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Abstract. Classical computer vision solutions were used to extract
image features designed by human experts for encoding visual scenes
into vectors. Machine learning algorithms were then applied to model
such vector space and assign labels to unseen vectors. Alternatively, such
space could be composed of histograms generated using the Bag of Visual
Words (BoVW) that compute the number of occurrences of clustered
handcrafted features/descriptors in each image. Currently, Deep Learn-
ing methods automatically learn image features that maximize the accu-
racy of classification and object recognition. Still, Deep Learning fails
in terms of interpretability. To tackle this issue, methods such as Grad-
CAM allow the visualization of regions from input images that support
the predictions generated by Convolutional Neural Networks (CNNs),
i.e. visual explanations. However, there is a lack of similar visualization
techniques for handcrafted features. This fact obscures the comparison
between modern CNNs and classical methods for image classification. In
this work, we present the BoVW-CAM that indicates the most important
image regions for each prediction given by the BoVW technique. This
way, we show a novel approach to compare the performance of learned
and handcrafted features in the image domain.

Keywords: Deep Learning · Class Activation Mapping · Image
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1 Introduction

Deep learning has emerged as a new branch of machine learning. It has proven to
be very effective in many computer vision tasks such as image classification [15],
object detection [25], image segmentation [8], and others. In addition to report-
ing high accuracy rates, Deep Learning eliminated the requirement for human
experts to design feature extractors since convolutional layers of Convolutional
Neural Networks (CNNs) are suited for this task.

However, even in the face of all these advantages, Deep Learning used to
fail in interpretability [13]. This attribute may be crucial, especially in high
misclassification costs. To attack this black box issue, Zhou et al. [24] proposed
the Class Activation Map (CAM), which highlights the most significant image
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regions to produce a prediction by a CNN. This technique modifies the network
architecture, replacing the fully connected layers with convolutional layers and
a Global Average Pooling (GAP). Then, the channels from the output of the
last convolutional layer are weighed by the network parameters that link each
element in the GAP output to the neuron of the activated class. As a result,
this weighted sum of channels is the final visual explanation provided by CAM.
More recently, Selvaraju et al. proposed the Grad-CAM [21], this method can be
applied to many CNN models without requiring architectural changes. For this,
it calculates the gradient of the last convolutional layer concerning the network
output, which measures the influence of each cell in the feature map to compose
the network prediction.

The huge success of Deep Learning methods currently overshadows classic
techniques based on Handcrafted (HC) features for image classification [10].
However, some researchers in the literature suggest a careful comparison between
Learned (LN) and HC features. Nanni et al. [17] ran an exhaustive comparison
between the two approaches in different image domains, from butterfly species
classification to cancer detection. Their experiments showed several scenarios
where HC features outperformed the LN features in accuracy. In early 2020, Lin
et al. [12] proposed a random forest to identify Magnetic Resonance (MR) images
of livers that are adequate for clinical diagnosis. They reported that HC features
outperformed LN features across smaller datasets, i.e., less than 200 images for
model training. In 2021, Saba et al. [20] investigated the problem of detecting
microscopic skin cancer in non-dermoscopic color images. They reported cases
where HC features were better than LN features. Finally, in 2022, Silva et al.
[22] evaluated HC and LN features in the context of violence detection in video
frames. Their results showed that LN features can not always be claimed superior
since some violent scenes are only detected by HC features.

A widely used image representation technique based on local HC features is the
Bag of Visual Words (BoVW) [5]. Concerning the existence of many local descrip-
tors along a single image, a keypoint is referred to as a structure composed of
a feature/descriptor vector and an image coordinate to indicate the local region
described by such feature/descriptor. The final BoVW image representation is an
histogram of the occurrences of clustered handcrafted features/descriptors pre-
sented in the given image. Finally, the BoVW histograms may feed a classifier like
Support Vector Machine (SVM) [9]. This work proposes a visualization method
that allows the interpretation of the most important regions for image classifica-
tion using BoVW. Several works [12,17,20,22] previously evaluated the accuracy
rates obtained by HC and LN features to conclude that they focus on different
aspects of the images. However, to the best of our knowledge, such divergence was
not demonstrated in the literature at the image domain level.

2 Background

2.1 Keypoints

Keypoints refer to structures for encapsulating the representation of local fea-
tures along a given image. Therefore, for representing a single image patch, a
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keypoint has a feature/descriptor vector that holds information about the image
semantics locally and a coordinate tuple that localize it within the image. The
extraction of keypoints is then composed of at least two main steps for retrieving:
(i) the keypoint localization, and (ii) the keypoint feature/descriptor.

On the one hand, a good keypoint localizer identifies local regions that are
potentially distinct along the image. Such uniqueness is crucial for representing
the image’s elements that allow its identification. Example of algorithms for
keypoint localization includes FAST [18], BRISK [11], ORB [19], SURF [3], SIFT
[14], and KAZE [2]. On the other hand, a good keypoint descriptor faithfully
characterizes image local regions. Example of techniques for extracting keypoint
descriptors are BRISK [11], FREAK [1], BRIEF [4], SURF [3], ORB [19], SIFT
[14], KAZE [2]. Those are all handcrafted techniques, i.e. such algorithms are
humanly designed and data invariant.

Keypoint Localization. Keypoint localizers generally try to find more repre-
sentative image patches in relation to their neighbors. This representation can
be through aspects such as corners, colors, or brightness. A classic method for
locating keypoints is the Harris Corner Detector. From the dx and dy image gra-
dients, a Harris response map is generated by encoding the magnitude of gray
level changes in both horizontal and vertical directions for each 3×3 image win-
dow. Finally, each pixel in the image whose Harris response exceeds a predefined
threshold τ is assigned as a corner.

Another widely used method is the FAST (Features from Accelerated Seg-
ment Test). Considering a Bresenham circle of radius three centered at each
pixel in the image, the FAST compares the gray value of the central pixel to
each intensity along the Bresenham circumference. If an amount of N consecu-
tive pixels of this circumference is brighter or darker than the central point, it
is classified as a corner. To speed up the method, it is possible to use a machine
learning-based approach for detecting consecutive patterns in a sequence. Then,
after extracting these 16-pixel circumferences and their central intensity values,
it is possible to train a classifier as a decision tree [16] to decide whether or not
this point is a corner.

Other methods like SIFT [14], SURF [3] and KAZE [2] uses multiscale anal-
ysis. SIFT algorithm, for instance, computes the Difference of Gaussians (DoG)
between different image scales. The local minima and maxima along the DoG
are considered keypoint candidates.

Keypoint Descriptors. After the keypoint localization step, it is necessary to
associate them with appropriate feature/descriptor vectors that correctly encode
their semantics. Such generated descriptors are usually based on histograms of
gradients, directions of border orientations, or pixel intensities. For example,
using the pixel intensity, we have the BRIEF [4] and FREAK [1] that build the
feature/descriptor vectors from the relative intensity of pairs of pixels within the
keypoint neighborhood.
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Descriptors based on gradients have been more used once they present greater
efficiency with lighting variation, resizing, and orientation [2]. In SIFT, for
instance, the vectors are constructed within 16 subareas around the keypoint.
For each subarea, a histogram of the gradient flow is computed along eight
directions. Then, by concatenating the histograms of each subarea, a final fea-
ture/descriptor of 128 dimensions is created.

2.2 Bag of Visual Words (BoVW)

The main idea of BoVW is to create new representations of images as his-
tograms. These histograms are relative to the number of occurrences of spe-
cific features/descriptor referred to as visual words. To build these histograms,
the following steps are necessary: i) the features/descriptors of a subset of the
data are grouped using some clustering algorithm like K-Means [7], the centroids
Ω = {ω1, ω2, · · · , ωn} resulting from this grouping are then called visual words;
ii) given the visual dictionary Ω, all features/descriptors extracted within a new
image are associated with the visual word closest to them; iii) finally, the his-
togram that will describe this image is generated by computing the number of
occurrences of each word in the image. These steps are summarized in Fig. 1.

Fig. 1. The Bag of Visual Words (BoVW) working diagram. From a dataset partition
(referred to as Dictionary Set), keypoints are localized within all images and their
feature/descriptors are extracted. A new vector space of feature/descriptors is then
created. By grouping the feature/descriptors using a clustering algorithm, a set of visual
words Ω = {ω1, ω2, · · · , ωn} is created in the keypoint feature/descriptors space. Given
a new image x from the Train Set partition, image keypoints are localized and their
feature/descriptors are extracted. Finally, in a vector quantization step, a frequency
histogram compute how many keypoints of x falls into each word of Ω.
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3 Methodology

The proposed Class Activation Mapping (CAM) technique for visualizing sig-
nificant regions of the image that support the current BoVW prediciton can
be divided into three steps: (i) generating a correlation matrix between words
ωk, 1 ≤ k ≤ K (for K visual words) and labels cj , 1 ≤ j ≤ J (for J classes), (ii)
generating a visual heatmap for highlighting the words along the image domain,
and (iii) post-processing the BoVW-CAM visualization. These steps are graph-
ically represented in Fig. 2.

Fig. 2. The BoVW-CAM working diagram. The correlation between each visual word
ωk, 1 ≤ k ≤ K (for K visual words) from the dictionary Ω and the classes cj , 1 ≤ j ≤ J
(for J classes) in the dataset are calculated to generate a J × K correlation matrix.
Finally, given a new test input composed by image, keypoint, BoVW histogram, and
class predicted, each keypoint location in the image domain is highlighted according
the correlation of its closest visual word and the predicted class to generate a visual
explanation accordingly to the BoVW-CAM.

In the first step, using the feature/descriptors ωk that compose the dictionary
Ω of visual words, correlation coefficients between the visual words ωk, 1 ≤ k ≤
K and each problem class cj , 1 ≤ j ≤ J are calculated using the Spearman’s rank
correlation coefficient algorithm [23]. Therefore, a correlation matrix is generated
where each column represents a dictionary word ωk, and each line represents a
classification label cj .

In the second step, an image heatmap is generated from (a) an input image,
(b) its BoVW histogram, (c) its keypoints, and (d) the predicted label. Then,
each keypoint location in the image domain is highlighted according the correla-
tion of its closest visual word and the predicted class to generate a visualization
of the most important keypoints.
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Finally, in the third step, operations are applied to improve the previous visu-
alization as a heatmap (Fig. 3). First, a MaxPooling2D is used to facilitate the
visual identification of image regions densely occupied by keypoints, followed
by Gaussian Blur to attenuate the gray value variations to induce a smooth
heatmap. Since the MaxPooling2D is an operation that reduces the input dimen-
sion, upsampling the image back to the initial size is necessary. Then, we then
have the final BoVW-CAM view relative to the target class. The whole method
can be seen in details in the Algorithm 1.

Algorithm 1: The BoVW-CAM method
Input: dict hists, class labels, kp list test, img test, pred test
Output: feature map

corr matrix ← []
for each label ∈ class labels do

line ← []
for each column ∈ dict hists do

line.add(corr(column, label))
end
corr matrix.add(line)

end
feature map ← zeros(img test.width, img test.height)
for each kp ∈ kp list test do

feature map[kp.X][kp.Y ] ← corr matrix[pred test][kp.Cluster]
end
feature map ← max pooling(feature map)
feature map ← gaussian blur(feature map)
feature map ← resize(feature map, img test.width, img test.height)

Fig. 3. Scheme for post-processing the visualization of the most important keypoints
for generating thee final BoVW-CAM heatmap. The input image goes through a Max-
Pooling2D to facilitate the visual identification of image regions densely occupied by
keypoints, after that a Gaussian Blur is used to smooth the image gray values to create
a smooth heatmap, and finally the image is upsampled to its original size.
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4 Experiments

We designed experiments for comparing the most important image regions
for classification via Bag of Visual Words and Convolutional Neural Networks
(CNNs). To the best of our knowledge, this visual comparison in the image
domain is unprecedented in the state-of-the-art.

For the experiments, we used the “Cats vs. Dogs”1 dataset, which is a stan-
dard benchmark for binary image classification. In total, the set is composed of
12,500 images for each class.

4.1 Experimental Parameters

We used SIFT as keypoint extractor, the classifier used with the BoVW was the
SVM, and the clustering algorithm was the K-Means. Finally, we used 256 words
to construct the dictionary. With respect to the CNN architecture, we used three
convolutional layers followed by two fully connected layers. The ReLU activation
function was employed in all the layers except for the last one which was activated
by Sigmoid. The evaluated architecture can be seen in Fig. 4. The optimization
technique was the RMSProp, the loss function was Binary Crossentropy, the
learning rate was 0.001, and the training lasted for 20 epochs.

Fig. 4. CNN architecture used in this work.

The database was divided following two distinct approaches: for training
the CNN, 70% of the data were used. For training the BoVW, the previous
training partition was divided into two folds of the same size, one for building
the dictionary and another for training the classifier. The other partitions in
both approaches were made in the same proportion, 10% for validation and 20%
for testing.

1 https://www.kaggle.com/datasets/shaunthesheep/microsoft-catsvsdogs-dataset.

https://www.kaggle.com/datasets/shaunthesheep/microsoft-catsvsdogs-dataset
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5 Results

5.1 Visualization

We generated visual explanations for classifications accordingly the learned fea-
tures via Grad-CAM [21] and the handcrafted features via the proposed BoVW-
CAM in Figs. 5 and 6. It is clear that the two approaches focus on different
aspects of the images; the BoVW method seems to cover a larger area of the
classified object, while CNN focuses on fewer aspects of the image.

Fig. 5. Visualization for cat class with Grad-CAM and BoVW-CAM methods.

Fig. 6. Visualization for dog class with Grad-CAM and BoVW-CAM methods.
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5.2 Venn Diagram

It is also possible to reinforce the hypothesis that learned and handcrafted fea-
tures are focused on different aspects of the evaluated images by building a Venn
Diagram of their predictions. In Fig. 7 we can see that 66.45% of the test set are
corrected classified by both methods and the CNN classifies correctly more than
BoVW. However, a significant amount of images (523) are misclassified by the
CNN while corrected classified by the BoVW. This strengthens the fact that it is
not so straightforward that Deep Learning methods can totally replace classical
methods based on handcrafted features.

3322523 973

181

Handcrafted Learned

Fig. 7. Number of samples corrected classified by the handcrafted and learned features.

5.3 Dice Score

To measure how big is the difference in the image focus between BoVW and
CNN, we transformed the visual explanations of Grad-CAM and BoVW-CAM
into binary images for the entire test set for calculating the Dice Score [6] between
them. As a result, an average of 0.359 with a standard deviation of 0.138 was
obtained. This result confirms that there is a high divergence between the aspects
observed by handcrafted and learned features.

6 Conclusion

Based on classification accuracy rates, previous works have suggested that there
is a divergence between the aspects that handcrafted and learned features focus
on images. In this work, we developed a method capable of generating visual
explanations for classification algorithms based on BoVW. Then, we could com-
pare our results with the visual explanations generated by a Grad-CAM on a
CNN. In this work, we visually compared the most relevant image regions for
classifications based on handcrafted features based on keypoints and learned
features. The quantitative evaluation via DICE score confirms that the pixels
considered by each classification method highly diverge from each other. Fur-
thermore, despite the Deep Learning method having achieved a higher accuracy
rate, we showed a significant amount of test data corrected classified exclusively
by the BoVW.
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