

+ w2
1r

3
1

6w2w3d1d2d3

− w2
2 l

3
2

6w1w3d1d2d3
+ w2

3r
3
3

6w1w2d1d2d3
if w2l2 > w3r3,

r1l2[w2l2−w1r1]
2w3d1d2d3

+ w2
1r

3
1

6w2w3d1d2d3
if w2l2 � w3r3.

Probability P3

For w3l3 � w1r1 + w2r2,

P3 = r1r2l3
d1d2d3

− r1r2(w1r1 + w2r2)

2w3d1d2d3
.

For w3l3 < w1r1 + w2r2, w3l3 � w2r2,

P3 =

⎧
⎪⎨

⎪⎩

r1l3[w3l3−w1r1]
2w2d1d2d3

+ w2
1r

3
1

6w2w3d1d2d3
if w3l3 > w1r1,

w2
3l

3
3

6w1w2d1d2d3
if w3l3 � w1r1.
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For w3l3 < w1r1 + w2r2, w3l3 > w2r2,

P3 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r2l3[w3l3−w2r2]
2w1d1d2d3

+ r1l3[w3l3−w1r1]
2w2d1d2d3

+ w2
1r

3
1

6w2w3d1d2d3

+ w2
2r

3
2

6w1w3d1d2d3
− w2

3l
3
3

6w1w2d1d2d3
if w3l3 > w1r1,

r2l3[w3l3−w2r2]
2w1d1d2d3

+ w2
2r

3
2

6w1w3d1d2d3
if w3l3 � w1r1.

Probability P4

For w1r1 � w2l2 + w3l3,

P4 = r1l2l3
d1d2d3

− l2l3(w2l2 + w3l3)

2w1d1d2d3
.

For w1r1 < w2l2 + w3l3, w1r1 � w2l2,

P4 =

⎧
⎪⎨

⎪⎩

r1l3[w1r1−w3l3]
2w2d1d2d3

+ w2
3 l

3
3

6w1w2d1d2d3
if w1r1 > w3l3,

w2
1r

3
1

6w2w3d1d2d3
if w1r1 � w3l3.

For w1r1 < w2l2 + w3l3, w1r1 > w2l2,

P4 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r1l2[w1r1−w2l2]
2w3d1d2d3

+ r1l3[w1r1−w3l3]
2w2d1d2d3

− w2
1r

3
1

6w2w3d1d2d3
+ w2

2l
3
2

6w1w3d1d2d3
+ w2

3 l
3
3

6w1w2d1d2d3
if w1r1 > w3l3,

r1l2[w1r1−w2l2]
2w3d1d2d3

+ w2
2l

3
2

6w1w3d1d2d3
if w1r1 � w3l3.

Probability P5

For w2r2 � w1l1 + w3l3,

P5 = l1r2l3
d1d2d3

− l1l3(w1l1 + w3l3)

2w2d1d2d3
.

For w2r2 < w1l1 + w3l3, w2r2 � w1l1,

P5 =

⎧
⎪⎨

⎪⎩

r2l3[w2r2−w3l3]
2w1d1d2d3

+ w2
3 l

3
3

6w1w2d1d2d3
if w2r2 > w3l3,

w2
2r

3
2

6w1w3d1d2d3
if w2r2 � w3l3.

For w2r2 < w1l1 + w3l3, w2r2 > w1l1,
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P5 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l1r2[w2r2−w1l1]
2w3d1d2d3

+ r2l3[w2r2−w3l3]
2w1d1d2d3

+ w2
1 l

3
1

6w2w3d1d2d3

− w2
2r

3
2

6w1w3d1d2d3
+ w2

3l
3
3

6w1w2d1d2d3
if w2r2 > w3l3,

l1r2[w2r2−w1l1]
2w3d1d2d3

+ w2
1 l

3
1

6w2w3d1d2d3
if w2r2 � w3l3.

Probability P6

For w3r3 � w1l1 + w2l2,

P6 = l1l2r3
d1d2d3

− l1l2(w1l1 + w2l2)

2w3d1d2d3
.

For w3r3 < w1l1 + w2l2, w3r3 � w2l2,

P6 =

⎧
⎪⎨

⎪⎩

l1r3[w3r3−w1l1]
2w2d1d2d3

+ w2
1l

3
1

6w2w3d1d2d3
if w3r3 > w1l1,

w2
3r

3
3

6w1w2d1d2d3
if w3r3 � w1l1.

For w3r3 < w1l1 + w2l2, w3r3 > w2l2,

P6 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l2r3[w3r3−w2l2]
2w1d1d2d3

+ l1r3[w3r3−w1l1]
2w2d1d2d3

+ w2
1 l

3
1

6w2w3d1d2d3

+ w2
2 l

3
2

6w1w3d1d2d3
− w2

3r
3
3

6w1w2d1d2d3
if w3r3 > w1l1,

l2r3[w3r3−w2l2]
2w1d1d2d3

+ w2
2 l

3
2

6w1w3d1d2d3
if w3r3 � w1l1.

Probability of Majority Inversion P

Probability of majority inversion equals the sum of the six probabilities:

P = P1 + P2 + P3 + P4 + P5 + P6.
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Strategic Voting and Strategic Candidacy

Markus Brill and Vincent Conitzer

Abstract Models of strategic candidacy analyze the incentives of candidates to
run in an election. Most work on this topic assumes that strategizing only takes
place among candidates, whereas voters vote truthfully. In this article, we extend the
analysis to also include strategic behavior on the part of the voters. We also study
cases where only candidates or only voters are strategic. We consider a setting in
which both voters and candidates have single-peaked preferences and the voting rule
is majority-consistent, and we analyze the type of strategic behavior that is required
in order to guarantee desirable voting outcomes.

1 Introduction

When analyzing voting rules, the set of candidates is usually assumed to be fixed. In a
pathbreaking paper, Dutta et al. (2001) have initiated the study of strategic candidacy
by accounting for candidates’ incentives to run in an election. They assumed that
candidates have preferences over other candidates and defined a voting rule to be
candidate stable if no candidate ever has an incentive not to run. In this model, it is
assumed that every candidate prefers herself to all other candidates. Therefore, the
winner of an election never has an incentive not to run. Non-winning candidates, on
the other hand, might be able to alter the winner by leaving the election.1 Dutta et al.
(2001) showed that, undermild conditions, no non-dictatorial rule is candidate stable.

1Manipulating the result of an election by not participating in the voting process is reminiscent of
the “no-show paradox” (Fishburn & Brams, 1983; Moulin, 1988), which is concerned with voters’
participation incentives.
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This result naturally leads to the question of how voting outcomes are affected by
candidates’ incentives. It is straightforward to model strategic candidacy as a two-
stage game. At the first stage, each candidate decides whether to run in the election or
not. At the second stage, each voter casts a ballot containing a ranking of the running
candidates. When analyzing this game, an important ingredient is the assumed voter
behavior. That is, what assumptions are made about the votes in the second stage,
conditional on the set of running candidates?

Most papers on strategic candidacy assume that voters vote truthfully, i.e., their
reported ranking for any given subset of candidates corresponds to their true prefer-
ences, restricted to that subset (Dutta et al., 2001; Ehlers &Weymark, 2003; Eraslan
& McLennan, 2004; Lang et al., 2013; Obraztsova et al., 2015, 2020; Polukarov et
al., 2015; Rodríguez-Álvarez, 2006a, b; Samejima, 2005, 2007). However, it is well-
known that this is an unrealistic assumption (Gibbard, 1973; Satterthwaite, 1975). It
is therefore natural to account for strategic behavior on the part of the voters as well.
Thus, in the model we consider, both candidates and voters act strategically.

The technical problem in accounting for strategic voting is that, generally speak-
ing, toomany voting equilibria exist (De Sinopoli, 2000;Myerson&Weber, 1993). If
we only consider Nash equilibria, then any profile of votes for which no single voter
can change the outcome is an equilibrium. In some cases, a straightforward refine-
ment rules out many of the equilibria. For example, in a majority election between
two candidates, it is natural to rule out the strange equilibria where some voters play
the weakly dominated strategy of voting for their less preferred candidate. But this
reasoning does not generally extend to more than two candidates. In this paper, we
focus on a setting that admits natural equilibrium refinements.

Specifically, we consider single-peaked preferences (Black, 1948). It is well-
known that, if the number of voters is odd, this domain restriction guarantees the
existence of a Condorcet winner (namely, the most preferred candidate of the median
voter) and admits a strategyproof and Condorcet-consistent voting rule (namely,
the median rule) (Moulin, 1980). Dutta et al. (2001) observed that any Condorcet-
consistent rule is candidate stable in any domain that guarantees the existence of a
Condorcet winner. Lang et al. (2013) extended this result by showing that, in this
setting, no coalition of candidates ever has an incentive to change their strategies as
long as the Condorcet winner is running. We study the effect of strategic candidacy
with single-peaked preferenceswhen the voting rule is not Condorcet-consistent. Our
motivation is that the voting rules that are most widely used in practice—plurality,
plurality with runoff, and single transferable vote (STV)—may fail to select the
Condorcet winner, even for single-peaked preferences. We consider the class of
majority-consistent voting rules, which are rules that, if there is a candidate that is
ranked first bymore than half the voters, will select that candidate. This class includes
all Condorcet-consistent rules, but also other rules such as plurality, plurality with
runoff, STV, and Bucklin. For this class, we show that under some assumptions on
strategic behavior, the Condorcet winner does in fact end up being elected (though
for other assumptions this does not hold).
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2 Related Work

Strategic candidacy was introduced by Dutta et al. (2001, 2002), who showed that
every non-dictatorial voting rule might give candidates incentives not to run. Subse-
quently, Ehlers and Weymark (2003) and Samejima (2005) came up with alternative
proofs and extensions of some of the results of Dutta et al. (2001). Mbih et al. (2009)
and Ndiaye (2013) computed how frequent incentives not to run occur for specific
voting rules under the impartial anonymous culture (IAC) assumption. Furthermore,
models of strategic candidacy have been extended to set-valued (Eraslan & McLen-
nan, 2004; Rodríguez-Álvarez, 2006a), probabilistic (Rodríguez-Álvarez, 2006b),
and multiwinner (Obraztsova et al., 2020) voting rules.

Samejima (2007) studied strategic candidacy for single-peaked preferences and
characterized the class of candidate stable voting rules for this domain. He showed
that, under some mild conditions, a voting rule is candidate stable for single-peaked
preferences if and only if it is a kth leftmost peak rule for some k. A kth leftmost
peak rule fixes a single-peaked axis, identifies each voter with his most preferred
candidate (his “peak”), and selects the peak of the kth leftmost voter according to the
ordering given by the axis. The median rule is the special case for k = |V |+1

2 , where
|V | denotes the number of voters, which is assumed to be odd.

Also related are two papers that precede (Dutta et al., 2001, 2002). Osborne and
Slivinski (1996) andBesley andCoate (1997) study plurality equilibria in a candidacy
game where all voters are potential candidates and running is costly. In both papers,
preferences of voters and candidates are defined via a spatial model (which, in the
one-dimensional case, yields single-peaked preferences). However, the focus of these
two papers is different from ours: They are mainly interested in how the number and
spatial position of candidates that run in equilibrium is affected by parameters such
as entry costs, preferences, and candidates’ utilities for winning. There is also a
number of technical differences to our paper. For example, Osborne and Slivinski
(1996) consider a continuum of voters and assume that voters vote truthfully. And
Besley and Coate (1997) add a third stage to the two-stage candidacy game by letting
the selected candidate choose a policy from a given policy space. None of the two
papers considers strong equilibria.

Finally, a more recent line of research was initiated by Lang et al. (2013), who
study for which voting rules the candidacy game admits pure equilibria under the
assumption that voters vote truthfully. They also consider strong equilibria and show
that, for every domain that guarantees the existence of a Condorcet winner and for
every Condorcet-consistent voting rule, a set of running candidates forms a strong
equilibrium if and only if the Condorcet winner is contained in the set. Their results
have been extended by Polukarov et al. (2015), who study equilibrium dynamics in
candidacy games, and by Obraztsova et al. (2015), who study candidacy games when
running is costly.
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3 Preliminaries

This section introduces the concepts and notations that are used in the remainder of
the paper. For a finite set X , let L(X) denote the set of rankings (or linear orders) of
X , where a ranking is a binary relation on X that is complete, transitive, and antisym-
metric. For a ranking r ∈ L(X), top(r) denotes the top-ranked element according to
r and r |B denotes the restriction of r to a nonempty subset B ⊆ X .

3.1 Players and Preferences

Let C be a finite set of candidates and V a finite set of voters. Throughout this paper,
we assume that |V | is odd.2 The set P of players is given by P = C ∪ V . We assume
thatC ∩ V = ∅.3 Each player p ∈ P has preferences over the set of candidates, given
by a ranking Rp ∈ L(C). For all candidates c ∈ C , we assume that the top-ranked
candidate in Rc is c itself.4 For a player p ∈ P and two candidates a, b ∈ C , we
write a �p b if (a, b) ∈ Rp and a �p b if a �p b and a 	= b.

A preference profile R = (Rp)p∈P ∈ L(C)P contains preferences for all players.
For a preference profile R and a candidate c, let VR(c) denote the set of voters that
have c as their top-ranked candidate, i.e., VR(c) = {v ∈ V : top(Rv) = c}.Moreover,
for a candidate d 	= c, let VR(c, d) denote the set of voters that prefer c to d, i.e.,
VR(c, d) = {v ∈ V : c �v d}. Candidate c is a majority winner in R if |VR(c)| >
|V |/2, and c is a Condorcet winner in R if |VR(c, d)| > |V |/2 for all d ∈ C \ {c}.
Note that both concepts ignore the preferences of candidates. Every preference profile
canhave atmost onemajoritywinner and atmost oneCondorcetwinner. If a candidate
is amajority winner in R, then this candidate is also a Condorcet winner in R. Finally,
for a nonempty subset B ⊆ C of candidates, we let R|B = (Rp|B)p∈P ∈ L(B)P

denote the restriction of profile R to B.

2 When the number of voters is even, aCondorcetwinner is not guaranteed to exist even if preferences
are single-peaked. However, in this case there will always be at least one weak Condorcet winner.
The results in Sect. 5 extend to the setting with an even number of voters, with the role of the
Condorcet winner taken over by one of the weak Condorcet winners, namely the one in whose favor
the tie is broken.
3 For results without this assumption, see, e.g., Dutta et al. (2001, 2002).
4 This assumption is common in the literature on strategic candidacy, where it is often referred to
as self-preference (Dutta et al., 2001, 2002) or self-supporting candidate preferences (Lang et al.,
2013; Obraztsova et al., 2015, 2020; Polukarov et al., 2015). Without it, scenarios can arise where
no candidate has an incentive to run.
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3.2 Single-Peakedness

A well-studied structural restriction on preferences is single-peakedness (Black,
1958). Intuitively, preferences are single-peaked if the candidates can be ordered
on a one-dimensional spectrum in such a way that every voter has an ideal (most pre-
ferred) point on this spectrum, and preference is declining when moving away from
this ideal point. Settings in which the assumption of single-peakedness seems rea-
sonable include elections in which candidates correspond to numerical values (e.g.,
voting over a tax rate) or elections in which the candidates can be assigned positions
on a one-dimensional political spectrum (e.g., ranging from left-wing to right-wing
political views). Our definition of a single-peaked preference profile requires not only
the preferences of voters, but also the preferences of candidates to be single-peaked.
The assumption that top(Rc) = c for every candidate c implies each candidate’s ideal
point coincides with their position on the spectrum.

Formally, let 
 ∈ C × C be a strict ordering of the candidates. A preference profile
R = (Rp)p∈P is single-peaked with respect to 
 if the following condition holds for
all a, b ∈ C and p ∈ P: if a 
 b 
 top(Rp) or top(Rp) 
 b 
 a, then b Rp a. For
a preference profile R that is single-peaked with respect to 
, the median of R is
defined as the unique candidate c for which both

∑
a∈C :a
c |VR(a)| < |V |/2 and∑

a∈C :c
a |VR(a)| < |V |/2. It is well known that the median is a Condorcet winner
in R.

Let c1 
 c2 
 . . . 
 cm and let R be a preference profile that is single-peaked with
respect to 
. The peak distribution of R with respect to 
 is the vector of length m
whose j th entry is the number |VR(c j )| of voters that rank c j highest.

3.3 Voting Rules

A voting rule f maps a nonempty subset B ⊆ C of candidates and a profile of
votes r = (rv)v∈V ∈ L(B)V to a candidate f (B, r) ∈ B. A voting rule f is majority-
consistent if f (B, (Rv|B)v∈V ) = c whenever c is a majority winner in R|B , and f is
Condorcet-consistent if f (B, (Rv|B)v∈V ) = c whenever c is a Condorcet winner in
R|B . Becausemajoritywinners are always Condorcet winners, (perhaps confusingly)
Condorcet-consistency implies majority-consistency.

A scoring rule is a voting rule that is defined by a sequence (sn)n≥1, where for
each n ∈ N, sn = (sn

1 , . . . , sn
n ) ∈ R

n is a score vector of length n. For a preference
profile R on k candidates, the score vector sk is used to allocate points to candidates:
each candidate receives a score of sk

j for each time it is ranked in position j by a
voter. (Again, preferences of candidates are ignored.) The scoring rule then selects the
candidate with maximal total score. In the case of a tie, a fixed tiebreaking ordering is
used. Prominent examples of scoring rules are plurality [sn = (1, 0, . . . , 0)],Borda’s
rule [sn = (n − 1, n − 2, . . . , 0)], and veto [sn = (0, . . . , 0,−1)].
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The plurality winner is a candidate maximizing |VR(·)|. Plurality is majority-
consistent, but not Condorcet-consistent. Borda’s rule and veto are not majority-
consistent and (hence) not Condorcet-consistent.

4 Game-Theoretic Model

We consider the following two-stage game. At the first stage, each candidate decides
whether to run in the election or not. At the second stage, each voter casts a ballot
containing a ranking of the running candidates. Throughout, we consider complete-
information games: the preferences of the candidates and voters are common knowl-
edge among the candidates and voters. Hence, we do not need to model games as
(pre-)Bayesian and strategies do not have to condition on the player’s type.

4.1 Strategies and Outcomes

Let Sp denote the set of (pure) strategies of player p. Then for each candidate c ∈ C ,
the set Sc is given by {0, 1}, with the convention that 1 corresponds to “running”
and 0 corresponds to “not running.” For each voter v ∈ V , the set Sv consists of all
functions

sv : 2C →
⋃

B⊆C

L(B)

that map a subset B ⊆ C of candidates to a ranking sv(B) ∈ L(B). The interpretation
is that sv(B) is the vote of voter v when the set of running candidates is B. In
particular, each Sv contains a strategy that corresponds to truthful voting for voter v:
this strategy maps every set B to the ranking Rv|B . In general, however, a voter can
rank two candidates differently depending on which other candidates run.

We are now ready to define the outcomes of the game. A strategy profile s =
(sp)p∈P contains a strategy for every player.Given a strategyprofile s and avoting rule
f , let C(s) = {c ∈ C : sc = 1} denote the set of running candidates5 and let r(s) =
(sv(C(s)))v∈V ∈ L(C(s))V denote the votes cast for this set of running candidates.
The outcome o f (s) of s under f is then given by o f (s) = f (C(s), r(s)).

5 If C(s) = ∅, define o f (s) = . We assume that each candidate prefers herself to the outcome .
This assumption ensures that at least one candidate will run whenever candidates act strategically.
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4.2 Equilibrium Concepts

Let s = (sp)p∈P be a strategy profile. For a subset P̃ ⊆ P and a profile of strategies
s ′

P̃
= (s ′

p)p∈P̃ for players in P̃ , let (s ′
P̃
, s−P̃) denote the strategy profile where each

player p ∈ P̃ plays strategy s ′
p and all remaining players play the same strategy as

in s. Fix a voting rule f and a preference profile R. For a strategy profile s and a
subset P̃ ⊆ P of players, say that s is (R, f )-deviation-proof w.r.t. P̃ if for all s ′

P̃
,

there exists p ∈ P̃ such that

o f (s) �p o f (s
′
P̃
, s−P̃).

For a strategy profile s = (sp)p∈P , we sometimes write s = (sC , sV ), where sC =
(sc)c∈C is the profile of candidate strategies and sV = (sv)v∈V is the profile of voter
strategies. We can now define equilibrium behavior for both candidates and voters.

Definition 1 Let R be a preference profile and let f be a voting rule. A strategy
profile s = (sC , sV ) is

• a C-equilibrium for R under f if s is (R, f )-deviation-proof w.r.t. {c} for all
c ∈ C ;

• a strong C-equilibrium for R under f if s is (R, f )-deviation-proof w.r.t. C ′ for
all C ′ ⊆ C ;

• a V -equilibrium for R under f if for every s ′
C ∈ {0, 1}C , (s ′

C , sV ) is (R, f )-
deviation-proof w.r.t. {v} for all v ∈ V ;

• a strong V -equilibrium for R under f if for every s ′
C ∈ {0, 1}C , (s ′

C , sV ) is (R, f )-
deviation-proof w.r.t. V ′ for all V ′ ⊆ V .

We omit the reference to R and f if the preference profile or the voting rule
is known from the context. In a C-equilibrium, no candidate can achieve a more
preferred outcome by unilaterally changing their strategy. In a strong C-equilibrium,
no coalition of candidates can change the outcome in such a way that every player in
the coalition prefers the new outcome to the original one. Thus, (strong) C-equilibria
correspond to (strong) Nash equilibria when strategies of voters are assumed to
be fixed. For voters, the equilibrium notions are more demanding: In order to be
considered a (strong) V -equilibrium, the strategies of voters are required to form a
(strong) Nash equilibrium for every subset B ⊆ C of running candidates.

It is instructive to relate these definitions to established game-theoretic solu-
tion concepts for extensive-form games, such as subgame-perfect equilibrium and
subgame-perfect strong equilibrium. A strategy profile s is a subgame-perfect equi-
librium of a game G if for any subgame G ′ of G, the restriction of s to G ′ is a Nash
equilibrium of G ′, and it is a subgame-perfect strong equilibrium if for any subgame
G ′ of G, the restriction of s to G ′ is a strong Nash equilibrium of G ′. In the candidacy
game, every subgame (other than the game itself) corresponds to a voting game that
takes place after the candidates have decided whether or not to run. Thus, a proper
subgame can be identified with the set of candidates that run in this subgame.
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For candidates, playing a subgame-perfect equilibrium is not a stronger require-
ment than playing a Nash equilibrium, because the only subgame in which they play
is the entire game itself. For voters, on the other hand, playing a subgame-perfect
equilibrium entails playing a Nash equilibrium for every possible set of running
candidates. Therefore, we have the following.

Fact A strategy profile is a subgame-perfect equilibrium of the candidacy game if
and only if it is both a C-equilibrium and a V -equilibrium. ��

For subgame-perfect strong equilibria, one implication is straightforward.

Fact Every subgame-perfect strong equilibrium of the candidacy game is both a
strong C-equilibrium and a strong V -equilibrium. ��

However, the other direction does not hold in general, because even if coalitions
of either one type of players cannot successfully deviate, it is possible that a mixed
coalition including players of both types can.

Splitting up the equilibrium definitions into separate requirements for C and V
allows us to capture scenarios inwhich only players of one type (candidates or voters)
act according to the corresponding equilibrium notion. In Sect. 5 we will analyze
which combinations of equilibriumnotions yield desirable outcomes.Wewill present
both positive results, stating that a desirable outcome will be selected whenever a
strategy profile meets a certain combination of equilibrium conditions, and negative
results, stating that undesirable outcomes may be selected even if certain equilibrium
conditions hold.

In sufficiently general settings, the existence of solutions is not guaranteed for any
of the equilibrium concepts in Definition 1.6 However, for all our positive results,
we also show that every preference profile admits a strategy profile that meets the
corresponding equilibrium conditions.

5 Results

We are going to assume that preference profiles are single-peaked with respect to a
given order 
.7 Note that our definition of single-peakedness in Sect. 3.1 also requires
the preferences of candidates to be single-peaked with respect to 
. Given that the
preferences of voters are single-peaked with respect to 
, this does not appear to be
an unreasonable assumption.

We are interested in the following question: which requirements on the strategies
of players are sufficient for the Condorcet winner (which is guaranteed to exist)

6 Subgame-perfect equilibria are guaranteed to exist if one allows for mixed strategies and extends
the preferences of players to the set of all probability distributions over C ∪ {} in an appropriate
way.
7 If the order is not part of the input, it can be computed in polynomial time (Bartholdi & Trick,
1986; Escoffier et al., 2008).
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to be the outcome? For Condorcet-consistent rules, the answer to this question is
relatively straightforward (Lang et al., 2013). However, as we have argued in the
introduction, most rules that are typically used in practice are majority-consistent,
but not Condorcet-consistent. The simplest and most important such rule is plurality.

It is easy to construct a plurality election in which some candidates have an
incentive not to run (assuming truthful voting).

Example 1 Consider a single-peaked preference profile with candidates a 
 b 
 sc
and peak distribution8 (3, 2, 4). Under truthful voting, the plurality winner is c.
However, if candidate a does not run, the three voters in VR(a) rank candidate b first,
making b the plurality winner. By single-peakedness, candidate a prefers b to c.

This example also shows that plurality can fail to select the Condorcet winner when
all candidates run and all voters vote truthfully. The next example shows that requiring
both candidates and voters to play subgame-perfect equilibrium strategies is still not
sufficient for the Condorcet winner to be chosen.

Example 2 Consider a single-peaked preference profile with candidates a 
 b 
 c 

d 
 e and peak distribution (11, 3, 3, 3, 3). The Condorcet winner is b. Let s be
the strategy profile in which all candidates run and all voters vote truthfully. Then
oplurality(s) = a and no candidate other than a can change that outcome by unilaterally
deviating. Therefore, s is a C-equilibrium. To see that s is also a V -equilibrium, we
need to check that “truthful voting” is deviation-proof for every subset of running
candidates. Deviation-proofness clearly holds whenever at most two candidates run.
If at least three candidates run, single-peakedness implies that the leftmost running
candidate has a plurality score of at least 11, whereas each other running candidate
has a score of at most 9. Thus, no voter can change the outcome by unilaterally
deviating.

We go on to show that the Condorcet winner will be chosen if we require stronger
equilibrium notions. We first analyze strong V -equilibria. Note that this result does
not require single-peaked preferences.9

Theorem 1 Let R be a preference profile with Condorcet winner c∗ and let f be a
majority-consistent voting rule.

(i) If R|B has a Condorcet winner for every nonempty subset B ⊆ C, then there
exists a subgame-perfect strong equilibrium (and hence a strategy profile that
is both a strong C-equilibrium and a strong V -equilibrium) for R under f in
which all candidates run.

(ii) If s is a strong V -equilibrium for R under f with sc∗ = 1, then o f (s) = c∗.

8 We often simplify examples with single-peaked preference profiles by specifying the peak distri-
bution only. This piece of information is clearly sufficient to identify both the Condorcet winner
and, in the absence of ties, the plurality winner.
9 In particular, note that Theorem 1 does not make any assumptions on the preferences of candidates
(other than self-supportedness).
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Proof For (i), denote by cB ∈ B the Condorcet winner in R|B . Let s be a strategy
profilewhere all candidates run and all voters rank cB firstwhenever the set of running
candidates is given by B. Hence, o f (s) = c∗. We claim that s is a subgame-perfect
strong equilibrium for R under f . In order to prove this claim, we need to show that
for every subgame, there is no beneficial deviation for any coalition.

First, consider the subgame that is given by the entire game itself. Suppose, for
the sake of contradiction, that there is a coalition P̃ = C ′ ∪ V ′ of candidates and
voters that can change the outcome to some a 	= c∗ and that all players in P̃ prefer a
to c∗. Let s ′ = (s ′

P̃
, s−P̃) denote the strategy profile that results from this deviation.

Observe that c∗ /∈ P̃ , because c∗ �c∗ a. Therefore, c∗ is still running under s ′ and
all non-deviating voters V \ V ′ still rank c∗ highest under s ′. That means that the
number |V ′| of deviating voters has to be greater than |V |/2, as otherwise majority-
consistency of f would yield o f (s ′) = c∗. But then V ′ is a majority of voters, each
preferring a over c∗. This contradicts the assumption that c∗ is a Condorcet winner.

Second, consider a subgame that arises after the candidates have chosen whether
or not to run. Let B ⊆ C be the set of candidates that run in this subgame. If B = ∅,
the outcome is  and no coalition of voters can change the outcome. If B 	= ∅, all
voters rank cB first by the definition of s. By an argument analogous to the one
above, the existence of a successfully deviating coalition of voters would violate the
assumption that cB is the Condorcet winner in R|B . Therefore, s is a subgame-perfect
strong equilibrium.

For (i i), let s be a strong V -equilibrium for R under f with sc∗ = 1. Assume for
the sake of contradiction that o f (s) = a 	= c∗. We will show that s is not a strong
V -equilibrium, by means of the following deviation. Let P̃ = VR(c∗, a) be the set
of voters that prefer c∗ over a and let s ′ = (s ′

P̃
, s−P̃) be the strategy profile in which

all voters in P̃ rank c∗ first whenever c∗ runs. Since sc∗ = 1 and |P̃| = |VR(c∗, a)| >
|V |/2, majority-consistency of f implies o f (s ′) = c∗. Moreover, c∗ �p a for all p ∈
P̃ bydefinition of P̃ . Therefore, s is not (R, f )-deviation-proofw.r.t. P̃ , contradicting
the assumption that s is a strong V -equilibrium. ��

The following example illustrates the proof of part (i i).

Example 3 Let R be a single-peaked preference profile with candidates a 
 b 

c 
 d and peak distribution (2, 1, 2, 4). The Condorcet winner is c. Consider the
strategy profile s in which all candidates run and all voters vote truthfully. Then
oplurality(s) = d. If all voters in VR(c, d) = VR(a) ∪ VR(b) ∪ VR(c) deviate and rank
c first, the outcome changes to c.

We remark that part (i i) of Theorem 1 can be generalized10 by observing that it
is sufficient for f to satisfy the following condition, which is considerably weaker
than majority-consistency:

10 Sertel and Sanver (2004) prove a similar result in the (standard) setting where all candidates are
assumed to run. A further strengthening of part (i i) of Theorem 1 was pointed out to us by François
Durand: instead of requiring that voters play a strong V -equilibrium for every subset of running
candidates, it is sufficient to require voters to play a strongV -equilibrium only in those subgames that
actually allow strong V -equilibria (and to not make any assumptions on voter behavior otherwise).
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Whenever a set V ′ ⊆ V of voters forms a majority (i.e., |V ′| > |V |/2), then for every can-
didate a ∈ C that is running and every profile of votes for voters in V \ V ′, the voters in V ′
can vote in such a way that candidate a is chosen.

It can be shown that all unanimousC2 functions (Fishburn, 1977) satisfy this property.

The following corollary summarizes the consequences of Theorem 1 for single-
peaked preference profiles.

Corollary 1 Let R be a single-peaked preference profile with Condorcet winner c∗
and let f be a majority-consistent voting rule.

(i) There exists a subgame-perfect strong equilibrium (and hence a strategy profile
that is both a strong V -equilibrium and a strong C-equilibrium) for R under f.

(ii) If s is a strong V -equilibrium and a C-equilibrium (strong or not) for R under f,
then o f (s) = c∗.

We provide two examples to show that the statements of Corollary 1 do not hold
for rules that are not majority-consistent.

Example 4 Let R be a single-peaked preference profile with candidates a 
 b 
 c
and peak distribution (5, 0, 4). If f is Borda’s rule, there does not exist a strong V -
equilibrium (and hence no subgame-perfect strong equilibrium). To see this, consider
the case where all candidates run. Observe that in any strong V -equilibrium, the
outcome would have to be a. (Suppose the outcome is not a. Then, the five voters in
VR(a) can jointly deviate and change the outcome toa. They can do this by having one
voter voting a � b � c, and the remaining four voters voting exactly the opposite
rankings of the voters in VR(c).) However, there is no strong V -equilibrium that
yields outcome a. This is because the voters in VR(c) prefer both other alternatives
to a, and—no matter how the voters in VR(a) vote—the voters in VR(c) can jointly
deviate and achieve an outcome other than a. (One of b and c will obtain a score of
at least 3 from the voters in VR(a). Without loss of generality, suppose it is b. Then
the voters in VR(c) can all vote b � c � a, making b win.)

Example 5 Let R be a single-peakedpreference profilewith candidatesa 
 b 
 c and
five voters: three voters have preferences a � b � c and two voters have preferences
b � c � a. The Condorcet winner is a. Let f be the voting rule veto11 and let s be the
strategy profile where all candidates run and all voters vote truthfully. Then, of (s) =
b. Moreover, s is a strong C-equilibrium and a strong V -equilibrium. The former
holds because any deviation involving a does not change the outcome (provided
b still runs), and c can only change the outcome to the less preferred alternative
a. For the latter, the only interesting case is when all three candidates run. In this
case, the two voters in VR(b) have no incentive to deviate from truthful voting (their
favorite candidate is winning) and there is no way for the three voters in VR(a)
to jointly deviate and achieve outcome a. (They can change the outcome to c by
voting a � c � b, but they prefer b to c.) It can furthermore be shown that, when all
candidates run, every strong V -equilibrium yields outcome b.

11 Veto does not only violate majority-consistency, but also the weaker property defined after The-
orem 1.
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Theorem 2 Let R be a single-peaked preference profile with Condorcet winner c∗
and let f be a majority-consistent voting rule.

(i) There exists a strong C-equilibrium for R under f where all voters vote truth-
fully.

(ii) If s is a strong C-equilibrium for R under f where all voters vote truthfully,
then o f (s) = c∗.

Proof For (i), let s be the strategy profile in which only c∗ runs and all voters vote
truthfully. We show that this is a strong C-equilibrium for R under f . Suppose,
for the sake of contradiction, that C̃ ⊆ C is a coalition of candidates that can, by
changing its strategies, make alternative a 	= c∗ win, andmoreover that all candidates
in C̃ prefer a to c∗. Define C− = {c ∈ C : c 
 c∗} and C+ = {c ∈ C : c∗ 
 c}, and
without loss of generality suppose that a ∈ C−. Because candidates’ preferences
are single-peaked and they rank themselves first, it follows that C̃ ⊆ C−. But this
implies that still, no candidate inC+ runs.Hence, all voterswith top(Rv) ∈ C+ ∪ {c∗}
still rank c∗ first (since they vote truthfully). Since c∗ is the median, |C+ ∪ {c∗}| >
|V |/2, and majority-consistency of f implies that c∗ wins. This gives us the desired
contradiction.

For (i i), let s be a strong C-equilibrium for R under f where all voters vote
truthfully. Consider the set C(s) of candidates that are running under s. Define
C−

s = {c ∈ C(s) : c 
 c∗} and C+
s = {c ∈ C(s) : c∗ 
 c}. Assume for the sake of

contradiction that o f (s) = a 	= c∗. Without loss of generality, suppose that a ∈ C−
s .

Consider the set C̃ = C+
s ∪ {c∗}. Define s ′

C̃
= (s ′

c)c∈C̃ by

s ′
c =

{
1 if c = c∗

0 if c ∈ C+
s

and observe that o f (s ′
C̃
, s−C̃) = c∗. The reason for the latter is that (1) the set of voters

v with top(Rv) = c∗ or c∗ 
 top(Rv) forms a majority, (2) all of these voters satisfy
top(Rv|C(s ′

C̃
,s−C̃ )

) = c∗, and (3) all voters vote truthfully by assumption. Moreover,

single-peakedness implies that all candidates in C̃ prefer c∗ to a. Therefore, s is
not (R, f )-deviation-proof w.r.t. C̃ , contradicting the assumption that s is a strong
C-equilibrium. ��
Example 6 Consider again the preference profile R and the strategy profile s from
Example 3. If both a and b deviate to “not running,” the outcome (under plurality)
changes from d to c. Therefore, s is not a strong C-equilibrium.

Similar to the case of Theorem 1, we now provide examples that show that Theo-
rem 2 cannot be generalized in certain ways. Example 7 shows that Theorem 2 does
not hold for Borda’s rule (which is not majority-consistent), and Example 8 shows
that Theorem 2 does not hold if the preferences of candidates are not single-peaked.
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Example 7 Consider a single-peaked preference profile with candidates a 
 b 
 c
and five voters: three voters have preferences a � b � c and two voters have pref-
erences b � c � a. The Condorcet winner is a. Let s be the strategy profile where
all candidates run and all voters vote truthfully. It is easily verified that s is a strong
C-equilibrium and oBorda(s) = b. In fact, it can be checked that the Condorcet win-
ner is not chosen in any strong C-equilibrium with truthful voting. (The only other
strong C-equilibrium under truthful voting has candidates b and c running and also
yields outcome b.)

Example 8 Consider the following preference profile with candidates a, b, c and 14
voters: four voters have preferences a � b � c, four voters have preferences b �
a � c, and six voters have preferences c � b � a. The preferences of the candidates
are such that a prefers c over b and b prefers c over a. Whereas the preferences of the
voters are single-peaked with respect to the ordering a 
 b 
 c, this is not true for the
preferences of the candidates. (Therefore, this profile is not single-peaked according
to the definition in Sect. 3.1.) The Condorcet winner is b and the Condorcet loser is c.
Let s be the strategy profile where all candidates run and all voters vote truthfully.
It is easily verified that s is a strong C-equilibrium and oplurality(s) = c. In fact,
“everybody running” is the only strong C-equilibrium under truthful voting.

Since Theorem 1 already covers the case where both voters and candidates play
a strong (subgame-perfect) equilibrium, only one case is left to consider: candidates
playing a strong C-equilibrium, and voters merely playing a V -equilibrium. The
following example shows that these requirements are not sufficient for the Condorcet
winner to be chosen.

Example 9 Consider a single-peaked preference profile with candidates a 
 b 
 c
and peak distribution (1, 1, 1). The Condorcet winner is b. Let s be a strategy profile
with sc = 1 and voter strategies sv that satisfy

top(sv(B)) =
{

c if c ∈ B

top(Rv|B) otherwise

for each B ⊆ C . That is, all three voters rank c first whenever c runs, and vote truth-
fully otherwise.12 Obviously, oplurality(s) = c.We claim that s is both a V -equilibrium
and a strong C-equilibrium. For the former, we distinguish two cases: If c runs, then
all voters rank c first and no voter can change the outcome by unilaterally deviating.
If c does not run, then at most two candidates run and no voter can benefit by voting
for their less preferred candidate. For the latter, no coalition of candidates can change
the outcome in such a way that all members of the coalition prefer the new outcome
to c. (Such a coalition would need to include candidate c, who has no incentive to
deviate.)

12 Note that the voter v with top(Rv) = a plays a weakly dominated strategy, because c is her
least preferred alternative. This can be avoided by introducing a fourth candidate d with c 
 d and
VR(d) = ∅.



82 M. Brill and V. Conitzer

Table 1 Overview of results

Strong V -equilibrium V -equilibrium Truthful voting

Strong C-equilibrium Yes (Corollary 1) No (Example 9) Yes (Theorem 2)

C-equilibrium Yes (Corollary 1) No (Example 2) No (Example 2)

Naive candidacy
(sc = 1 ∀c)

Yes (Theorem 1) No (Example 2) No (Examples 1 and 2)

A table entry is “yes” if every strategy profile that satisfies the corresponding row and column
conditions yields the Condorcet winner under every majority-consistent voting rule. Moreover, for
every “yes” entry, a strategy profile satisfying the conditions is guaranteed to exist

The phenomenon illustrated in this example is perhaps somewhat surprising:
Assuming that candidates play a strong C-equilibrium, both truthful voting and
strong V -equilibrium voting yields the desirable outcome; however, V -equilibrium
voting—a notion of sophistication that might appear to be “in between” the other
two notions—does not. Table 1 summarizes our results.

6 Conclusion

We have analyzed the combination of strategic candidacy and strategic voting in a
single-peaked voting setting. It would be worthwhile to study whether (some of)
our positive results extend to settings where preferences are single-peaked on a tree
(Demange, 1982), single-peaked on a circle (Peters & Lackner, 2020), or single-
peaked in higher dimensions (Sui et al., 2013). It would also be interesting to check
whether similar results can be obtained for related domain restrictions such as single-
crossing (Elkind et al., 2017; Roberts, 1977) or value-restricted (Sen, 1966) prefer-
ences.

Our positive results rely onfinding the right level of equilibrium refinement (strong
V -equilibrium, or strong C-equilibrium with truthful voting). If we move away from
restricted domains, an interesting question is whether there are other types of equi-
librium refinement (Dutta & Laslier, 2010; Obraztsova et al., 2014; Thomson et al.,
2013) that allow us to arrive at meaningful equilibria by ruling out “unnatural” ones.

Equilibrium dynamics (Meir et al., 2010; Polukarov et al., 2015) is another topic
for future research. For example, in the setting with single-peaked preferences and
a majority-consistent rule, are there natural dynamics that are guaranteed to lead us
to an equilibrium choosing the Condorcet winner?

On a higher level, one might wonder to what extent the phenomena exhibited in
strategic candidacy games can be related to other problems that involve altering the
set of candidates, such as control problems (Lang et al., 2013), cloning (Tideman,
1987), and nomination of alternatives (Dutta, 1981; Dutta & Pattanaik, 1978).
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Meta-agreement and Rational
Single-Peaked Preferences

Olivier Roy and Maher Jakob Abou Zeid

Abstract We revisit the claim that rationality requires participants in deliberation
to form single-peaked preferences once they have reached meta-agreements. We
provide two different arguments that cast doubts on this claim. The first points out
the rationality of having non-single-peaked preferences in cases where consuming
two goods together is less valuable than consuming each of them individually. The
second argument fleshes out the notion of meta-agreements in terms of reasons
supporting a particular structuring dimension. These arguments show that to the
extent that deliberation fosters the formation of meta-agreements and the formation
of single-peaked preferences, the bridge between these two notions might not be
solely a matter of rational preference formation.

1 Introduction

This paper is a philosophical contribution to the question of whether deliberation
helps avoid Condorcet cycles, and, more generally, incoherent social preferences.
According to what has been called the Received View (Rafiee Rad & Roy, 2021),
deliberation has this positive effect. The view goes back at least to Miller (1992), but
its most standard formulation rests on the so-called meta-agreement hypothesis, as
articulated by List (2002) and Dryzek and List (2003). In a nutshell, the hypothesis
states that deliberation fosters the formation or the discovery of underlying meta-
agreements, and that once such meta-agreements are in place rationality requires the
participants to form single-peaked preferences.

This paper raises doubts regarding one important aspect of the meta-agreement
hypothesis, namely that, in the presence of meta-agreement, rationality requires the
agents to form single-peaked preferences. We do so in two ways. We first point
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out the rationality of having non-single-peaked preferences in cases where consum-
ing two goods together is less valuable than consuming each of them individually.
We then flesh out the notion of meta-agreements in terms of reasons supporting a
particular structuring dimension, and argue that there are cases where non-single-
peaked preferences are permissible given a particular set of reasons. In Sect. 2
we provide the required theoretical background to our argument, introducing the
meta-agreement hypothesis and single-peaked preference, and develop the counter-
examples in Sect. 3.

2 The Meta-agreement Hypothesis

Black (1948) and later Arrow (1963) remarked that single-peaked preferences are
sufficient to ensure coherent group preferences. More precisely, Black showed that
pairwise majority voting always delivers a Condorcet winner when the input pref-
erence profile is single-peaked, and Arrow noticed that this aggregation method
satisfies all of his other axioms once universal domain is narrowed to single-peaked
preferences. See Gaertner (2001) and Puppe (2018) for comprehensive overviews of
such domain conditions.

Single-peakedness is defined relative to a given ranking of the alternatives, often
called a dimension. Informally, a particular strict ranking over a finite set of alterna-
tives is single-peakedwith respect to a given dimensionwhenever, as onemoves away
from the most preferred alternative to the left and the right along the given dimen-
sion, one always moves to strictly less preferred alternatives. Visually, one always
goes “down” and never “up” again in the preference ranking. A profile of rankings is
said to be single-peaked when there is a dimension along which all rankings in that
profile are single-peaked.

When can the preferences of the voters be expected to be single-peaked? The
Received View answers this question by bringing in the crucial notion of meta-
agreements. A meta-agreement is an agreement regarding the structuring dimension
of a particular decision problem. This is the dimension along which the participants
conceptualize the problem. Later on we make this idea more precise in terms of
the possible reasons that bear on the decision. For now, it suffices to point out that
many such dimensions are possible. The classic example of a structuring dimension
is the left-right alignments of political parties in an election. That alignment is, of
course, not the only one possible. Parties might as well be aligned according to
their authoritarian vs libertarian values. A group has formed a meta-agreement on a
question when its members agree on the most relevant dimension to the problem at
hand. In our example, the voters are said to have reached ameta-agreementwhen they
agree that, for instance, the election’s central issue is the choice between authoritarian
and libertarian values.

Meta-agreements leave room for substantial forms of what might be called sub-
stantive disagreements. Even if the voters agree that a given election should be pri-
marily framed as a choice between libertarian and authoritarian values, they might
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disagree on the extent to which specific parties embody these values. And even if
they agree on that, they might have opposing views regarding the best way to strike
the compromise, if at all, between authoritarian and libertarian tendencies.

Single-peakedness, even if it implies the existence of a structuring dimension, is
not sufficient for meta-agreements. The problem is, as List observes, that this dimen-
sion “is only a formal structural condition on individual preferences” (List, 2002
[our emphasis]). It might not be meaningful for the participants (Aldred, 2004) and,
if it is, they might not agree that they should frame the problem at hand in its terms.
In other words, the fact that the voters’ preferences happen to be single-peaked does
not necessarily entail a joint conceptualization of the decision at hand along a given
dimension, which is central for meta-agreements. Returning to our example, two vot-
ers might completely disagree on the main issue of a specific election. One regards it
as a choice between more left-wing or right-wing policies, while the other views it as
a choice between authoritarian or libertarian values. If these two dimensions happen
to be sufficiently correlated among the parties, these two voters might nonetheless
have single-peaked preferences, or even reach consensus, without having reached a
meta-agreement.

However, the question remains whether the existence of meta-agreements is con-
ducive to the participants forming single-peaked preferences, and this is where the
meta-agreement hypothesis comes in. The hypothesis is, in effect, a proposal regard-
ing the mechanism through which meta-agreements foster the creation of single-
peaked preferences. In the version outlined by List (2002) and Dryzek and List
(2003), that mechanism works in three steps. The first step is the actual formation
of the meta-agreement. Deliberation, they claim, helps the participants to identify
or unveil the set of norms and values that constitute the relevant dimension(s) of the
problem at hand, c.f. also Dryzek and Niemeyer (2006). This could be the trade-off
between authoritarian and libertarian values in our running example. In a second step,
deliberation helps the participants to agree on the factual question of how the alterna-
tives compare on that dimension. That is, it helps them to rank the alternatives along
that dimension. Again, in our example, deliberation is claimed to help the participants
situate each party on the libertarian/authoritarian dimension. Note that the resulting
ordering of the parties is neither an individual nor a social preference ranking. It only
reflects how the alternatives compare to one another with respect to the structuring
dimension. This leaves open which point on that dimension is optimal or best.

The third and final step is our main focus in this paper. Each participant should
individually determine what point in the agreed dimension they find best and order
the other alternatives relative to it. This is where deliberation should translate meta-
agreement into single-peaked preferences (Dryzek & List, 2003; List, 2002). They
suggest that rationality requires the participant to form single-peaked preferences
with respect to the structuring dimension that they agree on. In other words, the
claim is that if a participant has agreed that the dimension identified in the first step
is indeed the only relevant one, and she also agreed on how each alternative fares on
that dimension, then she must, on pain of incoherence, be able to identify the best
alternative(s) along that dimension and order the others according to their distance
from them. In our example, this means that once each voter has agreed that the trade-
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off between libertarian and authoritarian values is the only relevant issue, and has
determined how each party makes that trade-off, all that remains is to decide which
trade-off is best, and order all strategies in terms of distance from that ideal point.

We should emphasize that this third step is done individually by the participants,
but the result of group deliberation guides it. Taken in contrapositive, the claim is
indeed that, if a participant forms non-single-peaked preferences at the third step,
this must be because some other issues are important to her, after all, or because
she disagrees on how the alternatives should be ranked on the unique dimension,
contradicting the conclusions collectively reached at the first and second steps.

Our goal in this paper is to revisit and ultimately express doubts regarding this
third step, but before presenting that, it is useful to review other existing criticisms.
Ottonelli and Porello (2013) have argued that the first two steps of the mechanism
require different forms of substantive agreements, and that it is debatable whether
such agreements are easier to reach than fully consensual preferences. The mech-
anism indeed requires agreement regarding the relevant dimension and regarding
the position of the alternatives on it. Both aspects are likely to involve a number of
intricate or even thick, value-laden concepts. For those, it seems unlikely that the
participants will reach a consensus on their meaning or their concrete realization in
each of the alternatives. To start with the second aspect, even assuming in our running
example that the voters agree on what are libertarian and authoritarian values, it is
not implausible that deep disagreements will persist after deliberation regarding the
extent to which each party embodies them. Regarding the first aspect, recall that it
requires the participants to agree on the problem’s relevant normative or evaluative
dimension. This dimension will typically reflect a thick concept, intertwining factual
with normative and evaluative questions, for instance, health, well-being, sustain-
ability, freedom, or autonomy, to name a few. It seems rather unlikely, Ottonelli and
Porello (2013) argue, that deliberationwill lead the participants to agree on themean-
ing of such contested notions. Of course, deliberative democrats have long observed
that public deliberation puts rational pressure on the participants to argue in terms
of the common good (Miller, 1992), which might be conducive to an agreement on
a shared dimension. But when it comes to such thick concepts, this agreement might
be only superficial, involving political catchwords and thus leaving the participants
using their own, possibly mutually incompatible, understandings of them. All of this
does not exclude the fact that deliberation might make it more likely, in comparison
with other democratic procedures, to generate single-peaked preferences frommeta-
agreements. The point is rather that starting from the latter puts the bar very high,
especially if there appear to be other ways of reaching single-peaked preferences or
of avoiding incoherent group rankings altogether.

3 Single-Peakedness Through Rationality?

Themeta-agreement hypothesis, and the received viewmore generally, have received
some empirical support, primarily reported in List et al. (2012) and Farrar et al.
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(2010). They used prominence in the public sphere as a proxy for the existence of
meta-agreements before deliberation. They observe stronger increases in proximity
to single-peakedness in cases where the issue at hand was less prominently discussed
publicly before deliberation, and interpret this data as showing that the formation or
the discovery ofmeta-agreements through deliberation goes togetherwith an increase
in proximity to single-peakedness, has suggested by the meta-agreement hypothesis.

This evidence for the meta-agreement hypothesis is, however, indirect. While it
suggests a correlation between the formation or the discovery of meta-agreements
and an increase in proximity to single-peakedness, it does not directly test whether
the specific mechanism postulated in the hypothesis is causally responsible for the
increase. The data is silent, in particular, on whether the participant felt in any way
compelled, presumably by rational pressure, to form single-peaked preferences once
they have identified a structuring dimension and positioned the alternatives on it.

Rafiee Rad and Roy (2021) have, in fact, provided evidence from computational
simulations that suggests that increases in proximity to single-peakedness might
rather result from willingness to reach consensus than from a rational response to
meta-agreements. On the one hand, they observe that rational preference change
alone is insufficient to ensure an increase in proximity to single-peakedness. For
decisions on three alternatives (Abou Zeid, 2021), rational deliberation sometimes
insufficiently increases proximity to single-peakedness and even tends to create inco-
herent group preferences. Rather, the computational model suggests an alternative
mechanism: the degree to which participants in deliberation are willing to reach
a consensus with others might be the main driver for the increase in proximity to
single-peakedness observed in deliberation—c.f. again Abou Zeid (2021) and also
Rafiee Rad (2022) for additional remarks to that effect.

In this section, we want to formulate two conceptual arguments that support
the search for alternative explanations of the observed correlation between meta-
agreement and increases in proximity to single-peakedness. Both arguments question
the claim that rationality requires the participants to form single-peaked preferences
once they have reached meta-agreement. The first argument intuitively appeals to
cases where the interaction of two goods naturally leads to non-convex preferences.
We question why such cases should be seen as irrational once meta-agreements
are reached. The second argument fleshes out this intuition by using the theory of
reason-based rational choice, developed by Dietrich and List (2013). Interpreting
meta-agreements as constraining the admissible reasons that can ground preference
relations, we argue that it might be rational to form non-single-peaked preferences
even in the presence of meta-agreements.

3.1 The Case of Non-convex Preferences

Consider a simple example of some friends decidingwhere to go for lunch inMunich.
The options might be “Japanese”, “Bavarian”, and “Japanese-Bavarian”, and every-
one agrees that the question is how exotic the food may be, “Bavarian” being the
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least exotic, “Japanese” the most, “Japanese-Bavarian” in between.1 Suppose that
the friends have a fixed budget to be spent on two goods that are available in three
combinations. Call the degree to which the food is exotic x , the degree to which
it is conventional c. Let us furthermore assume that the goods have the same price
px = pc.

Assuming that these preferences can be represented by a convex utility function
along the exotic/conventional dimension boils down to assuming that these prefer-
ences are single-peaked. The convexity assumption is often grounded on the fact that
economics usually looks at goods that are voluntarily consumed together. However,
whether this is the case is an empirical assumption and does not provide an argument
to the effect that our agents are rationally compelled to have convex utility functions,
i.e., single-peaked preferences.

Indeed, double-peaked/single-dipped (Barberà et al., 2012) preferences are still
rational in the classical sense of being transitive and complete, and can naturally arise
when consuminggoods together is less valuable than consuming them individually. In
our example, the participants are forced to consume x and c together, and the double-
peaked preference can bemodeled by the utility function u(x, c) = (1 − x)2(1 − c)2

where x and c are, again, the degrees to which the food is exotic and conventional.
The indifference-curves that are implied by this are given by I (x) = 1 −

√
ū

1−x and
look exactly opposite to “usual” indifference-curves. An agent with such preferences
consuming these goods in isolation rather than in combination.

Intuitively, it is not clear why it is rational for some of the friends in our examples
to have convex preferences over x and c, but not otherwise. It is commonplace to have
goods that are less preferred when consumed as bundles. A good example is pickles
and jam. Someone might like either on their toast, but liking the combination of
both on one toast is certainly less common. In other words, many have non-convex
preferences when it comes to combinations of pickles and jam. When a group of
friends argues about what kind of sandwiches they should prepare for the lunch pack,
it seems that the meta-agreement that the relevant issue at hand is whether a given
sandwich is sweet or sour will not necessarily result in single-peaked preferences.

So even in simple, two goods models of preferences over a unique dimension,
it is not clear why rationality requires the agents to have convex preferences over
their bundles. If that intuition is correct, then the claim that rationality requires to
form single-peaked preferences once a meta-agreement is reached must at least be
qualified to the “standard” case where the agents’ preferences are convex.2

1 We assume that the “Japanese-Bavarian” venue serves dishes from both traditions, not necessarily
that they combine them in one dish.
2 As pointed out by an anonymous reviewer to this paper, non-convexity is not the only plausible
example of rational, non-single-peaked preferences that are compatible with meta-agreements.
So-called group-separable preferences (Inada, 1964) seem to provide another plausible class of
examples. We are very grateful to the anonymous reviewer for this pointer.
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3.2 Meta-agreements as Constraints on Reason-Based
Preferences

A natural explanation of our intuition regarding the rationality of having non-convex
preferences over certain bundles of goods is that there is a different set of reasons
grounding the agents’ preferences. In the case of our friends choosing a restaurant,
the person preferring both more conventional and more exotic venues to anything
“in-between” might do so because she dislikes unusual combinations. So for her,
the choice is between venues that are more “on the beaten paths” and those that
are less so. Similarly, having non-convex preferences over bundles of pickles and
jam as might be explained as a choice between conventional and less conventional
bread spreads, instead of between sweet and sour ones. In both cases, the explanation
boils down to denying that the agents have, in effect, reached a meta-agreement. The
dimension structuring their choices is not what they had purportedly agreed on.

This suggests a natural way to flesh out the idea that rationality requires to form
single-peaked preferences oncemeta-agreements are reached, in terms of the reasons
that should ground the participants’ preferences. The idea, already alluded to by
Ottonelli and Porello (2013), would be that what the structuring dimension singled
out by the meta-agreement does is to pinpoint a set of reasons that are viewed as most
prominently bearing on the discussion at hand. Reaching a meta-agreement would
then mean that these are the reasons that all participants agree each should take into
account while individually forming their preferences. Crucially, the agents need not
agree on a weighing of these reasons. The structuring dimension might induce such
a weighing (see below), but as we have seen earlier this dimension only expresses
how different alternatives embody possibly incompatible values/properties. It leaves
open how the agents should weigh these combinations.

To go back to our examples, the dimension structuring the choice of restaurant
would then be seen as singling out the property of being conventional or exotic as
the relevant reason to consider. The alternative explanation for having non-convex
preferences over bundles of exotic/conventional goods would then point to a different
set of reasons for the agents’ choices, namely how frequent these culinary offers are.
Similarly, in the case of the pickles and jam spread, the first structuring dimensions
would be seen as singling out sweetness and sourness as the relevant reasons to
consider, and the alternative explanation points to conventionality instead.

This idea can be made precise in the framework of reason-based rational choice
developed byDietrich and List (2013). Here we illustrate it through our simple exam-
ple. Our friends need to choose one of three alternatives, Japanese ( j), Bavarian (b),
and Japanese-Bavarian ( jb). The structuring dimension is the ranking j < jb < b,
from less more conventional. Dietrich and List (2013) propose to view such rankings
as grounded in a set M of possible combinations of motivating reasons, together
with a weighing relation � on them. A motivating reason is, in this framework,
represented by a property that can be instantiated or not by each alternative. In this
case the structuring dimension j < jb < b can be naturally be seen as singling out
the combination of two motivating reasons, being exotic (E) or being conventional
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(C), with the extension of each following our informal description: E = { j, jb},
C = { jb, b}. The dimension then stems from the following weighing of reasons:
{C} � {E,C} � {E} � ∅, in the case where both E and C are motivating.

We thus propose to view meta-agreement as constraining the set of possible com-
binations of motivating reasons, but not necessarily how one should weigh them.
So in our simple example, the structuring dimension j < jb < b expresses the fact
that the agents agree that two reasons are relevant to the problem at hand, whether a
venue is exotic or conventional, and that any possible combination of those reasons,
but not of other reasons, may be taken as motivating for the agents. As we have seen,
the structuring dimension j < jb < b is not supposed to express a value judgment
regarding the alternatives. It is rather an (empirical) ranking capturing the idea that
exoticism and conventionality might be at least partially incompatible. From that
point of view, it seems natural to suppose the meta-agreement constraints the agents
to consider only those possible combinations of reasons, but that it does not constraint
them to weigh these reasons in any particular way.

If that proposal is correct, then meta-agreements need not translate into single-
peaked preferences along the structuring dimension. In our case an agent couldweigh
the possible combinations of reasons as follow, {C} � {E} � {E,C} � ∅, resulting
in the preference b > j > jb, which is of course not single-peaked relative to the
structuring dimension. The meta-agreement rules out alternative considerations like
the one we envisioned at the beginning of this section, i.e., that the agent might
instead conceive the decision as one between frequent and less frequent culinary
offers.

4 Conclusion

We have presented two arguments putting into question the idea that rationality
requires one to form single-peaked preferences once they have reached a meta-
agreement. Our first argument points out a counter-intuitive consequence of that
claim, namely that agents with non-convex preferences might be seen as irrational.
Our second argument fleshed out the role of meta-agreement as pinpointing the set of
possible reasonsmotivating a decision, but leaving open how one shouldweigh these.
By formalizing our simple running example of a choice of restaurant, we showed
that this understanding of meta-agreement leaves room for rationally holding non-
single-peaked preferences.

We should emphasize that these arguments do not question the Received View
as a whole, nor the first two steps of the meta-agreement hypothesis. One can still
take the empirical evidence to show that deliberation helps form or discover underly-
ing meta-agreements, that this comes together with increases in proximity to single-
peakedness, and that this is achieved byway of situating the alternatives along a given
structuring dimension.What our argument puts into question is that rational pressure
is the cause of the resulting single-peaked preferences. Aswementioned, other possi-
ble explanations have been put forward recently, e.g., willingness to reach consensus
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(Rafiee Rad & Roy, 2021). Our argument stresses the importance of investigating
further, both theoretically and empirically, how deliberation affects preference for-
mation and preference change once a meta-agreement is in place to adjudicate better
between these different possible mechanisms.
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On the Individual and Coalitional
Manipulability of q-Paretian Social
Choice Rules

Fuad Aleskerov, Alexander Ivanov, Daniel Karabekyan,
and Vyacheslav Yakuba

Abstract We study the degree of individual and coalitional manipulability of q-
Paretian social choice rules under Impartial Culture. Manipulability is defined as a
situation, when an agent or a coalition, which consists of some agents, misrepresents
her/their preferences to obtain a better outcome of the social choice rule. We study a
class of q-Paretian social choice rules, which consists of four rules: Strong q-Paretian
simple majority rule, Strong q-Paretian plurality rule, Strongest q-Paretian simple
majority rule, and Condorcet practical rule. For the cases of 3, 4, and 5 alternatives
and for the cases from 3 to 100 agents, we use computer modelling to calculate a
number of manipulability indices. We provide the analysis of the results for different
cases.

1 Introduction

Manipulability is a situationwhen an agent or a group of agentsmisrepresent her/their
preferences to get a better result of a social choice rule.

Let us consider an example. A profile in Table 1 consists of 6 group of agents
(p1, . . . , p6), 20 agents overall, and 3 alternatives (a, b, c).

If the plurality rule is used, the winner will be {a}, because it receives 8 votes. But
it is the worst possible result for the fourth group of agents (p4). If these 3 agents
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put in the ballot not their sincere preference (b > c > a), but insincere preference
c > b > a, the outcome of the social choice will be {c} with 9 votes. Thus, the
coalition of 3 agents may successfully manipulate getting a better social choice ({c}
instead of {a}), and this profile is manipulable.

Itwas shown inGibbard (1973) andSatterthwaite (1975) that every non-dictatorial
social choice rule is manipulable, i.e. there exists at least one case when a successful
manipulation is possible. Years later Duggan and Schwartz (2000), draw the same
conclusion for the case of multi-valued choice, i.e. when there can be ties between
alternatives in the social choice and the social choice may consist of a set of alterna-
tives. Thus, there is a question: which social choice rules are the least manipulable?

Since then, a number of papers have been published. First, individual manipula-
bility was studied, i.e. when one agent misrepresents her preferences to get a better
social choice. For example, in Chamberlin (1985) four and in Aleskerov and Kur-
banov (1999) 26 social choice rules were studied. Then, coalitional manipulation
was studied, i.e. when a group of voters misrepresents their preferences (Xia, 2010).
In coalitional manipulation, there are usually some assumptions on which agents
may form a coalition.

In this study, we investigate a group of q-Paretian social choice rules. For fixed
q, the axiomatic characterization of these rules was given in Aleskerov (1985, 1992,
1999). It was shown that they satisfy Maskin’s monotonicity; hence, they are Nash-
implementable (Maskin, 1979). However, with fixed q the choice might be empty.
Thus, we study the rules in which q is varied, and this type of rules is direct gen-
eralization of Condorcet practical rule (de Condorcet, 1785; see also Young, 1988).
They were studied only in few papers, because most papers study manipulability
of popular rules, generally, scoring rules. However, q-Paretian rules for some cases
show very low manipulability.

Our work is related to the framework of weighted committee games by Kurz et
al. (2021). As it was noted in Kurz et al. (2020, 2021) the main difference between
power indices and manipulability indices is the incentive part: manipulation should
be profitable for a voter. In this paper, we use group of indices (defined below) that
estimate not only the share of profitable changes, but also stability of outcome and
chances of getting worse result.

The manipulability of social choice rules is studied using analytical and compu-
tational ways of estimating the degree of manipulability of social choice rules.

The analytical approach implies obtaining formulae for manipulation indices for
a given social choice rule. Such an approach allows to get the exact values of indices.

Table 1 Example of a profile where manipulation is possible

Group p1 p2 p3 p4 p5 p6

First best a a b b c c

Second best b c a c a b

Third best c b c a b a

# of agents 4 4 3 3 3 3
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However, this problem can be solved only for some rules, usually for scoring rules,
because for some rules (e.g. q-Paretian rules) it might be too complicated.

The computer simulation allows to get the approximate values of manipulability
indices. Usually, a number of random profiles are generated, and the indices are
calculated for each rule for the set of profiles. If the number of generated profiles is
large, it allows finding out the least manipulable social choice rules.

We use a computational approach to estimate the degree of manipulability of four
q-Paretian rules. We investigate manipulability in the classic version of the model
(Gibbard, 1973; Satterthwaite, 1975), when all voters possess complete information
about others’ preferences, as well as coalitional manipulability when two or more
coalitions cannot manipulate simultaneously. Alternative assumptions are also stud-
ied in literature for some social choice rules: for example, Veselova (2020) studies
the case of incomplete information and Aleskerov et al. (2021) studies the cases
of counter-threats, when another coalition might make a counter-manipulation in
response to a manipulation attempt by a certain coalition.

We study individual and coalitional manipulability of q-Paretian social choice
rules for the case of Impartial Culture (IC). We use several manipulability indices
which allow us to estimate the share of manipulable profiles, the freedom and effi-
ciency of manipulation, as well as resoluteness of each rule.

2 q-Paretian Rules: Definitions

A social choice rule is a mapping from the set of voters with their preferences to
the set of the alternatives. If there are n agents and m alternatives, then there are m!
different preferences (linear orders) over the set of alternatives.

We consider four q-Paretian voting rules. We use their definitions fromAleskerov
(1992, 1999).

2.1 Strong q-Paretian Simple Majority Rule

Let f (
→
P; i, q) = {x ∈ A | #Di (x) ≤ q}, where Di (x) = {y ∈ A | yPi x} is the upper

contour set of an alternative x for an agent i and F = {
I ⊂ N | #I = ⌈

n
2

⌉}
is the

family of simple majority coalitions.

Define a function C(A) = ⋃
I∈F

⋂
i∈I f (

→
P; i, q).

The social choice consists of top alternatives for each voter in at least one simple
majority coalition. If there is no such an alternative, then the social choice is defined
by increasing q by 1, until it is not empty.
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2.2 Strong q-Paretian Plurality Rule

The rule is almost the same as the Strong q-Paretian simple majority rule with only
one difference. If several alternatives are in the choice set, then for each alternative the
number of coalitions which choose this alternative is counted. Then the alternative
with maximal value of this number is chosen.

2.3 Strongest q-Paretian Simple Majority Rule

Define a function C(X) = ⋂
I∈F f (

→
P; I, q), where

f (
→
P; I, q) =

{

x ∈ A | #
⋂

i∈I
Di (x) ≤ q

}

.

The social choice consists of the alternatives which are Pareto optimal in each
simple majority coalition with q = 0. If there are no such alternatives, then q is
increased by 1 until the choice is not empty.

The manipulability of q-Paretian social choice rules was studied in Karabekyan
(2011), but only for the case of individual manipulation. In this study, we consider
not only the case of individual manipulability, but also two models of coalitional
manipulation.

2.4 Condorcet Practical Rule

Let f (
→
P; i, q) = {x ∈ A | #Di (x) ≤ q}. Define a social choice as a functionC(A) =

⋂
i∈N f (

→
P; i, q)with q = 0. If there are no such alternatives, then q = 1, q = 2, etc.,

is considered until the social choice is not empty.

3 Extended Preferences and Multi-valued Choice

What if there is a tie between two or more alternatives in a voting procedure? One
approach is to use a tie-breaking rule to determine the winner. The most popular
tie-breaking rule is alphabetical one. In this case, the result of the voting procedure
always consists of a single alternative.

The other approach is to allow ties. If two ormore alternatives have the same score
in a voting procedure, all such alternatives will be included into the social choice. In
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order to compare all possible sets of alternatives, i.e. all possible social choices, addi-
tional assumptions about the preferences of the voters are needed. These assumptions
define so-called extended preferences. If a preference of an agent is a linear order
over the set of alternatives, an extended preference is a linear order over the set of all
possible social choices, i.e. over all subsets of the set of the alternatives. A detailed
overview of preference extension axioms can be found in Barberà et al. (2004).

It should be noted that the voters do not know the probability of each alternative
in the tie to be chosen as the final outcome—so we deal with the case of ambigu-
ity aversion. In this paper, we introduce extended preferences as the definite way
to compare sets of alternatives. In the literature, there is experimental evidence of
collective choice under ambiguity (see Levati et al., 2017).

For the case of 3 alternatives, there are 4 known ways of constructing extended
preferences (EP). In all cases, we assume that the voter’s preference is {a} > {b} >
{c}.
1. Leximin: social choices are compared alphabetically, starting from theworst alter-

native in the set. EP under Leximin: {a} � {a, b} � {b} � {a, c} � {a, b, c} �
{b, c} � {c}

2. Leximax: social choices are compared alphabetically, starting from the best alter-
native in the set. EP under Leximax: {a} � {a, b} � {a, b, c} � {a, c} � {b} �
{b, c} � {c}

3. Risk-lover: social choices are compared by the probability of the best alternative.
EP under Risk-lover: {a} � {a, b} � {b} � {a, c} � {a, b, c} � {b, c} � {c}

4. Risk-averse: social choices are compared by the probability of the worst alter-
native. EP under Risk-averse: {a} � {a, b} � {b} � {a, b, c} � {a, c} � {b, c} �
{c}.
For the case of 4 and 5 alternatives, there are 10 and 12 ways of constructing

extended preferences, respectively. They are based on one or more axioms and/or
their combinations: lexicographical (Leximin, Leximax), probabilistic (risk-averse,
risk-lover) or ranking (average rank). For example, under Leximax, the EP for the
case of 4 alternatives is as follows

{a} � {a, b} � {a, b, c} � {a, b, c, d} � {a, b, d} � {a, c} � {a, c, d}
� {a, d} � {b} � {b, c} � {b, c, d} � {b, d} � {c} � {c, d} � {d}.

Based on the Leximin extension, the EP for the case of 4 alternatives is represented
as

{a} � {a, b} � {b} � {a, c} � {a, b, c} � {b, c} � {c} � {a, d} � {a, b, d}
� {b, d} � {a, c, d} � {a, b, c, d} � {b, c, d} � {c, d} � {d}.
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4 Manipulation Models and Manipulability Indices

We study three models of manipulability of q-Paretian procedures: one case of indi-
vidual manipulability and two cases of coalitional manipulability.

1. Individual manipulability. In the case of individual manipulability, it is assumed
that one agent misrepresents his/her preferences to get a better result of the voting
procedure.

2. Coalitional manipulability with the same preferences in the coalition. In this case,
we assume that a coalition may manipulate, i.e. not only one agent, but two or
more agents as well. A coalition is defined as a group of agents with exactly the
same preferences.

3. Coalitional manipulability with coalitions promoting the same alternative. In this
variation of coalitional manipulation, it is assumed that a coalition may consist
of not only agents with the same preferences, but may consist of agents with
different preferences, if they would like to promote the same alternative.

Next comes the evaluation of the degree of manipulability. The most widespread
manipulability index is Nitzan–Kelly (NK) index (Kelly, 1993; Nitzan, 1985). The
NK-index shows the share of manipulable profiles

NK = number of manipulable profiles

total number of profiles
.

Later, in Aleskerov and Kurbanov (1999) additional indices were introduced.
First, freedom of manipulation: I+

1 , I 01 , and I−
1 indices. They show the shares of

all possible manipulation attempts which lead to making the outcome of the social
choice better, equal or worse, respectively.

Assuming that there are p possible attempts to manipulate, we can classify them

1. Successful attempts (p+): the result after such an attempt is better for the manip-
ulating voter or coalition.

2. Unsuccessful attempts which lead to the same choice (p0): the result after such
an attempt is the same as without this manipulation attempt.

3. Unsuccessful attempts which worsen the choice (p−): the result after such an
attempt is worse than without this manipulation attempt.

By definition,we have p = p+ + p0 + p−. Then,we define I1 indices as the share
of attempts which make the outcome better, same or worse, i.e. I+

1 = p+
p , I

0
1 = p0

p ,

and I−
1 = p−

p . It can be noticed that I+ + I 0 + I− = 1.
Next comes an efficiency of manipulation. It is measured by two indices: I2 and

I3.
Index I2 measures average gain of manipulability. For all successful manipulation

attempts, we calculate the benefit of manipulation in terms of the number of places
in the preferences. For example, if we use Leximin ways of constructing extended
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preferences, i.e. EP is {a} � {a, b} � {b} � {a, c} � {a, b, c} � {b, c} � {c}, and if
before manipulation, the choice is {c}, and after manipulation, it becomes {a, c},
then the gain is equal to 3 places. Thus, I2 is equal to the average gain in successful
manipulation attempts.

Index I3 measures maximum gain of manipulability. For a given profile, we cal-
culate the largest gain which can be obtained by an agent. I3 will be equal to average
of maximum gains for every profile.

Another useful measure is resoluteness (decisiveness). We use its definition from
Aleskerov et al. (2009). The resoluteness index (D) is equal to the average number of
alternatives in the social choice. To calculate it, one should calculate the cardinality
of the social choice for each profile and then take the average cardinality. D-index
may vary from 1 to m. Values close to 1 show that the rule is good in terms of
resoluteness and more often returns a single-valued choice. If D is close to m, then
the rule has poor resoluteness andmore often returns all alternatives as amulti-valued
choice. The idea is that if a certain rule often gives full set of alternatives as the social
choice (e.g. {a, b, c}), it will have lowmanipulability, but will be almost useless from
practical point of view.

We consider manipulability under Impartial Culture (IC). It means that all profiles
and preferences are equally likely. For the case ofm alternatives, there arem! different
preferences. Thus, for n agents there are (m!)n different profiles under Impartial
Culture.

In this study, we evaluate NK, I1, I2, I3, and D indices using computer simulation
approach for the case of IC. The most accurate approach would be to generate all
possible profiles. However, it can be noticed that the total number of profiles grows
exponentially, and it is possible to generate all possible profiles only for small num-
bers of voters. Such an approach for small n was used in Aleskerov and Kurbanov
(1999).

That is why we use another approach. It was shown in Karabekyan (2012) that if
one generates 1million random profiles and calculates indices, the obtained accuracy
will be above than 0.001. For this reason, we generate 1 million profiles for each
model and estimate the values of all considered indices.

The simulation process consists of several steps:

1. 1,000,000 random profiles are generated.
2. Each rule is considered separately.
3. For each profile, the social choice for each rule is calculated. Its cardinality will

be used to calculate D-index.
4. Each of the 3 manipulation models is considered separately. For each profile for

each model, all possible manipulation attempts are generated, i.e. for the case of
individual manipulation all attempts from each agent are generated; for the case of
coalitional manipulation, all attempts from all possible coalitions are generated.

5. Each way of constructing extended preferences is considered separately (4 ways
for m = 3 alternatives, 10 ways for m = 4 alternatives, 12 ways for m = 5 alter-
natives).
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6. For each manipulation attempt, the result for the profile with insincere preference
is calculated.

7. If the result after a manipulation attempt is better than the sincere result, p+ is
increased. If the same, then p0 is increased. If worse, then p− is increased. At the
end, I1 indices are calculated.

8. If there is at least one successful manipulation attempt in a profile, it is marked
as manipulable for that model for that rule. Otherwise, it is marked as non-
manipulable. At the end, NK-index is calculated as the share of manipulable
profiles.

9. For all successful manipulation attempts, we take average gain to calculate I2
index.

10. For all successful manipulation attempts, we take maximum gain to calculate I3
index.

The overall computational complexity is approximately equal to

number of profiles · number of rules · rule complexity

·number of extended preference · 100 cases of numbers of agents

·3 cases of alternatives (3, 4, and 5) · number of possible coalitions

= 1,000,000 · 4 · 12 · 100 · 3 · number of coalitions

= 144 × 108 · rule complexity · number of coalitions

As a result, the computations had been performed for several months on 5 PCs
because of the large computational complexity.

5 Results

We have obtained results for indicesNK, I+
1 , I 01 , I

−
1 , I2, I3, and D for four q-Paretian

rules for m = 3, 4, 5 alternatives for n = 3, . . . , 100 for 4 (m = 3), 10 (m = 4) and
12 (m = 5) ways of constructing extended preferences. In this section, we discuss
the results.

Our first point of interest is the comparison of the four rules by the share of manip-
ulable profiles, i.e. by NK-index. Figure 1 is the chart for the case of 3 alternatives,
individual manipulation, Leximax EP. The case of 4 alternatives is depicted in Fig. 2.
The case of 5 alternatives is depicted in Fig. 3.

The first observation is the behaviour of Condorcet practical rule. Starting from
a certain number of agents, it starts approaching NK close to 0 rather fast.

Why it is the least manipulable for almost all cases? The answer lays in its reso-
luteness. Let us have a look at the charts with D-index for the case of 3 alternatives,
see Fig. 4, the case of 4 alternatives, see Fig. 5, and the case of 5 alternatives, see
Fig. 6, respectively.
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Fig. 1 NK-index, Leximax, 3 alternatives, individual manipulation

Fig. 2 NK-index, Leximax, 4 alternatives, individual manipulation

Fig. 3 NK-index, Leximax, 5 alternatives, individual manipulation

The values of D-index for Condorcet practical rule for all three cases approach
D = m, i.e. the number of alternatives. It means that the rule has poor resoluteness,
and it gives a complete multiple choice (e.g. {a, b, c} for the case of 3 alternatives)
as the result of the procedure in most cases.

Thus, Condorcet practical rule is the least manipulable rule due to the lack of
resoluteness. We do not discuss this rule, concentrating on the other three rules.
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Fig. 4 D-index, 3 alternatives

Fig. 5 D-index, 4 alternatives

Fig. 6 D-index, 5 alternatives

Let us order the other three rules for the cases ofm = 3 alternatives from the least
manipulable to the most manipulable. For n ≤ 5 voters the order is unclear, but for
n > 5 the order is clear:

1. Strong q-Paretian simple majority;
2. Strongest q-Paretian simple majority;
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3. Strong q-Paretian plurality.

However, the cases of m = 4 and m = 5 give a different order:

1. Strongest q-Paretian simple majority;
2. Strong q-Paretian plurality;
3. Strong q-Paretian simple majority.

It can be noticed that for all cases (m = 3, 4, 5) Strongest q-Paretian simple
majority rule is less manipulable than Strong q-Paretian plurality rule. And the only
difference between m = 3 and m = 4, 5 is that Strong q-Paretian simple majority
is the least manipulable for the case of m = 3 and the worst for the cases of m = 4
and m = 5. It can be also explained by resoluteness: for m = 3 D-index for Strong
q-Paretian simple majority rises very fast, for example, D = 2.66 for n = 25 agents.

From the chart with the cases of up to 25 agents, it is unclear what happens to
the resoluteness of Strong q-Paretian simple majority rule with growing number of
agents for the cases of m = 4 and m = 5. Below we provide the charts of NK-index
for the cases of n = 3, . . . , 100 agents, but for the cases of n > 25 we have made
calculations not with step=1, but with step=10 (e.g. 29, 30, 39, 40, etc.). The case
of m = 4 alternatives is depicted in Fig. 7, and the case of m = 5 alternatives is
depicted in Fig. 8.

It can be seen that for m = 4 resoluteness of Strong q-Paretian simple majority
rule is worse than for the other two rules, but does not grow: e.g. D = 2 for both
n = 31, 41, . . . , 99. For the cases of m = 3 and m = 5, the resoluteness becomes
extremely bad with growing number of alternatives.

A possible hypothesis which might deserve a further theoretical study is that
Strong q-Paretian simple majority rule has bad resoluteness for the cases of odd
numbers of alternatives.

Now we turn to the rest of the rules: Strong q-Paretian plurality and Strongest q-
Paretian simple majority. These rules behave in an opposite way: for all cases (m =
3, 4, 5) Strongest q-Paretian simple majority rule is less manipulable, but Strong
q-Paretian plurality rule has better resoluteness.

Fig. 7 D-index up to 100 agents, 4 alternatives
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Fig. 8 D-index up to 100 agents, 5 alternatives

Fig. 9 NK-index, Leximin, 3 alternatives, individual manipulation

The next question arises: Are results for NK-index the same for other extended
preferences? The chart of D-index is the same because extended preferences do not
impact resoluteness, they impact how a voter compares two social choices while
trying to manipulate, i.e. the form of the extended preferences strongly influences
the values of the NK-index.

In Fig. 9, we depict the chart for the case of Leximin EP, case of 3 alternatives.
We are mostly interested in comparing Strong q-Paretian plurality rule and

Strongest q-Paretian simple majority, because Condorcet practical rule starting from
5 agents has poor resoluteness, and Strong q-Paretian simple majority rule has high
values of NK-index, which will be replaced by smaller values but with poor reso-
luteness with n growing.

The overall pictures for both Leximax and Leximin are the same: under Leximin
EP, Strongest q-Paretian simple majority rule is less manipulable than Strong q-
Paretian plurality rule. The cases ofm = 4 andm = 5 are similar (we do not provide
charts for these cases to save space). And it is the same for the other two ways of
constructing extended preferences: risk-averse and risk-lover.
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Next we discuss the case of coalitional manipulability starting with the model
when agents only with the exact same preferences may manipulate. The case of
m = 3, Leximin EP, k (coalition size constraint) = 2 is shown in Fig. 10.

The same pattern takes place: Condorcet practical rule shows very low values of
NK-index due to poor resoluteness. Strong q-Paretian simple majority rule is highly
manipulable, while it has good resoluteness and has low manipulability only when it
has poor resoluteness. Strongest q-Paretian simple majority rule is less manipulable
than Strong q-Paretian plurality rule.

Does the result differ for the case of larger k, i.e. when more agents may form a
coalition? The chart for k = 5 is shown in Fig. 11.

The values ofNK-index are higher, but the shape of the charts is similar. The same
shapes are observed for other values of k (the coalition size constraint) as well as for
the cases of m = 4 and 5 alternatives.

Now we turn to the model of coalitional manipulation when agents promote
the same alternative. For this model, we have obtained the results only for m = 3
alternatives due to very high computational complexity. The chart form = 3,Leximin
EP looks as shown in Fig. 12.

Fig. 10 NK-index, Leximin, 3 alternatives, coalitional manipulation, k = 2

Fig. 11 NK-index, Leximin, 3 alternatives, coalitional manipulation, k = 5
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In this model, we do not put any constraints to the size of a coalition. That is
why the values of NK-index for Strong q-Paretian simple majority rule are growing
fast and might decline only with larger values of n. With three other rules, the same
patterns hold which we have noticed for the cases of individual manipulability and
the first model of coalitional manipulability. The same patterns take place for m = 4
and m = 5.

Now let us provide the charts for the freedom of manipulation. The case of 3
alternatives individual manipulability, freedom of manipulation, and the Strong q-
Paretian plurality rule is considered; see Fig. 13.

Freedom of manipulability might be interpreted as the chances of success of a
random manipulation attempt. As we can see, the share of attempts to put insincere
preferenceswhich lead to a better choice (grey, upper part of the chart) is significantly
smaller than the chances of getting a worse result (dark grey, lower part of the chart)
or similar result (light grey, middle part of the chart).

The same situation happens for other rules, e.g. Strongestq-Paretian simplemajor-
ity rule; see Fig. 14. Here the parity of the number of agentsmatters: for even numbers
of agents, the chances of getting worse result by putting insincere preferences are
higher.

Fig. 12 NK -index, Leximin, 3 alternatives, coalitional manipulation (with coalitions promoting
the same alternative)

Fig. 13 Freedom of manipulation, 3 alternatives, strong q-Paretian plurality rule
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Finally, we would like to study the efficiency of manipulation. Here is the chart
for the average gain of manipulation (I2) for the case of individual manipulation, 3
alternatives under Leximin EP, see Fig. 15.

The chart of the maximum gain in manipulation (I3) for the case of 3 alternatives
is presented in Fig. 16.

The average and maximum gains show close values, steadily declining with the
growing number of voters. The possible explanation is that with higher number of
voters, it becomes more difficult to drastically improve the outcome of the social
choice rule.

The charts of I2 and I3 indices give similar picture to the outcomes of the charts
withNK-index. Condorcet practical rule gives the lowest values of indices; however,
since it has very poor resoluteness, we should take into account Strongest q-Paretian
simple majority rule, because it has decent resoluteness and is the second best in
terms of indices NK, I2, and I3.

Fig. 14 Freedom of manipulation, 3 alternatives, strongest q-Paretian simple majority rule

Fig. 15 Efficiency of manipulation (I2), Leximin, 3 alternatives, individual manipulation
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Fig. 16 Efficiency of manipulation (I3), Leximin, 3 alternatives

6 Conclusion

We have studied manipulability of four q-Paretian social choice rules. We provided
the computational scheme of estimating their degree of manipulability. We consid-
ered a list of manipulability indices: NK , I+

1 , I 01 , I
−
1 , I2, I3, and D.

The main conclusions are as follows:

1. Condorcet practical rule is the least manipulable for almost all cases. However, its
lowmanipulability can be explained by poor resoluteness. It very often returns the
full choice (e.g. {a, b, c} for the case of 3 alternatives), thus, makingmanipulation
impossible, but the practical value of such rule is also very low.

2. Strong q-Paretian simple majority rule for even number of alternatives (m = 4)
shows the largest values of NK-index, i.e. the worst in terms of manipulability.
For odd numbers of alternatives (m = 3 and m = 5), this rule shows high values
of NK-index for small numbers of agents. Then, starting from a certain n, the
resoluteness becomes significantly worse, while manipulability becomes low.

3. Strongest q-Paretian simple majority rule and Strong q-Paretian plurality rule
show opposite results. Strongest q-Paretian simple majority rule is less manipu-
lable, but Strong q-Paretian plurality rule has better resoluteness.
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Effectiveness, Decisiveness, and Success
in Weighted Voting Systems: Collective
Behavior and Voting Measures

Werner Kirsch

Abstract Efficiency, decisiveness, and success in a voting systemdependnot onlyon
the voting rules but also on the collective behavior of the voters. The voting behavior is
modeled by a votingmeasurewhich describes the interdependence (or independence)
of the voters. In this paper, we define and investigate a large class of voting measures.
This class can be characterized as those voting measures which are invariant under
permuting the voters and which allow a natural extension to an arbitrary number
of voters. The class includes the Penrose–Banzhaf measure (independent, impartial
behavior), theShapley–Shubikmeasure (impartial anonymous behavior).Weanalyze
the efficiency and the success for these voting measures in weighted voting systems.

1 Introduction

The notions effectiveness, decisiveness and success are basic to the analysis of voting
systems. Yet, they do not only depend on the voting rule but also on the underlying
voting measure, in particular on the correlation structure of the voting behavior
between the voters of the system. In the Penrose–Banzhaf case, the voting measure
gives equal probability to all coalitions, thus reflecting the situationwhen each voter’s
decision is completely independent of the other voters (with probability 1

2 both for
‘yeah’ and ‘nay’). The corresponding power index (in terms of decisiveness) is the
well-known total Penrose–Banzhaf power. Under this voting measure, there is a
simple formula connecting the power index of a voter with the probability of success
of this voter (see (27)).

As was emphasized in (Laruelle and Valenciano, 2015), this intimate connection
between decisiveness and success is a peculiarity of the Penrose–Banzhaf measure.
In particular, there is no analog for the Shapley–Shubik power index. The Shapley–
Shubik index is based on decisiveness under a voting measure we call the Shapley–
Shubik measure. Under this measure, a coalitions of size k has probability 1

N+1
1

(N
k )
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where N is the number of voters. Thus, the set of all coalitions of size k is given a
probability independent of k, namely 1

N+1 .
Among others, we consider voting systems with ‘simple voting rule’, that is with

votingweight 1 for all voters, but with arbitrary relative quota r . For such systems, we
compute the probability of decisiveness and the rate of success under the Penrose–
Banzhaf measure and the Shapley–Shubik measure. One of the results which we
found surprising is that the rate of success under the Shapley–Shubik measure is
(approximately) 3

4 in the case of simple majority (i. e., r = 1
2 ). Thus, it is remarkably

bigger than the rate of success under the Penrose–Banzhaf measure. On the other
hand, the rate of decisiveness in the same situation is bigger under the Penrose–
Banzhaf measure, which is 1

2 .
We also identify the Penrose–Banzhaf measure and the Shapley–Shubik measure

as special cases for Polya urn models and investigate ‘Common Belief Models’
(CBM)which extend the class of urnmodels to the general formofmeasures invariant
under permutations of the voters.

We extend the mentioned result to general r , to weighted voting systems and to
more general voting measures.

2 Some Basics

In this section, we introduce some of the concepts basic for the rest of this paper. For
a thorough introduction, we recommend (Felsenthal, 1998) and (Napel, 2019), for
an overview (Taylor, 2008) or (Kirsch, 2016). In the following, we restrict ourselves
to ‘Yes–No’ voting systems.

Definition 1 A voting system (V,V) consists of a (finite) set V of voters and a subset
V of P(V ), the system of all subsets of V , with the following properties

1. V ∈ V .
2. ∅ /∈ V .
3. If A ∈ V and A ⊂ B then B ∈ V .
Subsets of V are called coalitions. The coalitions in V are called winning, those not
in V losing.

Definition 2 A voting system (V,V) is called weighted if there is a function w :
V → [0,∞) and a q ∈ (0,∞) such that A ∈ V if and only if

∑

v∈A

w(v) ≥ q . (1)

The number w(v) is called the weight of the voter v, q is called the quota. The
number
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r = q∑
v∈V

w(v)
(2)

is called the relative quota.
We call a weighted voting system simple, if w(v) = 1 for all v.
A simple voting system (V,V) is called a simple majority system if the relative quota
r is given by r = 1

2 + 1
2N , where N = |V | is the number of voters. In other words,

winning coalitions are precisely those which contain more than half of the voters.

There are various methods to quantify the notion ‘voting power’ in voting systems.
One of the best-known concepts goes back to Penrose (Penrose, 1946) and Banzhaf
(Banzhaf, 1965). It is based on the notion of ‘decisiveness’ and the treatment of all
coalitions as ‘equally likely’.

Definition 3 Suppose (V,V) is a voting system.

1. We call a voter v ∈ V winning decisive for a coalition A ⊂ V if v /∈ A, A /∈ V
and A ∪ {v} ∈ V .
We set

D+(v) := {A ⊂ V | v /∈ A, A /∈ V, A ∪ {v} ∈ V} . (3)

2. We call a voter v ∈ V losing decisive for a coalition A ⊂ V if v ∈ A, A ∈ V, A \
{v} /∈ V .
We set

D−(v) := {A ⊂ V | v ∈ A, A ∈ V, A \ {v} /∈ V} . (4)

3. We call v decisive for A if v is winning decisive or losing decisive for A and set

D(v) := D+(v) ∪ D−(v) . (5)

Definition 4 The Penrose–Banzhaf power P B(v) of a voter v is defined as

DB(v) = |D(v)|
2N

, (6)

where |A| denotes the number of elements of the set A and N = |V |.
DB(v) is the proportion of all coalition for which v is decisive.

Remark 1 It is well known that |D+(v)| = |D−(v)|, in fact A 	→ A \ {v} is a bijec-
tive map between D+(v) and D−(v). Consequently,

DB(v) = |D+(v)|
2N−1

= |D−(v)|
2N−1

. (7)
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The Penrose–Banzhaf power admits a probabilistic interpretation. If we regard all
coalitions in P(V ) as equally likely (‘Laplace probability’) and denote the corre-
sponding measure on P(V ) by

PB({A}) := 1

2N
, (8)

for each coalition A, then

DB(v) = PB

(
D(v)

)
. (9)

We call PB the Penrose–Banzhaf measure.
In the following, we shall denote the voters by integers, so that V = {1, · · · , N }.

Instead of considering PB as a measure on P(V ), we may consider PB as a measure
on {0, 1}N (= {0, 1}V ) by

PB

(
{(x1, · · · , xN )}

)
:= PB

({ {i | xi = 1} })
. (10)

In the following, we will switch freely between these versions of PB . Moreover, to
simplify notation we will write PB

(
x1, · · · , xN

)
instead of PB

({(x1, · · · , xN )}) and
PB(A) instead of PB({A}) for any A ∈ P(V ).
In this paper, we will introduce and discuss various other measures onP(V ), respec-
tively, {0, 1}N which lead to different notions of voting power, for example to the
Shapley–Shubik index (Shapley and Shubik, 1954).
We now introduce this concept in an abstract setting.

Definition 5 A probability measure P on P(V ) (resp. {0, 1}N ) is called a
voting measure if

P(A) = P(V \ A) for all A ⊂ V , (11)

resp. P
(

x1, · · · , xN

)
= P

(
1 − x1, · · · , 1 − xN

)
.

Equation (11) means that voters are ‘impartial’ or a priori neutral with respect to pro-
posals. The main idea behind voting measures is not that voters toss a coin to decide
about their voting behavior, but rather that the proposal put before them are ‘really
random’; in particular, any proposal and its complete reverse are equally likely. The
papers (Kirsch, 2007, 2016) contain a more detailed discussion about this issue.

As in the case of the Penrose–Banzhaf power, we may define a voting power in
terms of decisiveness by

D+
P
(v) := P(D+(v)) , (12)

D−
P
(v) := P(D−(v)) , (13)

and DP(v) := P(D(v)) = D+
P
(v) + D−

P
(v) . (14)
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Note that we distinguish here between D+
P
(v) (the probability to make a losing

coalition winning) and D−
P
(v) (the probability to make a winning coalition los-

ing). In contrast to the case of the Penrose–Banzhaf measure, we can not conclude
P
(D+(v)

) = P
(D−(v)

)
.

Example 1 Wegive some examples for votingmeasures where we assume |V | = N
and A ⊂ P(V ):

1. The Penrose–Banzhaf measure.

P(A) = 1

2N
. (15)

2. The Shapley–Shubik measure.

PS(A) = 1

N + 1

1
( N
|A|

) , (16)

(see (Straffin, 1977)). This measure makes coalitions of the same cardinality
equally likely and satisfies

PS({A | |A| = k}) = 1

N + 1
. (17)

By DS, D+
S , D−

S we denote the quantities DPS , D+
PS

, D−
PS
.

PS can be written as

PS
(
(x1, · · · , xN )

) =
1∫

0

p
∑

xi (1 − p)N−∑
xi dp . (18)

This representation of PS looks overly complicated, but it is very useful for
computations with large N .

3. The unanimity measure

Pu(A) =
{

1
2 if A = ∅ or A = V

0 otherwise.
(19)

In this case, all voters always agree.
4. The common belief measure generalizes all three previous examples. Suppose

μ is a probability measure on [0, 1] (and the Borel σ -algebra) such that for any
a, b ∈ [− 1

2 ,
1
2 ], a < b

μ([1
2

+ a,
1

2
+ b]) = μ([1

2
− b,

1

2
− a]) , (20)
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which says that μ is reflection symmetric with respect to the midpoint 1
2 of the

interval [0, 1]. Then the measure

Pμ

(
(x1, · · · , xN )

) =
1∫

0

p
∑

xi (1 − p)N−∑
xi dμ(p) (21)

is a votingmeasure because of (20).We call it theCommon Belief votingmeasure
or CB-measure with mixing measure μ.
Since we have more to say about the common belief measure, we introduce
another way to write it which will be convenient in later sections.
We denote by P1

p the probability measure on {0, 1} defined by P1
p (1) = p and

P1
p (0) = 1 − p with 0 ≤ p ≤ 1 and by P N

p the n-fold product of P1
p on {0, 1}N .

Thus

P N
p

(
(x1, x2, . . . , xN )

) = p
∑

xi
(
1 − p

)N−∑
xi

. (22)

Whenever N is clear from the context, we write Pp instead of P N
p .

With this notation (21) reads

Pμ

(
A
) =

1∫

0

P N
p

(
A
)

dμ(p) =
1∫

0

Pp
(

A
)

dμ(p) (23)

for all A ⊂ {0, 1}N .
The Penrose–Banzhaf measure corresponds to the choice μ = δ 1

2
, the unanimity

measure to μ = 1
2δ0 + 1

2δ1 and the Shapley–Shubik measure to the uniform dis-
tribution (= Lebesgue measure) on [0, 1], see (18). Here, δa denotes the measure
concentrated in the point a, in particular

∫
f (x) dδa(x) = f (a).

Technically speaking, the CB-measure Pμ is a mixture of probability measures
Pp each of which makes the random variables X1, . . . , X N independent, but with
different expected values. Under the mixture, however, the random variables are
not independent (except for the trivial case μ = δa)!
The CB-measure models a situation where the population of voters is influenced
by some a priori opinion on the proposition at hand - represented by a number
p ∈ [0, 1]. This might be a common believe inside the society or a strong influ-
ential group of opinion makers. This a priori judgment itself is random (as the
proposal is random), its probability distribution is the measure μ. The voters’
decision is still random but with a bias (respectively strong bias) toward accep-
tance if p > 1

2 (respectively p close to 1) and a tendency to rejection if p < 1
2 .

For a detailed discussion of the common belief model and its application on
two-tier voting systems, we refer to (Kirsch, 2007, 2016, 2021).
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In Sects. 3 and 4, we will return to a discussion of voting measures.

Instead of looking at the decisiveness of a voter, one might define the influence of
a voter by considering the probability that the outcome of the voting coincides with
the voter’s opinion.

Definition 6 Suppose (V,V) is a voting system and P a voting measure on V .
We call the probability

S+
P
(v) = P({A ∈ V | v ∈ A}) (24)

the rate of affirmative success of the voter v (with respect to P).
Similarly,

S−
P
(v) = P({A /∈ V | v /∈ A}) (25)

is called the rate of blocking success.
The quantity

SP(v) = S+
P
(v) + S−

P
(v) (26)

is called the (total) rate of success of v.
For the Penrose–Banzhaf measure the rate of success does not give new information
because

SPB (v) = 1

2
+ 1

2
DB(v) . (27)

This equation goes back to (Dubey and Shapley, 1979).
Equation (27) is not true for other voting measures, in fact it is only true for the
Penrose–Banzhaf measure (Laruelle and Valenciano, 2015).
We introduce a final quantity for this section, namely the ‘efficiency’ of a voting
system, also called the ‘power of a collectivity to act’. It goes back to (Coleman,
1971) who introduced it in connection with the Penrose–Banzhaf measure.

Definition 7 If (V,V) is a voting system and P a voting measure on V then

EP := P(V) (28)

is called the efficiency of the voting system.

3 Urn Models

In this section, we discuss urn models to generate voting measures. This view on
voting measures was introduced by (Berg, 1985) and further developed by Kurz–
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Mayer–Napel in (Kurz et al, 2021). While those authors consider the case of an
arbitrary number of alternatives we concentrate on the case of 0–1-voting.

We start with an urn containing R red balls (carrying the symbol ‘1’ for ‘yeah’)
and B black balls (carrying a ‘0’ for ‘nay’). Suppose the first voter draws a ball,
replaces that ball and puts c additional ball of the color of the drawn ball into the urn.
In other words, the voter draws a ball and (re-)places 1 + c balls of the same color.
The next voter draws a ball from the urn, which now contains R + B + c balls, puts
the drawn ball together with additional c balls of the same color in the urn, and so
on. Here, c ≥ 0 is an integer. We may also interpret c = −1 as drawing balls without
replacement. In the latter case, the process necessarily ends after R + B drawings,
and in all other cases, the process can be extended indefinitely.

The above-defined process is known as Polya’s urn scheme. In voting theory, it
serves as a model for a roll call (see (Kurz and Napel, 2018)). The voters cast their
votes publicly in a particular order. A voter is influenced by those who voted before
him or her, in the sense that he or she tends to vote in line with the majority, as far as
it is known, when the voter is called to vote. This tendency is absent if c = 0; in this
case, the voters cast their vote independently of the others. For fixed R and B, the
tendency to align with each other is bigger when c is increased. Thus, c is a measure
for cooperation between voters (as long as R and B are fixed).

Definition 8 Suppose X1, . . . , X N be the above described Polya urn process of
drawing balls with 1 + c replacements with R red (‘1’) and B black balls (‘0’) in
the starting urn. We call the probability distribution on {0, 1}N of the X1, . . . , X N

by PR,B,c, i. e.

PR,B,c(x1, . . . , xN ) = Prob (X1 = x1, . . . , X N = xN ) . (29)

For Q, c ∈ R and k ∈ N we set

Q(c,k) :=
k−1∏

j=0

(Q + c j) . (30)

Proposition 1 Suppose c ≥ 0 and (x1, . . . , xN ) ∈ {0, 1}N

1. For any positive integer M

PR,B,c(x1, . . . , xN ) = PM R,M B,Mc(x1, . . . , xN ) . (31)

2. If π is a permutation of {1, . . . , N } then

PR,B,c(x1, . . . , xN ) = PR,B,c(xπ(1), . . . , xπ(N )) . (32)

3. PR,B,c is a voting measure, i. e.

PR,B,c (x1, . . . , xN ) = PR,B,c (1 − x1, . . . , 1 − xN ) (33)
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if and only if R = B.
4. If

∑N
j=1 xi = k we have

PR,B,c(x1, . . . , xN ) = R(c,k) B(c,N−k)

(R + B)(c,N )
= r (1,k) b (1,N−k)

(r + b)(1,N )
, (34)

where we set r = R
c , b = B

c .
5. We have

PR,B,c

(
N∑

i=1

xi = k

)
=

(
N

k

)
R(c,k) B(c,N−k)

(R + B)(c,N )
. (35)

We sketch a proof of Proposition 1 in Appendix A.2. For more information on urn
models, we refer to (Mahmoud, 2009).

It is clear that the random variables Xi of a Polya urn process are independent, if
c = 0. In fact, if c = 0 and R = B the measure PR,R,0 is just the Banzhaf measure
defined in (8).

If c �= 0, the Xi are not independent. To see this, we compute the covariance
between X1 and X2:

Cov(X1, X2) = PR,B,c(X1 = 1, X2 = 1) − PR,B,c(X1 = 1)PR,B,c(X2 = 1)

= RB

(R + B)2 (R + B + c)
c , (36)

so the covariance is positive if c > 0 and negative if c < 0.
Observe, that

ER,B,c (X1 · X2 · . . . · Xk) = PR,B,c(X1 = 1, X2 = 1, . . . , Xk = 1) , (37)

where ER,B,c denotes expectation with respect to PR,B,c.
A particularly interesting case occurs for c = 1 and R = B = 1. Observing that

1(1,Q) = Q! and 2(1,Q) = (Q + 1)!, we obtain for
∑

x j = k

P1,1,1 (x1, . . . , xN ) = 1

N + 1

1
(N

k

) . (38)

So the measure P1,1,1 agrees with the Shapley–Shubik measure defined in (16).
Now, we are interested in the number of affirmative votes for large number N of

voters, i.e., in the quantity

MN := 1

N

N∑

j=1

X j . (39)
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We call MN the voting result. It turns out that MN converges for large N in the sense
that PR,B,c(MN ∈ [u, v]) has a limit as N → ∞. To formulate the limit result, we
define:

Definition 9 Suppose a, b > 0. The Beta function B(a, b) is defined by

B(a, b) =
1∫

0

x a−1 (1 − x)b−1 dx (40)

The Beta distribution is the probability measure βa,b on [0, 1] with density

β̃a,b(x) =
{

1
B(a, b)

x a−1 (1 − x)b−1 , for x ∈ (0, 1);
0, otherwise.

(41)

For the following theorem, we suppose that R, B, c > 0 and set as above r := R
c

and b := B
c .

Theorem 1 For all u, v ∈ R, u < v

PR,B,c (MN ∈ [u, v]) −→
N→∞ βr,b ([u, v]) . (42)

We sketch a proof of Theorem 1 in A.2.
Let us have a closer look at the case R = B when PR,B,c is a voting measure. Then

for a = R
c = B

c < 1 small, the distribution on the voting result MN is very much
concentrated near unanimous rejection (0) and unanimous acceptance (1). In fact,
the density function β̃a,a goes to infinity near 0 and 1 for a < 1. This indicates that
the voters act cooperatively. In the limit a ↘ 0, the distribution βa,a tends to a Dirac
measure concentrated in {0, 1} which means that voters vote always unanimously,
with probability one half ‘yeah’ and with probability one half ‘nay’. Thus, as a ↘ 0
the measure βa,a tends to the unanimity measure introduced in (19).

If in the contrary a > 1 is big, then the voting result concentrates more and more
near 1

2 , indicating close elections with voters acting almost independently. In fact,
in the limit a → ∞, we recover the case of independent voting, i. e. the Banzhaf
measure. For a = 1, we obtain the Shapley–Shubik measure which corresponds to
the uniform distribution on [0, 1].

4 Permutation Invariant Voting Systems

In this section, we classify voting systems and voting measures which are invariant
under permutations of the voters.
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Definition 10 A permutation on the set V is a bijective map π : V → V , i. e. a
reordering of V . For a set A ⊂ V , we set π(A) := {π(v) | v ∈ A}.

We call a voting system (V,V) permutation invariant (or invariant for short) if
for any permutation π , A ∈ V implies π(A) ∈ V .
Invariant voting systems are easy to characterize: They obey the rule "One person,
one vote!".

Proposition 2 Every permutation invariant voting system (V,V) is a weighted vot-
ing system. The weights can be chosen to be equal to 1 for all voters in V .

Proof If coalitions A and B in V contain the same number of voters, then there is a
permutation on V that maps A bijective onto B. It follows that A ∈ V if and only if
B ∈ V . In other words, whether A is winning depends only on the cardinality |A| of
A.

Denote by q the smallest number such that |A| = q implies A ∈ V . Then, by
monotonicity of V , |B| ≥ q implies B ∈ V . Since q is the smallest such number
|B| < q implies B /∈ V .

Thus (V,V) is a weighted voting system with weights w(v) ≡ 1 and quota q. ��
Definition 11 Suppose V is a finite set. A measure P on V is called permutation
invariant or exchangeable ifP(A) = P(π(A)) for each A ⊂ V and each permutation
π on V .

All voting measures introduced in Example 1 as well as the urn models discussed in
Sect. 3 are exchangeable.

Sincewe are interested in the behavior of quantities like power indices and success
rates for large voting system, we concentrate on voting measures which can be
extended to arbitrary large sets in a natural way, i. e. such that the extension is still
exchangeable.

If the set V of voters has N elements, we may set V = {1, 2, . . . , N }without loss
of generality and consider a voting measure as a measure on {0, 1}N as in (10).

Definition 12 We call an exchangeable measureP on {0, 1}N extendable if for every
N ′ > N there is an exchangeable measure P′ on {0, 1}N ′

such that P is the restriction
of P′ on {0, 1}N .

The voting measures of Example 1 are extendable. The urn models are extendable
for c ≥ 0, but not for c = −1. The following theorem says that a voting measure
which is exchangeable and extendable is actually a Common Believe Model.

Theorem 2 Suppose P is an exchangeable and extendable voting measure on V =
{1, 2, . . . , N } then P is a common belief measure (see Example 1.4),
i. e. there is a probability measure μ on [0, 1] such that
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Pμ

(
A
) =

1∫

0

Pp
(

A
)

dμ(p) . (43)

If P is a voting measure, then (20) holds.

Theorem 2 is a version of the celebrated theorem of de Finetti (de Finetti, 1931). De
Finetti’s theorem can be found at various places and in various formulations, see,
e.g., (Aldous, 1985) or (Klenke, 2014). For an introduction and an elementary proof,
see (Kirsch, 2019).

We mentioned already that the Banzhaf measure admits a representation as a
CB-model with μ = δ 1

2
. Moreover, the Shapley–Shubik measure is the CB-model

with μ the uniform distribution on [0, 1]. From Theorem 2, we know that also the
urn models with c ≥ 0 can be written in the form (43). Theorem 1 identifies the
corresponding measures μ for the urn models.

Theorem 3 Suppose PA,B,c is the probability measure (42) with parameters
A, B, c > 0 and set a = A

c and b = B
c . Then for (x1, . . . , xN ) ∈ {0, 1}N

PA,B,c (x1, . . . , xN ) =
1∫

0

Pp (x1, . . . , xN ) β̃a,b(p) dp . (44)

Theorem 3 follows from de Finetti’s theorem and Theorem 1. For details, see,
e.g., (Kirsch, 2019).

Theorem 3 identifies the measure μ abstractly given in Theorem 2 for the special
case of an urn model. The representation (44) allows a computation of the left-hand
side even for large N .

5 Penrose–Banzhaf Versus Shapley–Shubik

In this section, we consider the behavior of efficiency, decisiveness and rate of suc-
cess in simple voting systems under the Penrose–Banzhaf and the Shapley–Shubik
measure. Our first result is

Proposition 3 Let (V,V) be a simple majority voting system (all weights equal to
1, relative quota r = 1

2 ) with N voters then

1. DB(v) ≈ 2√
2π

· 1√
N

as N → ∞ and (45)

EB → 1

2
as N → ∞ . (46)
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2. DS(v) = 1

N
for all N and (47)

ES → 1

2
as N → ∞ . (48)

Definition 13 By aN ≈ bN we mean aN
bN

→ 1 as N → ∞.

Proof The proof of 1. is quite standard, see, for example, (Felsenthal, 1998).
2. follows from the fact that

∑
v∈V DS(v) = 1 and DS(v) = DS(v

′
) for all v, v

′
. ��

Remark 2 A calculation shows that in simple majority systems for odd N

D−
S (v) = D+

S (v) = 1

2

1

N
, (49)

and for even N

D−
S (v) = 1

2

1

N
− 1

2 N (N + 1)
, (50)

D+
S (v) = 1

2

1

N
+ 1

2 N (N + 1)
. (51)

Proposition 3 has an immediate consequence for the success rate of voters. From
(27), we infer that

SB(v) ≈ 1

2
+ 1√

2π

1√
N

(52)

for simple majority voting systems.
As one might expect the Penrose–Banzhaf power goes to zero as N increases and the
success rate goes to 1

2 , the success rate (in the Banzhaf setting) of a dummy player.
The Shapley–Shubik power goes to zero as N → ∞ as well, in fact, even faster than
the Penrose–Banzhaf power (see Proposition 3).

It may be somewhat surprising that the Shapley–Shubik success rate does not go
to 1

2 for large N , but rather stays at about 3
4 independent of the size of V . We will

prove this fact in greater generality below.
Now, we turn to simple voting systems with a qualified majority; i.e., we consider
weighted voting systems with weights w(v) = 1 and arbitrary relative quota r .
First, we look at the behavior of the efficiency for fixed r and large N .

Theorem 4 Suppose (V,V) is a weighted system with N voters, with weights
w(v) = 1 for all v ∈ V and relative quota r . Then
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1. EB →

⎧
⎪⎨

⎪⎩

1 for r < 1
2

1
2 for r = 1

2

0 for r > 1
2

as N → ∞ ,

2. For r > 1
2

EB ≤ e−2(r− 1
2 )2 N . (53)

This theorem tells us that the (Banzhaf) efficiency of a voting system goes extremely
fast to zero if the voting body is enlarged and the relative quota is kept fixed at
r > 1

2 . In Sect. 6, we will extend this result to weighted voting system and discuss
its implications for voting in the Council of the European Union in Sect. 7.

Proof Part 1. follows from the strong law of large numbers (see e.g., (Klenke, 2014))
and Proposition 3.

2. is an application of Hoeffding’s inequality (see Sect.A.1 in the appendix and
(Pollard, 1984)). ��

In contrast to the above result, the efficiency as measured by Shapley–Shubik
does not go to zero as N → ∞ for r > 1/2.

Theorem 5 Suppose (V,V) is a weighted voting system with N voters, weights
w(v) = 1 for all v ∈ V and relative quota r .

ES → (1 − r) as N → ∞. (54)

Proof From (23), we infer

ES = PS(
∑

Xi ≥ r N ) (55)

=
1∫

0

Pp(
1

N

∑
Xi ≥ r) dp (56)

The expression under the integral in (56)

Pp(
1

N

∑
Xi ≥ r) (57)

is the probability with respect to Pp that the arithmetic mean of the Xi is not less
than r . The random variables Xi are independent under the measure Pp. Thus, we
may apply the law of large numbers to show that this expression goes to 0 for r > p
and to 1 for r < p. Consequently, (56) converges to
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1∫

r

dp = 1 − r (58)

We turn to an investigation of the success rate.
Before we consider the case of arbitrary r , we discuss in detail the case r = 1

2 .
It is quite obvious that for simple majority systems

S+
B (v) → 1

4
and S−

B (v) → 1

4
as N → ∞ , (59)

in particular:

SB(v) → 1
2 . (60)

The following result about S+
S and S−

S is perhaps not so obvious.

Theorem 6 Let (V,V) be a simple majority voting system with N voters, then

S+
S (v) =

{
3
8 + 1

8
1
N for odd N

3
8 − 1

8
1

N+1 for even N
(61)

S−
S (v) =

{
3
8 + 1

8
1
N for odd N

3
8 + 3

8
1

N+1 for even N
(62)

Consequently,

SS(v) =
{

3
4 + 1

4
1
N for odd N

3
4 + 1

4
1

N+1 for even N
(63)

In particular,

SS(v) → 3

4
asN → ∞ (64)

Proof We may assume that V = {1, 2, . . . , N } and v = 1. Let us start with N odd,
say N = 2n + 1.
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Then,

S+
S (1) = PS(x1 = 1,

N∑

i=2

xi ≥ n)

=
1∫

0

Pp(x1 = 1,
N∑

i=2

xi ≥ n) dp

=
1∫

0

p · Pp(

N∑

i=2

xi ≥ n) dp

=
N−1∑

k=n

(
N − 1

k

) 1∫

0

pk+1(1 − p)N−(k+1) dp

= 1

N + 1

N−1∑

k=n

(N−1
k

)
( N

k+1

) = 1

N + 1

N−1∑

k=n

k + 1

N

= 1

N (N + 1)

N∑

k=n+1

k = 1

N (N + 1)

1

2

(
N (N + 1) − n(n + 1)

)

= 1

2
− 1

2

n(n + 1)

N (N + 1)
= 1

2
− 1

8

(N − 1)(N + 1)

N (N + 1)

= 3

8
+ 1

8

1

N
(65)

S−
S (1) = PS(x1 = 0,

N∑

i=2

xi ≤ n)

=
n∑

k=0

(
N − 1

k

) 1∫

0

(1 − p)pk(1 − p)N−k−1 dp

=
n∑

k=0

(
N − 1

k

) 1∫

0

pk(1 − p)N−k dp

= 1

N + 1

n∑

k=0

(N−1
k

)
(N

k

)

= 1

N (N + 1)

n∑

k=0

(N − k) = 1

N (N + 1)

(
(n + 1)N − 1

2
n(n + 1)

)

= 3

8
+ 1

8

1

N
(66)
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Thus, for N odd, we have

S+
S (1) = S−

S (1) = 3

8
+ 1

8

1

N
(67)

and SS(1) = 3

4
+ 1

4

1

N
→ 3

4
(68)

The calculation for even N goes along the same lines. ��
Theorem 7 Suppose (V,V) is a weighted voting system with N voters, weights
w(v) = 1 for all v ∈ V and relative quota r .

1. For arbitrary r

SB(v) → 1

2
as N → ∞ (69)

For r > 1
2

S+
B (v) ≤ 1

2
e−2(r− 1

2 )2(N−1) (70)

2. For arbitrary r

S+
S (v) → 1

2
− 1

2
r2 as N → ∞ (71)

S−
S (v) → 1

2
− 1

2
(1 − r)2 as N → ∞ (72)

Consequently, as N → ∞

SS(v) → 1 − 1

2
(r2 + (1 − r)2) = 1

2 + r(1 − r) (73)

Remark 3 SS(v) ≈ 1 − 1
2 (r

2 + (1 − r)2) is biggest for r = 1
2 where it equals

3
4 and

smallest for r = 0 and r = 1 where it is 1
2 .

Proof 1. We have

S+
B (1) = PB(x1 = 1,

N∑

i=2

xi ≥ r N − 1) (74)

= 1

2
PB(

N∑

i=2

xi ≥ r N − 1) (75)

since under PB the xi are independent.
Another application of Hoeffding’s inequality gives (70).
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Similarly

S−
B (1) = 1

2
PB(

N∑

i=2

xi < r N )

so

SB(1) = 1

2
(1 + PB(

N∑

i=2

xi ∈ [r N − 1, r N )))

≤ 1

2
+ C

1√
N

(76)

2. A computation as in the proof of Theorem 6 shows that

PS(x1 = 1,
N∑

i=2

xi ≥ M)

= 1

2
− 1

2

M(M + 1)

N (N + 1)
(77)

If we insert M = �r N� − 1, where �x� is the smallest integer not less than x , we
obtain

S+
S (1) = 1

2
− 1

2

(�r N� − 1)�r N�
N (N + 1)

→ 1

2
− 1

2
r2 as N → ∞ (78)

Similarly

S−
S (1) = PS(x1 = 0,

N∑

i=2

xi ≤ �r N� − 1)

= PS(x1 = 1,
N∑

i=2

xi ≥ N − �r N�)

= 1

2
− 1

2

(N − �r N�)(N − �r N� + 1)

N (N + 1)

→ 1

2
− 1

2
(1 − r)2 (79)
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6 Weighted Voting and the Common Belief Model

In this section, we discuss efficiency in weighted voting systems under the rather
general case of the Common Belief model. The concepts and results in this section
are mathematically slightly more involved than those in the previous sections but the
have direct consequences for voting systems like the Council of the European Union.

We start with an analysis of success under the Banzhaf measure. In fact, our result
in this respect is quite similar to Theorem 4. There, we showed that the efficiency
decays exponentially in the number N of voters if the relative quota r is bigger than 1

2 .
We will argue that for weighted voting systems N has to be replaced by the ‘effective
number’ of voters as introduced by Laakso–Taagepera in (Laakso and Taagepera,
1979).

Definition 14 Let V be a weighted voting system with weights W = {w1, . . . , wN }.
We define the Laakso–Taagepera index of the sequence W by

LT = LT(W ) = (
∑N

n=1 wn)
2

∑N
n=1 w2

n

(80)

In a voting system comprising N voters with equal voting weights the Laakso–
Taagepera index equals N . If there is one dominant voter and all other voters have
almost negligible weight, the LT is close to 1.

We also remark that a ≤ wi ≤ b for all i implies a
b N ≤ LT ≤ b

a N .

Theorem 8 SupposeV is a weighted voting system with weights in W = {w1, . . . , wN }.
If the relative quota r satisfies r > 1

2 , then the efficiency EB of the voting system
under the Banzhaf voting measure satisfies:

EB ≤ e−2(r− 1
2 )2 LT (81)

Proof If Xi ∈ {0, 1} denotes the voting of the i th voter then the Xi are independent
identically distributed random variables under the Banzhaf measure. Consequently,
the quantities Yi = wi Xi are also independent (but not identically distributed in
general). We have E(Yi ) = 1

2wi and Yi ∈ [0, wi ].
A coalition is winning if

∑
wi Xi ≥ r

N∑

i=1

wi . (82)

We estimate the probability that (82) is true using Hoeffding’s inequality (Theorem
1) with σ 2 = ∑

w2
i and λ = (r − 1

2 )
∑

wi . ��
Now, we consider an infinite sequence of nonnegative weights {wi }i∈N, and weighted
voting systems VN with N voters, weight w1, . . . , wN and a fixed relative quota r .
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This serves as a model for an assembly (e.g., a union of states like the EU), which is
enlarged by and by as N is increased.

The original form of the following result goes back to (Langner, 2012).

Theorem 9 If LTN → ∞ and μ({r}) = 0 then the efficiency EN under the voting
measure Pμ of the voting systems (VN ,VN ) satisfies

EN → μ([r, 1]) (83)

Proof

EN =
1∫

0

Pp
( N∑

i=1

wi Xi ≥ r
N∑

i=1

wi
)

dμ(p) (84)

By Corollary 1 the integrand converges to 0 for r > p and to 1 for r < p, hence

EN →
1∫

0

χ{p>r}(p) dμ(p) = μ([r, 1]) . (85)

where

χp>r (p) =
{
1, if p > r;
0, otherwise.

We estimate

Pp(|
∑

wi xi − p
∑

wi | ≥ α
∑

wi )

≤ 1

α2

∑
i E p((

∑
wi (xi − p))2)

(
∑

wi )2

= 1

α2
p(1 − p)

∑
i w2

i

(
∑

wi )2
= p(1 − p)

α2
LTN (86)

It follows that

EN =
1∫

0

Pp(
∑

wi xi ≥ r
∑

wi ) dμ(p) (87)

converges to

1∫

0

χ(p > r) dμ(p) = μ([r, 1]) (88)
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In a similar way, we can compute the rate of success in such systems.

Theorem 10 If LTN → ∞ and μ({r}) = 0, then the rate of success with respect to
Pμ satisfies

S+
Pμ

(v) →
1∫

r

p dμ(p) (89)

S−
Pμ

(v) →
1∫

r−1

p dμ(p) (90)

Proof Without loss, we compute the rate of success for voter i = 1.

S+
Pμ

(1) =
1∫

0

Pp(x1 = 1,
N∑

i=2

wi xi ≥ r
∑

wi − w1) dμ(p)

=
1∫

0

pPp(

N∑

i=2

wi xi ≥ r
∑

wi − w1) dμ(p)

→
1∫

r

p dμ(p) (91)

Remark 4 1. Observe that the success probability of a voter is asymptotically inde-
pendent of the voters weight!

2. In the case of the Shapley–Shubik measure, i. e. if μ is the uniform distribution,
Theorem 10 contains Theorem 7 as a special case.

3. Theorem 3 in combination with Theorem 10 allows to evaluate the success for
the urn models with parameters a = b (see Sect. 3). The following table lists a
few values of S(a, r), the success of a voter under the voting measure Pβa,a with
relative quota r .

a S(a, 1
2 ) S(a, 2

3 )

0.1 0.942 0.936
0.5 0.82 0.80
1 0.75 0.72
2 0.69 0.65
10 0.59 0.53
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7 The Council of the EU: A Case Study

The voting procedure in the Council of the European Union was fixed in the Treaty
of Lisbon. It is usually referred to as the ‘Double Majority’ system although strictly
speaking it is a ‘triple criteria’ system.

In many fields of politics, a proposal of the Commission is adopted by the Council
if the supporters represent both 65% of the total population of the EU and 55% of the
states. There is a third rule—in addition to the double majority explained before. This
third rule says that a proposal is also adopted if only 3 states vote against it—even if
the supporters represent less than 65% of the population of the EU.

The results above cannot be applied directly to this ‘double majority’ system
since it is not a weighted voting system. In fact, as noted by (Kurz and Napel, 2016)
this voting system has dimension at least seven (probably more); i.e., it cannot be
written as the intersection of six or less weighted voting systems. To apply the above
reasoning (in particular Theorem 8), we formalize the voting rules in the Council.

Denote by V = {1, . . . , N } the N member states of the EU (currently 27) and by
wi the size of the population of state i and denote for A ⊂ V by |A| the number of
elements (states) in the set A. We define

V1 = {A |
∑

i∈A

wi ≥ 0.65
∑

i∈V

wi }

V2 = {A | |A| ≥ 0.55 N } and

V3 = {A | |A| ≥ N − 3} .

The winning coalitions in the Council are the given by:

V = (V1 ∩ V2
) ∪ V3 . (92)

Let us denote by E (1)
N , E (2)

N and E (3)
N the Banzhaf efficiency of the voting systems V1,

V2 and V3, respectively, where N is the number of member states. Then, it is easy to
see that the efficiency EN of the voting system V of the Council satisfies:

EN ≤ min(E1
N , E2

N ) + E3
N ≤ E2

N + E3
N . (93)

where the second inequality is quite rough. Applying Theorem 4, we obtain

EN ≤ 2 e−c N (94)

where we may choose c = 0.005 (as long as N ≥ 7).
This estimate shows that theBanzhaf efficiency of the voting system in theCouncil

of the EU decays exponentially fast in the number of member states. The above
estimate is so rough that it even does not come close to the true value 0.13 for the
current EU; however, it shows that the efficiency of the system goes down with each
accession of newmembers, which may be regarded as a blunder in the Lisbon Treaty.
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8 Conclusions and Outlook

In this paper, we considered voting systems equipped with voting measures. The
voting measure models the collective behavior of the voters. We gave a collection of
example for votingmeasures and classified those votingmeasureswhich are invariant
under permutation of the voters as ‘collective bias models’.

We investigated efficiency ofweighted voting systems depending on the collective
behavior of the voters. Our main interest in addition to efficiency was the rate of
success of voters in various situation. In particular, we computed the rate of success
in the Shapley–Shubik and in the Penrose–Banzhaf setting.

Votingmeasures play a prominent role in the analysis and design of two-tier voting
systems. Optimal weights for the upper tier were investigated in (Kirsch, 2007) for
general CB-models with independent groups (e. g. states) on the lower level. Newer
developments allow also correlations between voters in different groups of the two-
tier voting system (Kirsch and Langner, 2014; Kirsch, 2021).

Acknowledgements The author thanks AlexanderMayer and Stefan Napel for fruitful discussions
about the topic of this paper. The author is also grateful to two unnamed referees whose comments
helped to improve the manuscript considerably.

A Mathematical Appendix

A.1 Hoeffding’s Inequality

For the reader’s convenience, in this appendix, we present a fewmathematical results
needed in the main text. In particular, we formulate Hoeffding’s inequality.

Theorem 1 (Hoeffding’s Inequality)
Suppose Xi , i = 1, . . . , N are independent random variables such that Xi ∈

[ai , bi ] almost surely.

Set σ 2 = ∑N
i=1(bi − ai )

2. Then

P

( N∑

i=1

Xi ≥
N∑

i=1

E(Xi ) + λ
)

≤ e−2 λ2

σ2 and (A.1)

P

( N∑

i=1

Xi ≤
N∑

i=1

E(Xi ) − λ
)

≤ e−2 λ2

σ2 (A.2)

For a proof of Theorem 1, see e.g., (Pollard, 1984).

An immediate consequence ofHoeffding’s inequality is the following proposition.

As before Pp with 0 ≤ p ≤ 1 denotes the probability measure on {0, 1}N given by:
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Pp
(
x1, x2, . . . , xN

) = p
∑

xi
(
1 − p

)N−∑
xi (A.3)

and E p denotes expectation with respect to Pp.

Proposition 1 Let Xi , i = 1, . . . , N be random variables with distribution Pp and

w1, . . . , wN ∈ [0,∞), then for λ ≥ 0

Pp

(∣∣
N∑

i=1

wi Xi − p
N∑

i=1

wi
∣∣ ≥ α

N∑

i=1

wi

)
≤ 2 e

−2α2 (
∑

wi )
2

∑
w2

i (A.4)

Proof The random variables Yi = wi Xi are independent (under Pp) and take values
in [0, wi ]]. Moreover, E p(Yi ) = pwi . Thus, (A.4) follows from Theorem 1. ��

Corollary 1 Suppose the Laakso–Taagepera index LTN =
∑

w2
i

(
∑

wi)2
goes to infinity as

N → ∞ then

Ifα > p Pp

( N∑

i=1

wi Xi ≥ α

N∑

i=1

wi

)
→ 0 as N → ∞ (A.5)

Ifα < p Pp

( N∑

i=1

wi Xi ≤ α

N∑

i=1

wi

)
→ 0 as N → ∞ (A.6)

A.2 Urn Models

We start by the following observation:

Proposition 2 Suppose c ≥ 0. For (x1, x2, . . . , xN ) ∈ {0, 1}N and 1 ≤ k < N we
set nk = ∑k

j=1 x j . Then

PA,B,c (x1, x2, . . . , xN )

= PA,B,c (x1, x2, . . . , xk) PA+nk c,B+(k−nk )c,c (xk+1, xk+2, . . . , xN ) (A.7)

Proof For k = 1, (A.7) is just the definition of the urn process. The general case
follows by iterating the first step. ��
To prove 1.2 we start with a special case

Proposition 3

PA,B,c (x1, . . . , xk−1, xk, xk+1, xk+2, . . . , xN )

= PA,B,c (x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xN ) (A.8)
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Proof If xk = xk+1, the assertion is trivial. So, we assume xk �= xk+1 We treat the
case xk = 0, xk+1 = 1, the other one being similar. We apply Proposition 2 three
times to obtain with 	 = ∑k−1

j x j

PA,B,c (x1, . . . , xk−1, xk, xk+1, xk+2, . . . , xN )

= PA,B,c (x1, . . . , xk−1) PA+	c,B+(k−1−	)c,c(0) PA+	c,B+(k−	)c,c(1) ×
× PA+(	+1)c,B+(k−	),c (xk+2, . . . , xN )

= PA,B,c (x1, . . . , xk−1)
B + (k − 1 − 	)c

A + B + (k − 1)c

A + 	c

A + B + kc
×

× PA+(	+1)c,B+(k−	),c (xk+2, . . . , xN )

= PA,B,c (x1, . . . , xk−1)
A + 	c

A + B + (k − 1)c

B + (k − (	 + 1)) c

A + B + kc
×

× PA+(	+1)c,B+(k−	),c (xk+2, . . . , xN )

= PA,B,c (x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xN ) (A.9)

Iterating Propositions 2 and 3 proves Proposition 1. To prove Theorem 1, we first
note:

Remark 1 For a, b > 0 we have

B(a, b) = 
(a)
(b)


(a + b)
, (A.10)

where 
(x) =
∞∫

0
t x−1 e−t dt is the Gamma function.

For a proof as well as for details about the Gamma function, see e.g., (Georgii, 2008).
We now prove (42) by proving that all moments of the measures on the left-hand

side converge to the moments of the right-hand side.
From (Kirsch, 2019), Theorem 5, we learn that the kth moment under PA,B,c of

MN converges to

mk := EA,B,c (X1 · X2 · . . . · Xk) (A.11)

but mk can be computed by (34) giving

mk = a (1,k)

(a + b)(1,k)
(A.12)

The moments of βa,b are given by m̄k = B(a+k,b)

B(a,b)
. By Proposition 1
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B(a + k, b) = 
(a + k)
(b)


(a + b + k)

= a(k,1)

(a + b)(k,1)


(a)
(b)


(a + b)
. (A.13)

Above we used that 
(x + k) = x (k,1)
(x) which follows from the well-known
equality 
(x) = (x − 1)
(x − 1). This proves 1.
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All Power Structures are Achievable
in Basic Weighted Games

Josep Freixas and Montserrat Pons

Abstract Amajor problem in decision-making is designing voting systems that are
as simple as possible and able to reflect a given hierarchy of power of its members.
It is known that in the class of weighted games, all hierarchies are achievable except
two of them. However, many weighted games are either improper or do not admit
a minimum representation in integers or do not assign a minimum weight of 1 to
the weakest non-null players. These factors prevent obtaining a good representation.
The purpose of the paper is to prove that for each achievable hierarchy for weighted
games, there is a handy weighted game fulfilling these three desirable properties.
A representation of this type is ideal for the design of a weighted game with a
given hierarchy. Moreover, the subclass of weighted games with these properties is
considerably smaller than the class of weighted games.

1 Introduction

1.1 Two Motivating Situations

As illustrated below, the motivation for our study is twofold.
Some members provide different contributions to a private company. They want

the decision-making in the company to be modeled as a weighted game as simply as
possible so that the power of its members respects the order of their individual con-
tributions to the company. The basic principle is as follows: if member A contributes
more than member B, then A must have more power than B in the decision-making
of the company. Specifically, they want to make decisions through an integer repre-
sentation of a weighted game that verifies the following desirable properties.
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(i) If one member pays more than another, the first will be assigned a greater weight
which will grant her more power.

(ii) If a coalition formed by somemembers is winning (i.e., the sum of the individual
weights equals or surpasses the preset quota), then the complementary coalition
should be losing.

(iii) It is as simple as possible: It is the unique minimal representation in integers of
the weighted game.

(iv) It assigns a weight of 0 to null players (if any) and a weight of 1 (representing the
minimum monetary contribution to the company allowed to have right to vote)
to the weakest non-null contributors.

Condition (i) assigns the same weight (fee to be paid in our context) to members
with the same power and the more weight more power. Condition (ii), properness,
avoids the existence of two disjoint winning coalitions, which makes the weighted
game stable. Condition (iii), uniqueness of a minimal weighted representation in
integers, provides the simplest representation, with the least weights, of the weighted
game to be chosen. Condition (iv) allocates a rate of one monetary unit to less
influential contributors, and any other contribution is an integer multiple of this
minimum amount.

The main question we face in this paper is whether all achievable hierarchies for
weighted games are still achievable in the subclass of weighted games that admit a
representation fulfilling the above properties. We prove in this paper that the answer
is affirmative. The third and fourth conditions are a little bit strict, but their inclusion
helps to highlight that all achievable hierarchies in weighted games are also achiev-
able in a very small subclass of them. Thus, in these weighted games, the hierarchy
given by the amounts paid to the company coincides with the hierarchy of power of
the members in the company.

The following is a slightly different situation. Some members with different
degrees of responsibility in a society want to make decisions through a weighted
game so that the power of its members respects the ranking of responsibility in the
society. In other words, we wish a representation for a weighted game that assigns a
weight to each member in the society and a threshold such that the weights respect
the preset hierarchy given by the degree of responsibility of its members.

Again, for each achievable hierarchy for weighted games, we wish to find a
weighted game that admits a representation in integers fulfilling the four above stated
properties.

Both situations involve the design of handy voting structures, a subclass of
weighted games, with a pre-established hierarchy. Observe that if n is the num-
ber of members of the society, the number of possible hierarchies is 2n−1 since
the power relation between two consecutive contributors is either strict or equal.
It is known, see (Bean et al., 2008), that the number of achievable hierarchies for
weighted games is 2n−1 − 2. Only two types of hierarchies are not achievable in
weighted simple games although they are in a wider class of games (Freixas and
Pons, 2010).
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The purpose of the paper is to show that all achievable hierarchies for weighted
games can be obtained in a tiny subclass of weighted games verifying the desirable
properties stated above. From now on, wewill refer to this subclass as basicweighted
games, whose precise definition is given in the next section.

1.2 Background

The number of weighted games, although small when compared with simple games,
is quite large. The structure of weighted games can be quite complex, for example,
some of them do not have a unique minimal representation in integers (Dubey and
Shapley, 1979; Muroga et al., 1970; Freixas and Molinero, 2009, 2010; Kurz, 2012;
Freixas and Kurz, 2014), or are not necessarily proper, or the minimum positive
weight for a minimal representation in integers can be greater than 1.

Let us start by formally introducing the concept of hierarchy, which specifies the
ranking of elements in a complete pre-ordered set. In general, a complete pre-order
� in a set N (a reflexive and transitive binary relation for which any two elements
of N are related) generates a partition of N into equivalence classes (two elements
i and j of N are equivalent if i � j and j � i). Then, these equivalence classes
N1, N2, . . . , Nt can be strictly ordered in the following way: Np � Nq if and only if
i � j but j �/ i for any i ∈ Np and any j ∈ Nq . We say that the hierarchy given by
� is (n1, n2, . . . , nt ) if there are t equivalence classes, with N1 � N2 � · · · � Nt ,
and np = |Np| (np is the cardinality of Np) for 1 ≤ p ≤ t .

Many papers in the literature deal with the question of which hierarchies are
achievable in particular subclasses of simple games: (Friedman et al., 2006; Bean
et al., 2008, 2010; Bean, 2012; Friedman, 2016) for weighted games, (Bishnu and
Roy, 2012) for complete games, (Carreras and Freixas, 1996; Freixas and Pons,
2010; Kurz and Tautenhahn, 2013) for weakly complete games, or (Friedman and
Parker, 2009) in a general context.Usually, the pre-order considered is the desirability
relation (Isbell, 1956, 1958), and a hierarchy is said to be achievable in a class of
simple games if there exists a game of this class such that the players have this
hierarchy by the desirability relation.

(Bean et al., 2008) proved that any hierarchy in a set of n elements is achievable by
the desirability relation in the class of weighted games with the only exception of two
of them: (n − 2, 1, 1) and (n − 3, 1, 1, 1). This result also tells us that three of the
most prominent power indices, the Shapley–Shubik index ((Shapley, 1953; Shapley
and Shubik, 1954)), the Banzhaf index ((Penrose, 1946; Banzhaf, 1965; Coleman,
1971)), and the Johnston index (Johnston, 1978) produce the same hierarchies in
weighted games since in (Freixas et al., 2012), it was proven that these three power
indices preserve the desirability relation.

A subclass of weighted games is that of homogeneous games, see (Von Neumann
and Morgenstern, 1944; Isbell, 1956). These games admit a weighted representa-
tion for which all minimal winning coalitions have equal weight, coinciding with the
threshold. Thus, all coalitions with greater weight are winning but notminimal, while
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coalitions with lower weight are all losing. This property implies that if a player is
replaced by a weaker one (by the desirability relation) in a minimal winning coali-
tion, then the new coalition necessarily becomes losing, something which does not
occur for the rest of weighted games. These games, see (Ostmann, 1987), admit a
representation in integers which is the unique minimal representation verifying that
all equivalent players are assigned the same weight, all null players are assigned
a weight of 0 (if any), and all voters in the smallest non-null class are assigned a
weight of 1. However, homogeneous games are not necessarily proper. Proper homo-
geneous games verify the desired four stated properties in the previous subsection
and therefore are particular cases of basic weighted games, but they are not sufficient
to generate all hierarchies achievable in weighted games.

The remainder of the paper is organized as follows. Section2 contains the basic
definitions and concepts on simple games, the usual model to study binary voting
systems. Section3 states themain result of the paper, as well as the three propositions
necessary to prove it, and shows some consequences of this main result. Section4
summarizes the paper and points out the relevance of the obtained results.

2 Binary Voting Systems

Definition 1 Simple game
A simple game is a pair (N ,W ), where N = {1, 2, . . . , n} is the set of players, subsets
of N are called coalitions and W is a subset of 2N which satisfies: ∅ /∈ W, N ∈ W,

and S ⊂ T and S ∈ W implies T ∈ W (monotonicity).

A coalition S is said to be winning if S ∈ W and losing otherwise.

Definition 2 Dual game
The dual of a simple game (N ,W ) is the simple game (N ,W ∗) such that S ∈ W ∗ if
and only if N \ S /∈ W .

Definition 3 Proper simple game
A simple game (N ,W ) is proper if S ∈ W implies N \ S /∈ W .

In proper simple games, it is not possible that two disjoint coalitions win. Thus,
it is a natural property to be demanded.

Definition 4 A coalition S is a minimal winning coalition if S ∈ W and T /∈ W for
all coalitions T ⊂ S. The collection of minimal winning coalitions is denoted by
Wm .

A player i ∈ N is null in (N ,W ) if i /∈ S for all S ∈ Wm . Null players never add
value to a coalition.

A well studied subclass of simple games arises from Isbell’s desirability relation
(Isbell, 1958).
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Definition 5 Desirability relation
We write i � j for two players i, j ∈ N (we say that i is at least as desirable as j) if

S ∪ { j} ∈ W implies S ∪ {i} ∈ W for all S ⊆ N \ {i, j},

We write i ≈ j whenever i � j and j � i (we say that i and j are equivalent), and
i � j if i � j but j �/ i .
The desirability relation is a pre-order, i.e., it verifies

(1) i � i for all i ∈ N (reflexive),
(2) i � j , j � h implies i � h for all i, j, h ∈ N (transitivity).

The desirability relation ranks players with respect to how much influential they
are. It is a well-known property that the dual game preserves the desirability relation.

Definition 6 Complete game
A simple game W is complete if the desirability relation � is a complete (or total)
pre-order, i.e., either i � j or j � i for all i, j ∈ N .

Complete games have been intensively studied (see among others, (Carreras and
Freixas, 1996; Taylor and Zwicker, 1999; Bishnu and Roy, 2012)) and have been
applied to several different fields.

Definition 7 Weighted game
A simple game (N ,W ) is called a weighted game if there exists a positive integer
q (quota) and non-negative integers w1, . . . , wn (weights) such that S ∈ W if and
only if w(S) = ∑

i∈S wi ≥ q. We say that [q;w1, . . . , wn] is a representation of
the game, and we write W ≡ [q;w1, . . . , wn] or simply W ≡ [q;w] whenever the
weight vectorw = (w1, . . . , wn) is specified. Eachweighted game has an unbounded
number of integer representations.

As wi > w j implies i � j and wi = w j implies i ≈ j , for every arbitrary rep-
resentation [q;w1, . . . , wn] of the weighted game (N ,W ), it is clear that every
weighted game is complete. Moreover, i � j implies wi > w j . Furthermore, every
weighted game admits a representation in which equivalent players have the same
weight and therefore wi > w j if and only if i � j . From now on, we only deal with
this type of representations for weighted games. All these representations satisfy
Condition i) stated in the introduction. Thus, from now on, we omit any reference
to this condition.

Note that q > w(N )/2 for a representation [q;w] of a weighted game implies
that the weighted game is proper. It is well-known that a simple game is weighted if
and only if its dual game is weighted, and if [q;w1, . . . , wn] is a representation of
a weighted game, then [w(N ) − q + 1;w1, . . . , wn] is a representation of the dual
game. As at least one of these two inequalities q > w(N )/2, (w(N ) − q + 1) >
w(N )/2 is verified, either the weighted game is proper or its dual is proper.

Thus, throughout the paper, we do not need to check if a given weighted game is
proper because if such condition fails, then its dual game is also weighted, proper
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and preserves the desirability relation. We refer to (Freixas and Zwicker, 2003) and
(Kurz et al., 2020) for extensions of weighted games on several alternatives and to
(Kurz et al., 2017) on fair allocation of weights to single delegates of differently
sized groups.

Definition 8 Weighted game with a unique minimal representation in integers
A weighted game (N ,W ) has a unique minimal representation in integers [q;w]
if w ≤ w′ and q ≤ q ′ for any other weighted representation in integers [q ′;w′] of
(N ,W ).

There exist weighted games without a unique minimal representation in inte-
gers, (Dubey and Shapley, 1979; Muroga et al., 1970; Freixas and Molinero, 2009,
2010; Kurz, 2012). Note that if a weighted game has a uniqueminimal representation
in integers [q;w], then [w(N ) − q + 1;w] is the unique minimal representation in
integers of the dual game. Thus, duality preserves minimal representations.

The next definition introduces a new subclass of weighted games which is the
central topic of the paper.

Definition 9 Basic weighted game
Asimple game (N ,W ) is a basic weighted game if it is weighted, proper and admits a
unique minimal representation in integers which assigns a weight of 1 to the weakest
non-null players.

Note that the weight of equivalent players is the same in a unique minimal represen-
tation in integers. A weighted game is homogeneous if it admits a representation in
which all minimal winning coalitions have the same weight. Homogeneous games
admit a unique minimal representation in integers in which the smallest non-null
players have weight 1, see (Ostmann, 1987). Thus, the conjunction of proper and
homogeneous games forms a subclass of basic weighted games, but the converse is
not true as shown in the next example.

Example 1 The properweighted game for n = 5with representation [9; 5, 4, 3, 2, 1]
is a basic weighted game which is not homogeneous. In fact, the coalitions {1, 3, 4}
and {1, 3, 5} are bothminimal but 4 � 5 impliesw4 > w5 for any weighted represen-
tation of the game. Thus, the weight of {1, 3, 4} surpasses the quota for any weighted
representation.

From now on, we only deal with complete games, and without loss of general-
ity, we assume that 1 � 2 � · · · � n, where � is the desirability relation given in
Definition 5.

The desirability relation generates a partition of N into equivalence classes (two
elements i and j of N are equivalent if i � j and j � i). Then, these equivalence
classes, denoted by N1, N2, . . . , Nt , can be strictly ordered in the following way:
Np � Nq if and only if i � j for any i ∈ Np and any j ∈ Nq . Let n j = |N j | for
1 ≤ j ≤ t .

In this context, coalitions can be categorized into different models:
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Definition 10 Models of coalitions
A coalition is of model m = (m1, . . . ,mt ) if it has a total of m1 + · · · + mt players,
with m j players being in the class N j (m j ≤ n j ). All the coalitions of a same model
have the same status in the game, in the sense that they are either all winning or all
losing. If the game is weighted, then it admits a representation such that all coalitions
of the same model have the same weight.

Given twomodelsm and p, we will writem ≥ p whenm j ≥ p j for j = 1, . . . , t ,
and m > p if m ≥ p and m j > p j for some j . The inequality m > p means that m
can be obtained from p by adding representatives of one ore more equi-desirability
classes.

Example 2 On the player set N = {1, 2, 3, 4, 5, 6}, let us say that a coalition S is
winning if it contains at least four players and at least two of the three first players.
N is partitioned into two equivalence classes N1 = {1, 2, 3} and N2 = {4, 5, 6} such
that N1 � N2. The models of coalitions are (m1,m2) with 0 ≤ mi ≤ 3 for i = 1, 2.
The models (2, 2) and (3, 1) correspond to 9 and 3 minimal winning coalitions,
respectively. The remaining models of winning coalitions are (3, 2) and (3, 3). The
game is weighted but not basic. Indeed, it admits a unique minimal integer repre-
sentation [10; 3, 3, 3, 2, 2, 2] with a weight greater than 1 assigned to the players in
N2.

Definition 11 Hierarchy of a complete game
We say that a complete game (N ,W ) has the hierarchy (n1, n2, . . . , nt ) if the coali-
tion N is of model (n1, n2, . . . , nt ).

Definition 12 Hierarchy achievable in a subfamily of complete games
We say that a hierarchy (n1, n2, . . . , nt ) is achievable in some subfamily of complete
games (weighted, or basic weighted game in our study) if there exits a simple game
in this family having this hierarchy by the desirability relation.

3 Main Result

The main theorem in this paper, Theorem 1, proves that all achievable hierarchies
for weighted games are also achievable for basic weighted games, a tiny subclass
of weighted games with valuable properties. For instance, the set of representations
of a basic weighted game forms a discrete n + 1-dimensional cone with a minimum
vertex (the vector of the quota and the nweights of the uniqueminimal representation
in integers).

Proposition 1 For every n ≥ 5, the hierarchy (n − 4, 1, 1, 1, 1) is achievable in
basic weighted games.

Proof The weighted game [9 + 5(n − 5); 5, 4, 3, 2, 1], which is well-defined for
any n ≥ 5, has the hierarchy (n − 4, 1, 1, 1, 1) and verifies all properties demanded
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to basic weighted games: It is proper since q = 5n − 16 > (5n − 10)/2 = w(N )/2,
it assigns a weight of 1 to the weakest (non-null) player, and the representation in
integers isminimal because theweights used in the representation are the five smallest
positive integers, and the quota 5n − 16 cannot be diminished without changing the
game.

Proposition 2 The following types of hierarchies are achievable in basic weighted
games:

1. (n),
2. (n1, n2),
3. (n1, n2, n3) for n2 + n3 > 2,
4. (n1, n2, n3, n4) for n2 + n3 + n4 > 3,
5. (n1, n2, n3, n4, n5) for n2 + n3 + n4 + n5 > 4.

Proof The proof of this proposition consists in providing, for each hierarchy, a basic
weighted game having it. The games chosen for every hierarchy are shown below.
The election of weights and the quota guarantees all the properties demanded to basic
weighted games.

1. The weighted game [n;
n

︷ ︸︸ ︷
1, 1, . . . , 1] is basic weighted and has hierarchy (n).

2. The weighted game [n1;
n1︷ ︸︸ ︷

1, 1, . . . , 1,

n2︷ ︸︸ ︷
0, 0, . . . , 0] is basic weighted and has

hierarchy (n1, n2).
3. If n2 > 1, the weighted game

[2n1 + n2 − 1;
n1︷ ︸︸ ︷

2, 2, . . . , 2,

n2︷ ︸︸ ︷
1, 1, . . . , 1,

n3︷ ︸︸ ︷
0, 0, . . . , 0]

is basic weighted and has hierarchy (n1, n2, n3).
If n3 > 1 the weighted game

[3n1 + 2n2 + n3 − 2;
n1︷ ︸︸ ︷

3, 3, . . . , 3,

n2︷ ︸︸ ︷
2, 2, . . . , 2,

n3︷ ︸︸ ︷
1, 1, . . . , 1]

is basic weighted and has hierarchy (n1, n2, n3).
4. If n2 > 1, the weighted game

[2(n3n4 + n3 + n4) + 1;
n1︷ ︸︸ ︷

x1, . . . , x1,
n2︷ ︸︸ ︷

x2, . . . , x2,
n3︷ ︸︸ ︷

x3, . . . , x3,

n4︷ ︸︸ ︷
1, . . . , 1]

with x1 = 2n3n4 + 2n3 + n4, x2 = n3n4 + n3 + n4 and x3 = n4 + 1 is basic
weighted and has hierarchy (n1, n2, n3, n4).
If n3 > 1, the weighted game

[3n1 + 2n2 + n3 − 2;
n1︷ ︸︸ ︷

3, 3, . . . , 3,

n2︷ ︸︸ ︷
2, 2, . . . , 2

n3︷ ︸︸ ︷
1, 1, . . . , 1,

n4︷ ︸︸ ︷
0, 0, . . . , 0]
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is basic weighted and has hierarchy (n1, n2, n3, n4).
If n4 > 1, the weighted game

[n1(n2n4 + n3n4 + n2);
n1︷ ︸︸ ︷

x1, . . . , x1,
n2︷ ︸︸ ︷

x2, . . . , x2,
n3︷ ︸︸ ︷

x3, . . . , x3,

n4︷ ︸︸ ︷
1, . . . , 1]

with x1 = n2n4 + n3n4 + n2, x2 = n4 + 1 and x3 = n4 is basic weighted and has
hierarchy (n1, n2, n3, n4).

5. If n2 > 1, the weighted game

[2(n3n4 + n3 + n4) + 1;
n1︷ ︸︸ ︷

x1, . . . , x1,
n2︷ ︸︸ ︷

x2, . . . , x2,
n3︷ ︸︸ ︷

x3, . . . , x3,

n4︷ ︸︸ ︷
1, . . . , 1,

n5︷ ︸︸ ︷
0, . . . , 0]

with x1 = 2n3n4 + 2n3 + n4, x2 = n3n4 + n3 + n4 and x3 = n4 + 1 is basic
weighted and has hierarchy (n1, n2, n3, n4, n5).
If n3 > 1, the weighted game

[n1x1 + x2 + x4;
n1︷ ︸︸ ︷

x1, . . . , x1,
n2︷ ︸︸ ︷

x2, . . . , x2,
n3︷ ︸︸ ︷

x3, . . . , x3,
n4︷ ︸︸ ︷

x4, . . . , x4,

n5︷ ︸︸ ︷
1, . . . , 1]

with x1 = 2n2n4n5 + n3n4n5 + 2n2n4 + n2n5 + n3n4 + n3n5 − n4n5 − n4 −
n5 − 1, x2 = 2n4n5 + 2n4 + n5, x3 = n4n5 + n4 + n5 and x4 = n5 + 1 is basic
weighted and has hierarchy (n1, n2, n3, n4, n5).
If n4 > 1, the weighted game

[n1(n2n4 + n3n4 + n2);
n1︷ ︸︸ ︷

x1, . . . , x1,
n2︷ ︸︸ ︷

x2, . . . , x2,
n3︷ ︸︸ ︷

x3, . . . , x3,

n4︷ ︸︸ ︷
1, . . . , 1,

n5︷ ︸︸ ︷
0, . . . , 0]

with x1 = n2n4 + n3n4 + n2, x2 = n4 + 1 and x3 = n4 is basic weighted and has
hierarchy (n1, n2, n3, n4, n5).
If n5 > 1, the weighted game

[n1x1 + n2x2;
n1︷ ︸︸ ︷

x1, . . . , x1,
n2︷ ︸︸ ︷

x2, . . . , x2,
n3︷ ︸︸ ︷

x3, . . . , x3,
n4︷ ︸︸ ︷

x4, . . . , x4,

n5︷ ︸︸ ︷
1, . . . , 1]

with x1 = n3n5 + n4n5 + n3n5, x2 = n3n5 + n4n5 + n3, x3 = n5 + 1 and x4 =
n5 is basic weighted and has hierarchy (n1, n2, n3, n4, n5).

��
Proposition 3 Any hierarchy (n1, n2, . . . , nt ) with t ≥ 6 is achievable in basic
weighted games.

Proof It suffices to prove the existence of a proper homogeneous game with the
given hierarchy (n1, n2, . . . , nt ) for any t ≥ 6. We start by defining a representation
of a weighted game with n = n1 + n2 + · · · + nt players, and then, we will prove
that the game has the given hierarchy and is homogeneous.
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The weights x j (x1 > x2 > · · · > xt ), defined recursively from j = t till j = 1,
and the quota q, are the following:

xt = 1
xt−1 = nt + 1

For j from t − 2 till 4 : x j = n j+1x j+1 + x j+2

x3 =
{
n4x4 + x5
1 + (n4 − 1)x4 + ∑t

j=5 n j x j

if n2 > 1
if n2 = 1

x2 = n3x3 + x4

x1 =
{
(n2 − 1)x2 + x3
n3x3 + n4x4 + x5

if n2 > 1
if n2 = 1

q = n1x1 + x2

(1)

Clearly q > w(N )/2 which guarantees properness. Using the notation introduced
in Definition 7, let Mj = {i ∈ N |wi = x j } for j = 1, . . . , t . From the properties
of weighted games, it is clear that all players in a fixed Mj belong to the same
equivalence class. Hence, either Mj and Mj+1 belong to the same equivalence class,
which occurs when i ≈ k for all i ∈ Mj and all k ∈ Mj+1, or Mj � Mj+1, which
occurs when i � k for all i ∈ Mj and all k ∈ Mj+1. We will prove that Mj � Mj+1

for any j = 1, . . . , t − 1, so that Mj = N j for any j = 1, 2, . . . , t , and thus, the
defined game has the desired hierarchy.

The procedure for defining the weights (1) is different depending on n2 > 1 or
n2 = 1.Wewill prove the statement assuming n2 > 1, because the proof for the other
case is similar. By the recursive equations, we observe that the definedweighted game
has t − 1 models of coalitions (see Definition 10) with weight equal to q, namely
{a j } j=2,...,t , whose components are described as follows for k = 1, . . . , t :

a j,k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if j = k
n1, if k = 1, j even
n1 − 1, if k = 1, j odd
nk, if 1 < k < j, j and k have different parity
0, otherwise.

(2)

By the term “different parity" for subindices j and k in the previous expression,
we mean that either j is odd and k even or j is even and k odd.

As for all j = 2, . . . , t − 1 it is a j, j = 1 and a j, j+1 = 0, then any coalition S
with model a j verifies that there exists i ∈ Mj ∩ S and h /∈ S for any h ∈ Mj+1. But
w(S) = q so that w((S \ {i}) ∪ {h}) < q. Hence, i � h, and Mj � Mj+1.
Finally, as a4,1 = n1 and a4,2 = 0, then any coalition S with model a4 verifies that
there exists i ∈ M1 ∩ S and h /∈ S for any h ∈ M2. But w(S) = q so that w((S \
{i}) ∪ {h}) < q. Hence, i � h, and M1 � M2.

Thus, we have proved that Mj = N j for all j = 1, . . . , t , and therefore, the
weighted game recursively defined has the given hierarchy (n1, . . . , nt ).
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We will prove now that the game is homogeneous. To this end, we study all
possible models of coalitions in this game. We consider four groups: (i) models of
coalitions with weight equal to the quota, already described in (2); (ii) models of
coalitions which can be obtained from the models in (i) by swapping players for
stronger ones (here, “weaker" and “stronger" refer to the desirability relation); (iii)
models of coalitions which can be obtained from the models in (i) and (ii) by adding
new players; and (iv) the rest of models of coalitions. It is clear that coalitions in (i),
(ii), and (iii) are winning, with coalitions in (i) being minimal winning and coalitions
in (iii) being non-minimal winning. In the following steps, we prove that all models
in (ii) correspond to non-minimal winning coalitions and that all models in (iv)
correspond to losing coalitions.

Let u be a model obtained from some a j by swapping one or more players for
stronger ones. Notice that it is not possible to do so in a2 = (n1, 1, 0, 0, . . . , 0), so
that 3 ≤ j ≤ t . Now, if j is even (in this case a j,1 = n1), then there exists at least
one k even, k < j , such that uk ≥ 1. This implies that u > ak , being k the minimum
even index such that uk ≥ 1. Similarly, if j is odd (in this case a j,1 = n1 − 1), then
either u1 = n1, in which case u > a2, or u1 = n1 − 1. In this last case, there exists
at least one k odd, k < j , such that uk ≥ 1. This implies that u > ak , being k the
minimum odd index such that uk ≥ 1. Thus, u is winning but not minimal.

To prove that the remaining models of coalitions are all losing, we select those
models such that any other model, not included in the already considered groups,
can be obtained from them by either removing players or swapping players for
weaker ones. We will see that all these models are losing. There are r models in this
selection, with r = t if nt > 1 and r = t − 1 if nt = 1. We denote these models by
{c j } j=0,1,...,r−1, and their components are described as follows for k = 1, . . . , t :

c j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1, if k = 1, j odd
n1 − 1, if k = 1, j even
nk − 1, if j = k > 1

nk, if either

⎧
⎨

⎩

1 < j < k
1 < k < j, j and k have the same parity
j ≤ 1 < k, j and k have the same parity

0, otherwise.

Let us check that all these models have a weight smaller than the quota q assuming
that t is even, because the proof for t odd is analogous. Notice that the model c1 is
obtained from at by removing the voter with weight xt = 1. Thus,w(c1) = q − 1 <

q. The weight of c0 is also q − 1 because w(c0) = (n1 − 1)x1 + ∑
1<k≤t
k even

nkxk and

w(at−1) = (n1 − 1)x1 + ∑
1<k<t
k even

nkxk + xt−1 = q.

For j even, 2 ≤ j ≤ r − 1, it is

w(c j ) = (n1 − 1)x1 +
∑

1<k< j
k even

nkxk + (n j − 1)x j +
t∑

k= j+1

nkxk .
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But w(a j+1) = q, so that q = (n1 − 1)x1 + ∑
1<k≤ j
k even

nkxk + x j+1. Thus,

w(c j ) = q − x j+1 − x j +
t∑

k= j+1

nkxk

and using the recursive equations (1), we obtain w(c j ) = q − 2 < q. An analogous
reasoning proves that w(c j ) = q − 2 for j odd, 2 < j ≤ r − 1.

In conclusion, the defined weighted game has the hierarchy (n1, . . . , nt ), and only
the minimal winning coalitions have a weight equal to the quota. Hence, the game
is homogeneous and basic weighted. ��

We will show some examples of games constructed with the procedure described
above.

Example 3 Consider the hierarchy (2, 3, 1, 1, 4, 5), with t = 6. In this case, the basic
weighted game with the given hierarchy is

[342; 143, 143, 56, 56, 56, 31, 25, 6, 6, 6, 6, 1, 1, 1, 1, 1].

Example 4 Consider the hierarchy (3, 1, 1, 2, 4, 5, 1, 1, 3), with t = 9. In this case,
the basic weighted game with the given hierarchy is

[3481; 935, 935, 935, 676, 467, 209, 209, 50, 50, 50, 50, 9, 9, 9, 9, 9, 5, 4, 1, 1, 1].

Example 5 Particularly, interesting examples are obtained when each equivalence

class is a singleton, i.e., when the given hierarchy is of the type (

t
︷ ︸︸ ︷
1, 1, 1, . . . , 1, 1, 1)

with t ≥ 6. In these cases, the weights from xt to x4 follow a Fibonacci sequence,
and the three remaining terms are x3 = x4 + x5 − 1, x2 = x3 + x4 and x1 = x3 +
x4 + x5 = 2x3 + 1. Let us show the basic weighted games with these hierarchies,
from t = 6 till t = 14:

t = 6 : [16; 9, 7, 4, 3, 2, 1]
t = 7 : [27; 15, 12, 7, 5, 3, 2, 1]
t = 8 : [45; 25, 20, 12, 8, 5, 3, 2, 1]
t = 9 : [74; 41, 33, 20, 13, 8, 5, 3, 2, 1]
t = 10 : [121; 67, 54, 33, 21, 13, 8, 5, 3, 2, 1]
t = 11 : [121; 109, 88, 54, 34, 21, 13, 8, 5, 3, 2, 1]
t = 12 : [320; 177, 143, 88, 55, 34, 21, 13, 8, 5, 3, 2, 1]
t = 13 : [519; 287, 232, 143, 89, 55, 34, 21, 13, 8, 5, 3, 2, 1]
t = 14 : [841; 465, 376, 232, 144, 89, 55, 34, 21, 13, 8, 5, 3, 2, 1]
Proper weighted games with weights that follow Fibonacci sequences are studied

in (Fragnelli et al., 2016; Pressacco and Ziani, 2015, 2018).
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Theorem 1 All achievable hierarchy for weighted games is achievable in the sub-
class of basic weighted games.

Proof In (Bean et al., 2008), it is proved that any hierarchy of n players is achievable
in weighted games with the only exception of two of them: (n − 2, 1, 1) for n > 2,
and (n − 3, 1, 1, 1) for n > 3.As these twohierarchies are not achievable inweighted
games, they are not achievable in basic weighted games either. Proposition 1 states
that the hierarchy (n − 4, 1, 1, 1, 1) is achievable in basic weighted games for n > 4.
Proposition 2 states that any other hierarchy (n1, n2, . . . , nt )with t ≤ 5 is achievable
in basic weighted games, and Proposition 3 states that any hierarchy with t ≥ 6 is
achievable in basic weighted games. This finishes the proof. ��
Note that the procedure described in equation (1) in the proof of Proposition 3
describes how to obtain a representation of any basicweighted game for any hierarchy
with t ≥ 6. Propositions 1 and 2 describe the method for t ≤ 5.

We complete this section with the desired consequence of Theorem 1.

Corollary 1 Any possible hierarchy is achievable, by either the Shapley–Shubik,
the Banzhaf or the Johnston indices, in basic weighted games except (n − 2, 1, 1),
and (n − 3, 1, 1, 1).

4 Conclusion

Themain result of the present paper is to prove that, if a particular power structure has
to be designed, the class of basic weighted games can always be used for this purpose.
These games have very reasonable properties that make them ideal candidates to be
chosen. Moreover, the subclass is relatively small when compared with all weighted
games.

The number of possible hierarchies in a set of n players is 2n−1. In (Friedman
et al., 2006), it was proved that all hierarchies achievable by the desirability relation
in complete games are also achievable in weighted games, and that the hierarchies
which are not achievable in weighted games, for n players, are (n − 2, 1, 1) and
(n − 3, 1, 1, 1). Thus, the number of hierarchies achievable in weighted games, for
n players, is

Number of achievable hierarchies in weighted games =
⎧
⎨

⎩

2n−1 − 2, if n ≥ 4
3, if n = 3
2, if n = 2

which coincides with the number of achievable hierarchies in basic weighted games.
In (Diffo Lambo and Moulen, 2002), it was proved that the Shapley–Shubik and

the Banzhaf power indices generate the same hierarchy than the desirability relation
in weighted games, and in (Freixas et al., 2012), it was proved that this is also true in
a larger class of games and that it is also verified for the Johnston power index. Thus,
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the number of hierarchies achievable in weighted games by the desirability relation,
specified above, coincides with the number of hierarchies achievable by anyone of
these three power indices.

The study of hierarchies can be extended to voting games with abstention as a
third input. Parker proves in (Parker, 2012) that the influence relation introduced by
Tchantcho et al. (the I -influence relation) (Tchantcho et al., 2008) orders the voters
in the same way as the classical Banzhaf and Shapley–Shubik indices do when they
are extended to complete voting games with abstention. Moreover, (Parker, 2012)
proves that all hierarchies are achievable, by the influence relation, in this class. In
a subsequent work, (Freixas et al., 2014) prove that all hierarchies are achievable,
by the influence relation, in a subclass of weighted voting games with abstention,
the class of zero-sum strongly weighted games. It would be now interesting to study
whether the class of basic weighted games with abstention would still be enough to
generate all hierarchies achievable by the I -influence relation.
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Bargaining in Legislatures:
A New Donation Paradox

Maria Montero

Abstract It is well known that being the proposer or agenda setter is advantageous
in many collective decision-making situations. In the canonical model of distributive
bargaining (Baron and Ferejohn, 1989), proposers are certain of being part of the
coalition that forms, and, conditional on being in the coalition, a player receives more
as a proposer than as a coalition partner. In this paper, I show that it is possible for a
party to donate part of its proposing probability to another party and be better off as a
result. This appears paradoxical, even more so since the recipient never includes the
donor in its proposals. The example shows that, even though actually being selected
to propose is always valuable ex post, having a higher probability of being proposer
may be harmful.

1 Introduction

Adonation paradox occurswhen a player transfers an apparently valuable prerogative
to another player but is better off as a result (Kadane et al., 1999). The donation
paradox in power indices was identified by (Felsenthal and Machover, 1995). A
power index exhibits the donation paradox when it is possible for a player to increase
its power (as measured by the index) by donating part of its weight to another player.
If the issue at stake is the division of a fixed pie between the players, power can
be measured by the players’ expected shares of this pie. (Felsenthal and Machover,
1995, p. 258–259) refer to this definition of power as P-power and argue that no
reasonable measure of P-power would display the donation paradox.1,2

1If the issue at stake is binary (yes/no), (Laruelle and Valenciano, 2005) show that neither success
(probability of a voter getting the final outcome they want) nor decisiveness (probability of a voter
being pivotal in achieving this outcome) exhibit the donation paradox.
2Not all researchers have such a strict stance o0n power measures that fail this or similar postulates
(such as dominance); see (Holler and Napel, 2005; Kurz et al., 2015).
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In this paper, I identify a donation-type paradox that arises as an equilibrium
phenomenon in legislative bargaining over a fixed pie. The most influential model
of bargaining in legislatures is due to (Baron and Ferejohn, 1989). In this model, n
players must divide a budget by majority rule. The players have opposed preferences
in the sense that each player would like to have as high a share of the budget as pos-
sible. One of the players is randomly selected to make a proposal, and the remaining
players accept or reject. If the proposal is rejected, a new proposer is selected, always
using the same probability distribution. Being the proposer is valuable in this model:
The proposer is guaranteed a positive share and, conditional on getting a positive
share, a player gets more as a proposer than as a responder (Harrington, 1990).3

Nevertheless, this paper shows that it may be possible for a player to donate some
of its proposing probability to a recipient and be better off. This can happen even
though the recipient never includes the donor in its proposals after the donation. The
effect is triggered by the fact that the donor is disproportionately likely to receive
proposals by third parties after the donation, and this effect predominates over the
loss of proposing probability.

2 The Model

2.1 Simple Games

Let N = {1, ..., n} be the set of players. A simple game is a collectionW of subsets of
N such that N ∈ W , ∅ /∈ W , and the following monotonicity condition is satisfied:
S ∈ W implies T ∈ W for all S, T such that S ⊆ T ⊆ N . Elements of W are called
winning coalitions. A coalition S is minimal winning if S ∈ W and T /∈ W for all
T such that T � S. A player who belongs to all winning coalitions is called a veto
player.

A simple game W is a weighted majority game if there exist n nonnegative num-
bers (weights) w1, ..., wn and a positive number q such that S ∈ W if and only if∑

i∈S wi ≥ q. A weighted majority game admits a homogeneous representation if
there exist nonnegative numbers wh

1 , ..., w
h
n and a positive number qh such that S is

minimal winning if and only if
∑

i∈S wh
i = qh .

3 Proposer power or agenda-setting power arises in many settings. (Romer and Rosenthal, 1978)
show that being able to set the agenda is advantageous in a collective decision setting with a
unidimensional policy and single-peaked preferences. Proposer power is also found in various
dynamic models with an evolving status quo, see (Kalandrakis, 2010; Diermeier and Fong, 2011;
Duggan and Ma, 2018).
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2.2 The Bargaining Procedure

Let W be a simple game. Players bargain over the division of a pie of size 1 as
follows. At every round t = 1, 2, ..., Nature selects a player randomly to be the
proposer according to some probability distribution θ = (θi )i∈N , where θi ≥ 0 for
all i and

∑
i∈N θi = 1. We will refer to θi as player i’s recognition probability. The

selected player proposes a payoff vector (xi )i∈N . This payoff vector must be feasible
(
∑

i∈N xi ≤ 1), and no player can receive a negative payoff (xi ≥ 0 for all i ∈ N ).
Players vote for or against the proposal sequentially (the order does not affect the
results).4 If the set of players that voted in favor is a winning coalition, the proposal is
implemented and the game ends. Otherwise, the game proceeds to the next period in
which Nature selects a new proposer (always with the same probability distribution).
Players are risk neutral and share a discount factor δ ∈ [0, 1].

We will denote the noncooperative bargaining game by G(W, θ, δ). A pure strat-
egy for player i is a sequence σi = (σ t

i )
∞
t=1, where σ t

i , the t-th round strategy of
player i , prescribes

1. A proposal (xi )i∈N .

2. A response function assigning “yes” or “no” to all possible proposals of the other
players.

Players are free to condition their actions on the history of the game up to time
t ; however, the analysis is restricted to equilibria in which they choose not to do so.
The solution concept is stationary subgame perfect equilibrium (SSPE). Stationarity
requires that players follow the same (possibly mixed) strategy at every round t : The
probability that the proposer makes a given proposal is the same for all t regardless
of history, and the response function depends only on the current proposal and not
on what happened in the previous rounds.

Given an SSPE σ ∗, we will denote the associated expected payoff for player i
(computed at the beginning of the game, before Nature chooses the proposer) by
yi (σ ∗) -we will drop σ ∗ to simplify notation-. The expected payoff given that a
proposal is rejected is called the continuation value. The continuation value in a
stationary equilibrium σ ∗ is δyi . Continuation values play a very important role in
any SSPE. A responder must accept any offer with xi > δyi and reject any offer with
xi < δyi . Players may in principle accept or reject if xi = δyi , but there is very little
loss of generality in assuming that players accept offers with xi = δyi (see (Eraslan
and McLennan, 2013, Appendix A)). Given that continuation values act as prices,
proposers propose the cheapest winning coalition given those prices (see (Okada,
1996)).

4 An alternative to sequential voting is to assume that voting is simultaneous but all voters vote as
if they are pivotal; see (Baron and Kalai, 1993).
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2.3 The Proposer Advantage

Following common practice, I will refer to the set of players that receive a positive
payoff according to the proposal that is implemented as the coalition that forms.
The proposer advantage is the difference between a player’s payoff conditional on
being the proposer and its payoff conditional on being a coalition partner (i.e., a
member of the formed coalition other than the proposer). The proposer advantage
was originally established by (Baron and Ferejohn, 1989) and (Harrington, 1990) for
symmetric games. Because of symmetry, each player expects 1

n if the game goes to
the next period. Since the proposer only needs to convince q − 1 players to vote for
the proposal, it can offer 1

n to q − 1 players and pocket the remaining 1 − q−1
n = 1

n +
n−q
n . Thus, there is a proposer advantage as long as q < n. Introducing discounting

leads to an even greater proposer advantage. (Okada, 1996) shows that there is a
proposer advantage in general games assuming that each player is recognized with
probability 1

n and δ < 1. This result can be easily generalized to any recognition
probabilities (see (Montero, 2006, corollary 3.1)). The following lemma shows that
it can also be generalized to δ = 1, provided that no player has veto power or a
recognition probability equal to 1 (if a player has veto power, there is still a proposer
advantage if δ < 1; if a player has a monopoly on making proposals, the advantage
of being proposer is not defined).

Lemma 1 (cf. (Okada, 1996, theorem 1)) Let W be a simple game with no veto
players, and θ a vector of recognition probabilities such that θi < 1 for all i . The
game G(W, θ, δ) has a proposer advantage in the sense that a player earns strictly
more as a proposer than as a coalition partner in any SSPE. The requirement of no
veto players can be replaced by δ < 1.

Proof Let yi be the expected equilibrium payoff for player i . In a stationary equi-
librium, a player has the same yi in each period, and since there is 1 unit to divide,∑

j∈N y j ≤ 1.
First, any player with θi > 0 must have yi > 0. This is because, as a proposer,

player i can always exclude some k with yk > 0 and offer everybody else slightly
more than their continuation value; the proposal will pass as k is not a veto player.
Since

∑
j∈N\{i,k} y j < 1, it follows that i has a positive payoff as a proposer.5 More-

over, given that no player can be allocated a negative payoff as a responder, any
player with a positive recognition probability must have a positive expected payoff
overall.

Second, player i receives exactly δyi as a coalition partner in an SSPE. As a
proposer, it receives 1 − ∑

j∈S∗\{i} δy j , where

S∗ ∈ arg min
S�i,S∈W

∑

j∈S
y j .

5 If there was no k with yk > 0, it would be even easier for i to have a positive payoff as a proposer
by offering all players slightly more than 0.
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This is because i must accept any offers above its continuation value δyi . If offers
were above δyi , the proposer could undercut the offer slightly, and it would still be
accepted. Thus, i must receive exactly δyi as a coalition partner, and as a proposer, it
receives 1 − ∑

j∈S\{i} δy j for some S. If S was not the solution to the minimization
problem, there would be another coalition that could be proposed with coalition
partners getting slightly more than their continuation value; acceptance would be
guaranteed, and the proposer would be better off.

The difference between i’s payoff as a proposer and as a coalition partner is thus
1 − δ

∑
j∈S∗ y j . This is always positive except if δ = 1 and S∗ = N . We know that

S∗ 	= N , because since no player has a monopoly on making proposals, there is at
least one player k 	= i who can make proposals (and will therefore have yk > 0), and
since there are no veto players, the proposal can still pass without that player.

The requirement of there being no veto players can be replaced by δ < 1. Then,
there must be a proposer advantage because the sum of the continuation values of all
players is strictly less than 1, so i can get a payoff above δyi by proposing the grand
coalition and offering every player j a payoff slightly above δy j . 
�

3 A New Donation Paradox

The following proposition establishes the possibility that a player may gain from
donating some of its proposer probability to another player.

Proposition 1 Let W be a weighted majority game and θ = (θ1, ..., θn) and θ ′ =(
θ ′
1, ..., θ

′
n

)
two vectors of recognition probabilities such that there are players i

and j with θi > θ ′
i and θ j < θ ′

j and θk = θ ′
k for all k 	= i, j . Let y (resp. y

′
) be

the equilibrium payoff vector in an SSPE of G(W, θ, δ) (resp. G(W, θ ′, δ)), where
0 < δ ≤ 1. It can (but need not) happen that y′

i > yi .

We will prove this proposition by means of an example for δ = 1 (the case
0 < δ < 1 is briefly discussed at the end of this section). Suppose there are four
players in the legislature, controlling 3, 2, 2, and 1 votes, respectively, and 5 votes
are needed to pass a proposal.We consider two possible scenarios: Each player is rec-
ognized with a probability proportional to its number of votes (θ = (

3
8 ,

2
8 ,

2
8 ,

1
8

)
), or

alternatively, eachplayer is recognizedwith equal probability (thus θ = (
1
4 ,

1
4 ,

1
4 ,

1
4

)
).

Both scenarios are plausible: In the first case, we can think of a player with three
votes as a party comprised of three members, each of them with one vote, who
always follow party discipline, and each member is selected with equal probability;
in the second case, we can think of parties as being treated equally in terms of voice
even though they have different numbers of votes.6 Because the medium-sized play-
ers have the same recognition probability in both scenarios, we can view the move

6 (Diermeier and Merlo, 2004) study proposer selection empirically in the context of government
formation. They find that a proportional selection process modified in order to give a premium to
the largest party does best in their data.



164 M. Montero

from one scenario to the other as the large player “donating” some of its recognition
probability to the small player.

(Eraslan and McLennan, 2013) show that all SSPE have the same expected pay-
offs; therefore, if we are only interested in payoffs and not in strategies, it is enough
to find one equilibrium.

Note that players of the same type must have the same payoff in equilibrium if
they have the same recognition probability [(Montero, 2002), Lemma 2]. This result
also follows from Eraslan and McLennan’s uniqueness result (if equilibrium payoffs
are unique they must be symmetric). Thus, we can set y2 = y3 and use y2 to denote
both player 2 and player 3’s payoffs. We will focus on equilibrium strategies that are
symmetric in the sense that the two players of the same type play the same strategy
and are treated symmetrically by other players’ strategies.

What coalitions do players propose in equilibrium? The answer is straightforward
for the largest and the smallest player.

The large player always proposes {1, 2} or {1, 3} (each with probability 0.5 since
we focus on symmetric strategies). The small player is of no use to the large player
as a coalition partner: Adding the small player to a coalition that already contains
the large player never turns a losing coalition into a winning one.7

Similarly, the large player is of little use to the small player as a coalition partner.
The natural coalition for the small player to propose is the only minimal winning
coalition to which it belongs, {2, 3, 4}. A coalition like {1, 2, 4} could conceivably
be proposed if y1 ≤ y2, but this is never the case for the recognition probabilities
considered.

As for a medium-sized player like player 2, it can propose coalition {1, 2} or
coalition {2, 3, 4}, depending on how y1 compares with y2 + y4. If y1 = y2 + y4, we
have a competitive payoff in the sense that players that can replace each other in a
minimal winning coalition receive the same payoff.

Lemma 2 Consider the weighted majority game [5; 3, 2, 2, 1], and let θ =(
3
8 ,

2
8 ,

2
8 ,

1
8

)
. The equilibrium payoff vector in any SSPE with δ = 1 is y =

(
5
14 ,

4
14 ,

4
14 ,

1
14

)
.

Proof Suppose the large player proposes to each medium-sized player with proba-
bility 0.5, the small player proposes to bothmedium-sized players, and eachmedium-
sized player randomizes between proposing to the large player (with probability λ)
and proposing coalition {2, 3, 4} (with probability 1 − λ). Suppose moreover that
each coalition partner is offered its continuation value (so, for example, player 2 pro-
poses (y1, 1 − y1, 0, 0)), and players accept any offer that gives them at least their
continuation value.Note that amixed strategy can only be optimal for amedium-sized
player if y1 = y2 + y4. The following system of equations determines the expected
payoffs derived from these strategies and the equilibrium value of λ.

7 Player 4 is what (Napel and Widgrén, 2001) call an inferior player. Player 4’s vote only makes a
difference in coalition {2, 3, 4}, while players 2 and 3 have alternative coalitions that do not involve
player 4.
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y1 = 3

8
(1 − y2) + 4

8
λy1

y2 = 2

8
(1 − y1) + 3

8

1

2
y2 + 2

8
(1 − λ) y2 + 1

8
y2

y4 = 1

8
(1 − 2y2) + 4

8
(1 − λ) y4

y1 = y2 + y4

The solution to this system is y1 = 5
14 , y2 = 4

14 , y4 = 1
14 , and λ = 1

2 .
The strategies described above constitute an equilibrium because responders are

offered their continuationvalues, andproposers are proposing to the cheapest possible
coalition partners. 
�
Lemma 3 Consider the weighted majority game [5; 3, 2, 2, 1], and let θ =(
1
4 ,

1
4 ,

1
4 ,

1
4

)
. The equilibrium payoff vector in any SSPE with δ = 1 is y =

(
3
8 ,

2
8 ,

2
8 ,

1
8

)
.

Proof Suppose the large player proposes to eachmedium-sized playerwith probabil-
ity 0.5, themedium-sized players propose to the large player, and the small player pro-
poses to both medium-sized players. Suppose moreover that each coalition partner is
offered its continuation value (so, for example, player 2 proposes (y1, 1 − y1, 0, 0)),
and players accept any offer that gives them at least their continuation value. Then
continuation values are found from the following system of equations

y1 = 1

4
(1 − y2) + 2

4
y1

y2 = 1

4
(1 − y1) + 1

4

1

2
y2 + 1

4
y2

y4 = 1

4
(1 − 2y2)

The solution to this system of equations is y1 = 3
8 , y2 = 2

8 and y4 = 1
8 .

The strategies described above constitute an equilibrium because responders are
offered their continuation values, and proposers are proposing to the cheapest possi-
ble coalition partners. In particular, amedium-sized player would compare proposing
to the large player (and paying 3

8 ) with proposing to the other two players (and paying
2
8 + 1

8 = 3
8 ). Because the alternative coalition is no better than the one that is being

proposed, there is no profitable deviation. 
�
What is the effect of the donation from player 1 to player 4? The direct effect is

negative: Player 4 always proposes coalition {2, 3, 4}, so if players did not change
their strategies it would be the case that y2 would go up (as the medium-sized players
receive more proposals), y4 would go up (as the small player is more likely to be
recognized), and y1 would go down (as the large player is less likely to be recognized).
But then, it would no longer be optimal for players 2 and 3 to play a mixed strategy,
as y1 < y2 + y4. In the new equilibrium, the medium-sized players are more likely to
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propose to the large player than before. This indirect effect (the large player is more
likely to receive proposals from the medium-sized players) brings the equilibrium
back to a competitive situation in which y1 = y2 + y4. Nevertheless, the individual
values of y1, y2 and y4 are not the same as before, and player 1 is better off in this
new competitive equilibrium.

More generally, there is a range of probabilities such that player 1 can move from
a competitive allocation to another competitive allocation that is more favorable by
donating some probability to player 4. Fix the probability of being proposer for
a medium-sized player at 1

4 , and let θ1 be the probability that the large player is
selected to be proposer; then, the small player is selected with probability 1

2 − θ1.

For 1
4 ≤ θ1 ≤ 1

2 , the equilibrium is such that a medium-sized player is indifferent
between proposing to the large player and proposing to the other medium-sized
player and the small player, or equivalently y1 = y2 + y4. Let λ be the probability
that a medium-sized player proposes to the large player. Then, expected payoffs are
found from the following equations

y1 = θ1 (1 − y2) + 1

2
λy1

y2 = 1

4
(1 − y1) + θ1

2
y2 + 1

4
(1 − λ) y2 +

(
1

2
− θ1

)

y2

y4 =
(
1

2
− θ1

)

(1 − 2y2) + 1

2
(1 − λ) y4

y1 = y2 + y4

The solution for λ is 2(1 − 2θ1). It starts at 1 for θ1 = 1
4 , and it approaches 0

when θ1 approaches 1
2 . This is intuitive: If a player is less likely to be proposer with

strategies being unchanged, it becomes cheaper and will receive more proposals.
What is surprising is the overcompensation, so that the player is better off when it
is less likely to be proposer. It turns out that y1 = 2(1−θ1)

5−4θ1
, which is decreasing in

θ1.8 Payoffs for the other two types are y4 = 1−2θ1
5−4θ1

(which is decreasing in θ1 as one
would intuitively expect; the direct effect of the donation is stronger than the indirect
effect), and y2 = 1

5−4θ1
(which must be increasing in θ1 since the other payoffs are

decreasing in θ1).
For δ < 1, the range of probabilities where a mixed strategy equilibrium occurs

becomesprogressively smaller as δ gets closer to 0. Fixing theproposal probability for
each medium-sized player at 1

4 , a mixed strategy equilibrium exists for 0.25 ≤ θ1 ≤
0.50when δ = 1 as discussed above. For δ = 0.5, amixed strategy equilibrium exists
for 0.3229 ≤ θ1 ≤ 0.4182 (values rounded to four decimal places). Similarly, for δ =
0.005, the condition (again with rounded values) is 0.3746 ≤ θ1 ≤ 0.3753. It is still
the case that player 1’s payoff decreases in θ1 in this region, so the paradox still occurs.
For δ = 0, expected payoffs coincide with θ , and the paradox cannot be observed.

8 It is also concave in θ1. This implies that a donation (i.e., a reduction in θ1) increases y1 at a
decreasing rate.
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4 Generalizing the Example to a Class of Games

Suppose there are n = m + 2 players, wherem ≥ 2. Minimal winning coalitions are
of two types: {1, i} for i /∈ {1, n} and N\{1}. Hence, there are three types of players:
a large player (player 1), m medium-size players (each of which can form a winning
coalition with player 1), and one small player. A homogeneous representation would
be q = 2m + 1, w1 = 2(m − 1) + 1, wi = 2 for i /∈ {1, n} and wn = 1. The game
is close to an apex game, the only difference being that the large player and the
small player together do not have a majority. Analogously to the case of apex games,
there is exactly one game in this class for each m ≥ 2. The example discussed in the
previous section corresponds to m = 2.

Suppose player 1 is selected to propose with probability θ1, each medium-sized
player is selected with probability θm , and player n is selected with probability
1 − θ1 − mθm ≥ 0. As in the previous section, we focus on the SSPEwith symmetric
strategies. Player 1 has no use for player n as a coalition partner and will propose to
eachmedium-sized player with probability 1/m.We investigate the parameter region
where the SSPE is such that medium-sized players are indifferent between proposing
to the large player or to the other medium-sized players and the small player, that is,
y1 = (m − 1)ym + yn . Assuming δ = 1, the following conditions must be satisfied
in such an equilibrium.

y1 = θ1(1 − ym) + mθmλy1

ym = θm(1 − y1) + θ1

m
ym + (m − 1)θm(1 − λ)ym + (1 − θ1 − mθm)ym

yn = (1 − θ1 − θmm)(1 − mym) + mθm(1 − λ)yn
y1 = (m − 1)ym + yn
λ ∈ [0, 1]
y1 ≥ ym

The solution to the system of the first four equations is

λ = 1 − 2θ1
mθm

y1 = (1 − θ1)(m − 1)

2(m − 1)(1 − θ1) + mθm

ym = mθm

2(m − 1)(1 − θ1) + mθm

yn = (1 − θ1 − mθm)(m − 1)

2(m − 1)(1 − θ1) + mθm
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We now add the condition that λ = 1−2θ1
mθm

must be between 0 and 1. This is the

case when 1−mθm
2 ≤ θ1 ≤ 1

2 . For θ1 = 1
2 , λ = 0, and player 1 receives no proposals.

For θ1 = 1−mθm
2 , λ = 1.

The final condition that needs to be satisfied is y1 ≥ ym ; if this condition fails,
player n would be better off replacing one of the medium-sized players with player 1.
This condition is satisfied by the solution because y1 = (m − 1)ym + yn , so y1 < ym
would imply yn < 0. The value of yn found as a solution of the system is clearly
nonnegative.

So, the mixed strategy equilibrium region is nonempty for all m ≥ 2. It is given
by θm > 0, 1 − mθm − θ1 ≥ 0, and 1−mθm

2 ≤ θ1 ≤ 1
2 .

For θ1 in this region and keeping θm constant, player 1’s payoff decreases in θ1
(so increases if θ1 is reduced, holding θm constant, which is a “donation” from the
large to the small player). Note that if θ1 = 1−mθm

2 , then the small player also has
a proposing probability of 1−mθm

2 ; hence, the donation is only profitable up to the
point where the large and the small player have the same proposing probability. This
implies that the egalitarian protocol is invulnerable to this paradox in this class of
games.

5 Discussion

The proposer advantage means that, if we fix the vector of recognition probabilities θ

and thus the equilibrium payoffs, actually being recognized to be proposer is always
good news. However, if we allow θ to change (and strategies to adjust to the new
equilibrium), having a higher probability of being recognised can be bad news.

It is known that the indirect effect can offset the direct effect. (Baron and Ferejohn,
1989, p. 1194)) have an example with different recognition probabilities but equal
payoffs. Similarly, (Montero, 2002) shows that, for apex games, all values 0 < θ1 ≤
0.5 of the apex player’s recognition probability lead to the same expected payoffs.
If the apex player becomes the proposer more often, it receives proposals less often
so that the competitive payoff for apex games y1 = (n − 2)y2 is maintained.

An important difference between the game [5; 3, 2, 2, 1] (and other games in the
class discussed in the previous section) and apex games is that the competitive payoff
vector is unique for apex games because apex games have a unique homogeneous
representation (up to rescaling). The indifference condition y1 = (n − 2)y2 together
with y1 + (n − 1)y2 = 1 determines expected payoffs uniquely in apex games.

The game [5; 3, 2, 2, 1] has many competitive payoff vectors because it has many
homogeneous representations, so that assuming that the outcome is competitive does
not lead to a unique payoff vector. For example, [7; 4, 3, 3, 1] is a homogeneous
representation of the same game obtained by increasing the weights of the medium-
sized players and adjusting w1 and q accordingly. If we normalize the weights so
that they add up to 1, it is easy to compute all homogeneous representations. Clearly,
players 2 and 3 must have the same weight in any homogeneous representation.
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Denote the weights by w1, w2 and w4, respectively. Normalization implies that

w1 + 2w2 + w4 = 1 (1)

Homogeneity implies that w1 + w2 = 2w2 + w4, or

w1 = w2 + w4 (2)

Note that the homogeneity condition is the same as the indifference condition
that we obtained previously for a medium-sized player, but with weights instead of
payoffs. Solving this system, we obtain

w2 = 1 − 2w1 (3)

w4 = 3w1 − 1 (4)

It turns out that w2 is negatively related to w1, whereas w4 is positively related to
w1.9

Since {1, 4} and {2, 3} are losing coalitions, there are two additional constraints:
w2 > w4 guarantees that {1, 4} is losing, and w4 > 0 guarantees that {2, 3} is losing.
Taking these constraints into account,wefind that any valuew1 such that 13 < w1 < 2

5
leads to a homogeneous representation (the corresponding intervals for the other two
players are 1

3 > w2 > 1
5 and 0 < w3 < 1

5 ).
If we assume a “competitive” equilibrium inwhich y1 = y2 + y4 (equivalent votes

receive the same payoff), expected payoffs must satisfy Eqs. (3) and (4), and the
payoffs of 1 and 4 must vary together. This goes some way toward explaining the
phenomenon (if a donation from 1 to 4 affects y1 and y4, it must have a paradoxical
effect) though it does not explain why payoffs change when 1 donates probability to
4 instead of remaining constant.

6 Concluding Remarks

Being recognized as a proposer is always a good thing ex post. However, having a
higher recognition probability can hurt a player. The reason is that the indirect effect
of this donation may outweigh the direct effect: The recipient is now less likely
to receive proposals, and that effect more than compensates for the increase in the
recognition probability.

In the example identified and its generalization, the donation is only profitable
up to the point where the donor and the recipient have the same proposer probability.
It follows that the egalitarian protocol is invulnerable to the paradox in this class of
games. Whether this result extends to all games is an open question.

9 This generalizes to the class of games in the previous section as wm = 1 − 2w1 and wn = (2m −
1)w1 − m + 1.
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The paradox appears to be connected to the fact that the set of minimal winning
coalitions is not rich enough, so that the homogeneous representation of the game
is not unique. Identifying a class of games for which the paradox does not occur
(besides apex games) would be an interesting topic for future research.10

References

Baron,D. P.,&Ferejohn, J.A. (1989). Bargaining in legislatures.AmericanPolitical ScienceReview,
83, 1181–1206.

Baron, D. P., &Kalai, E. (1993). The simplest equilibrium of a majority-rule division game. Journal
of Economic Theory, 61, 290–301.

Diermeier, D., & Fong, P. (2011). Legislative bargaining with reconsideration. Quarterly Journal
of Economics, 126, 947–985.

Diermeier, D., &Merlo, A. (2004). An empirical investigation of coalitional bargaining procedures.
Journal of Public Economics, 88, 783–797.

Duggan, J., &Ma, Z. (2018). Extreme agenda setting power in dynamic bargaining games.Working
paper

Eraslan, H., & McLennan, A. (2013). Uniqueness of stationary equilibrium payoffs in coalitional
bargaining. Journal of Economic Theory, 148, 2195–2222.

Felsenthal, D. S., & Machover, M. (1995). Postulates and paradoxes of relative voting power: A
critical re-appraisal. Theory and Decision, 38, 195–229.

Felsenthal, D. S., &Machover, M. (1998). The measurement of voting power: Theory and practice,
problems and paradoxes. Edward Elgar Publishing

Harrington, J. E. (1990). The power of the proposal maker in a model of endogenous agenda
formation. Public Choice, 64, 1–20.

Holler, M., & Napel, S. (2005). Local monotonicity of power: Axiom or just a property? Quality
and Quantity, 38, 637–647.

Kadane, J. B., Stone, C. A., & Wallstrom, G. (1999). The donation paradox for peremptory chal-
lenges. Theory and Decision, 47, 139–151.

Kalandrakis, T. (2006). Proposal rights and political power. American Journal of Political Science,
50, 441–448.

Kalandrakis, T. (2010). Minimal winning coalitions and endogenous status quo. International Jour-
nal of Game Theory, 39, 617–643.

Kurz, S., Maaser, N., Napel, S., &Weber,M. (2015). Mostly sunny: A forecast of tomorrow’s power
index research. Homo Oeconomicus, 32, 133–146.

Laruelle, A., &Valenciano, F. (2005). A critical reappraisal of some voting power paradoxes.Public
Choice, 125, 17–41.

Montero,M. (2002).Noncooperative bargaining in apex games and the kernel.Games andEconomic
Behavior, 41, 309–321.

Montero, M. (2006). Noncooperative foundations of the nucleolus in majority games. Games and
Economic Behavior, 54, 380–397.

Napel, S., & Widgrén, M. (2001). Inferior players in simple games. International Journal of Game
Theory, 30, 209–220.

10 To the best of my knowledge, there are no general results on the comparative statics of changing
recognition probabilities. (Kalandrakis, 2010) shows that any expected payoffs can be obtained for
some recognition probabilities but contains no claims on what probabilities lead to what payoffs.



Bargaining in Legislatures: A New Donation Paradox 171

Okada, A. (1996). A noncooperative coalitional bargaining game with random proposers. Games
and Economic Behavior, 16, 97–108.

Romer, T., & Rosenthal, H. (1978). Political resource allocation, controlled agendas, and the status
quo. Public Choice, 33, 27–43.



Egalitarian Collective Decisions
as ‘Good’ Corporate Governance?

Federica Alberti, Werner Güth, Hartmut Kliemt, and Kei Tsutsui

Abstract Value-neutral (Robbinsian) economic science cannot directly address sub-
stantive normative issues. Economics can, however, provide analytical and empirical
methods that make implications and consequences of normative premises (more)
transparent and thereby indirectly contribute to normative opinion formation. To this
effect, we translate substantive normative premises of stakeholder value approaches
into operational axioms that characterize a class of collective decision mechanisms.
If such implications seem less attractive to stakeholder theorists than the high-minded
values from which they started in criticism of shareholder value approaches, they
should come up with alternative collective decision mechanisms or a modified set of
values.

1 Introduction and Overview

The conflict between so-called shareholder and stakeholder approaches to corporate
governance forms one if not the defining controversy of modern business ethics.
According to Milton Friedman’s traditional shareholder value approach, owners
(respectively their managerial agents) are entitled (in competition with other likewise
entitled owners) to pursue owner – or – in case of stock-companies – shareholder
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value.1 Advocates of ‘socially responsible management’ lean toward Edward Free-
man’s view that not only shareholders but all stakeholders of a company have to be
taken into account with (‘quasi-Kantian’) equal respect as ‘ends in themselves’.2

Taking an ethical stance on these issues, violates the Weberian methodological
norm of value-neutrality which respects the ‘fact-value’ (‘quid facti—quid juris’)
and the parallel ‘descriptive-prescriptive’ distinction.3 Subscribing to such a rather
orthodox view we do not deny that like all human practices, the practices of science
are norm-guided. It is a constitutive norm of value-neutral scientific practice that
scientists may claim the authority of science only in answering questions concerning
the suitability of means but in their role as scientists must remain silent on ends.4

In the next Sect. 2, we recapitulate central implications of Weberian value-
neutrality in Robbins’ “essay on the nature and significance of economic science”
(Robbins, 1932) and beyond. In Sect. 3, we show that Friedman and Freeman both
do not live up to Robbins’ methodological norms of value-neutral science. Section4
presents in an exemplary manner what value-neutral economics can contribute to
foundational controversies like that between stakeholder and shareholder concep-
tions by a translation of what adherents of quasi-Kantian respect preach into specific
procedural proposals concerning means to such ends. Section 5 further scrutinizes
the proposed procedure as a ‘technology’ in terms of its game-form5 and the relation
to the game that might emerge from this. Section6 concludes that perhaps all applied
economics should be conducted in the engineering spirit of exploring alternative
technological means rather than discussing the ends for which the means might be
used.

1 In a normative welfare economic perspective, they would, to secure Pareto efficiency, also be
normatively obliged to followmarket signals. This fairly common assumption among economists—
apparently including Friedman himself—is, however, not in line with a privilege of ownership that
conceptualizes the owner as ‘sovereign’ in disposing of private property within the limits of law: the
competitive market may provide extrinsic motives to choose in ways conducive to the attainment of
efficiency—as defined in terms of the game form—but the intrinsic motive to act accordingly need
not prevail and neither be seen as a morally binding precept to further the common weal.
2 We do not claim to present an interpretation true to what Kant could have meant. We speak of
Kantian ideals of equal interpersonal respect in opposition to utilitarian (aggregationist) ideals of
the common weal. This is the spirit in which Rawls and also Buchanan are often seen as being part
of the Kantian camp of moral philosophy and, say, Harsanyi of the utilitarian.
3 This in turn demands acknowledging a. that prescriptive statements cannot be derived from sets of
exclusively descriptive statements and b. that prescriptive statements cannot corroborate or falsify
descriptive ones.
4 For the value-neutral conception of technological research in applied science, see (Albert, 1985)
and (Albert, 2010, 2022).
5 We use the concept of the game-form as familiar from social choice theoretical debates basically
for the objective rules of the game. The Game as an object of common knowledge arises once
subjective aspects—subjective preferences and beliefs are factored in. The latter are like the game-
form also beyond choices within plays of the Game and in this sense part of the ‘rules of the Game’
along with its game-form.
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2 Relativism and Applied Economic Science

In his seminal essay, Lionel Robbins restricts applied economics to nomological
knowledge of cause-and-effect relations and to providing technological advice on
how desired ends may be achieved in the shadow of scarcity. The arguably best
characterization of the underlying narrow conception of reason has been provided
by Alisdair MacIntyre:

Reason is calculative, and it can assess truths of fact and mathematical relations but nothing
more. In the realm of practice, therefore, it can speak only of means. About ends it must be
silent. 6 (MacIntyre 1984, p. 54)

According to this narrow conception of reason, ends (aims or values) are to be
treated as exogenous to Robbinsian economics. We merely add that this conception
is adequate not only for economics as an applied science but also—and perhaps even
more so—for management science if it is interpreted as a technological discipline
that proposes means to ends without defending or censoring the ends as such.

AsRobbins (1938) himself emphasizes the silence of science about (the legitimacy
of) endsmust be extended to the problemoffixing trade-offs between the achievement
of ends that in the shadowof scarcity cannot be realized simultaneously (at least not all
to the maximal separately desired extent).7 In consequence, scientific advice seems
restricted either to the diagnosis of Pareto inferior states, and the suggestion of how
to overcome them by Pareto superior moves or to the proposal of decision-making
mechanisms that let the individuals themselves determine the relevant trade-offs. In
the latter case, which is center stage in the present context, many economists seem to
assume that unanimity in collective decisions is akin to a normative default option by
which the advisees themselves are procedurally restricted to decisions akin to Pareto
superior moves.8

If a narrow conception of reason is accepted, the preceding line of argument,
familiar as it may be, is nevertheless fundamentally flawed: if economics is under-
stood as a technological applied science (Albert, 1985) that singles out means to
the achievement of ends that must be given exogenously to economic science, then
the restriction of economic advice to Pareto improvements and/or to the pursuit of
aims, ends, or values that could be unanimously accepted by all concerned is itself

6 MacIntyre (1984) who provides this apt characterization of a narrow conception of reason is an
ardent critic of it.
7 Obviously, even in case of several Pareto improvements, not all need be maximally advantageous
to each separate individual so that even then inter-individual conflict concerning which of several
improvements should be realized prevails.
8 In Buchanan’s scheme of things, the diagnosis that an alternative is a potential Pareto improvement
is a hypothetical that must be corroborated (‘ratified’) by unanimous agreement to bringing it about.
Unanimous agreement of the actors themselves rather than the external diagnosis ofPareto inferiority
is the legitimation.
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a substantive value judgment that cannot be justified within economic science but is
exogenous to it.9

At the risk of beating this to death, technological institutional proposals of value-
neutral economics can point out how to reach the ends of particular individuals at
the expense of other individuals. Very much like technologies of bomb-building,
economic technologies can assist each of a multiplicity of parties in getting their
way in competition with others independently of the relative merits of individual
ends that may or may not prevail.10 That many economists may for themselves seek
to contribute to the peaceful resolution rather than the exacerbation of conflicts is
their personal value but nothing that is supported by methodological norms like
fact-orientation and value-neutrality of economics as a science.

Quite in line with this traditional medical ethics—as opposed to public health
ethics—has been decidedly not (!) in line with the requirements of symmetric respect
and the common weal of all patients—of some collectivity—but demanded of the
medical doctor to be partisan for her particular patient. Likewise in traditional man-
agement counseling, the established role obligation of the counselor is that of an agent
who (similar to an attorney) provides advice on what furthers the partial interests of
her particular client rather than allegedly universalizable interests of all.11

In any event, many of the ethical disputes between shareholder and stakeholder
conceptions can be side-stepped if the exogenous normative premises of arguments
are treated as hypotheticals on whose legitimacy the theorist remains silent while
focusing on means furthering aims, ends, or values. Before pursuing this strategy in
an exemplary manner in Sects. 4 and 5 with respect to stakeholder approaches, let us
briefly show that our criticisms are not directed at strawmen.

3 Friedman, Freeman as Brothers in Sin

3.1 Friedman

Shareholder value conceptions like that of Milton Friedman start from a specific
order of ‘private law’ which fulfills the general “three fundamental rules of jus-

9 Substantive restrictions to Pareto improvements on the diagnostic level and to unanimity require-
ments on the level of mechanisms may as a matter of fact be desired by particular persons. Yet,
according to value-neutrality as a constitutive methodological norm of Robbinsian economics, the
theorist has a reason to (re-)search exclusively such suggestions if those requiring her advice as a
matter of fact demand to receive exclusively advice concerning Pareto superior moves.
10 Which party will prevail is ultimately a matter of the ability to get ones way rather than a matter
of argument. Of course, the fact that economic counsel concerning instruments may or may not be
private information to the counseled party is relevant here, too. To avoid this, economists routinely
assume that information is common knowledge—or at least subject to a process of dissemination
that will approach common knowledge.
11 As in the medical case, in case of management, partisanship rather than impartiality is the basis
of the trust relationship between counselor and client.
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tice, the stability of possession, its transference by consent, and the performance of
promises” (Hume 1739, Bk III, part II, sec. xi). InWestern, Educated, Industrialized,
Rich, Democratic, WEIRD, societies on which Friedman and Freeman focus a quite
extended realm is politically specified as private and citizens are legally entitled to
follow their personal inclinations.12 They are legally entitled to exert consequences
of their choices even if those are regarded as negative, even resented as repugnant,
by third parties (unless, of course, the externalities are deemed illegitimate by law).
To the extent that the specific prevailing legal conventions of corporate law ful-
fill the general criteria laid down by Hume they empower ‘owners’ in general and
shareholders in particular to do with their possessions as seems fit to them.13

It is worth emphasizing that Milton Friedman claims that “the social responsi-
bility of business is to increase its profits” (Friedman, 1984) does not follow from
an acknowledgement of private law entitlements. Quite to the contrary, assuming
otherwise would contradict the privilege of private property that adherents of share-
holder value conceptions seek to defend. Entrepreneurs who own a firm are entitled
to choose (for whatever reasons) as seems fit to them. They cannot be under a pri-
vate law obligation to follow market signals in profit increasing ways even if such
behavior can be demonstrated to further wealth or some conception of the common
weal.

Friedman’s claim is a personal value judgment that has, as it stands neither the
authority of law nor that of science on its side.14 Atleast, single owners are clearly
legally entitled not to live up to the social responsibility that Friedman ascribes to
them. Only in case of a firm with multiple owners, a technological argument in favor
of increasing shareholder value can be offered: in this special case, the management
can discharge its fiduciary contractual obligations to multiple owners of shares who
pursue a plurality of values best by maximizing the value of tradeable shares. For, if
those who disagree with management decisions can sell at maximal share value, this
enables them to pursue their own aims, ends, or values to the largest extent outside the
contract nexus of the firm. They signal their implicit assent by not selling shares on
liquid markets. As long as they do not go short, they can be held responsible for not
doing so. According to the time-honored maxim ‘volenti non fit iniuria’, they cannot
under such consensual conditions be (ab-)used as mere means by management.15

12 So-called consumer sovereignty is just one example of this sovereignty in matters that are by
constitutional politics put beyond in period politics.
13 Böhm (1966), an influential German constitutional lawyer, uses this expression to characterize
markets as a subsystem of the economic order of a free western society. Like other members of the
so-called ordo liberal Freiburg School, he strongly sympathized with the values of the Mont Pelerin
society among whose ‘noble’ members were besides its founder F. A. v. Hayek, scholars like G.
Becker, J. M. Buchanan, M. Friedman, V. Smith.
14 By assumption, the relevant specification of law is assumed to complywith ‘the three fundamental
rules of justice’ which rule such a positive law obligation out, likewise, by assumption the value-
neutral practice of science leaves no room for justifying moral responsibilities as conclusions of
science.
15 A more detailed presentation of this argument can be found in Kliemt (2022).
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The preceding line of argument shows that maximizing share value is expressive
of respect for the aims, ends, and values of shareholders. Yet, this operationalization
of quasi-Kantian norms of interpersonal respect rests on owner privilege as charac-
terized by “the three fundamental rules of justice”. Freeman does not accept this.

3.2 Freeman

In opposition to prevailing shareholder, value conceptions of good corporate gov-
ernance which treat the firm “as a nexus of contracts” protected under the owner
privilege Edward Freeman intend to “revitalize the concept of managerial capital-
ism”:

My thesis is that we can revitalize the concept of managerial capitalism by replacing the
notion that managers have a duty to stockholders with the concept that managers bear a
fiduciary relationship to stakeholders. Stakeholders are those groups who have a stake in
or claim on the firm. Specifically, I include suppliers, customers, employees, stockholders,
and the local community, as well as management in its role as agent for these groups. I
argue that the legal, economic, political, and moral challenges to the currently received
theory of the firm, as a nexus of contracts among the owners of the factors of production
and customers, require us to revise this concept. That is, each of these stakeholder groups
has a right not to be treated as a means to some end and therefore must participate in
determining the future direction of the firm in which they have a stake. (Freeman 1984,
p. 184)

This remarkable passage has the air of a political-ethical appeal rather than that of a
contribution to a theoretical debate in economics andmanagement. Yet, it is certainly
meant also as a disciplinary contribution to the discourse about ‘what managers
should do’. So let us take it as such a contribution.

The last sentence of the passage connects two crucial theses about Freeman’s
rather comprehensive list of stakeholder groups to be respected equally (i.e., with-
out owner privilege) by management: first, “‘that each of these stakeholder groups
has a right not to be treated as means to some end’ and second, ‘therefore must
participate in determining the future direction of the firm in which they have a
stake”’.

Though much more might be said about the passage, we focus in our comments
on the comprehensiveness of the list of stakeholders and that it is a list of groups of
stakeholders whose participation is demanded.

Freeman sees the manager in a fiduciary relationship to all who may be affected
by management decisions: “I include suppliers, customers, employees, stockhold-
ers, and the local community”. This first person-statement may correctly represent
Freeman’s ‘ethical opinions’ but it does not demonstrate that a corresponding ‘right’
does exist as part of positive law. The mere demand that a right exist is not that right,
“want is not supply—hunger is not bread”.16 Neither does it suffice for the existence
of rights that broadly Kantian principles of respect are as a matter of fact widely

16 Article 2 of Bentham (1843).



Egalitarian Collective Decisions as ‘Good’ Corporate Governance? 179

shared among citizens of WEIRD societies and lead to a demand for such rights.
Finally, in Freeman’s account, the basis for the fiduciary obligations he assumes are
not legal (contractual) facts.17

So, let us turn to group orientation. The preceding extended quote speaks of groups
rather than of individuals that should never be treated merely as means. In view of
the traditional concern that in collective decisions, individual members of minorities
are permanently at risk of being used as means to the ends of majorities it seems
at least prima facie surprising that Freeman demands that in order to prevent being
used as a means “each of these stakeholder groups ... must participate in determining
the future direction of the firm”.

Since Freeman rejects the ‘currently received theory of the firm, as a nexus of
contracts’ as defining the fiduciary relationships of management his approach makes
sense only if the ‘right not to be treated as meremeans to some end’ is not sufficiently
protected by the rules of the ‘private law society’ with its protection of individual
rights by a polity-wide constitution. As a remedy, he proposes participatory proce-
dures of collective decision-making concerning strategic decisions of companies.

What Freeman seems to have in mind is akin to established institutions of man-
agerial co-determination familiar from German corporate law. But it has obvious
roots in the intellectual environment of American liberal economics as well. After
all, the Darden School at which Freeman spent most of his academic career is part
of the University of Virginia, Charlottesville. In the UVA economics department,
there has been an ongoing tradition of efforts to incorporate Kantian interpersonal
respect norms into economics. For instance, in his 1956 UNESCO report “on the
state of economics in the United States of America” Rutledge Vining, a then leading
member of the UVA economics faculty characterizes, (Virginia) Political Economy
as endorsing substantive interpersonal respect norms. In the course of his discussion,
he states: “To require of each individual that he takes no action which impairs the
freedom of any other individual is to accept the moral principle that no individual
should treat another simply as a means to an end” (Vining 1956, p. 19). This is almost
literally what Kant says.

JamesM. Buchanan, who along with Ronald Coase had joined the UVA faculty in
the mid 1950s on Vining’s initiative, has always worked in the equal mutual respect
framework to which he himself refers as ‘politics as exchange’. The voluntariness of
exchange represents interpersonal respect, and the inclusion of all affected is repre-
sented by the assumption that “‘political exchange’ necessarily involves allmembers
of the relevant community rather than the two trading partners that characterize eco-
nomic exchange”. (Buchanan 1979, p. 50, emphasis in original).18

This supports the view that Freeman definitely has more in mind than ‘boring’
German ‘corporate democracy’. What this might be is, however, hard to say without

17 Even if wewould assume that there is objective knowledge of what is ethically right and/or wrong
this would as such still not explain the existence of rights as parts of legal and/or moral institutions.
As it stands, Freeman’s list of stakeholders is no more than a personal wish list.
18 For more on this strand of ‘normative economics’, see Brennan and Kliemt (2019) and Kliemt
(2011).
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translating high-minded ethical ideals of stakeholder approaches into concrete rules.
Such a translation can make it also easier to assess the relative merits of stakeholder
vis a vis shareholder approaches.

Before we turn to that, let us note for the record that as far as the argument
goes Freeman’s appeals to ethical ideals are—like Friedman’s endorsement of the
responsibility to increase profits—rely personal opinions. Value-neutral arguments
cannot deliver a foundation for such ethical values and norms but they can contribute
to a better understanding of their potential implications and consequences. Next, we
outline in an exemplary constructive manner what such a contribution might look
like.

4 An Outline of a Procedure of Stakeholder Participation
as Egalitarian Bidding

Taken seriously the programmatic acknowledgment that each of the many “stake-
holder groups has a right not to be treated as a means to some end and therefore
must participate in determining the future direction of the firm in which they have a
stake” can hardly be operationalized in ways that allow real-world implementation.19

To illustrate the argument in principle, a discussion of employee participation along
with participation of management as agent of owners must and can do.

So let us hypothetically accept the quasi-Kantian ideal of not using others merely
as means in an n-stakeholder setting. Our aim is to add transparency by translating
values of equal respect into axioms that characterize a procedure of employee par-
ticipation. The result is an outline of a procedure that could conceivably serve as an
instrument of protecting the “right not to be treated as means to some end”.

Adding further ideals that are prevalent in WEIRD market societies, we assume
that the corporate governance structure should procedurally support the search for
universal advantage and agreement under constraints of inter-individual respect. To
this effect, basically, Buchanan’s ideal of “politics as (multilateral) exchange” must
be extended from political to non-political corporate actors.20

The mechanism we shall outline next incorporates both a common denominator
(facilitating compromise and agreement to trade off) and group-based veto power
(making compromise and concessions a necessity). As a common denominator that
facilitates compromise and agreement outside amarket also in a participatory context,
the measuring rod of money will be used.

19 That participation in interactions in regular markets can be operationalized in implementable
ways is, to put it mildly, not the least advantage of this social ‘technology’. But it is ruled out in the
group participation framework endorsed by Freeman.
20 See (Buchanan (1999), vol. 1), passimand for further discussionof some specific aspects (Brennan
and Kliemt, 2018).
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4.1 An Axiomatic Characterization of Stakeholder
Participation

Assume that the management considers plans of how to (re)structure the firm. Let M
denotes the set of mutually exclusive plans and refer to m ∈ M as a typical element
of that set. Assume that for each plan m, management states a ‘surplus claim’ S(m).

Being informed about M and S = S(m) : m ∈ M by management, which has the
prerogative of an agenda setter, the stakeholders i = 1, · · · , n(≥ 1) can participate
via bidding, i.e., stating bids bi (m) ∈ R for all m ∈ M according to the following
rules:

Veto condition: If b1(m) + · · · + bn(m) < S(m), for some m ∈ M , then plan m is
rejected.

Since stakeholder groups i = 1, · · · , n—respectively, their representatives—are
all ‘free to choose’ their monetary bids bi (m) ∈ R (including negative values), they
can obviously veto a plan by some appropriately low bid so that for any m ∈ M the
veto condition is fulfilled. By their veto, they incur the opportunity cost that m is
not realized. Otherwise, voicing an ‘appropriately low’ figure as a bid is a purely
expressive act that imposes no higher (transaction) costs on them than voicing a
higher bid.

If b1(m) + · · · + bn(m) ≥ S(m), plan m ∈ M is not vetoed. A necessary condi-
tion for implementing m ∈ M is met, and management is authorized by the rules to
consider it an eligible option.

It may be worth noting that management can subsidize (S(m) < 0) certain plans
from other resources of the company to win stakeholders over. Yet, there is no guar-
antee that any plan will meet the necessary condition for implementing it; that is,
after, stakeholders have been bidding on all m ∈ M the subset

Ma = m ∈ M : b1(m) + · · · + bn(m) ≥ S(m)

of acceptable plans m ∈ M may be empty.

Status quo condition: If Ma = φ or if, in case of Ma �= φ, none of the plans in Ma

is realized by management the status quo is maintained.

Stating all payoffs in relation to the status quo, we can assume that management
and stakeholders i = 1, · · · , n all receive 0-payoffs if either Ma = φ or Ma �= φ and
management abstains from realizing any of the acceptable plans m ∈ Ma despite
Ma �= φ.

Equal split condition: If Ma �= φ and planm ∈ Ma is realized by management, then
management receives S(m) and stakeholder groups i = 1, · · · , n earn

vi (m) − bi (m) + b1(m) + · · · + bn(m) − S(m)

n
.
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b1(m) + · · · + bn(m) − S(m) is the surplus and vi (m) is the true value of stakeholder
group i whenm ∈ Ma is realized. Of course, vi (m) usually is i’s private information
while all the other factors determining stakeholder i’s information are commonly
known from overt bidding.

If vi (m) is i’s private information, it is impossible to find solutions for the game-
form that underlies the mechanism, unless the total value v1(m) + · · · + vn(m) =
V (m) is known. However, if V (m) is common knowledge, it can be shown that the
strategic equilibrium requires

∑n
i=1 bi (m) = S(m), hence

V (m) −
n∑

i=1

bi (m) = V (m) − S(m).

If the manager is a profit maximizer, the manager leaves the smallest monetary unit
ε to each stakeholder group in the subgame-perfect equilibrium:

v1(m) − b1(m) = · · · = vn(m) − bn(m) = ε.

Therefore, the manager’s surplus claim is given by

V (m) −
n∑

i=1

bi (m) = nε

V (m) − S(m) = nε

S(m) = V (m) − nε.

Themechanismgrants veto powerwith theonly—possibly negative—‘opportunity
cost’ that arises from the fact that bidders must jointly meet the requirement of
Ma �= φ if any positively valued change is to occur. Therefore, whatever their vi (m),
the stakeholders usually have an incentive to underbid.21 Still, despite the under-
bidding incentive, bidding of the kind we suggest is at least one feasible way of
translating into procedural terms the ideal of Kantian equal respect for stakeholders
along with an adequately privileged role of management as agenda setter. Moreover,
as we endeavor to indicate next, the procedure seems normatively and empirically
more reasonable than economic folk wisdom on mechanism design may initially
suggest.

21 Only in case of commonly known v1(m) + · · · + vn(m) = S(m) underbidding incentives would
not exist.
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4.2 Properties of Participation as Egalitarian Bidding

The egalitarian bidding mechanism has three properties:

(V) The mechanism guarantees “voluntariness”.

It fulfills

vi (m) − bi (m) + b1(m) + · · · + bn(m) − S(m)

n
≥ 0

if bi (m) ≤ vi (m) for i = 1, · · · , n.
That is, stakeholder groups can only lose, relative to the status quo, when overbid-

ding; furthermore, by bidding low enough, possibly via bi (m) < 0 or bi (m) < vi (m),
each stakeholder (group) i can veto any plan m ∈ M .22

As has already been mentioned, the values vi (m) for allm ∈ M can, and as a rule,
will be private information of stakeholder groups. This obviously renders procedural
guarantees of equal treatment with respect to private values impossible. However,
this does not rule out guarantees of equal treatment with respect to monetary bids
bi (m). The latter and the equal treatment with respect to them are overt acts that are
observable.

(E) The mechanism guarantees “equal respect according to (overt) bids”.

Substituting vi (m) by bi (m) in the payoff specification for stakeholders yields
equal respect according to (overt) bids

bi (m) − bi (m) + b1(m) + · · · + bn(m) − S(m)

n

= b1(m) + · · · + bn(m) − S(m)

n
for i = 1, · · · , n.

With respect to their interpersonally observable bids, all stakeholder groups i =
1, · · · , n are treated equally by receiving an equal share of b1(m) + · · · + bn(m) −
S(m).That is, the procedure not only grants equal veto power but also equal treatment
as far as overt payoff consequences relative to the status quo are concerned (and is
egalitarian in this sense).

22 The so-called “hold out problem”, that this gives rise to, probably motivates many scholars to
reject the unanimity requirement. It should not be neglected, though, that some stakeholders i
with vi (m) < 0 for some m ∈ M may get compensated when moderately underbidding in terms of
bi (m) < vi (m). In that case, m may still be acceptable and possibly implemented by management.
In any event, the interest of guaranteeing that m ∈ Ma applies will recommend to exercise some
moderation in strategic underbidding.
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(O) When only considering whether a given plan m or the status quo should be
realized,23 the co-determination mechanism is overbidding proof.

Underbidding incentives and overbidding proofness for a given planm, of course,
can only matter when they determine the consequences of an implemented plan m:
in case of not implementing m, the consequence is only the status quo due to the
focus on a given plan m for which we analyze how consequences depend on under-,
respectively, overbidding. It does not pay for any stakeholder group i = 1, . . . , n to
overbid the valuevi (m) since, relative to truthful biddingbi (m) = vi (m), overbidding
would yield a disadvantage for stakeholder group i due to

vi (m) − bi (m) + b1(m) + · · · + bn(m) − S(m)

n

<
b1(m) + · · · + bn(m) − S(m)

n
for i = 1, · · · , n.

This reduction of payoff would apply if management implemented a plan m ∈ M
for which even the truthful bid bi (m) = vi (m) would not guarantee acceptability, so
that b1(m) + · · · + bn(m) ≥ S(m)for plan m ∈ M results exclusively from i’s over-
bidding. If for bi (m) = vi (m) planm is unacceptable, i.e., b1(m) + · · · + bi−1(m) +
vi (m) + bi+1(m) + · · · + bn(m) < S(m), stakeholder i would suffer a loss when
overbidding – bi (m) > vi (m) – due to

vi (m) − bi (m)

+b1(m) + · · · + bi−1(m) + vi (m) + bi+1(m) + · · · + bn(m) − S(m)

n

+bi (m) − vi (m)

n

= n − 1

n
[ vi (m) − bi (m)]

+b1(m) + · · · + bi−1(m) + vi (m) + bi+1(m) + · · · + bn(m) − S(m)

n
< 0

by assumption.
The co-determination mechanism of “stakeholder participation as egalitarian bid-

ding” shares the properties (V), (E), and (O) with familiar institutions like, in par-
ticular, first-price auctions.24 Belonging to a class of familiar institutions is certainly
desirable with respect to practical uses of a procedure. Yet, this is not sufficient to
vindicate a mechanism like the proposed one against other possible objections.

23 This neglects bidding by which one bids for m also in order to prevent the implementation of
another plan m̃ �= m. In such cases, under-, respectively, overbidding incentives can depend on the
expected bids after plan m̃ for which property (O) may not be true.
24 It can be shown that some such mechanisms can be fully characterized by requiring that they be
“envy-free” and meeting requirement (E) with respect to overt bids; see Güth (2011).
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5 Critical Assessment of Incentives

5.1 Underbidding Incentives

As indicated, if ideals of quasi-Kantian equal respect are procedurally expressed in
terms of “stakeholder participation as egalitarian bidding” the resulting mechanism
is not underbidding proof. It invites bid shading, i.e., bi (m) < vi (m) for m ∈ M
and i = 1, . . . , n. Yet, whether this forms a decisive argument against relying on
the mechanism depends on the aims, ends, or values that are pursued by those who
consider using it.

First, there is no procedure fulfilling properties (V), (E), and (O) that is over and
underbidding proof and generally implementable.25 A trade-off between fulfilling
desirable properties cannot be avoided in procedural implementations of the ideals
of stakeholder theories.

Second, we cannot imagine a mechanism that confers discretionary power to
make collective decisions on collective bodies and at the same time procedurally
grants veto power to each and every member of the decision-making body unless
property (V)—or some variant of it—is fulfilled (at least for groups). Adherents of
stakeholder conceptionswho reject “stakeholder participation as egalitarian bidding”
but like Freeman accept that they need to go beyond mere appeals to quasi-Kantian
ideals should come up with constructive procedural counter proposals if they intend
to uphold their values.

Third, requiring (E) along with (V) translates ideals of substantive equality into
procedural specifications. To the extent that the effects of (E) and (V) are perceived
as expressive of ideals of substantive equality by participating stakeholders, this may
psychologically (that is, causally) reduce their proclivity to underbid by strengthen-
ing the intrinsic motivation to bid truthfully or even to overbid due to some crowding
in of, say, corporate identity or corporate social responsibility concerns.

5.2 Intrinsic Motivation and Extrinsically Motivating
Incentives

The practical proof of quasi-Kantian appeals expressive of the values of stakeholder
participation which is in the institutional ‘eating’. This is why we took much care
to specify rules that conceivably allow to test the implications of approximating
Kantian normative ideals of stakeholder theories in practice. We are not naively
assuming that the implementation of our (or any alternative) procedural transla-
tion of the ideals of stakeholder theories will lead to attractive results indepen-
dent of context. Yet, there is some empirical (experimental) evidence showing that

25 Using, for instance, the revelation principle would require the highly restrictive common knowl-
edge assumption of game theoretic equilibrium analysis.
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under favorable circumstances intrinsic motives may exert much stronger influ-
ences on practical stakeholder behavior than typical conceptions of mechanism
design and principal agent theory assume in their search for ‘knave proof’ insti-
tutions.26

Experimental research on bidding mechanisms has provided ample evidence that
rather subtle aspects of implementation may matter. Moreover, some first findings of
bounded under- and even some overbidding in an explorative experiment on “egal-
itarian bidding” suggest seeking ways of strengthening such effects.27 In particular,
explicit framing to enhance awareness of properties (V), (E), and (O)maybe expected
to strengthen intrinsic motivation of stakeholders to act ‘fairly’ in what they regard
as the common interest of all stakeholders.

Of course, ultimately any co-determination mechanism for corporate governance
must live up to the test of competitive market evaluation: in countries in which the
market for corporate control is working reasonably well instances of testing ‘the
Kantian pudding in the institutional eating’ could in fact arise after some companies
implemented values of stakeholder theory in terms of procedurally fair bidding for
at least some types of decisions.

6 Concluding Remarks

The restriction to universally advantageous policy proposals that prevails in tradi-
tional so-called ‘normative economics’ whether it be Paretian, Buchanan-type con-
tractarian, or Pigovian-utilitarian is incompatible with the narrow conception of rea-
son and value-neutrality of economics as a science. Once stakeholder approaches
of good corporate governance are translated into specific procedural proposals of
collective decision and choice making—in the example of this paper—they can be
evaluated in terms of the likely effects of implementing these procedures. The result
of value-neutral economic analyzes as outlined in the preceding is technological
blueprints of mechanisms that may be used in pursuit of exogenously given values.
The result of such analyzes may support either acceptance or rejection of efforts to
implement the technologies. In any event, the technologies are instrumentally rele-

26 This point has been rightly emphasized by adherents of stakeholder conceptions from the start.
It can be supported by many findings of psychology and experimental economics. Starting from
Hume’s well-known remark “that, in contriving any system of government, and fixing the several
checks and controls of the constitution, everyman ought to be supposed a knave and to have no other
end, in all his actions, than private interest”. (Hume 1777, Essay VI, 42). Bowles (2016) provides
an excellent overview over relevant experimental results concerning the validity of the behavioral
assumptions underlying mechanism design in relation to ‘moral motives’.
27 In an explorative experimental study (Alberti et al., 2022) that implemented “stakeholder partic-
ipation as egalitarian bidding”, bounded bid shading and even some systematic overbidding could
in fact be observed. It seems that some stakeholders did not want to block a plan that might be
‘good for the firm’ even though affecting themselves negatively. Obviously more research concern-
ing effects of fairness perceptions and intrinsic motivation based on procedurally fair bidding is
necessary before stronger evidence-based claims can be made.



Egalitarian Collective Decisions as ‘Good’ Corporate Governance? 187

vant only for those who as a matter of contingent fact do share suitable values. No
claim needs to bemade concerning the universal validity of the values that are treated
as exogenous to economic science.

The analysis is in the spirit of traditional management theory that allows for
giving advice conducive to particular rather than allegedly common and/or univer-
sal interests. In this spirit, stakeholder theories should make an extended effort to
demonstrate, first, that the values they propagate can be spelled out by operational
rules, second, how the rules can be implemented institutionally in corporate gover-
nance, and third, that corporations that implement correspondingmechanisms as part
of their corporate governance structures can as a matter of fact survive and thrive in
inter-firm competition.28

If these three conditions could in fact be met, this would take the sting out of
the somewhat overblown controversy between stakeholder and shareholder concep-
tions in business ethics. Even adherents of shareholder value conceptions could then
reasonably suggest that shareholders should in pursuit of their own values support
the implementation of collective decision rules that are expressive of the values of
stakeholder conceptions of good corporate governance. Companies could be “doing
‘well’ for their shareholders in the narrow sense of Friedman by doing ‘good’ in
Freeman’s sense to (all) other stakeholders”. Whether that in fact be the case is an
empirical issue.

We are skeptical that implementing proposals like those outlined here will in fact
contribute to the attainment of democratic egalitarian ideals prevalent in WEIRD
societies. On the whole, the outline seems to demonstrate that serious efforts to
implement the appealing values invoked by stakeholder theoristsmay lead to extreme
consequences. But we believe that the search for procedural implementations of
the ideals of stakeholder theories could revitalize discussions of both managerial
capitalism a la Freeman andmarket capitalism a la Friedman by putting them on track
toward value-neutral analyzes. Merely preaching ethical ideals and to discussing
them in ideal ethical theory terms seems a dead end.
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Liability Situations with Successive
Tortfeasors

Frank Huettner and Dominik Karos

Abstract Given a tort that involves several tortfeasors, an allocation scheme
attributes to each of them that part of the damage that reflects their responsibil-
ity. We consider successive torts—i.e., torts that involve a causality chain—and
show that simple and intuitive principles, which are well-known in the law of
tort, uniquely define an allocation scheme. We show that this scheme incentivizes
agents to exhibit a certain level of care, creating an efficient prevention of acci-
dents. We further describe the unique rule according to which a liability situation
has to be adjusted after a partial settlement such that incentives to settle early are
created.

1 Introduction

A driver negligently hits a pedestrian and a physician negligently treats, thereby
aggravating, the pedestrian’s injury ... if the first tortfeasor had not acted tortiously,
the entire injury to the plaintiff—initial plus incremental damages—might have been
avoided, whereas if only the second injurer had been nonnegligent only the incremen-
tal damages could have been avoided (Landes and Posner, 1980). In such a situation,
the natural question arises: how much should each tortfeasor pay the victim in order
to compensate for the damage? The principles of attributing damages to several tort-
feasors depend on the legal regime; here we briefly summarize the discussions in
(Kornhauser and Revesz, 2000) and (Wall, 1986) that are relevant for our purposes.
Under non-joint liability, a damage must be attributed to each defendant and each
defendant has to pay a compensation for the damage attributed to him. Hence there
is a direct need for an allocation scheme that allocates damages to tortfeasors. Under
joint liability, there is no direct need for such a scheme as the plaintiff can recover the
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full damage from any defendant he prevails, subject to not being overcompensated.
However, resulting claims among the defendants may call upon an allocation scheme
for the original situation to refer to. Similarly, an allocation scheme will help in the
aftermath of settlements between the plaintiff and some of the defendants: under the
pro tanto set-off rule the damage attributable to the remaining defendants is reduced
by the settlement amount, whereas under the apportioned set-off rule it is reduced
by the damage attributable to the settling defendants. Hence while in the first case
an allocation scheme can serve as an anchor for settlements, in the second case it is
necessary to calculate the set-off rule.

How should such an allocation scheme be designed? There are normative
principles—axioms—such a scheme should satisfy: (1) It should ensure that all
damages that have been caused negligently, should be recovered. (2) It should be
consistent with a rule of liability, i.e., tortfeasors should have to pay only if they are
liable according to such a rule (Shavell, 1980). (3) It should treat equals equally. (4) In
case of successive torts, the amount attributed to a tortfeasor should not depend on the
damages that preceded his involvement. (5) A tortfeasor who created no incremental
damage but whose action provoked the next step in the causality chain is treated in
the same way as those involved in the next step. We formalize these principles, and
we show that there is only one allocation scheme that satisfies them all.

While the axiomatic approach relies solely on normative principles, there is a
second factor that should be taken int account when an allocation scheme is chosen,
namely, its ability to prevent accidents.When deciding howmuch care people should
take to prevent accidents, a government faces a trade-off between the (expected)
cost of an accident and the cost of reducing the probability that it occurs. We shall
assume that there is a unique optimal level of care, and we refer to it as the standard
of care. Agents have to be incentivized to act in accordance with the standard of
care cf. (Landes and Posner, 1980). We define a game where each agent can choose
how much to invest into the prevention of accidents and show that every allocation
scheme that satisfies two very simple axioms incentivizes agents to invest an efficient
amount.

In a liability situation with multiple tortfeasors some of them may settle with the
plaintiff. Thus, a third factor that is relevant for the design of an allocation scheme is
its effect on settlements. Both under apportioned set-off and pro tanto the payments of
the remaining agents have to be adjusted—ideally in away that incentivizes all agents
to settle early. For the allocation scheme we provide there is a unique key according
to which the settlement amount should be distributed as to affect the claims against
the remaining defendants in the desired way.

Throughout the paperwewill use the following numerical example to illustrate our
points. Two drivers have an accident and a pedestrian who stands nearby is injured,
implying a damage of $100,000.Aphysician negligently treats the pedestrian causing
an incremental damage of $900,000. The three tortfeasors have to compensate for an
overall damage of $1,000,000. The remainder of the article is structured as follows.
In Sect. 2 we focus on the normative approach and develop the unique allocation
scheme with all desired properties. In Sect. 3 we provide a minimal requirement of
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the allocation scheme so as to achieve the efficient prevention of accidents. The proper
adjustment of damages after settlements is discussed in Sect. 4. Section5 closes the
article with a brief discussion. The mathematics are postponed to the appendix.

2 Obtaining the Compensation Payments

Throughout the paperwe consider liability situationswhere groups of agents (tortfea-
sors) successively cause (incremental) damages to a plaintiff, and where the damage
caused by any but the first group is only possible because of the behavior of the
previous groups. We say that a tortfeasor directly causes an incremental damage if
he belongs to the group that caused that damage, and we say he indirectly causes a
damage if the incremental damage was caused in the sequel of his group’s action.
The plaintiff is not a member of any of these groups, and each other agent belongs
to exactly one group, i.e., we do not consider situations where an agent contributes
through multiple own acts.

An allocation scheme is a rule that specifies, for any liability situation, for how
much of the overall damage each tortfeasors must compensate the plaintiff. The lit-
erature on tortfeasors suggests several principles such an allocation scheme should
follow. We shall precisely formulate them here as axioms and investigate what allo-
cation scheme satisfies them all simultaneously.

In order to be compensated for any damage by a defendant, the plaintiff has to
prove that the damage lies in the scope of liability of the defendant, and that there
is an applicable rule of liability under which the defendant has to compensate the
plaintiff (Shavell, 1980). We shall not discuss the scope of liability in this article as
such a discussion would distract from the point we wish to make. The only thing that
needs to be decided is whether or not there is an applicable rule of liability. For the
arguments of this section it is not necessary to specify this rule; for simplicity assume
that the negligence rule is in place. We will have a closer look at the “optimal” rule
of liability in Sect. 3. The first two axioms an allocation scheme should satisfy are
easily formulated and do not need much discussion.

Axiom 1. A defendant’s compensation payment is strictly positive if and only if he
negligently, either directly or indirectly, caused a strictly positive damage.

Axiom 2. The sum of the compensation payments covers exactly all damages that
are caused negligently, either directly or indirectly.

To keep things simple we shall assume that there is no discrimination between dif-
ferent degrees of negligence; either a tortfeasor was negligent or not. In particular,
there should be no discrimination between negligent tortfeasors who caused the same
incremental damages.

Axiom 3. The compensation payments of two defendants are equal whenever (i) both
are negligent, and (ii) they entered the scene together.
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In liability situations with only one tort, the axioms we have formulated so far are
sufficient to pin down a unique allocation scheme.

Theorem 1 There is a unique allocation scheme that satisfies Axioms 1–3 on all
liability situations that are caused by simultaneous torts. It distributes the full com-
pensation payment equally among the negligent agents.

This result is hardly surprising, and the farmore challenging task is the generalization
of this allocation scheme to situations in which not all tortfeasors acted simultane-
ously. A first step is the following “uncontroversial principle” (Landes and Posner,
1980) in the law of tort.1

Axiom 4. A defendants compensation payment does not depend on the damages that
precede the damage he has caused.

In some situations a tortfeasor might actually not have caused a direct damage,
but only opened the door for future damages: suppose that in the initial example the
pedestrian was not injured in the accident, but during the check-up by a paramedic
who appeared at the scene. In this case the car drivers would still be (partly) respon-
sible for this injury. However, as their acts would no longer create a separate damage,
they can be treated as if they had caused the injury together with the paramedic. The
following axiom captures this reasoning.

Axiom 5. Any agent who did not cause a damage but made the subsequent damages
possible is treated as if he belonged to the first subsequent group that actually
caused a damage.

These five axioms are, in fact, sufficient to uniquely specify an allocation scheme.2

Theorem 2 There exists an allocation scheme that satisfies Axioms 1–5, and this
allocation scheme is unique. It proceeds as follows. All damages that are directly
or indirectly caused by at least one negligent agent will be covered. Each incremen-
tal damage is equally distributed between all negligent agents that are directly or
indirectly responsible for it.

When we apply this allocation scheme to our initial example, we see that the damage
of $100,000 has to be equally divided between the two drivers, and the incremental
damage of $900,000 has to be divided between all three tortfeasors. Hence, the com-
pensation payments will be $350,000 for each driver and $300,000 for the physician.

Interestingly the axioms in the foregoing theorem do not only uniquely define
an allocation scheme; each of them is needed to guarantee uniqueness: whenever
one of the axioms is left out, there are several allocation schemes that satisfy those
remaining.

1 Note that Axiom 4 is a implied by Young’s Strong Monotonicity for the respective TU game; an
axiom that follows from Shapley’s Additivity axiomwould be the following. Two cases can be dealt
with either separately or at once—the outcome should not depend on this.
2 A similar result for the less general case in which all players are negligent was independently
discovered by (Dehez and Ferey, 2016).
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The allocation scheme we present here is related to a well-known concept from
game theory, namely the Shapley value (Shapley, 1953) of an appropriately defined
cooperative game (Dehez and Ferey, 2013). Bearing this in mind there are several
generalizations one can think of. First, the plaintiff might be (partly) responsible for
(some of) the damages. In this case one can obtain a similar result if one includes
him as a tortfeasor in the liability situation. His net compensation payment is then the
amount of all (negligently caused) damages reduced by the payment the allocation
scheme allocates to him. Second, there might be discrimination between tortfeasors
depending on their degree of negligence. In this case Axiom 3 must necessarily be
dropped. However, if one assumes the degree of negligence is independent of the
monetary value of a damage, one obtains (together with the other axioms) a family
of allocation rules that only depend on the degrees of negligence of all tortfeasors.
Such an allocation schemewould correspond to theweightedShapley value (Shapley,
1953b; Kalai and Samet, 1987).

3 Efficiency and Deterrence

Suppose that taking care, i.e., avoiding accidents, is costly to agents: taking more
care is more expensive and results in a lower probability of an accident. Agents
then face a trade-off between saving the cost of taking care and reducing the risk of
being involved in an accident. We assume throughout that agents are rational and risk
neutral, so that they minimize their private (expected) cost. The social cost is given
by the aggregated private cost of care plus the expected cost of an accident, which is
the probability of an accident multiplied by the damage the accident would cause. It
shall be assumed that there is a unique level of care that minimizes the social cost:
in this case the additional cost of any further damage prevention would outweigh the
additional reduction of the expected cost of an accident, and the savings from taking
less care would be outweighed by the increase in the expected cost of an accident. In
order to minimize social cost government must incentivize agents to apply this care
level; henceforth, we shall refer to it as the standard of care. On the other hand, the
agents’ objective is to choose their care level so as to minimize their expected private
cost. This poses a free-rider problem as each agent may rely on the other agents’
measures to prevent accidents. In particular, it is not at all clear that the social and
private interests are aligned, see for instance (Shavell, 1980; Landes and Posner,
1980; Kornhauser and Revesz, 2000). One way for the government to reconcile
these interests is to combine Axioms 1 and 2 with an appropriate liability rule.

Axiom 1∗. An agent has to pay a positive compensation payment if and only if (i)
he caused a positive damage and (ii) his care level was lower than the standard of
care.

Axiom 2∗. The sum of the compensation payments covers exactly all damages that
have been directly or indirectly caused by at least one agent with a care level below
the standard of care.
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In contrast to Axioms 1 and 2, the Axioms 1* and 2* now refer to the socially optimal
standard of care. In this sense, they build a specification of the former, which allowed
for other interpretations of negligence. The implied liability rule, together with the
full recovery principle, already has a very strong implication. To formulate it, we
need the concept of Nash equilibrium (Nash, 1950): a Nash equilibrium is a list of
choices, one choice for each agent, such that no agent has an incentive to change
their choice, given the choices of the others. Hence, a Nash equilibrium is a situation
in which the agent’s choices are self-sufficient; whenever the society is not in a Nash
equilibrium, there is at least one agent who could unilaterally improve by choosing
differently (provided the others stick to their choices).

Theorem 3 In a society where the implemented allocation scheme satisfies Axioms
1∗ and 2∗, there is only one Nash Equilibrium. In this Nash equilibrium, each player
will choose their care level equal to the standard of care.

It is not surprising that choosing the standard of care constitutes a Nash equilibrium
– perhaps more surprising is the fact that this Nash equilibrium is unique: whenever
some potential tortfeasors do not behave appropriately, at least one of them would
benefit by choosing the standard of care.

A direct consequence of this theorem is that the replacement of Axioms 1 and 2
in Theorems 1 and 2 by Axioms 1∗ and 2∗ leads to the characterizations of (unique)
allocation schemes that create the desired incentives.

4 Settlements

In this sectionwe shall take the allocation scheme that has been described in Sect. 2 as
given. When one of the defendants settles, the liability situation is adjusted: the set-
tling agent is removed and the remaining agents have to compensate for the original
damage either net the settlement amount (pro tanto rule) or net the amount the allo-
cation scheme would attribute to the settling agent (apportioned set-off rule). In the
case of simultaneous tortfeasors this reduction is easily calculated, as the remaining
damage is equally split between all agents who did not settle. If, however, there have
been several subsequent torts, it is not obvious what part of the settlement amount
should be used in order to reduce each incremental damage. A settlement amendment
scheme is a list of weights, one for each incremental damage, that add up to 100%.
It serves as the key according to which any settlement amount is distributed between
all the damages of the causality chain. (In particular, it is independent of the settle-
ment amount.) So, any settlement leads to a new liability situation where the settling
agent is removed from his groups, and the damage of each group is adjusted by that
percentage of the settlement amount that is specified by the settlement amendment
scheme.

Under the apportioned set-off rule the payments of non-settling agents should
not be affected by someone else’s settlement; otherwise there would be at least one
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tortfeasor who benefits from somebody else’s early settlement. Under the pro tanto
rule, one would expect the new payments of all non-settling agents to be higher
whenever the settlement is lower than what is originally specified by the allocation
rule. If a settlement amendment scheme achieves the latter, it promotes settlements.
The emphasis here lies on all non-settling agents: if the settlement amount is lower
than the allocation payment, it is clear that under the pro tanto there is at least one
agent who will have to pay more. Requiring that this holds for all agents, however,
pins down a unique settlement amendment scheme.

Theorem 4 There is a unique settlement amendment scheme that promotes settle-
ments. According to this scheme each incremental damage is adjusted as follows:

1. if the settling agent was neither directly nor indirectly responsible for the incre-
mental damage, it is not adjusted,

2. otherwise it is divided by the number of negligent agents who are directly or
indirectly responsible for it (including the settling agent),

3. this per capita incremental damage is multiplied by the ratio between the settling
agent’s settlement amount and the amount he would have to pay according to the
allocation scheme,

4. the damage is reduced by this amount.

We shall apply this settlement amendment scheme to our initial example in the case
that one of the drivers settles at an amount of $210.000. (A general formula for the
weights in this settlement amendment scheme is provided in the appendix.) The driver
is (directly or indirectly) responsible for all incremental damages, so step 1 does not
apply. The driver is involved in two incremental damages, namely $100.000 (with one
other tortfeasor) and $900.000 (with two other tortfeasors.) Thus, the per capita dam-
ages in step 2 are $50,000 and $300,000. The driver settles at $210.000 which is 60%
of the amount specified by the allocation scheme, whichwas $350.000. So, following
step 3, we find 60% × $50, 000 = $30, 000 and 60% × $300, 000 = $180, 000. In
step 4, the incremental damages are reduced by these amounts. That is, after the settle-
ment, the first incremental damage is reduced to $100.00 − $30, 000 = $70, 000 and
the second one to $900.000 − $180, 000 = $720, 000. Thus, the remaining agents
face a new liability situation with incremental damages $70,000 and $720,000; the
overall amount left to compensate for is $790.000. Applying the original allocation
scheme described in Sect. 2 to this new situation leads to payments of $430,000 for
the non-settling driver and $360,000 for the physician.

Interestingly, this is also the only settlement amendment scheme that ensures that
under the apportioned set-off rule the payments of non-settling agents in the original
and new liability situations are equal.

5 Conclusion

We have shown that the rigid use of reasonable and commonly accepted principles
in the law of tort uniquely determines a scheme according to which compensation
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payments should be allocated to several tortfeasors. Even under the joint and several
liability rule (where such an allocation scheme is not explicitly used), these payments
can be used as an anchor. In particular, together with a unique settlement amendment
scheme, they promote early settlements. The allocation scheme we provided also
incentivizes agents to apply the efficient standard of care, so that a socially efficient
outcome can be achieved. Indeed, every allocation scheme that satisfies consistency
with a rule of liability (which is defined by a standard of care) and ensures the recovery
of all damages that have negligently been caused, will lead to an efficient outcome
in the unique Nash equilibrium. Further solution concepts from cooperative game
theory, in particular the nucleolus are studied by (Dehez andFerey, 2016).Anobvious
desideratum for future research is to provide a characterization for the nucleolus.
Another question would be to investigate, e.g., egalitarian Shapley values, according
to which a given percentage of the damage is equally split whereas the remainder is
split according to the Shapley value.3 At first, this might appear surprising; however,
it is common to have all involved parties suffer to some extend (e.g., to spend time
and money on legal advice). Further, it might set incentives to all parties to abstain
from hidden actions so to prevent the creation of damage.
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Mathematical Appendix

Proofs of Theorems 1 and 2

A liability situation is a triple (N ,S,�) where N is the (finite) set of tortfea-
sors, S = (Sk)

m
k=1 is a vector of coalitions Sk ⊆ N with Sk ∩ Sl = ∅ for all k �= l,

and
⋃m

k=1 Sk = N , and � = (�k)
m
k=1 ∈ R

m is a vector of non-negative damages.
An allocation scheme is a map f that maps any liability situation (N ,S,�) on a
vector ( fi (N ,S,�))i∈N ∈ R

N
≥0 of compensation payments. For a liability situation

(N ,S,�) denote by S∗
k the members of Sk who were negligent, let N ∗ = ⋃m

k=1 S∗
k ,

and let

�∗
k =

{
�k if

⋃
l≤k S∗

l �= ∅,

0 otherwise

be the damages that are caused (directly or indirectly) by at least one negligent agent.
The mathematical formulation of the axioms 1–5 is as follows.

3 A characterization similar to the one presented in Theorem 2 could be developed based on (Casajus
and Huettner, 2014).
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Axiom 1. For any liability situation (N ,S,�) and any i ∈ N it holds that fi (N ,S,

�) > 0 if and only if there is k such that i ∈ S∗
k and

∑
l≥k �l > 0.

Axiom 2. For any liability situation (N ,S,�) it holds that
∑

i∈N fi (N ,S,�) =∑m
k=1 �∗

k .
Axiom 3. For any liability situation (N ,S,�) and any two agents i, j ∈ N with

i, j ∈ S∗
k for some k = 1, . . . , m it holds that fi (N ,S,�) = f j (N ,S,�).

Axiom 4. If (N ,S,�) and
(
N ,S,�′) are such that there is k ≤ m with �′

h = �h for
all h ≥ k, then fi (N ,S,�) = fi

(
N ,S,�′) for all i ∈ ⋃m

l=k Sl .
Axiom 5. For all liability situations (N ,S,�) with �k = 0 for some k it holds that

f (N ,S,�) = f (N ,S−k,�−k) ,

where

S−k = (S1, . . . , Sk−1, Sk ∪ Sk+1, . . . , Sm)

�−k = (�1, . . . ,�k−1,�k+1, . . . , �m) .

Any liability situation (N ,S,�) can be naturally associated with a characteristic
function form game

(
N , vN ,S,�

)
by setting

vN ,S,� (T ) =
∑

k:⋃k
l=1 S∗

l ⊆T

�∗
k .

for all T ⊆ N (Dehez and Ferey, 2013). In particular, players who are not negligent
are null players in this game.

Proof of Theorem 1.
The proposed allocation scheme f is given by

fi (N ,S,�) =
{

�∗
1

|N ∗| if i ∈ N ∗,
0 otherwise.

Clearly, f satisfies Axioms 1–3. Suppose there is another allocation scheme g that
satisfies all three axioms as well. By Axiom 1 gi (N ,S,�) = 0 = fi (N ,S,�) for
all i /∈ N ∗. If there is at least one i ∈ N ∗ then, by Axiom 2,

∑
i∈N ∗ gi (N ,S,�) =

�∗
1 = �1. Hence, by Axiom 3, gi (N ,S,�) = �1

|N ∗| = fi (N ,S,�). Hence, f and g
coincide. Q.E.D.

Note that the Axioms 1–3 are independent. The allocation scheme that splits the
damage equally among all players satisfies Axioms 1 and 3, but not 2. The allocation
scheme that assigns 50% of the damage according to our allocation scheme and
leaves the remaining damage undistributed satisfies Axioms 1 and 3, but not 2. The
allocation scheme that assigns the weighed Shapley value to each player satisfies
Axioms 1 and 3, but not 2.
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Proof of Theorem 2.
We have to prove that the allocation scheme f defined by

fi (N ,S,�) =
∑

k:i∈⋃k
l=1 S∗

k

�∗
k∣

∣
∣
⋃k

l=1 S∗
k

∣
∣
∣
.

for all i ∈ N is the only allocation scheme that satisfies axioms 1–5. It can easily be
seen that

f (N ,S,�) = Sh
(
N , vN ,S,� (S)

)
, (1)

where Sh is the Shapley value (Shapley, 1953). Hence, Axiom 1–3 follow from the
null player property, efficiency, and symmetry of the Shapley value. Axiom 5 holds
as the two liability situations (N ,S,�) and (N ,S−k,�−k) are associated with the
same characteristic function form game. Axiom 4 is satisfied because of the strong
monotonicity of the Shapley value (Young, 1985) as vN ,S,�(S) − vN ,S,� (S \ {i}) =
vN ,S,�′

(S) − vN ,S,�′
(S \ {i}) for all such i .

For the uniqueness of f suppose that there is another allocation scheme g
that satisfies the axioms as well. For any liability situation (N ,S,�) let I (�) =
|{k : �k > 0}|. If I (�) = 0, then there are no positive damages, and Axiom 1
implies that gi (N ,S,�) = 0 = fi (N ,S,�) for all i ∈ N . Let (N ,S,�) be such
that I (�) ≥ 1, and that the claim is true for all liability situations

(
N ,S′,�′) with

I
(
�′) < I (�). By Axiom 5 we can assume without loss of generality that �1 > 0.

Define
(
N ,S,�′) by �′

1 = 0 and �′
k = �k for all k ≥ 2. Then

gi (N ,S,�) = gi
(
N ,S,�′) = fi

(
N ,S,�′) = fi (N ,S,�)

for all i ∈ ⋃m
l=2 Sl by Axiom 4 and the induction hypothesis. Hence, gi (N ,S,�) =

fi (N ,S,�) for all i ∈ S1 by Axioms 2, and 3. Q.E.D.
For the independenceof the axiomsnote that the allocation scheme f 1i (N ,S,�) =

∑
k:i∈⋃k

l=1 Sl

�∗
k∣

∣
∣
⋃k

l=1 Sl

∣
∣
∣
satisfies all axioms but Axiom 1. Further, f 2i (N ,S,�) =

1
2 fi (N ,S,�) satisfies all axioms but Axiom 2. If the Shapley value in Eq. (1) is
replaced by a weighted Shapley value (Shapley, 1953b; Kalai and Samet, 1987) one
obtains an allocation scheme that satisfies all axioms but Axiom 3. The allocation
scheme

f 4i (N ,S,�) =
{

1|⋃m
k=1 S∗

k |
∑m

k=1 �∗
k , if i ∈ S∗

k for some k = 1, . . . , m

0, otherwise

satisfies all axioms but Axiom 4.
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The allocation scheme

f 5i (N ,S,�) =
{∑

k:i∈S∗
k

�∗
k|S∗
k | , if i ∈ S∗

k for some k = 1, . . . , m

0, otherwise

satisfies all axioms but Axiom 5.

Proof of Theorem 3

Let (N ,S,�) be a (fixed) liability situation. Let xi ∈ R be agent i’s level of care and
denote by Ci (xi ) the associated private cost of agent i , where Ci is an increasing
function. By pk

(
(xi )i∈Sk

)
denote the probability that group Sk causes damage �k

provided that each i ∈ Sk chooses xi as his level of care; let pk be decreasing in all
coordinates. Then the expected social costs of the liability situation are given by

SC (x) =
∑

i∈N

Ci (xi ) +
m∑

k=1

pk
(
(xi )i∈Sk

)
�k . (2)

Assume that SC has a unique minimum,4 and denote the minimizer of SC by x∗ ∈
R

N . We interpret x∗
i as the standard of care that applies to agent i ; in particular,

different standards of care may apply to different agents in the liability situation. The
adapted axioms then read as follows.

Axiom 1∗. For any liability situation (N ,S,�) and any i ∈ N it holds that fi (N ,S,

�) > 0 if and only if xi < x∗
i and

∑
k:i∈⋃k

l=1 Sk
�k > 0.

Axiom 2∗. For any liability situation (N ,S,�) it holds that
∑

i∈N fi (N ,S,�) =∑m
k=1 �∗

k , where

�∗
k =

{
�k if there is i ∈ ⋃

l≤k Sl with xi < x∗
i ,

0 otherwise.

Proof of Theorem 3.
We first show that x∗ is a Nash equilibrium. It is obvious that no agent has an

incentive to choose xi > x∗
i . Suppose that all agents j ∈ N \ {i} chose x j = x∗

j and
assume that xi < x∗

i . Then agent i’s expected payment is

Ci (xi ) +
∑

k:i∈⋃k
l=1 Sl

pk

((
x j

)
j∈Sk

)
�k .

4 Existence and uniqueness can be guaranteed for instance if Ci is convex for all i and pk is strictly
convex.
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as i has to recover the full damage alone. As x∗ is the unique minimizer of the social
cost function in Eq. (2) it holds that

SC
(
x∗) =

∑

j∈N

C j
(
x∗

j

) +
m∑

k=1

pk

((
x∗

j

)
j∈Sk

)
�k

<
∑

j �=i

C j
(
x∗

j

) + Ci (xi ) +
∑

k:i /∈⋃k
l=1 Sl

pk

((
x∗

j

)
j∈Sk

)
�k

+
∑

k:i∈⋃k
l=1 Sl

pk

(
xi ,

(
x∗

j

)
j∈Sk\{i}

)
�k

and therefore

Ci (xi ) +
∑

k:i∈⋃k
l=1 Sl

pk

(
xi ,

(
x∗

j

)
j∈Sk\{i}

)
�k > Ci

(
x∗

i

) +
∑

k:i∈⋃k
l=1 Sl

pk

((
x∗

j

)
j∈Sk

)
�k

≥ Ci
(
x∗

i

)
.

Hence, xi imposes higher expected costs on i than x∗
i , so x∗ is a Nash Equilibrium.

We now show that x∗ is, in fact, the only Nash Equilibrium. For this purpose let
x be vector of care levels, and assume that x is a Nash Equilibrium. Let A be the
set of agents who choose x j = x∗

j , and let B = N \ A the set of agents who choose
xi < x∗

i . (Recall that no agent would choose x j > x∗
j in a Nash Equilibrium.) Then,

by Axioms 1∗ and 2∗, the total expected costs that the agents in B have to bear are

∑

i∈B

Ci (xi ) +
∑

k:⋃k
l=1 Sl∩B �=∅

pk

((
x∗

j

)
j∈A∩Sk

, (xi )i∈B∩Sk

)
�k .

(Recall that �k = �∗
k for all k with

⋃k
l=1 Sl ∩ B �= ∅.) By the definition of x∗ we

have SC (x∗) < SC (x) and therefore,

∑

i∈B

Ci (xi ) +
∑

k:⋃k
l=1 Sl∩B �=∅

pk

((
x∗

j

)
j∈A∩Sk

, (xi )i∈B∩Sk

)
�k

>
∑

i∈B

Ci
(
x∗

i

) +
∑

k:⋃k
l=1 Sl∩B �=∅

pk

((
x∗

i

)
i∈Sk

)
�k

≥
∑

i∈B

Ci
(
x∗

i

)
.

Since the aggregated expected costs of the agents in B are strictly greater if they

choose
(
x∗

i

)
i∈B than if they choose

(
x∗

j

)

j∈B
, there must be at least one agent i ∈ B

whose private expected costs are strictly greater from choosing xi than from choosing
x∗

i . Hence, x cannot be a Nash Equilibrium. Q.E.D.
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Proof of Theorem 4

A settlement amendment scheme is a vector (rk)
m
k=1 with rk ≥ 0 for all k = 1, . . . , m

and
∑m

k=1 rk = 1. If agent i settles and pays an amount θ , the remaining agents face
the new liability situation

(
N \ {i},S′,�′) with

S′
k = Sk \ {i}

�′
k = �k − rkθ.

The settlement amendment scheme r promotes settlements if

f j
(
N \ {i},S′,�′) > f j (N ,S,�)

for all j �= i if and only if θ < fi (N ,S,�).
Proof of Theorem 4.
The proposed settlement amendment scheme is given by

rk =
⎧
⎨

⎩

�∗
k∣

∣
∣
⋃k

l=1 S∗
l

∣
∣
∣

1
fi (N ,S,�)

if i ∈ ⋃k
l=1 S′

l

0 otherwise.

It is easy to verify that r has the desired property; in fact, this follows from the
consistency of the Shapley value (Hart and Mas-Colell, 1989).

Let r promote settlements and let i be an agent with fi (N ,S,�) > 0 who
settles at θ . Then f j

(
N \ {i},S′,�′) ≤ f j (N ,S,�) for all j �= i if and only if

θ ≥ fi (N ,S,�). In case that θ = fi (N ,S,�) one further obtains

∑

j �=i

f j
(
N ,S′,�′) =

m∑

k=1

�∗
k − θ =

m∑

k=1

�∗
k − fi (N ,S,�) =

∑

j �=i

f j (N ,S,�) .

Hence, in this case it must hold that f j
(
N \ {i},S′,�′) = f j (N ,S,�) for all j �= i .

Using the definitions of f and
(
N \ {i},S′,�′) this leads to

∑

k: j∈⋃k
l=1 Sl

�∗
k∣

∣
∣
⋃k

l=1 Sl

∣
∣
∣

= f j (N ,S,�) = f j
(
N \ {i},S′,�′)

=
∑

k: j∈⋃k
l=1 Sl

�∗
k − rk fi (N ,S,�)
∣
∣
∣
⋃k

l=1 Sl \ {i}
∣
∣
∣
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or equivalently

∑

k: j∈⋃k
l=1 Sl

rk fi (N ,S,�)
∣
∣
∣
⋃k

l=1 Sl \ {i}
∣
∣
∣

=
∑

k: j∈⋃k
l=1 Sl

⎛

⎝
�∗

k∣
∣
∣
⋃k

l=1 Sl \ {i}
∣
∣
∣

− �∗
k∣

∣
∣
⋃k

l=1 Sl

∣
∣
∣

⎞

⎠ (3)

for all j �= i . If S1 �= {i} these arem linear equations that are linearly independent (as
the system is triangular and all diagonal entries are strictly positive), so the solution
is unique. If S1 = {i} the requirement that

∑m
k=1 rk = 1 is another constraint that is

linearly independent of the m − 1 independent (non-trivial) equations in (3). Hence,
in both cases the solution is unique. As the proposed settlement amendment scheme
r solves this linear equation system, it is the only solution. Q.E.D.
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Solidarity and Fair Taxation
in TU Games

André Casajus

Abstract We consider an analytic formulation of the class of efficient, linear, and
symmetric values for TU games that, in contrast to previous approaches, which rely
on the standard basis, rests on the linear representation of TU games by unanimity
games. Unlike most of the other formulae for this class, our formula allows for an
economic interpretation in terms of taxing the Shapley payoffs of unanimity games.
We identify those parameters for which the values behave economically sound, i.e.,
for which the values satisfy desirability and positivity. Put differently, we indicate
requirements on fair taxation in TU games by which solidarity among players is
expressed.

1 Introduction

Consider the Barbie family consisting of mother Barbie, father Ken, and their little
daughter Aqua,1 which is of an age where she neither generates income nor affects
the generation of income by her parents. If the family income would be spent on
its members well-being according to their contributions to the former, then poor
Aqua would end up very miserable. In reality, some sort of “solidarity” is expressed
among the members of a family—part of the family income goes to “unproductive”
members like Aqua.

Situations like those above can be modeled by TU games. The Shapley value
(Shapley, 1953) probably is the most eminent point-solution concept for TU games.
Its standard characterization involves four axioms: efficiency, additivity/linearity,
symmetry, and the null player axiom. In a sense, it is mainly the latter property that
prevents the Shapley value to allow for solidarity among the players. Irrespective of

1Note that Aqua also is the name of a Danish-Norwegian Eurodance music group, best known for
their 1997 multi-platinum single “Barbie Girl”.
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the productivitywithin thewhole society, the null player axiom requires unproductive
players to obtain a zero payoff. Moreover, together with additivity, the null player
property already entails marginality (Young, 1985); i.e., the players’ payoffs depend
only on their own productivities measured by marginal contributions, respectively.

So, if one wishes values to allow for solidarity considerations, one has to drop
the null player axiom from the list of required properties. But then we are down
to the class of values obeying efficiency, linearity, and symmetry. Obviously, this
large class contains a lot of values that deviate from the Shapley value not only
by economically sound solidarity considerations. For example, the equal surplus
division value (Driessen & Funaki, 1991) and the consensus value (Ju et al., 2007)
are members of this class, but fail positivity (Kalai & Samet, 1987). That is, these
values may assign negative payoffs in monotonic games, i.e., in games where no
player ever is destructive in terms of her marginal contributions. We feel that this
does not fit well our intuitions on solidarity. Moreover, values in this class may not
meet desirability (Maschler & Peleg, 1966); i.e., a player who is more productive
than another one may end up with a lower payoff. Again, this would overstretch our
sense of solidarity.

Formulae for the class of efficient, linear, and symmetric values (ELS values) have
been proposed by Ruiz et al. (1998), Driessen and Radzik (2003), Chameni Nembua
and Andjiga (2008), and Hernandez-Lamoneda et al. (2008). Recently, Chameni
Nembua (2012) and Malawski (2013) came up with a more interpretational one. In
essence, the players’ marginal contributions within a coalition are taxed at a rate
depending on its size, while the tax revenue is distributed evenly among the other
players in the coalition under consideration.

We suggest and explore an alternative formula for this class, already indicated by
Radzik andDriessen (2009, p. 5), which also is interpretable in terms of taxation. The
main idea of our approach is to tax and redistribute the Shapley payoffs of unanimity
games. First, the Shapley payoffs are taxed at a certain rate, which depends on the
cardinality of the set of productive players in such a game. And second, the overall
tax revenue is distributed equally among all players. Linearity extends these payoffs
to general TU games.

Radzik and Driessen (2013) provide conditions on the parameters of the formula
due to Driessen and Radzik (2003) such that the resulting value satisfies desirability
or both positivity and desirability, respectively. Recently, (Radzik, 2021, Theorem 6)
provides conditions on the parameters of this formula such that the resulting value
satisfies positivity.

In this paper, we attempt analogous conditions on the parameters of our formula.
First, we prepare our main results by showing the relation between the parameters
of our formula and the parameters of the Driessen–Radzik formula (Propositions 2
and 3). Then, we identify those parameters that entail desirability (Theorem 1).
Since there seems to be no nice way to describe the parameters that yield positiv-
ity, we first identify those parameters that entail positivity for null players both for
the Driessen–Radzik formula (Theorem 2) and for our formula (Theorem 3). Only
then, we describe the parameters that yield positivity (Remark 4). Combining the
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afore-mentioned results, we obtain requirements on the parameters that imply both
desirability and positivity (Theorem 4). Finally, we identify the parameters that guar-
antee the acceptability properties suggested by Joosten et al. (1994) and by Radzik
and Driessen (2013) (Propositions 4 and 5).

This paper is organized as follows: In the second section, we introduce basic
definitions and notation. The third section surveys formulae for ELS values and
introduces a new parametrization for this class. In section four, we provide conditions
on the parameters of our formulae such that one or another of the desirable properties
mentioned above are satisfied. The appendix contains the lengthier proofs.

2 Basic Definitions and Notation

A (TU) game is a pair (N , v) consisting of a non-empty and finite set of players N
and a coalition function v : 2N → R with v (∅) = 0. Let V (N ) denote the set of
coalition functions for N . Since we work within a fixed player set, we frequently
drop the player set as an argument. In particular, we write V instead of V (N ) and
address v ∈ V as a game. Subsets of N are called coalitions; v (S) is called the
worth of coalition S. For v,w ∈ V and λ ∈ R, the coalition functions v + w ∈ V

and λ · v ∈ V are given by (v + w) (S) = v (S) + w (S) and (λ · v) (S) = λ · v (S)

for all S ⊆ N . For T ⊆ N , T �= ∅, the game uT ∈ V, uT (S) = 1 if T ⊆ S and
uT (S) = 0 for T � S, is called a unanimity game. For T ⊆ N , T �= ∅, the game
eT ∈ V, eT (S) = 1 if T = S and eT (S) = 0 for T �= S, is called a standard game.
A game v is called monotonic if v (S) ≥ v (T ) for all S, T ⊆ N such that T ⊆ S.

Any v ∈ V can be uniquely represented by unanimity games,

v =
∑

T⊆N :T �=∅
λT (v) · uT , (1)

where the Harsanyi dividends, λT (v) , T ⊆ N , T �= ∅ (Harsanyi, 1959) are given
implicitly by

v (S) =
∑

T⊆S:T �=∅
λT (v) for all S ⊆ N , S �= ∅. (2)

For v ∈ V, i ∈ N , and S ⊆ N \ {i} , the marginal contribution of i to S in v

is given by MCv
i (S) := v (S ∪ {i}) − v (S) . Player i ∈ N is called a null player in

v ∈ V if MCv
i (S) = 0 for all S ⊆ N \ {i}; players i, j ∈ N are called symmetric

in v ∈ V if MCv
i (S) = MCv

j (S) for all S ⊆ N \ {i, j}.
A value on N is an operator ϕ that assigns a payoff vector ϕ (v) ∈ R

N to any
v ∈ V. For S ⊆ N , we denote

∑
i∈S ϕi (v) by ϕS (v). The Shapley value (Shapley,

1953), Sh, given by
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Shi (v) :=
∑

T⊆N :i∈T

λT (v)

|T | for all i ∈ N , v ∈ V (3)

is the unique value on N that satisfies the axioms E, A (or L), S, and N below.

Efficiency, E. For all v ∈ V, ϕN (v) = v (N ) .

Additivity, A. For all v,w ∈ V, ϕ (v + w) = ϕ (v) + ϕ (w) .

Null player, N. For all v ∈ V and all i ∈ N , who are null players in v, ϕi (v) = 0.

We further refer to the following standard axioms.

Linearity, L. For allv,w ∈ V andλ ∈ R, ϕ (v + w) = ϕ (v) + ϕ (w) andϕ (λ · v) =
λ · ϕ (v) .

Symmetry, S.For allv ∈ V, i ∈ N , and all bijectionsπ : N → N , ϕπ(i)
(
v ◦ π−1

) =
ϕi (v).

Continuity, C. The mapping ϕ : V → R
N is continuous.

Moreover, we refer to the following values, which also obey E, L, and S. The
equal division value, ED, is given by

EDi (v) := v (N )

|N | for all i ∈ N , v ∈ V.

The egalitarian Shapley values (Joosten, 1996), Shα,α ∈ [0, 1] , are givenbyShα =
α · Sh + (1 − α) · ED.The equal surplus division value (Driessen&Funaki, 1991),
ES, is given by

ESi (v) := v ({i}) + v (N ) − ∑
j∈N v ({ j})

|N | for all i ∈ N , v ∈ V.

The solidarity value (Nowak & Radzik, 1994), So, is given by

Soi (v) :=
∑

S⊆N :i∈S

1(|N |
|S|

)
· |S|

∑

j∈S

v (S) − v (S \ { j})
|S| for all i ∈ N , v ∈ V.

The consensus value (Ju et al., 2007), Con, is given by Con = 1
2 · Sh + 1

2 · ES. The
least-square pre-nucleolus (Ruiz et al., 1996), LSPN, is given by

LSPNi (v) := Bai (v) + v (N ) − ∑
j∈N Ba j (v)

|N | for all i ∈ N , v ∈ V,

where Ba stands for the Banzhaf value (Banzhaf, 1965; Owen, 1975),

Bai (v) :=
∑

T⊆N :i∈T

λT (v)

2|T |−1
for all i ∈ N , v ∈ V.
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3 Efficient, Linear, and Symmetric Values

In this section, we first provide the formulae for the class of efficient, linear, and sym-
metric values (henceforth, ELS values) mentioned in the introduction. The formulae
below apply to all v ∈ V and i ∈ N .

Ruiz et al. (1998): For ρ = (
ρ1, . . . , ρ|N |−1

) ∈ R
|N |−1, the ELS value RVZρ is

given by

RVZρ

i (v) := v (N )

|N | +
∑

S�N :i∈S

ρ|S|
|S| · v (S) −

∑

S⊆N\{i}:S �=∅

ρ|S|
|N | − |S| · v (S) .

Driessen and Radzik (2003)2: For b = (
b1, . . . , b|N |−1

) ∈ R
|N |−1, the ELS value

DRb is given by

DRb
i (v) := v (N )

|N | +
∑

S�N\{i}

b|S|+1 · v (S ∪ {i})
( |N |

|S| + 1

)
(|S| + 1)

−
∑

S⊆N\{i}:S �=∅

b|S| · v (S)
( |N |

|S| + 1

)
(|S| + 1)

.

(4)

A major disadvantage of the above formulae is that the parameters can hardly be
interpreted in economic terms. To remedy this, (Chameni Nembua, 2012) proposes
another type of parametrization.3 For α = (

α2, . . . , α|N |
) ∈ R

|N |−1, the ELS value
CNα is given by

CNa
i (v) := v ({i})

|N | +
∑

S⊆N :i∈S,|S|>1

AMCv
i (S, α)(|N |

|S|
)

· |S|
,

where

AMCv
i (S, α) := α|S| · [v (S) − v (S \ {i})] + 1 − α|S|

|S| − 1

∑

j∈S\{i}
[v (S) − v (S \ { j})] .

According to this formula, a player’s payoff is some average of marginal con-
tributions, both of her own ones and the other players’ ones. Within a coalition
S, the marginal contribution of player i ∈ S is taxed at a rate of 1 − α|S|, leav-

2 Chameni Nembua and Andjiga (2008) and Malawski (2013) (and personal communication) con-
sider essentially the same formulae, the latter under the name inversely procedural values.Moreover,
(Hernandez-Lamoneda et al., 2008) consider similar parametrizations, which just rescale the param-
eters. Actually, they consider continuous values and require just additivity. Yet, it is well known
that linearity entails continuity and that additivity combined with continuity implies linearity.
3 Malawski (2013) suggests essentially the same formulae as the procedural values. Instead of
marginal contributions to coalitions, he considers marginal contributions for orders of the player
set.
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ing him a share of α|S| · [v (S) − v (S \ {i})] , while the tax revenue amounting to(
1 − α|S|

) · [v (S) − v (S \ {i})] is distributed evenly among the other players in S.

Despite of the structural differences of the formulae above, they are closely related.
By applying these values to standard games, the parameters can be recovered in a
similar fashion. In particular, for T � N , T �= ∅, and i ∈ T, we have

ρ|T | = |T | · RVZρ

i (eT ) ,

b|T | =
(|N |

|T |
)

· |T | · DRb
i (eT ) ,

α|T |+1 =
(|N |

|T |
)

· |T | · CNα
i (eT ) . (5)

Hence, conditions on the parameters as for example imposed by Radzik and Driessen
(2013) for the formula suggested by Driessen and Radzik (2003) can easily be trans-
lated into conditions for the parameters of the other formulae above.

We advocate another formula for the class of ELS values, already indicated by
Radzik and Driessen (2009, p. 5). In contrast to the approaches above, our formula is
based on unanimity games, i.e., on the Harsanyi dividends λT (v) in (1). We consider
the following class of values on N . For τ = (

τ1, . . . , τ|N |−1
) ∈ R

|N |−1, the value ζ τ

on N is given by

ζ τ
i (v) = λN (v)

|N | +
∑

T�N :T �=∅

τ|T |
|N | · λT (v) +

∑

T�N :i∈T

(
1 − τ|T |

|T |
)

· λT (v) , (6)

for all i ∈ N , v ∈ V.

Formula (6) canbe interpreted as follows:TheHarsanyi dividendλT (v) represents
the gains from cooperation in the game v that can be attributed to coalition T . On
the right-hand side of (6), the rightmost term indicates that λT (v) is first taxed at a
rate of τ|T | and then distributed equally among the players in T . The middle term
indicates that the tax revenue is (re)distributed equally among all players in N . The
leftmost term covers the gains from cooperation of the grand coalition N . Here,
taxation and redistribution would lead to an equal distribution among all players in
N , independent of the tax rate. Note that whereas the Shapley value distributes λT (v)

equally among the players in T (tax rate of 0), the equal division value distributes it
equally among all players in N (tax rate of 1). Further examples of tax rates related
to ELS values can be found in Table1.

While the formulae in the previous section are closely related via (5), our formula
is distinct. Instead of standard games, unanimity games are employed to recover the
parameters. For T � N , T �= ∅, and i ∈ N \ T, we have

τ|T | = |N | · ζ τ
i (uT ) . (7)

The parameters
(
τ1, . . . , τ|N |−1

)
can be interpreted as tax rates that are applied to

(scaled) unanimity games. For λ · uT , λ ∈ R, T ⊆ N , T �= ∅, we obtain



Solidarity and Fair Taxation in TU Games 211

Table 1 Tax rates for some ELS values

τ1 τ2 · · · τt · · · τ|N |−1

Sh 0 0 · · · 0 · · · 0

Shα 1 − α 1 − α 1 − α 1 − α

CON 0 1
2 · · · 1

2 · · · 1
2

ES 0 1 · · · 1 · · · 1

LSPN 1 − 1

|N | 1 − 1

|N | · · · 1 − t

2t−1

1

|N | · · · 1 − |N | − 1

2|N |−2

1

|N |
ED 1 1 · · · 1 · · · 1

ζ τ
i (λ · uT ) = τ|T | · ShN (λ · uT )

|N | + (
1 − τ|T |

) · Shi (λ · uT ) for all i ∈ N .

That is, player i’s Shapley payoff is taxed at a rate of τ|T |, leaving him a net income
of

(
1 − τ|T |

) · Shi (λ · uT ) , while the resulting overall tax revenue amounting to
τ|T | · ShN (λ · uT ) is distributed evenly among all players. Note that this kind of
taxation and redistribution would not affect the payoffs for λ · uN . Hence, there is
no tax rate τ|N |. The following proposition is immediate from (6).

Proposition 1 A value ϕ on N satisfies L, E, and S if and only if there is some
τ ∈ R

|N |−1 such that ϕ = ζ τ , where ζ τ is as in (6).

A number of values in the literature belong to the class of ELS values. In Table1,
we provide the tax rates τ ∈ R

|N |−1 for some of them. Unfortunately, there seems to
be no “nice” expressions for the tax rates that produce the solidarity value.

4 Solidarity and Fair Taxation

Within the class of ELS values dwells a huge number of values that do not show
certain economically sound properties. In this section, we provide conditions on
the parameters of our Formula (6) such that one or another of the desirable prop-
erties mentioned in the introduction is satisfied. These properties can be viewed as
requirements of fair taxation.

4.1 Technical Preliminaries

Later on, we will make use of the following definitions. For m ∈ N and x ∈ R
m, the

forward differences 	k
t x, t ∈ {1, . . . ,m} , k ∈ {0, . . . ,m − t} are given recursively

by
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	0
t x := xt and	k+1

t x := 	k
t x − 	k

t+1x ∀t ∈ {1, . . . ,m} , k ∈ {0, . . . ,m − t} .

(8)
It is well known that 	k

t x is given by

	k
t x =

k∑


=0

(−1)
 ·
(
k




)
· xt+
 for all t ∈ {1, . . . ,m} , k ∈ {0, . . . ,m − t} .

(9)
The following lemma easily follows from (8) by induction on t + k.

Lemma 1 Let m ∈ N and x ∈ R
m . Then, 	m−t

t x ≥ 0 for all t ∈ {1, . . . ,m} implies
	k

t x ≥ 0 for all t ∈ {1, . . . ,m} , k ∈ {0, . . . ,m − t} .

Moreover, we employ a transformation x �→ x̂ for x ∈ R
m, m ∈ N defined by

x̂t := xt
t

for all t ∈ {1, . . . ,m} . (10)

Let 0, 1 ∈ R
m be given by 0t = 0 and 1t = 1 for all t ∈ {1, . . . ,m} . By induction

on k, one easily shows

	k
t

(
ρ · 1̂

)
= ρ

(t + k)

(
t + k − 1

k

) (11)

for all ρ ∈ R, t ∈ {1, . . . ,m} , and k ∈ {0, . . . ,m − t} .

4.2 Relation Between Parameters

We prepare our main results by establishing the relation between our parameters
and the parameters of the other formulae for ELS values. In view of (5), we focus
on the formula suggested by Driessen and Radzik (2003). First, we show how our
parameters can be translated into parameters for the latter formula. The proof of the
proposition is referred to the appendix.

Proposition 2 For b ∈ R
|N |−1 and τ ∈ R

|N |−1, we have DRb = ζ τ if and only if

bt = 1 − 	
|N |−1−t
t τ̂

	
|N |−1−t
t 1̂

for all t ∈ {1, . . . , |N | − 1} .

Now, we show how the parameters of the formula suggested by Driessen and
Radzik (2003) can be translated into the parameters of our formula. The proof of the
proposition is referred to the appendix.

Proposition 3 For b ∈ R
|N |−1 and τ ∈ R

|N |−1, we have DRb = ζ τ if and only if
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τt = 1 − 1(|N | − 1

t

)
|N |−1∑

s=t

(
s − 1

t − 1

)
· bs for all t ∈ {1, . . . , |N | − 1} .

4.3 Desirability

Even if players express solidarity among themselves, the payoffs should reflect their
individual productivity. At least, payoff differentials should not be opposite to their
productivities. This idea is expressed by the desirability axiom.4

Desirability, D (Maschler & Peleg, 1966). For all v ∈ V and i, j ∈ N such that
MCv

i (S) ≥ MCv
j (S) for all S ⊆ N \ {i, j} , we have ϕi (N , v) ≥ ϕ j (N , v).

The ELS value DRb in (4) meets desirability if and only if bt ≥ 0 for all t ∈
{1, . . . , |N | − 1} (Radzik & Driessen, 2013, Theorem 1). Combining this result with
Proposition 2, we obtain the following requirements on our parameters to guarantee
desirability. Casajus (2012) provides a direct proof of this result.

Theorem 1 The ELS value ζ τ , τ ∈ R
|N |−1 obeys desirability (D) if and only if

	
|N |−1−t
t 1̂ ≥ 	

|N |−1−t
t τ̂ for all t ∈ {1, . . . , |N | − 1}.

Remark 1 Theorem1 togetherwith Lemma 1 imply the following necessary require-
ments on τ ∈ R

|N |−1 for ζ τ to satisfy desirability: 	k
t 1̂ ≥ 	k

t τ̂ for all
t ∈ {1, . . . , |N | − 1} and k ∈ {0, . . . , |N | − t − 1} . In some strong sense, taxes
should be smaller than 1. In particular, we have (i) 	0

t 1̂ ≥ 	0
t τ̂ , i.e., 1 ≥ τt for

all t ∈ {1, . . . , |N | − 1}; i.e., the players should not be “overtaxed”. Further, (ii)
	1

t 1̂ ≥ 	1
t τ̂ , i.e., τt+1 ≥ τt − 1−τt

t for all t ∈ {1, . . . , |N | − 2} . Given 1 ≥ τt , this
means that tax rates should not decrease too much when t increases. In particular, if
τt = 1 for some t, then τs = 1 for all s ≥ t.

4.4 Positivity for Null Players

In monotonic games, no player ever is destructive; i.e., all players always have a
non-negative marginal contributions. Hence, even if players show solidarity to less
productive ones, nobody should end upwith a sub-zero payoff. This idea is expressed
by the positivity axiom.5

Positivity (Kalai and Samet, 1987), P.For all v ∈ V that aremonotonic and all i ∈ N ,

we have ϕi (N , v) ≥ 0.

4 Desirability is also known as local monotonicity (of values) (see Levinský & Silársky, 2004), or
fair treatment (see Radzik & Driessen, 2013).
5 Positivity is also known as monotonicity (see Radzik & Driessen, 2013).
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Radzik and Driessen (2013) do not give exact conditions on b ∈ R
|N |−1 such that

the value DRb meets positivity. Careful inspection of the proof of their Theorem 2
shows that one actually has a nice description of those b ∈ R

|N |−1 that let DRb

obey a weaker property, positivity for null players. Note that the negative Shapley
value,−Sh, for example, fails positivity but not positivity for null players. Moreover,
the negative equal division value, −ED, fails both positivity for null players and
positivity, for example.

Positivity for null players, PN. For all v ∈ V that are monotonic and all i ∈ N who
are null players in v, we have ϕi (N , v) ≥ 0.

Theorem 2 The valueDRb, b ∈ R
|N |−1 obeys positivity for null players (PN) if and

only if 1 ≥ bt for all t ∈ {1, . . . , |N | − 1} .

Proof Sufficiency: Let v ∈ V be monotonic and i ∈ N be a null player in v. Let
further b ∈ R

|N |−1 be such that 1 ≥ bt for all t ∈ {1, . . . , |N | − 1} . This part of the
proof heavily relies on the proof of , which makes use of the additional assumption
(*) bt ≥ 0 for all t ∈ {1, . . . , |N | − 1} . Since i is a null player in v, we can avoid to
appeal to (*).

For notational parsimony, we just indicate how this can be done and refer the
reader to Radzik and Driessen (2013, proof of Theorem 2) , which is by induction.
Condition (*) is applied twice, first, in the induction basis, and second, in the final
step after induction. We obtain

DRb
i (v)

(4)= v (N )

|N | +
∑

S�N\{i}

b|S|+1 ·v (S ∪ {i})( |N |
|S| + 1

)
·(|S| + 1)

−
∑

S⊆N\{i}:S �=∅

b|S| ·v (S)( |N |
|S|+1

)
·(|S|+1)

= (
1 − b|N |−1

) · v (N )

|N | +
∑

S�N\{i}

(
b|S|+1 − b|S|

) · v (S ∪ {i})
( |N |

|S| + 1

)
· (|S| + 1)

,

where the second equation follows from i being a null player. This already estab-
lishes the induction basis (second equation after Equation (23) of the proof). Since
v (∅ ∪ {i}) = 0 for the null player i, we do not need (*) in the last equation/final step
of the proof.

Necessity: Let nowb ∈ R
|N |−1 be such thatDRbmeetsPN. Fix t∈ {1, . . . , |N | −1}

and i ∈ N and let v ∈ V be given by v (S) = 1 if |S| > t and i ∈ S, v (S) = 1 if
|S| ≥ t and i /∈ S, and v (S) = 0 else. One easily checks that v is monotonic and that
i is a null player in v. Moreover Radzik and Driessen (2013, Proof of Theorem 2)
show DRb

i (v) = 1−bt
|N | . Hence, bt ≤ 1 for all t ∈ {1, . . . , |N | − 1}. �

Combining this result with Proposition 2, we obtain the following requirements
on our parameters to guarantee positivity for null players. Casajus (2012) provides
a direct proof of this result.

Theorem 3 The value ζ τ , τ ∈ R
|N |−1 obeys positivity for null players (PN) if and

only if 	|N |−1−t
t τ̂ ≥ 	

|N |−1−t
t 0̂ = 0 for all t ∈ {1, . . . , |N | − 1}.
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Remark 2 Theorem 3 together with Lemma 1 implies the following necessary
requirements on τ ∈ R

|N |−1 for ζ τ to satisfy positivity for null players:	k
t τ̂ ≥ 	k

t 0̂ =
0 for all t ∈ {1, . . . , |N | − 1} and k ∈ {0, . . . , |N | − t − 1} . In some strong sense,
taxes should be non-negative. In particular, we have (i) 	0

t τ̂ ≥ 0, i.e., τt ≥ 0 for all
t ∈ {1, . . . , |N | − 1}, i.e., the players should not be subsidized. Further, (ii)	1

t τ̂ ≥ 0,
i.e., t+1

t τt ≥ τt+1 for all t ∈ {1, . . . , |N | − 2} . Given τt , τt+1 ≥ 0, this means that
tax rates should not increase too much when t increases. In particular, if τt = 0 for
some t, then τs = 0 for all s ≥ t.

Remark 3 Casajus and Huettner (2013) consider a considerable sharpening of pos-
itivity for null players, the null player in a productive environment property below.
Instead of restricting attention to monotonic games, they extend the implication of
PN to games where the grand coalition generates a non-negative worth.

Null player in a productive environment, NPE. For all v ∈ V and i ∈ N such that
i is a null player in v and v (N ) ≥ 0, we have ϕi (v) ≥ 0.

Their Proposition 1 entails that the value ζ τ , τ ∈ R
|N |−1 obeys the null player in a pro-

ductive environment property if and only if τt = τ1 ≥ 0 for all t ∈ {1, . . . , |N | − 1}.
By (11) and Proposition 2, the values DRb, b ∈ R

|N |−1 satisfy this property if and
only if 1 ≥ bt = b1 for all t ∈ {1, . . . , |N | − 1}.
Remark 4 Recently, Radzik (2021, Theorem 6) shows that the value DRb, b ∈
R

|N |−1 obeys positivity (P) if and only if6 bt ≤ 1 and

T∑


=t

b
 ≥ −1 for all t, T ∈ {1, . . . , |N | − 1} , t ≤ T .

By Proposition 3, the value ζ τ , τ ∈ R
|N |−1 obeys positivity (P) if and only if

	
|N |−1−t
t τ̂ ≥ 	

|N |−1−t
t 0̂ = 0 and

T − t + 2 ≥
T∑


=t

	
|N |−1−


 τ̂

	
|N |−1−


 1̂

for all t, T ∈ {1, . . . , |N | − 1} , t ≤ T .

4.5 Desirability and Positivity

The ELS value DRb, b ∈ R
|N |−1 satisfies desirability and positivity if and only if

1 ≥ bt ≥ 0 for all t ∈ {1, . . . , |N | − 1} (Radzik and Driessen, 2013, Theorem 2).
Combining this result with Proposition 2, we obtain the following requirements on
our parameters to guarantee the combination of desirability and positivity.

Theorem 4 The value ζ τ , τ ∈ R
|N |−1 obeys desirability (D) and positivity (P) if and

only if	|N |−1−t
t 1̂ ≥ 	

|N |−1−t
t τ̂ ≥ 	

|N |−1−t
t 0̂ = 0 for all for all t ∈ {1, . . . , |N | − 1}.

6 Malawski (2013, Lemma 5) already shows that these conditions are necessary.
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Remark 5 Theorem 4 together with Lemma 1 implies the following necessary
requirements on τ ∈ R

|N |−1 for ζ τ to satisfy desirability and positivity for null play-
ers:	k

t 1̂ ≥ 	k
t τ̂ ≥ 	k

t 0̂ = 0 for all t∈ {1, . . . , |N | − 1} and k∈ {0, . . . , |N | − t − 1} .

In a strong sense, tax rates are required to fall between 0 and 1.

Remark 6 Theorems 1, 3, and 4, alternatively, Theorem 2 and Radzik and Driessen
(2013, Theorems 1 and 2) imply that an ELS value that satisfies desirability and
positivity for null players also satisfies positivity. Casajus (2012) provides a direct
proof of this result.

We nowdemonstrate the power of Theorem4with an example. A technical lemma
facilitates the application of the theorem.

Lemma 2 Let m ∈ N and f : [1,m] → R be differentiable up to order m − 1 and
such that (−1)k · f (k) (ξ) ≥ 0 for all ξ ∈ [1,m]and k ∈ {0, . . . ,m − 1} .For x ∈ R

m

given by xt = f (t) for all t ∈ {1, . . . ,m} , we have 	k
t x ≥ 0 for all t ∈ {1, . . . ,m}

and k ∈ {0, . . . ,m − t} .

Proof Let m and f be as in the lemma. For t ∈ {1, . . . ,m}, we have

	0
t x = xt = f (t) = f (0) (t) = (−1)0 · f (0) (t) ≥ 0.

By induction on k, one easily shows

	k
t x = (−1)k

∫ t+1

t

∫ i2+1

i2

∫ i3+1

i3

. . .

∫ ik+1

ik

f (k) (ξ) dξdik . . . di3di2

for all t ∈ {1, . . . ,m} and k ∈ {1, . . . ,m − t}. The claim now follows from (−1)k ·
f (k) (ξ) ≥ 0 for all ξ ∈ [1,m] . �

Example 1 For α ∈ [0, 1], we consider the tax system τα ∈ R
|N |−1 such that

ζ τα

i (uT ) = α · ζ τα

j (uT ) , for all T � N , T �= ∅, i ∈ N \ T, j ∈ T .

That is, in unanimity games, unproductive players obtain α times the payoff of
productive players. By (6), we obtain

τα
t = α · |N |

(1 − α) · t + α · |N | for all t ∈ {1, . . . , |N | − 1} .

The resulting value ζ τα

meets D and P. To see this, let f, g : [1, |N | − 1] → R be
given by

f (ξ) = 1

ξ
, g (ξ) = 1 − α

(1 − α) · ξ + α · |N | for all ξ ∈ [1, |N | − 1] .
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By (10), we have [τα]t = f (t) − g (t) and ([1] − [τα])t = g (t) for
t ∈ {1, . . . , |N | − 1} . Moreover, one obtains f (0) (ξ) ≥ g(0) (ξ) ≥ 0, and

(−1)k · f (k) (ξ) = (−1)2k · k!
ξ k+1

≥ (−1)2k · k! · (1 − α)k+1

((1 − α) · ξ + α · |N |)k+1 = (−1)k · g(k) (ξ) ≥ 0

for all ξ ∈ [1, |N | − 1] , k ∈ {0, . . . , |N | − 2}. By Lemma 2, we have 	
|N |−1−t
t 1̂ ≥

	
|N |−1−t
t τ̂ α ≥ 0 for all t ∈ {1, . . . , |N | − 1} . Finally, the claim follows from

Theorem 4.

4.6 Social Acceptability

Joosten et al. (1994) consider the social acceptability axiom.

Social acceptability, SA. For all T ⊆ N , i ∈ T , and j ∈ N \ T, we have ϕi (uT ) ≥
ϕ j (uT ) ≥ 0.

Social acceptability imposes rather weak fairness requirements. Since unanimity
games are monotonic, the requirement ϕi (uT ) ≥ 0 and ϕ j (uT ) ≥ 0 above is equiv-
alent to positivity restricted to unanimity games. In uT , the players in T are more
productive than those in N \ T . Hence for ELS values, demanding ϕi (uT ) ≥ ϕ j (uT )

for i ∈ T and j ∈ N \ T is equivalent to desirability restricted to unanimity games.
Since the values ζ τ are closely related to the linear representation of games by

unanimity games, we state the following obvious proposition with some diffidence
and mainly for completeness’ sake.

Proposition 4 The value ζ τ , τ ∈ R
|N |−1 obeys social acceptability (SA) if and only

if 1 ≥ τt ≥ 0 for all t ∈ {1, . . . , |N | − 1} .

Proof Fix T ⊆ N , |T | = t < |N | .Let i ∈ T, j ∈ N \ T .By (6), we have ζ τ
i (uT ) −

ζ τ
j (uT ) = 1−τ|T |

|T | ≥ 0 if and only if τt ≤ 1 and ζ τ
j (uT ) = τt

|N | ≥ 0 iff τt ≥ 0. Further,

ζ τ
i (uN ) = |N |−1 > 0 for all i ∈ N . �

Remark 7 Compare the results of the proposition with analogous findings for the
formulae based on standard games. The ELS value DRb, b ∈ R

|N |−1 satisfies social
acceptability if and only if

0 ≤ |N | · t
|N | − t

·
(|N |

t

)−1

·
|N |−1∑

s=t

(
s

t

)
· bs
s

≤ 1

for all t ∈ {1, . . . , |N | − 1} (Radzik and Driessen, 2013, Theorem 3).
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4.7 General Acceptability

Radzik and Driessen (2013) consider another notion of acceptability, general accept-
ability.

General acceptability, GA. For all S, T ⊆ N and i ∈ N such that S ⊆ T and i ∈ S,

we have ϕi (uS) ≥ ϕi (uT ).

Within the class of ELS values, general acceptability coincides with strongmono-
tonicity for unanimity games. Note that on the domain of all TU games, there is a
unique ELS value that meets strong monotonicity, the Shapley value (Young, 1985,
Theorem 2).

Strong monotonicity, Mo+ (Young, 1985). For all v,w ∈ V and i ∈ N such that
v (K ∪ {i}) − v (K ) ≥ w (K ∪ {i}) − w (K ) for all K ⊆ N \ {i} , we have ϕi (v) ≥
ϕi (w) .

Proposition 5 The value ζ τ , τ ∈ R
|N |−1 obeys general acceptability (GA) if and

only if (i) τt ≤ 1 for all t ∈ {1, . . . , |N | − 1} and (ii)

τt+1 − τt ≥ τt − 1

t
· |N |
|N | − t − 1

for all t ∈ {1, . . . , |N | − 2} .

Proof Let t ∈ {1, . . . , |N | − 1} and T ⊆ N , |T | = t. By (6), ζ τ
i (uT ) ≥ ζ τ

i (uN ) iff
τt ≤ 1. Let s ∈ {1, . . . , |N | − 2} and S, T ⊆ N , S ⊆ T, |S| = s, |T | = s + 1. By
(6), ζ τ

i (uS) ≥ ζ τ
i (uT ) if and only if

τs+1 ≥ τs − 1 − τs

s
· |N |
|N | − s − 1

,

which entails the second part of the requirement. �
Remark 8 Proposition 5 first requires that there is no overtaxing, τt ≤ 1. Given this,
the second requirement says that tax rates should not decrease too much when t
increases. In particular, if τt = 1 for some t, then τs = 1 for all s ≥ t. Recall
some necessary requirements for desirability due to Theorem 1, (i) τs ≤ 1 for all
t ∈ {1, . . . , |N | − 1} and (ii) τt+1 ≥ τt − 1−τt

t for all t ∈ {1, . . . , |N | − 2} . Since
τt − 1 ≤ 0 and |N |

|N |−t−1>1, desirability implies general acceptability for ELS values.

Remark 9 Compare the results of the proposition with analogous findings for the
formulae based on standard games. The ELS value DRb, b ∈ R

|N |−1 satisfies general
acceptability if and only if

0 ≤
|N |−1∑

s=t

|N | − s

s
·
(
s

t

)
· bs

for all t ∈ {1, . . . , |N | − 1} (Radzik and Driessen, 2013, Theorem 4).
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5 Concluding Remarks

There essentially are two types of parametrized formulas for a class of values that
has attracted attention in the literature, the ELS values. In a sense, theses formulas
are based on two types of “basic” games, standard games or unanimity games. For
the former, conditions for the parameters already have been established such that
the resulting values satisfy certain “desirable” properties. In this paper, we establish
such conditions for the latter. This helps to identify or to construct ELS values that
satisfy one or another of these properties.

Acknowledgements We are grateful to Frank Huettner for helpful discussions on this paper.

Appendix: Omitted Proofs

Proof of Proposition 2

Necessity: Let S � N , S �= ∅, i ∈ S and j∗ ∈ N \ S. First, we determine the payoff

ζ τ
i (eS) . It is well-known that λT (eS) =

{
0, S � T,

(−1)|T |−|S| , S ⊆ T
for all T ⊆ N .

We this (�), we obtain

ζ τ
i (eS)

(6)= λN (eS)

|N | +
∑

T�N :T �=∅

τ|T |
|N | · λT (eS) +

∑

T�N :i∈T

(
1 − τ|T |

|T |
)

· λT (eS)

= λN (eS)

|N | + 1

|N |
∑

j∈N

∑

j∈T�N

τ|T |
|T | · λT (eS) +

∑

T�N :i∈T

1 − τ|T |
|T | · λT (eS)

i∈S,�= (−1)|N |−|S|
|N | + 1

|N |
∑

j∈N

∑

S⊆T�N : j∈T

τ|T |
|T | · (−1)|T |−|S|

+
∑

S⊆T�N

1 − τ|T |
|T | · (−1)|T |−|S|

=
∑

S⊆T⊆N

(−1)|N |−|S|
|N | + 1

|N |
∑

j∈S

∑

S⊆T�N

τ|T |
|T | · (−1)|T |−|S|

+ 1

|N |
∑

j∈S

∑

S⊆T�N : j∈T

τ|T |
|T | · (−1)|T |−|S| −

∑

S⊆T�N

τ|T |
|T | · (−1)|T |−|S|

j∗∈N\S=
∑

S⊆T⊆N

(−1)|N |−|S|
|N | − |N | − |S|

|N |
∑

S⊆T�N

τ|T |
|T | · (−1)|T |−|S|

+ |N | − |S|
|N |

∑

S⊆T�N\{ j∗}

τ|T∪{ j∗}|
|T ∪ { j∗}| · (−1)|T∪{ j∗}|−|S|
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=
|N |∑

t=|S|

(|N | − |S|
t − |S|

)
· (−1)t−|S|

t
− |N | − |S|

|N |
|N |−1∑

t=|S|

(|N | − |S|
t − |S|

)
· τt

t
· (−1)t−|S|

+ |N | − |S|
|N |

|N |−2∑

t=|S|

(|N | − 1 − |S|
t − |S|

)
· τt+1

t + 1
· (−1)t+1−|S|

=
|N |−|S|∑

t=0

(|N | − |S|
t

)
· (−1)t

t + |S| − |N | − |S|
|N |

|N |−1−|S|∑

t=0

(|N | − |S|
t

)
· τt+|S|
t + |S| · (−1)t

+ |N | − |S|
|N |

|N |−2−|S|∑

t=0

(|N | − 1 − |S|
t

)
· τt+1+|S|
t + 1 + |S| · (−1)t+1 . (12)

Moreover, we have

|N |−1−|S|∑

t=0

(|N | − |S|
t

)
· τt+|S|
t + |S| · (−1)t

=
(|N | − |S|

0

)
τ0+|S|
0 + |S| · (−1)0 +

|N |−1−|S|∑

t=1

(|N | − 1 − |S|
t

)
· τt+|S|
t + |S|

+
|N |−1−|S|∑

t=1

(|N | − 1 − |S|
t − 1

)
· τt+|S|
t + |S|

=
|N |−1−|S|∑

t=0

(|N | − 1 − |S|
t

)
· τt+|S|
t + |S|

+
|N |−2−|S|∑

t=0

(|N | − 1 − |S|
t

)
· τt+1+|S|
t + 1 + |S| . (13)

Combining (12) and (13) gives

ζ τ
i (eS) =

|N |−|S|∑

t=0

(|N | − |S|
t

)
(−1)t

t + |S| − |N | − |S|
|N |

|N |−1−|S|∑

t=0

(|N | − 1 − |S|
t

)
τt+|S|
t + |S|

(9)= 1

|S| ·
(|N |

|S|
) − |N | − |S|

|N | 	
|N |−1−|S|
|S| [τ ]

(11)= 1

|S| ·
(|N |

|S|
)

⎛

⎝1 −
	

|N |−1−|S|
|S| [τ ]

	
|N |−1−|S|
|S| [1]

⎞

⎠ .

In view of (5), the claim now is immediate.
Sufficiency follows from the fact that both formulae cover the class of ELS

values. �
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Proof of Proposition 3

Necessity: Let T � N , T �= ∅, i ∈ N \ T . First, we determine the payoff DRb
i (uT ) .

One obtains

DRb
i (uT )

(4)= uT (N )

|N | +
∑

S�N\{i}

b|S|+1 · uT (S ∪ {i})
( |N |

|S| + 1

)
(|S| + 1)

−
∑

S⊆N\{i}:S �=∅

b|S| · uT (S)
( |N |

|S| + 1

)
(|S| + 1)

i∈N\T= 1

|N | +
∑

T⊆S�N\{i}

b|S|+1( |N |
|S| + 1

)
(|S| + 1)

−
∑

T⊆S⊆N\{i}:S �=∅

b|S|( |N |
|S| + 1

)
(|S| + 1)

= 1

|N | +
|N |−2∑

s=|T |

(|N | − 1 − |T |
s − |T |

)
bs+1( |N |

s + 1

)
(s + 1)

−
|N |−1∑

s=|T |

(|N | − 1 − |T |
s − |T |

)
bs( |N |

s + 1

)
(s + 1)

= 1

|N | + 1

(|N | − |T |)
(|N |

|T |
)

⎛

⎝
|N |−2∑

s=|T |

(
s

|T |
)

· bs+1 −
|N |−1∑

s=|T |

(
s

|T |
)

· bs
⎞

⎠

= 1

|N | − b|T |
(|N | − |T |)

(|N |
|T |

) + 1

(|N | − |T |)
(|N |

|T |
)

|N |−1∑

s=|T |+1

((
s − 1

|T |
)

−
(

s

|T |
))

· bs

= 1

|N | − b|T |
(|N | − |T |)

(|N |
|T |

) − 1

(|N | − |T |)
(|N |

|T |
)

|N |−1∑

s=|T |+1

(
s − 1

|T | − 1

)
· bs

= 1

|N | − 1

(|N | − |T |)
(|N |

|T |
)

|N |−1∑

s=|T |

(
s − 1

|T | − 1

)
· bs .

In view of (7), the claim is immediate.
Sufficiency follows from the fact that both formulae cover the class of ELS val-

ues. �
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Analyzing the Zerkani Network
with the Owen Value

Encarnación Algaba, Andrea Prieto, Alejandro Saavedra-Nieves,
and Herbert Hamers

Abstract This paper introduces a new centrality measure based on the Owen value
to rank members in covert networks. In particular, we consider the Zerkani network
responsible for the Paris attack of November 2015 and the Brussels attack of March
2016. We follow the line of research introduced in Hamers et al. [Handbook of the
Shapley value. Taylor and Francis Group: CRC Press, pp 463–481 (2019)]. First, we
consider twodifferent appropriate cooperative games definedon theZerkani network.
Both games take into account the strengths of the links between its members and the
individual contribution of its members. Second, for each game the Owen value is
calculated, that provides a ranking of the members in the Zerkani network. For this
calculation, we need to create a suitable partition of the members in the network, and,
subsequently, we will use the approximation method introduced in Saavedra-Nieves
et al. [Themathematics of the uncertain: A tribute to Pedro Gil. Springer, pp 347–356
(2018)]. Moreover, we can provide specific error bounds for the approximation of the
Owen value. Finally, the obtained rankings are compared to the rankings established
in Hamers et al. [Handbook of the Shapley value. Taylor and Francis Group: CRC
Press, pp 463–481 (2019)].
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1 Introduction

The last decades covered organizations have executed many massive attacks. We
mention the 9/11 attack in 2001 by Al-Qaeda [cf. (Krebs, 2002)], the Bali bombing
in 2002 by Jemaah Islamiyah [cf. (Wise, 2005)], and the mass shooting and suicide
attack in Paris and Brussels in 2015 and 2016, respectively, by the Zerkani network
[cf. (Basra &Neumann, 2016)]. The main goal of governments and their intelligence
services is to neutralize potential attacks of possible covert networks using informa-
tion from such a network, to prevent damage to society in terms, primarily, of human
lives. For this reason, it is essential to identify the role of each member within such a
network with the aim to expose their leaders. It is clear that information management
is necessary but not always available. Knowledge of this information enables law
enforcement agencies to advance their investigations and to proceed in an unhurried
manner, maximising their effectiveness and minimizing the network’s capacity to
act.

A covert network can be represented by a graph, where its members become
the nodes and the edges represent the interaction between each pair of individuals.
Subsequently, standard graph theoretical centrality measures can be used to create a
ranking of its members [cf. (Koschade, 2006; Sparrow, 1991; Klerks, 2001), or (Far-
ley 2003)] despite not being originally intended for this purpose. The main limitation
of these standard centrality measures is the fact that they only take into account the
structure of the network. On the one hand, these measures do not take into account
the importance of the interaction between members (e.g., kind of communication, as
cell phone, Internet or exchange devices, among others) and, on the other hand, the
individual importance (e.g., financial means, skills to make an improvised explosive
device, known in acronyms as an IED). These aspects were taking into account in
Lindelauf et al. (2013), Husslage et al. (2015), van Campen et al. (2018) and Hamers
et al. (2019) by using cooperative game theory and applied to several covert net-
works. In fact, in these papers, a ranking of the members of the network according to
its relevance was determined from the Shapley value (Shapley, 1953), a value used
in a wide range of applications [cf. (Algaba et al., 2019)].

In this paper, we introduce a centrality measure based on the Owen value (Owen,
1977), an extension of the Shapley value. The Owen value is defined for cooperative
gameswith a priori unions. This also enables to take into account possible cooperative
restrictions among the members in a network, unlike the Shapley value, in addition
to the strength of the links and the individual influence. The Owen value is applied
in several real-life settings in which an exact expression of the Owen value can be
derived. We mention airport games (Vázquez-Brage et al., 1997), maintenance of
railways infrastructures (Costa, 2016), and methodologies for computing solutions
forweightedmultiplemajority games [cf. (Algaba et al., 2003, 2007;Alonso-Meijide
& Bowles, 2005)], as well as the development of heuristic and exact solutions to
find voting systems that generate a power distribution, called the inverse power
index problem (Kurz & Napel, 2014). Unfortunately, similar to the Shapley value,
in general, the computational complexity of the Owen value increases exponentially
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with the number of players. Sampling techniques are often introduced to create
approximations. Following the ideas in Castro et al. (2009) for the Shapley value
approximation, Saavedra-Nieves et al. (2018) adapt them for the estimation of the
Owen value and provide both theoretical and experimental results for such procedure.

As an application, we will focus on the Zerkani network. On November 13, 2015,
the Zerkani network carried out simultaneous attacks in Paris (France), killing more
than a hundred people and wounding hundreds. Few months later, on March 22,
2016, part of those who were involved behind of the Paris attacks managed to launch
another massive attack in Brussels, detonating suicide bombs at Zaventem Interna-
tional Airport and inMaelbeek subway station, killing thirty-two people and injuring
many more. The main figures responsible for the tactical operations of the Paris and
Brussels’ attacks were Abdelhamid Abaaoud and jihadist recruiter Khalid Zerkani.
The Zerkani network provided personnel, training, planning, attack, escape and eva-
sion. The Zerkani network is analyzed in Hamers et al. (2019), providing a ranking
based on an approximation of the Shapley value. We focus on ranking the members
of the Zerkani network considering the existence of different degrees of relationships
among them. In this sense, these affinities are modeled by several cooperative games
with a priori unions when establishing an a priori coalitional structure. Specifically,
we will use the Owen value as a mechanism of ranking.

This paper is organized as follows. Section2 discusses the Owen value and the
approximationmethod of Saavedra-Nieves et al. (2018). The network analysis which
uses two cooperative games is explained in Sect. 3. In the subsequent section, the
analysis of the Zerkani network is presented and the final section concludes.

2 The Owen Value and an Approximation Algorithm

This section recalls the definition of the Shapley value, the Owen value and the
sampling method for its approximation, as well as their error bounds introduced in
Saavedra-Nieves et al. (2018).

A transferable utility game, or TU-game, is a pair (N , v), where N = {1, 2, ..., n}
is the set of players (the grand coalition) and v is a map that assigns a value v(S)

to each coalition S ⊆ N such that v(∅) = 0. The set of all cooperative games with
player set N is denoted byGN .We say that a game (N , v) is non-negative if v(S) ≥ 0,
for all S ⊆ N . A game (N , v) is said to be monotonic if for all S ⊆ T ⊆ N then
v(S) ≤ v(T ). A game is called superadditive if for all A, B ⊆ N with A ∩ B = ∅,

then v(A ∪ B) ≥ v(A) + v(B).
One of themost important solutions concepts for cooperative games is the Shapley

value (Shapley, 1953), see Algaba et al. (2019) for a wide range of theoretical and
applied results about this value. The Shapley value assigns to each (N , v) ∈ GN , and
each i ∈ N , the real number defined by
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Shi (N , v) = 1

|�(N )|
∑

π∈�(N )

mπ
v (i), (1)

where �(N ) is the set of all possible permutations of N , and mπ
v (i) denotes the

marginal contribution of player i in a given permutation π ∈ �(N ), which is defined
as

mπ
v (i) = v

(
Pπ
i ∪ {i}) − v

(
Pπ
i

)
,

Pπ
i being the set of predecessors of i in π , i.e., Pπ

i = { j ∈ N |π( j) < π(i)}.
A cooperative game with a priori unions is given by a triplet (N , v, P) where

(N , v) ∈ GN and P = {P1, ..., Pm} is a partition of N . In this case, we assume that
P is interpreted as the coalition structure that restricts the cooperation among the
players in N . The set of all cooperative games with a priori unions with set of players
N is denoted by U N .

The Owen value (Owen, 1977) assigns to each (N , v, P) ∈ U N and each i ∈ N ,

the real number defined by

Oi (N , v, P) = 1

|�P(N )|
∑

π∈�P (N )

mπ
v (i), (2)

where �P(N ) denotes the set of all permutations of N which are compatible with a
coalition structure P , meaning that the elements of each union of P are not separated
by π , i.e., π ∈ �P(N ) if and only if, for all i, j, k ∈ N , Pπ

h ∈ P , it holds that

if i, j ∈ Pπ
h and π(i) < π(k) < π( j), then k ∈ Pπ

h .

The idea of distributing theworth of cooperation of N is made in two stages. First, the
profit is allocated among the unions using the Shapley value, and then, the amount
received per union is distributed among the members belonging to it, by using again
the Shapley value. Observe, if the coalition structure is formed by unitary unions
or only by the grand coalition, the Owen value and the Shapley value prescribe the
same allocation.

Although the notion of marginal contribution of a player is intuitively clear, com-
puting the Owen value becomes a hard task when the amount of players involved in
the cooperative game substantially increases.

Inwhat follows,we formally describe an algorithm introduced in Saavedra-Nieves
et al. (2018) for estimating the Owen value for a cooperative game with a priori
unions (N , v, P), with P = {P1, ..., Pm}, based on simple random sampling with
replacement on the set of compatible permutations.1

1 This methodology ensures that each π ∈ �P (N ) is equally likely. Alternatively, other sampling
techniques, as stratified sampling, can be considered, that implies that not all permutations are taken
with equal probability, see for instance Castro et al. (2017).
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The steps of the sampling procedure are the ones depicted below:

1. The sampling population S is the set of all permutations of N compatible with
P , i.e., �P(N ).

2. The vector of parameters to be estimated is O = (Oi )i∈N , where Oi denotes
Oi (N , v, P), for all i ∈ N .

3. The characteristics under study for each sampling unit π ∈ �P(N ) are the
marginal contributions of the players according to π , i.e., the vector

(mπ
v (i))i∈N = (v

(
Pπ
i ∪ {i}) − v

(
Pπ
i

)
)i∈N .

4. Each permutation π ∈ �P(N ) is taken with the same probability: a random per-
mutation of the elements of each Pk , with k ∈ {1, ...,m}, is chosen and then, it is
selected a random permutation of the elements of {1, ...,m}, i.e., of elements of
P . Joining this collection of m + 1 permutations, we obtain π ∈ �P(N ).

5. The mean of the marginal contribution vectors over the sample S corresponds to
the Owen value estimation, i.e., Ô = (Ôi )i∈N , such that

Ôi = 1

�

∑

π∈S
mπ

v (i),

for all i ∈ N , where � = |S| equals the sample size.

A fundamental issue in the problem focuses on bounding the error of the esti-
mation, that is often not possible to be measured in practice. For this reason, the
following probabilistic bound is theoretically provided in Saavedra-Nieves et al.
(2018) instead:

P(|Ôi − Oi | ≥ ε) ≤ α, with ε > 0 and α ∈ (0, 1].

Theorem 1 Saavedra-Nieves et al. (2018) Let ε > 0, α ∈ (0, 1), (N , v, P) be a
cooperative game with a priori unions, and ri = max

π,π ′∈�P (N )
(mπ

v (i) − mπ ′
v (i)).

If � ≥ min

{
1

4αε2
,
ln(2/α)

2ε2

}
r2i then, P(|Ôi − Oi | ≥ ε) ≤ α for every i ∈ N . (3)

As illustration, take ri = 300 for all i ∈ N . Then, Table1 shows the theoretical
errors with respect to (3).

Thus, the estimated Owen value usually becomes a good approximation of the
real one when sampling sizes sufficiently enlarge.



230 E. Algaba et al.

Table 1 Theoretical errors (ε) for � = 103, � = 105 and � = 106

α = 0.1 α = 0.05 α = 0.01

� = 103 11.61068 12.88408 15.44099

� = 105 1.16107 1.28841 1.54410

� = 106 0.36716 0.40743 0.48828

3 A New Game Theoretic Centrality Measure

In this section, we follow the approach inHamers et al. (2019) inwhich two classes of
cooperative games are considered that take into account the structure of the network,
the relational and the individual strength of the members in the network. For both
classes, unlike Hamers et al. (2019), we will determine a ranking of the Zerkani
network using the Owen value in Sect. 4.

A covert network can be represented by an undirected graph G = (N , E), where
the node set N represents the set of members of the network and the set of links E
denotes all relationships between these members. A relationship between member
i and j is denoted by i j , with i j ∈ E . For a coalition S ⊆ N , the subnetwork GS

consists of the members of S and its links in E , i.e.,GS = (S, ES)where ES = {i j ∈
E : i, j ∈ S}. A coalition S ⊆ N is said to be a connected coalition, if the network
GS is connected; otherwise, S is called disconnected.

The influence of individuals in G = (N , E) is represented by a set of weights on
player set N , i.e., I = {

w j
}
j∈N with w j ≥ 0, and the relational strength between

members of the network is givenby a set ofweights on the edges E , i.e.,R = {klh}lh∈E
with klh ≥ 0.

Theweighted connectivity game (wconn) (N , vwconn)with respect toG = (N , E)

based on I and R is defined as in Hamers et al. (2019). Thus, for any connected
coalition S, (N , vwconn) is given by

vwconn(S) = f (S, I,R), (4)

f being a context specific and tailor-made non-negative function depending on S, I
and R. Function f measures the effectiveness of coalitions in the network to best
reflect the situation and information at hand.

For a disconnected coalition S, the characteristic function is defined by

vwconn(S) = max
T∈�S

vwconn(T ), (5)

with�S the set of components (i.e., maximal connected coalitions) in GS . The value
of each disconnected coalition is based on the most effective component of this
coalition.
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An additive weighted connectivity game (awconn) (N , vawconn) with respect to
network G = (N , E) based on I and R is, for a connected coalition S, defined
by (4), identically to the corresponding weighted connectivity cooperative game
(N , vwconn), i.e., vawconn(S) = vwconn(S), for all connected coalition S ⊆ N .

The difference between these two games is the definition of the disconnected
coalitions. For a disconnected coalition S, the worth of S in an additive weighted
connectivity game is given by

vawconn(S) = max
A∈P(S)

∑

T∈A

vwconn(T ), (6)

with P(S) the set of all possible partitions of coalition S in connected coalitions.
In general, this game is different from the one considered in Hamers et al. (2019),2

where the value of disconnected coalitions S equals vawconn(S) = ∑
T∈�S

vwconn(T ),
i.e., the sum of the values on the set of components of coalition S, denoted by �S .
Hence, notice that in the additive weighted connectivity game, we look for the most
effective partition in connected coalitions, for each given coalition.

4 The Owen Value Approximation in the Zerkani Network

In this section, we introduce an explicit expression for f in the Zerkani network.
Recall that f depends on the coalition at hand S, the importance of the individuals
(I) and the strength of the relationship between the links (R). Subsequently, we
will approximate the Owen value for the weighted connectivity game and the addi-
tive weighted connectivity game, respectively, and we will provide an error bound
for these approximations. Finally, we will analyze the rankings obtained from both
approximations.

4.1 The Zerkani Network Analysis

This section focuses on ranking the members of the Zerkani network by approxi-
mating the Owen value for the wconn and awconn cooperative games, respectively.
Before determining these approximations, we need to define f to obtain explicit
expressions for the TU-games in (5) and (6). Here, we follow Hamers et al. (2019),
where f (S, I,R) is defined by

f (S, I,R) =
{(∑

j∈S w j

)
· maxlh∈ES klh, if |S| > 1,

wS, if |S| = 1.
(7)

2 Conditions to assure the equality between both games can be found in Algaba et al. (2001).
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From this definition and considering the weights on the links (edges) and on
the members (nodes) of the Zerkani network given in Table2, the following result
follows, immediately, for both games: If f (S, I,R) is defined by (7), then weighted
connectivity games and additive weighted connectivity games are non-negative and
monotonic games.

Following Algaba et al. (2001), since the weighted connectivity game, defined
for the Zerkani network, is superadditive on the set of connected coalitions and, the
fact that, in this setting, the set of components of a coalition S form a partition of
this coalition, we have

vawconn(S) = max
A∈P(S)

∑

T∈A

vwconn(T ) =
∑

T∈�S

vwconn(T ), (8)

where P(S) is the set of all possible partitions of coalition S in connected coalitions
and�S the set of components (i.e., maximal connected coalitions) of coalition S. This
last expression coincides with the game introduced inMyerson (1977) to analyze the
cooperation, when there are restrictions in communication defined by an undirected
graph, which has been also used in more general settings of restricted cooperation
as van den Nouweland et al. (1992) or Algaba et al. (2000), among others.

The Zerkani network consists of 47 players obtained from Gartenstein-Ross et
al. (2016). Since the considered games does not lead to a clean expression for the
Owen value which enables its computation in polynomial time, we will approximate
the Owen value using the method described in Saavedra-Nieves et al. (2018) (see
Sect. 2). We will focus on the top 10 of the rankings, although we completely rank all
47 individuals. The associated graph of the Zerkani network is displayed in Fig. 1.

We consider the weights used in Hamers et al. (2019) on the links (edges) and on
the members (nodes) of the network. Initially, it was assigned a weight equal to one
to each link/member. Later, these weights were increased following Table2.

After its usage, the followingmembers have aweight larger than one: Abdelhamid
Abaaoud, Fabien Clain (weights equal to 4, respectively), Khalid Zerkani (5),Miloud
F. (2) and Mohamed Belkaid (3).

We conclude this subsection by using the explicit expression of f in the setting
of the Zerkani network in Theorem 1. Consider the weighted connectivity game
(N , vwconn). Then,

vwconn(S ∪ {i}) − vwconn(S) ≤ vwconn(S ∪ {i})
≤ vwconn(N ),

(9)

where the first inequality holds because vwconn(S) ≥ 0, for all S ⊆ N and the second
by monotonicity of the game vwconn.

Since themarginal contributions satisfy 0 ≤ mπ
vwconn(i) ≤ vwconn(N ), for all i ∈ N ,

it follows immediately that for all i ∈ N , we substitute ri , the parameter in Theorem
1, by vwconn(N ), i.e., ri = vwconn(N ). This implies that, by using Theorem 1 on
(N , vwconn), the following theorem directly results.



Analyzing the Zerkani Network with the Owen Value 233

Abdelhamid Abaaoud

Abderrahmane Ameroud

Abid Aberkan

Adrien Guihal

Ahmed Dahmani

Ali Oulkadi

Anis Bari

Chakib Akrouh

Fabien Clain

Fatima Aberkan

Gelel Attar

Hasna Ait Boulahcen

Ilias Mohammadi

Khaled Ledjeradi

Khalid Zerkani

Miloud F.

Mohamed Abrini

Mohamed Bakkali

Mohamed Belkaid

Mohammed Amri

Najim Laachraoui

Osama Krayem

Paris Attacker A

Paris Attacker B

Rabah M.

Reda Kriket

Salah Abdeslam

Souleymane Abrini

Thomas Mayet Y. A.

Sid Ahmed Ghlam

Ayoub el Khazzani

Mehdi Nemmouche

Reda Hame

Macreme Abrougui

Salzburg Refugee A

Salzburg Refugee B

Ibrahim Abdeslam

AQI

Djamal Eddine Ouali

Soufiane Alilou

AQIM

Ibrahim El Bakraoui

Khalid El Bakraoui

Tawfik A.

Identity Unknown

Hamza Attou

Fig. 1 Graph of the Zerkani network

Table 2 List of relationships, weights for links and weights for starting nodes

Relationships Weights on links Extra weight for starting nodes

“Associate of” 2 0

“Brother of” 1 0

“Commander of” 2 2

“Family relationship” 1 0

“Funded” 1 2

“Lived with” 2 0

“Nephew of” 1 0

“Recruiter of” 1 1

“Supporter of” 1 1

“Traveled to Syria with” 2 0

“Traveled with” 2 0

“Associate and traveled with” 4 0

“Traveled and lived with” 4 0
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Theorem 2 Let ε > 0, α ∈ (0, 1), (N , vwconn, P) be a weighted connectivity game
with a priori unions P, ri = vwconn(N ), for all i ∈ N.

If � ≥ min

{
1

4αε2
,
ln(2/α)

2ε2

}
(vwconn(N ))2, (10)

then P(|Ôi − Oi | ≥ ε) ≤ α, for every i ∈ N .

The same result, using the same arguments, holds for additive weighted connectivity
games with a priori unions (N , vawconn, P). Observe that taking into account (10), the
resulting bound, for the sample size �, does not depend on the partition P considered
in the game (N , vwconn, P).

4.2 On the Partition P Considered

In this subsection, we provide a partition of the Zerkani network that integrates
affinities or certain features of the terrorists to achieve enhanced outcomes. The
partition in our case has ten unions, i.e., P = {P1, P2, . . . , P10}. Union P1 groups
those high ranked members of the Zerkani network, that is, those majors and those
devoted to recruit terrorist. They are Abdelhamid Abaaoud, Fabien Clain and Khalid
Zerkani with an associated weight larger than one. Union P2 corresponds to the asso-
ciated upper-level charges of the Zerkani network. This group is formed by Chakib
Akrouh,GelelAttar,HasnaAitBoulahcen, FatimaAberkan,OsamaKrayem,Souley-
mane Abrini, Ayoub el Khazzani, Mehdi Nemmouche, Thomas Mayet, Macreme
Abrougui, Ahmed Dahmani and Adrien Guihal. Union P3 groups those individu-
als that are considered in an inferior rank (those recruited or under the authority
of a major). Their names (or alias) are Sid Ahmed Ghlam, Reda Hame, AQI, Ilias
Mohammadi, Soufiane Alilou, Najim Laachraoui and Khalid El Bakraoui. Unions
P4, P5 and P6 involve those terrorists that created strong relationships or they may
have hidden intentions when traveling. Those terrorists under alias Paris Attacker
A, Paris Attacker B, Salzburg Refugee A and Salzburg Refugee B form union P4;
Mohammed Amri, Hamza Attou, Mohamed Abrini and Abid Aberkan form P5, and
Mohamed Belkaid, Salah Abdeslam, Mohamed Bakkali and Ibrahim El Bakraoui
belong to P6. The Kriket network is captured in union P7. They are Reda Kriket,
Rabah M., Y. A., Abderrahmane Ameroud, Miloud F., Anis Bari and AQIM. The
individuals associated with Forging Ring form union P8 and corresponds Khaled
Ledjeradi and Djamal Eddine Ouali. Union P9 is given by a person with unknown
identity andTawfikAand union P10 is formed by IbrahimAbdeslam andAliOulkadi.
Each of them is given by the two individuals who were arrested simultaneously in
Forest .
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4.3 Numerical Results

As mentioned, the main purpose is to rank the members of the Zerkani network
according to the decreasing order using the outcomes corresponding to the approxi-
mations of the Owen value.

Thus, we apply the approximation method described in Sect. 2 to the TU-games
(N , vwconn) and (N , vawconn), respectively. The sample size in the approximation
method is chosen equal to 1000, i.e., � = 1000. Subsequently, we have simulated
1000 times the Owen value. In this way, we obtain 1000 approximations of the
Owen value for both games. We also consider the quality of the approximation using
Theorem 2. Finally, we look for both games theOwen value obtained by averaging all
of these 1000 approximations. The final result is equivalent to obtain one simulation
with � = 106.

Using the input of Table2, the network structure, its relations and the definition of
the (additive) weighted connectivity game, we can deduce that v(N ) = 300. Hence,
in Theorem 2 we choose ri = 300, for all i ∈ N . Therefore, Table1, displayed in
Sect. 2, provides the theoretical errors for estimating the Owen value in the Zerkani
network by using the cooperative games (N , vwconn) and (N , vawconn).

Table3 depicts the top-10 list of terrorists belonging to the Zerkani network and
the corresponding results for the games (N , vwconn) and (N , vawconn). The overall list
of the Owen value estimations for the members of the Zerkani network can be also
supplied on request. Khalid Zerkani, themost influential terrorist, under theweighted
connectivity game, goes to the second position in the additive case. Abdelhamid
Abaaoud moves to the fourth position under the second point of view. However,
Mohamed Belkaid moves up from the third position in the weighted connectivity
game to the first position under additivity. Analogous comments can be extracted
from the remainder of the list of members in the top 10, who most of them are in the
same positions (in fact, at most, they differ in one position).

Once the Owen value is estimated, we check how the sampling proposal for
approximating the Owen value performs in this example, in terms of the variability
of the results, through a small simulation study. By construction, we have obtained
the results in Table3 by averaging 1000 estimations of theOwen value for the Zerkani
network by using sample sizes equal to � = 103. We separately focus our attention
on those 10 terrorists belonging to the top of the considered rankings.

Table4 summarizes, from a purely statistical point of view, the 1000 obtained
results for the 10most relevant terrorists in theZerkani networkbyusing the estimated
Owen value with � = 103 for the weighted connectivity game. Notice that the order
established for the top 10 in Table3 can be also maintained when using as criteria
the main statistical measures.

Analogous conclusions can be obtained from the case of the additive approach,
in view of the statistical summary for the 1000 estimations of the Owen value for
the 10 terrorists in the top 10 in the ranking of Table3. The numerical results are
included in Table5.
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Table 3 Top 10 of the ranking of terrorists in the Zerkani network, according to the estimated
Owen value for games (N , vwconn) and (N , vawconn) with � = 106

Ranking Rwconn Ranking Rawconn

Pos. Terrorist Ô Terrorist Ô

1 Khalid Zerkani 39.357363 Mohamed Belkaid 28.373644

2 Abdelhamid Abaaoud 36.255303 Khalid Zerkani 27.728460

3 Mohamed Belkaid 29.162472 Mohamed Bakkali 27.133642

4 Mohamed Bakkali 27.802943 Abdelhamid Abaaoud 26.225820

5 Salah Abdeslam 27.070990 Salah Abdeslam 22.451192

6 Fabien Clain 13.569693 Fabien Clain 16.427384

7 Reda Kriket 11.621222 Reda Kriket 11.395351

8 Ahmed Dahmani 10.808112 Ahmed Dahmani 6.167458

9 Khaled Ledjeradi 4.685000 Miloud F. 6.089226

10 Miloud F. 4.203003 Khaled Ledjeradi 5.268594

Table 4 Statistical summary of the 1000 estimations of the Owen value for the wconn game

Terrorist Min. 1st
Qu.

Median Mean 3rd
Qu.

Max.

1 Khalid Zerkani 36.833 38.781 39.338 39.357 39.902 42.167

2 Abdelhamid Abaaoud 33.959 35.820 36.271 36.255 36.709 39.586

3 Mohamed Belkaid 26.581 28.470 29.202 29.163 29.768 32.169

4 Mohamed Bakkali 24.484 26.979 27.801 27.803 28.672 32.832

5 Salah Abdeslam 24.354 26.398 27.050 27.071 27.743 30.355

6 Fabien Clain 12.251 13.273 13.547 13.570 13.882 15.274

7 Reda Kriket 10.614 11.375 11.612 11.621 11.876 12.768

8 Ahmed Dahmani 9.853 10.575 10.805 10.808 11.045 12.078

9 Khaled Ledjeradi 4.270 4.602 4.689 4.685 4.766 5.035

10 Miloud F. 3.714 4.091 4.201 4.203 4.315 4.739

From these results, we also can check the variability of rankings. For instance, by
taking the awconn game, we check that Khalid Zerkani moves up to the first position
in the ranking when considering the minimum values. On the other hand, Mohamed
Bakkali also moves up to the top of the ranking when the maximum estimations of
the Owen value are considered.

We complete this analysis measuring the computational effort required in obtain-
ing these 1000 estimations. Table6 includes a summary of the processing times (in
seconds) for each of these 1000 repetitions. Note that more than 75% of the estima-
tions have been obtained in less than 2h of real computing time.

Note that obtaining these estimations requires significant computational effort
that can be substantially minimized by parallelising their implementation.
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Table 5 Statistical summary of the 1000 estimations of the Owen value for the awconn game

Terrorist Min. 1st
Qu.

Median Mean 3rd
Qu.

Max.

1 Mohamed Belkaid 25.912 27.736 28.385 28.374 28.973 31.464

2 Khalid Zerkani 26.328 27.420 27.739 27.729 28.029 29.069

3 Mohamed Bakkali 24.042 26.369 27.128 27.134 27.978 31.908

4 Abdelhamid Abaaoud 24.892 25.970 26.239 26.226 26.494 27.753

5 Salah Abdeslam 19.924 21.828 22.423 22.451 23.060 25.564

6 Fabien Clain 15.522 16.253 16.435 16.427 16.601 17.177

7 Reda Kriket 10.766 11.235 11.389 11.395 11.561 12.268

8 Ahmed Dahmani 5.730 6.056 6.166 6.168 6.276 6.732

9 Miloud F. 5.742 6.013 6.087 6.089 6.171 6.488

10 Khaled Ledjeradi 5.010 5.212 5.270 5.269 5.326 5.488

Table 6 Statistical summary of the 1000 processing times (in seconds) for the estimations of the
Owen value

Min. 1st Qu. Median Mean 3rd Qu. Max.

Proc. time 2365.370 4965.364 5552.082 5637.076 6265.814 13,287.390

4.4 A Brief Comparison with the Ranking Based
on the Shapley Value

In this section,wemake a brief discussion on the rankings obtained for the estimations
of the Owen value and the Shapley value, respectively. To this purpose, we use the
sampling procedure considered in Castro et al. (2009), based on simple random
sampling with replacement. By simplicity, and for the sole purpose of comparing the
scenarios, we estimate 100 times the Shapley value by taking � = 1000 permutations
of N . Thus,we average these estimations andwe compare such resultwith the average
of 100 of the estimations of the Owen value considered in Sect. 4.3. In both cases,
the theoretical bounds of the error in their estimation, for all i ∈ N , are shown in the
second row corresponding to Table1.

Table7 illustrates the top10of the rankings obtained.The complete list of terrorists
based on these results can be supplied on request.

Below, we briefly make some comments on the resulting rankings of the top-10
members of the Zerkani network. We emphasize the fact that the most of the posi-
tions change when using the approach considered in this paper. Probably, this may
be due to the organizational and logistical role played by such terrorists, which are
now incorporated in the cooperative games through an a priori coalitional structure,
and the fact that their weights will change with the approach under consideration.
Undoubtedly, the possibility of integrating information on the cooperation and affini-
ties of members of the network with the Owen value, makes that the Owen value can
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Table 7 Top 10 of terrorists in the Zerkani network, according to the average of 100 estimations
of the Owen value and the Shapley value with � = 1000 for games (N , vwconn) and (N , vawconn)

Ranking Rwconn

Terrorist Ŝh Terrorist Ô

Ab. Abaaoud 17.108 Khalid Zerkani 39.242

Khalid Zerkani 15.026 Ab. Abaaoud 36.129

Salah Abdeslam 14.741 Mohamed Belkaid 29.236

Mohamed Belkaid 14.249 Mohamed Bakkali 27.845

Najim Laachraoui 7.918 Salah Abdeslam 27.042

Mohamed Bakkali 7.356 Fabien Clain 13.661

Fabien Clain 5.884 Reda Kriket 11.642

Reda Kriket 3.696 Ahmed Dahmani 10.754

Ahmed Dahmani 3.369 Khaled Ledjeradi 4.702

Mohamed Abrini 2.917 Miloud F. 4.209

Ranking Rawconn

Terrorist Ŝh Terrorist Ô

Mohamed Belkaid 13.987 Mohamed Belkaid 28.460

Khalid Zerkani 12.332 Khalid Zerkani 27.677

Ab. Abaaoud 11.850 Mohamed Bakkali 27.168

Salah Abdeslam 11.453 Ab. Abaaoud 26.157

Fabien Clain 8.295 Salah Abdeslam 22.439

Mohamed Bakkali 7.625 Fabien Clain 16.404

Najim Laachraoui 7.549 Reda Kriket 11.395

Reda Kriket 4.923 Ahmed Dahmani 6.142

Mohamed Abrini 2.996 Miloud F. 6.093

Miloud F. 2.827 Khaled Ledjeradi 5.271

be considered more representative than the Shapley value, in reference to the reality
of the Zerkani network.

Notice Khalid Zerkani is leading the ranking when a priori unions system exist
under the weighted connectivity game, with respect to the one associated to the case
of the Shapley value, keeping his position for the additive approach. Recall that
this man directed a recruitment network in the Brussels area. He was not present
coordinating the attacks of Paris and Brussels, but he had a high influence on all
those who related to him. He is currently imprisoned on terrorism-related charges.
In the additive scenario, the person who always occupies the first position in both
rankings is Mohamed Belkaid. On the other hand, Najim Laachraoui and Mohamed
Abrini do not belong to the top 10 when using the Owen value in ranking with both
games. Their positions are completedwithKhaled Ledjeradi andMiloud F., when the
Owen value is considered for the weighted connectivity game. However, under the
additive approach, Najim Laachraoui and Mohamed Abrini are changed by Ahmed
Dahmani and Khaled Ledjeradi in the lists.
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Table 8 Spearman’s correlation matrix for the rankings of the Zerkani network

Rwconn Rawconn

Ŝh Ô Ŝh Ô

Rwconn Ŝh 1.000 0.927 0.855 0.830

Ô 0.927 1.000 0.889 0.925

Rawconn Ŝh 0.855 0.889 1.000 0.944

Ô 0.830 0.925 0.944 1.000

In general, these results are in line with the reality of the Zerkani network. Along
with Khalid Zerkani and Abdelhamid Abaaoud, the role of Mohamed Bakkali is
also important since he is the alleged intellectual author of the attack of Paris. It is
believed that he selected those who were going to be in the war zones or in Europe.
He died in a police raid, when Chakib Akrouh detonated his explosives belt. Another
individual in the ranking is Salah Abdeslam. He was the most wanted man in Europe
after the Paris attack. Fabien Clain was one planner of Paris attack and explored the
different places where to perform the blows. Then, Reda Kriket was a recruiter for
the network and provided money to it. Meanwhile, Khaled Ledjeradi was someone
very required in the network, since he was the leader of an organization that created
fake documents for the members of the network, allowing them to travel. Finally,
about Miloud F. not much information is available, but he was arrested in Turkey in
2005, and this allowed for arresting RedaKriket later. About Salzburg RefugeeA and
Salzburg Refugee B refugees, barely there is information about them, but they are
the points of union of the attackers Paris A and B to the network. So, the supervision
of these last two subjects mentioned may have been key to the cessation of the attack.
The decision not to increase police surveillance on them, even if it was not a good
one, can be justified from our results since only under the additive perspective, these
individuals rank high in the ranking. Notice that those that carry out the suicide and
therefore the action (Salzburg Refugee A or B, among others) usually appear from
eleventh position onwards.

The degree of similarity of all rankings considered is now studied through the
computation of Spearman’s correlation coefficient on their positions (see Table8). In
view of such results, when comparing the Owen value and the Shapley value for both
approaches, the level of association under the additive approach is slightly higher
than under that one given by the weighted connectivity game. In addition, we check
that the Owen values, obtained for both games, have a stronger association than the
respective Shapley values (both correlations, next, in bold).
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5 Conclusions

The Shapley value (Shapley, 1953) and the Banzhaf value (Banzhaf, 1965) are two
of the most well known and studied values in the literature of cooperative games. The
idea of this chapter is how to determine the keymembers in a terrorist network defined
by a graphwith tools of cooperative game theory.With this objective, the Owen value
is presented as a new centrality measure for networks generalizing the studies made
with the Shapley value in Hamers et al. (2019). The advantage of this new measure
is the possibility of considering relevant information of the members of the network
through a partition that realistically describes their affinities. Based on this same
idea, in this framework, the Banzhaf–Owen value (Owen, 1982) has been studied in
Algaba et al. (2022) extending likewise theBanzhaf value and presenting these values
to analyze these networks. Therefore, when choosing the approach based on a priori
unions, a previous and deep analysis of the network is needed to capture the most
important features and information of it. This way, we can integrate this information
in the results and obtain more precise outcomes in line with the income data.
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The Power of Closeness in a Network

Manfred J. Holler and Florian Rupp

Abstract This paper considers the question of whether it is profitable for a weaker
player to be closely linked to a strong/powerful player—our conjecture is ‘Yes’—and
whether it is more beneficial to a strong/powerful player to be closely linked with
a weak player than being linked with a strong player. Our understanding of power
is based on the Public Good Index. We will demonstrate that in this sense power
is a non-local concept indicating that strong players form a ‘hot-region’ about the
strongest player. To obtain this result, we present an easy to perform algorithm for
the computer-based determination of the Public Good Index on networks that equips
us with instruments for studying the voting power in small networks.

1 Introduction

This paper puts a spotlight on the, presumably, ancient question of how close one
should be to powerful players. The setting we are discussing is that of a democratic
network where players form winning coalitions to execute power. The measure of
power that is used throughout the paper is that of the Public Good Index (PGI) subject
to networks, see Holler and Rupp (2019, 2020a, 2020b). This instrument helps us to
reframe our questions more precisely of whether it is profitable for a weaker player
to be closely linked to a strong player—our conjecture is ‘Yes’—and whether it is
more beneficial for a strong player to be closely linked to a weak player than being
linked to a strong player. More generally, we will ask when closeness is favorable
or unfavorable, where closeness between two nodes is measured using the shortest
path between these nodes and the number of other nodes on that path between these
nodes. If no path connects them, then as per definition the value of closeness is
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zero (and the graph decomposes into more than one connected component). We
will demonstrate that the answers to these questions depend on the properties of the
network.

The first indication about powerless players in a voting network is given in Bozzo
and Franceschet (2016). There, power is measured in terms of the power equation,
and the least powerful nodes have been detected as end nodes of a voting network
that are just connected to a single other player. Here, we will show that in terms of
power measured by the PGI it indeed seems to have advantages to connect to the
most powerful player, and connecting to the least powerful player may hand the red
lantern, assigning the lowest PGI, value to the connecting new node.

2 Algorithmic and Computational Aspects

Our analysis focuses on a weighted voting game of the type v = (d;w) where d is
the decision rule (quota or quorum) and w = (w1, . . . , wi , . . . , wn) is the vector of
voting weights. N = {1, . . . , n} is the set of decision makers (agents or players) and
i is an element of N . A subset S of N is a coalition. The value of a coalition S is v(S).
In general, voting games are modeled in the form of simple games, i.e., v(S) = 1 if
S is a winning coalition if

∑
i∈S wi ≥ d, and v(S) = 0 if S is a losing coalition if∑

i∈S wi < d.
If v(S) − v(S − i) = 1, then i is a critical player, i.e., a swing player in coalition

S that has the ‘power’ to turn a winning coalition into a losing coalition and a losing
coalition into a winning one. This characterizes the notion of ‘power’ underlying our
analysis—voting power. S is a minimum winning coalition (MWC) if all elements
of S are critical players. The set of MWCs is a subset of the set of winning coalitions
W . If W is nonempty then, obviously, a MWC exists.1

If ci represents the number of MWCs that have i as a member then the Public
Good Index (PGI) is defined by

hi (v) = ci
∑

i∈N ci
. (1)

This measure has been introduced in Holler (1982b) and axiomatized in Holler and
Packel (1983) and, “axiomatization completed,” in Napel (1999, 2001).2 Note that
the PGI considers the value of a coalition to be a public good v(S) such that the
standard properties of non-rivalry in consumption and non-excludability apply. The
PGI value hi (v) expresses the ‘influence’ that i has on the creation of v(S). If in
the following, we nevertheless speak of shares of power, then this is a shorthand for

1 Though, it can be that no winning coalitions exist. For instance, assume a set of players who are
not connected with each other. If none has a weight larger or equal to the quorum then no winning
coalition can be formed.
2 For alternative axiomatizations, see Alonso-Meijide et al. (2008) and Safokem et al. (2021).
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Fig. 1 Illustration of algorithm’s key step 2

expressing the degree of influence. The discussion of the essence of power is not our
focus in this paper3; we are interested in the effects of networks and networking.

Based on the efficient implementation of power indices for simple voting games
in programming and software environments, like the program R, it is straightforward
to extend these implementations to (large) network structures that test the feasibility
of coalitions in simple voting games in the network. This feasibility testing considers
whether a given coalition leads to a connected sub-graph in the network or not.

Thus, in terms of the PGI of a voting game v = (d;w,�), where all players have
the same weight, on a network � the algorithmic procedure for its computation can
read as

Algorithm: PGI on Networks

1. Compute the Minimum Winning Coalitions (MWCs) of the simple voting game
v = (d;w), where all players have the same weight.

2. For each of these MWC, check if it is feasible within the network structure, i.e.,
whether the MWC induces a sub-graph on � that has exactly one connected
component.

3. Compute the PGI based on the remaining feasible MWCs.

Thebenefit of startingwith theMWCsof the simple votinggameand then reducing
their number in accordance with the concrete graph structure is that wewill not forget
any possible MWCs. The key step is to check the connectedness of the sub-graph
induced by the MWC. Figure1 gives an illustration of a case in which this condition
is violated. The simple voting game v = (5; 1, 1, 1, 1, 1, 1) consists of six players of
equal weights andwith a quorum rule d = 5 such that the Players 2, 3, 4, 5 and 6 form
a MWC in this (unrestricted) simple voting game. Though, if the network restriction
� is imposed, then the set of Players 2, 3, 4, 5 and 6 is no longer connected, as the
Player 1 is not included in this set that connects, e.g., Players 2 and 4. Therefore, the
set of Players 2, 3, 4, 5 and 6 is not a MWC in the voting game v = (d;w,�) on the
given network �.

3 We refer to the corresponding literature on power measures like Holler (1982b), Holler and
Owen (2001), Holler and Nurmi (2013), and Napel (2019). Kurz et al. (2015) offer “A Forecast of
Tomorrow’s Power Index Research” and possible applications.
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For a voting system on a network in which every player has the same voting
weight, the highest PGI value is attained at that node, which is part of the most
connected sub-graphs with cardinality q. An implementation of this algorithm in the
software environment R is provided in the appendix.

We will see later in the context of star networks that for voting games v =
(d;w,�) on a network � with non-equal weights of the players there can be MWC
on the network that may not be MWC of the simple voting game. Here, a player is
required who assures the connectivity of MWC on the network and who is not criti-
cal in the simple voting game. Thus, a more general algorithm must take the MWCs
on the network into account. Though, this requires more advanced operations for
networks.

Note that due to the collection of all possible MWCs in step 1 the performance
of this algorithm follows the computational performance of determining the PGI
in simple voting games. This performance is limited by combinatorial effects that
essentially growwith the number of decisionmakers. In particular, Sperner’s theorem
(Sperner, 1928) bounds this number as follows

1 ≤ number of MWCs in a simple voting game ≤
(

N

� N
2 �

)

.

Due to the network structure, this number is dramatically reduced for the voting
game defined on the network. A speed-up of the algorithm will be gained by directly
determining the MWCs on the network via consistent paths between the decision
makers.

3 Power in Small Unweighted Networks

The following networks are prototypical examples for the comparison of graph the-
oretic centrality measures in the sense that they display rather small graphs such
that the typical centrality measures like betweenness centrality, closeness centrality,
degree centrality, and eigenvector centrality can be analyzed.

Betweenness centrality quantifies the number of times a vertex acts as a bridge
along the shortest path between two other vertices. It was introduced as a measure for
quantifying the control of a human on the communication between other humans in
a social network. In his conception, vertices that have a high probability to occur on
a randomly chosen shortest path between two randomly chosen vertices have a high
betweenness. The degree of a node is the number of other nodes it is connected to,
i.e., the number of edges that are associated with this node. The degree central node
has the highest degree (there can be more than one such node).Closeness centrality
of a node is the average length of the shortest path between the node and all other
nodes in the graph; i.e., it is the reciprocal of the farness. Thus, the more central a
node is, the closer it is to all other nodes. Finally, eigenvector centrality assigns
relative scores to all nodes in the network based on the concept that connections to
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high-scoring nodes contribute more to the score of the node in question than equal
connections to low-scoring nodes. Google’s PageRank and the Katz centrality are
variants of the eigenvector centrality. Let A be the adjacency matrix of the network,
then thementioned relative scores are provided by the entries of the eigenvector x that
has positive entries only such that λx = Ax . The unique existence of a pair (λ, x),
where x has positive entries only, is guaranteed by the theorem of Perron–Frobenius.

For a more in-depth discussion of these measures, we refer to the literature, e.g.,
Bonacich (1987), Newman (2010), Todeschini and Consonni (2009), Jackson (2019)
and Holler and Rupp (2019). For these simple networks, we refer to Brandes and
Hildebrand (2014) as a reference for the application of the mentioned centrality
measures.

In Krackhardt’s kite (Fig. 2, top left), node 8 has the highest betweenness and the
highest eigenvector score, nodes 6 and 7 have the highest closeness score, and node
4 has the highest degree score. Our algorithm tells us that node 8 (betweenness and
eigenvector winner) also has the highest PGI value.

Everett’s network (Fig. 2, top right) is an example where betweenness, closeness,
degree and eigenvector centrality are located at different nodes.Wecall suchnetworks
BCDE networks. Node 2 has the highest betweenness score, node 3 has the highest
closeness degree, node 4 has the highest degree score, and node 5 has the highest
eigenvalue score. Here, node 3 (closeness winner) has the highest PGI value.

Pott’s network (Fig. 2, bottom left) is also of BCDE type. Node 8 has the highest
betweenness score, node 6 has the highest closeness score, node 3 has the high-
est degree score, and node 5 has the highest eigenvector score. Moreover, node
8(betweenness winner) has the highest PGI value.

Finally, in the Medici network (Fig. 2, bottom right), that we discussed in detail
in Holler and Rupp (2021, 2022), node 12, representing the fifteenth-century Medici
family, has the highest betweenness score, the highest closeness score, the highest
degree score, the highest eigenvalue score as well as the highest PGI value.

Figure3 shows further examples for networks and the distribution of Public Good
Power within them. The network in Fig. 3, left, is a real network given in a study
involving students in a distance learning group using a computer-supported collabo-
rative learning (CSCL) environment; i.e., it is a network of the usage of the CSCL’s
instant messenger (IM) system by the students (see Sundararajan, 2008). The two-
star network in Fig. 3, right, is an example given by Massimo Franceschet.4 Both
examples illustrate that the nodes with the highest PGI values seem to be quite often
linked directly. However, the Medici network shows that also bridges between such
nodes are possible as well.

The examples illustrate two essential results: First, power measured by the PGI is
different from a power assignment based on the traditional graph theoretic measures
of betweenness, closeness, degree and eigenvector centrality. Second, power mea-
sured by the PGI in networks is a non-local concept: We see the most powerful node
to be surrounded by the next powerful nodes giving rise to some ‘power hot-region’
rather than that the powerful node is supported by less powerful ones.

4 https://users.dimi.uniud.it/~massimo.franceschet/networks/nexus/properties.html.

https://users.dimi.uniud.it/~massimo.franceschet/networks/nexus/properties.html
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Fig. 2 Display of network structures and PGI-vectors—hK , hE , hP and hM—for Krackhardt’s
kite, Everett’s BCDE-network, Potts’ BCDE-network and the Medici network. (The darker the fill
color, the higher the PGI value of the corresponding node.)

The networks in Fig. 4 are designed to address the question of whether it is prof-
itable for a weaker player to be closely linked to a strong player. They have a kite-like
structure with a tail of the length of the quorum. Based on our insights, this design
is chosen to guarantee that the end of the tail can be present in one and only one
minimal winning coalition, whereas the node with the highest PGI value is the con-
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Fig. 3 Collaborative learning environment and two-star network

nector between the tail and the remaining part and thus obtains options for a critical
participation in minimal winning coalitions form both of these parts. The initial kite
(Fig. 4, left) and the modified kite with two additional nodes (Fig. 4, right) both have
node 7 as that with the highest PGI value. The additional nodes 14 and 15 in the
modified kite are attached to the node with the initially highest (node 7) and that
with the initially lowest PGI value (node 1). We see that when adding a new node 14
to the network the red lantern is handed to that new node: assigning the lowest PGI
value to the new node. Nodea 14 and node 1 show a PGI value of 0.001893939 and
0.005681818, respectively.

A coalition with the least powerful node alone does not lead to a gain of power,
which seems to be intuitively clear in the context of politics. On the other hand, node
15 is, by purpose, connected to the most powerful node 7. We see that this link to the
strongest player assigns, in this example, even more power to the newcomer node 15
than to nodes 9–13 which were initially at the periphery.

4 Power in Weighted Networks

So far, we discussed networks in which each node had the same voting weight. In
this section, we drop this assumption and allocate different weights. These weights
can be understood as representing resources, e.g., vote shares. Let us continue with
several prototypical small network structures that commonly occur as sub-graphs in
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Fig. 4 Kite networks designed to address the question of whether it is profitable for a weaker player
to be closely linked to a strong player (The darker the fill color the higher the PGI value of the
corresponding node.)

larger networks such that they can be considered as prototypical building blocks that
additionally display voting networks with nodes of different weights. Figure5 pro-
vides an overview of the network structures, we are going to discuss: linear networks,
circle networks and star networks each with five players. Particularly, in weighted
voting games, the connectivity of the players has a huge effect on the distribution of
power. In this section, we propose the voting game v◦ = (51; 35, 20, 15, 15, 15) and
apply the described various linear, circle and star network structures to it. In what
follows we will call Players 1 and 2 ‘strong players’ and 3, 4 and 5 ‘weak players’
because of their voting weights. In some cases, Player 1 is addressed by ‘the strong
player’. But we will also speak of strong and weak players concerning the values of
the power index.

The voting game v◦ = (51; 35, 20, 15, 15, 15) is the notorious example used to
demonstrate that the PGI violates local monotonicity. If no network structure is
considered, the corresponding PGI is h(v◦) = (

4
15 ,

2
15 ,

3
15 ,

3
15 ,

3
15

)
. Note that Player 2

hasmore votes than Players 3, 4 or 5, but a smaller PGI value, i.e., local monotonicity,
is violated.5 Thus, a player that is strong in (voting)weights canbe aweakplayerwhen

5 We do not want to discuss this issue here—for a discussion, see Holler (2018, 2019)—, but point
out that the more popular power indices by Shapley–Shubik and Penrose–Banzhaf also lose their
local monotonicity property if engrafted by a network structure.
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Fig. 5 Some connectivity network structures for voting games with five players: linear networks
(left), a circle network (middle) and a star network (right)

ranked by its PGI value—even when there is no network introducing restrictions on
coalition formation. In the following, the PGI values h(v◦) serve as a base of reference
for calling a player strong or weak.

4.1 The Linear Network Case

To start with, we assume the structure G1:

G1 : (1) − (2) − (3) − (4) − (5) .

The set of MWCs is M(G1) = {{1, 2}, {2, 3, 4, 5}}. The corresponding PGI is
h1 = (

1
6 ,

2
6 ,

1
6 ,

1
6 ,

1
6

)
. The introduction of a network structure had a significant impact

on the power structure. Player 2, victim to the violation of monotonicity in the
unstructured game, is the strongest player if network structure G1 holds—its power
value is larger than the power value of Player 1 who controls more votes than Player
2. It seems that Player 2 profits from being more central than Player 1. But if we
compare the power values of Player 2 and Player 4—the two players have the same
values of centrality however measured—then we may conclude that Player 2 profits
to be directly linked to the ‘strong’ Player 1 as measured by 1’s voting weight. Does
it pay to be close to a strong player?

To come closer to the answer to this question, we rearrange the network positions
of the five players along the linear dimension such that network structure G2 results.

G2 : (1) − (3) − (4) − (2) − (5) .

The set of MWCs is M(G2) = {{1, 3, 4}, {2, 3, 4, 5}}; therefore, we get h2 =(
1
7 ,

1
7 ,

2
7 ,

2
7 ,

1
7

)
. Again, closeness to a ‘strong player’ seems to be profitable. But

is it profitable for the strong one? More specifically, is it more profitable for a strong
player to be next to a stronger player than to a weaker one?

Let us further check the effects of closeness by assuming network structure G3:

G3 : (3) − (2) − (4) − (1) − (5) .
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Here, we gain the set of MWCs as M(G3) = {{2, 4, 1}, {4, 1, 5}}, and thus h3 =(
2
6 ,

1
6 ,

0
6 ,

2
6 ,

1
6

)
. It seems that centrality is ‘profitable’ (compare Players 3 and 4!), but

neighboring a ‘strong’ player seems ‘profitable’ as well. Note that Players 3, 4 and
5 have equal vote shares. We may conclude that Player 4 benefits of centrality and
closeness to the strong Player 1.

Under the assumption that all players are connected and thereby potential mem-
bers of some coalitions, there are n! = 5! = 120 possible orderings representing
alternative linear network structures for five layers. If we check these alternatives,
can we conclude that it is beneficial to be a neighbor of a strong player?

Due to Players 3, 4 and 5 having the sameweight, the number of 5! = 120 possible
orderings actually reduces to the 10 essential ones listed in Table1. For instance, the
PGI values h1 = (

1
6 ,

2
6 ,

1
6 ,

1
6 ,

1
6

)
, which derives for network G1, also describe the

PGI values of the following five networks:

(1) − (2) − (3) − (5) − (4), (1) − (2) − (4) − (5) − (3),

(1) − (2) − (5) − (3) − (4),

(1) − (2) − (4) − (3) − (5), (1) − (2) − (5) − (4) − (3).

Note, these networks, together withG1, contain the six possible orderings of Players
3, 4 and 5, connected with the given ordering of Players 1 and 2 as the starting places,
read from left to right. Additionally, the same number of orderings occurs for the
ending ordering of the Players 2 and 1, read from the right to the left. Thus, the
h1 = (

1
6 ,

2
6 ,

1
6 ,

1
6 ,

1
6

)
represents the essence of the twelve orderings (Table 2).

4.2 The Circle Network Case

The linear structure has a long tradition in economics and theoretical and empirical
public choice. For example, it is used to model a political left-right dimension in the
political arena.6 However, to separate the closeness effect from centrality effects due
to positions toward the beginning and end of the linear space, we chose the circular
structure G4 as given in Fig. 2 (middle).

Given the voting game v◦ = (51; 35, 20, 15, 15, 15), we have M(G4) = {{1, 2},
{4, 5, 1}, {2, 3, 4, 5}} and thus h4 = (

2
9 ,

2
9 ,

1
9 ,

2
9 ,

2
9

)
. Here, Players 4 and 5 are neigh-

bors of the strong player 1, and coalitions with the strong Player 1 include either the
direct neighbor 5 or Player 4 (who is still close to Player 1), or both of them.

6 Hotelling (1929) applied such a model to discuss competition in a one-dimensional spatial duoply
market. However, he also applied his model to discuss spatial competition between the Democrats
and the Republicans in the USA. The Public Choice literature by and large ignored Hotelling’s work
and results. See the pioneering work by Anthony Downs (1957).
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Table 1 The 10 essential linear networks v◦ = (51; 35, 20, 15, 15, 15) together with the number
of their occurrences which has to add up to 120 in total as well as the corresponding PGI values.
(Note that due to having the same weights, the nodes 3, 4 and 5 are interchangeable without loss of
generality.)

The 10 essential
linear networks

No of
occur-
rences

PGI of
Player 1

PGI of
Player 2

PGI of
Player 3

PGI of
Player 4

PGI of
Player 5

G1: (1) − (2) −
(3) − (4) − (5)

12 0.1666 0.3333 0.1666 0.1666 0.1666

(2) − (1) −
(3) − (4) − (5)

12 0.4000 0.2000 0.2000 0.2000 0.2000

(1) − (3) −
(2) − (4) − (5)

12 0.0000 0.2500 0.2500 0.2500 0.2500

(1) − (3) −
(4) − (5) − (2)

12 0.1428 0.1428 0.2857 0.2857 0.1428

G2: (1) − (3) −
(4) − (2) − (5)

12 0.1428 0.1428 0.2857 0.2857 0.1428

(2) − (3) −
(4) − (1) − (5)

12 0.3333 0.0000 0.1666 0.3333 0.1666

(3) − (1) −
(2) − (4) − (5)

12 0.5000 0.5000 0.0000 0.0000 0.0000

(3) − (2) −
(1) − (4) − (5)

12 0.4000 0.2000 0.2000 0.2000 0.2000

G3: (3) − (2) −
(4) − (1) − (5)

12 0.3333 0.1666 0.0000 0.3333 0.1666

Table 2 Essential circle networks v◦ = (51; 35, 20, 15, 15, 15)
Circle Network PGI of

Player 1
PGI of
Player 2

PGI of
Player 3

PGI of
Player 4

PGI of
Player 5

G4: (1) − (2) − (3) − (4) − (5) 0.2222 0.2222 0.1111 0.2222 0.2222

(1) − (3) − (2) − (4) − (5) 0.2000 0.1000 0.2000 0.2000 0.3000

Note that the initial and the terminal player are connected

4.3 The Star Network

Finally, we discuss the star network G5 (see Fig. 2, right), where the Players 1, 2,
3 and 4 are all connected to Player 5 and have no further direct links between each
other:

G5 : (1) − (5) , (2) − (5) , (3) − (5) , (4) − (5) .

With the MWCs M(G5) = {{5, 1, 4}, {5, 1, 3}, {5, 2, 3, 4}}, the Public Good Index
of this star network is h5 = (

2
10 ,

1
10 ,

2
10 ,

2
10 ,

3
10

)
. Thus, the hub position of Player 5

is ‘very profitable’. Since player 5 is pivotal to any coalition, neither the difference
in weight between Player 2 and Players 3 and 4 matters nor the maximum voting
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Table 3 Comparison of the PGI in possible star networks formed by 5 players with different hub
players and voting rule v◦ = (51; 35, 20, 15, 15, 15)
Star network
with hub
position

PGI of
Player 1

PGI of
Player 2

PGI of
Player 3

PGI of
Player 4

PGI of
Player 5

1 0.36363636 0.09090909 0.18181818 0.18181818 0.18181818

2 0.1666667 0.3333333 0.1666667 0.1666667 0.1666667

3 0.2 0.1 0.3 0.2 0.2

4 0.2 0.1 0.2 0.3 0.2

5 (i.e., G5) 0.2 0.1 0.2 0.2 0.3

weight of Player 1 assures a maximum of the voting power. In terms of Freeman,
Player 5 satisfies point centrality: “the point at the center of a star or the hub of a
wheel […] is the most central possible position. A person located in the center of a
star is universally assumed to be structurally more central than any other person in
any other position in any other network of similar size” (Freeman 1978/79:218). But
centrality does not equal power. When it comes to collective action, a central player
needs the support of other players which gives power to the latter.

Table 3 summarizes the PGI values for the star network for the cases that Players
1, 2, 3 4 or 5 are in the hub position, alternatively. The latter case is shown in Fig. 2
(right); it represents the star network G5.

Finally, let us consider the star network, where Player 1 with weight w1 = 33, 2
with weight w2 = 33 and 3 with weight w3 = 33 are connected with player 4 with
weight w4 = 1:

S : (1) − (4) , (2) − (4) , (3) − (4) .

The voting game, we consider is v◦ = (51; 33, 33, 33, 1). Here, the MWCs on the
star network are M(S) = {{1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. Here, player 4 is critical to
the MWCs because if this player leaves a coalition the remaining partners are no
longer connected. On the other hand, in the simple voting game, the MWCs are
{{1, 2}, {1, 3}, {2, 3}}, and here, player 4 is not critical for any MWC (and has no
power).

Note, in unweighted voting games v� = (d;w,�) on a network the MWCs on
the network are always a subset of the MWCs of the corresponding simple voting
game v = (d;w).
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5 Discussion

Based on our derived observations for power measured by the PGI, we can justify the
following three statements: First, power measured by the Public Good Index (PGI)
is different from a power assignment based on the traditional graph theoretic mea-
sures of betweenness, closeness, degree and eigenvector centrality. Second, power
measured by the PGI in networks is a non-local concept. In the networks in which
each node had the same votingweight, our examples seem to indicate straightforward
results concerning closeness:We see the most powerful node to be surrounded by the
next powerful nodes giving rise to some ‘power hot-region’ (see the Medici network
for a bridge between the two most powerful nodes) rather than that the powerful
vertex being a singularly isolated node is supported by lesser powerful ones. Third,
our examples illustrate that the nodes with the highest PGI values seem to be quite
often linked directly.

As yet we cannot propose any general conditions for powerful nodes being linked
or connected by bridges. General conclusions are even less likely when resources
are distributed unevenly. Then, both resources and the player’s position in the social
context determine the player’s potential to be a valuable element of a winning coali-
tion. This invites us to distinguish between players which are strong measured by
their resources and players who are strong because of their network positions. The
corresponding PGI values are h = (

1
6 ,

1
6 ,

1
6 ,

2
6 ,

1
6

)
. The PGI values summarize the

two components. In the extreme, a player can exert power without resources—due
to the player’s position in the network. Let us assume the network structure G3:
(3) − (2) − (4) − (1) − (5) and aweighted voting game v = (51; 35, 25, 25, 0, 15).
Above ‘strong’ refers to resources; however, the example demonstrates that this label
is not always adequate.

Because of the nonmonotonicity of the PGI, it can happen that the power value
of a player with larger resources is smaller than the value of a player with smaller
resources even when there are no constraints on forming alliances with other players.
Such effects can be amplified or counterbalanced if the social context takes the form
of a particular network. Closeness to a strong player seems to be profitable. But is
it profitable for the strong one as well? More specifically, is it more profitable for
a strong player to be next to a stronger player than to a weaker one? Does the PGI
value of a strong player i increase if we substitute a connected player j with a weaker
player k? Our conjecture is: it depends?

So far, we assumed that the networks were exogenously given. But, of course,
it would interesting, and perhaps even beneficial, to see whether we can apply our
apparatus to explain the formation of particular networks endogenously. Think about
a dinner party where people of different power arrive at random, which bar tables
would they join?

Acknowledgements The Authors would like to thank Luciano Andreozzi, Nicola Friederike
Maaser and Aurelien Mekuko for their very helpful comments.
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Appendix: Essential Source Code for the Computation of the
PGI in Voting Games on Networks

As outlined, the programming environment of our choice is R, and for the follow-
ing computation of power indices, the commands require the packages igraph and
CoopGame to be installed and loaded. The first step is to define the underlying voting
game:

n <- 10 # number of vertices in the graph/ network
d <- 6 # decision rule
w <- rep(1, n) # weight vector in case that all vertices have the

# same weight 1
# network structure, together with the dummy element 0
g <- make_graph(˜ 0, 1-2, 1-3, 1-4, 1-6, 2-4, 2-5, 2-7, 3-4, 3-6,
+ 4-5, 4-6, 4-7, 5-7, 6-7, 6-8, 7-8, 8-9, 9-10)

Next,wepave the groundbydiscussing the simple votinggame to gain information
about its MWCs:

v <- weightedVotingGameVector(n, w, d)
M <- getMinimumWinningCoalitions(v)
m <- nrow(M) # total number of MWCs

As a preparation for the PGI on the network structure, we generate an auxiliary
Matrix M2, such that each row of M2 contains the numbers of the elements that
constitute the MWC described in the row, together with the dummy element 0. Note,
we assume that the grand coalition (containing all elements) is not a MWC, i.e., each
row of M2 contains at least one dummy element.

M2 <- matrix(0, m, n) # mxn-matrix filled with zeros
M3 <- matrix(0, m, n) # image of M with better handling properties
for( rcount in 1:m ){

for( ccount in 1:n ){
if( M[rcount, ccount] == 1 ){

M2[rcount, ccount] <- ccount
M3[rcount, ccount] <- 1 }}}

Now, we turn to the network structure, and check whether a MWC of the simple
voting game is feasible within the network structure:

for( rcount in 1:m ){
cc <- sort( c( M2[rcount,]) )
g1 <- induced_subgraph( g, as.character(cc) )
# if the MWC is not feasible, then the corresponding row in M is
# equaled to a zero-vector
if( count_components(g1) >= 3 ){

M3[rcount,] <- rep(0, n) }}
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Finally, we compute the total number of MWC a vertex belongs to and thus the
PGI on the network structure:

mwcg <- rep(0,n)
for( i in 1:n ){ mwcg[i] <- sum( M3[,i] ) }
pgi <- mwcg/sum(mwcg) # Public Good Index on the network structure
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Political Power on a Line Graph

René van den Brink, Gerard van der Laan, Marina Uzunova,
and Valeri Vasil’ev

Abstract We consider situations of majority voting, where the players are ordered
linearly. This order may be based on, for example, ideology or political preferences
over economic policy, ethical principles, environmental issues, and so on. Winning
and losing coalitions are given by a majority voting game, while restrictions on
cooperation are determined by a line graph, where only connected coalitions are
feasible and can form a (winning) coalition. Various solutions for line-graph games
can then be viewed as power indices measuring the ability of political parties to turn
losing coalitions into winning ones, taking into account the cooperation restrictions
among the parties. Here, we start by observing that a number of existing power
indices either are not core stable, or do not reward intermediate veto players. Then,
we take a closer look at the average hierarchical outcome, called hierarchical index
in the context of this paper, and the τ -index. These indices are core stable and,
moreover, reward all veto players. Specifically, the τ -index rewards all veto players
equally, while the hierarchical index always assigns higher power to the two extreme
veto players than to intermediate veto players. We axiomatically characterize the (i)
hierarchical index by core stability and a weaker version of component fairness and
(ii) the τ -index by core stability and a weaker version of Myerson’s [Math Oper Res
2(3), 225–229 (1977)] fairness property.
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1 Introduction

In this paper, we will be concerned with measuring voting power in specific types of
majority voting situations. Among the many existing power indices in the literature,
some of the most famous ones are the Shapley–Shubik index (Shapley & Shubik,
1954), which is equivalent to the Shapley value (Shapley, 1953) applied to the asso-
ciated voting game, and the Banzhaf–Penrose index (Banzhaf, 1965; Penrose, 1946).
By the voting power of a given political party, wemean its ability to effect a change in
the outcome: turning losing coalitions into winning ones or vice versa. To determine
these abilities, it is sufficient to know the winning and losing coalitions in a vot-
ing situation. These coalitions can be summarized by an associated majority voting
game: a cooperative or coalitional game where the worth of any coalition is either
one (when it has the required qualified majority and is thus winning) or zero (when
it does not have the required qualified majority and is thus losing).

The most famous set-valued solution for cooperative games is the core (Gillies,
1953), which, for any game, is the set of all efficient payoff vectors such that every
coalition earns at least its own worth. In the context of voting games, we will mostly
refer to payoff vectors as power vectors. For a majority voting game, this means
that, in every core payoff vector, the payoffs or powers of the parties in a winning
coalition must sum up to one. Specifically, the powers of all parties must sum up to
one since the grand coalition—the set of all players in the game—is winning. Then,
it immediately follows that the core of a voting game is non-empty if and only if the
game has veto players: players who belong to every winning coalition. In that case,
the core consists of all allocations where the full power of one is allocated over the
veto players and where non-veto players are assigned a power of zero.

In a cooperative game, any coalition of players can form and obtain its worth. In
voting games, this means that any coalition of parties can cooperate and try to form a
majority or winning coalition. However, in real-life politics, not every combination
of parties can form a coalition. In some cases, parties exclude each other from form-
ing coalitions. What’s more, even when parties do not exclude each other, it might be
that two parties can only belong to the same coalition if another (ideologically inter-
mediate) party belongs to that coalition as well. One way to model such cooperation
restrictions is by usingMyerson’s (1977) (communication) graph gamemodel. In this
model, the players in a cooperative game are also the nodes in an undirected graph
such that two players are linked if and only if they can cooperate together without
any other player. The feasible coalitions in that case are the connected coalitions in
the graph. Various existing solutions take account of these cooperation restrictions in
allocating the payoffs over the players. One of the first such solutions was introduced
by Myerson (1977) and is obtained by applying the Shapley value to the so-called
restricted game. This restricted game is obtained by assigning to every coalition the
sum of the worths of its maximally connected subsets (components). This solution
was later called the Myerson value. Myerson (1977) characterized this solution as
the unique solution for communication-graph games that satisfies component effi-
ciency and fairness. Component efficiency requires that the sum of the payoffs of all
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players in a maximally connected subset (i.e. component) is equal to the worth of
that component. Fairness requires that deleting an edge between two players has the
same effect on their payoffs.

For cycle-free graph games, (Demange, 2004) introduced the concept of hierarchi-
cal outcomes, while (Herings et al., 2008) considered the average of all hierarchical
outcomes and characterized this solution by component efficiency and component
fairness. Component fairness requires that deleting an edge between two players in
a cycle-free graph game has the same effect on the per capita payoffs in the two
newly created components (each containing one of the two players whose link is
broken). Béal et al. (2010) considered weighted combinations of hierarchical out-
comes. Hierarchical outcomes are special marginal vectors of the game where the
order in which the players enter the grand coalition is restricted by the graph. An
interesting property of the hierarchical outcomes (and their convex combinations) is
that they always belong to the core of the restricted game if the game is superadditive
and the graph is cycle free. Since majority voting games are superadditive and line
graphs are cycle free, this immediately implies that the hierarchical outcomes and
their convex combinations assign core power vectors when we restrict a majority
voting game to a line graph. In van den Brink et al. (2007), the special class of
line-graph games is considered and particular attention is paid to two hierarchical
outcomes (the so-called upper equivalent solution and the lower equivalent solution)
and their average. These outcomes also regularly appear in the applied economics
and operations research literature. Specifically, the upper equivalent solution, which
assigns to every line-graph game the marginal vector where the players enter from
left to right, yields the downstream incremental solution for river games in Ambec
and Sprumont (2002) or the drop out monotonic solution for sequencing games in
Fernández et al. (2005). The lower equivalent solution, which assigns to every line-
graph game the marginal vector where the players enter from right to left, coincides
with the upstream incremental solution for river games in Ambec and Ehlers (2008).
The average of the upper and lower equivalent solutions yields the equal gain split
rule introduced for one-machine sequencing games by Curiel et al. (1993, 1994).

In this paper, we consider majority voting games where the political parties are
ordered on a line according to their political preferences over, for example, economic
policy, ethical issues, environmental problems, and so on.We apply various solutions
to the associated line-graph games as a way of measuring the parties’ power, taking
into account their positions on the line. The upper equivalent solution mentioned
above assigns full power to the pivotal party in a majority voting line-graph game
when the parties enter from left to right. The lower equivalent solution assigns full
power to the pivotal party in a majority voting line-graph gamewhen the parties enter
from right to left. These two parties are also the most right-wing, respectively left-
wing, veto players. Applying the average of the upper and lower equivalent solutions
assigns equal (half) power to the left- and right-wing pivotal party.

Since all hierarchical outcomes and their convex combinations belong to the core
of a majority voting line-graph game, it must hold that these two hierarchical out-
comes, and their average, fully allocate power over veto players and give zero power
to non-veto players. This is an important difference with the Shapley value (Shapley–
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Shubik index (Shapley & Shubik, 1954) for voting games) or the Banzhaf value
(Banzhaf, 1965) which, when applied to the restricted game of a majority voting
line-graph game, ascribe positive power to non-veto players, and thus do not belong
to the core of the restricted game.

The goal of this paper is to find core solutions that also reward non-extreme veto
players. Whereas the average of the upper and lower equivalent solutions (the equal
gains split rule) allocates the full power of one equally over the two extreme (left
and right-wing) veto players. Other combinations of hierarchical outcomes allocate
the full power over all veto players, assigning ‘intermediate’ or non-extreme veto
players some positive power. Typically, however, in the average of all hierarchical
outcomes, the two extreme veto players get the highest power. We refer to the power
index that assigns to every majority voting line-graph game the average hierarchical
outcome as the hierarchical index. We then axiomatically characterize this power
index by core stability and a weaker version of Herings, van der Laan, and Talman’s
(Herings et al., 2008) component fairness property, where we only consider deleting
edges between veto players.

An interesting power index in this context is the one that allocates the full power
equally over all veto players. In this paper, we will show that this rule is obtained by
applying the τ -value (Tijs, 1981) to the restricted gameof amajority line-graphvoting
game. We call the resulting power index the τ -index. Moreover, we axiomatically
characterize this power index by core stability and a weaker version of Myerson’s
(1977) fairness property, where again we only consider deleting edges between veto
players.

This paper is organized as follows. In Sect. 2, we discuss preliminaries onmajority
voting games, line-graph games, and solutions on line-graph games. In Sect. 3, we
apply known results on line-graph games to the measurement of political power on
majority voting line-graph games. In Sect. 4, we consider the hierarchical outcomes
and the τ -value as measures of political power on line-graph games and provide an
axiomatization. Section5 contains concluding remarks.

2 Preliminaries

2.1 Cooperative Games

A situation in which a finite set of players can obtain certain payoffs through coop-
eration can be described by a cooperative game with transferable utility or, simply,
a cooperative game. A cooperative game is a pair (N , v), where N = {1, . . . , n} is
a finite set of n players and v : 2N → IR is a characteristic function on N such that
v(∅) = 0. For any coalition S ⊆ N , the real number v(S) is the worth of coalition
S; that is, the members of coalition S can obtain a total payoff of v(S) by agreeing
to cooperate.

In this paper, we assume that N is fixed. This allows us to refer to a cooperative
game (N , v) simply by its characteristic function v. We denote the collection of all
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cooperative games on N (represented by their characteristic function) byGN .We first
recall some properties of cooperative games. A cooperative game v is superadditive
if v(S ∪ T ) ≥ v(S) + v(T ) for any pair of subsets S, T ⊆ N such that S ∩ T = ∅.
Further, a cooperative game v is convex if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for
all S, T ⊆ N . Every convex game is superadditive. A special class of convex games
are unanimity games. For each non-empty T ⊆ N , the unanimity game uT is given
by uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise. It is well known that unanimity
games form a basis for GN . Specifically, every game v can be expressed as a unique
linear combination of unanimity games,

v =
∑

S⊆N , S �=∅

�S(v)uS,

where �S(v) are the Harsanyi dividends [see Harsanyi (1959)], given by

�S(v) =
∑

T ⊆S

(−1)|S|−|T |v(T ), S ⊆ N , S �= ∅. (1)

Equivalently, by applying the Möbius transformation, we have

v(S) =
∑

T ⊆S

�T (v), S ⊆ N , S �= ∅. (2)

So, the worth of coalition S is equal to the sum of the dividends of all subcoalitions
of S. This also gives a recursive definition of the Harsanyi dividends. The dividend
of every one-player coalition is equal to its worth, while, recursively, the dividend of
every coalition with at least two players is equal to its worth minus the sum of the
dividends of all of its proper subcoalitions. In this sense, the dividend of a coalition
S can be interpreted as the extra benefit from cooperation among the players in S
that they cannot realize through cooperation in smaller coalitions.

Solution concepts.

A payoff vector of a cooperative game (N , v) is an n-dimensional vector that
assigns a payoff to any player i ∈ N . A point-valued solution is a function f that
assigns a single payoff vector f (v) ∈ IRN to any game (N , v). A point-valued solu-
tion f is efficient if, for any game (N , v), it distributes precisely the worth of the
grand coalition:

∑
i∈N fi (v) = v(N ) for all v ∈ GN . An example of an efficient

point-valued solution is the famous Shapley value (Shapley, 1953): the average of
the so-called marginal contribution vectors.1

For a permutation π : N → N that assigns rank number π(i) ∈ N to any player
i ∈ N , we define π i = { j ∈ N | π( j) ≤ π(i)}, that is, π i is the set of all players
with rank number at most equal to the rank number of i , including i itself. Then the
marginal contribution vector mπ (v) ∈ IRN of game v and permutation π is given by

1 For a recent survey on the Shapley value, see Algaba et al. (2019).
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mπ
i (v) = v(π i ) − v(π i \ {i}), for all i ∈ N .

The vector mπ
i (v) thus assigns to player i its marginal contribution to the worth of

the coalition consisting of all of its predecessors in π . The Shapley value, Sh, assigns
to every game the average of the marginal contribution vectors over all permutations
and is thus defined by

Shi (v) = 1

|N |!
∑

π∈�(N )

mπ
i (v), for all i ∈ N ,

where �(N ) is the collection of all permutations on N .2

Writing
mS

i (v) = v(S ∪ {i}) − v(S),

as the marginal contribution of player i ∈ N to coalition S ⊆ N \ {i}, the Banzhaf
value [see Owen (1975) and Dubey and Shapley (1979) as an extension of Banzhaf
(1965)], Ba, is defined by

Bai (v) = 1

2|N |−1

∑

S⊆N\{i}
mS

i (v), for all i ∈ N .

Thus, Bai (v) is the average marginal contribution of player i to every coalition that
does not contain i assuming that every coalition has equal probability of occurring.
The Banzhaf value is not efficient.3

The τ -value is defined in Tijs (1981) as an efficient solution for the class of quasi-
balanced games. In order to define the τ -value and the class of quasi-balanced games,
we first need to define two types of payoff bounds. Specifically, let the upper payoff
bound of game v be given by the so-called utopia payoff vector M(v) defined as

Mi (v) = v(N ) − v(N \ {i}), for all i ∈ N .

The vector M(v) thus assigns to every player their marginal contribution to the grand
coalition N . Further, let the lower payoff bound of game v be given by the so-called
minimal right vector defined as

2 Alternatively, for anygame, theShapleyvaluedistributes equally theHarsanyi dividendof coalition
S over the players in S.
3 Efficient normalizations of the Banzhaf value are the multiplicative and additive normalizations.
The multiplicative normalization allocates v(N ) proportionally to the Banzhaf values of the players
[see van den Brink and van der Laan (1998)]. The additive normalization is the least square value
[see Ruiz et al. (1998)] obtained by adding or subtracting the same amount from the Banzhaf value
payoffs of the players so that an efficient payoff vector results.
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mi (v) = max
S⊆N , i∈S

⎛

⎝v(S) −
∑

j∈S\{i}
M j (v)

⎞

⎠ , for all i ∈ N .

The class of quasi-balanced games on N , denoted by Q B N , is the class of games for
which M(v) and m(v) constitute genuine upper and lower bounds in the following
sense: (1) each player’s utopia payoff is at least as large as that player’s minimal
right, (2) all utopia payoffs sum up at least to the worth v(N ) of the grand coalition,
and (3) all minimal rights sum up at most to the worth v(N ) of the grand coalition:

Q B N =
{

v ∈ GN

∣∣∣∣∣ m(v) ≤ M(v) and
∑

i∈N

mi (v) ≤ v(N ) ≤
∑

i∈N

Mi (v)

}
.

The τ -value is defined on the class of quasi-balanced games and, for every v ∈ Q B N ,
is given by

τ(v) = m(v) + α(M(v) − m(v)),

where α ∈ IR is such that the τ -value is efficient:
∑

i∈N τi (v) = v(N ). The τ -value
assigns to each player, in an efficient way, their minimal right plus a (uniform) share
of the margin by which their utopia payoff exceeds their minimal right.

A set-valued solution for cooperative games is a mapping F that assigns to every
game (N , v) a set of payoff vectors F(v) ⊂ IRN . The most famous set-valued solu-
tion, the core, introduced by Gillies (1953), is the set of all efficient payoff vectors
that cannot be improved upon by any coalition; that is, any payoff vector in the core
is efficient and each coalition gets at least its own worth:

core(v) =
{

x ∈ IRN

∣∣∣∣∣

n∑

i=1

xi = v(N ), and
∑

i∈S

xi ≥ v(S), for all S ⊆ N

}
.

The core of a game can be empty. It is well known that core(v) is non-empty if and
only if v is balanced [which was shown independently by Bondareva (1963) and
Shapley (1967)].

2.2 Line-Graph Games

Line-graph games are a special class of games with communication (graph) structure
studied in Myerson (1977). We may assume, without loss of generality, that a line
graph reflects the natural ordering from 1 to n. The structure on the set of players
then is given by a line graph (N , L), where N is the set of players and L ⊆ L =
{{i, i + 1} | i = 1, . . . , n − 1} is the set of (undirected) edges. Notice that L is a
linear order on N . However, we allow for any subset L of L to be a line graph; hence,
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a line graph can consist of disconnected parts. Let LN be the power set of L , that
is, the set of all line graphs on N given the natural ordering from 1 to n. We further
denote the collection of all line-graph games on N by GN × LN . For short, we denote
the game (N , v) with line graph (N , L) as the line-graph game (v, L).

FollowingMyerson (1977) andGreenberg andWeber (1986), in a line-graph game
(v, L) ∈ GN × LN , players can only cooperate when they are able to communicate
with each other. This means that a coalition S ⊆ N can only realize its worth v(S)

when S is connected in the line graph (N , L). Clearly, for the ‘full’ line graph (N , L),
the set I of (non-empty) connected coalitions is given by4

I = {S ⊆ N | S = [i, j], 1 ≤ i ≤ j ≤ n},

where [i, j] denotes the set of consecutive players {i, i + 1, . . . , j − 1, j} ⊆ N . For
any line graph (N , L), the set of connected coalitions is a subset of I and consists
of those coalitions [i, j] where i and j belong to the same component. Connected
coalition T = [l, m] ∈ I is a component in L ⊆ L if {i, i + 1} ∈ L for all i ∈ [l, m −
1] and {{l − 1, l}, {m, m + 1}} ∩ L = ∅. For any coalition S ⊆ N , we denote the
collection of components in line graph L(S) = {{i, j} ∈ L | i, j ∈ S} by CL(S).
When there is no ambiguity about the line graph L , we simply refer to this as the
collection of components of S. Observe that the collection CL(S) of components of
S forms a partition of S.

The set of connected coalitions in line graph L ⊆ L is denoted by

I(L) = {[i, j] ∈ I | there exists a T ∈ CL(N ) such that i, j ∈ T }.

In the restricted game introduced by Myerson (1977) (for arbitrary graph games),
a connected coalition earns its worth, but when coalition S is not connected, the
players in S can only realize the sum of the worths of its components. So, for a given
line-graph game (v, L), the restricted game vL ∈ GN induced by line graph (N , L)

is given by5

vL(S) =
{

v(S), if S ∈ I(L),∑
T ∈CL (S) v(T ), if S /∈ I(L).

(3)

We defined a line graph L to be any subset of the (complete) linear order L . But,
notice that restricting the restricted game vL further on the linear order L does not
have an impact: vL = (vL)L .

4 In the more general model of Myerson (1977), the players belong to a communication structure
that is represented by a graph (N , A), where the player set N is the set of nodes and where
A ⊆ {{i, j} | i, j ∈ N , i �= j}, a collection of unordered pairs, is the set of edges reflecting the
communication possibilities among the players. A coalition S ⊆ N can realize its worth v(S) when
S is connected in graph (N , A), that is, when for any two players i and j in S, there is a subset
{{ik , ik+1} | k = 1, . . . , t} ⊆ A of edges such that i1 = i , it+1 = j , and {i2, . . . , it } ⊆ S.
5 For definitions on arbitrary graph games, we refer to Myerson (1977).
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Applying a formula stated in Owen (1986) for cycle-free graph games6 gives the
following useful expression for the Harsanyi dividends in line-graph games.

Theorem 1 [Owen (1986), Bilbao (1998), van den Brink et al. (2007)]7

Consider line-graph game (v, L). Then, the dividends of the restricted game vL are
given by �S(v

L) =

⎧
⎨

⎩

0, if S /∈ I(L),

v({i}), if S = {i},
v[i, j] − v[i + 1, j] − v[i, j − 1] + v[i + 1, j − 1], if S = [i, j] ∈ I(L), j > i.

(4)

This implies that the dividend of any coalition S is fully determined by the worths
of at most four coalitions, irrespective of the size of S. In contrast, for general
cooperative games, the Harsanyi dividend of coalition S depends on the worths of all
2|S| subsets of the coalition. Expression (4) turns out to be very useful for applications,
as we will see in Sect. 3 where we discuss majority voting line-graph games.

It is well known that the restricted game of a superadditive game on the complete
line graph L is balanced [see, for example Le Breton et al. (1992), Demange (1994),
and Potters and Reijnierse (1995)]. This result follows immediately from Granot
and Huberman (1982), who showed that a so-called permutationally convex game is
balanced. More precisely, let u and � be the two permutations on N defined by

u(i) = i, i = 1, . . . , n,

respectively,
�(i) = n + 1 − i, i = 1, . . . , n.

When v is superadditive, the restricted game vL satisfies the permutational convexity
condition of Granot and Huberman (1982) for the two permutations u and �. Further,
it then follows that the two marginal vectors mu(vL) and m�(vL) are in the core of
vL [see also Demange (2004)]. Since vL is superadditive for any superadditive game
v and any line graph L ⊆ L ,8 these results also hold for any superadditive game v

restricted to a line graph L ⊆ L .

6 See also Bilbao (1998) for the more general class of cycle-complete graphs.
7 In van den Brink et al. (2007), the last line of (4) is shown to hold for L . Applying it to (vL )L

yields, for [i, j] ∈ I(L) and j > i , vL [i, j] − vL [i + 1, j] − vL [i, j − 1] + vL [i + 1, j − 1]. This
expression reduces to (4) since vL (S) = v(S) and �S(vL ) = �S(vL ) for any connected coalition
S ∈ I(L).
8 This follows since, if v is a superadditive game, then for any S, T ⊆ N with S ∩ T = ∅, it holds
that vL (S ∪ T ) = ∑

H∈CL (S∪T ) v(H) ≥ ∑
H∈CL (S) v(H) + ∑

H∈CL (T ) v(H) = vL (S) + vL (T ).
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Properties.

We recall some properties of solutions for line-graph games. First, component
efficiency requires that the sum of the payoffs of the players in any component
equals the worth of that component.

• A point-valued solution f on GN × LN satisfies component efficiency if
∑

i∈T
fi (v, L) = v(T ) for all T ∈ CL(N ).

In van den Brink et al. (2007), four solutions are axiomatized with the use of com-
ponent efficiency and one of the following four axioms, all of which concern the
removal of edges.9

For i = 1, . . . , n − 1, let (N , L(i)) be the graph on N , where L(i) = L \ {{i, i +
1}} is the set of edges obtained by deleting the edge {i, i + 1} from L . Notice that
(v, L(i)) is also a line-graph game for every i ∈ {1, . . . , n − 1}.
• A point-valued solution f on GN × LN is called fair if, for any i = 1, . . . , n − 1
and any (v, L) ∈ GN × LN , it holds that fi (v

L) − fi (v
L(i)) = fi+1(v

L)

− fi+1(v
L(i)).

• A point-valued solution f on GN × LN is called upper equivalent if, for any
i = 1, . . . , n − 1 and any (v, L) ∈ GN × LN , it holds that f j (v

L) = f j (v
L(i)),

j = 1, . . . , i .
• A point-valued solution f on GN × LN is called lower equivalent if, for any

i = 1, . . . , n − 1 and any (v, L) ∈ GN × LN , it holds that f j (v
L) = f j (v

L(i)),
j = i + 1, . . . , n.

• A point-valued solution f on GN × LN is said to have the equal loss property if,
for any i = 1, . . . , n − 1 and any (v, L) ∈ GN × LN , it holds that

∑i
j=1( f j (v

L) −
f j (v

L(i))) = ∑n
j=i+1( f j (v

L) − f j (v
L(i))).

The first property is the famous fairness property introduced by Myerson (1977)
for arbitrary graph games. It states that deleting the edge between i and i + 1 hurts
(or benefits) both players, i and i + 1, equally. The equal loss property can also be
conceived as referring to a type of fairness, but instead of the individual payoffs of
the players on the edge that is deleted, it concerns the total payoff of all players at
both sides of the deleted edge, requiring that these total payoffs change by the same
amount. Upper equivalence requires that the payoff of a player does not depend on
the presence of ‘downward’ edges, while lower equivalence requires that the payoff
of a player does not depend on the presence of ‘upward’ edges. Which property is
most appropriate depends on the respective application, something we will discuss
after the next theorem and in the following sections.

Let f u , f �, f e, and f s be the point-valued solutions on GN × LN defined
by f u(v, L) = mu(vL), f �(v, L) = m�(vL), f e(v, L) = 1

2 (m
u(vL) + m�(vL)), and

9 In van den Brink et al. (2007), these four solutions are axiomatized as so-called Harsanyi solutions
of the restricted game. These latter solutions allocate the Harsanyi dividends of coalitions over the
corresponding players according to a fixed weight system per coalition, which implies component
efficiency.
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f s(v, L) = Sh(vL) for all (v, L) ∈ GN × LN .10 The solution f s is known as the
Myerson value and was introduced and axiomatized byMyerson (1977) for arbitrary
graph games.

Theorem 2 [van den Brink et al. (2007)]
Let f : GN × LN → IRN be a component-efficient solution on the class GN × LN of
line-graph games. Then,

(i) f is fair if and only if f = f s .
(ii) f is upper equivalent if and only if f = f u .

(iii) f is lower equivalent if and only if f = f �.
(iv) f satisfies the equal loss property if and only if f = f e.

Myerson (1977) already showed that, on the class of communication-graph games,
the Shapley value f s is characterized by component efficiency and fairness.11 So,
the ‘if’ part of item (i) in Theorem 2 also follows immediately fromMyerson (1977).
The ‘only if’ part shows that uniqueness also holds on the (smaller) subclass of
line-graph games.

Asmentioned before, for any superadditive line-graph game (v, L), both the lower
equivalent solution f � and the upper equivalent solution f u are in the core of the
game; hence, all convex combinations, including the equal loss solution f e, are also
in the core. In the rest of this paper, we focus on a superadditive class of line-graph
games, called majority voting line-graph games, where the Shapley value need not
belong to the core. We note, however, that when v is convex, the Shapley value does
belong to the core of the restricted game vL . This follows (1) from the fact that the
Shapley value of any convex cooperative game belongs to its core, and (2) from van
denNouweland andBorm (1991) [see alsoAlgaba et al. (2001)], who show that when
v is convex, the restricted game vL is also convex.12 What’s more, when v is convex,
as mentioned in van den Brink et al. (2007), the restricted game vL is almost positive,
that is, �S(v

L) ≥ 0 whenever |S| ≥ 2 [see also Vasil’ev (1978, 2006)].13 For such
games, not only does the core contain the Shapley value, but it also coincides with
the so-called selectope or Harsanyi set [(Vasil’ev, 1978, 2006)], denoted by H(v),
which is, for any game, the set of all allocations that distribute the Harsanyi dividend
of any coalition S over the players in S.14 The following result thus follows from

10 For sequencing games, Curiel et al. (1993, 1994) introduced the function f e as the β-rule; see
also the next section.
11 See van den Brink (2001) for a related result on the class of cooperative games. A non-cooperative
implementation of the Shapley value can be found in Pérez-Castrillo and Wettstein (2001). Slikker
(2007) provides a strategic implementation of the Myerson value and other graph game solutions.
12 In van den Nouweland and Borm (1991), this is shown for all so-called cycle-complete graphs,
being those graphs such that if there is a cycle, then the subgraph on that cycle is complete. This
class obviously contains all cycle-free graphs and thus all line graphs.
13 In van denBrink et al. (2007), a line-graph gamewith an almost positive vL is called linear-convex.
14 See Vasil’ev (2006) and Derks et al. (2000) for these results. Since the Shapley value is one way
of allocating the Harsanyi dividends (namely equally), it always belongs to the Harsanyi set.
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van den Nouweland and Borm (1991) together with, for example, Vasil’ev (2006) or
Derks et al. (2000).15

Corollary 1 For any line-graph game (v, L) ∈ GN × LN , if v is convex, then the
restricted game vL is almost positive and hence convex, which implies that Sh(vL) ∈
core(vL) = H(vL).

Examples of a convex line-graph game are Ambec and Sprumont’s (2002) river game
and Curiel et al.’s (1989) sequencing game. We now turn to a class of line-graph
games, majority voting line-graph games, that are superadditive but not convex.

3 Political Power in Majority Voting Line-Graph Games

In this section, we consider majority voting games between political parties in a
parliament.We considermajority voting gameswhere the political parties are ordered
on a line according to their political preferences over, for example, economic policy,
ethical issues, environmental problems, and so on.

A majority voting situation consists of (i) a set of political parties, (ii) a number of
seats for each party, and (iii) a quota expressing how many of the seats are necessary
to pass a bill. Formally, a majority voting situation is a triple (N , s, q), where

1. N = {1, . . . , n} is the set of players representing the parties in a parliament,
2. s = (si )i∈N is the seat distribution with si the number of seats (votes) of party

(player) i ∈ N , and
3. q such that 1

2

∑
i∈N si < q ≤ ∑

i∈N si is the quota, being the minimum number
of seats necessary to pass a ballot.

We denote the total number of seats by w = ∑
i∈N si . Voting power refers to

the ability of the political parties to turn losing coalitions into winning ones, or
vice versa. To determine these abilities, it is sufficient to know what the winning
and losing coalitions are. This can be summarized by an associated majority voting
game: a cooperative game where the worth of any coalition is either one (when it
has a qualified majority) or zero (when it does not have a qualified majority). In
other words, the majority voting game associated with voting situation (N , s, q) is
the game (N , v) given by

v(S) =
⎧
⎨

⎩

1 if
∑
i∈S

si ≥ q,

0 if
∑
i∈S

si < q.

A coalition S with v(S) = 1 is called a winning coalition, and a coalition S with
v(S) = 0 is called a losing coalition. A winning coalition S is called a minimal

15 Note that, given expression (4), for Corollary 1 to hold, full convexity of v is sufficient but not
necessary. Instead, we may require a weaker property: v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B) for
all A, B ⊆ N such that |A \ B| = |B \ A| = 1.
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winning coalition (MWC) if v(S \ {i}) = 0 for all i ∈ S. Two special types of players
are veto players and null players. A player i is a veto player if v(S) = 1 implies that
i ∈ S. A player i is a null player if v(S \ {i}) − v(S) = 0 for any S containing i .
Notice that, since v(N ) = 1, every null player in amajority voting game is a non-veto
player, but there can be non-veto players who are not null players.

A majority voting game is a special type of a simple game: a game v such that
v(S) ∈ {0, 1}, v(∅) = 0, and v(N ) = 1.16 It is well known that a simple game has a
non-empty core if and only if there is at least one veto player. Furthermore, the core
distributes the worth v(N ) = 1 among the veto players and assigns a zero power to
all non-veto players. This follows straightforwardly from the observation that the
sum of the non-negative powers of all parties in a winning coalition, including the
grand coalition N , must be equal to one.

Two well-known power indices that measure the voting power of political parties
inmajority voting situations are the Shapley–Shubik index (Shapley&Shubik, 1954)
and the Banzhaf index (Banzhaf, 1965). These can be obtained by applying the
Shapley value (Shapley, 1953), respectively, the Banzhaf value (Owen, 1975), to the
associated majority voting game. Since both values assign positive power to non-null
players in a majority voting game, they assign positive power to non-veto players,
even when there are veto players, and thus the associated power vector is not in the
core of the majority game.

We now consider a situation where the parties can be ordered linearly according
to their political preferences. Without loss of generality, suppose that the parties
can be indexed successively from player 1 (the most left-wing party) to player n
(the most right-wing party). We refer to a pair (v, L) ∈ GN × LN with v a majority
voting game, as a majority voting line-graph game (or, for short, majority line-graph
game). In such a political structure, it is reasonable to suppose that only connected
coalitions will form; that is, this situation can be modelled by the line-graph game
(v, L) where I = {S ⊆ N | S = [i, j] for some i <= (smallerorequal) j} is the
collection of feasible coalitions. If, for some reason, two idealogical neighbours
refuse to cooperate, then the cooperation restrictions can bemodelled by a line-graph
game (v, L)with L ⊂ L, L �= L .17 As mentioned in Sect. 2, since v is superadditive,
it follows from Granot and Huberman (1982), Le Breton et al. (1992), Demange
(1994), and Potters and Reijnierse (1995) that the core of the restricted game vL

is non-empty and, specifically, that f u(v, L), f �(v, L), and f e(v, L) belong to the
core of the restricted game vL . Since the core is non-empty, vL has at least one veto
player. Indeed, if vL(N ) = 1, since only coalitions of successive parties can form,
there is at least one player who necessarily belongs to both the most left-wing MWC

16 v(∅) = 0 requires that unanimous opposition implies rejection, and v(N ) = 1 requires that unan-
imous support implies acceptance. In the literature, sometimes v(N ) = 1 is not required for a game
to be a simple game.
17 Note that even though we require that the grand coalition be winning in the majority game v (that
is, v(N ) = 1), we do not require that N be winning in the restricted game vL . That is, v(N ) = 1
does not imply vL (N ) = 1. For example, when L = ∅ and si < q for all i ∈ N , v(N ) = 1 but
vL (N ) = 0.
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and the most right-wing MWC and thus to any majority coalition.18 Moreover, the
set of veto players is a connected coalition in the line graph L . If vL(N ) = 0, then
all players are veto players and the unique core power vector assigns zero power to
all players.

Proposition 1 Consider the majority line-graph game (v, L).

(i) For h ≤ k, let [1, k] be the most left-wing MWC (i.e. v([1, k]) = 1 and v([1, k −
1]) = 0) in (v, L), and [h, n] be the most right-wing MWC (i.e. v([h, n]) = 1
and v([h + 1, n]) = 0) in (v, L). Then [h, k] is the set of veto players in vL .

(ii) For every L ⊆ L, there is at most one component T = [p, q] ∈ CL(N ) such that
v(T ) = 1. Let [p, k] be the most left-wing MWC (i.e. v([p, k]) = 1and v([p, k −
1]) = 0) in (v, L), and [h, q] be the most right-wing MWC (i.e. v([h, q]) = 1
and v([h + 1, q]) = 0) in (v, L). Then [h, k] is the set of veto players in vL .19

Proof Since (i) follows as a corollary from (ii) (for T = N , p = 1, and q = n), we
only prove (ii). We show that, for all i ∈ [h, k], if i /∈ S ⊂ N , then vL(S) = 0. First,
note that v(S) = 0 if {h, k} �⊂ S since h and k are veto players. It follows that, for
all i ∈ [h, k] and S ⊆ N \ {i}, vL(S) = vL(S ∩ [1, i − 1]) + vL(S ∩ [i + 1, n]) = 0
since k /∈ [1, i − 1] and h /∈ [i + 1, n]. ��
Example 1 Take N = {1, 2, 3, 4, 5, 6, 7},w = 85with s1 = s2 = s6 = s7 = 10, s3 =
s4 = s5 = 15, and q = 60. In the restricted game vL , [1, 5] is the most left-wing
MWC, [3, 7] the most right-wing MWC, and [3, 5] = {3, 4, 5} the set of veto play-
ers. ��

In the remainder of this section, we focus on the full line graph L , but the
results can be straightforwardly generalized to any L ⊆ L by considering the
unique winning component T ∈ CL(N ), if any, rather than N . When h = k, it
follows that f u(v, L) = f �(v, L) = f e(v, L) = e(h), where e(i) ∈ IRN , given by
ei (i) = 1 and e j (i) = 0 for all j �= i , is the unique core element. When h < k, then
f u(v, L) = e(k), f �(v, L) = e(h), and f e(v, L) = 1

2 (e(k) + e(h)). So, f u(v, L)

assigns full power to the most right-wing veto player, f �(v, L) assigns full power
to the most left-wing veto player, and f e(v, L) divides the power equally between
the two extreme veto players. Observe that, according to these solutions, no power
is assigned to any other player, including intermediate veto players between the
two extreme veto players, h and k. This seems reasonable when the two extreme
veto players are considered to be critical. When the most left-wing coalition [1, k]
is formed, the most right-wing veto player k has the highest incentive (or lowest
objection) to break away and form another MWC. So, if this player is willing to
cooperate in [1, k], then it can be expected that any other player in [1, k] is willing
to cooperate in [1, k], including any other veto player. Similarly, this holds for h
in the MWC [h, n]. The equal loss solution f e, giving both players a power of 1

2 ,

18 Notice that, since q > w/2, the restricted game vL is a proper simple game; that is, the comple-
ment of any winning coalition, including a MWC, is a losing coalition.
19 Note that a MWC in the line-graph game (v, L) need not be a MWC in the majority game v.
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seems to be an appropriate power index for a political situation before it is known
whether a left-wing or right-wing majority coalition will be formed. Note that both
the Shapley value and the (normalized) Banzhaf power index assign positive power
to every player and, thus, they are not in the core.

The next proposition states that, in the restricted game vL , the dividend of each
MWC in I is equal to 1. The dividend of any other coalition in I is equal to 0 or−1.20

Proposition 2 Let vL be the restricted game of a majority line-graph game (v, L).
Then, for S ∈ I, �S(v

L) = 1 if S is a MWC and �S(v
L) ∈ {−1, 0} otherwise.

Proof First, observe that �T (vL) = 0 for any T = [i, j] with v[i, j] = 0. Next,
let S = [i, j] be a MWC; that is, v[i, j] = 1 and v(T ) = 0 for all T ⊂ S, T �= S.
From Theorem 1, it follows that �[i, j](vL) = v[i, j] − v[i, j − 1] − v[i + 1, j] +
v[i + 1, j − 1] = 1 − 0 − 0 + 0 = 1. Next, given aMWC [i, j], consider any coali-
tion [i, k] with k > j . Then, k − 1 ≥ j and thus v[i, k] = v[i, k − 1] = 1. Further,
if v[i + 1, k − 1] = 1, then v[i + 1, k] = 1 , and thus �[i,k](vL) = 0 in that case.
Otherwise, if v[i + 1, k − 1] = 0, since v[i + 1, k] ∈ {0, 1}, �[i,k](vL) ∈ {−1, 0}.
Similarly, given a MWC [i, j], this holds for any coalition [h, j] with h < i . Finally,
given a MWC [i, j], when S = [h, k] is such that h < i < j < k, then v[h, k] =
v[h + 1, k] = v[h, k − 1] = v[h + 1, k − 1] = 1 and thus �[h,k](vL) = 0. ��

Since the worth vL(N ) = 1 is equal to the sum of all dividends in the restricted
game, this proposition implies that the number of coalitions with dividend equal to
−1 is one fewer than the number of MWCs.

Notice that, in a standardmajority game, it follows fromFormula (1) that�S(v) =
1 if S is a MWC, since v(S) = 1 and v(T ) = 0 for any T ⊂ S, T �= S. However, as
the next example shows, in a standard majority game v, other (winning) coalitions
may also have a positive dividend and even a dividend larger than one.

Example 2 Take N = {1, 2, 3, 4, 5}, si = 1 for all i ∈ N and q = 3, so that v(S) = 1
if and only if |S| ≥ 3. Hence, any coalition of precisely three players is a MWC and
has a dividend of one. Further, any coalition of four players contains four subcoali-
tions of three players. By applying Formula (2), it follows that �S(v) = −3 when
|S| = 4. Finally, the grand coalition N contains ten subcoalitions of three players,
each with dividend 1, and five subcoalitions of four players, each with dividend
−3. Hence, the dividends of N ’s subcoalitions sum up to 10 + 5(−3) = −5, which
means that �N (v) = 1 − (−5) = 6. ��

20 This shows that the restricted game of a majority line-graph game is not almost positive.



274 R. van den Brink et al.

4 Rewarding Intermediate Veto Players: Hierarchical
Outcomes and the τ -Index

A power index is a mapping f that assigns a power vector f (v, L) to every majority
line-graph game (v, L). In this paper, we are mainly interested in power indices that
assign a power vector in the core of the restricted game vL .21

Axiom A power index f for majority line-graph games is called core stable if, for
every majority line-graph game (v, L), it holds that f (v, L) ∈ core(vL).

From the indices considered in the previous section, f u, f �, and f e reward either
one or both of the extreme veto players, but assign zero power to the intermediate
veto players. As we saw, applying the Shapley value to the restricted line-graph game
does reward the intermediate veto players, but it also rewards non-veto players and
thus assigns a power vector that does not belong to the core of the restricted game.
(The same holds for the Banzhaf value.)

Next, we consider two types of power indices that do reward intermediate veto
players without also rewarding non-veto players. Thus, unlike the Shapley and
Banzhaf values, these indices are core stable.

4.1 Hierarchical Outcomes

The upper and lower equivalent solutions for line-graph games are examples of
hierarchical outcomes. Hierarchical outcomes are defined by Demange (2004) for
connected cycle-free communication-graph games as specific core-stable payoff or
power vectors of the restricted game. In this paper, we consider line graphs (being
a special type of cycle-free graphs), but do not require that the graph be connected.
We directly define the hierarchical outcomes for this type of graph games, and refer
to Demange (2004) for definitions on connected cycle-free graph games.

First, consider the line-graph game (v, L). For each player, there is a correspond-
ing hierarchical outcome. For i ∈ N , let Ci

L(N ) = [hi , ki ] ∈ CL(N ) be such that
i ∈ Ci

L(N ), that is, Ci
L(N ) is the component in L that contains player i .

The hierarchical outcome corresponding to player i is the payoff vector given
by22

21 We remark that a different core concept for games with restricted cooperation assigns to every
graph game the set of component-efficient payoff vectors such that the sum of the payoffs of
all players in any connected coalition is at least equal to the worth of this coalition. For line-
graph games, this gives the solution core(v, L) = {x ∈ IRN | ∑

i∈C xi = v(C) for all C ∈ CL (N ),
and

∑
i∈S xi ≥ v(S) for all S ∈ I(L)}. It is obvious that core(v, L) = core(vL ) if the game v is

monotonic (i.e. v(S) ≤ v(T ) if S ⊆ T ⊆ N ) and superadditive. Since majority voting games are
monotonic and superadditive, for the games considered in this paper, the two core concepts boil
down to the same.
22 With some abuse of notation, we define [h, k] to be the empty set ∅ if k < h.
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hi
j (v, L) =

⎧
⎪⎪⎨

⎪⎪⎩

v([hi , j]) − v([hi , j − 1]) if hi ≤ j < i
v([ j, ki ]) − v([ j + 1, ki ]) if i < j ≤ ki

v(Ci
L(N )) − v([hi , j − 1]) − v([ j + 1, ki ]) if j = i

0 if j ∈ N \ Ci
L(N ).

(5)
Thus, the hierarchical outcome hi (v, L) allocates to player j to the left (respectively,
to the right) of i the contribution of player j to all players to its left (respectively,
right) in its component, while player i gets the surplus of its component that is left
after all other players are assigned their power.

Example 3 Consider the majority voting situation of Example 2, that is, si = 1 for
all i ∈ N = {1, 2, 3, 4, 5}, and q = 3. Further, let L = {{1, 2}, {3, 4}, {4, 5}}. Then,
h3
1(v, L) = h3

2(v, L) = h3
5(v, L) = 0, h3

4(v, L) = v({4, 5}) − v({5}) =
0 − 0 = 0, and h3

3(v, L) = v({3, 4, 5}) − v({4, 5}) = 1 − 0 = 1, yielding h3(v, L)

= (0, 0, 1, 0, 0). ��
For majority line-graph games, we will refer to the power index that assigns to

every majority line-graph game (v, L) the hierarchical outcome hi (v, L) as the i -
hierarchical index. Notice that, for L = L , the n-hierarchical index (respectively, the
1-hierarchical index) is equivalent to the upper equivalent solution f u (respectively,
the lower equivalent solution f �) applied to this class of majority line-graph games.
Further, f e is obtained as the average of these two hierarchical indices.

As Demange (2004) has showed, for superadditive games (N , v), and connected
cycle-free (tree) graphs (N , L), each hierarchical outcome of the associated tree
game (v, L), hi (v, L), i ∈ N , is an extreme core allocation of the restricted game
vL . Since majority games are superadditive, this also holds for majority line-graph
games with L = L .

Herings et al. (2008) characterized the average tree solution which assigns to
every cycle-free graph game the (component-wise) average hierarchical outcome
given by

h j (v, L) = 1

|C j
L(N )|

∑

i∈C j
L (N )

hi
j (v, L) for all j ∈ N . (6)

We refer to the power index that assigns to every majority line-graph game (v, L),
the average hierarchical outcome h(v, L) as the hierarchical index. By convexity of
the core of a game and the fact that all hierarchical outcomes belong to the core of
the restricted game, the hierarchical index is core stable. From now on, we denote
by V eto(v, L) the set of veto players in the restricted game vL .

For each i ∈ N , the hierarchical outcome associated with i can be expressed
as follows. If vL(N ) = 0, then all players are veto players and every hierarchical
outcome assigns zero power to all players, which is also the unique core power vector.
If vL(N ) = 1, then the set of veto players, V eto(v, L), is a subset of a component,
V eto(v, L) ⊆ S for some S ∈ CL(N ). It follows then that the hierarchical outcome
associatedwith any player outside S is the zero vector. Next, consider the hierarchical
outcomes associated with players in S. As S is connected, each hierarchical outcome
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hi (v, L), for i ∈ S, is an extreme point in the core and hence allocates full power to
a veto player. Let V eto(v, L) = [h, k]. For i ∈ V eto(v, L), hi (v, L) = e(i). For i ∈
S \ V eto(v, L), if i < h, then hi (v, L) = e(h), and if i > k, then hi (v, L) = e(k).
In other words, the hierarchical outcome associated with a non-veto player i ∈ S is
the extreme core-stable power vector that assigns full power to the veto player that
is closest to i . This is summarized in the following theorem.

Theorem 4 Let vL be the restricted game of a majority line-graph game (v, L). If
vL(N ) = 0, then h(v, L) = 0. If vL(N ) = 1, then there is exactly one S ∈ CL(N )

with vL(S) = 1 and, denoting V eto(v, L) = [h, k] ⊆ S,

hi
j (v, L) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ( j = i ∈ V eto(v, L)),

or ( j = h and i ∈ S with i < h),

or ( j = k and i ∈ S with i > k),

0 otherwise.

Using Theorem 4, it is now easy to express the hierarchical index h̄(v, L) given by
(6) for majority line-graph games as follows.

Theorem 5 Let (v, L) be a majority line-graph game with restricted game vL such
that vL(N ) = 1. Further, let [l, m] denote the component containing the veto players
in (v, L), that is, vL([l, m]) = 1. We distinguish two cases.

(1) Suppose that |V eto(v, L)| = 1. Then,

h̄i (v, L) =
{
1 if {i} = V eto(v, L),

0 otherwise.

(2) Suppose that |V eto(v, L)| > 1. Let V eto(v, L) = [h, k] ⊆ [l, m] ∈ CL(N ).
Then,

h̄i (v, L) =

⎧
⎪⎪⎨

⎪⎪⎩

h−l+1
m−l+1 if i = h,
m−k+1
m−l+1 if i = k,

1
m−l+1 if |V eto(v, L)| > 2 and i ∈ [h + 1, k − 1],
0 otherwise.

In majority line-graph games, the hierarchical index rewards all (and only) veto
players. It thus belongs to the core of the restricted game.

Corollary 2 The hierarchical index h̄ is core stable, that is, if vL is the restricted
game of a majority line-graph game (v, L), then h̄(v, L) ∈ core(vL).

It also follows from Theorem 5 that the hierarchical index does not reward all veto
players equally. More precisely, it rewards the two extreme veto players h and k more
than it does the intermediate veto players in [h + 1, k − 1]. Further, it rewards the
left (respectively, right) more than it does the right (respectively, left) extreme veto
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player, depending on the number of other (non-veto) players positioned to the left
(respectively, to the right) of the respective veto player in the component.

Herings et al. (2008) axiomatized23 the average tree solution by component effi-
ciency and a component fairness property, which says that breaking an edge in a
cycle-free graph game has the same per capita effect on the payoffs of the players
in the two newly created components. In this paper, we focus on core-stable power
indices. Notice that core stability implies component efficiency. It turns out that,
to characterize the hierarchical index using core-stability, we can do with a weaker
component fairness axiom, where we only consider the breaking of edges between
two veto players. Recall that L(i) = L \ {{i, i + 1}} is the set of edges obtained by
deleting the edge {i, i + 1} from L .

Axiom A power index f for majority line-graph games is called component veto
fair if, for every majority line graph (v, L) with V eto(v, L) = [h, k], and for all
i ∈ [h, k − 1], it holds that

1

|Ci
L(i)(N )|

∑

j∈Ci
L(i)(N )

(
f j (v, L) − f j (v, L(i))

)

= 1

|Ci+1
L(i)(N )|

∑

j∈Ci+1
L(i)(N )

(
f j (v, L) − f j (v, L(i))

)

��
The hierarchical index h̄ is the only power index that satisfies core stability and
component veto fairness.

Theorem 7 Let f be a power index for majority line-graph games. Then, f is core
stable and component veto fair if and only if f = h̄.

Proof The ‘if’ part follows from the more general result in Herings et al. (2008) and
Corollary 2. Uniqueness could be showed in a way similar to that in Herings et al.
(2008). But since it is not a corollary of their result, and we use the stronger core
stability but weaker component veto fairness property, we give the uniqueness proof
for completeness.24

Let f be a power index for majority line-graph games that satisfies core stability
and component veto fairness. IfvL(N ) = 0, then core stability implies that f (v, L) =
0.

Now, suppose that vL(N ) = 1. By core stability, we have

fi (v, L) = 0 for all i ∈ N \ V eto(v, L). (7)

23 A strategic implementation of the hierarchical outcomes and their average can be found in van
den Brink et al. (2013).
24 We remark that the proof follows the one in Herings et al. (2008), except that we have fewer
equations from component veto fairness, but more equations from core stability.
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Let V eto(v, L) = [h, k] ⊆ [l, m] ∈ CL(N ). We distinguish the following two cases.
When |V eto(v, L)| = 1, then f j (v, L) = 1 for { j} = V eto(v, L) follows from

core stability (particularly, from efficiency). This, together with the n − 1 equations
in (7), determines f (v, L).

Suppose that |V eto(v, L)| > 1. We proceed by induction on the number of edges
|L|. When L = ∅, core stability implies that the core consists of a unique vector, the
zero vector. Hence, fi (v, L) = 0 for all i ∈ N . Assume that f (v, L ′) is determined
for all L ′ with |L ′| < |L|.

By component veto fairness, we have, for all i ∈ [h, k − 1],
1

|Ci
L(i)(N )|

∑

j∈Ci
L(i)(N )

(
f j (v, L) − f j (v, L(i))

)

= 1

|Ci+1
L(i)(N )|

∑

j∈Ci+1
L(i)(N )

(
f j (v, L) − f j (v, L(i))

)
. (8)

Next, by core stability and (7), we have

∑

i∈[h,k]
fi (v, L) = 1. (9)

Since f (v, L(i)) in (8) is determined by the induction hypothesis, there are n −
(k − h + 1) = n − k + h − 1 equations of type (7), and k − h equations of type (8).
Hence, together with the equation in (9), there are n independent equations that
determine the n unknowns fi (v, L), i ∈ N . Since the hierarchical index satisfies the
two axioms, f must be equal to h̄. ��

4.2 The τ -Index

An interesting power index for political line-graph games is the solution that assigns
equal power to all veto players and zero power to all non-veto players. It turns out that
this power index is obtained by applying the τ -value (Tijs, 1981) to the associated
restricted game.

First, observe that the restricted game of a majority line-graph game is quasi-
balanced and applying the τ -value gives the following power vectors.

Theorem 8 Let vL be the restricted game of a majority line-graph game (v, L).
Then, vL ∈ Q B N . If vL(N ) = 0, then τ(vL) = 0. If vL(N ) = 1, then

τi (v
L) =

{ 1
|V eto(v,L)| if i ∈ V eto(v, L),

0 otherwise.
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Proof Let vL be the restricted game of amajority line-graph game (v, L). If vL(N ) =
0, then M(vL) = m(vL) = 0, and the result follows. Now, suppose that vL(N ) = 1.
Then,

Mi (v
L) =

{
1 if i ∈ V eto(v, L),

0 otherwise.

Next, consider a player’s minimal right and distinguish the following two cases:

(1) Suppose that |V eto(v, L)| > 1. We then have

mi (v
L) = 0 for all i ∈ N .

(2) Suppose that |V eto(v, L)| = 1. We then have

mi (v
L) =

{
1 if i ∈ V eto(v, L),

0 otherwise.

In both cases, vL is quasi-balanced and τ(vL) is as stated in the theorem. ��
Since the τ -value allocates the whole power in the game over the veto players,

and none to non-veto players, we immediately have the following corollary.

Corollary 3 Let vL be the restricted game of a majority line-graph game (v, L).
Then, τ(vL) ∈ core(vL).

Next, we consider the power index that assigns to every majority line-graph game
(v, L), the τ -value of the restricted game vL : τ(v, L) = τ(vL).We refer to this power
index as the τ -index. We axiomatize this power index with the following two axioms.
The first is core stability as defined in the previous subsection, which requires that
the index always assigns a power vector that belongs to the core of the restricted
game. By Corollary 3, this is obviously satisfied for the τ -index.

It is straightforward to show that Theorem 2.(i) also holds for the specific class
of majority line-graph games; that is, the Shapley value is the unique solution for
majority line-graph games that satisfies component efficiency and fairness. Since
every core-stable solution satisfies component efficiency and the Shapley value is not
core stable, this implies that there is no core-stable solution that satisfies fairness.25

It turns out that the τ -index satisfies a weaker fairness property where equal gains or
losses are required only when one breaks an edge between veto players.

Axiom A power index f for majority line-graph games is called veto fair if, for
every majority line graph (v, L) with V eto(v, L) = [h, k], it holds that

fi (v, L) − fi (v, L(i)) = fi+1(v, L) − fi+1(v, L(i)) for all i ∈ [h, k − 1].

25 In van den Brink et al. (2021), a similar observation is made about assignment games. They
characterize the τ -value in such games, where it coincides with the fair division point (Thompson,
1981), see Núñez and Rafels (2002).
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The τ -index is the only power index that satisfies core stability and veto fairness.

Theorem 10 Let f be a power index for majority line-graph games. Then f is core
stable and veto fair if and only if f = τ .

Proof From Corollary 3 it follows that the τ -index is core stable. Veto fairness
follows since (i) if vL(N ) = 0 then vL ′

(N ) = 0 for all L ′ ⊂ L and τ(v, L) = 0, and
(ii) if vL(N ) = 1 then, for every i, i + 1 ∈ V eto(v, L),

τi (v, L) − τi (v, L(i)) = 1

|V eto(v, L)| − 0 = τi+1(v, L) − τi+1(v, L(i)).

The proof of uniqueness follows a well-known structure. To prove uniqueness,
suppose that f is a power index for majority line-graph games that satisfies core
stability and veto fairness. Core stability implies that f (v, L) = 0 if vL(N ) = 0.

Next, suppose that vL(N ) = 1. Core stability implies that fi (v, L) = 0 for all
i ∈ N \ V eto(v, L).

Recall that the set of veto players is a set of connected players [h, k]; see Propo-
sition 1.

If |V eto(v, L)| = 1, then by component efficiency fi (v, L) = 1, with {i} =
V eto(v, L), is determined by core stability (which implies component efficiency).

If |V eto(v, L)| > 1, thenweprove uniqueness by induction on |L|. If |L| = 0, that
is, L = ∅, then, since there are at least two veto players, core(vL) is a singleton with
the zero vector as its only element, and thus fi (v, L) = 0 for all i ∈ N .26 Proceeding
by induction, assume that f (v, L ′) is uniquely determined for all L ′ with |L ′| < |L|.
Let V eto(v, L) = [h, k].

Veto fairness implies that

fi (v, L) − fi (v, L(i)) = fi+1(v, L) − fi+1(v, L(i)) for all i ∈ [h, k − 1]. (10)

Core stability implies that

fi (v, L) = 0 for all i ∈ N \ [h, k], (11)

and thus ∑

i∈[h,k]
fi (v, L) = 1. (12)

Since f (v, L(i)) is determined by the induction hypothesis, (10)–(12) give (k − 1 −
h + 1) + (n − k + h − 1) + 1 = n independent equations in the n unknown powers
fi (v, L), i ∈ N , implying that f (v, L) is uniquely determined. Since the τ -index
satisfies the axioms, f must be equal to τ . ��
Notice that in the axiomatization of the τ -index in Theorem 10, we used a similar
weakening of fairness as we did with component fairness for the hierarchical index h̄

26 Recall also the observation in Footnote 16.
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Fig. 1 Core of a majority
line-graph game (v, L) with
three veto players, where
A = (1, 0, 0), B =
(0, 1, 0), C =
(0, 0, 1), D = ( 13 , 1

3 , 1
3 ),

and E = ( 12 , 0, 1
2 )

in Theorem7. Instead of deleting any edge between two neighbours, we only consider
deleting edges between veto players. But also notice the different impact of these
results. The standard component fairness axiom is compatible with core stability, but
requiring stronger core stability, instead of component efficiency, allows us to use
the weaker component veto fairness. The standard fairness axiom is incompatible
with core stability, but the weaker veto fairness is compatible with core stability and
the two axioms together characterize the τ -index.

4.3 Illustration

We conclude this section by visually comparing the power indices discussed in this
paper using amajority line-graphgame (v, L)with three vetoplayers, |V eto(v, L)| =
3, and any number of other non-veto players. Suppose that the veto set is part of a
connected component with vL(N ) = 1, that is, V eto(v, L) ⊆ [l, m] ∈ CL(N ). As
the power indices we are concerned with are core stable, all of them assign zero
power to players outside V eto(v, L), and, hence, we can focus on the three veto
players.

The simplex in Fig. 1 illustrates the core of the game, and thus, any point in
ABC is a core allocation (and any point outside it is not). Points A and C are
where the left and right, respectively, extreme veto players are assigned full power.
Similarly, at B, the intermediate veto player gets full power. In point D, all veto
players get equal power. Our interest, in this paper, has been in the power allocations
in the shaded core area, ADC . As we know from Theorem 8, the τ -index allocation
depends only on the number of veto players, since it allocates the full power of one
equally among all veto players. Thus, regardless of the size of N \ V eto(v, L) or the
edges outside [l, m], τ(v, L) = D, where each veto player is assigned equal power.
Similarly, regardless of N \ V eto(v, L) or the edges outside [l, m], f u(v, L) = C ,
f l(v, L) = A, and f e(v, L) = E , since f u (respectively, f l ) assigns full power to
the right (respectively, left) extreme veto player, while f e equally splits the power
between them.
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Now, suppose that V eto(v, L) = [ j, j + 1, j + 2] and consider the hierarchical
indices. Any i-hierarchical index where l ≤ i ≤ j allocates full power to the left-
most extreme veto player j and hence in that case hi (v, L) = e( j) = A. Similarly,
for j + 2 ≤ i ≤ m, the i-hierarchical index allocates full power to the right-most
veto player j + 2, and thus in that case hi (v, L) = e( j + 2) = C . When i = j + 1,
hi (v, L) = e( j + 1) = B.

Next, consider the hierarchical index h̄. This index may assign any allocation
in triangle ADC , excluding the sides AC , AD, and DC , but including point D.
The location of h̄ depends on the size, and distribution along the line, of [l, m] \
V eto(v, L). If the veto component coincides with the veto set, [l, m] = V eto(v, L),
then h̄(v, L) = D. Now, as one starts adding an increasing equal number of non-veto
players to the left of j and to the right of j + 2, the hierarchical index moves north-
west along DE , tending towards E asmore players are added on both sides (but never
reaching E). When the number of players to the left of the left-most extreme veto
player j is higher than the number of players to the right of the right-most extreme
veto player j + 2, then h̄ lies in the interior of ADE . When the reverse is the case, h̄
lies in the interior of C DE . This means that the h̄ index of, particularly, the extreme
veto players depends crucially on the respective left/right-side non-veto players.
Under h̄, we might think of the set of non-veto players on the respective left/right
side as giving leverage for the respective left/right-most extreme veto player.

5 Concluding Remarks

Our main focus in this paper has been on majority games where players can be
ordered linearly according to their political preferences. The core of such majority
line-graph games is non-empty, and it consists of allocations that reward only the veto
players in the game. Two of these allocations, which reward only the two extreme
veto players, are those recommended by the upper and lower equivalent solutions.
Instead, here, we focused on two core-stable point-valued solutions, the hierarchical
index h̄ and the τ -index, that reward positively all veto players, both extreme and
intermediate.27 More precisely, according to the τ -index, all veto players are equally
powerful, while, according to the hierarchical index h̄, the extreme (left and right-
wing) veto players are no less (and are often more) powerful than the intermediate
veto players, depending on the number of players on each side of these extreme veto
players. As we saw in Sect. 4, for majority line-graph games, the two indices can be
characterized by core stability with an additional weak (veto) fairness axiom. For the
hierarchical index h̄, this is the component veto fairness axiom—a weaker version
of Herings et al.’s (2008) component fairness property—while, for the τ -index, this
is the veto fairness axiom—a weaker version of Myerson’s (1977) fairness property.

27 Another solution, specifically defined for line-graph games, is the spectrum value introduced in
Álvarez-Mozos et al. (2013). However, as the Shapley value and the Banzhaf value, this solution is
also not core stable for majority voting line-graph games.
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Interestingly, while—in contrast to the component fairness property—the standard
fairness axiom is not compatiblewith core stability, its weaker veto version is; indeed,
these two axioms characterize the τ -index on majority line-graph games.

Some years ago in a private meeting, Stefan Napel remarked that solutions that
assign nonzero power to null players are particularly interesting. We note here that
majority line-graph games make the hierarchical index h̄ and the τ -index interesting
in this sense.Notice that null players in themajority game v need not be null players in
the restricted game vL . In fact, players who are null players in v might be veto players
in vL .28 Such players may thus be assigned positive power by a core-stable power
index and are always assigned positive power by the core-stable hierarchical index h̄
and τ -index. This elevated status of null players in v is a consequence of their position
in the (linear) ordering on the players and the cooperation possibilities between them
captured by the line graph (N , L). Indeed, such a linear ordering, reflecting alliance
possibilities among the member states, might explain the Luxembourg ‘gaffe’ in the
1958–1972 iteration of the EU Council of Ministers.29

Majority line-graph games are also interesting because, in such games, a number
of popular core-stable solutions agree in their recommendations. More precisely,
as Potters and Reijnierse (1995) have showed, in superadditive tree games, (1) the
bargaining set (Aumann & Maschler, 1964) coincides with the core, and (2) the
kernel (Davis&Maschler, 1965),which is a subset of the bargaining set, is a singleton
that contains only the nucleolus (Schmeidler, 1969). Since the restricted game vL is
superadditive and line graphs are trees, these results also hold for majority line-graph
games. In fact, it is easy to see that, in these games, the nucleolus coincides with the
τ -index.30

We close by referring back to an observation about the hierarchical index h̄ noted
at the end of the preceding section. Recall that, according to the hierarchical index,
the power of the left and right-wing extreme veto players depends on the number of
non-veto players occupying positions on either side. Put succinctly, the higher the
number of non-veto players in the respective ‘flank’ of an extreme veto player—that
is, the non-veto players to the left (right) of the left (right) extreme veto player—
the more powerful that veto player is. Thus, while non-veto players have no power
according to the hierarchical index h̄, they do affect the power of their closest extreme
veto player. We might then say that, while powerless according to h̄, the non-veto
players in the winning component of a line-graph game have leverage over the h̄-

28 Note, however, that null players in v can only be intermediate, and never extreme, veto players
in vL .
29 Famously, Luxembourgwas a null player in the Council at that time, which consisted of Germany,
Italy, France, The Netherlands, Belgium, and Luxembourg with weights of 4, 4, 4, 2, 2, and 1,
respectively, and a quota of 12 (Felsenthal & Machover, 1997). It is easy to verify that in all
orders where Luxembourg ‘separates’ the big four-weight countries and the small two-weight
countries (e.g. take the order Belgium, Italy, Luxembourg, France, The Netherlands, and Germany),
Luxembourg is an intermediate veto player in the respective majority line-graph game.
30 This also follows from the fact that the kernel of cooperative games satisfies symmetry (it rewards
symmetric players equally; see Maschler (1992, p. 621) and that veto players in line-graph games
are symmetric.
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power of the two extreme veto players. The same does not hold for the τ -index,
which rewards all veto players equally and according to which the power of a veto
player is not sensitive to the number of non-veto players in the winning component.
These observations suggest an interesting line for future research: the formulation
of leverage measures that can capture the effect players have over the power of other
players, given an underlying power index.31 In the case of core-stable power indices,
powerless (i.e. non-veto) players may nevertheless hold leverage over powerful (i.e.
veto) players. In such cases then, we would need to keep the ideas of ‘power’ and
‘leverage’ conceptually and formally distinct. Developing these ideas in more detail,
however, is left for another occasion.
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Double Proportionality for the European
Parliament: The Tandem System

Jo Leinen and Friedrich Pukelsheim

Abstract The tandem system proposes a double proportional electoral system for
the European Parliament. It offers a forum for europarties to contest an election
with power, visibility and influence. The tandem system proceeds in three steps. The
first step apportions all parliamentary seats among europarties by aggregating the
electorate’s votes at Union level. Thus, with regard to the division of the Union’s
citizens by political persuasion, the tandem system obeys the One Person–One Vote
principle. The second step, disaggregation of the unionwide apportionment, allots
the seats by Member State and Europarty in a way safeguarding the seat contingents
of the Member States. Thus, with regard to the Union’s layout by Member State,
the tandem system respects the principle of degressive representation. The third step
assigns the seats of a party in a Member State to domestic candidates by means
of the same provisions that Member States have been employing in the past, thus
complying with the Union’s principle of subsidiarity.

1 Introduction

The elections to the ninth European Parliament (EP) took place during 23–26 May
2019. The EP constitutes a single political body, yet it is customary to use the plural
“elections” when talking about electing a EP. As a matter of fact, the event decom-
poses into a patchwork of twenty-seven separate elections, one per Member State.
Lack of uniformity is a hallmark of EP elections. The diffuse appearance of the elec-
toral event has been lamented before and after previous EP elections and is again
moaned in assessments of the 2019 elections (Hrbek, 2019; Kaeding et al., 2019;
Oelbermann et al., 2019).

The current status has its roots in the past. The Electoral Act was conceived in
1976, amended in 2002 and 2018, and is again on the agenda of the incumbent
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parliament.1 As soon as the 1976 Electoral Act had to pass practical tests its defi-
ciencies came to light. Quite a few proposals for amendment were tabled during past
legislative periods, see Anastassopoulos (2002), Duff (2011), pp. 32–51 and Costa
and Jouvenat (2016).

The 2002 amendment achieved some progress. It decreed that in each Member
State members of the EP shall be elected on the basis of proportional representa-
tion. The term “proportionality” addresses a specific group of stakeholders, political
parties. Parties are institutions mediating between the many voters and the few repre-
sentatives. The term “proportional representation” stipulates that the number of seats
allotted to a party ought to be proportional to the number of votes cast for this party.
Back in 2002, EP elections were conducted as an ensemble of separate elections per
Member States. The parties relevant in those days were the domestic parties of the
Member States.

The involvement of domestic parties naturally inspired visions to launch cor-
responding political institutions at Union level. An initial regulation, on “political
parties at European level” in 2003 was superseded by a subsequent regulation on
“European political parties” in 2014. The topic is again on the agenda of the incum-
bent EP.2

Originally a political party at European level was taken to be an association of
like-minded domestic parties from the Member States, as indicated by the alternate
designation as a “European party family”. Hopes were raised that eventually a Union
polity would evolve as soon as European party families would mutate into ‘true’
europarties. A ‘true’ europarty would set a proper political agenda at Union level,
reconnect with the Union’s citizens, and contest EP elections by shaping the electoral
campaign (Bardi, 2005; Leinen & Pescher, 2014; Hecke, 2018).

It is rather sensible for the AFCO committee to review the Electoral Act and
the Regulation on European political parties in parallel. The true functioning of
europarties is a supposition underlying all proposals for enhanced uniformity when
electing the EP (Farrell & Scully, 2005; Hix & Hagemann, 2009; Oelbermann &
Pukelsheim, 2011).

Here we boldly assume that europarties are properly operating, strive for political
power, and aim to play a vital role at European elections. Our focus is on the intricacy
of design of the electoral procedure. The tandem system, a double proportional
system, takes into account two dimensions each of which reflects the representation
of the Union’s citizens in the EP. One dimension is the electorate’s political division
by partisan vote, the other, the electorate’s geographical division by Member State,
see Duff et al. (2015), Pukelsheim (2017), Sect. 14 and Costa & Jouvenat (2021).

1 Official Journal of the European Union (OJ) L 278 (8.10.1976) 1–11; OJ L 283 (21.10.2002)
1–4; OJ L 178 (16.7.2018) 1–3; Dossier AFCO 2020/2220(INL), rapporteur Domènec Ruiz Devesa
(ES-S&D). – A consolidated version of the 2002 Act is in Duff (2011), pp. 9–14—The 2018 Act is
still pending; see Cicchi (2021).
2 OJ L 297 (15.11.2003) 1–4; OJ L 317 (4.11.2014) 1–27; Dossier AFCO 2021/2018(INI), co-
rapporteur Charles Goerens (LU-Renew) and Rainer Wieland (DE-PPE).
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As for the representation by Member State, Article 14(2) TEU3 demands that
“representation of citizens shall be degressively proportional”. That is, representation
of citizenries may deviate from strict proportionality in the direction of degressivity.
In view of this specification the term “double proportionality” sounds inappropriate.

We opt for a specific label, “tandem system”.
Our paper is organized as follows. Section2 reviews the success of double pro-

portional electoral systems in Swiss Cantons. Section3 describes the prospective use
of double proportionality for the EP in form of the tandem system. The system is
illustrated using the data of the 2019 elections in Sect. 4. Section5 concludes the
paper with some general considerations.

2 Double Proportionality in Swiss Cantons

Elections for the EP share a typical characteristic with elections for Swiss canton
parliaments in that the electoral region is subdivided into several electoral districts
and that this subdivision is considered constitutive. The European Union is subdi-
vided into Member States. For a canton, the subdivision is into communities such as
townships, counties or villages.

Cantonal communities differ by population figures. Theoretically, a community
with a population too small to form a district maymerge with its neighbors in order to
assemble a district of reasonable size. People gain little, though, when communities
are located in valleys disassociated fromeach other bymountainmassifs of thousands
of meters in altitude as in Valais or Grisons. More generally, there may exist histor-
ical, federalistic, cultural, linguistic, or religious reasons calling for preservation of
communities when subdividing a canton.

When a canton is subdivided into electoral districts, the districts’ seat contingents
are allocated well ahead of polling day so that people know how many represen-
tatives they will elect in their district. The allocation is determined in proportion
to population figures. A small community may command no more than one or two
seats.

Traditionally, the election is evaluated in each district separately. A separate eval-
uation may cause severe legal problems when a cantonal constitution decrees that the
election must follow the principles of proportional representation. Proportionality is
hardly possible when there is no more than two seats to fill. Parties finishing third or
yet less successful will not gain a seat. The votes of their supporters turn ineffective
because the two seats are dealt out between the two major parties. Such situations
violate the electoral principle of equality.

3 OJ C 326 (26.10.2012) 13–45.—For the determination of the Member States’ seat contingents
see Pukelsheim and Grimmett (2018).—Note also that the Qualified Majority Voting system in the
Council, while technically disjoint from the apportionment of seats in the EP, constitutes another
representational issue that is highly sensitive on the political level.
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This is where a double proportional electoral system comes to the rescue. Double
proportionality aggregates the votes of the entire electorate at canton level. Then it
apportions all seats of the parliament to parties in proportion to canton wide vote
sums. It becomes irrelevant whether votes are cast in a small, medium, or large
community. All votes are treated equally, in accord with the One Person–One Vote
principle.

The new element added by double proportionality is the allotment of seats by
community and party. This new step allots the parties’ cantonwide seats to districts
in such a way that every district ends up with its preordained seat contingent. In
this way double proportionality warrants equality of votes across the whole canton,
while at the same time it verifies the subdivision of the canton into several districts
of different size.

The world premiere of double proportionality took place in 2006 in the can-
ton of Zurich. Since then, more cantons adopted a double proportional system:
Schaffhausen 2008, Aargau 2009, Zug 2014, Nidwalden 2014, Schwyz 2016, Valais
2017, Uri 2020, Grisons 2021. In some cantons the amendment of the electoral
law had to be approved by a popular referendum. Acceptance was overwhelming,
despite of blustering polemics of sullen politicians who interpreted the quest for elec-
toral equality to be an attack on cantonal sovereignty, see Pukelsheim and Grimmett
(2011), Senti (2013), and Pukelsheim (2017), Sect. 14.5.

The exigencies of electoral equality are settled by the Bundesgericht (Swiss Fed-
eral Court) in Lausanne, based on the Swiss constitution together with the canton
constitution. The Court repeatedly pointed out that seat contingents when too small
would become unacceptable in cantons whose constitution demands proportionality.
An infringement of constitutionallywarranted equalitywould be even less acceptable
since double proportionality provides a solution which does justice to the constitu-
tional demands without ifs and buts, see Bundesgericht (2010)—The Court refers to
double proportionality with the tag “Doppelter Pukelsheim”.

3 Double Proportionality for the EP

In order to apply double proportionality to EP elections there needs to be a sensible
way of aggregating all votes at Union level. To this end we introduce three categories
of political entities. A first category are the European political parties registered with
the Authority for European Political Parties and European Political Foundations.4

Since conditions for registration are ambitious, it seems appropriate to allow for a
second category of party-like entities not (yet) registered with the Authority, euro-
movements. A group of domestic parties from two or more Member States qualifies
as a euromovement, as does a European political movement such as VOLT. We

4 European political parties should not be confounded with political groups in the EP. Political
parties cater to the citizenry of the Union, while political groups are institutional units to organize
parliamentary business.
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use the label “europarties” as a generic term spanning both categories, (registered)
European political parties as well as (non-registered) euromovements.

Moreover, domestic parties may choose not to associate with any europarty but to
remain solitary. This gives rise to a third category, “stand-alone parties”, comprising
domestic parties who contest the EP election just in their home state.

The European political parties assumed relevant at the 2019 elections are the ones
listed on the webpage of the Authority for European Political Parties and European
Political Foundations:

ALDE Alliance of Liberals and Democrats for Europe Party
EPP European People’s Party
PES Party of European Socialists
EDP European Democratic Party
EFA European Free Alliance
EGP European Green Party
PEL Party of the European Left
ECR European Conservatives and Reformists Party

ECPM European Christian Political Movement
ID Identité et Démocratie Parti

Domestic parties who cooperate with a European political party usually may
choose between joining as a full member, an associate member, or an observer. For
our 2019 illustration we restricted attention to full members. Since we failed to
retrieve reliable membership rosters of any of the europarties listed, we compiled
them ourselves from their webpages and the information in Wikipedia. Most likely,
our compilations contain errors or outdated information.

As an example of a non-registered europarty we include into our illustration the
European movement VOLT. At the 2019 elections, its German section was the sole
section to win a seat. Other VOLT sections failed the domestic electoral threshold, or
garnered too fewvotes to validate a seat, or contested the electionwith an independent
candidate who was not successful.

Votes included into the 2019 example are those cast for domestic parties who
pass the pertinent domestic threshold and who obtain at least one seat. The tandem
system re-evaluation of the 2019 elections disregards all votes that were cast for
dwarf parties, whether they are members of European political parties or not. These
limitations are imposed solely for enabling us to use the 2019 data as an example;
in actual applications the limitations should be relieved. Vote counts are taken from
the study (Oelbermann et al., 2019), disregarding all vote counts which in the study
are labeled “Others”.

4 The Tandem System

Our illustration of the tandem system uses the data of the 2019 elections, disregarding
the results from the United Kingdom. Even though the seat assignments resulting
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from the tandem system turn out to be close to those actually implemented they
cannot be taken to indicate a systematic trend of any political significance. Due to the
instructive character of the example some hypothetical adjustments are unavoidable.

The tandem system proceeds in three steps.

4.1 Apportionment of Seats at Union Level

The aggregation of votes at Union level provides the base to apportion the 705 EP
seats among europarties and stand-alone parties. The apportionment calculations
use the divisor method with standard rounding (Sainte-Laguë method). This first
step realizes the One Person–One Vote principle and secures electoral equality for
all voters in the Union.

Table1 displays a total of 163,374,809 votes that enter into the process of appor-
tioning the 705 EP seats.5 Every 231,400 votes justify roughly one seat, i.e., dividing
theUnion divisor 231,400 into “Votes” yield “Quotients” that are rounded in the stan-
dard fashion to obtain the desired “Seats”. The electoral key 231,400 is determined
so that the sum of all “Seats” is equal to the number of seats available, 705.

The upper block of Table1 exhibits the aggregated results for the eleven europar-
ties. They are apportioned a total of 624 seats. These seats need to be disaggregated
by Member State and europarty, disaggregation is carried out in the next step.

The lower block of Table1 features thirty-four stand-alone parties, i.e., domestic
parties who are not a member of any europarty. They are labeled by the two-letter
code6 of the Member State where they are active, together with their party acronym.
Altogether the stand-alone parties are apportioned a total of 81 seats. This apportion-
ment is definitive, there is no need to subject these seats to any further disaggregation
mechanism.

4.2 Allotment of Seats by Member State and Europarty

The synchronizing potential of the tandem system comes to light in the allotment of
seats byMember State and europarty. Since the 81 seats of the stand-alone parties are
final, they are subtracted from the states’ seat contingents. The reduced contingents
provide a total of 624 seats to be allotted to europarties.

The task then is to merge two dimensions that are interacting: the layout by
Member State, and the division by europarties:

5 “Votes” are divided by the Union divisor 231,400 to obtain “Quotients”, then “Quotients” are
rounded to yield “Seats”. The divisor is determined so that the sum of all “Seats” is equal to the
number of seats available, 705.
6 Interinstitutional Style Guide (February 2022), Sect. 7.1.1.
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Table 1 Apportionment of 705 seats at Union level
EP2019-Aggregation Votes Quotient Seats

Eleven europarties, totalling 624 seats

EPP 39,338,118 170.0 170

PES 32,347,309 139.8 140

ALDE 18,656,812 80.6 81

ID 16,182,413 69.9 70

EGP 14,835,208 64.1 64

ECR 11,329,360 49.0 49

PEL 6,261,560 27.1 27

EFA 2,195,733 9.49 9

EDP 2,023,884 8.7 9

ECPM 741,034 3.2 3

VOLT 416,171 1.8 2

Thirty-four stand-alone parties, totalling 81 seats

IT-M5S 4,569,089 19.7 20

DE-AfD 4,104,453 17.7 18

FR-LFI 1,428,548 6.2 6

ES-JUNTS 1,018,435 4.4 4

DE-DIE PARTEI 899,079 3.9 4

PL-WIOSNA 826,975 3.6 4

HU-DK 557,081 2.4 2

DE-TIERSCHUTZ 542,226 2.3 2

DE-ÖDP 369,869 1.6 2

BE-2PTB 355,883 1.54 2

CZ-PIRATI 330,844 1.4 1

EL-KKE 302,603 1.3 1

DK-DF 296,978 1.3 1

SE-V 282,300 1.2 1

EL-XA 275,734 1.2 1

FI-PS 253,176 1.1 1

DE-PIRATEN 243,302 1.1 1

EL-EL 236,347 1.0 1

NL-PvdD 220,938 1.0 1

HU-JOBBIK 220,184 1.0 1

NL-50+ 215,199 0.9 1

IE-SF 196,001 0.8 1

NL-PVV 194,178 0.8 1

CZ-KSCM 164,624 0.7 1

LT-LVZS 158,190 0.7 1

IE-I4C 124,085 0.54 1

SK-KLSNS 118,995 0.51 1

LT-DP 113,243 0.49 0

IE-2indep 85,034 0.4 0

HR-MK 84,765 0.4 0

LT-AMT 82,005 0.4 0

CY-AKEL 77,241 0.3 0

HR-ZZ 60,847 0.3 0

CY-DIKO 38,756 0.2 0

Sum (Union divisor) 163,374,809 (231,400) 705
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Table 2 Allotment of seats by Member State and europarty—part 1
EP2019 624 EPP 170 PES 140 ALDE 81 ID 70 EGP 64

AT 19 1,305,956 6 903,151 5 319,024 1 650,114 4 532,193 3

BE 19 849,976 2 1,085,159 3 1,148,705 3 811,169 3 1,011,563 4

BG 17 725,678 8 474,160 5 323,510 3

CY 6 81,539 4 29,715 2

CZ 19 447,943 5 502,343 6 216,718 4

DE 69 10,794,042 21 5,916,882 13 2,028,594 4 7,677,071 21

DK 13 170,544 1 592,645 3 926,132 5 364,895 3

EE 7 34,188 1 77,375 2 134,959 3 42,265 1

EL 18 1,873,137 8 436,726 2

ES 55 4,510,193 11 7,359,617 20 2,726,642 7

FI 13 380,460 3 267,603 3 363,439 3 292,892 3

FR 73 1,920,407 7 1,403,170 6 5,079,015 17 5,286,939 28 3,055,023 15

HR 12 244,076 5 200,976 5 55,829 1

HU 18 1,824,220 14 229,551 2 344,512 2

IE 11 496,459 5 52,753 1 277,705 3 190,755 2

IT 56 2,493,858 6 6,107,545 16 9,175,208 30

LT 10 248,736 4 200,105 4 83,083 1

LU 6 264,665 2 152,900 1 268,910 1 237,215 2

LV 8 124,193 2 82,604 2 58,763 1

MT 6 58,699 2 124,441 4

NL 26 669,555 4 1,045,274 6 1,194,792 6 599,283 4

PL 48 4,009,958 17 1,239,977 6

PT 21 930,191 6 1,104,694 8 396,060 4

RO 33 3,447,949 13 2,040,765 9 2,028,236 7

SE 20 1,056,626 5 974,589 6 619,060 3 478,258 3

SI 8 180,155 4 89,936 2 74,431 2

SK 13 194,715 4 154,996 4 99,128 2

Party div. 1.098 1 1.165 0.77 0.818

• Within a Member State, the sum of the seats must meet the state’s reduced seat
contingent.

• Within a europarty, the sum of the seats must exhaust their due seats at the Union
level.

Tables2 and 3 resolve the task by using the double proportional variant of the
divisor method with standard rounding.7 Double proportionality employs two sets
of electoral keys, state divisors and party divisors. Once these are published, the vote
count which has been recorded in state S for party P is divided by the state divisor
for state S and by the party divisor for party P. The resulting quotient is rounded to
the nearest whole number to yield the seat number sought, i.e., the number of seats
allotted to europarty P in state S.

7 The votes are divided by two divisors, the associated “State divisor” and the associated “Party
divisor”, and then rounded to “Seats”. Row-sums match the states’ seat contingents, and column-
sums meet the parties’ apportionments at Union level.
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Table 3 Allotment of seats by Member State and europarty—part 2
(cont.) ECR 49 PEL 27 EFA 9 EDP 9 ECPM 3 VOLT 2 State

div.

AT 200,000

BE 954,048 4 20,385 0 330,000

BG 143,830 1 3,500 0 88,000

CY 18,000

CZ 344,885 4 76,000

DE 2,056,049 6 806,703 3 273,828 0 249,098 1 457,500

DK 151,903 1 170,000

EE 40,000

EL 1,343,595 8 210,000

ES 1,388,681 3 2,258,857 8 1,212,139 4 633,265 2 32,432 0 360,000

FI 126,063 1 106,000

FR 249,400

HR 91,546 1 44,000

HU 120,000

IE 94,000

IT 1,726,189 4 392,000

LT 69,347 1 54,000

LU 4,606 0 160,000

LV 77,591 2 29,546 1 46,000

MT 30,000

NL 602,507 3 375,660 2 106,004 1 170,000

PL 6,192,780 25 221,000

PT 325,093 3 134,000

RO 583,916 4 235,000

SE 636,877 3 146 0 176,000

SI 40,000

SK 146,673 3 40,000

Party div. 1.1031 0.8 0.8 0.705 1.44 1

Small scale illustrations can be found in Balinski (2004), Chap. 7 or in Pukelsheim
(2017), Chap. 14. Calculation of state divisors and party divisors is cumbersome and
needs a computer program, see Pukelsheim (2017), Chap. 15. On the positive side,
once the divisors are obtained and published, everybody can verify the seat numbers
via simple divisions and a rounding operation.

As an example, the Austrian contingent of nineteen seats is allotted as follows.
EPP garners 1,305,956 votes. The Austrian divisor is 200,000, the EPP divisor is
1.098. This leads to the quotient 1, 305, 956/(200, 000 × 1.098) = 5.9, justifying
six seats for the Austrian EPP-member ÖVP. The other successful europarties are
allotted five, one, four, and three seats, which are handed over to their respective
domestic parties.

In this way the allotment by Member State and europarty guarantees that every
Member State receives its due number of seats and so does every europarty.
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4.3 Assignment of Seats to Candidates

The tandem system concludes with the assignment of seats to candidates. Simply,
domestic provisions of a Member State are applied as in the past. Thus the tandem
system perpetuates the kind of accountability that Union citizens and representa-
tives are accustomed to. Since domestic provisions differ and since the tandem sys-
tem respects these differences, every Member State must be reviewed on its own.
The twenty-seven reviews decompose into three classes, see Leinen and Pukelsheim
(2021).

The first class embraces thirteen Member States where every europarty is in a
one-to-one correspondence with a unique domestic member party. The seats allotted
to europarties are handed over to the corresponding domestic parties without further
ado.

The second class consists of eleven Member States where one of the europarties
is in a one-to-many correspondence with its domestic member parties. For every
europarty with several member parties, its seats are parceled out proportionally to
the votes its members tallied.

The third class assembles three Member States which are special because of
establishingmultiple constituencies (Belgiumand Ireland), or because of using single
transferable vote schemes (Ireland and Malta). Slight adjustments accommodate
these special cases.

5 Conclusion

There remains the crucial task of raising citizens’ awareness that what is at stake
is their representation at Union level. Expedient operational procedures, such as the
tandem system, are necessary but not sufficient to reach this aim. The mediators for
conveying this message are political parties, domestic parties as well as europarties.
They ought to be offered incentives to act in concert and to spread the logic of
cooperative synergies, see Leinen and Pukelsheim (2022).

The tandem system aligns citizens and Member States in a synchronized (i.e.,
tandem) way. Conceptually, it amends the current Electoral Act in various directions:

• The tandem system achieves electoral equality among all citizens of the Union by
aggregating votes at Union level rather than performing separate evaluations per
Member State.

• The unionwide alignments are arranged in a manner safeguarding the composition
of the EP, i.e., the allocation of the seats of the EP between the Member States.

• Member States retain many domestic provisions, such as ballot structure, vote
pattern, and rules to assign the seats of a domestic party to this party’s candidates.

• The tandem system promotes a unionwide view of EP elections by involving
europarties through political power, public visibility, and coordinating influence.
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• The tandem system offers a forum for europarties to promote their spitzenkandi-
daten and their lead personnel for staffing political offices in the new legislative
period.

The tandem system summarizes an EP election across the entire European Union
in exhibits such as Tables1, 2, and 3. The complexity of the tables mirrors the
complexity of the Union. The synoptic view of the tandem system furnishes a more
informative and less disorienting electoral portrait of theUnion than the patchwork of
segmented elections as in the past.Of course other options to achievemore uniformity
in the European Electoral Act should also be considered, such as Müller (2022).

Finallywenote that the tandemsystem resolves a long-standing friction of primary
law. It ends the controversy whether degressive representation of the Member States
is at odds with electoral equality of the Union’s citizens. The tandem system aligns
the two goals without any conflict. It safeguards degressivity, yet it also implements
the One Person–One Vote principle for all voters in the Union irrespective of their
Member State provenance.
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Explaining Contestation: Votes
in the Council of the European Union

Arash Pourebrahimi, Madeleine O. Hosli, and Peter van Roozendaal

Abstract In this chapter, we study voting behavior in the Council of the European
Union (EU) for the time span of 2010 to 2021.We useCouncil voting data, examining
the impact of different independent variables on member states’ voting behavior:
net contributions to the EU budget, voting power, left–right policy positions, and
finally, the distance of a member state’s ideological position from the position of the
winning coalition under the qualified majority voting (QMV) rule. We investigate
more than 1229 legislative decisions taken in the Council, based on over 30,000
votes. Controlling for public attitudes toward the EU and whether a member state
held the Council presidency, we use a random effects binomial logit model in which
we divide votes into two categories: support and objection. Moreover, we also apply
an ordered logit model in which voting decisions are ordered based on the level of
support for a vote. Our results show that net contributors to the EU budget are more
likely to contest a vote in the Council of the EU. Similarly, the further the ideological
position of a member state from the one of a winning coalition, the higher the chance
it contests the vote.We find no evidence, however, for a clear relation between voting
power and the probability of contestation.

1 Introduction

Decision-making in the Council of the European Union (EU) is often a long and
enigmatic process, involving many actors both within EU institutions and at the level
of individual Member States. Formal voting in the Council of Ministers may take
place at the end of this extensive process. Many policy proposals are never formally
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voted upon, as participants in Council meetings—most notably the Presidency—are
keenly aware of whether or not a required majority of EU states support a proposal
in respective discussions. Depending on the type of policy proposal at hand, a simple
majority, a qualifiedmajority, a reinforced qualifiedmajority, or unanimity is required
for formal Council decision-making. Since the Treaty of Lisbon,most issues are dealt
with based on the “ordinary legislative procedure” and require qualified majority
voting (QMV) in the Council of the EU. This procedure starts with a proposal by the
European Commission, continues with a reading by both the European Parliament
(EP) and the Council of the EU, and has a potential second reading; in case there is
no agreement on the proposal yet and if after this second round, the EP and Council
still disagree, a conciliation committee is installed. From the total of 991 legislative
decisions with unique inter-institutional codes taken in the Council between 2010
and 2021, however, only six decisions went through the third reading.

In this chapter, we investigate a total of 1229 QMV decisions taken in the Council
between 2010 and 2021 to shed light on the factors that affect the likelihood of a
contesting vote cast in the Council. Our dataset1 contains a total of 33,910 votes,
for which we examine why an EU member state might have decided not to join the
winning coalition (i.e., the set of member states that passed the decision) and instead
contested a decision by casting a no vote or abstained. Applying a random effects
binomial logistic regression analysis, we examine the impact of variables such as a
Member State’s net contribution to the EU, its relative power, government compo-
sition, and its ideological distance from the winning coalition on voting decisions.
We control whether an EU state held the (rotating) presidency of the Council of the
EU and domestic public opinion toward the EU. In addition to a binomial logistic
regression, we apply ordered logit models to distinguish between abstentions and
negative votes cast.

Our results show that net contribution to the EU budget as a share of GDP is
positively correlated with the probability of contestation in the Council. Similarly,
when a Member State’s left–right policy position is further away from the winning
coalition’s policy position, the likelihood of contestation is higher. Our results also
show that holding the presidency of the Council lowers the contestation probability.
We include power (Banzhaf index) in our dataset and track changes inMember States’
power levels over time. Our random effects model does not show any correlation
between power and voting behavior, while a binomial logit model without being
defined as a panel would show that relationship.

Our research contributes to the literature on investigating voting behavior in the
Council with roll call data. Further research on the same topic can zoom in further to
consider the ideological positions of the ministers in Council configurations instead
of the government as well. Our chapter is structured as follows. The next section
discusses potential determinants of member states’ voting behavior in the Council,
based on earlier literature on this subject and own additional reflections. Section3

1 This dataset has been compiled by Arash Pourebrahimi. It is the basis for his forthcoming disser-
tation on decision-making in the European Union.
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presents our dependent and independent variables and discusses the sources used to
operationalize them. Section4 of our paper presents the results of our analysis, while
Sect. 5 summarizes and concludes our paper.

2 Potential Determinants of Voting Behavior in the Council

In terms of distributional divisions within the EU, some EU member states are net
contributors to the EU budget while others are net beneficiaries. Similarly, the share
of net contributions or benefits compared to the size of a member state’s economy
varies among member states. Zimmer et al. (2005), for example, argue that the divi-
sion between net contributors and net beneficiaries in the EU is the most important
source of conflict in the Council. Empirical studies on the impact of net contributions
to the EU budget on voting behavior, however, have shown mixed results. Hosli et al.
(2011) find that this effect differs between new and old member states, considering
the extensive 2004 enlargement: While among old member states, net contributors
were more likely to oppose, net beneficiaries among the new member states were
more likely to oppose decisions supported by themajority (Hosli et al., 2011). In their
study, the coefficient of budget balance for all member states revealed that higher net
contributors were more likely to contest decisions. Mattila (2004) has shown that net
contributors had a higher probability to contest decisions. However, this relationship
was significant only when “no”-votes and abstentions together were considered to
constitute oppositional votes. As discussed byMattila (2004), net contributors might
feel more entitled to oppose the majority in the Council given that they were con-
tributingmore to the Union.More recently, Franchino et al. (2022) demonstrated that
net receipts from the EU budget are correlated with governments’ responsiveness to
their publics’ left–right positions. However, the authors do not examine the impact of
net receipts on voting behavior. Bailer et al. (2015) demonstrated that net contribu-
tors to the EU budget were more likely to oppose decisions in the Council than were
net beneficiaries. The line of argument was that member states contributing more
demonstrated their discontent with EU decisions in the sense of sending a signal to
their domestic voters. While it is notoriously difficult to assess who the “net contrib-
utors” or “net beneficiaries” to the EU budget are (as there are different streams of
income and expenditures within the EU, spread over different policy areas), we will
use this basic cleavage as one of the possible explanations for vote choices in the
Council. Accordingly, our first hypothesis is as follows:

H1: The higher the net contribution of an EU member state, the more likely it is to
contest a decision in the Council of the EU.

Another potential explanatory variable could be the relative power amember state has
in the Council. Due to differences in terms of their (population) size, the distribution
of power among member states in the Council is not evenly distributed among them.
It can hence be expected that different levels of power are likely to affect a member
state’s voting behavior in the Council. In recent literature on the subject, the focus
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has mainly been on the impact of voting power in the framework of bargaining
success in the Council. Bailer (2004), for example, found that voting power as an
exogenous source of power improved a member state’s bargaining success only
in selected policy areas. Exploring the impact of voting power on voting behavior
in the Council, Mattila (2004) demonstrated that EU member states possessing a
higher number of votes opposed decisions in the Council more often than smaller
member states did. Similarly, Hosli et al. (2011) when analyzing all member states
(after the 2004 enlargement) found that higher voting power was correlated with a
higher number of opposing votes (i.e., no or abstain). However, this result was not
found for the category of new member states separately. More recently, Perarnaud
and Arregui (2022) examined the impact of voting power on the speed with which
national positions are shaped and on bargaining success in the Council. With a focus
on economic and monetary integration in the EU, Lundgren et al. (2019) showed
that a member state’s power resources, including voting power, did not contribute to
bargaining success in negotiations on the reform of the Eurozone conducted between
2010 and 2015. These negotiations, however, were largely conducted in the context
of intergovernmental negotiations at the level of the European Council. Following
the literature above, we present our second hypothesis:

H2: More powerful member states in the EU are more likely to contest decisions in
the Council.

Another potential independent variable affecting vote choice in the Council is the
ideological position of a member state on the left–right policy scale. For example,
Bressanelli et al. (2020) discuss howdomestic politics can create bottom-up pressures
on member states’ behavior at the EU level. Most of the studies on governments’
ideological positions have focused on left–right policy positions (e.g., (Hix, 1999;
Hosli et al., 2011; Mattila, 2004; Pircher & Farjam, 2021)). Investigating the impact
of left–right positions ofmember states on their voting behavior can be based either on
their left–right positions or the distance from the average left–right position (Hosli
et al., 2011). Another potential operationalization of this variable is the left–right
position of a government and that of its political opposition (Pircher & Farjam,
2021). Party ideologies can also affect the formation of cooperation networks in the
Council (Huhe et al., 2022). Accordingly, our third and fourth hypotheses are as
follows:

H3: An EU member state’s left–right position is correlated with its voting behavior
in the Council.

H4: Member states that are further away from the left–right policy position of a
winning coalition in the Council of the EU are more likely to cast an opposing vote
in this institution.

To explore the potential effects of the independent variables above, based on
a new data collection covering the period 2010 to 2021, control variables will be
added. First, our analysis controls for whether an EU member state at the time of the
vote held the rotating presidency of the Council of the EU. Analyses of this issue



Explaining Contestation: Votes in the Council of the European Union 305

Table 1 Distribution of decisions in the Council by voting rule, 2010 to 2021

Voting rule Number Percentage

Qualified majority voting 1229 91.92

Unanimity 107 8.00

Reinforced QM 1 0.08

Source Data collection based on the Consilium Website, for the period 2010 to 2021

have demonstrated that when a member state holds the presidency, this can impact
its voting behavior (Tallberg, 2003; van Gruisen et al., 2019). Similarly, attitudes
toward the EU in public opinion are likely to affect a member state’s voting behavior
in the Council (Franchino et al., 2022; Hagemann et al., 2017; Pircher & Farjam,
2021; Wratil, 2018). It is also likely to affect bargaining success in the Council of
the EU (Mariano & Schneider, 2022). Accordingly, we will also control for attitudes
toward the EU in public opinion, in each member state, and for each year.

3 Variable Operationalization and Data

In this section, we discuss our dependent variables, independent variables of interest,
and controls in more detail and discuss how we operationalize them.

3.1 Votes in the Council

Weexamine decisionsmade by theCouncil in the period between 2010 and 2021. The
data have been collected from the Council’s ConsiliumWebsite.2 To get a query from
the Consilium’s database, we have used the EURLEX R package (Ovádek, 2021).3

The dataset on which our analysis will be based includes 1337 decisions made by
the Council between 2010 and 2021. For most of these decisions, this concerns the
phase in which the Treaty of Lisbon was applicable, and QMV in the Council was
the relevant voting rule. For the entire dataset, Table1 depicts the distribution of
decisions based on the voting rule that was applicable.

In this chapter, our analysis will focus on the QMV cases, as with 91.92 of all
decisions taken by the Council, this constituted the clear majority of cases. EU
member states when it comes to a vote in the Council can either vote in favor,
against, or abstain. Moreover, they can decide not to participate in the voting process.
Out of 1229 QMV decisions taken by the Council between 2010 and 2021, in 572
cases, at least one member state did not vote in favor to the proposal (casting a vote

2 https://www.consilium.europa.eu/en/general-secretariat/corporate-policies/transparency/open-data/voting-results.
3 This extraction has been conducted by Arash Pourebrahimi and constitutes part of his PhD dis-
sertation (Leiden University).

https://www.consilium.europa.eu/en/general-secretariat/corporate-policies/transparency/open-data/voting-results
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Table 2 Contested QMV decisions in the Council of the EU, 2010–2021

QMV proposals Number Share in total number
of votes (%)

Not supported by at least one Member State
(against, abstention, or non-participating)

571 46.37

Contested by at least one Member State
(voting against or abstaining)

490 39.86

Fig. 1 Contested decisions in the Council, 2010–2021

against the proposal, abstaining, or not participating in the vote). In 490 cases, at
least one member state voted against a proposal or abstained. Please note that this is
a remarkable increase compared to earlier periods of voting in the Council of the EU
(e.g., Mattila (2004)). Table2 provides an overview of the percentage of proposals
that were not supported or contested by at least one EU member state in the Council.

We assume that a proposal is contested if there is at least one opposing vote or an
abstention vote on the proposal because these have the same impact on the results
in terms of forming a winning coalition when the Council decides by QMV. By
comparison, we do not consider non-participation to constitute contestation. Though
not participating in a vote can be considered to demonstrate a lack of support for
a proposal, in some cases, non-participation may simply reflect that a proposal is
irrelevant to a member state. Hence, we do not consider this to reflect contestation.
Figure1 shows the number of QMV decisions in the Council between 2010 and
2021 that were contested. A fascinating side-result of the analysis is that in the year
2014—when the double-majority rule became effective that was incorporated into
the Treaty of Lisbon—a spike of decisions was taken in the Council.

Figure2 shows the percentage of QMV decisions that were contested in the Coun-
cil of the EU for each year between 2010 and 2021. Next to the spike of legislative
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Fig. 2 Share of contested decisions in the Council, 2010–2021

acts voted on in 2014, the occurrence of votes was lower in 2020 and 2021, and
potentially, the COVID-19 pandemic. This might be related to Brexit, as the United
Kingdom left the Union in early 2020.

Around 40% of proposals in the Council, for the period analyzed here, were
contested. However, the contestation rate varied among different policy areas: more
than half of the proposals voted on were contested in some policy areas, including
Social Policy, Industry, Employment, and Environment. Figure3 shows the total and
the number of contested proposals voted on in the Council, by policy areas. Figure4
depicts the contestation rate for each policy area.

Each legislative decision in the Council is decided in a specific Council configu-
ration. Ministers and permanent representatives of each member state take decisions
in sessions held in each Council configuration. Figures5 and 6 show the distribu-
tion of decisions in Council configurations and the share of contested decisions in
each configuration, respectively. The highest contestation rates in terms of Council
configurations are in the areas of Justice and Home Affairs, Education, Youth, and
Culture. This finding needs more investigation, since Education, Youth, and Culture
as separate policy areas do not show such a high rate of contestation.

The 1337 QMV decisions included in our dataset contain 33910 decisions taken
by EU member states. Note that this includes the years before Croatia joined the EU
(in 2013), and after Brexit. Thus, the number of decisions taken by member states is
not simply the number of decisions times a constant number of member states. Less
than four percent of these 33910 decisions were contested votes. Table3 summarizes
the frequency of member state vote choices.

The contestation rate shown in Table2 is much higher than the contestation rate
in Table3. The reason for this remarkable difference is that contesting coalitions in
the Council are usually consisting of a small number of member states. For instance,
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Fig. 3 Contested decisions in the Council by policy area, 2010–2021

Fig. 4 Share of contested decisions in the Council by policy area, 2010–2021

if for a proposal 26 member states vote in favor and only one opposes, the proposal
is considered to be a contested proposal, while only 3.7% of votes cast constitute
opposing votes.

Table4 summarizes different voting behavior patterns of member states in the
Council of the EU. The last column of Table4 reports the contestation rate ofmember
states. The United Kingdom, with 18.95%, had the highest rate of contestation,
followed by Austria (5.69%), Hungary (5.53%), and the Netherlands (5.13%).
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Fig. 5 Decisions in the Council by configuration, 2010–2021

Fig. 6 Share of contested decisions in the Council by configuration, 2010–2021

Table 3 Distribution of vote choices in the Council of the EU, 2010–2021

Decision Number Percentage of total

In favor 32,654 96.3

Not participating 250 0.74

Abstention 526 1.55

Against 480 1.42
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Table 4 Contestation Rates by EU Member States, 2010–2021

EU Member
State

Yes (%) Non-
participation
(%)

Abstention
(%)

No (%) Contestation
rate (no or
abstention)
(%)

Austria 94.3 0 3.25 2.44 5.69

Belgium 97.56 0 1.87 0.57 2.44

Bulgaria 96.83 0.08 1.55 1.55 3.1

Croatia 98.44 0.11 1.22 0.22 1.44

Cyprus 98.62 0 0.08 1.3 1.38

Czech
Republic

96.26 0.08 2.28 1.38 3.66

Denmark 88.75 8.39 0.81 2.04 2.85

Estonia 98.13 0 1.14 0.73 1.87

Finland 98.86 0 0.41 0.73 1.14

France 99.76 0 0.16 0.08 0.24

Germany 95.2 0 2.52 2.28 4.8

Greece 99.27 0 0.24 0.49 0.73

Hungary 94.39 0.08 2.52 3.01 5.53

Ireland 92.91 5.79 0.98 0.33 1.31

Italy 98.7 0.08 0.41 0.81 1.22

Latvia 98.45 0 0.9 0.65 1.55

Lithuania 98.7 0.08 0.49 0.73 1.22

Luxembourg 97.88 0 1.22 0.9 2.12

Malta 97.97 0 0.73 1.3 2.03

Netherlands 94.87 0 1.55 3.58 5.13

Poland 95.2 0.08 2.36 2.36 4.72

Portugal 98.45 0 1.06 0.49 1.55

Romania 98.45 0.08 0.65 0.81 1.46

Slovakia 97.88 0 1.14 0.98 2.12

Slovenia 98.7 0 0.98 0.33 1.31

Spain 98.21 0.08 0.81 0.9 1.71

Sweden 96.34 0.08 0.57 3.01 3.58

UK 74.84 6.22 13.1 5.94 18.95

3.2 Government Composition

To measure the ideological position of each government in each EU member state,
we use the ParlGov database (Döring et al., 2022). In this database, each party’s
left–right policy position is measured on a spectrum ranging from 0 to 10, where
0 stands for extreme left and 10 for the extreme right. To measure the government



Explaining Contestation: Votes in the Council of the European Union 311

Fig. 7 Member States’ average government composition, 2000–2021

composition of each government, we calculate the weighted average of the parties
included in each government. The weights are based on the number of members each
party has in the parliament; the weight of each party is the number of members of
parliament of that party, divided by the total number of members of parliament of all
parties that form the government.

Another possibility to measure the weight of each party in the government is
to use the number of ministers of that party over the total number of ministers in
the government. However, for this method, we need to assume that the weights
(importance) of all ministries are equal, which may not be a realistic assumption.
Moreover, it is not clear when applying this approach how to deal with the fact that
the head of the government will be from a given political party: The office of the
head of the government could be included like another ministerial position, with
equal weight, or alternatively, be attributed a higher weight in the calculations. But
if the latter solution is chosen, how much weight should that be? Hence, using the
share of each party in the parliament may be a less arbitrary and straightforward
approach to reflect the weight of each party in government.

Figure7 shows the average government compositions in all EU member states
between 2000 and 2021, with two standard deviations on both sides. Higher variance
means that the government composition has fluctuated more during that period. A
more stable government composition (reflected by lower variance), however, does
not necessarily mean that parties forming an EU member state’s government did not
change much. It just implies that the weighted average of the ideological positions
of the parties in government did not vary much during the period analyzed.
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Fig. 8 Member States’ power distribution, 2010–2022

3.3 Power

To measure the power of each EU member state for the period of this analysis, we
use the Banzhaf power index. The reason for applying the Banzhaf instead of the
Shapley Shubik index is that assumptions underlying the Banzhaf power index, in
our view, align better with the Council’s voting system. Most notably, the Shapley
Shubik index assumes that players vote in sequence, while in the framework of
the Banzhaf index, players cast their votes simultaneously. To calculate the Banzhaf
index for each EUmember state, we apply the samemethod as used byGábor (2020).
To measure the Banzhaf index, we use the computer program created by Leech and
Leech (2004). This platform allows us to also account for the double-majority system.
We calculate the (non-normalized) Banzhaf index of each member state based on the
triple majority system before 2014 and the double-majority system since November
2014. We use EUROSTAT4 as a source for the population size of each member state
for each year analyzed (as of January 1st).

The variation in each member state’s Banzhaf power index is due to Croatia’s
accession to the EU in July 2013, the change of the voting system in the Council
of the EU (November 2014), population size changes since 2014, and finally, Brexit
(February 2020). These changes affected the power indices of the member states.
For Croatia and the UK, the power indices are calculated only for the period they
were members of the EU (Fig. 8).

4 https://ec.europa.eu/eurostat/web/population-demography/demography-population-stock-balance/database.

https://ec.europa.eu/eurostat/web/population-demography/demography-population-stock-balance/database
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Fig. 9 Member States’ public opinion on the EU, 2010–2021

3.4 Public Attitudes Towards the EU

To gauge public opinion in EU member states, we will use public attitudes toward
the EU, based on data published by the Eurobarometer survey. These are conducted
twice a year among European citizens and include a high number of questions, on a
variety of topics. For our analysis, we will use the question “In general, does the EU
conjure up for you a very positive, fairly positive, neutral, fairly negative, or very
negative image?” We use the difference between the percentage of very positive and
very negative as a measure of public sentiment: the higher this number, the more
positive the attitude toward the EU is in an EU member state. The assessments we
use for each year constitute the average of the answers to these items in two rounds
of the Eurobarometer survey in that year. Figure9 shows the average public opinion
towards the EU for each member state for the timespan 2010 to 2021. To make the
figure clear, wemultiply the respective numbers by 100 (but do not use this extension
when applying the models).

3.5 Net Contributions

To calculate the net contribution of each member state to the EU budget, we use EU
spending and revenue data published by the European Commission. Net contribu-
tions of each member state in each year are measured as total national contributions
plus total own resources minus total expenditures. Negative contributions imply that



314 A. Pourebrahimi et al.

Fig. 10 Member States’ net contribution to the EU budget, 2010–2020

the member state is a net beneficiary. In our model, we use net contributions as a
percentage of Gross National Income (GNI). GNI numbers are from the same source,
published by the European Commission. However, this dataset does not cover the
year 2021; hence, we limit this analysis to 2010–2020. Figure10 shows the average
annual net contributions overGNI for each EUmember state between 2010 and 2020.

3.6 Presidency

For each voting decision by each EU member state, we record if it was made while
the member state held the (rotating) presidency of the Council of the EU. The pres-
idency rotates every six months. Given this rotating scheme, most vote decisions by
a member state will be taken when it does not hold the presidency. Table5 shows
votes while an EU member state was holding the rotating presidency, and for time
spans it did not: Member states holding the presidency contested a vote (i.e., voted
no or abstained) only in 0.9% of all cases, while the contestation ratio for those not
holding the presidency was more than three percent on average.
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Table 5 Contesting votes for member states holding the rotating presidency compared to regular
member states
Vote choice Yes Non-participation Abstention No Total

Count Percentage Count Percentage Count Percentage Count Percentage

Holding
presidency

1209 98.37 9 0.73 4 0.33 7 0.57 1229

Not holding
presidency

31,445 96.22 241 0.74 522 1.6 473 1.45 32,681

4 Explaining Voting Outcomes in the Council
of the European Union

What drives vote choice in theCouncil of the EU?Based on the independent variables
presented above as well as the control variable, we will now proceed to estimate
vote choice based on such explanatory factors. We will first apply binomial logistic
regression analysis, followed by an ordered logistic regression. For our binomial
logit model, we capture vote choice by member states as a binary variable, with each
decision by amember state (i.e., itsminister or delegation in the Council) constituting
one observation. Accordingly, the (binary) dependent variable is support for (coded
as 0) or contestation of (coded as 1) a proposal voted on in the Council. A member
state supports a legislative proposal by voting in favor (yes). Opposing votes (no)
and abstentions are classified as contesting votes. We do not take non-participation
in the vote into account, as even though not participating implies not supporting a
decision, this does not constitute an action considered to be contestation: A member
state might not participate in a decision simply because that decision is not relevant
from its perspective.

The independent variables of our logisticmodel, as discussed above, are amember
state’s net contribution to the EU budget, its power index, government composition,
and the distance of its government (assessed on a left–right policy scale) from the one
of thewinning coalition.We control forwhether amember state held the presidency at
the time of the vote and for domestic attitudes toward theEU, based onEurobarometer
data. To assess the net contributions, as discussed above, we use contributions to the
EU budget plus traditional own resources minus EU expenditures, divided by the
GNI. The presidency is captured as a binary variable indicating whether the member
state held the Council presidency (coded as 1) or not (coded as 0). The power index
is the (normalized) Banzhaf power index.

For the analysis, we use the weighted average of the left–right government posi-
tions and the absolute distance of each government from the average of government
compositions as contained in the winning coalition in the Council of the EU for each
proposal voted on. We use this variable to examine whether being at a larger distance
from the winning coalition in terms of the left–right ideological position is correlated
with the probability that a member state contests a vote in the Council of the EU.
Public opinion is captured by citizens in a member state stating they are very positive
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Table 6 Binomial logit model (random effects)

Dependent variable

Decision (contest = 1)

Net contribution divided by GNI 0.139∗∗

(0.059)

Presidency −0.901∗∗∗

(0.308)

Power 0.036

(0.050)

Government composition left–right 0.046

(0.030)

Government distance left–right from winning coalition 0.347∗∗∗

(0.071)

Domestic public opinion 0.999

(1.000)

Observations 29,388

Note ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

about the EU minus those that are very negative. The results of the binomial logit
model (with random effects) are displayed in Table6.

Our results show that the higher the net contribution of a member state to the EU
budget, the higher the probability that it contests a vote in the Council of the EU. This
probably, as expected, decreases when a member state holds the presidency of the
Council of the EU. Our binomial logit model shows that the further the government
is on the left–right ideological spectrum from the winning coalition in the Council
of the EU, the higher the probability it contests a vote.

In addition to a binomial logit model, we run an ordered logit regression. For
this model, we order the decisions as yes (coded as 1), non-participation (coded as
2), abstention (coded as 3), and no votes (coded as 4). We use this order because
yes votes reflect support, non-participation is likely to reflect a neutral position,
abstention reflects contestation in the sense that it diminishes the fraction of member
states supporting the proposal, and no demonstrates a higher level of contestation,
even though practically, abstention and no votes have the same effect. Table7 shows
the results of our ordered logit model.

The insights generated by the ordered logit models align with the ones based
on the logistic models. However, in this model, the government composition on the
left–right policy scale is significant at the 10% level, with right-wing governments
being more likely to contest decisions in the Council.

Based on the results of the estimates generated by the models above, there is not
sufficient empirical evidence to reject hypothesis one. Accordingly, it is likely that
member states contributing more to the EU’s budget feel more confident in terms
of contesting decisions in the Council of the EU than member states that are net
beneficiaries. This might be because these member states allocate a higher share
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Table 7 Ordered logit model (random effects)

Dependent variable

Decision

Net contribution divided by GNI 0.148∗∗

(0.059)

Presidency −0.518∗∗

(0.232)

Power 0.024

(0.051)

Government composition left–right 0.046∗

(0.027)

Government distance left–right from winning coalition 0.413∗∗∗

(0.068)

Domestic public opinion 0.381

(0.084)

Observations 29,618

Note ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

of their total income to the EU and feel more confident demonstrating contestation
when they do not fully support a new piece of legislation, even though they cannot
change the outcome. Sending a signal to domestic voters might be another reason
for these net contributors to contest a vote. However, member states are less likely to
demonstrate opposition to a vote when they hold the Council presidency: In this role,
the mandate is to support the collective agenda and strive for consensus, which is still
a guiding principle in (intergovernmental) EU negotiations. It would be interesting to
explore whether member states holding the presidency also aim to lower the rate of
contestation in the Council when they hold the presidency (and to see which member
states succeed in doing so).

Our results do not show that member states’ power indices, assessed by the
Banzhaf power index, are correlated with their voting behavior. Thus, our second
hypothesis can get rejected. However, when we run a logistic model, not as a panel
model, the power index as an explanatory variable generates statistically significant
(and robust) results. A reason why the power index does not generate statistically
significant results as a predictor could be because this variable does not vary much
during the period assessed. Larger member states have more voting power. Thus,
the investigation of the impact of power on the probability of contestation is related
to the differences between the voting behavior of large member states compared to
others in the Council.

The results generated by both models imply that the probability of contestation
is lower when a member state’s ideological (left–right) policy position as reflected
in its government constellation is closer to the one of the winning coalition. Thus,
we cannot reject hypothesis 4. The reason for this might be that coalitions in the
Council are partly formed based on ideologies (as captured by left–right policy posi-



318 A. Pourebrahimi et al.

tions). This aspect may need more thorough investigation, notably as the left–right
ideological positioning of ministers who attend Council sessions might affect the
voting behavior of a member state in a specific Council configuration. However, the
results in terms of the impact of the ideology of a government on voting behavior
(see hypothesis 3) are mixed: The ordered logit model demonstrated that right-wing
governments in EUmember states aremore likely to contest decisions in the Council.
However, the effect can differ between policy areas. For instance, right-wing gov-
ernments might not support the EU’s agenda on topics such as foreign and security
policy (van Kersbergen & de Vries, 2007) or immigration, where their perspectives
may be nationalistic, while this is not necessarily the case in other policy domains.

5 Conclusion

Using all voting data for the Council of the EU between 2010 and 2021, this paper
has examined the determinants of member states’ contesting votes in the Council of
the EU. Our dataset includes more than 29,000 votes based on the QMV rule. The
results of our random effects binomial logit model and an ordered logit model show
that member states allocating a higher net share of their GNI to the EU are more
likely to oppose votes in the Council of the EU. Member states with an ideological
left–right policy position at a higher distance from the one of the winning coalitions
in the Council are more likely to contest votes. However, our results in terms of the
impact of left–right positions on voting behavior are mixed. Moreover, our analysis
does not provide evidence showing that a member state’s voting power is linked to
its voting behavior in the Council.

Our analysis has the same limitations that Council roll call data studies face:
We only have information on the decisions that made it through the decision-making
process in the EU.Decisions that did not have a chance to get approved in the Council
of the EU would not show up in the formal voting procedures. Similarly, given the
culture of consensus that exists in the Council of the EU, the number of contested
votes is low overall. Despite these limitations, however, our study can shed light
on some aspects of voting behavior in the Council of the EU. Given the fact that
the EU is continuously evolving and more decisions are taken, more research can
further improve our understanding of the functioning of the EU. In addition, more
information on ideological differences among EU member states, in particular at
the ministerial level, can shed further light on the dynamics of legislative decision-
making in the Council of the EU.



Explaining Contestation: Votes in the Council of the European Union 319

References

Bailer, S. (2004). Bargaining success in the European Union: The impact of exogenous and endoge-
nous power resources. European Union Politics, 5, 99–123.

Bailer, S., Mattila, M., & Schneider, G. (2015). Money makes the EU go round: The objective
foundations of conflict in the Council of Ministers. Journal of Common Market Studies, 53,
437–456.

Bressanelli, E., Koop, C., & Reh, C. (2020). EU Actors under pressure: Politicisation and depoliti-
cisation as strategic responses. Journal of European Public Policy, 27, 329–341.

Döring, H., Constantin, H., &Manow, P. (2022).Parliaments and governments database (ParlGov):
Information on parties, elections and cabinets in established democracies. Development version

Franchino, F., Kayser, M. A., & Wratil, C. (2022). Electoral competitiveness and responsiveness:
Rational anticipation in the EU Council. Journal of European Public Policy, 29, 42–60.

Gábor, J. (2020). Impact of Brexit on voting power in Council of the EuropeanUnion.Open Political
Science, 1, 192–197.

Hagemann, S., Hobolt, S. B., & Wratil, C. (2017). Government responsiveness in the European
Union: Evidence from Council voting. Comparative Political Studies, 50, 850–876.

Hix, S. (1999). Dimensions and alignments in European Union politics: Cognitive constraints and
partisan responses. European Journal of Political Research, 35, 69–106.

Hosli, M. O., Mattila, M., & Uriot, M. (2011). Voting in the Council of the European Union after
the 2004 enlargement: A comparison of old and new member states. Journal of Common Market
Studies, 49, 1249–1270.

Huhe, N., Thomson, R., Arregui, J., & Naurin, D. (2022). Intergovernmental cooperation networks,
national policy positions and partisan ideologies: Longitudinal evidence from the Council of the
European Union. Journal of European Public Policy, 29, 78–96.

Leech, D., & Leech, R. (2004). A computer program for the analysis of qualified majority voting
power under the treaty of nice. http://www.warwick.ac.uk/ecaae/

Lundgren, M., Bailer, S., Dellmuth, L. M., Tallberg, J., & Târlea, S. (2019). Bargaining success in
the reform of the Eurozone. European Union Politics, 20, 65–88.

Mariano, N., & Schneider, C. J. (2022). Euroscepticism and bargaining success in the European
Union. Journal of European Public Policy, 29, 61–77.

Mattila,M. (2004).Contested decisions: Empirical analysis of voting in theEuropeanUnionCouncil
of Ministers. European Journal of Political Research, 43, 29–50.

Ovádek, M. (2021). Facilitating access to data on European Union laws. Political Research
Exchange, 3, 1.

Perarnaud, C., & Arregui, J. (2022). Do member states’ permanent representations matter for their
bargaining success? Evidence from the EU Council of Ministers. Journal of European Public
Policy, 29, 97–116.

Pircher, B., & Farjam, M. (2021). Oppositional voting in the Council of the EU between 2010 and
2019: Evidence for differentiated politicisation. European Union Politics, 22, 472–494.

Tallberg, J. (2003). The agenda-shaping powers of the EUCouncil Presidency. Journal of European
Public Policy, 10, 1–19.

van Gruisen, P., Vangerven, P., & Crombez, C. (2019). Voting behavior in the Council of the
European Union: The effect of the trio presidency. Political Science Research and Methods, 7,
489–504.

van Kersbergen, C. J., & de Vries, C. E. (2007). Interests, identity and political allegiance in the
European Union. Acta Politica, 42, 307–328.

Wratil, C. (2018). Modes of government responsiveness in the European Union: Evidence from
Council negotiation positions. European Union Politics, 19, 52–74.

Zimmer, C., Schneider, G., & Dobbins, M. (2005). The contested Council: Conflict dimensions of
an intergovernmental EU institution. Political Studies, 53, 403–422.

http://www.warwick.ac.uk/ecaae/


Codecision in Context Revisited:
The Implications of Brexit

Nicola Maaser and Alexander Mayer

Abstract The paper analyzes the implications of the UK’s leave from the European
Union for the distribution of power between the Council of the European Union and
the European Parliament and within the Council under the EU’s codecision proce-
dure. Unlike previous studies on this issue, we do not treat the Council in isolation
but follow the richer framework of Maaser & Mayer (2016). That is, we model the
codecision procedure as a bargaining game between the European Parliament and the
Council under various a priori preference assumptions. We find that the withdrawal
of the UK has no significant effect on the power distribution between the European
Parliament and the Council and that it is mainly the large member states that benefit
from the UK’s leave.

1 Introduction

On December 31, 2020, the transition period for the United Kingdom (UK) to with-
draw from theEuropeanUnion (EU)officially came to an end.This so-calledBrexit—
short for “British exit”—marked the end of a year-long process that started with a
referendum on June 23, 2016, when 52% of voters voted in favor of leaving and
handed a surprise victory to the “leave” campaign. It then took more than four years
to negotiate both a Withdrawal Agreement and a Trade and Cooperation Agreement
governing the future economic relationship between the EU and the UK. Since Jan-
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uary 1, 2021, and after nearly 50 years of membership, the UK is no longer a member
of the EU.1

While there is already a large body of work on the economic impact of Brexit
(see, e.g., Born et al. 2019; Breinlich et al. 2022; Sampson 2017), only few papers
investigate the consequences for EU decision-making.Wewill contribute to the latter
by exploring how Brexit affects the distribution of power (i) between the EU’s two
main decision-making bodies, the European Parliament (EP) and the Council of the
European Union (CEU) and (ii) within the Council. Kóczy (2021) and Grech (2021)
have already analyzed the power consequences of Brexit in a framework that treats
the Council in isolation assuming that it is the only decision-making body of the EU.
Both find that it is mainly the large members that benefit from the UK’s exit.

We take a broader perspective and consider that the EP and the Council in the
codecision procedure—today the most important decision-making procedure in the
EU—are commonly regarded by EU observers as equal co-legislators. Also accord-
ing to the EP’s own description (European Parliament, 2012, p. 5), the “ordinary
legislative procedure is based on the principle of parity between the [...] European
Parliament, representing the people of the Union, and the Council, representing the
governments of Member States.”

Applied models on negotiations between the EP and the Council arrive at remark-
ably different conclusions regarding the distribution of power in the EU. The
findings—theoretical as well as empirical—vary from a genuine, balanced two-
chamber system (Crombez, 2000; Garrett & Tsebelis, 2000; Moser, 1997) to a more
or less pronounced asymmetry in favor of the Council (Costello & Thomson, 2013;
Maaser & Mayer, 2016; Napel & Widgrén, 2006).

We take the model of Maaser and Mayer (2016) and try to identify which of the
two institutions, if any, benefits (more) from Brexit. Furthermore, we check whether
the conclusion drawn byKóczy (2021) andGrech (2021) that it is primarily the larger
countries that benefit from Brexit still holds in a more realistic setting of EU codeci-
sion characterized by the following main features. First, the model takes into account
the fact that negotiations between the EP and the Council are characterized bymutual
gains and concessions. Such a principle of juste retour results in a cooperative rather
than conflictual mode of negotiation. This observation can be captured by model-
ing bargaining between the EP and the Council in the final stage of the codecision
procedure using the Kalai–Smorodinsky bargaining solution (Kalai & Smorodinsky,
1975). Second, Maaser and Mayer (2016) take into account heterogeneity across
member states. That is, they assume that there is a closer political connection within
countries than between them. In particular, they assume that both citizens’ and del-
egates’ ideal points are a priori identically distributed, but not independent. The
final assumption of the model of Maaser and Mayer (2016) concerns the fact that
Council delegates are supposed to represent national governments, while Members
of the European Parliament (MEPs) are supposed to directly represent citizens. If the

1 Formally, the UK has left the EU already on January 31, 2020. However, there was a transition
period for the remainder of 2021. See, e.g., The Economist (2021) for an extensive discussion of
the Brexit process.



Codecision in Context Revisited: The Implications of Brexit 323

Council’s delegates are faithful agents of their national governments, then the prefer-
ences of a member state’s Council delegate—usually a disciplined bureaucrat—are
congruent with the respective national median voter. In contrast, a country’s MEPs
are modeled such that their ideal points are drawn from a symmetric triangular dis-
tribution over the respective policy interval. This is consistent with the observation
that MEPs are ideologically very diverse and cover the entire political space.

The remainder of the paper is organized as follows. Section2 presents the codeci-
son procedure in more detail. Section3.1 derives the EP’s and the Council’s respec-
tive bargaining positions, Sect. 3.2 the predicted policy outcome of the codecision
game and both institutions’ influence on the outcome. Section3.3 introduces vari-
ous assumptions on preferences. Section4 discusses the results from the quantitative
power analysis. Section5 concludes.

2 The Codecision Procedure

The ordinary legislative procedure as laid down in Article 294 of the Treaty on the
Functioning of the European Union (TFEU) provides that the EP and the Council
must reach consensus on the basis of a Commission proposal by means of alternate
amendments. If no agreement is achieved during the first two readings, a compromise
is sought in the third andfinal stage, theConciliation Committee. It is composedof one
delegate per Council member (i.e., 28 members before and 27 members after Brexit)
and an equal number of EP delegates.2 In the event of a successful conciliation, the
final joint draft is voted upon under closed rule, i.e., neither institution can amend the
proposal. Adoption requires a simple majority of votes cast in the EP and a qualified
majority in theCouncil; otherwise (or if no joint text has been produced), the proposal
fails and the legal status quo applies.

We portray the EU’s codecision procedure as a non-cooperative extensive form
game of perfect information between the Council and the EP (see Fig. 1) and assume
one-dimensional spatial preferences for members of the EP and the Council del-
egates.3 Imposing standard rationality assumptions on the players, we can derive
the codecision outcome by backward induction. It is determined by the anticipated
outcome of the last stage, i.e., the Conciliation Committee (cf. Sect. 3.2).

Following the approach developed byNapel andWidgrén (2004; 2006), we do not
consider it appropriate to force the extensive form game in Fig. 1 into the form of sim-

2 Still, the two delegations are potentially asymmetric, as each Council member is involved in the
Conciliation Committee, but the EP delegates in the Committee are merely agents whose interests
need not be fully aligned with those of their principals (see Franchino and Mariotto 2013).
3 Since the Commission has no formal say in the negotiations (i.e., EP and Council can implement
any policy they jointly agree on), but only fulfills a mediating and facilitating role, it is not treated
as a relevant player in the codecision game. However, this contradicts some qualitative analyses as
well as the prevailing view in the media that the Commission has a major influence on legislation. A
first approach to incorporate a strategic forward-looking Commission in models of EU codecision
is offered by van Gruisen and Crombez (2021).
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Fig. 1 Stylized codecision game tree

ple voting games and calculate standard binary indices such as the Shapley–Shubik
index (Shapley& Shubik, 1954). Instead, in the next section, we will introduce a spe-
cific policy space, preferences for players, and some more structure for negotiations
in the Conciliation Committee.

3 The Model

Drawing on the model of Maaser and Mayer (2016), we consider a convex policy
space X ⊆ R

n equippedwithmetricρ. Formost of the analysis,we assume n = 1 and
ρ to be the Euclidean distance. Let q ∈ X denote the status quo regarding the issue in
question. Assume that agents (i.e., MEPs, Council members and the representatives
in the Conciliation Committee) have single-peaked preferences such that agent i with
ideal point λi ∈ X has utility ui (x) = −|λi − x | from policy x ∈ X . That is, utility
falls linearly in distance between λi and x .

Given these preferences, we can predict the outcome of conciliation, and thus
codecision, by specifying, first, how EP’s and Council’s internal decision rules
translate individual preferences of MEPs and Council members into the common
ideal points π for the EP and µ for the Council (intra-institutional bargaining), and
second, how these collective preferences jointly determine a bargaining agreement
(inter-institutional bargaining).

3.1 Intra-institutional Bargaining

Before the conciliation procedure begins, the respective bargaining positions of
the EP and the Council must be agreed in accordance with the respective internal
decision-making rules of each institution. MEPs decide on any conciliation compro-
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mise by simple majority rule, which—in our one-dimensional Euclidean setting—
makes the median MEP pivotal.

Denoting the ordered ideal points of the MEPs by π(1), . . . , π(l), where l = 705
for EU27 and l = 751 for EU28, the median MEP’s ideal point is π EU28 = π(376)

for EU28 and π EU27 = π(353) for EU27, respectively.
Agreement on the Council’s common ideal point μ is subject to the voting

rules laid down in the Treaty of Lisbon and is therefore more involved.4 Denot-
ing the ordered ideal points of the individual Council members by μ(1), . . . , μ(m),
m = 27, 28, we distinguish two cases. First, if the Council wants to replace the status
quo q by a policy x > q, members with positions μ(m), μ(m−1), etc., will be the most
enthusiastic about this change. The pivotal member of the Council is then the coun-
try that first brings about the required qualified majority as less and less enthusiastic
members in favor of policy x are added.Wewill refer to this member as the Council’s
left pivot LEU28 and LEU27, respectively, with respective ideal pointμEU28

L andμEU27
L .

Similarly, the critical member for a policy change to the left of q is referred as the
Council’s right pivot REU28 (REU27) with associated ideal point μEU28

R (μEU27
R ).

Denoting EU28’s population by PEU28 (and EU27’s population by PEU27), the
voting weight of the member with ideal point μ(i) by w(μ(i)) and the population she
represents by p(μ(i)), we have

REU28 = min
{
min

{
r ∈ {16, ..., 28} :

r∑
i=1

p(μ(i)) ≥ 0.65PEU28
}
, 25

}

and

LEU28 = max
{
max

{
l ∈ {1, ..., 13} :

28∑
i=l

p(μ(i)) ≥ 0.65PEU28
}
, 4

}
,

for EU28 and

REU27 = min
{
min

{
r ∈ {15, ..., 27} :

r∑
i=1

p(μ(i)) ≥ 0.65PEU28}, 24
}

and

LEU27 = max
{
max

{
l ∈ {1, ..., 13} :

27∑
i=l

p(μ(i)) ≥ 0.65PEU28
}
, 4

}
,

for EU27.

4 Under the Treaty of Lisbon, a qualified majority must consist of at least 55% of member states and
must represent at least 65% of total EU population. Additionally, a blocking minority must include
at least four Council members.
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3.2 Inter-institutional Bargaining

One way—namely that of Napel & Widgrén (2006)—to arrive at predictions about
the outcome of negotiations in the Conciliation Committee is offered by bargaining
solutions such as the Nash bargaining solution (Nash, 1950). To incorporate that
actual codecision negotiations are characterized by (i) a cooperative mode of behav-
ior and (ii) an informal principle of juste retour that recognizes that each member
should gain something from the negotiations, we on the contrary follow Maaser and
Mayer (2016) and consider the Kalai–Smorodinsky solution (Kalai & Smorodinsky,
1975) instead of the Nash solution. The Kalai–Smorodinsky solution has several
attractive features that make it, at least in our view, a better fit for bargaining situa-
tions characterized by mutual concessions.5

To describe the Kalai–Smorodinsky solution, we first need to define the so-called
utopian point u∗ as the —typically unrealisable—point at which every player i
receives her aspiration level ai , which is the highest possible surplus for player i ,
provided that all other players receive at least their disagreement payoff. The Kalai–
Smorodinsky solution assumes that all players cut back proportionally with respect
to the utopian point in such a way that the ratio of their aspirations is preserved.
Formally, it is defined by

ξ K S (U , d) = d + λ̄(u∗ − d),

where λ̄ = max
{
λ ∈ R : d + λ(u∗ − d) ∈ U}

. Geometrically, the Kalai–
Smorodinsky solution ξ K S(U , d) is just the intersection of U’s Pareto frontier and
the straight line connecting the disagreement point d and the utopian point u∗.

In our setting, we will—without loss of generality—assume that sign(q − π) =
sign(q − μ), i.e., gains from trade exist, and |π − q| ≤ |μ − q|, i.e., the EP’s ideal
point π is closer to q than the Council’s ideal point μ. This implies that u∗

EP = 0 and

u∗
CEU =

{
0 if |π − q| ≥ |π − μ|
−|π − μ| + |π − q| otherwise.

Figure2 geometrically illustrates the location of the Kalai–Smorodinsky solution
for these two cases (assuming q = 0).

The precise location of the policy x K S that corresponds to ξ K S can be determined
as follows:

Proposition 1 Maaser and Mayer (2016, p. 223). Whenever there are gains from
trade (i.e., sign(q − π) = sign(q − μ)), the Kalai-Smorodinsky solution to the bar-

5 See Maaser and Mayer (2016, pp. 220f) for a detailed discussion of why the Kalai–Smorodinsky
solution seems to reflect actual codecision negotiations better than the Nash solution. Maaser and
Mayer (2016, p. 223) also showed that the Kalai–Smorodinsky solution has empirical support in the
context of EU codecision: using real policy issues reported in the DEUII dataset (Thomson et al.,
2012, 2006), they find that the Kalai–Smorodinsky solution does significantly better in predicting
the actual codecision outcome than the Nash solution.
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Fig. 2 Kalai–Smorodinsky bargaining solution with u∗ = (0, 0) in the left panel and
u∗ = (

0,−|π − μ| + |π − q|) in the right panel

gaining problem (U , d) corresponds to agreement on a policy xKS which is located
on the Pareto frontier but nearer to the ideal point which is closer to the status quo.
More specifically,

xKS(π, μ, q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π + μ−π
1+(μ−q)/(π−q)

if |π − q| ≤ |μ − q| and |π − q| ≥ |π − μ|,
μ + π−μ

1+(π−q)/(μ−q)
if |π − q| > |μ − q| and |μ − q| > |π − μ|,

π + π−q
3 if |π − q| ≤ |μ − q| and |π − q| < |π − μ|,

μ + μ−q
3 if |π − q| > |μ − q| and |μ − q| ≤ |π − μ|.

Proof See Maaser and Mayer (2016, pp. 234f). The qualitative finding of Proposi-
tion 1 remains true for multidimensional policy spaces X ∈ R

n with n ≥ 2. A proof
is available from the authors upon request.

The expected influence of the EP, the Council and of individual Council members
on EU codecisions can be quantified using the power as outcome sensitivity approach
introduced by Napel and Widgrén (2004). This approach conceives of a posteriori
power as the sensitivity of the equilibrium outcome with respect to small changes
in a player’s behavior or preferences. The strategic measure of power (SMP) then
evaluates a priori power as expected a posteriori power, using a probability measure
with a priori credentials.

Taking the partial derivatives of the predicted outcome, the a posteriori power
of the EP for a given realization of the status quo q and ideal points of MEPs and
Council members then is
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∂xKS(π, μ, q)

∂π
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(q−2μ)(2q−π−μ)+(π+μ)q−2πμ

(2q−π−μ)2
if (q <π <μ or μ<π <q) and |π−q|> |π−μ|,

(q−2μ)(2q−π−μ)+(π+μ)q−2πμ

(2q−π−μ)2
if (q <μ<π or π <μ<q) and |μ−q|> |π−μ|,

4
3 if (q <π <μ or μ<π <q) and |π−q|< |π−μ|,
0 otherwise.

Similarly, for an individual member k of the Council, we obtain

∂xKS(π, μ(μ1, . . . , μm), q)

∂μk
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(q−2π)(2q−π−μ)+(π+μ)q−2πμ

(2q−π−μ)2
if (q <π <μ or μ<π <q) and |π−q|> |π−μ|,

(q−2π)(2q−π−μ)+(π+μ)q−2πμ

(2q−π−μ)2
if (q <μ<π or π <μ<q) and |μ−q|> |π−μ|,

4
3 if (q <μ<π or π <μ<q) and |μ−q|< |π−μ|,
0 otherwise,

where μ = μk , i.e., member k is the Council’s pivotal member.

3.3 Assumptions on Preferences

To account for the fact that (i) the EP represents citizens while the Council represents
states (or rather governments) and (ii) there are reasons that are likely to lead to closer
political ties between voters within countries than between them, we follow Maaser
and Mayer (2016) and include the following assumptions about the ideal points of
each decision-maker in our analysis.6

(SPA) All individual voters have spatial preferences, characterized by ideal point
νi in policy space X .

We are aware that a constitutional analysis should ignore knowledge about specific
preferences. From a normative perspective of constitutional design, it can therefore
be appealing to assume that all individual ideal points are independently and identi-
cally distributed (i. i. d.). However, while the normative perspective certainly implies
that all ideal points νi should be drawn from the same marginal distribution F , in
our view positive correlation within countries should be allowed. We therefore con-
sider the partition C = {C1, . . . , Cm}, m = 27, 28 of the EU voter population into m
constituencies with n j = |C j | > 0 members each.

6 See Maaser and Mayer (2016, pp. 225–228) for a detailed discussion and implications of these
facts.



Codecision in Context Revisited: The Implications of Brexit 329

In particular, we determine individual ideal points νi by a two-step random
experiment: First, we draw a constituency-specific shock θ j independently for each
j = 1, . . . , m from a distribution G with standard deviation σext . This parameter cap-
tures the degree of external heterogeneity between C1, . . . , Cm for the policy issue
at hand. The parameter θ j is supposed to reflect the expected ideal point of citizens
from C j . Each citizen i ∈ C j is then assigned an individual ideal point νi from a
distribution Fj that has mean θ j and is otherwise just a shifted version of the same
distribution F for each constituency j = 1, . . . , m.7 F’s standard deviation σint is a
measure of the internal heterogeneity in any constituency. It intuitively reflects the
differences in opinionwithin any given C j . In summary, we account for heterogeneity
among countries by assuming that

(HET) The ideal points of all citizens are identically distributed with convoluted a
priori distribution G ∗ F but not independent: Citizens in constituency C j experi-
ence a shock θ j , which is independent of θk for any k �= j .

The introduction of heterogeneity has an additional benefit: It is worth includ-
ing another institutional fact, namely the degressive proportionality in the national
composition of the EP (see Table1 for the respective number of MEPs).8

Our two final assumptions reflect the idea that ideal points of Council members
and MEPs should not be identically distributed:

(MED) The preferences of country j’s representative in the Council are congruent
with the country’s median voter.9 More formally, representative j has ideal point

μ j = median{νi : i ∈ C j }.

(CRD) MEPs who are elected in country j are a clustered random draw from that
country’s electorate. More formally, let s j denote the number of seats allocated to
country j . Ifμ j is themedian voter position in C j , then the ideal pointsπ

j
1 , . . . , π

j
s j

of j’s MEPs are distributed according to the symmetric triangular distribution
F(a j , μ j , b j ) on the interval [a j , b j ] with peak location μ j , where a j and b j ,
respectively, are the lower and upper bound of country j’s policy space.

7 Specifically, we draw θ j from a uniform distribution U(−a, a) with variance σ 2
ext and then obtain

νi = θ j + ε with ε ∼ U(0, 1).
8 Note that 27 of UK’s 73 seats in the EP were distributed between the remaining members, with
France and Spain getting the most additional seats (five each).
9 Many EU member states have coalition governments consisting of only a subset of parliamentary
parties; the more realistic assumption would hence be to consider the median voter within the
government coalition instead of the entire population. This, however, would require information
about each member state’s type of government coalition. Since many coalition governments consist
of parties from the center of the political spectrum, we believe it is a good approximation to consider
the median of the entire population.
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4 Results

Since we are not interested in a player’s influence on a single issue but rather in
expected influence, we quantify a priori power by computing the average of a poste-
riori power (Sect. 3.2) over a large number of uniformly distributed issues.

In a first step, we draw a country specific shock θ j that reflects the expected ideal
point of citizens from country C j . Second, the ideal points of voters from different
countries are drawn from different distributions with mean θ j , which are shifted
versions of somedistribution F . Specifically, the ideal points ofMEPs are drawn from
shifted triangular distributions F1, . . . , Fm with the median of the respective country
as the peak (i.e., for EU27, 96 ideal points are drawn from the distribution ofGermany,
79 from the distribution of France, etc.). The ideal points of the Council members
are drawn from the respective shifted beta distributions F1, ..., Fm with parameters
((n j + 1)/2, (n j + 1)/2).10 The status quo q is drawn from a uniform distribution
over an interval that captures all possible preferences in our heterogenous EU. Third,
we sort the realized ideal points and determine the respective pivot positions of
EP and Council according to their respective internal decision rules (cf. Sect. 3.1).
Fourth, we identify the policy outcome xKS and derive the a posteriori power of EP
and Council for the given realizations of q, π and μ. By repeating this procedure up
to 109 times, we obtain numerical estimates of the SMP numbers of the EP, the CEU
and the individual Council members.11

We report the simulation results for the EU28 with UK and the EU27 without
UK in Table1. The first noteworthy result is that Brexit has basically no impact on
the respective ex ante power relations between the EP and the Council. The SMP of
the EP slightly increases by about 1.5%, while the Council’s SMP decreases by a
negligible 0.5%. This suggests that some formerly pivotal positions of the Council
which were held by the UK now belong to the EP or result in deadlock due to the lack
of gains of trade. Second, our results regarding the intra-institutional distribution of
power show—with very few exceptions like Spain and France—a clear pattern: The
larger a country in terms of its population size, the more it benefits from Brexit (in
relative terms). While Germany, the largest member of the EU sees its SMP increase
by about 20%, and the EU’s smallest member, Malta, loses about 4% of its ex ante
power. The relationship between the influence effect of Brexit and population size is
also illustrated in Figs. 3 and 4.

Let us remark that the change in a country’s SMP results from two opposing
effects. The first effect is positive: In the configurations in which the UK was doubly

10 This follows fromassuming that voter ideal pointswithin agiven country are uniformly distributed
(see Arnold et al., 1992, pp. 13f).
11 To reduce the variance of our SMP estimator (ŜMP), we use the difference between the exactly
calculated Shapley–Shubik index (SSI) and the estimated Shapley–Shubik index (ŜSI, which is
a by-product of our simulation) as a control variate for our SMP estimator. It can be shown that
ŜMPi + c(ŜSIi − SSIi ) is an unbiased estimator of the true SMP of country i . The variance of this
estimator gets minimized for c = −cov(ŜMPi , ŜSIi )/var(ŜSIi ). With this approach, the variance
can be reduced by up to 41%.
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Table 1 2020 Eurostat population, EP seats, and power for EU28 (w/ UK) and EU27 (w/o UK)

Member state Population EP seats SMP (×10−2) � SMP %

EU28 EU27 EU28 EU27

Germany 83,166,711 96 96 9.35 11.26 +20.34

France 67,320,216 74 79 7.25 8.54 +17.34

United Kingdom 67,025,542 73 – 7.21 – –

Italy 59,641,488 73 76 6.31 7.46 +18.17

Spain 47,332,614 54 59 4.91 5.89 +19.95

Poland 37,958,138 51 52 4.06 4.47 +10.12

Romania 19,328,838 32 33 2.38 2.55 +6.89

Netherlands 17,407,585 26 29 2.19 2.34 +6.84

Belgium 11,522,440 21 21 1.62 1.73 +6.66

Greece 10,718,565 21 21 1.54 1.64 +6.47

Czech Republic 10,693,939 21 21 1.54 1.64 +6.51

Sweden 10,327,589 20 21 1.51 1.60 +6.23

Portugal 10,295,909 21 21 1.50 1.60 +6.52

Hungary 9,769,526 21 21 1.45 1.55 +6.28

Austria 8,901,064 18 19 1.38 1.46 +6.07

Bulgaria 6,951,482 17 17 1.19 1.25 +5.31

Denmark 5,822,763 13 14 1.09 1.13 +4.78

Finland 5,525,292 13 14 1.06 1.11 +4.41

Slovakia 5,457,873 13 14 1.05 1.10 +4.62

Ireland 4,964,440 11 13 1.01 1.05 +3.90

Croatia 4,058,165 11 12 0.92 0.95 +3.10

Lithuania 2,794,090 11 11 0.81 0.82 +0.86

Slovenia 2,095,861 8 8 0.75 0.74 −0.59

Latvia 1,907,675 8 8 0.73 0.72 −0.85

Estonia 1,328,976 6 7 0.68 0.66 −2.27

Cyprus 888,005 6 6 0.64 0.62 −3.49

Luxembourg 626,108 6 6 0.61 0.59 −3.87

Malta 514,564 6 6 0.60 0.58 −4.41

CEU aggregate 65.36 65.06 −0.46

EP 26.29 26.69 +1.53

pivotal (i.e., both in the Council and in the Conciliation Committee), another country
is now the pivotal Council member. Some of these altered pivotal positions translate
into doubly pivotal positions for the remaining countries; others lead to pivotality
of the EP or in deadlock. While this effect is positive for all countries, the larger
countries intutitively stand to benefit more as they are closer substitutes to the UK.
The second effect is ambiguous: It stems from configurations in which the UK was
not pivotal, but provided the necessary weight to make some other country pivotal. It
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Fig. 3 Relationship between population size and percentage change in SMP

is intuitively clear that the exit of the third-largest country has a particularly negative
impact on the opportunities of smaller countries in this respect. The effect on larger
countries is, however, mixed: They lose some formerly pivotal positions since the
UK does no longer contribute the necessary weight, but they also gain new pivotal
positions formerly captured by small countries. As a result, the overall effect depends
on population size, with large countries benefiting most from the first effect, while
for small countries the second effect outweighs the first.

5 Concluding Remarks

This paper provides, at least to our knowledge, one of the most comprehensive
analyses to date of the Brexit implications on the distribution of power within the
European Union. Unlike existing studies, we do not treat the Council of the European
Union in isolation, but consider many previously neglected features of the broader
EU institutional framework. Nevertheless, the qualitative result of the binary power
analysis that it is mainly the large, more populous countries that benefit from the
UK’s exit remains robust. Also, small countries continue to be overrepresented, e.g.,
Germany’s SMP now is about 20 times that of Malta, although Germany has about
160 times as many inhabitants; before Brexit, the balance of power was even more
skewed at 15:1.
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Fig. 4 Map of winners and losers from Brexit

An important aspect that remains hidden in this a priori analysis is the fact that
countries have different degrees of connection with the UK and are therefore affected
differently by its exit. Brexit has already prompted some realignments of the remain-
ing member states in policy areas where the UK used to play a significant role within
the EU such as budgetary policy or trade. At this stage, it is too early to say whether
new groupings such as the Frugal Four (Austria, Denmark, the Netherlands, Swe-
den) or the New Hanseatic League (the Baltic States, Denmark, Finland, Ireland, the
Netherlands and Sweden) will develop into deep partnerships that coordinate their
activities in a similar way to the Benelux Union. If so, a future analysis of the impact
of Brexit on EU decision-making could model the new EU27 as a composite game
in which these alliances act as a single player.12 Such an approach would however
leave the a priori framework and rather hold a middle ground between a priori and a
posteriori power analysis.

12 Mayer (2018) provides a power analysis for the composite game that treats the Benelux union as
one bloc.
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Proximity-Based Preferences
and Their Implications Based on Data
from the Styrian Parliamentary
Elections in 2019

Christian Klamler

Abstract Single-peaked preferences in political models are usually determined on
a left-right political scale via the distance between a voter’s optimal location along
that scale and the candidates’ positions. In this paper, we want to use a sort of prox-
imity approach based on data from an exit poll undertaken right after the Styrian
Parliamentary Elections in 2019. First, we show that a single-peakedness model
does not perfectly fit the data, because there is no unanimous agreement on the order
of the parties along the political left-right scale. Second, declared preferences and
proximity-based preferences do differ significantly indicating that other factors do
play a role in determining the voters’ preferences. Third, the actual impact of those
other factors on the election results will be specified by comparing the (hypothet-
ical) election results, using different well-known voting rules, for two preference
profiles, one based on the stated preferences and one determined by proximity-based
preferences.

1 Introduction

The theory of social choice investigates the aggregation of individual preferences over
a set of parties, candidates or alternatives into a group choice or ranking. Originally,
the focus was mostly on theoretical issues, with the most famous results being those
from Arrow (1963), Sen (1979), Gibbard (1973) and Satterthwaite (1975).

However, with the rise of behavioral social choice (see, e.g., Regenwetter and
Tsetlin (2004) and Regenwetter et al. (2006)) and in the field of political science (see,
e.g., Cox (1997) and Blais and Degan (2019)), empirical issues received increased
attention in the scientific literature and provided insight into the consequences of the
rather negative theoretical results for the practical use of voting rules.

Consequently,more intensive focus has beenput on the analysis of real-world elec-
tions illuminating various aspects, from the performance of voting rules to strategic
behavior of voters (see, e.g., Baujard et al. (2014, 2018), Roescu (2014), Alòs-
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Ferrer and Grani (2012), Darmann et al. (2017, 2019), Kawai and Watanabe (2013),
Stephenson et al. (2018)).

One widely studied topic within social choice is domain restrictions which guar-
antee a winner and/or a transitive social ranking in voting situations. Probably, the
most famous of those domain restrictions is single-peakedness (Black, 1958), which
is based on analyzing voting behavior in one dimension (for a more thorough dis-
cussion consult, e.g., surveys by Gaertner (2001), Monjardet (2009) or Grofman
(2019a)). Whenever the candidates can be aligned on a single dimension and all
voters’ preferences based on the order of candidates are single peaked, there will be
a Condorcet winner, i.e., a candidate that is preferred by a majority to every other
candidate.1 That is, preferences are based on distances from a voter’s ideal position in
this single dimension to the voter’s perceived positions of the candidates. Obviously,
single-peakedness would require that all voters consider the positions of the candi-
dates to be the same. This is a rather unrealistic assumption in many political models.
However, individual proximity-based preferences might be a good approximation to
a voter’s actual preferences.

In this paper, wewant to investigate proximity-based preferences, i.e., preferences
determined by the distance between a voter’s own political position on a left-right
scale and her perception of the political parties, using data from the 2019 parliamen-
tary elections in the Austrian region of Styria. To be able to do so, during election
day voters were asked, in front of the polling stations, to respond to various questions
concerning their preferences and their evaluation of themselves and the parties along
a usual political left-right scale. This data is used in the following way:

First, to analyze the consistency of actually stated preferences in the sense of
comparing them with proximity-based preferences and second, how the results for
various well-known voting rules would change based on those different preference
profiles.

The paper is structured as follows: Sect. 2 introduces the experimental design.
Section3 discusses the one-dimensional approach using distances from a voter’s
ideal point on a political left-right scale to her perceived positions of the running
parties. Whether the voters’ stated preferences are consistent with their hypothetical
proximity-based preferenceswill be analyzed in Sect. 4. The created proximity-based
preferenceswill then be used in Sect. 5 to determine the election outcomes for various
well-known voting rules and are compared to the outcomes received for the actually
stated preferences. Finally, Sect. 6 concludes the paper.

2 Experimental Design and Data

The data for this experimental study was collected during election day for the 2019
Styrian Parliamentary Elections. We developed a design for the experiments and
undertook an exit poll. In front of nine randomly chosen voting stations in the city of

1 Strictly speaking, single-peakedness does not necessarily lead to a strong Condorcet winner if
there is an even number of voters and/or there are ties in peaks.
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Graz, voters were invited to provide information about their preferences. A total of
937 voters participated in the exit poll. The survey contained questions about a full
ranking of the six parties running for election2, their approval preferences, evaluative
voting, their personal left-right orientation as well as their evaluation of the parties
along that dimension, how they actually voted in the real election, and various other
(statistical) questions.3 In those nine polling stations, we reached about 5.5% of the
total voters. Given that the voters participated voluntarily in the experiment, the raw
data obviously has a certain participation bias. This can be seen in comparing the
actual voting results with the declared votes by the participants. We aimed at cor-
recting that bias by the use of weights; the weights were determined by dividing the
shares for each party in the official result in those nine polling stations by the share
the same party received in the exit poll. For example, the SPÖ had a share of 18.5%
of the votes in the official result and received a support of 13.76% in the exit poll.
Therefore, participants supporting the SPÖ were under-represented in the exit poll
leading to aweight of 1.34 = 18.50

13.76 . If we compare the calculatedweights, we observe
that, in addition to the SPÖ, also the ÖVP and the FPÖ have weights larger than one
and are therefore under-represented. The other parties are over-represented in the
survey leading to weights smaller than one. Because for different questions in the
survey the response-rate was different, weights have been adapted accordingly based
on the number of participants responding to that question using the same procedure
as explained before.4 Table1 provides an overview over official and declared voting
results.

3 Left-Right Dimension

Given the huge interest in spatial voting in the literature (e.g., Enelow & Hinich
(1984), Saari (1995) or, more recently, Enelow and Hinich (2008), Grofman (2019a;
2019b), Schofield (2019)), in the experiment the participants were explicitly asked to
communicate their evaluations of the parties on the usual political left-right dimen-
sion. In particular, they were able to assign numbers from 1 (politically far left)

2 Throughout the paper, the parties are abbreviated as follows: SPÖ—Sozialdemokratische Partei
Österreichs (Social Democratic Party of Austria); ÖVP—Österreichische Volkspartei (Austrian
People’s Party); FPÖ—Freiheitliche Partei Österreichs (Freedom Party of Austria); GREENS—
Die Grünen (The Green Party); KPÖ—Kommunistische Partei Österreichs (Communist Party of
Austria); NEOS - Das Neue Österreich und Liberales Forum (The NewAustria and Liberal Forum).
On a left-right ideological scale, in general, the KPÖ, GREENS and SPÖ are considered to be rather
left, NEOS in the center, ÖVP central to center-right, and FPÖ right-wing. This perception is also
confirmed by the voters who participated in this exit poll and were asked to position the parties on
a left-right scale.
3 A translation of the used survey can be found in the appendix.
4 For example, because not all participants provided both, complete preferences and evaluations
along the left-right scale, for the latter the weights have been corrected by just taking those voters
into account who actually provided that information.
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Table 1 Official results, declared votes and weights

Parties Official results (%) Declared official votes
(%)

Weights

SPÖ 18.50 13.76 1.34

ÖVP 23.94 16.76 1.43

FPÖ 14.62 5.90 2.48

GREENS 21.67 36.07 0.60

KPÖ 13.24 16.42 0.81

NEOS 8.04 11.10 0.72

Table 2 Mean, median and mode positions

SPÖ ÖVP FPÖ GREENS KPÖ NEOS Self

Mean 4.32 7.82 10.23 3.07 2.74 5.84 4.64

Median 4 8 11 3 2 6 4

Mode 4 9 11 3 1 6 6

to 11 (politically far right). Additionally, they were asked about their own political
orientation along that dimension. Roughly 75% of the participants answered those
questions. According to those responses, one is able to provide mean, median and
mode positions for the parties stated in Table2.

In addition, one interesting question is how the parties have been perceived in
general, i.e., what is the distribution of their perceived political orientation by the
voters on the left-right scale. Those distributions are presented in Fig. 1.

There seems to be a clear trend that the KPÖ is considered to be the most left
party followed by the Greens. The SPÖ and the NEOS are more seen as central
parties, whereasÖVP and FPÖ are considered right and far-right parties, respectively.
Compared with the voters’ own political orientation, it seems quite obvious that
for the current dataset, SPÖ, Greens and NEOS are—on average—closer to the
voters’ ideal points, and therefore, any consideration of distances of party evaluations
to individual ideal points should be to the benefit of those parties. However, it is
also clearly observable that there is no real consensus about the positions of the
parties along the left-right scale. Hence, an approach based on single-peakedness
can, in principle, not be applied because the underlying order of the parties is not
unanimously accepted (see Feld and Grofman (1986) for consequences of partial
single-peakedness).

Besides the actual positions of the parties, one could also check for the general
pairwise evaluation of the parties along the left-right scale. As can be seen in Table3,
where the numbers indicate the percentage of voters that consider the row party to be
politically to the left of the column party, there is a strong agreement on the relative
positions of pairs of parties for at least some pairs.
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Fig. 1 Left-right distribution

Table 3 Percentage of voters considering row party to the left of column party

SPÖ (%) ÖVP (%) FPÖ (%) GREENS
(%)

KPÖ (%) NEOS (%)

SPÖ 89.31 96.31 16.46 12.65 69.16

ÖVP 2.95 90.29 1.97 4.55 7.49

FPÖ 0.49 1.84 0.37 0.49 0.86

GREENS 66.09 91.52 96.44 25.31 85.50

KPÖ 71.99 87.59 95.95 54.30 78.38

NEOS 14.37 76.04 94.84 3.56 11.79

Although the evaluation is clear for certain pairs of parties (e.g., the Greens and
the FPÖ), for other parties it is rather mixed (in particular between the Greens and
the KPÖ). Again, this indicates that there is no unanimous agreement on an order of
the parties along the left-right scale.

4 Proximity-Based Preferences and Consistency

If political models in one dimension are to be considered a good approximation of
actual voting behavior, it might be of interest to check to what extent proximity-
based preferences match the voters’ actual preferences. First let us illustrate how
proximity-based preferences are determined using an example.
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Table 4 Example proximity-based preferences

Party A Party B Party C Party D Self

Position 8 3 9 7 4

Distance 4 1 5 3

Rank 3 1 4 2

Consider four parties {A, B,C, D} evaluated by a voter on a left-right scale start-
ing at 1 (extreme left) and ending at 11 (extreme right). Table 4 states the voter’s
evaluation (positions on the left-right scale) of the parties and her self-evaluation,
i.e., her optimal political position.

The first row indicates the personal evaluation of the parties by the voter, who
considers her optimal position to be at 4. Taking the absolute value of the difference
between the voter’s self-evaluation and the evaluation of a party determines the
distance, shown in row two. Because parties closer to the voter’s optimal position are
considered more preferred, row three states the actual ranks of the proximity-based
preference which would be (from best to worst) B � D � A � C with B top ranked
and C bottom ranked.

Given our data, independent of the general evaluation of the parties, for the 713
voters that responded to the question about political positions, it is possible to analyze
how consistent their communicated rankings of the parties are w.r.t. the distance of
their own ideal position compared to their perceived positions of the parties. Hence,
we can simply apply a proximity-based approach in one dimension. Obviously, such
a one-dimensional approach might be too scarce to really identify the main reasons
for political preferences, because other aspects might influence a voter’s preference
(Grofman, 2019a). Those could be the personality of the main candidate, certain
activities or scandals in the recent past, strategic or coalitional considerations, or
plenty of other reasons. Moreover, even if the voters think in one dimension, the left-
right political spectrum might not be the relevant dimension on which their voting
decisions are based.

Nonetheless, the goal of this paper is to analyze to what extent voters’ preferences
are consistent with preferences based on distances from a voter’s optimal position
on the left-right scale to the position of the parties, i.e., proximity-based prefer-
ences.5 In contrast to the stated ranking in the survey, proximity-based preferences
can of course contain indifferences. In our analysis, we will keep those indifferences,
although other approaches would be possible. Now, if one builds preferences in such
a way, we are able to determine the consistency between the stated preferences, i.e.,
supposedly the voters’ true rankings, and the proximity-based preferences based on
the stated evaluations along the left-right scale. Of course, different ways of com-
paring consistency are possible. A simple option is based on the positions of the

5 As discussed before, this alludes to single-peaked preferences. However, because there is no real
consensus about the parties positions on the left-right scale, we can only determine individual
proximity-based single-peaked preferences.
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Table 5 Overlap between proximity-based rankings and actual rankings

Less than 33% (%) Between 33
and 66% (%)

More than 66% (%)

Positional overlap 52.09 38.38 9.52

Pairwise overlap 12.27 31.75 55.99

Table 6 Overlap of more than 66% by the respective party supporters

SPÖ (%) ÖVP (%) FPÖ (%) GREENS
(%)

KPÖ (%) NEOS (%)

Positional overlap 8.99 3.23 10.34 9.85 19.42 2.56

Pairwise overlap 52.81 37.63 44.83 65.53 65.05 48.72

parties in the two rankings. In Table5, the first row states the positional overlap, i.e.,
the percentages of voters that have a certain number of parties ranked in exactly the
same position in both, their stated and proximity-based preferences.

As can be seen in Table5, less than 10% of the participants had an overlap of at
least five positions when comparing their stated preferences with their proximity-
based preferences.6 The vast majority did substantially deviate from those proximity-
based preferences. One problem in looking at exact positions obviously comes from
indifferences occurring in proximity-based preferences, another from the fact that a
low overlap in ranks can occur even if most of the pairwise comparisons would be
proximity consistent. For example, assume a set of four candidates {A, B,C, D} and
the two rankings (from best to worst) A �1 B �1 C �1 D and B �2 C �2 D �2 A.
In this situation, there is zero overlap in terms of positions; however, in a pairwise
comparison three of the six pairwise comparisons are consistent. The second row
in Table5 shows that, if consistency is measured in terms of pairwise overlaps, the
percentages of voters ranking at least two-thirds of the pairs of parties exactly the
same increase massively to 56%.

However, the numbers still indicate that one has to be careful when using a strictly
one-dimensional approach (or considering the left-right scale being the one dimen-
sion). As discussed before, many other factors can influence voters’ preferences.

Interestingly, the consistency of preferences w.r.t. distances on the left-right scale
differs considerably among supporters of different parties. For example, the percent-
ages of supporters that are consistent in more than two-thirds of the positions in their
declared rankings vary between 2.5% (for the NEOS) and 19% (for the KPÖ). With
respect to pairwise overlap, two-thirds consistency ranges from 37% (for the ÖVP)
to 65% (for the Greens). The detailed numbers can be seen in Table6.

This section provided some insight into the consistency between stated and
proximity-based preferences. In the following section, we want to investigate to

6 Actually, less than 3% ranked the parties exactly according to the parties’ distances to their optimal
position on the left-right scale.
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what extent a purely proximity-based behavior by the voters might change voting
outcomes. Therefore, we provide a comparison of the hypothetical election results
for various voting rules based on the declared preferences and the results based
on proximity-based preferences. Although we have previously criticized the use of
proximity-based preferences in terms of leaving out various relevant factors in a
voter’s formation of preferences, we still consider such an exercise to provide some
interesting insight. In particular, it shows the actual impact of other considerations,
such as a party’s main candidate or preferences over potential coalitions, on elec-
tion outcomes. Because of lack of specific data, a more distinguished analysis of the
impact of the individual factors can, however, not be provided.

5 Comparing (Hypothetical) Election Outcomes

We intentionally decided in the exit poll to not communicate particular voting rules
to the participants before they stated their preferences. Hence, we assume all pref-
erence information and the information about the political orientation to be sincere.
Obviously, because the voting rules were unknown to the participants, there was also
no incentive to behave strategically in stating the preferences.7 Of course, as has
been shown in many empirical papers (see Stephenson et al. (2018) for a detailed
overview) and can be seen in our data when comparing the voters’ stated actual
vote with their declared preferences, strategic behavior does indeed occur in real
elections. Specific voting rules have not been communicated to the participants for
essentially two reasons: First, most alternative voting rules would probably be too
complex to be understood on the spot. Second, given that there was no real election
based on such an alternative voting rules, the participants would most likely not have
provided more than a sincere vote anyway, because any deeper strategic considera-
tions would not have had any real-world consequences. Hence, when comparing the
impact of different voting rules on the outcome, we will use exclusively the weighted
(and sincere) preference and political orientation data from the survey. Moreover,
the current election was a parliamentary election. Therefore, because it is not clear
how to distribute seats based on any election outcome using more information than
just top-ranked alternatives, we will stick to “social rankings” of the parties only. In
addition, the major goal of the parties was not purely to receive votes but to ensure
that seats in the parliament are gained, something which was of course also known
to the voters.8

As explained in the previous section, we eventually had two different preference
profiles. One based on the voters’ announced preference rankings and one determined

7 One could of course imagine that voters stated their preferences with the actually used voting
rule in the election in mind. However, because the election used plurality rule, where only one
(top-ranked) party can be announced, it seems rather unlikely that this had a significant impact on
how to state a full preference ranking of the six parties.
8 Given the current election rules in the region, which are based on getting at least a base mandate
in one of the sub-regions, this had obvious consequences on the parties’ campaigning strategies.



Proximity-Based Preferences and Their Implications … 345

by the distances between a voter’s self-evaluation along the left-right scale and her
evaluation of the parties. Using those two preference profiles, we will, in the rest of
this section, compare, for various well-known voting rules, the hypothetical election
outcomes given as rankings of the parties.

In general, the voting rules can, to a certain extent, be classified in terms of the
preference information used. Probably, the simplest rules are those that only use
information about the top (or bottom)-ranked parties, in certain cases in a sequential
manner. As a second class, we identify rules which require information about the
full preference ranking, and the third category uses preference information beyond
ordinal rankings, something which could be more or less difficult to provide.

5.1 Plurality Rule

Plurality rule is awidely applied voting rule for political elections inmany countries.
Each voter can vote for exactly one party (or candidate). The overall ranking of the
parties is then determined by the number of received votes. If we assume sincere
voting for the voters’ top-ranked party based on their stated preference rankings on
the one hand, and voting for the closest party to their self-evaluation on the other
hand, the weighted vote shares are given in Table7.

Although the votes have been weighted accordingly, the results based on both,
the sincere declared preferences and the proximity-based preferences, differ con-
siderably from the actual votes obtained by the parties at the corresponding polling
stations (compare to Table1). In terms of social rankings, the actual winner (ÖVP) is
overtaken by the Greens based on declared preferences, whereas the SPÖ is winning
under proximity-based preferences with the ÖVP moving down to fourth position.
This means that in the real election, a significant fraction of the voters did not vote
for their most-preferred party and/or their ideologically closest party. Hence, they
either voted strategically, based on other criteria, or both.

That the SPÖ is the winner in a proximity-based model is not really surprising
given the valuations in Table2. The average position of the SPÖ along the left-right
scale is very similar to the average position of the voters themselves. Hence, it is very
likely that, on average, the SPÖ is the closest party to the voters’ self-evaluations.

Table 7 Results—plurality rule

Declared preferences (%) Proximity-based preferences (%)

GREENS 27.60 20.42

ÖVP 25.84 16.43

SPÖ 16.00 21.19

FPÖ 11.50 7.67

KPÖ 10.65 15.69

NEOS 8.41 18.77



346 C. Klamler

Table 8 Results—anti-plurality rule

Declared preferences (%) Proximity-based preferences (%)

ÖVP 2.20 0.93

SPÖ 4.66 2.59

NEOS 4.70 1.24

GREENS 9.79 10.19

KPÖ 11.33 14.31

FPÖ 67.32 70.74

5.2 Anti-plurality Rule

Whereas plurality rule allows to vote for one party, the anti-plurality rule takes
into account the objection of voters against parties, by giving them the possibility
to vote against the party they dislike most. The social ranking of the parties is then
determined by the number of received (negative) votes in ascending order, i.e., the
winner is the party with the lowest number of votes against. For proximity-based
preferences, the negative vote is given to the party which is furthest away from a
voter’s ideal position on the left-right scale. The weighted results for both situations
are given in Table8.

Anti-plurality rule makes the ÖVP the winner in both scenarios. There is a rather
intuitive reason for this result. Although the ÖVP was considered rather far to the
right on the political left-right spectrum by many of the participants, more than 90%
(see Table3) perceived the FPÖ to be even further to the right. Hence, there were
only very few voters that either considered them the lowest ranked or furthest from
their ideal point on the left-right scale. Interestingly, there was quite some strong
opposition against the Greens by a considerable share of the voters (around 10%).

5.3 Pairwise Majority Rule

Pairwise majority rule9 is based on pairwise comparisons of the parties. That is,
when considering preferences, for each pair of parties we determine which party is
more preferred than the other party by a majority of the voters. Using proximity-
based preferences, we consider which party is closer to a voter’s ideal position on the
left-right scale. Hence, it is, in principle, based on a full ranking of the parties. The
weighted pairwise tallies for both scenarios can be found in Tables9 and 10, where
the numbers indicate the percentages of (weighted) voters who prefer the row party
over the column party (and bold numbers indicate majorities).

9 Pairwise majority rule is also called Condorcet rule, due to the Marquis de Condorcet being the
first to promote this rule at the end of the eighteenth century.
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Table 9 Pairwise tallies—declared preferences

SPÖ (%) ÖVP (%) FPÖ (%) GREENS
(%)

KPÖ (%) NEOS (%)

SPÖ 51.26 76.50 37.63 56.53 49.50

ÖVP 48.74 85.59 43.18 52.46 48.71

FPÖ 23.50 14.41 22.22 26.36 21.93

GREENS 62.37 56.82 77.78 68.52 64.61

KPÖ 43.47 47.54 73.64 31.48 48.50

NEOS 50.50 51.29 78.07 35.39 51.50

Table 10 Pairwise tallies—proximity-based preferences

SPÖ (%) ÖVP (%) FPÖ (%) GREENS
(%)

KPÖ (%) NEOS (%)

SPÖ 62.58 77.65 57.18 66.07 54.28

ÖVP 37.42 88.37 43.17 45.88 30.42

FPÖ 22.35 11.63 27.10 28.45 15.47

GREENS 42.82 56.83 72.90 64.50 48.86

KPÖ 33.93 54.12 71.55 35.50 44.64

NEOS 45.72 69.58 84.53 51.14 55.36

Pairwise majority rule is, in general, considered to be a very attractive voting rule
respecting major democratic principles. It has a major drawback though, namely that
there could occur so called Condorcet cycles, i.e., cycling pairwisemajorities, in both
situations.10 However, as observed in Tables9 and 10, no such Condorcet cycles do
exist in this election, although in the case of the declared preferences, the margins
between SPÖ, ÖVP and NEOS are very small (between one and three percent of the
total weighted votes). Hence, this preference profile is very “close” to containing
such a cycle.

The rankings based on pairwise majority rule are given in Table11.
Again, the results do change considerably whenever proximity-based preferences

are assumed. Whereas the Greens are winning based on declared preferences, it is
the SPÖ which beats every other party based on distances from the voters’ self-
evaluation. In addition, the NEOS, who are ranked last under the plurality rule, do
benefit from such pairwise comparisons and turn out to be second ranked in both
scenarios. However, as displayed in Table 9, the winning margins in three of their
contests (against SPÖ, ÖVP and KPÖ) based on declared votes are very small and

10 Of course single-peaked preferences are a sufficient condition for transitive social preferences.
However, because there is no general agreement among the voters concerning the order of the parties
along the left-right scale, this does not apply in our case and theoretically Condorcet cycles could
occur with individually proximity-based preferences.
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Table 11 Results—pairwise majority rule

Declared preferences Proximity-based preferences

GREENS SPÖ

NEOS NEOS

SPÖ GREENS

ÖVP KPÖ

KPÖ ÖVP

FPÖ FPÖ

Table 12 Results—Borda rule—declared preferences

points share (%)

GREENS 21.98

ÖVP 18.57

SPÖ 18.08

NEOS 17.77

KPÖ 16.31

FPÖ 7.28

below five percent of the total weighted votes. The results in the proximity-based
preference profile are in some sense more robust with the closest margin being
between Greens and NEOS.

5.4 Borda Rule

The Borda Rule is a widely discussed aggregation method whenever full ranking
information is available. It works by assigning pre-determined points to the different
ranking positions, i.e., in case of k parties, k − 1 points for every top-rank, k − 2
points for every second-rank, down to 0 points for being bottom ranked.11 Because
the points are pre-determined, the rule is still based purely on ordinal information.
Therefore, it does not take into account the perceived intensity between different
parties by the voters. Based on our data, the weighted share of the total points for
the parties is given in Table12.

As shown in Darmann et al. (2017), using the full ranking as input is especially
harmful to parties, which are considered polarizing. Those are parties which receive
strong positive support froma considerable fraction of the voters but, at the same time,
are strongly disapproved by a large fraction of the voters. In the Austrian political

11 The Borda rule is a special case among the huge class of scoring rules. Those are rules which
are based on a specific scoring vector. The scoring vector for the Borda rule, for example, is
sB = (k − 1, k − 2, ..., 1, 0), whereas the plurality rule scoring vector is sP = (1, 0, 0, ..., 0).
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Table 13 Results—Borda rule—proximity-based preferences

Points share (%)

SPÖ 20.22

NEOS 19.65

GREENS 18.77

KPÖ 16.56

ÖVP 16.45

FPÖ 8.33

situation, it is, in particular, the FPÖ which is such a polarizing party. Compared to
its result under plurality rule, it is significantly worse off under the Borda rule. On
the other hand, moremedium parties, i.e., those that do not create strong feelings in a
positive or negative way, benefit from such a rule, e.g., the NEOS. The Greens would
again win in a Borda election; however, the winning margin would be much smaller.
But this is of no surprise, because using Borda scores implies an upper limit for the
difference in the vote shares of the winning party and its runner-up. This is also one
reason for the rather close contest between the ÖVP, SPÖ, KPÖ and the NEOS.

We can also apply the Borda rule on our proximity-based preference profile. From
Table2, it is obvious that the parties whose perceived mean positions are closest to
the voters’ own positions should benefit from the Borda rule. This is indeed the case
as can be seen in Table13 which provides the shares of the total Borda scores for the
different parties in the proximity-based preference profile.

Again, besides for the bottom-ranked FPÖ, the rankings of all the other parties
do change considerably w.r.t. the actual election outcome and the outcome based on
declared preferences.

5.5 Approval Voting

An interesting extension of plurality rule is Approval Voting Brams & Fishburn
(1983), which allows voters to not only vote for exactly one party, but to approve of
as many parties as they like. Each of them will receive one point, and the ranking
of the parties is determined by summing up the points over all voters. Obviously,
approval preferences cannot be determined purely from ordinal preference infor-
mation, but preferences have, in principle, to be dichotomous.12 According to the
declared approval preferences in the exit poll, the participants, on average, approved
of 2.12 different parties, the median number of approvals (as well as the mode) being
2. Interestingly, only about 25% of the participants approved of just one party. To
some extent, this indicates one of the problems of plurality rule, namely that many

12 In some sense, this means both more and less information than ordinal rankings.
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Table 14 Results—approval voting

Approvals (%)

GREENS 55.37

NEOS 35.01

KPÖ 34.26

ÖVP 33.36

SPÖ 29.82

FPÖ 17.87

voters consider more than one party acceptable. The weighted results under approval
voting, given the announced approvals, are presented in Table14.

Again, the Greens get the largest number of approvals, whereas the FPÖ receives
by far the lowest approval and can therefore, from a dichotomous point of view,
be seen as disapproved by most of the voters. The other four parties have very
similar numbers of approvals. One interesting fact is that the NEOS and the KPÖ,
both being considered to be rather medium parties, do receive substantial approval
although voters do not vote for them if only one vote is possible. Hence, those
parties benefit substantially in case more information (in the form of approvals) can
be communicated by the voters.

Approval preferences can also be determined using a proximity-based approach.
In principle, if voters strictly operate according to the one-dimensional political
spectrum, the assumption could be that they approve of all parties which lie within a
certain distance around their ideal points. Of course, how large this distance should
be is not so obvious. If one considers the average number of approvals (2.12) as some
kind of key value, then this numberwould be achieved by using a distance somewhere
between two and three. Table15 shows the parties’ percentages of approvals for
various distances, ranging from one to six. For example, “dis (3)” indicates the
parties’ percentages, whenever all parties are approved by the voters that lie within a
distance of three from the voters’ ideal points. Interestingly, the results, compared to
the declared approvals, change significantly for the SPÖ. It moves from fifth position
to become the clear winner for all considered distances. Again, this seems to be a

Table 15 Results—approval voting—proximity-based approvals

Dis (1) (%) Dis (2) (%) Dis (3) (%) Dis (4) (%) Dis (5) (%) Dis (6) (%)

SPÖ 27.51 46.89 60.81 72.81 85.88 87.94

GREENS 22.28 40.63 52.93 59.98 74.35 81.55

NEOS 17.67 37.90 54.17 65.95 77.27 80.43

KPÖ 15.27 33.12 50.12 58.28 73.19 78.53

ÖVP 12.28 26.18 38.33 49.43 63.26 74.37

FPÖ 2.38 9.43 16.71 26.82 44.30 54.65
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clear indication that the actual preferences (especially concerning the SPÖ) are highly
influenced by other factors (and those factors have significant impact). The rest of
the social order remains unchanged for most of the proximity-based approval cases.

6 Conclusion

In this paper, based on data from an exit poll during the 2019 Styrian Parliamentary
Elections, we compare actual preferences with proximity-based preferences deter-
mined from voters’ perceptions of the parties and themselves in the political left-right
spectrum. First it is shown that voters do not fully agree on an underlying order of the
parties along the left-right scale. In addition, voters’ preferences can not be seen as
purely proximity-based, i.e., actual preferences do substantially deviate from pref-
erences based on distances from a voter’s ideal point to the perceived locations of
the parties in a one-dimensional political left-right spectrum. This could have vari-
ous reasons: Perhaps voters consider other political dimensions, on which they build
their actual preferences, more important. Or their proximity-based preferences are
just not single peaked. Also strategic considerations or specific views about possible
coalitions could play an important role. To determine the consequences of such other
factors which influence the determination of voters’ preferences, we then compare
hypothetical election outcomes from the two different preference profiles for vari-
ous well-known voting rules, namely the plurality rule, the anti-plurality rule, the
pairwise majority rule, the Borda rule and approval voting. Significant differences
in the outcomes do occur. The proximity-based approach does, in particular, favor
parties which, on average, are considered closer to the average self-evaluation than
other parties. A summary of the hypothetical election results is given in Table16.

To conclude, the results show that one-dimensional approaches, be it single-
peakedmodels or just proximity-basedmodels, have to be takenwith some care. First,

Table 16 Outcomes declared preferences versus proximity-based (PB) preferences

Voting rule 1st 2nd 3rd 4th 5th 6th

Official result ÖVP GREENS SPÖ FPÖ KPÖ NEOS

Plurality rule GREENS ÖVP SPÖ FPÖ KPÖ NEOS

PB plurality rule SPÖ GREENS NEOS ÖVP KPÖ FPÖ

Anti-plurality rule ÖVP SPÖ NEOS GREENS KPÖ FPÖ

PB anti-plurality rule ÖVP NEOS SPÖ GREENS KPÖ FPÖ

Pairwise majority GREENS NEOS SPÖ ÖVP KPÖ FPÖ

PB pairwise majority SPÖ NEOS GREENS KPÖ ÖVP FPÖ

Borda rule GREENS ÖVP SPÖ NEOS KPÖ FPÖ

PB Borda rule SPÖ NEOS GREENS KPÖ ÖVP FPÖ

Approval voting GREENS NEOS KPÖ ÖVP SPÖ FPÖ

PB approval voting (dis 2) SPÖ GREENS NEOS KPÖ ÖVP FPÖ
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in voting situations, a voter’s behavior can probably be approximated by proximity-
based preferences only to some extent. Second, voting rules are obviously sensitive
to differences in preference profiles whenever individual preferences do significantly
change in a proximity-based approach. Of course, it would be interesting to investi-
gate in much more detail what are the key factors that lead to such differences, but
this would require different data and is therefore left for future research.
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Participation in Voting Over Budget
Allocations: A Field Experiment

Clemens Puppe and Jana Rollmann

Abstract We study the effect on the participation rate of employing different vot-
ing rules in the context of the problem to allocate a fixed monetary budget to two
different public projects. Specifically, we compare the mean rule according to which
the average of the individually proposed allocations is implemented with the median
rule which chooses the allocation proposed by the median voter as the social out-
come. We report the results of a field experiment in which subjects (students of KIT)
could allocate money to fund two different public projects, the student’s bike shop
and a campus garden project. The treatment variable was the collective decision rule
employed. While the mean and median rules have very different properties in the-
ory, we found no significant treatment effect on the participation rate. Our results
nevertheless shed important light on the use of different voting rules in the context
of budget allocation in practice.

1 Introduction

The problem of participation in elections is mostly either discussed in the context of
large democratic elections (Downs, 1957; Riker &Ordeshook, 1968; Tullock, 1967),
and/or assuming the election procedure to be simple majority voting among two
alternatives, e.g. political candidates or parties (Ledyard, 1984; Palfrey & Rosenthal,
1983, 1985). By contrast, the present paper focuses on voters’ participation decisions
in (small) committees and under further assumptions about preferences. The main
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question addressed in the present paper is if the choice of the specific voting rule
applied has an influence on the participation rates.

Specifically, we consider the collective decision on the level of a one-dimensional
variable (spending on a public project) under the assumption of single-peaked pref-
erences. This problem has been theoretically studied in Müller and Puppe (2020),
Müller (2022), Osborne et al. (2000). These contributions show that the general
game-theoretic analysis of the corresponding participation/voting games is com-
plex. In particular, even under the (strong) assumption of complete information, the
existence of pure Nash equilibria is not guaranteed, and in many cases in which
existence can be proved the equilibria are not unique. The situation is even more
intricate under incomplete information in which case there is little hope to success-
fully apply standard Bayesian analysis in order to arrive at behavioural predictions
in real-life situations. Indeed, in contrast to the case of two alternatives/candidates in
which voters’ beliefs can be parametrized by a single number (e.g. the proportion of
the supporters of the first candidate), the relevant beliefs are high-dimensional when
there is a large number of alternatives as in our context.

We therefore take a ‘bounded rationality’ approach in the present paper. Con-
cretely, we hypothesize that a voter’s participation decision is to a large part influ-
enced by the potential impact that her or his vote can have on the outcome resulting
from the collective decision procedure. In order to test this hypothesis, we conducted
a field experiment in which subjects could decide on the allocation of a fixed budget
using two different aggregation rules. The first is the simple mean rule according to
which the collective outcome is the average of the individual votes (here, a ‘vote’ is
simply the amount of money allocated to one public project) (Renault & Trannoy,
2005). The second is the median rule that picks the median vote as the social out-
come. Under the mean rule, the potential impact of a vote, i.e. the extent to which
one’s vote can change the social outcome, only depends on the number of other voters
and not on the distribution of their votes. On the other hand, voting truthfully under
the mean rule is clearly not optimal in general (because a rational voter would want
to ‘exaggerate’ in expressing her or his preference whenever the true most preferred
does not coincide with the social outcome). By contrast, the great advantage of the
median rule is that sincere voting is a weakly dominant strategy (if the number of
individuals is odd). Therefore, it has been widely employed and studied in the liter-
ature following the seminal work by Black (1948), Downs (1957), Moulin (1980).
On the other hand, the potential impact under the median rule is uncertain or, more
precisely, ambiguous. First, only one subject can change the outcome at all in the
case of an odd number of participants (and maximally two subjects in the case of an
even number of participants). Moreover, the extent to which pivotal median voter(s)
can potentially change the outcome depends on the neighbouring votes: if these are
close, the potential impact is small; see Kurz et al. (2017, p. 1607f) for a lucid and
detailed further discussion. Summarizing then, the impact of one’s vote is easy to
understand and to assess under the mean rule, but it is uncertain and depends on the
precise distribution of the votes of the other participants under the median rule.

Our main hypothesis was therefore that we would find a higher participation
rate in our field experiment under the mean rule as compared to the median rule.
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While we do indeed observe effects in this direction, a closer examination reveals
that the difference between the two rules is statistically not significant. We tested a
number of other hypotheses as well and again found no significant treatment effects
(with respect to the aggregation rule as main treatment variable). While our main
hypotheses are not supported by our data, the results from our field experiment
nevertheless have interesting and important implications. First, real subjects seem to
be motivated by a number of factors different from pivotality in the voting process.
Secondly, strategic behaviour is much less prevalent in the field than one would
expect by looking at corresponding data from laboratory experiments (Block, 2014;
Marchese & Montefiori, 2011; Louis et al., 2022; Puppe & Rollmann, 2021).

The plan of the paper is as follows. After givingmore background and an overview
of the literature, we present a theoretical model of the role of the potential vote impact
in Sect. 2. The field experiment and the hypotheses are described in Sect. 3 and the
results in Sect. 4. Section 5 concludes. An appendix contains further information,
including the instructions, screenshots, and the questionnaire that we used during the
experiment.

1.1 Background and Overview of the Literature

With their work on rational choice theory and the calculus of voting, Downs (1957),
Tullock (1967) as well as Riker and Ordeshook (1968) provide a decision-theoretic
model of participation in elections. The question that these models face is why a
rational individual would vote if the return from voting is often outweighed by the
costs that emerge in the voting process. Even if the cost to participate in an election
is small, the probability that a single vote affects the outcome is almost zero in large
electorates. As an example, Gelman et al. (1998) estimate the ex post probability of a
single vote being decisive in the 1992 US presidential election to be 1 in 10 million.
Therefore, the rational choice model predicts turnout levels that are far below the
actual participation rates in elections. This discrepancy is often referred to as the
paradox of voting.

The calculus of voting has been tested empirically in a variety of studies in the
70s and 80s. Aldrich (1993) have pointed out that using aggregate data like Barzel
and Silberberg (1973), Settle and Abrams (1976), as well as (Silberman and Durden,
1975) do, yields a correlation between pivotality and turnout, while survey data as
in the studies by Ferejohn and Fiorina (1975) or Foster (1984) do not. Enos and
Fowler (2014) review some 70 articles on voter turnout and the relation between
pivotality and participation rates. They find that in a majority of studies pivotality is
an important driving force for turnout and that most models on turnout in fact focus
mainly on pivotality. In their own study, the authors describe a rare circumstance of an
exact tie in electing a candidate for theMassachusetts State House in 2010, which led
to a re-election and thus gave a unique opportunity for a field experiment to measure
the effect of pivotality on turnout. They informed subjects about the closeness of the
election but found a significant increase in turnout only for a subgroup of frequent
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voters. Thus, Enos and Fowler (2014) concluded that pivotality is not as relevant for
turnout decisions as the ‘calculus of voting’ would predict.

Ferejohn and Fiorina (1974, 1975) argue that subjects often do not act as expected
utility maximizers since the relevant probabilities of the model are unknown. Instead
of basing their participation decisions upon pivotality, subjects are assumed to follow
a strategy based on minimax regret. These authors argue that the minimax regret
approach leads to a higher participation rates than the pivotality approach.

Palfrey and Rosenthal (1983, 1985) and Ledyard (1984) formulate the pivotal
voter model using a game-theoretic approach. In the Palfrey-Rosenthal participation
game, two groups of subjects prefer either one or another candidate. Each subject
may vote for his or her preferred candidate (voting for the opponent is strictly dom-
inated in the two-candidate case) or abstain. Participation is costly, while abstention
is free. The candidate that gets the majority of votes wins. In their equilibrium anal-
ysis, Palfrey and Rosenthal (1983) show that there not only exist equilibria with low
turnout levels but also equilibria with substantial turnout if participants face identical
costs and complete information on the distribution of preferences. Ledyard (1984)
endogenizes pivotality and highlights that the participation decision of all subjects is
made simultaneously. His model implements uncertainty about preferences as well
as costs, and turnout levels lie between zero and full participation in equilibrium.
Building on Ledyard (1984), Palfrey and Rosenthal (1985) implement uncertainty
about the individual voting costs and show that this lack of information causes indi-
viduals to abstain even when participation would be optimal under full information.
Hence, in large electorates the unique Bayesian equilibrium displays low turnout
under incomplete information.

Blais (2000) surveys numerous empirical studies and provides a review on rational
choice models. He concludes that the rational choice model has limited explanatory
power in order to explain empirical turnout rates. Dhillon and Peralta (2002) pro-
vide a complementary survey on the existing models and theoretical literature on
participation.

The Palfrey-Rosenthal participation game is used widely in the literature that
tests the pivotal voter model in experimental studies. A laboratory experiment con-
ducted by Levine and Palfrey (2007) tests the voter turnout predictions of the Palfrey-
Rosenthal model with asymmetric information, in which participation costs are pri-
vate information. The authors find a ‘size effect’, meaning that in large elections,
participation rates are lower as compared to small electorates. The data also reveal
a ‘competition effect’, i.e. elections that are expected to be close are associated
with a higher voter turnout. Another finding is the so-called underdog effect: groups
that support a less popular alternative have higher turnout rates as compared to the
supporters of the popular alternative.

Duffy and Tavits (2008) perform a laboratory experiment of the complete infor-
mation pivotal voter model and additionally elicit the subjects’ beliefs about the
probability of a close election. Therefore, the authors are able to directly test the
pivotal voter model and focus on the correlation of beliefs about being pivotal and
the participation decision. The study finds that a higher belief about the probabil-
ity of being pivotal increases the likelihood of participation and that subjects tend
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to overestimate this probability of being pivotal. In another laboratory experiment,
Agranov et al. (2017) test the effect of pre-election information on voter turnout. The
study finds that pre-election polls influence participation, and the effects depend on
the expectation on the closeness of the election. When a poll reveals that the election
is expected to be close bandwagon effects appear (higher voter turnout among the
majority), whereas when landslide victories are predicted, the authors find underdog
effects. The authors also find that landslide elections occur more often in treatments
withmore information and that voter turnout is higher themore likely subjects expect
the preferred alternative to win.

Grillo (2017) presents a game-theoreticmodel that takes risk aversion into account
and by doing so is able to explain bandwagon effects in cases in which the stan-
dard pivotal voter model would otherwise predict an underdog effect. Blais et al.
(2014) study the rational choice model in the laboratory in the context of partici-
pation in elections and compare different voting rules. Remarkably, they find that a
large share of subjects (62%) make the ‘wrong’ decision, i.e. they vote when they
should have abstained and vice versa. Even when controlling for beliefs of the oppo-
nents’ behaviour, the rational choice model fails to explain the decision of voting
and abstaining, as subjects do not appear to maximize their payoff.

Börgers (2004) develops a costly voting model assuming that costs are private
information. He compares compulsory to voluntary voting and finds that compul-
sory voting is Pareto-dominated by voluntary voting. In a related model, Krasa and
Polborn (2009) find that paying subsidies to participants can prevent ‘wrong’ elec-
toral decisions and increase social welfare by increasing the electorate. Another
extension of the costly voting model is provided by Arzumanyan and Polborn (2017)
who consider plurality rule among more than two candidates. The interesting new
aspect is that strategic voting becomes possible, i.e. voting but not for the own top
candidate (something that is never optimal in the two-candidate setting). However,
the authors find that for three candidates all equilibria exhibit only sincere voting, a
finding that hinges crucially on the fact that voting is costly.

Voting over the level of a one-dimensional variable without participation costs has
been investigated in Block (2014), Louis (2022), Marchese and Montefiori (2011),
and Rollmann (2020); the latter contribution theoretically and experimentally studies
general ‘trimmedmeans’, of which themean andmedian rules are both special cases.

2 Theoretical Framework

Consider a set of individuals I = {1, . . . , n} that have to collectively decide on the
allocation of a fixed budget Q ≥ 0 onm public projects J = {1, . . . ,m}. We assume
that the entire budget has to be spent and that no project can receive negative funding.
The set of feasible allocations is thus given by

B := {x ∈ R
m
≥0|

∑

j∈J

x j = Q},

where x j is the amount of money allocated to project j .
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2.1 Aggregation Rules

Individuals decide whether or not to participate in the voting process; formally,
each individual i faces a participation decision ϑi ∈ {0, 1} that takes the value 1 for
participation and 0 in case of abstention. An individual that decides to participate,
i.e. ϑi = 1, submits a vote that is taken into account in the calculation of the social
outcome (such an individual is referred to as ‘participant’ in the following). The set
of participants is denoted by I−∗ := {i ∈ I |ϑi = 1} and the number of participants
by k = |I−∗|. Throughout, we assume k > 0. Each participant i ∈ I−∗ submits a
vote qi = (q1

i , . . . , q
m
i ) ∈ B. We refer to the vote of individual i also as voter i’s

proposal. The vector of all proposals/votes is given by q = (q1, . . . , qk) = (qi )i∈I−∗

and will be accounted for in the aggregation process to determine the social outcome.
If an individual abstains, i.e. ϑi = 0, no vote is submitted and we define qi = ∗. We
define the set of abstainers by A := {i ∈ I |qi = ∗}.

In our setting, the social outcome x(q) = (
x1(q), . . . , xm(q)

) ∈ B is calculated
either by the mean or by the median rule. Under the mean rule, all votes are added
separately for each project and divided by the number of votes:

Mean(q) = 1

k

∑

i∈I−∗
qi . (1)

Note that the social outcome under the mean rule always satisfies the budget con-
straint, i.e. Mean(q) ∈ B.

The median rule selects, for every project, the middle proposal if the number of
participants is odd or the average of the two middle votes if it is even. Specifically,
if we denote for each project j , by q j

[1], . . . , q
j
[k] the individual votes in ascending

order, themedian ruleMed(q) is defined by them coordinate-by-coordinate median
values:

Med j (q) =

⎧
⎪⎨

⎪⎩

q j
[ k+1

2 ], if k is odd

1
2 · (q j

[ k2 ] + q j
[ k2 +1]), if k is even.

(2)

A problem of the median rule is that the coordinate-by-coordinate median values do
not satisfy the total budget in multidimensional allocation problems in general even
when the individual proposals do, i.e. it is well possible that

∑m
j=1 Med j (q) �= Q

if m > 2. There are several ways to respond to this problem in general; see Lindner
(2011). For our purposes, however, this does not pose a difficulty because we will
assume throughout that m = 2, i.e. that there are only two different public projects.
As is easily verified, the median rule always satisfies the budget constraint in this
case.

In fact, with two public projects, due to the budget restriction, it is sufficient to
indicate both the vote or the social outcome only for one project—the value for the
other project then follows directly from the budget equality: x1(q) + x2(q) = Q.
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We will therefore in the following omit superscripts referring to projects with the
convention that the given value refers to the amount allocated to project m = 1, the
value for project m = 2 is then given by the difference to the total budget Q.

2.2 Preferences

We assume that participation in the voting process is costly. Each participant faces
a cost ci > 0 if ϑi = 1. By contrast, abstention (ϑi = 0) is costless. Individuals are
assumed to have single-peaked preferences over outcomes. More specifically, we
assume symmetric single-peaked preferences (sometimes referred to as ‘Euclidean’
preferences): there is a unique most preferred outcome pi (voter i’s peak), and an
outcome x is preferred to y if and only if x is closer than y to pi in the standard
Euclidean distance d(·, ·). Summarizing, voter i’s preference can be represented by
the following utility function:

ui (x(q)) =
⎧
⎨

⎩

−d(pi , x(q)) − ci , if ϑi = 1 and k > 0,
−d(pi , x(q−i )), if ϑi = 0 and k > 0,

−∞, if k = 0.
(3)

Observe that we set individual utility to −∞ if no one participates in the voting
process. Alternatively, we could have set that value to a large negative number. The
idea is that if the group does not reach a decision via the voting process, some
external institution determines the social outcome, and that all involved individuals
would prefer any collectively determined outcome to that exogenous outcome.

According to the pivotal voter model, an individual will participate in voting
process if and only if the utility from doing so exceeds the utility of abstention, i.e.
if and only if

− d(pi , x(q−i , q
∗
i )) − ci ≥ −d(pi , x(q−i )), (4)

where q∗
i is the optimal vote of individual i given the votes q−i of all other partic-

ipants. In fact, the inequality (4) describes the participation decision in Nash equi-
librium. Alas, the Nash equilibria of the corresponding voting game are very com-
plex. Even under the (strong) assumption of complete information (i.e. each voter’s
preferences are common knowledge) and the restrictive assumption of symmetri-
cally single-peaked (‘Euclidean’) preferences, there are multiple Nash equilibria for
many parameter constellations; for other parameter constellations, there do not exist
pure Nash equilibria at all; see Müller (2022). Under the (in many applications more
realistic) assumption of incomplete information, there is no hope of deriving gen-
eral results on the structure and existence of Bayesian Nash equilibria even under
restrictive assumptions (e.g. equal participation costs across individuals).

Thus, instead of concentrating on solutions that assume perfectly rational individ-
uals (with a common prior and Bayesian updating under incomplete information),
we explore in the following boundedly rational behaviour and test various hypothe-
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ses by means of a field experiment. Concretely, we hypothesize that an important
determinant of the participation decision is the potential impact that an individual’s
vote can have under the different voting rules.

2.3 Impact of a Vote

The option set of individual i , given the decisions of all other individuals, is defined
by1

OS i (q−i ) = {β ∈ B | ∃ qi ∈ B, x(qi , q−i ) = β} .

The option set describes the set of all possible social outcomes that an individual
i can induce given the decisions q−i of all others. Since both the mean and median
rule are monotonic and continuous in qi given any fixed vector q−i , we obtain

OS i = [
x(0, q−i ) , x(Q, q−i )

] ⊆ [0, Q] (5)

if x(q) is determined either by the mean or by the median rule.
Observe that under the mean rule, x(0, q−i ) = ∑

j �=i q j/k where k is the number
of participants including voter i , and x(Q, q−i ) = (Q + ∑

j �=i q j )/k; in particular,
the outcome from individual i abstaining, i.e.

∑
j �=i q j/(k − 1), can also be induced

by individual i also voting for the qi = ∑
j �=i q j/(k − 1). (Of course, with positive

participation costs, individual i would never want to cast a vote that does not change
the outcome as compared to abstention.)

Similarly, under the median rule we have x(0, q−i ) = q[ k−1
2 ] and x(Q, q−i ) =

q[ k+1
2 ] if k − 1 is even (and the q[ j], j = 1, . . . , k − 1 or the other individuals’ votes

in ascending order); for k − 1 odd, we obtain

x(0, q−i ) = 1

2
·
(
q[ k−2

2 ] + q[ k2 ]
)

and x(Q, q−i ) = 1

2
·
(
q[ k2 ] + q[ k+2

2 ]
)

.

We define the potential impact of individual i given the distribution q−i of the
other voters as the length of the option set and denote it by impi (q−i ); thus,

impi (q−i ) = d
(
x(0, q−i ) , x(Q, q−i )

)
. (6)

When no confusion can arise, we will omit the argument and simply write impi .
Clearly, the potential impact of a vote of individual i in general depends both on

the rule and on the distribution of the other votes. But for the mean rule, it in fact
only depends on the total number of voters k. Since every vote under the mean rule

1 We neglect the possibility that no individual participates in the election process. This is justified
by the fact that the outcome from universal abstention is strictly worse than any other outcome for
all individuals.
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has the same weight of 1
k , the higher k the smaller is a voter’s option set, and hence

the smaller the potential impact. Indeed, it follows at once from the calculations of
Mean(0, q−i ) and Mean(Q, q−i ) above that under the mean rule, for all q−i ,

impi (q−i ) = Q

k
. (7)

As a simple example, take the mean rule and let Q = 100, Mean(q−i ) = 20 and
k = 4. Individual i’s option set is OS i = [15, 40], resulting in a potential impact
of impi = 25. With an additional voter, the option set is OS i = [16, 36], which
reduces the potential impact to impi = 20. For k = 100, individual i’s potential
impact decreases to impi = 1.

If the median rule is used, the precise location of votes matters, more precisely
the positions of the votes that are ranked next to the median as described above.
Denote by qMed− the vote that is ranked one position left of the median and by qMed+
the vote ranked one position right of the median. Consider the following example:
Q = 100, Med(q−i ) = 44, qMed− = 18, qMed+ = 70 and (k − 1) is even. Including
individual i , there is an odd number of voters k, and thus, the median outcome is
the vote that is ranked at the middle position [ k+1

2 ]. For any qi ≤ 18, the social
outcome is Med(qi ) = 18, and for any qi ≥ 70, the social outcome is Med(qi ) = 70.
Therefore, impi = 52. Take the same example but now let (k − 1) be odd, which
means that there exists a median voter who votes for qMed = 44. For any qi ≤ 18,
the social outcome is Med(qi ) = 1

2 · (
qMed− + Med(q−i )

) = 31. For any qi ≥ 70,
Med(qi ) = 1

2 · (
Med(q−i ) + qMed+

) = 57, resulting in impi = 26 or half the size of
the potential impact in the even case.

Importantly, we hypothesize that the potential impact that an individual enjoys
has a positive effect on this individual’s participation decision. According to this
hypothesis, a higher potential impact would thus induce a greater participation prob-
ability. However, as we have just seen, the potential impact generally depends on
the distribution of the other participants’ votes. This implies that, under incomplete
information, the participation probability is affected by an individual’s beliefs about
the vote distribution of the other participants. How should wemodel this uncertainty?
We will now briefly discuss two standard approaches to this problem: the ‘complete
ignorance’ view and the ‘Bayesian view’.

2.3.1 Minimal and Maximal Impact of Participation

According to the complete ignorance view, two important reference points are the
minimal possible impact and the maximal possible impact (where the min and the
max are taken over all distributions of the other participants’ votes). Indeed, the
pessimistic ‘maxmin’ principle would focus exclusively on the minimal impact, the
optimistic ‘maxmax’ principle would focus on the maximal impact, and the well-
known ‘Hurwicz criterion’ would consider a convex combination of both; see Luce
and Raiffa (1957).



364 C. Puppe and J. Rollmann

As observed above, the potential impact under the mean rule only depends on the
number of voters and is given by impMean = Q

k . Thus, for any given number of par-
ticipants the minimal and maximal possible impacts coincide. Observe in particular
that the potential impact is always positive under the mean rule and constant for any
given number of participants. Summarizing, we have for all i ,

min
q−i

impMean
i (q−i ) = max

q−i

impMean
i (q−i ) = Q

k
> 0. (8)

By contrast, the minimal impact under the median rule can well be zero; for
instance, if sufficiently many of the other participants cast the same vote, no single
vote can change the location of the median. In other words,

min
q−i

impMed
i (q−i ) = 0.

By contrast, the maximal impact under the median rule can be large. It depends on
whether k is even or odd; specifically, we have

max
q−i

impMed
i (q−i ) =

⎧
⎨

⎩

Q, if k is odd

Q
2 , if k is even.

(9)

To prove (9), consider for odd k a situation in which half of the other k − 1
participants vote for 0, and the other half forQ; then evidentlyOS i = [0, Q] resulting
in a maximal impact of Q. Similarly, if k is even, k/2 of the other voters are at 0 and
k/2 − 1 are at Q, we have OS i = [0, Q/2] resulting in a maximal impact of Q/2;
one also easily verifies that the impact for even k cannot be larger than Q/2.

Comparing the mean and the median rule, we thus find that the minimal impact
is always larger under mean rule; the maximal impact is equal under both rules for
k = 2 and strictly larger under the median rule for k ≥ 3. While large impacts are
possible under the median rule, they require quite special ‘polarized’ constellations
of the votes of the other participants.

2.3.2 Expected Impact of Participation

We turn to the expected (potential) impact of an individuals’ vote on the social
outcome. Under the median rule, the expected impact depends on the belief about
the distribution of the other votes. In fact, it turns out that it can be equal, larger, or
smaller than the impact under the mean rule.

Let us consider different symmetric distributions with mean Q
2 . Under a uniform

distribution of (k − 1) votes, the expected impact under the median rule is identical
to that under the mean rule. Indeed,
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Fig. 1 Impact of vote qi
under the mean rule. Impact
of a vote under the mean rule
does not depend on the
distribution of votes

a: Mean rule: impact (1)

b: Mean rule: impact (2)

Eunif(impi ) = Q

k
. (10)

The reason is that under a uniform distribution of (k − 1) votes, the expected distance
of two adjacent votes is exactly Q

k , and as noted above, it is this distance which is
relevant for the potential impact under the median rule. To illustrate, consider the
following example: Q = 100, (k − 1) = 3, and a uniform distribution of votes at
q1 = 25, q2 = 50, and q3 = 75. Under either rule, we obtain the outcome x(q−i ) =
50. The expected impact of an additional vote qi under the mean rule is identical to
the one under the median rule and equal to Q/k = 25 as stated in (10); indeed, this
is the length of the option set OS i = [37.5, 62.5] under both rules.2

If the other participants’ votes are not uniformly distributed, the expected impact
under themedian rulemay be smaller or larger than under themean rule. For instance,
if the other participants’ votes are normally distributed around the mean Q

2 , the
expected impact under the median rule is smaller than the expected impact under the
mean rule which remains at Q

k . The reason is that themedian interval, i.e. the distance
between the vote to the left and the vote to the right of themedian, is smaller than Q

k in
expectation under a normal distribution. By contrast, an analogous argument shows
that the expected impact under the median rule is larger than Q

k for a (symmetric)
bi-modal distribution.

For further illustration, consider Figs. 1 and 2 which show examples with k = 9
voters. Specifically, we have a set of eight voters, represented by the black circles
that either all vote for the allocation of Q

2 (Figs. 1a and 2a), or they split equally
between 0 and Q (Figs. 1b and 2b). These examples can be understood as extreme
cases of a normal distribution (with zero variance) and of a bi-modal distribution.

2 Observe that by using an appropriate notion of ‘uniform distribution’ in the discrete case, we do not
need to distinguish between even and odd numbers of voters. For instance, the ‘uniform distribution’
of four votes would correspond to q1 = 20, q2 = 40, q3 = 60 and q4 = 80. The resulting expected
potential impact of an additional vote is easily calculated to be equal to Q/k = 100/5 = 20 for
both rules.
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a: Median rule: no impact b: Median rule: high impact

Fig. 2 Impact of vote qi under the mean rule. Impact of a vote under the median rule depends on
the distribution of votes. The impact of a vote under the median rule depends on the distribution of
votes

Under both rules, the outcome is identical and denoted byMean(q−i ) andMed(q−i ),
respectively. The green circle displays the vote of participant i , which is qi = 0 in all
cases. (A vote qi = Q would yield symmetric results.) The mean outcome including
voter i is denoted by Mean(q), and according to our observations above the impact
of i’s vote under the mean rule does not depend on the distribution of the q−i ; see
Fig. 1a, b. By contrast, under the median rule the impact is zero in Fig. 2a and equal
to Q in Fig. 2b.

Summarizing, the impact under the mean rule is small for large k but certain,
while the (expected) impact under the median rule can be smaller, equal to, or
larger than that of the mean rule. In any case, the variance of the (expected) impact
under the median rule is larger than zero. We therefore hypothesized that risk averse,
resp. ambiguity averse, individuals would tend to participate less under the median
rule as compared to the mean rule. In order to test this and related hypotheses, we
conducted the field experiment described in the remainder of this paper.

3 The Field Experiment

The field experiment was conducted at the Karlsruhe Institute of Technology. We set
up a vote over the allocation of a donation on two campus projects using either the
mean or the median rule. Our main focus are the participation rate and the role of the
impact of a vote under both voting rules. Subsequent to the vote, we implemented
a survey in order to elicit beliefs about the allocation result, about the participation
rate and about the impact on the social outcome. Additionally, we asked for strategic
voting behaviour and elicited risk preferences.
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a: Share of female subjects b: Average age of subjects

Fig. 3 Gender and age of subjects, by group (increasing). Subject pool is randomized in terms of
gender and age

3.1 General Set-up and Design

The field experiment went on for one week in July 2017 at the Karlsruhe Institute of
Technology. We invited 510 subjects to participate in a vote over the allocation of a
donation on two campus projects: the bike workshop (an assisted workshop which
provides tools, help, and space for students that would like to repair their bike)
and the campus garden (the possibility to grow plants, cultivate, and harvest fruits
and vegetables). Both projects are on campus and accessible free of charge for all
students. We assessed wide interest among the students for these projects and made
sure that the implementation could be realized by the General Students’ Committee
(AStA) for every possible outcome. Pictures of the projects can be found in “The
Projects” of Appendix.

We randomized subjects using the hroot subject pool (Bock et al. 2014) of the
KD2Lab at Karlsruhe Institute of Technology. Our randomly selected pool consists
of 510 subjects which were divided into 30 groups of 17 members each. The subjects
received an invitation to participate in the voting process via e-mail on 11 July 2017.
Each group voted over the allocation of 100 Euros on the two projects. We use a
between-subjects design with the treatment variable voting rule: 255 subjects were
randomly assigned to the mean rule and 255 to the median rule. Our pool consisted
of 90 female subjects under the mean rule and 92 under the median rule. The average
age was 24.05 under the mean rule and 23.52 under the median rule. Figure 3 shows
the average age and share of female subjects by group in increasing order for both
treatments. We conclude that our subject pool is balanced in terms of gender and age.

In the e-mail, subjects were informed that they belonged to a group with 16 other
persons who were also invited to vote over the allocation of 100 Euros on the bike
workshop and the campus garden. We explained the voting rule (mean or median)
and the requirements for a valid vote. Subjects were also informed that other groups
would vote in a similar fashion over the allocation of another 100 Euros and that
for an implementation of the group outcome at least one vote within the group is
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necessary. Together with the remark that no individual payments to the voters will
be made followed the link to submit one’s vote.

The vote for an allocation on the two projects was accompanied with a short
questionnaire. The questionnaire asked for information about the individual beliefs
regarding the allocation result, the number of participants in each group and the
degree of the impact of their vote. We further asked if the voting rule was well
understood and if the participants revealed their true preferred allocation. Besides, we
asked for demographic data and elicited risk preferences. In “Voting Over Donation
Projects at KIT” of Appendix, we provide the e-mail that subjects received under
both treatments. Screenshots of the voting process and the questionnaire can be found
in “The Voting Process” and “The Questionnaire” in Appendix.

3.2 Eliciting Impact Beliefs and Risk Preferences

When comparing the mean and median rule for relatively small groups, we hypoth-
esize that differences in participation rates are driven by different beliefs about how
participation affects the social outcome. We capture these beliefs in two different
ways.

First, we asked the participants directly to assess the impact of their vote. For this,
we asked them to choose one out of six qualitatively described impact categories,
ranging from ‘my vote does not have any impact’ to ‘my vote is decisive for the
outcome’. While these categories are probably subject to individual interpretation,
this is arguably the most suitable way to elicit impact beliefs directly.

As amore indirect way to assess the beliefs about the impact of one’s own vote, we
asked participants about their belief on the number of participants in their respective
group. For the mean rule, the impact strictly decreases with the number of voters,
and also under the median rule, the possibilities for affecting the outcome are higher
if the number of participating voters is low.

Since we expected that differences in participation rates can be traced back to risk
attitudes via impact beliefs, we also elicited risk preferences. Charness et al. (2013)
present and evaluate several methods for eliciting risk preferences in experiments.
The authors argue that simple methods are especially suitable for capturing treatment
effects, which is the aim of our study. We elicit risk preferences using the Eckel and
Grossman (2002) method, where subjects have to choose one out of a series of
lotteries.3 We adapt the values of the original gambles as suggested by Dave et al.
(2010). Dave et al. (2010) let participants choose between six lotteries, each involving
a high and a low payoff with equal probability of 50%. Table 1 presents the lottery
choices. Lottery 1 represents a secure option as subjects receive a payoff of 28$
for sure.4 Expected payoffs increase together with the risk level from lottery 1 to
lottery 5. Lottery 5 represents risk neutrality as it comes with the highest expected

3 Note that the choice was not incentivized.
4 We adapt the currency from $ to Euros in our experiment but otherwise stick to the same values.
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Table 1 Lottery choices from Dave et al (2010)

Low payoff High payoff Exp. return S.D.

Lottery 1 28 28 28 0

Lottery 2 24 36 30 6

Lottery 3 20 44 32 12

Lottery 4 16 52 34 18

Lottery 5 12 60 36 24

Lottery 6 2 70 36 34

Lotteries 1–4 indicate risk aversion, lottery 5 risk neutrality and lottery 6 risk-seeking behaviour

return combined with a lower standard deviation as compared to lottery 6, which
implies risk-seeking behaviour.

Reynaud andCouture (2012) compare theEckel andGrossmanmethod to thewell-
known elicitation method of Holt and Laury (2002); they perform a non-incentivized
field experiment andfind thatwhile there exist differences among elicitationmethods,
the risk attitudes are significantly correlated across the different lottery tasks. The
main advantage of the Eckel and Grossmanmethod for our purposes is that by letting
individuals choose only one lottery, we exclude inconsistent decisions like subjects
switching lotteries in the Holt and Laurymethod.Moreover, the Eckel and Grossman
task is simpler and the explanation can be done faster. One should keep in mind the
subjects participated in the vote on a voluntary basis and we wanted to keep the
questionnaire as short as possible.

3.3 Hypotheses

While we have shown above that the (expected) potential impact on the social out-
come can be larger under the median rule than under the mean rule, its quantification
is muchmore involved under themedian rule. By contrast, the impact under themean
rule is easy to understand; moreover, it only depends on the number of participants
and not on the distribution of the other participants’ votes. Therefore, we expected
that subjects overestimate the impact their vote would have under the mean rule as
compared to the median rule.

Hypothesis H1. The belief about the real impact is higher under the mean rule as
compared to the median rule.

Hypothesis H1 is further backed up by the following consideration. Ex post, every
voter’s vote is pivotal for the outcome under the mean rule; by contrast, under the
median rule no participant is pivotal except one (the median voter if the number
of participants is odd), or possibly two (the two middle voters if the number of
participants is even). Thus, also from the perspective of how many participants are
pivotal (ex post), the mean rule fares better than the median rule.
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In the light of the greater variance of the expected potential impact under the
median rule, we also expected that there is a selection effect in the set of partici-
pants under the two rules. This is based on the following two presumptions. First,
we assume that (in line with many empirical studies) most subjects are risk averse
(independently of treatment); second, for risk-averse individuals the probability of
participation under the median rule is lower precisely because the impact of one’s
vote is ‘more uncertain’ under themedian rule than under themean rule.We therefore
hypothesized:

Hypothesis H2. Actual participants are more risk averse in mean voting as com-
pared to median voting.

Based on H1 and H2, together with standard assumptions about individual prefer-
ences, in particular about thewidespread trait of risk aversion, see e.g. Holt and Laury
(2002), we expect that the voter turnout under the mean rule is higher as compared
to the median rule.

Hypothesis H3. The actual number of participants is higher under the mean rule
as compared to the median rule.

Our last hypothesis does not address voter turnout but the structure of the actual
votes. It is well known that under the mean rule (in a complete information setting)
the unique Nash equilibrium of the voting game with a fixed number of participants
prescribes all but possibly one participant to vote for one of the extreme options, i.e.
0 or Q (Block, 2014; Renault & Trannoy, 2005). By contrast, as is also well known,
truth-telling is a weakly dominant strategy under the median rule. The ‘game’ that
our subjects played is of course different in two important respects: First, it took
place under conditions of incomplete information, and secondly, it involved not only
a voting but also a participation decision. Nevertheless, the qualitative difference of
the equilibria of the corresponding voting games (under complete information and a
fixed number of participants) made us hypothesize:

Hypothesis H4. The variance of the participants’ votes is higher under the mean
rule as compared to the median rule.

The field experiment allows us to test all four hypotheses. The data for H3 and
H4 are the direct observations of the voter turnout and the votes of all participants.
The data used for H1 and H2 are collected via the subsequent survey filled out by
participants.

4 Results

Our main focus in the following is whether there is a difference in the participation
rates under the two voting rules, and if so, whether our data on impact beliefs and
risk preferences are able to explain it. We also study if subjects voted optimally given
their beliefs.
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Fig. 4 Real imapct. Real
impact of votes is higher
under the median rule

4.1 Real Impact Versus Assessed Impact

For the analysis of the experimental results, we define the real impact of a par-
ticipant’s vote as the difference of the actual social outcome and the hypothetical
outcome without this voter’s participation given the actual distribution of votes for
each group, i.e. the absolute difference between x(q−i ) and x(q). This can be always
be calculated because in all groups there were at least two participants. The real
impact ranges across individuals, i.e. the interval from the lowest to the highest
real impact, is [0, 30] under the median rule, and the range under the mean rule is
[0.08, 18.33]; see the boxplot in Fig. 4. Our observations align well with the theo-
retical considerations above: the real impact under the mean rule is small but always
strictly positive; by contrast, it can be zero under the median rule and has higher
variance. The average individual real impact is 4.48 Euros under the mean rule, and
the real impact values are significantly lower as compared to the median rule with an
average individual real impact of 7.90 Euros (Mann–Whitney U test, p = 0.018).

Is this significant difference in the real impact, as one could have expected from the
theoretical analysis, also reflected in the beliefs of the subjects?We elicited the belief
about the impact by letting the participants evaluate their impact in six qualitative
categories. The categories range from ‘my vote has no impact on the social outcome’
to ‘my vote is decisive’. The share of participants that chose the respective categories
is displayed in Fig. 5.

Figure 5 indicates a slightly higher belief about the impact for mean rule partici-
pants, but the difference is in fact not statistically significant; in particular, our data
do not support Hypothesis H1 (Mann-Whitney U test, p = 0.159).

Figure 6 plots the belief about the impact against the real impact for each partici-
pant. Each participant is represented by a bubble, and larger bubbles represent several
subjects. We classify the real impact values into six categories, indicated by the blue
frames in Fig. 6: ‘No impact’ corresponds to an impact of 0 Euros, ‘very low’ is
classified as an alteration of the outcome by more than 0 and up to 5 Euros and so on;
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Fig. 5 Beliefs about impact. No treatment effect regarding participants’ beliefs about the impact
of their vote

‘decisive’ is classified as an alteration by more than 20 Euros (recall that the highest
value of the real impact was 30). Participants whose belief matched their real impact
(given our classification) are situated within the blue areas and make for 12.16%
of mean and 18.18% of median rule participants. Very few subjects underestimated
their real impact under the mean rule (6.76%), a somewhat higher share did so under
the median rule (18.18%) (these are represented by the bubbles to the top-left of the
blue areas). An overestimation occurs for 81.08% of the participants under the mean
and for 63.64% undermedian rule (the bubbles below the blue areas).We find that the
differences in proportions of over- and underestimation are significant (two-sample
test of proportions, p = 0.019 for underestimation, p = 0.010 for overestimation);
but clearly, these figures depend on the chosen classification.

We elicited beliefs about the impact also indirectly by asking the participants
about their belief about the allocation result. Figure 7 plots this against the impact
beliefs. The horizontal axis shows the classification of the impact belief, while the
vertical axis shows the distance between the actual vote and the belief about the result
of the respective participant (again represented by a bubble). We additionally draw
the regression line and find that there is no correlation. It is remarkable that some
subjects believe to have had a very high impact when asked directly and at the same
time indicate that they believe the group result will differ from their own vote by
more than 30 Euros.

We also examine gender differences in impact beliefs by performing a Mann–
Whitney U test on the impact belief depending on gender.5 We are able to reject
the H0 hypothesis that male and female participants have an equal belief about their

5 Two participants did not state their sex; therefore, we exclude these observations.
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Fig. 6 Belief about impact versus real impact.Wecategorized the belief about the impact (horizontal
axis) and compared it to the real impact (vertical axis). Very few subjects (represented by bubbles)
underestimated their real impact under the mean rule; a slightly higher, yet still low share did
so under the median rule. A large number of participants overestimated their impact under both
treatments with a yet higher share under the mean rule

Fig. 7 Measures of impact belief. Different measures of impact belief: direct question (horizontal
axis) versus distance between actual vote and belief about the result (vertical axis). No correlation
found
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impactwith p = 0.034 in support of the H1 that the impact belief ofmen is on average
higher as compared to women. Since female participants have on average a lower
belief about their impact, we tested in a second step if women also overestimate their
impact less frequently. Out of the 102 participants that overestimated their impact,
63 were male and 37 were female. Therefore, the share of male participants that
overestimated their impact is 68.48% (63 out of 92), while the share for women was
80.43% (37 out of 46). However, we do not find a significant correlation between
overestimation and gender (chi-squared test, p = 0.138).

When analysing the votes separately for male and female participants, we find
some interesting differences. While 24 male participants, i.e. 26.09% of all men,
voted for an extreme allocation of either 0, 1, 99 or 100 Euros, the share of female
participants that voted extreme is only 8.70% or four women. Building on these
differences in the voting behaviour, we performed another Mann–Whitney U test to
compare the real impact dependent on gender and find indeed that the real impact of
male participants is on average significantly higher as compared to the real impact
of women (p = 0.026).

Considering the high shares of overestimation of the real impact, the question
arises if these high beliefs are driven by an underestimation of the number of partici-
pants (which is negatively correlated with impact for both rules). In both treatments,
subjects believed on average that the number of participants per group is 8.8 (no
difference, two-sample t-test, p = 0.966). This means that the share of participants
that overestimated the number of participants as compared to the real number of
participants is 84.85% in the median (with a true group average participation rate of
4.4) and 74.32% in the mean groups (with a true average of 4.9 participants).

If one measures the belief about impact indirectly by the belief about the number
of participants, most subjects underestimate this impact, since the belief about the
number of participants is higher than the actual number of participants. Therefore,
participants overestimate their real impact directly (as inferred from Fig. 6) and
at the same time overestimate the number of participants. Figure 8 sheds light on
the indicated beliefs about the impact in combination with the beliefs about the
number of other participants per group. Remarkably, the red regression line has
a positive slope in the mean treatment; the correlation between the belief about the
number of participants and the belief about one’s own vote impact is 0.188 (Spearman
correlation, p = 0.109). Since the actual impact of participation under the mean rule
is negatively correlated with the number of participants, subjects display inconsistent
beliefs under themean rule. Under themedian rule, the correlation is slightly negative
(-0.072) so that we do not find the same inconsistency in beliefs for the median rule
(Spearman correlation, p = 0.566).

4.2 Risk Preferences

Since we only have the survey data for the subjects who completed the questionnaire,
the following analysis refers to these subjects only.We elicited risk preferences using
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Fig. 8 Belief about impact versus belief about participants. Different measures of impact belief:
direct question (horizontal axis) versus beliefs about the number of participants per group (vertical
axis). Since the number of participants is negatively correlated with the impact of a vote, the positive
slope of the regression line under the mean treatment indicates inconsistent beliefs

the Eckel and Grossman (2002) method with the values given in Table 1 above.
Figure 9a displays for each of the six lotteries the share of participants by voting
rule. The average lottery number per individual is 3.64 under the mean rule and
slightly higher under the median rule, where the average lottery is 3.82. Both values
indicate risk aversion at the individual level, since the average is below lottery 4,
which among the risk-averse lotteries is the one with the highest expected return
and the highest standard deviation. At the individual level, we however do not find
a significant difference between the two rules (two-sample t-test, p = 0.485). Thus,
our individual data do not support Hypothesis H2.

We label the six lotteries by corresponding values from 1 to 6 and run a regression
of the chosen lottery on a set of independent variables. The results are displayed in
Table 2, and again we see that the voting rule (the relevant coefficient is ‘rulemean’,
which takes the value 1 for the mean rule and 0 for the median rule) is negative but
not significantly so. Interestingly, we find a highly significant and positive coefficient
for the dummy variable ‘gendermale’, which takes the value 1 if the participant is
male and 0 for female participants.

In order to further analyse gender differences, we perform a two-sample t-test
for the individual risk attitudes of male vs. female participants. We are able to reject
the H0 hypothesis that there is no difference in the risk preference between men and
women (independent of the voting rule) at a p-value below 1% and find support
for H1: the average risk preference level is lower for female as compared to male
participants (on average 2.98 vs. 4.09). Sincewe dofind a gender difference regarding
the risk preferences, our next question is if the share of female participants under the
two voting rules is different. As argued above, risk-averse subjects could be assumed
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a: Shares by lottery

b: Average lottery, by group (increasing)

Fig. 9 Risk preferences. Lotteries indicating average risk-averse preferences. No treatment effect
found

to prefer the sure impact under the mean rule, and the higher degree of risk aversion
by women would therefore predict a higher female participation rate in mean voting
as compared to median voting. The overall share of female participants was 33.33%
and splits up into 35.14%under themean rule and 31.25%under themedian rule. Our
overall subject pool (participants and non-participants) consisted of 91 women under
the mean and 92 under the median rule. The adjusted share of female participants
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Table 2 Regression results risk preferences

Variables Lottery

Rulemean −0.0985
(0.256)

Extremevote 0.0138
(0.336)

Partbelief 0.0135
(0.0403)

Man 0.574
(0.494)

Impactbelief −0.127
(0.176)

Gendermale 1.113***
(0.275)

Constant 3.230***
(0.580)

Observations 138

R-squared 0.130

Standard errors in parentheses
*** p <0.01, ** p <0.05, * p <0.1
No treatment effect regarding risk preferences.However,male participants chose significantly higher
lottery, i.e. they tend to be more risk seeking

out of all female subjects is therefore 28.57% for the mean rule and 21.74% for the
median rule, whichmakes an even higher difference.Nevertheless, we do not find that
the difference in participation rates by gender is statistically significant (chi-squared
test, p = 0.381).

4.3 Voter Turnout

Out of the n = 510 subjects that were invited, k = 140 participated and completed
the entire voting process. Further 21 subjects visited the survey platform but did
not complete the form. Of the 140 participants, 74 subjects participated under the
mean rule and 66 under the median rule. The overall participation rate was quite
high with 29.0% and 25.9%, yielding 4.9 participants on average per group under
the mean and 4.4 under the median rule. There were at least two participants in each
group and a maximum number of nine participants, which occurred under the mean
rule. Figure 10a presents a boxplot containing the number of participants per group.
The median number of participants per group is four under the mean and five under
the median rule. The detailed number of participants by voting rule and groups is
displayed in Fig. 10b, ordered by increasing number of participants. As one can see in
the two figures, the spread of participation rates is higher under the mean rule. In six
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a: Boxplot of participants

b: Participants by group (increasing)

Fig. 10 Average number of participants. No treatment effect regarding the participation rate

of the ordered groups, the number of participants under themean rule exceeds the one
under the median rule; the opposite is true for only two groups. We do find support
for the hypothesis that the variance of mean rule participation is higher as compared
to participation under the median rule groups (variance ratio test, p = 0.046).

In order to test ourHypothesisH3,we run a regression of the dichotomous variable
‘participation’ on a dummy variable for the voting rule and gender. These are the
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only independent variables that we have for participants and abstainers, as the subject
pool contains information on gender and the voting rule was assigned by us. The
coefficient for ‘rulemean’, which takes the value 1 for the mean rule and 0 for the
median rule, is β1 = 0.0370; the positive value indicates that the voter turnout is
higher for the mean rule. However, we cannot reject the null hypothesis that the
deviation is significantly different from zero. The same is true for the coefficient of
the gender dummy variable, indicating that male subjects have a higher participation
rate, yet the difference is not significant (β2 = 0.0314).

We additionally consider the aggregated group values for participation and per-
form a Mann–Whitney U test. The rank sum of the average group participation rate
is higher under the mean rule, but the difference is also not statistically significant
(p = 0.735). Our data thus do not support our Hypothesis H3; indeed, we do not
find evidence for different numbers of participants among the two rules. This result
has to be considered with some caution, however. The number of groups that we
compare is limited to fifteen, and the average participation rates per group differ in
only eight cases.

4.4 Distribution of Votes

The actual distribution of votes is displayed in Fig. 11a. The horizontal axis shows
the votes for the bike workshop in Euros. The vertical axis (‘share of votes’) repre-
sents the percentage of participants that voted for the respective amount. The overall
distribution shows the highest percentage at 100 Euros, indicating the preference to
allocate all the money on the bike workshop. Further remarkable values are those
close to a (70, 30) split as well as the symmetric (30, 70), indicating the existence of
reference points besides the extreme allocations or the equal split, which only two
participants under the median rule and three under the mean rule voted for.We do not
find a significant difference across the rules in the votes themselves (Mann–Whitney
U test, p = 0.680), in the distribution of votes (two-sample Kolmogorov–Smirnov
test, p = 0.830), nor in the variance of votes (variance ratio test, p = 0.553). A
boxplot of the votes for the bike workshop by rules is shown in Fig. 11b.

These results imply that Hypothesis H4 is not supported either; in fact, we do not
find that the variance of votes is higher under the mean rule. This is an indication
that participants did not vote strategically under the mean rule, for which extreme
voting (i.e. qi = 0 or qi = Q) is almost always optimal.6 In the light of the lab-
oratory experiments of Puppe and Rollmann (2021), Block (2014), and Rollmann
(2020), this is a particularly remarkable finding; indeed, in the laboratory situation
we consistently find strategic behaviour under the mean rule even in situations of
incomplete information. Our present results thus suggest that in a voting context the

6 Observe that the optimality of extreme voting for almost all voters under the mean rule carries over
to an incomplete information setting for all Bayesian rational players. This is because an interior
vote q̃i ∈ (0, Q) can only be optimal under the mean rule if the social outcome is exactly at q̃i .
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natural environment of field experiments plays an important role and is crucial for the
behaviour of subjects. To identify the confounding effects in the field as compared
to the more tightly controlled laboratory situation seems an important task for future
research.

Also observe that since the distribution of votes did not differ significantly among
the voting rules, we can also conclude that the difference that we found in the real
impact is not driven by differences in the distribution of votes.

4.5 Allocation Outcomes

We also do not find a significant difference in the group allocation results across the
twovoting rules (two-sample t test, p = 0.227).The allocation result (bike, garden)

is on average (64.97, 35.03) under the mean rule and (70.47, 29.53) under the median
rule. Figure 12a shows a boxplot of the allocation results by rule. Though the group
results are not significantly different, we do observe a greater spread in the group
results under the median rule, where one group result was to donate the total budget
of 100 Euros to the bike workshop project. In this group, three subjects participated
and the vector of votes were q = (85, 100, 100). Also, only under the median rule
the social outcome was once below 50 Euros for the bike workshop. The greater
variance in the group allocation results under median voting is statistically signifi-
cant (variance ratio test, p = 0.021). The total donation for the bike workshop adds
up to 2,031.60 Euros and for the campus garden to 968.40 Euros.

We also asked for the belief about the allocation result, which is slightly more
balanced as compared to the actual result: (62.10, 37.90) is the average belief under
the mean and (62.87, 37.13) under the median rule. We do not find a significant
difference in the belief about the allocation result across voting rules (two-sample
t-test, p = 0.786). Interestingly, we do find a significant difference in the correct
belief about the result (two-sample t-test, p = 0.019). Specifically, we calculated
the difference between the belief about the result and the real result and find that the
average difference under the mean rule is −2.08, as compared to −7.08 under the
median rule. The negative sign indicates that participants under both rules believed
that the result for the bike workshop is lower than it really was, i.e. on average they
underestimated the share for the bike workshop, or in other words, they believed that
the result was more balanced among the projects. We find that the average value for
correct estimation is significantly higher under the mean rule, which means that the
average of the participants’ beliefs is only 2.08 Euros lower as the real result. Under
the median rule, the average deviation from the real result is 7.08 Euros. Figure 13
plots the belief about the result versus the real result. The correlation is positive for
both rules (0.061 for the mean rule and 0.467 for the median rule); however, the
coefficient is significant only for the median rule (Spearman correlation, p = 0.608
and p < 0.001). We find that the difference between the rules is significant (two-
sample Fisher’s z-test, p = 0.037).
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a: Distribution of votes

b: Boxplot of votes

Fig. 11 Votes for bike workshop. No treatment effect regarding the distribution of votes. No
treatment effect regarding the distribution of votes
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a: Allocation results for bike workshop

b: Distance between peak and result

Fig. 12 Allocation results and distance to peaks. No treatment effect regarding the allocation results
nor the distance between the peak and the allocation result

In order to (roughly) assess welfare under both voting rules, we assume that the
votes correspond to the true preference peaks of the participants (which seems well
justified in the absence of strategic voting) and calculate for each subject the distance
between the peak (vote) and the aggregated group results. Implicitly, we thus also
assume that the true underlying preferences are symmetrically single peaked, and
that the costs of participation are identical across subjects. Figure 12b displays the
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Fig. 13 Belief about result versus real result. Positive correlation between the belief about the
result and the real result; the coefficient is significant for the median rule

boxplots for the distance between peak and result for both voting rules. We do not
find a significant difference in the average distance (two-sample t-test, p = 0.534)
nor in the variance between both rules (variance ratio test, p = 0.837).

4.6 Non-truthful and Strategic Voting

Clearly, in our field experimentwe cannot know the underlying preferences and hence
cannot infer if subjects voted truthfully or strategically purely from the observation
of their votes. Nevertheless, one can ask them about the motives for their behaviour
and that is what we did. Specifically, we asked them if they casted their vote truthfully
and if not about their true peak pi .

As already noted, under the mean rule the belief about the social outcome is
sufficient for deciding where to place one’s vote. For instance, if the belief about the
social outcome is Mean(q−i ) = 70 and the most preferred outcome of i pi < 70,
submitting a vote qi < pi is optimal but of course non-truthful. (Recall that we only
list the expenditure for the first project, which is the bike workshop in the present
context.) Table 3 lists all participants under the mean rule that stated to have voted
non-truthfully. The share of all votes that are non-truthful (as per the statements of the
participants) is 6.76% and rather low (five subjects). Based on the reported true peaks
pi , the beliefs about the social outcome bx(q)

i , and about the number of participants
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Table 3 Non-truthful voting, mean rule

pi bx(q)
i b(k−1)

i bx(q−i )

i qi (b
x(q)
i , b(k−1)

i )(∗) qi (b
x(q)
i , b(k−1)

i )∗ qi

85 51 10 46.10 435.10 100 100

80 64 5 56.80 172.80 100 100

60 60 10 58.00 78.00 78 80

50 50 8 56.20 6.25 6 0

50 70 8 68.75 −81.25 0 80

Five individuals stated that they voted non-truthfully under the mean rule. The first two individuals
submitted a vote that corresponds to the best response. Individuals in lines 3 and 4 submitted a vote
very close to the best response. The vote of the individual in the last line appears to be ‘non-strategic’

b(k−1)
i , we calculate a theoretical best response qi (b

x(q)

i , b(k−1)
i )(∗) for each of the five

individuals. After correcting for allocations that are feasible (only natural numbers
between zero and 100), we are able to compare the theoretical belief-based best
responses qi (b

x(q)

i , b(k−1)
i )∗ to the actual votes qi . Two individuals submitted a vote

that corresponds to the best response (qi = qi (b
x(q)

i , b(k−1)
i )∗), which implies that

these votes are not only strategic but also optimal given the beliefs. Two further
votes were very close to the best response and therefore strategic, as they deviate
from the true peak and decrease the distance to the social outcome belief. The one
individual that places a ‘non-strategic’ vote according to the beliefs argued that he
could not find a reason why his peak should be different from the equal split (‘I
don’t find an argument why one project should be better for the community than the
other’).Nevertheless, he voted formore budget on the project that seemedmore useful
personally (‘I will probably never use the campus garden’).7 This argumentation puts
the vote into perspective and makes it in some way strategic as well, as it seems that
the indicated peak was based on the benefit for the community.

Table 4 summarizes the corresponding data for the six participants that stated to
have cast a non-truthful vote under the median rule. The share of non-truthful votes is
9.10% and, surprisingly, higher than under the mean rule. Beneficial strategic voting
under the median rule (and single-peaked preferences) is possible only for an even
number of participants and only if the corresponding peak is one of the two in the
middle. With the beliefs about the social outcome and the true peak, we get a hint on
whether participants vote strategically according to their beliefs. As strategic voting
is not possible for an odd number of voters, the best response given that b(k−1)

i is
even is a vote that is at least as high as the belief about the median outcome bx(q)

i if
pi > bx(q)

i , or at most as high as bx(q)

i if pi < bx(q)

i . The three individuals that believe
(k − 1) to be even play a best response given their beliefs, but the belief-based
distance between their peak and the social outcome is not reduced.

7 The original statements are in German.
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Table 4 Non-truthful voting, median rule

pi bx(q)
i b(k−1)

i qi (b
x(q)
i , b(k−1)

i )∗ qi

85 75 10 ≥ 75 100

78 61 11 ? 62

70 60 8 ≥ 60 85

50 50 3 ? 35

30 40 14 ≤ 40 1

26 66 9 ? 17

Under the median rule, six individuals stated that they voted non-truthfully. The three participants
that believe (k − 1) to be even play a best response given their beliefs

5 Conclusion

Instead of providing a comprehensive summary, let us conclude by highlighting the
following two findings. First, it appears that voting over a one-dimensional variable
is governed by very different principles in the field compared to the laboratory.
Secondly, we find much less strategic behaviour (under the mean rule) than one
could have expected from the results of corresponding laboratory experiments.

We did not explicitly ask subjects about their motivation regarding participation
or abstention. However, our results suggest that neither the voting rule nor the belief
about the impact of one’s vote was a main driving force behind the participation
decision. We conclude that the motivation of participation was not so much per-
sonal benefit but rather the chance to contribute to a donation for the campus. This
is also backed by the observation that only few participants voted non-truthfully
resp. strategically.

We are only at the beginning of understanding the motivations underlying par-
ticipation and voting decisions in our context, and there is certainly more work to
be done. We believe that (controlled) field experiments can contribute significantly
to our understanding of voting and participation in elections, and we hope that the
present paper might stimulate further work in this direction.
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Fig. 14 Bike workshop and campus garden (https://www.asta-kit.de)

Appendix: Supplementary Material

The Projects

See Fig. 14.

Voting Over Donation Projects at KIT

Mean Treatment

Hello,

The Chair of Economic Theory at KIT would like to invite you to participate in
an election. Besides you, 16 other people have been invited to participate in this
election. Your group votes on the allocation of 100 Euro on two campus projects.
For this purpose, each group member can make an individual proposal for the alloca-
tion. The result of the election is calculated by the average of all allocation pro-
posals, i.e. the sum of the allocation proposals divided by the number of votes
cast.
The two projects are a Bike Workshop (supervised self-help workshop) and the
Campus Garden (opportunity to grow and harvest fruits and vegetables). Your allo-
cation proposal therefore consists of two amounts ofmoney: the amount to be donated
to the Bike Workshop and the amount to be donated to the Campus Garden. Both
amounts must add up to 100 Euro.
There will be no individual payment. The total amount of 100 Euro will be donated
to the two projects according to the voting results. The election is held online and
takes about 5 minutes. If you would like to participate in the election, please click
here: https://www.survio.com/survey/d/d1

https://www.asta-kit.de
https://www.survio.com/survey/d/d1
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In addition to your group, there are other groups that will vote on the allocation of
100 Euro on the two projects. Every group consists of 17 participants and votes on
the usage of 100 Euro each. For the realization of the allocation proposal of each
group, at least one vote per group is required.
The election will run until 17.07.2017. If you are interested in the result of the
election, please enter your e-mail address after the election. Your answers will be
treated anonymously and cannot be assigned to the e-mail address. Once again, this
is the link to the election: https://www.survio.com/survey/d/d1

Best regards,

the Chair of Economic Theory of KIT

Median Treatment

The result of the election is calculated by themedian of all allocation proposals, i.e.
the vote that is in the middle position after sorting all votes in ascending order is
elected. If the number of votes cast is even, the median is calculated from the mean
value of the two middle allocation proposals.

The Voting Process

See Fig. 15.

Fig. 15 Vote

https://www.survio.com/survey/d/d1
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The Questionnaire

See Figs. 16, 17, 18, 19 and 20.

Fig. 16 Questions on the vote I
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Fig. 17 Questions on the vote II
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Fig. 18 Demographic questions

Fig. 19 Risk preferences
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Fig. 20 Concluding remarks
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The Office Makes the Politician

David Stadelmann

Abstract This paper explores behavioral changes regarding the political represen-
tation of voters by leveraging data from the Swiss Houses of Parliament. Although
politicians in both houses are elected in the same geographical constituencies, public
expectations would stipulate that politicians serving in the Council of States should
focus relatively more on the preferences of their geographical constituency than on
the nation,while the opposite should be the case for politicians serving in theNational
Council. I provide empirical evidence for such directional behavioral changes after
politicians are elected. The evidence is consistent with the existence of an incentive
effect of the office itself which acts on politicians to fulfill public expectations. Such
an incentive effect, termed a “Thomas Becket incentive”, would be complementary
to the established relevance of elections as a selection and incentive device.

1 Introduction

Why do political representatives seek to correspond to voters’ preferences and public
expectations after elections? A common answer is that they do so because voters
select politicians well in elections or, because (re-)election constraints incite politi-
cians to consider voters’ preferences next to their self-interest (e.g., Downs, 1957;
Mueller, 2003; Persson & Tabellini, 2000). Accordingly, elections can be seen as a
selection and incentive device (e.g., Lee, 2004). From this point of view, the electoral
system shapes the way voters select politicians, and it influences electoral incentives
(e.g., Cox, 1997; Duverger, 1954; Dow, 2011; Lijphart, 1994; Powell, 2000; Stadel-
mann et al., 2019).

The present contribution tries to extend the dichotomy of elections as a selection
and incentive device by providing indicative evidence for a complementary view to
explain why politicians may align their decisions with voters’ preferences. I argue
that serving in an elected office may act as an incentive in itself to fulfill public
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expectations that are associated with the office.1 This complementary view stresses
the relevance of public expectations of the office itself as a potential behavioral
incentive. I call this incentive a Thomas Becket incentive. Hillman (2009) provides
a brief argument for such an incentive for politicians while Issing (2006) highlights
such an incentive for central bankers.

The motivation behind the Thomas Becket incentive is the following: In 1162
Thomas Becket, a confidant and the Lord Chancellor of the English King Henry II,
became the Archbishop of Canterbury. Henry II himself arguably desired Thomas
Becket to hold this office. However, instead of supporting the King in his disagree-
ment with Pope Alexander III in Rome, Thomas Becket dutifully served as an Arch-
bishop and fulfilled the expectations of the new office he held. As the Archbishop,
he was expected to represent the church and not the King. Indeed, he took the side
of the church against Henry II, which resulted in a confrontational stance with the
King. Eight years later, Henry II supposedly ordered his knights to free him of his
former companion. Thomas Becket was slain in 1170. He became canonized by
Pope Alexander III (see Barlow, 1986 for a biography on Thomas Becket). Hence, a
Thomas Becket incentive should be seen as an incentive to fulfill the duty prescribed
by the office, independently of selection or other incentives that may matter too, of
course. The term Thomas Becket incentive shall therefore refer to a situation where
officials detach themselves (to some degree) from their earlier office to satisfy the
expectations of their new office.2

I provide indicative evidence for aThomasBecket incentive in terms of congruence
with voters of the same politicians who change office from the National Council to
the Council of States of the Swiss Houses of Parliament. Swiss referenda allowme to
observe the revealed preferences of the majority of each electoral district as well as
of the national majority. Thereby, a natural measure of congruence of politicians with
their constituency and the nation emerges (e.g., Stadelmann et al., 2013). The Swiss
constitution and public expectations would stipulate that politicians in the Council
of States should represent their geographical constituency rather than the nation.
The opposite should hold for politicians in the National Council. These normative
expectations are (of course) not legally binding.3 Nevertheless, I show that they are
fulfilled for politicians changing from the National Council to the Council of States:
The same politician behaves differently with respect to preferences of constituents
and nation when changing from one office to another, independently of selection or
incentives induced through the electoral system as well as independently of personal
characteristics and interest group affiliations.

1 The view does not imply at all that selection and re-election incentives are irrelevant (see Portmann
et al., 2022). But they do not need to be the only explanation for different behavior of politicians
with respect to the representation of voters’ preferences after politicians are elected to an office.
2 In public and political discourses, references to the “dignity of an office” or the expectation that
an “office will change the person” are frequently made.
3 Article 161(1) of Federal Constitution forbids binding voting instructions.
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The remainder of the paper is structured as follows: A description of the institu-
tional setting is given in Sect. 2. Section 3 presents the empirical strategy and data.
Section 4 provides indicative evidence consistent with the existence of a Thomas
Becket incentive. I offer concluding remarks in Sect. 5.

2 Institutional Setting

2.1 National Council and Council of States

Switzerland has a bicameral parliament comprised of aLowerHouse (NationalCoun-
cil, “Nationalrat” in German) and an Upper House (Council of States, “Ständerat”
in German). Politicians to both houses are elected in 26 geographical constituencies
(electoral districts), called the Cantons. Elections for the National Council and the
Council of States take place on the same date, since 1851 always on a Sunday in
October. For the Council of States, there are additional run-off elections, usually in
November.

Elected politicians in both offices serve for four-year terms. The National Council
has 200 members, and the Council of States has 46 members. Politicians in the
National Council are elected under a proportional electoral system, while politicians
in the Council of States are elected under a two-round majority-plurality system.4

Apart from the electoral system, formal election requirements and prerogatives in
the two offices are identical. The National Council and the Council of States have the
same legislative power. Members of both elected offices decide on exactly the same
laws and constitutional amendments. Legislative proposals have to be approved by
majorities of both offices. As the Council of States is smaller, serving there is usually
regarded as more prestigious.

Final roll call votes take place at the end of a parliamentary session. They are
recorded by an electronic voting system since 1996 for members of the National
Council, see Portmann et al. (2012). Thus, 1996 is the year where the sample of
observations starts. There has been no electronic voting system for the Council of
States until 2014. Sincewinter 2006, a camera records its sessions (see Stadelmann et
al., 2014, 2019). The camera recordings allow the identification of individual voting
behavior also of the members of the Council of States.5

4 Differences induced by the two electoral systems have been analyzed by Stadelmann et al. (2019),
and recently by Portmann et al. (2022), where the former focuses on parties, and the latter contri-
bution shows that selection does not matter for the representation of the geographical constituency.
5 In some cases, individual votes cannot be observed due to a too slow movement of the camera
during the voting phase (see discussion in the appendix to Stadelmann et al. 2019).
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2.2 Referendum Decision

Switzerland features a system of direct democracy. Thus, parliamentary proposals
do not directly turn into law. Citizens may challenge parliamentary decisions in a
referendum. Referendum decisions permit voters to judge legislative proposals and
rank them against the status quo. Thereby, referendum decisions can be seen as
revealed preferences of voters for policies (see Brunner & Ross, 2010; Brunner et
al., 2011; Frey, 1994; Hessami, 2016; Noam, 1980; Portmann et al., 2012). Different
types of referendum instruments are explained in greater detail in Stadelmann et al.
(2013), Portmann (2014), (2022), and the subsequent empirical analysis will always
control for referendum types as most of the existing literature employing Swiss
referenda does.

Swiss referendum choices are implemented and entail policy consequences. There
are no quorum requirements and consequently no strategic incentives to abstain.6

Referendum results are available for every geographical constituency and the nation
as a whole. Thus, it is possible to analyze the preferences of the majority in each
constituency as well as the preferences of the majority of the nation. Referendum
decisions take place frequently (Stadelmann & Torgler, 2013). They cover a wide
range of political issues.

All information on the topics and results of referendum decisions are provided by
the Swiss Parliamentary Services. Referendum titles, official booklets, deliberations,
etc., in three of the four official Swiss languages can be found on the Website of
the Swiss Parliament (https://www.parlament.ch/de/services/volksabstimmungen,
accessed April 10, 2022)

2.3 Congruence with Geographical Constituency
and with the Nation

The law and constitutional proposals presented to voters in referendum decisions are
word-for-word identical to the proposals on which politicians decided in their parlia-
mentary roll call votes. Thereby, I can observe what individual politicians decide and
what the majority in their geographical constituency, as well as the nation, decide
on the identical policy proposal. By matching individual decisions of politicians in
the National Council and the Council of States with referendum decisions of their
constituency, I directly compare whether the choices of politicians correspond to the
preferences of their geographical constituency as well as to the preferences of the
nation.

To measure congruence with the geographical constituency, I analyze whether
a politician in the National Council or the Council of States corresponds to the
preferences of the majority of her geographical constituents or not (see, e.g., Stadel-

6 Hizen (2021) provides a discussion on strategic abstention.

https://www.parlament.ch/de/services/volksabstimmungen
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mann, 2013). Thereby, I obtain a binary, natural measure of congruence between
an individual politician’s choices in both offices and the revealed preferences of her
geographical constituency, called Congruence with geographical constituency.

Similarly, the institutional setting allows measuring congruence with national
preferences. As referendum decisions reveal the preferences of the constituency,
they also reveal the preferences of the national majority of voters. By matching
the parliamentary decisions of individual politicians in both elected offices with the
revealed preferences of the national majority, I obtain a measure for congruence with
the nation, called Congruence with nation.

Generally speaking, merging roll call votes and referendum decisions to obtain
a measure of congruence can now be said to be a relatively established practice
in literature (see, e.g., Barcelo, 2019; Brunner et al., 2013; Garrett, 1999; Giger
& Kluver, 2016; Matsusaka, 2010, 2017; Portmann et al., 2012, 2022; Potrafke,
2013; Stadelmann et al., 2019). Using such a measure of congruence has relevant
advantages as decisions of politicians and voters are observed on identical legislative
proposals. Thereby, numerous difficulties regarding comparisons are avoided which
normally arise when the political decisions and voters’ preferences are measured on
different scales (see Achen, 1977; Gerber & Lewis, 2004; Matsusaka, 2010; Powell,
2009). Nevertheless, such a direct measure of congruence can only be established
in countries or polities with referenda. As the main intention of this paper is to
highlight the potential existence of a Thomas Becket incentive, the external validity
of the two measures of congruence that I employ is not a direct or fundamental
issue. Moreover, Congruence with geographical constituency and Congruence with
nation obtain some external validity as politicians do not know in advance what
their geographical constituency or the national voter majority actually wants, such
that they have to employ other means to predict voters’ preferences when voting in
parliament (see Brunner et al., 2013; Garrett, 1999; Stadelmann et al., 2013).

My two measures of congruence, such as Congruence with geographical con-
stituency and Congruence with nation, are both specific for individual politicians.
They will permit me to distinguish whether politicians who are elected from the
National Council to the Council of States tend to align themselves differently with
their geographical constituency relative to the nation after being elected to a different
office.

3 Empirical Strategy

3.1 Beyond Electoral Incentives

Portmann et al. (2022) have shown that incentives do not only dominate selection but
that there is no role for selection, at least in the Swiss context. However, it is unclear
which specific type of incentive matters for politicians when representing voters’
preferences. The present paper aims to provide evidence that politicians change their
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behavior with regard to voters’ preferences after changing from one elected office
to another elected office, and that this observable behavioral change is consistent
with public expectations, independently of electoral selection and incentives of the
respective office that the politicians hold. That is, I aim to explore the existence of a
Thomas Becket incentive.

In the Swiss context, public expectations as well as electoral incentives predict
that the politicians serving in the National Council will correspond to a lower degree
to the preferences of their geographical constituency than politicians serving in the
Council of States. The electoral districts for politicians of the National Council and
the Council of States are identical. Thus, the electoral incentives and re-election
constraints of politicians in both elected offices are to focus on their constituency.
Or in other words, regarding their own individual utility, self-interested politicians
have no reason to represent the nation but only their geographical constituency.

To provide indicative evidence of a Thomas Becket incentive, I will show that
any behavioral change of politicians who change office goes beyond the incentives
induced by the electoral system itself. Put differently, independently of the elec-
toral incentives, politicians in the National Council should represent the national
voters relativelymore than their geographical constituency. Members of the Council
of States should represent their geographical constituency relatively more than the
nation.

Normatively, the Swiss constitution stipulates that politicians of the National
Council are supposed to be representatives of the nation, while politicians of the
Council of States represent their Canton, i.e., their geographical constituency. More
precisely, Article 149(1) states that the National Council is composed of representa-
tives of “the people”whileArticle 150(1) states that theCouncil of States is composed
of representatives of “the cantons”. This normative view is consistent with the Ger-
man, French, and Italian translations for the names of the respective houses, e.g.,
the “Nationalrat” (National Council) refers to the “nation”, while the “Ständerat”
(Council of States) refers to the “states”/”cantons”. Thus, the constitutional article
appeals to the office itself. Evidently, any constitutional article is open to interpreta-
tion but public expectations toward members of the National Council and politicians
of the Council of States are different.

3.2 Estimation Equation

As outlined above, I distinguish the variables Congruence with geographical con-
stituency and Congruence with nation. This allows me to investigate whether politi-
cians who change from the National Council to the Council of States change their
behavior with respect to representation of the constituency versus the nation after
being elected, that is, I can exclude classical selection issues. I test whether the same
politicians rather represent the preferences of their constituency as opposed to the
preferences of the nation after changing from one office to the other. In practice, pref-
erences of nation and constituencies correlate, i.e., Swiss citizens will tend to hold
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similar preferences regarding certain policies independently of which constituency
they live in, but exceptions and diverging views occur.

To perform the analysis, I proceed as follows: The two variablesCongruence with
geographical constituency and Congruence with nation jointly form a new single
vector as a dependent variable called Congruence with nation or constituency, such
that each individual legislative decision of a politician is associated with two levels of
congruence. An indicator variable representing geographical constituency serves as
an independent variable and equals 1 if the dependent variable measures congruence
with the constituency for the respective politician. I estimate the followingmodelwith
an interaction term between politician changed office and representing geographical
constituency:

(Congruence with nation or constituency)ir = α + β1(Politician changed office)ir
+β2(Representing geographical constituency)ir

+β3(Politician changed office)ir ∗(Representing geographical constituency)ir
+γi + Xirδ+εir

The index i denotes a politician, and r denotes the legislative decision, respectively,
the referendum decision. Representing geographical constituency indicates whether
the constituency is on average better represented than the nation. I control for time-
variant legislator characteristics such as time served in parliament,7 among others in
the matrix Xir (see Table 1 for descriptive statistics below). γi represents politician
specific fixed effects. Additional fixed effects are entered in different regressions.
The estimation is carried out as a linear probability model, and estimated standard
errors are clustered for politicians. Employing a logit or probit model would yield
qualitatively and quantitatively similar results.

The coefficients β1 and β3 are of interest for my interpretations: β1indicates
whether politicians who changed from the National Council to the Council of States
(politician changed office) have generally higher congruence levels if representing
geographical constituency is set to zero. The coefficient of the interaction term,
β3, indicates whether politicians changing office additionally increase (or decrease)
their congruence levels by more closely representing the majority of their geograph-
ical constituency. As I include politician specific fixed effects, β1 and β3 allow me to
investigate the change in a politician’s behavior toward the geographical constituency
and the nation, respectively, when the politician changes from the National Council
to the Council of States.

In line with Portmann et al. (2022), I expect β1 > 0 due to a standard incentive
effect, that is, politicians who change office from the National Council to the Council
of States have generally higher congruence levels after their change due to electoral

7 The relevance of career paths has been highlighted, for example, by Pickard (2021).
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incentives. More importantly, I expect β3 > 0 due to a Thomas Becket incentive, that
is, I expect a differentially higher congruence with the geographical constituency
than the nation after politicians have changed office.

3.3 Identifying Assumptions

The empirical setting outlined above is intended to capture the differential change in
the behavior of politicians toward their geographical constituency’ preferences and
the national preferences when changing from the National Council to the Council of
States. Thus, the same personmust be observed in her respective roles in both offices.
The setting ensures this as politician specific fixed effects are employed such that the
same person is indeed observed in both elected offices. However, other identification
assumptions need to be defended.

I do not observe that politicians decide on the identical legislative proposal twice
(once in the National Council and once in the Council of States). Politicians of the
NationalCouncil and theCouncil of States are only elected in the sameconstituencies,
and they decide on identical proposals that affect their geographical constituency
and the nation. Looking at the policy proposals that are decided in a referendum,
there is no evident reason to believe that the National Council and the Council of
States treat them any differently after politicians changed office, especially when
also controlling for time fixed effects. There has been no institutional change over
time that would affect the two offices differently regarding how politicians behave
toward their constituency. Thus, politicians remaining in the National Council can
be seen as a reasonable comparison group for those that change to the Council of
States.

Elections lead to changes in the composition of both offices: Some politicians who
previously served in the National Council may not serve anymore. They may have
withdrawn from Parliament or they were not reelected. Note that the use of politician
specific fixed effects in the empirical specification considers all time-invariant char-
acteristics of old and new politicians. Consequently, factors like gender (we observe
an increase in the number of women in parliament over time), party affiliations (there
has been a rise in right party affiliations of politicians over time), valance (there has
been a stronger focus on personal traits), etc., are captured, even if the composition
of both elected offices changes after elections. It may be argued that newly elected
politicians in both offices need a learning period. To account for such a learning
period, I include the variables first year in parliament and first term in parliament.
Of course, I also control for time in parliament.

Parties play a role even if they are not allowed to legally instruct politicians how to
vote. The influence of parties is captured indirectly through politician specific fixed
effects. The relevance of party recommendations is thereby controlled for as the same
politician from the same party is observed in both offices. There are some politicians
who changed parties during the period of analysis. Excluding those politicians does
not change the results or interpretations.
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The size of the National Council and the Council of States are different such
that debates and, consequently, the voting behavior of politicians may be affected.
Indeed, in the Swiss context, the Council of States is sometimes seen as a “Cham-
bre de Réflexion” where debates are less heated. Differences regarding the style of
debates may induce generally higher (or lower) congruence levels of all politicians
in the Council of States. However, they do not explain why congruence with the
geographical constituency should increase more strongly than congruence with the
nation, which is the expectation that β3 > 0 due to the existence of a Thomas Becket
incentive.

While identification assumptions cannot be proven, there are strong reasons in
my view to believe that there is no selection of specific referendum decisions or
groups of politicians, which would affect the same politicians’ congruence with
their geographical constituency vs the nation differently, when changing from the
National Council to the Council of States.

3.4 Data

The dataset explored in this paper corresponds to the main dataset recently employed
by Portmann et al. (2022). It comprises 156 legislative decisions with subsequent
referenda for the years 1996 to 2015, covering the 45th to the 49th legislature of
the Swiss Houses of Parliament. The sample of politicians who have served in the
National Council includes 547 politicians, who made a total of 28,308 individual
legislative decisions. This leads to (2 * 28,308 =) 56,616 observed matches between
politicians’ decisions and their geographical constituents (Congruence with geo-
graphical constituency) and the national majority (Congruence with nation).

Out of 547 politicians, 32 have served both in theNational Council and theCouncil
of States over the time period analyzed. After having served in the National Council,
these politicians were elected to the Council of States. I observe their congruence
toward their geographical constituency as well as the nation in both offices. The
sample of politicians who changed elected office is comprised of 32.3% women, and
their average time in Parliament is 8.9 years (time in National Council and Council
of States combined). This broadly corresponds to the overall sample average where
26.1% of decisions are made by female politicians, and the average time being in
Parliament when deciding on legislative proposals is 6.5 years (see Table 1).

Time-invariant controls for individual politicians (e.g., gender, education, etc.)
are not included in the dataset and the estimations as they are automatically captured
by politician specific fixed effects. Time-variant politician specific controls were col-
lected from the official homepage of the Swiss Parliament where short biographies
for each politician are available (see Portmann et al., 2012, who started the data col-
lection, and Portmann 2014 for detailed descriptions). Interest group affiliations8 and

8 Swiss legislators must disclose their affiliations with interest groups such as executive board seats
in companies and foundations, committee memberships, counseling activities, and other activities
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Table 1 Descriptive statistics of main dataset

Obs. Mean SD Min. Max.

Dependent variable

Congruence of politicians with nation and
constituency

56,616 0.6474 0.4778 0 1

Main variable of interest

Politician changed office 56,616 0.0272 0.1626 0 1

Representing geographical constituency 56,616 0.5 0.5 0 1

Time-variant politician specific controls

Time in parliament (years) 56,616 6.498 5.1448 0.0066 34.283

First year in parliament 56,616 0.1296 0.3359 0 1

First term in parliament 56,616 0.3853 0.4867 0 1

Interest group affiliations

Number of section interest groups 56,616 2.9716 3.9081 0 59

Number of cause interest groups 56,616 2.5019 3.1104 0 28

Number of regional interest groups 56,616 0.1543 0.5306 0 8

Notes Unweighted statistics represented. See Portmann et al. (2022) for sources and details.

their classification stem from Portmann et al. (2022) which are based on information
from the Swiss Parliamentary Services and a large additional data collection effort
by the authors. All time-variant descriptive statistics are provided in Table 1.

4 Public Expectations and Behavior in Office

4.1 Serving in Office as an Incentive in Itself

Table 2 presents the main results which can be interpreted as consistent with the view
that a Thomas Becket incentive acts on politicians.

Specification (1) shows that politicians who are elected from the National Council
to theCouncil of States represent their geographical constituency aswell as the nation
more closely than politicians who remain in the National Council. The variable
Politician changed office has a positive and statistically significant coefficient, that
is, β1 > 0. The estimates suggest an increase in overall congruence of about 4.9%
points when politicians change from one elected office to another. This effect is
consistentwith Portmann et al. (2022)who highlights the relevance of incentives over
selection. The variable representing geographical constituency is not statistically
significant, suggesting that politicians who remain in the National Council represent

for lobby groups according to the federal law (Art. 11, Parlamentsgesetz). The Swiss Parliamentary
Services collect this information (see Gava, 2017, Péclat & Puddu, 2017). The register frequently
attracts media attention. Following the literature, we group them into sectional (#Sectional) and
cause groups (#Cause) (see Giger & Kluver, 2016; Stadelmann et al., 2016).



The Office Makes the Politician 405

Table 2 Representing geographical constituencies more closely than the nation when changing
office—A Thomas Becket incentive in action

(1) (2) (3)

Dependent variable: Congruence of politicians with nation and constituency

Politician changed office 0.0495**
(0.0234)

0.0436*
(0.0234)

0.0524**
(0.0225)

Representing geographical constituency 0.0033
(0.0036)

0.0033
(0.0036)

0.0033
(0.0037)

Politician changed office * Representing
geographical constituency

0.0383*
(0.0206)

0.0388*
(0.0206)

0.0392*
(0.0207)

Politician FEs Yes Yes Yes

Referendum type FEs No Yes Yes

Time FE No Yes Yes

Time-variant politician specific controls No Yes Yes

Interest group affiliations No No Yes

n. Obs. 56,616 56,616 56,616

R2 0.1053 0.1056 0.106

Notes ***, **, and * indicate a mean significance level of <1%, 1–5%, and 5–10%, respectively.
Linear probability models are estimated and standard errors are clustered for MPs. All estimations
include an intercept. The indicator variable “politician changed office” takes the value of 1 if an indi-
vidual MP changes from the National Council to the Council of States. The identifier “representing
geographical constituency” takes the value of 1 if the dependent variable refers to the preferences of
geographical constituency and 0 if it refers to the preferences of the nation. “Politician FEs” capture
all time-invariant politician specific heterogeneity (e.g., gender, education, etc.), “Referendum type
FEs” capture all referendum specific heterogeneity (e.g., turnout, salience, etc.), and “Time FEs”
capture all parliamentary year specific heterogeneity (e.g., composition of parliament, parties in
parliament). “Time-variant controls” include “time in parliament”, “time in parliament squared”,
“first year in parliament”, and “first term in parliament”. “Interest group affiliations” include the
“number of section interest groups”, “number of cause interest groups”, and “number of regional
interest groups”

the nation and the constituency equallywell.9 The interaction termbetween politician
changed office and representing geographical constituency is positive, that is,β3 > 0.
It reveals that politicians who changed elected office have after their change even
higher congruence levels with the preferences of their constituency, that is, they
represent their geographical constituency better than the nation. Thus, they put an
additional emphasis on their geographical constituency, thereby corresponding to
their constitutional task and the public expectations. The additional congruence
with their constituency’s preferences is with 3.8% points quantitatively relevant.

9 Interestingly, the insignificant coefficient of the variable representing geographical constituency
might be interpreted as consistent with a Thomas Becket incentive too: politicians from the National
Council fulfill their constitutional task to some degree, i.e., they do not focus more strongly on the
constituency in which they are elected than on the nation. If a Thomas Becket incentive played
no role, one might expect that the coefficient for representing geographical constituency should
be positive and significant. An insignificant coefficient indicates that politicians represent national
citizens who do not vote for them.
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It is consistent with the view that politicians change their behavior after changing
elected office in a directionalway according to the public expectations: It is consistent
with the existence of a Thomas Becket incentive.

In specifications (2) and (3), referendum type fixed effects, time fixed effects,
time-variant politician specific controls, and interest group affiliations are added. All
results remain statistically significant and quantitatively similar, that is, β1 > 0 and
β3 > 0. Thus, if a politician changes from the National Council to the Council of
States, congruence in general increases as would be expected due to the electoral
system, β1 > 0. At the same time, the politician who changes office puts relatively
more weight on the preferences of the geographical constituency than the nation,
β3 > 0, supporting the view that a Thomas Becket incentive is relevant.

4.2 No Changes Prior to Being Elected

Table 3 provides further indirect evidence for a Thomas Becket incentive. Here, I
restrict the analysis to two separate subsamples, namely a sample of members of
the National Council only (specifications 1 and 2) and the Council of States only
(specifications 3 and 4). As the focus is not anymore on the act of changing office,
the indicator variable is now called Politician is office changer10, that is, it indicates
for specifications (1) and (2) whether a politician will be elected from the National
Council to the Council of States (comparison group equals other members of the
National Council). For specification (3) and (4), it indicates whether a politician was
elected from the National Council to the Council of States (comparison group equals
other members of the Council of States).

If aThomasBecket incentivematters, I should not observe that politicianswhowill
change office represent their geographical constituency differently from the nation in
comparison to other politicians of theNationalCouncil. Thus, the interaction between
politician is office changer, and representing geographical constituency should be
statistically insignificant and close to zero. This is precisely what is observed in
specifications (1) and (2). Thus, future members of the Council of States—while still
serving in the National Council—behave statistically identically to other members
of the National Council. They do not show any higher congruence level with their
constituency that elects them to the Council of States. Thus, they fulfill the task of
their current office in a similar way as other members of the National Council.

Specifications (3) and (4) show that once having been elected to the Council of
States, politicians have lower congruence levels with the nation (between −3.6 and
−3.2% points) than politicians who were not in the National Council before serving
in the Council of States. The results are marginally statistically significant at the
10-%-level. At the same time, the interaction term between politicians who have
changed office and the indicator for representing the geographical constituency is

10 The inclusion of politician specific fixed effects is impossible. I include party fixed effects to hold
constant for ideology instead.
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Table 3 No effects prior to being elected: Evidence prior to and after change of office

(1) (2) (3) (4)

Dependent variable: Congruence of politicians with nation and constituency

Politician is office changer 0.0101
(0.0103)

0.0090
(0.0097)

−0.0320*
(0.0194)

−0.0361*
(0.0217)

Representing geographical
constituency

0.0027
(0.0036)

0.0028
(0.0037)

−1.4e−15
(0.0123)

−1.3e−15
(0.0123)

Politician is office changer *
Representing geographical con-
stituency

0.0104
(0.0217)

0.0106
(0.0219)

0.0416*
(0.0245)

0.0418*
(0.0249)

Party FEs Yes Yes Yes Yes

Referendum type FEs No Yes No Yes

Time FE No Yes No Yes

Time-variant politician
specific controls

No Yes No Yes

Interest group affiliations No Yes No Yes

n. Obs. 55,078 55,078 4172 4172

R2 0.0886 0.0891 0.092 0.0926

Dataset Lower house members Upper house members

Notes ***, **, and * indicate a mean significance level of <1%, 1–5%, and 5–10%, respectively.
Linear probability models are estimated, and standard errors are clustered for MPs. All estimations
include an intercept. The indicator variable “politician changed office” takes the value of 1 if an indi-
vidual MP changes from the National Council to the Council of States. The identifier “representing
geographical constituency” takes the value of 1 if the dependent variable refers to the preferences of
geographical constituency and 0 if it refers to the preferences of the nation. “Politician FEs” capture
all time-invariant politician specific heterogeneity (e.g., gender, education, etc.), “referendum type
FEs” capture all referendum specific heterogeneity (e.g., turnout, salience, etc.), and “time FEs”
capture all parliamentary year specific heterogeneity (e.g., composition of parliament, parties in
parliament). “Time-variant controls" include “time in parliament”, “time in parliament squared”,
“first year in parliament”, and “first term in parliament”. “Interest group affiliations” include the
“number of section interest groups”, “Number of cause interest groups”, and “number of regional
interest groups”

positive andmarginally significant at the 10-%-level, that is, politicians who changed
elected office have higher congruence levels with their constituency of about 4.16–
4.18% points. Thus, if anything, the results in specifications (3) and (4) suggest that
politicians who have changed elected office may be more eager in representing their
constituency rather than the nation in comparison to other members of the Council of
States. This result suggests that theymay take their constitutional task of representing
the constituencymore to heart consistent with a Thomas Becket incentive. Adding up
the two coefficients results in a statistically insignificant overall difference between
politicians who changed elected office and those in the Council of States who did
not which is close to zero.
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5 Conclusions

This article endeavours to provide a complementary view to the prevalent argument
that elections act as selection or incentive devices to align politicians with the prefer-
ences of voters. I provide empirical evidence consistent with the view that politicians
seek to correspond to public expectations after achieving a political office. The results
support the view that public expectations of holding an office might be of relevance,
a topic that has been largely neglected in the economic literature. Politicians who
are elected to office may also correspond to the public expectations of the office they
hold independently of selection and electoral incentives.

The indicative evidence that I provide is consistent with the story of the historical
person of Thomas Becket, who dutifully served in the office as Lord Chancellor and
later in the office of Archbishop. Thomas Becket changed his behavior to fulfill the
respective office, the office itself did not change. My results are supportive of the
existence of a Thomas Becket incentive in politics, such that one may argue that
the office makes the politician. A Thomas Becket incentive relates to how rules of
appropriateness and rule-driven behavior matter in the context of formally organized
political institutions, see March and Olsen (2008). Evidently, this view does not
exclude that standard election incentives and selection are relevant too. Politicians
in my analysis do not perfectly satisfy the expectations of their office, that is, they do
not perfectly correspond to the preferences of their geographical constituency after
changing office.

At a first glance, the existence of a Thomas Becket incentive suggests that the elec-
tions as a selection device are less important. That interpretation would be premature
at this point. In fact, it might be argued that voters specifically select politicians with
the expectation that they will change once in office, that is, elections serve as a selec-
tion device for politicians who fulfill the tasks of the office. Once these politicians
change to another office, they subsequently fulfill the task of the other office. The
empirical setting analyzed in this paper does not allow me to exclude such a type
of selection effect. Still, I would consider this line of argumentation as somewhat
semantic: Practically, it means that selection is based on a belief of voters in the exis-
tence of a Thomas Becket incentive of the office itself. More generally, this debate
may be related to classical debates in political representation such as the delegate vs
trustee view (e.g., Pitkin, 1967).

In policy discussions, we tend to hear arguments of the type “once in office, the
person will adapt”. These arguments are essentially referring to a potential Thomas
Becket incentive. The results are, to my knowledge, the first to provide empirical
evidencewhich can be seen as consistentwith the existence of such a type of incentive
for congruence of politicians with the preferences of their constituency. I believe that
they provide a complement to the dichotomy of elections as a selection and incentive
device. It is worthwhile to extend the existing dichotomy by allowing for the potential
existence of a Thomas Becket incentive, to collect further evidence for its existence,
and to integrate it into future theoretical research on institutions and electoral systems.
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