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Abstract. Glaucoma is the most significant cause of irreversible vision
loss and the second biggest cause of blindness globally. The first signs
of the disease will only appear in an advanced stage when there is
no more recovery. Early diagnosis is of the utmost importance and is
currently performed primarily through fundoscopy. This fundus image
exam is a tedious and manual process, prone to human errors that can
result in false negatives, which could promote vision loss. Deep learning
approaches are being used to detect glaucoma directly from eyes fundus
images, achieving promising results. However, there is no apparent inter-
est in deploying these systems in medical clinics, which would require
lightweight models with minimal false negatives and comprehensive out-
puts. The present study explores these gaps and proposes an architecture
composed of one segmentation network for disc and cup and one classifi-
cation network for direct glaucoma classification. Our main contribution
is optimizing a glaucoma-aiding system by increasing model sensitivity
by 3% and simplifying the architecture. Unlike related works, we present
a lighter model that shows valuable information to the physician, build-
ing their trust in the system.

Keywords: Deep learning · Computer vision · Glaucoma ·
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1 Introduction

Glaucoma is an ocular disease responsible for most global irreversible vision
loss and the second biggest cause of blindness [8]. Early diagnosis is of utmost
importance to prevent vision loss. The degeneration of the optic nerve is the
primary pathology of glaucoma, usually preceded by an increase in intraocular
pressure [9]. This increase causes a common enlargement on the angle of the
optic disc cup, erosion of the rim tissue, and, as a result, visual field damage.
Evaluation of the optic nerve head through digital fundoscopy is one of the most
feasible exams because of its less invasive approach and capability of generating
high-resolution images of the back of the eye [4].
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However, fundoscopy exam is manual, tedious, complex, and prone to human
errors. As a result, this can lead to irreversible vision loss, a consequence of false-
negative prognosis done by tired or inexperienced physicians [1]. To address these
issues, deep learning models are being explored to classify glaucoma from fundus
images, achieving promising results [2,6,15]. However, only a few studies discuss
the possibility of deploying their systems in the medical clinic. In these cases,
expert trust in the system is required and can be increased by showing more
than just the final prediction, such as the segmentation of the eye structures
and the system’s confidence level on the prognostic. Also, lighter models must
be adopted to make this possible while aiming to increase sensitivity more than
just accuracy.

The main goal of this study is to optimize the state-of-the-art models used
on the diagnosis aiding tool created by Civit-Masot et al. [4]. Their system is an
ophthalmic aid tool that uses deep learning and fundus images to classify and
segment the image directly. It provides robust information to support the final
diagnosis, in addition to using modules light enough to be installed in embedded
systems of low storage and processing power. We choose this study as the basis
for this research.

The base model architecture consists of a direct classification network based
on MobileNetV2 [13], and two modified U-net [11] segmentation networks, for
the disc and cup segmentation. This study adds an ensemble of MobileNetV2
and EfficientNet for the direct classification network and a unified segmentation
network for the disc and cup features. By adding a second classification net-
work, we increased sensitivity by 3% compared to the base model. We achieved
comparable results with the unified segmentation network while simplifying the
architecture and reducing processing time by 36.35%. Therefore, our contribution
is made by exploring the gaps in the literature left in evidence by the authors,
namely:

– Increasing the sensitivity of the model, further reducing the number of false
negatives and thus ensuring even more value for its use in the clinic;

– Architecture simplification, taking up less storage space and using less pro-
cessing resources, without losing accuracy, having as an only consequence the
need for more initial training time.

The remainder of the paper is organized as follows. In Sect. 2 we give a review
of related works. Section 3 introduces the proposed model and the implementa-
tion process. Then, Sect. 4 report the experiments made and the results obtained.
Lastly, Sect. 5 concludes this work.

2 Related Work

The evaluation of related works was done to understand the state-of-art of
glaucoma detection using machine learning. Our study followed the systematic
review pipeline proposed by Kitchenham et al. [7] and can be addressed in four
main steps: 1) Define research questions; 2) Elaborate a research protocol; 3)
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List inclusion and exclusion criteria; 4) Review selected papers and answer the
research questions. This questions include describing the techniques and tech-
nologies commonly used in automated glaucoma classification, the metrics used
to measure the efficacy and accuracy of glaucoma classification models, the pri-
vate and public datasets and, finally, the state-of-the art models.

Research process started by creating a search string and applying it in dif-
ferent journals, followed by inclusion and exclusion filtering and finishing with
the acquisition and review of selected papers.

Civit-Masot el al. [4] used a U-shaped network for the segmentation and
RANSAC to calculate and improve the expected elliptic shape. Xu et al. [17]
also made use of the U-shaped network. However, it has segmented not only the
optic disc and cup, but also defects in the retinal nerve fiber layer. Yu et al. [18]
used a modified U-net with ResNet-34 as the encoder, achieving top performance
in dice values for the cup and the disk.

Sreng et al. [15] used the DeepLabV3+ network, which had not been
explored for segmentation yet, testing its performance with five different con-
volutional neural networks (CNNs), the best combination being DeepLabV3+
with MobileNet. Sallam et al. [12] used several pre-trained CNN architectures
and trained them all using transfer learning from the same dataset, thus compar-
ing their performances. Chai et al. [2] used heterogeneous data such as retinal
images, medical indicators, and patient complaint texts, integrate them using
representation integration, and predict using a Bayesian’s model.

Ahn et al. [1] elaborated on three models to classify glaucoma. The first uses
logistic regression, the second InceptionV3 with transfer learning, and the last
was an CNN manually architected by the authors. The authors elaborated the
one with the better performance among the three. Phasuk et al. [10] combined
the results of several integrated networks with the DenseNet-121 for feature
extraction and a neural network for the final classification.

Chai et al. [2] created a heterogeneous dataset using retina images, medical
charts and text-based pacient complaints, training a bayesian neural network
model using representation integration.

Sallam et al. [12] gathered 9 of the most successful models in image classi-
fication challenges and, with their pre-trained weights, compared their perfor-
mance against a single glaucoma classification dataset, the Large-scale Atten-
tion based Glaucoma (LAG) dataset. Selected models were AlexNet, VGG16,
VGG19, GoogleNet (Inception V1), ResNET-18, ResNET-50, ResNet-101 and
ResNet-152. Best results were achieved by ResNet-152, with an accuracy, preci-
sion and recall of 86,9.

The work of Serte et al. [14] compared four popular image classification net-
works using five public glaucoma classification datasets. While a single dataset
was used as the testing set, the other four were used to train the models, compar-
ing model performance for each dataset. Selected networks included Xception,
ResNet-50, GoogLeNet and ResNET-152. Datasets used in this work were HRF,
Drishti-GS1, RIM-ONE, sjchoi86-HRF and ACRIMA. According to author’s
results, each network performed better on specific datasets.
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As seen, deep learning has shown promising results on classifying fundus
images as normal or glaucomatous in an automated way. However, more studies
are needed to be focused on the clinic, where issues in addition to accuracy are of
paramount importance, such as the explainability and transparency of the results
obtained by the models. Moreover, the best-performing models need a large
volume of data to extract relevant features and patterns. In the medical field,
such information is difficult to obtain, with considerable effort from researchers
to model systems capable of working with small amounts of data without losing
performance.

Our research focuses on recreating the methodology of Civit-Masot et
al. [4] and tackling the open issues of architecture simplification and sensitivity
increase, leading to better clinical usage of the model. Section 3 describes the
proposed model.
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Fig. 1. Base model and proposed model architectures. Each color highlights a subsys-
tem. The proposed model segments both disc and cup using a single U-net model and
improve the classification subsystem with the ensemble of two lightweight models.

3 Proposed Method

In this paper, we extend the work of Civit-Masot et al. [4] by adding a sec-
ond classification network and unifying the two segmentation networks. In that
way, we aim to increase model sensitivity and simplify its architecture to enable
its deployment in medical clinics. Initially, the pipeline of the base model was
replicated, followed by the implementation of the ensemble of the classification
networks, and lastly, the unification of the segmentation networks. Both archi-
tectures and execution flow are presented in Fig. 1. Highlighted colors represent
the correlated areas between models.
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The network proposed by Civit-Masot et al. [4] employed distinct networks
for disc and cup segmentation. Such an improvement simplified development and
helped adopting datasets with separated label masks for each structure. On the
other hand, this approach leads to an increase in processing and storage loads.
In order to enhance user’s trust in the system while keeping it light enough to
deploy it in embedded systems, our proposed method joins both disc and cup
segmentation networks into a single one, reducing processing time and cost.

The application pipeline is as follows: first, the back of the patient’s eye is
captured by a digital fundus camera. Then, the image is loaded into the system
and preprocessed, fed afterward to both prediction subsystems, classification,
and segmentation. The classification system outputs its prediction, while the
segmentation system will extract disc and cup features and compute the cup-to-
disc ratio (CDR) as its output prediction.

The diagnosis system then evaluates both outputs, and if one is true for glau-
coma, this is the final prognostic printed into the medic screen. In addition to the
prognostic, a processed image with disc and cup highlighted by the segmenta-
tion network is presented, followed by the CDR value. Even though the system’s
internal parts are not self fully explainable, these features aim to increase the
medical trust in the final prediction. Since the system can output a processed
image and its computed values, it is more evident how the machine came to a
conclusion.

3.1 Dataset

RIM-ONE DL [5] was used as the dataset for this study. It consists of 485 fundus
images, with its matching binary masks for cup and disc. Of the 485 samples,
313 (65%) were labeled as healthy cases, and 172 (35%) as glaucomatous cases.
This dataset is part of a research project, developed as a joint work of three
Spanish’s hospitals. The main purpose of the work was to offer a dataset of
reference ophthalmology images, specifically developed for glaucoma diagnosis.
Labels were made by five experts in the field, with a final segmentation unifying
the singular results. An example of images and labels can be seen in Fig. 2 and
Fig. 3.

3.2 Preprocessing

Following the details presented in the baseline work, the data were preprocessed
as follows. First, the images and their masks were concatenated in a list, followed
by the transformation of this list in a tf.dataset object. Thereby, Tensorflow
preprocessing functions became available and were applied to the dataset.

Images were of different dimensions and had to be resized to specific input
dimensions, this is 224 × 224 px in the classification system and 128 × 128 px in
the segmentation system.
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Fig. 2. RIM-ONE dataset input image sample.

Image quality was also variable, and to help enhance those poor-quality sam-
ples, contrast limited adaptive histogram equalization (CLAHE) was applied. By
doing so, the morphological structures present in the images were highlighted.

The dataset’s number of samples was insufficient to train robust deep learning
models. Data augmentation techniques were utilized to solve that issue, increas-
ing samples from 485 to 9215 images. The process consisted of applying random
brightness or random contrast filters, followed by small rotations of less than
15◦. It is crucial to notice that glaucoma diagnosis is related to the orientation
of the segmented image, so it is crucial to keep rotations to a minimum [4].

To implement the unified segmentation network, it was also necessary to
unify the cup and disc masks. In this new mask, each of the structure masks
corresponds to a color channel from the RGB system. The disc mask was set to
the red channel and the cup mask to green.

Difference between original and preprocessed image samples can be seen at
Fig. 4.

3.3 Neural Network Architecture

The baseline system [4] consists of three neural networks, two modified U-nets
for disc and cup segmentation, and one direct classification network based on
MobileNetV2. On the other hand, in this work, we propose two neural networks,
one modified U-net for both disc and cup segmentation, and one direct classifi-
cation network composed of the ensemble of MobileNetV2 and EfficientNetB1.
These networks are detailed below.

Segmentation Using U-Net. For disc and cup segmentation, the baseline
work used a generalized U-net architecture [3]. This network has six levels of
coding and decoding, with 64 channels in the first coding stage, and a channel
growth rate of 1.1. Even though it has one level extra compared to the original
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Fig. 3. RIM-ONE dataset label mask sample.

U-net, the reduction in the growth rate from 2 to 1.1 reduced the number of
parameters from 138M to 2.5M [4].

The unified segmentation network proposed by this study follows the same
architecture previously described but changes the optimizer from Adam to
RMSprop. Also, due to the increased complexity, the number of training epochs
was increased from 100 to 300.

Classification Using MobileNetV2 and EfficientNetB1. For the direct
classification subsystem, a MobileNetV2 network was chosen by the baseline
authors. The top layers were removed, and an average pooling layer was added.
Its output was fed to a 64-node dense layer, followed by a dropout stage and a
two-node final layer to distinguish between normal and glaucoma [4].

The proposed classification subsystem consists of an ensemble of the baseline
MobileNetV2 model and an EfficientNetB1 model that follows the same structure
in its top layers. Each model will output its prediction, passing it to an average
layer responsible for the final subsystem output.

3.4 Hyperparameters Optimization

To train the neural networks, some hyperparameters were defined. Those
described in the baseline work were chosen. In the case of a lack of details,
the selection of hyperparameters was made by the author of this study.

Segmentation Using U-Net. Adam optimizer was used for the segmenta-
tion networks, with an adaptive learning rate between 1e−3 (0.001) and 2e−4
(0.0002). The cost function was DICE, and it was trained through 100 epochs,
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Fig. 4. Original (a) and Preprocessed (b) image samples

with a batch size of 120. The last layer has a sigmoid activation function, and
the metrics for evaluation were IoU and DICE.

The unified segmentation network proposed used the same hyperparameters
of the baseline described above, only changing the optimizer from Adam to
RMSprop, and increasing training epochs from 100 to 300.

Classification Network: MobileNetV2 and EfficientNetB1. Pre-trained
weights from the ImageNet challenge were used for the classification network,
with the initial layers frozen. The optimizer was RMSprop with a learning rate
of 1e−03. The cost function was Binary Cross-Entropy, and the batch size was
64.

First, the network was trained for 50 epochs, as described in Civit-Masot
et al. [4], however it did not achieve the expected metrics. Because of that, the
number of epochs was increased to 100. Evaluated metrics were AUC, accuracy,
specificity, and sensitivity. The EfficientNetB1 proposed by this study adopted
the same hyperparameters.

3.5 Final Output

After passing through both subsystems, the final step in the pipeline is to join
their predictions and display them graphically to the physician. If one of the sub-
system’s outputs is glaucoma, this is the final prediction. Doing this increases
the sensitivity of the model. Not just the prediction but also the semantic seg-
mentation of both disc and cup features are graphically displayed, followed by
what each subsystem predicted and the cup-to-disc ratio found. Figure 5 shows
the final result of the base model, replicated by the authors of this paper.
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Fig. 5. Base model final output. Together with the input image, the system displays
the identified cup and disc, what was predicted by the two subsystems, the CDR and
the final prediction.

4 Experimental Evaluation

This section aims to describe and evaluate the results obtained in each step of
the development process. Moreover, validate our hypothesis and contributions
based on the results. We start this section from the evaluation of the base model
replication, followed by adding the second classification network and its ensemble
with the original, then the union of the segmentation networks. Lastly, we present
an execution time benchmark for each analog part of the architecture.

Replicating the Base Model. To implement our contributions, the base
model was first replicated by following the paper implementation details [4]. The
classification system was replicated after collecting the dataset and applying the
preprocessing pipeline.

Table 1 compares the original metrics from Civit-Masot et al. [4] classifica-
tion system to our version. Results are almost identical, which means that the
replication was a success. However, specificity went down by two points, mainly
because the authors didn’t sufficiently specify the last layers of the base model.

Next, we replicated the segmentation networks, for both disc and cup fea-
tures. DICE values for the original networks and ours can be seen in Table 2.
Our results were far better than the baseline primarily due to the increase in
available image samples from the datasets, compared to those obtainable by the
time of the baseline paper.
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Table 1. Comparison of the classification metrics as reported in [4] and as replicated
by us.

Metric Base model Replicated model

AUC 0.93 0.95

Accuracy 0.88 0.88

Specificity 0.86 0.84

Sensitivity 0.91 0.91

Table 2. Comparison of the segmentation metrics as reported in [4] and as replicated
by us.

Metric Base model Replicated model

Disc DICE 0.92 0.99

Cup DICE 0.84 0.94

4.1 Contribution 1: Modifying the Classification Network

Aiming to improve the classification network predictions, a second lightweight
network was proposed. With that in mind, the chosen network was Efficient-
NetB1 [16], composed of less than eight million parameters. It is considered a
light model capable of providing results as efficient as those of the more robust
architectures, like VGG or Inception.

It was trained with the same hyperparameters of the original MobileNetV2,
and it resulted in an increase in sensitivity, from 0.9140 to 0.9462. While it did
not increase AUC and reduced specificity, it is still an improvement, primarily
because of how critical false negatives are to the medical clinic compared to false
positives. Table 3 compares the results obtained for the original MobileNetV2,
the new network added by this study, EfficientNetB1, and the ensemble of both
MobileNetV2 and EfficientNetB1 as the final output of the proposed classifica-
tion subsystem.

4.2 Contribution 2: Unifying the Segmentation Networks

To simplify the architecture and make it lighter for possible deployment on
embedded systems, we developed a single segmentation network capable of iden-
tifying both disc and cup features. Due to the increased complexity, training
epochs were increased from 100 to 300 to achieve similar results to those of the
individual networks. However, it became clear that a single segmentation net-
work can achieve state-of-the-art results with a more straightforward and lighter
architecture, increasing the feasibility of an embedded system for the medical
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Table 3. Evaluation metrics for MobileNetV2, EfficientNetB1 and their ensemble

Metric MobileNetV2 EfficientNetB1 Ensemble

AUC 0.9567 0.9394 0.9512

Accuracy 0.8897 0.8345 0.8897

Specificity 0.8461 0.6538 0.7884

Sensitivity 0.9140 0.9355 0.9462

clinic. Table 4 compares these results. Comparable results were obtained using
only one U-net model. By doing so, we reduced the storage and processing cost of
the segmentation subsystem in half. This can prove valuable to those interested
in deploying the system in standard desktop hardware.

Table 4. Segmentation done by disc, cup, and unified networks

Metric Disc net Cup net Unified net

IoU 0.9872 0.8892 0.9455

DICE 0.9936 0.9406 0.9502

4.3 Benchmark

To better visualize the impact on the simplification of the system, a bench-
mark evaluation of the baseline model and the proposed one was made. Both
networks were executed from end to end with the same inputs and on the same
hardware. Each model ran 50 times, providing high fidelity results. Table 5 shows
the obtained results. Each color represents a highlighted region from Fig. 1. As
seen in Table 5, the proposed model has a lower average response time for the
diagnosis outcome, mostly because of the simplification of the U-net networks. In
this manner, the architecture also reduced the times for generating the diagnosis,
reducing the patients’ waiting time for the generation of the report.

Unifying the segmentation networks reduced the segmentation subsystem
processing time by 24.24%. On the other hand, the ensemble of the two classi-
fication systems increased classification subsystem processing time by 33.25%.
This is not critical, though, because the pipeline’s bottleneck is the segmenta-
tion networks, and by reducing its time, the overall processing time gets reduced.
Also, the training process is much slower on the segmentation networks than on
the classification networks, increasing the value of this reduction.
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Table 5. Comparison Between architectures execution time

Unet (s) Feature
extract (s)

Param
calculator (ns)

Mobile
Net (s)

Total time (s)

Base model 68.796 0.078 3200 4.437 73.311

Proposed model 35.225 0.078 2300 11.357 46.661

5 Conclusion

Glaucoma is a silent disease that only shows signs in the advanced and irre-
versible stages of the disease. Fundoscopy is the primary diagnostic test, a man-
ual process requiring years of expertise and specialization. It is possible to solve
this problem by employing computer vision techniques to generate the diagnosis.
However, these techniques often lack transparency and justification, not present-
ing more than the classification or the why of that result and the algorithm’s
reliability.

Our contribution is increasing the model sensitivity, further reducing the
number of false negatives and thus ensuring even more value for its use in the
clinic. Also, the architecture simplifies, taking up less storage space and using
less processing resources without losing accuracy, resulting in the need for more
initial training time.

Even though we obtained better results in processing time and sensitivity,
our system does not address those situations where the segmented disc or cup
does not form a fully connected ellipse. Without this shape enhancement, feature
extraction of disc and cup diameter can not be computed, resulting in crashes.
Even though CLAHE reduced crash rates by improving image quality, this can
only be addressed by changing the logic behind the segmentation feature extrac-
tion or optimizing the ellipse fitting function. Because of these issues, our system
performed better than the baseline on high-resolution images, and its use is rec-
ommended on such occasions. However, this is not the reality in most medical
clinics, and fixing it is a priority in future works.

Lastly, we perceive that explainability is crucial for the future implementa-
tion of the system in a clinic. Our approach does not entirely address this type
of issue. For this, it is necessary to evolve the system into an independent appli-
cation in a production environment. Learning cycles and direct application are
inserted in the process flow from an embedded system that receives the image
directly from the capture system. This requires an advance and a future col-
laboration between researchers and medical institutions, being one of the main
future works. Since the study’s main objective is to assist the clinical diagnosis,
it is essential to consider the reality of patients. This includes conditions other
than glaucoma, varied ethnicities with specific eye characteristics, and images
with different resolutions and specifications.
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