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Abstract. Cross-validation (CV) is a widely used technique in machine
learning pipelines. However, some of its drawbacks have been recognized
in the last decades. In particular, CV may generate folds unrepresen-
tative of the whole dataset, which led some works to propose methods
that attempt to produce more distribution-balanced folds. In this work,
we propose an adaption of a cluster-based technique for cross-validation
based on mini-batch k-means that is more computationally efficient. Fur-
thermore, we compare our adaptation with other splitting strategies pre-
viously not compared and also analyze whether class imbalance may
influence the quality of the estimators. Our results indicate that the
more elaborate CV strategies show potential gains when a small number
of folds is used, but stratified cross-validation is preferable for 10-fold CV
or in imbalanced scenarios. Finally, our adaptation of the cluster-based
splitter reduces its computational cost while retaining similar perfor-
mance.
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1 Introduction

Splitting a dataset into various subsets for training and validation is a funda-
mental part of machine learning and is present in multiple tasks, such as model
evaluation, model comparison, and hyperparameter tuning. Some traditional
methods to split datasets into training and test sets are holdout, bootstrap, and
cross-validation (CV).

Although cross-validation is arguably the most popular partitioning method,
it has some relevant drawbacks that have been studied in the last decades. Given
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its stochastic nature, CV may lead to poor estimates because of a partition-
induced dataset shift [14], that is, some of the generated folds are not represen-
tative of the data. One generally handles this by using repeated cross-validation,
However, since applying cross-validation is already computationally expensive,
repeating it multiple times may be prohibitive.

The aforementioned issues are related to the randomized steps of CV. There-
fore, a few methods have been proposed that attempt to improve the estimates
of cross-validation by introducing a more deterministic process of generating
folds. In one of the first works on the topic, Diamantidis et al. [9] introduced
a clustering-based technique that relied on k-means (here referred to as CBD-
SCV). However, k-means can be expensive when used as a splitting strategy for
CV. At a similar time, Zeng et al. [24] proposed distribution-balanced stratified
cross-validation (DBSCV), which was later adapted by Moreno-Torres et al. [14],
introducing the distribution optimally balanced stratified cross-validation (DOB-
SCV). Although DBSCV and DOBSCV have been compared before, there has
been no direct comparison between them and the cluster-based methods.

In our work, we propose the use of mini-batch k-means as a way of reduc-
ing the computational cost of CBDSCV. Furthermore, we provide a compari-
son between CBDSCV, DOBSCV, and DBSCV, besides the traditional cross-
validation techniques, on 20 datasets of various sizes, class imbalance levels, num-
ber of features, and number of classes. Our experiments aim to assess whether
any cross-validation splitting strategy tends to outperform the others in terms
of bias, variance, or computational cost.

The rest of the paper is structured as follows. In Sect. 2 we present the the-
oretical background of our work, followed by a description of our experiments
in Sect. 3. Next, in Sect. 4, we present and discuss our results for balanced and
imbalanced datasets. Section 5 revises other papers that presented efforts towards
proposing cross-validation splitting strategies and were not directly compared
in our experiments. Finally, Sect. 6 presents our conclusions and directions for
future works.

2 k-fold Cross-validation Partitioning Methods

The traditional k-fold cross-validation (CV) [10] consists in dividing the given
dataset into k folds. Each fold is then used once as the validation set, while
the remaining k − 1 folds are used for training. Finally, the average performance
obtained for each fold is the performance estimate of the k-fold CV. In general, k
is set as 5 or 10, which makes it much more computationally tractable than leave-
one-out cross-validation (LOOCV), besides showing less variance than LOOCV
estimates. Furthermore, it is less biased than the holdout method, since it is able
to use more instances for training than the holdout. K-fold cross-validation can
also be used in a stratified fashion (k-fold SCV) to guarantee that the proportion
of instances of each class is the same for all folds.

However, the instances assigned to each fold by traditional k-fold CV and
SCV are selected randomly, which can cause some folds not to be good represen-
tatives of the whole dataset [14]. For instance, it is not guaranteed that all the
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regions in the input space will be appropriately represented over all folds. This
phenomenon may impact performance estimates and thus has been considered
in various works (see Sect. 5 for references), leading to new splitting strategies
based on the features of the data and not only on their class labels. The methods
we have considered in this work are reviewed in the following sections, and we
also describe the adaptation we developed.

2.1 Distribution-Balanced Stratified Cross-validation

Following Moreno-Torres et al. [14], the distribution-balanced stratified cross-
validation (DBSCV) [24] attempts to generate folds representative of the full
dataset by assigning neighboring instances to different folds. Specifically, DBSCV
randomly selects an instance and assigns it to a fold; it then jumps to the nearest
instance of the same class and assigns it to the next fold. These steps are repeated
until all instances of that class have been assigned to a fold. The same process is
applied to the other classes so that the folds have approximately the same number
of instances per class. Assuming a balanced distribution of the instances, building
pairwise distance matrices for each class has complexity O(C(NC )2) = O(N

2

C ),
where N and C are the numbers of instances and classes. The search-and-hop
step has complexity O(C N

C
N
C ), so that the final complexity of the algorithm is

O(N
2

C ).

2.2 Distribution Optimally Balanced Stratified Cross-validation

The distribution optimally balanced stratified cross-validation (DOBSCV) is a
modification of DBSCV. It also starts on a random instance of the datasets,
but instead of hopping to the closest one of the same class, DOBSCV finds the
(k-1) nearest neighbors of the current instance belonging to the same class and
assigns each of them to a different fold. This process is repeated independently
for each class, similarly to DBSCV, until all instances have been assigned to
a fold. Our implementation of DOBSCV also uses a pairwise distance matrix
for each class. Assuming balanced classes, building the matrices has complexity
O(N

2

C ) and searching the k-NN for the selected instances in each class can be
done in O(C N

kC
kN
C ), resulting in an overall asymptotic complexity of O(N

2

C ).

2.3 Clustering-Based Approaches

Diamantidis et al. [9] introduced unsupervised stratification for cross-validation,
based on dataset clustering. Although they have also explored hierarchical clus-
tering, their main proposed algorithm is using k-means to cluster the dataset into
M clusters. The instances inside each cluster are then sorted by their distances
to the cluster center in ascending order. Finally, they assign adjacent instances
to different folds, i.e., they make a pass over the sorted list of instances assign-
ing each to a different fold. Note that the number of folds K, clusters M , and
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classes C need not be equal. We refer to this method as cluster-based strati-
fied cross-validation (CBDSCV). The unsupervised stratification process, how-
ever, does not guarantee that the classes are stratified in the usual sense, i.e.,
the method does not necessarily generates folds with the same proportion of
instances per class as the original dataset. K-Means has an average complex-
ity of O(MNT ), where T is the number of iterations, and sorting each cluster
can be done in O(MN log N). Therefore, CBDSCV has a complexity given by
O(MN(T + log N)).

Mini-Batch CBDSCV. The running time of the CBDSCV algorithm is gener-
ally dominated by k-means. Therefore, we propose the use of mini-batch k-means
[21] as a way of reducing the cost of performing CBDSCV. Mini-batch k-means
is an adaptation of k-means with two major differences. First, at each iteration,
it selects only a batch of samples instead of the whole dataset. These samples
are then assigned to the nearest centroid. Then, instead of computing the new
centroid as the mean of all instances assigned to a cluster, it iterates over the
instances of the cluster, updating the centroid at each instance using a learn-
ing rate η inversely proportional to the number of times this centroid has been
updated previously. Mini-batch k-means converges faster than k-means while
producing results that are only slightly worse [2,21]. In the following sections,
we will refer to our adaptation of CBDSCV as CBDSCV Mini.

3 Experiments

The experiments performed here were designed to evaluate whether there is
a cross-validation splitting strategy which generally outperforms the others in
terms of bias, variance, or computational cost. Moreover, we also wish to study
whether the imbalance of the datasets may influence the quality of the splitters
estimations. Since the estimations they produce may depend on the dataset,
classifier, and also on the metric being estimated, we experimented with 20
different datasets (from PMLB [16]) and 4 different classifiers. The datasets
were selected so that two groups would be apparent, one with balanced and the
other with imbalanced datasets. The complete list is shown in Table 1.

Note that we use the same class imbalance measure I ∈ [0, 1] as in [16],
defined by I = K

K−1

∑K
i=1

(
ni

N − 1
K

)2, where K is the number of classes, ni is
the number of instances in class i, and N is the dataset size. Imbalance is 0 when
the classes are equally distributed and approaches 1 when almost all instances
belong to the same class. When analyzing balanced datasets, we evaluated the
splitters in terms of their accuracy estimations, as this is the most common and
traditional metric. However, when handling imbalanced datasets, we used the
F1 score since accuracy is inappropriate in these cases. We used the average
between the F1 scores computed for each class, i.e., the macro average.

We chose learning algorithms that presented different biases and variance
levels. Specifically, we experimented using Logistic Regression (LR), Decision
Trees (DT), Support Vector Machines (SVC), and Random Forests (RF). We
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Table 1. List of datasets used in the experiments. Datasets with Imbalance higher
than 0.20 were considered imbalanced.

Dataset Examples Attributes Classes Imbalance Clusters

allrep 3772 29 4 0.91 7

analcatdata cyyoung8092 97 10 2 0.26 3

analcatdata dmft 797 4 6 0.00 5

analcatdata germangss 400 5 4 0.00 4

analcatdata happiness 60 3 3 0.00 4

analcatdata japansolvent 52 9 2 0.00 3

appendicitis 106 7 2 0.36 6

backache 180 32 2 0.52 5

car 1728 6 4 0.39 6

chess 3196 36 2 0.00 4

colic 368 22 2 0.07 5

dna 3186 180 3 0.08 1

flare 1066 10 2 0.43 5

hepatitis 155 19 2 0.34 5

movement libras 360 90 15 0.00 5

new thyroid 215 5 3 0.30 6

page blocks 5473 10 5 0.76 4

postoperative patient data 88 8 2 0.21 4

vote 435 16 2 0.05 2

vowel 990 13 11 0.00 4

have used only the RBF kernel with SVC since linear decision functions could
be represented by Logistic Regression. To avoid overfitting when handling class-
imbalanced datasets, weights associated with the instances of each class during
training were set to be inversely proportional to the class frequencies in the
training set. Prior to the experiments, we tuned each classifier to each dataset
using the entire data and grid search. The performance of each hyperparameter
set was evaluated using 5-fold cross-validation and the hyperparameters which
showed the highest F1 score were chosen. These selected hyperparameters for a
classifier-dataset pair were fixed for the experiments so that the classifiers were
always trained with the same hyperparameters independently of the splitting
strategy being analyzed. With this approach, we aim to capture performance
differences caused by variation in the splitting strategy rather than by variation
in the hyperparameters values.

Finally, we compared three splitting strategies, CBDSCV, DBSCV, and
DOBSCV, against traditional k-fold cross-validation and stratified k-fold cross-
validation. We also included our adaptation of CBDSCV, which uses mini-batch
k-means for faster computation of the clusters, using batches of size 100. There-
fore, six different cross-validation splitting strategies were compared in terms
of their bias and variance, as well as computational cost. Our implementations
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of the splitting strategies, the selected hyperparameters, and the code used in
experiments are available online1.

3.1 Estimating the Bias and the Variance

The cross-validation methods considered here attempt to estimate the test per-
formance of the learning algorithms fitted to the datasets. The bias of a cross-
validation method is defined as the difference between the expected estimate
and the (true) test performance [11]. Since we are working with real datasets, it
is unfeasible to obtain the test performance. However, we can compute estima-
tions for it using repeated holdout a large number of times, similarly to [3,11].
Specifically, we estimated the true performance for each dataset and classifier by
repeating a stratified holdout 100 times, using 90% of the dataset for training,
and getting the mean value. We chose a small test set in order to reduce the bias
caused by using smaller training sets, while we expect that the high number of
repetitions will attenuate the variance of the holdout.

The expected estimate of each cross-validation technique was computed for
each dataset by resampling 90% of the dataset without repetition 20 times and
applying the cross-validation technique to obtain the estimates of the true perfor-
mance. The average value of the 20 estimates was used as the expected estimate
of the cross-validation method. That is, let CVi be the performance estimate of
running k-fold cross-validation on a given dataset and learning algorithm, with
a chosen splitting strategy, then we approximated the expected cross-validation
estimate as

CV =
1
20

20∑

i=1

CV i. (1)

Finally, we computed the bias using bCV = CV − P̂ , where P̂ is the estimation
of the true performance that was computed using 100-times repeated stratified
holdout, as described above.

The other important quantity that determines the quality of an estimator is
its variance. We computed the variance of the cross-validation estimates using

s2CV =
1

20 − 1

20∑

i=1

(CVi − CV )2. (2)

In this paper, however, we will work with the standard deviation (std) s, since
we believe it is more easily readable. Note that an estimator with high variance
may give poor results even if it has a low bias since one may not have the luck
to obtain one of the estimates closer to the true value.

We evaluated the bias and variance of the six different dataset partitioning
strategies over 20 different datasets and four classifiers. For each k-fold cross-
validation strategy, we experimented with 2, 5, and 10 folds. Finally, we used
accuracy and F1 as the performance metrics.
1 https://github.com/froestiago/K-Fold-Partitioning-Methods/tree/bracis22.

https://github.com/froestiago/K-Fold-Partitioning-Methods/tree/bracis22
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3.2 Defining the Number of Clusters

The cluster-based method requires a number of clusters to be given as input.
Ideally, we would compute the number of clusters right before each splitting
is performed. However, this would be too computationally expensive, since the
number of experiments performed is already large. Therefore, we have chosen to
estimate the number of clusters for each dataset prior to the main experiments,
and use this number (rounded to the nearest integer) for all cluster-based splitter
methods. We have followed the same strategy as Diamantidis et al. [9] to estimate
the number of clusters, which was based on repeatedly applying hierarchical
clustering to small samples of the datasets and using a threshold on the similarity
between clusters being merged to determine the number of clusters. The resulting
number of clusters for each dataset is shown in Table 1.

4 Results and Discussion

The experiments performed as described in the previous section result in 80
different samples of bias and variance for each k-fold splitter, where k = 2,
5, and 10. Each of the 80 samples corresponds to a dataset-classifier pair. In
the next sections, we describe the results grouped by balanced and imbalanced
datasets in terms of class labels, resulting in 40 dataset-classifier pairs for each
group. We focus mainly on the results with 2 and 10 folds, but the Figures for
the 5-folds case are available in our git page (See footnote 1).

4.1 Balanced Datasets

The bias and standard deviations of each 10-fold cross-validation splitting strat-
egy for all datasets and classifiers are summarized in Fig. 1. All the methods
showed a general tendency to very low bias and similar standard deviations,
indicating that there is no solution that consistently performs better than all
others.

Note, however, that this does not imply that the accuracy (or F1) estimates
produced by each partitioning strategy is not different. The p-values for the
Friedman tests [7] comparing the estimates of the splitters are shown in Table 2.
In particular, the p-value for the estimates considered here is 0.0279, suggesting
that the bias estimates differ depending on the splitting strategy. However, there
is no significant difference in terms of the standard deviations. Table 3 shows the
number of times each method performed the best. For 10 folds, accuracy, and
balanced datasets, stratified 10-fold CV had the most wins for both bias and
std.

Reducing the number of folds increases the bias (in absolute terms) and the
standard deviations, as shown in Fig. 2. However, the methods still have similar
performance overall. We note, however, that DOBSCV and CBDSCV had an
increase in the number of times they had the best results, while stratified CV
showed worse results compared with its performance in the 10-folds scenario,
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(a) (b)

Fig. 1. (a) Bias and (b) standard deviation of each splitter method across all balanced
datasets and classifiers. Each splitter runs 10-folds.

particularly with respect to the standard deviation of the estimates. This is
an indication that the DOBSCV and CBDSCV can be useful when a reduced
number of folds is desired so that the computational cost resulting from training
various models can be reduced.

(a) (b)

Fig. 2. (a) Bias and (b) standard deviation of each splitter method across all balanced
datasets and classifiers. Each splitter runs 2-folds.

4.2 Imbalanced Datasets

The bias and standard deviations for 10-folds and imbalanced datasets are shown
in Fig. 3. Since accuracy is not appropriate for studying imbalanced datasets,
the bias and std were calculated for the f1-score estimations. Stratified 10-folds
showed the best results for both bias and standard deviation. Tables 2 shows that
the difference between the splitters is significant in the imbalanced cases, and
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Table 2. p-values for the Friedman tests comparing whether the estimates produced
by the splitters for each dataset-classifier pair differs. Smaller values mean that the
hypothesis that the splitters produce similar estimates for the datasets and classifiers
is unlikely. Values below 0.05 are in bold form.

Metric Splits Balance p-value

bias std

acc. 2 Balanced 0.11841 0.13278

Imbalanced 0.45917 0.07770

5 Balanced 0.58700 0.01481

Imbalanced 0.09520 0.10409

10 Balanced 0.02790 0.45271

Imbalanced 0.72980 0.07762

f1 2 Balanced 0.01858 0.24038

Imbalanced 0.10906 0.20719

5 Balanced 0.00462 0.00055

Imbalanced <0.00001 0.00158

10 Balanced <0.00001 0.03294

Imbalanced <0.00001 0.00069

Table 3. Number of times each method had the best result in terms of bias or standard
deviations, for various metrics, numbers of folds and dataset imbalance. The words
balanced and imbalanced are abbreviated to bal. and imb., respectively.

CBDSCV CBDSCV Mini DBSCV DOBSCV KFold SKFold

acc 2 bal. bias 2 9 3 12 3 11

std 7 9 4 12 3 5

5 bal. bias 6 5 7 7 7 8

std 8 8 8 5 2 9

10 bal. bias 4 6 7 7 5 11

std 5 6 6 10 1 12

f1 2 bal. bias 0 8 4 13 5 10

std 8 8 5 11 3 5

imb. bias 6 5 9 9 5 6

std 3 7 9 8 2 11

5 bal. bias 6 5 2 5 7 15

std 11 8 5 5 1 10

imb. bias 6 6 5 1 7 15

std 6 6 8 3 3 14

10 bal. bias 2 4 4 5 4 21

std 5 8 5 9 2 11

imb. bias 4 4 2 1 5 24

std 8 7 1 5 3 16
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Table 3 shows that indeed stratified 10-fold presents the less biased and most
consistent estimates for most datasets and classifiers. It is interesting to note
that DBSCV and DOBSCV deal with class stratification by performing their
splitting strategies per class. The fact that their performance was worse than
stratified cross-validation suggests that there may be more appropriate ways to
develop stratified versions of DBSCV and DOBSCV. The CBDSCV techniques,
however, do not handle class imbalance directly.

(a) (b)

Fig. 3. (a) bias and (b) standard deviation of each splitter method across all imbalanced
datasets and classifiers. Each splitter runs 10-folds for each splitter and the metric
observed is the f1 score.

When one reduces the number of folds to 2, both the bias (absolute value)
and the std of the estimates increase. More interestingly, the advantage that
the stratified cross-validation had almost disappeared. This pattern is similar to
the one observed for the balanced datasets. Table 3 shows that the number of
times the SCV performs best indeed reduces when compared to the 10-folds case
(Fig. 4).

4.3 Running Times

We also compared the running times of each splitting strategy. The running time
of a k-fold splitting strategy for a dataset was obtained by averaging the run-
ning times of the splitting process over all the 20 runs and the 4 classifiers. We
noticed that the running times obtained for 2, 5, and 10 folds were very similar,
and therefore we consider only the 10-folds case in the following discussions.
Figure 5 shows the running times of each splitter method for the 20 datasets
considered. One can see that the classical strategies, KFold and StratifiedK-
Fold, have negligible running times when compared to the others. Furthermore,
we note that DBSCV and DOBSCV have higher variability depending on the
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(a) (b)

Fig. 4. (a) bias and (b) standard deviation of each splitter method across all imbalanced
datasets and classifiers. Each splitter runs 2-folds for each splitter and the metric
observed is the f1 score.

Fig. 5. Average running times in seconds across all the 20 datasets. The running times
correspond to the use of 10 folds.

dataset, reaching the highest running times of all methods. In comparison, CBD-
SCV and CBDSCV Mini have closer run times for all datasets.

Ignoring KFold and StratifiedKFold, however, DOBSCV was actually the
fastest method in 14 out of 20 datasets, while CBDSCV Mini was the quickest
in the other six. Specifically, it was fastest in ‘analcatdata germangss’, ‘move-
ment libras’, ‘analcatdata dmft’, ‘appendicitis’, ‘page blocks’, and ‘postopera-
tive patient data’, which are the datasets with more instances. This is expected
if one considers the algorithmic complexity of each method: DOBSCV scales
quadratically with the number of samples.
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4.4 Cluster-Based Splitters

When comparing only the cluster-based approaches, CBDSCV and CBD-
SCV Mini, we observed that the running times on the minibatch version were
smaller for all datasets, as expected. Specifically, it ran on average 2.4 times faster
than CBDSCV. Furthermore, we have detected no significant change between
estimations given by CBDSCV and CBDSCV Mini. Table 4 shows the number
of times each method performed better than the other, for all datasets and clas-
sifiers, and the p-value computed using the Wilcoxon test.

Table 4. Number of times each cluster-based method had the best result in terms
of bias and variance. Only the cluster-based methods are considered here. The last
columns shows the p-value for the two-sided Wilcoxon signed-rank test.

CBDSCV CBDSCV Mini p-value

Accuracy 2 bias 32 48 0.07208

std 39 41 0.94265

5 bias 43 37 0.88180

std 40 40 0.91216

10 bias 44 36 0.18399

std 35 45 0.36078

f1 2 bias 35 45 0.04396

std 38 42 0.64348

5 bias 43 37 0.79371

std 43 37 0.91596

10 bias 33 47 0.12133

std 38 42 0.61814

5 Related Work

Besides more recent theoretical works on traditional cross-validation estimates
[4,20,22], various works have proposed cross-validation splitting strategies for
different scenarios which are not directly related to our cases. Motl et al. [15]
developed a technique based on linear programming for performing label-based
stratification when the instances have more than one label at the same time, i.e.,
multi-label datasets. Specific methods have also been developed for data drift sit-
uations, where some instances become obsolete over time [13], or for the specific
case of dataset shift in credit card validation [19]. Cross-validation over graphs
[8,12] has also seen some recent works, as well as methods for reducing cross-
validation computational cost in deep learning [6]. Cross-validation adaptations
have been developed in order to handle duplicate data in medical records [1],
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for calibration models in chemistry, [23] and for infrared and mass-spectroscopy
images [17,18]. All the methods cited above, however, are developed for different
specific scenarios, whereas the methods explored here aim at tabular data and
single-label datasets. Closer to the methods explored in this work are the pro-
posals by Budka et al. [3] and Cervellera et al. [5]. In both works, the methods
attempt to partition a dataset by generating samples whose distributions are
as similar as possible to the distribution of the original data. We were not able
to include them in this work due to lack of compatibility with the framework
we had developed for our cross-validation methods comparison. Nevertheless, we
will be including them in future works we are developing in this area of research.
We note also that these two approaches have not been compared with each other
yet.

6 Conclusion and Future Work

In this work, we proposed an adaptation of a cluster-based technique for splitting
a dataset for cross-validation. We also compared various CV strategies using
different classifiers for balanced and imbalanced datasets. We found that no
method consistently outperforms all others in terms of bias or standard deviation
when estimating accuracy using 10 folds and balanced datasets. In these cases,
traditional stratified cross-validation remains a good choice. When the number of
folds is reduced to 2, however, stratified cross-validation may produce accuracy
estimates with higher variance than DOBSCV and the cluster-based techniques.

When considering F1 score estimates, traditional stratified cross-validation
produced the best results in terms of bias and variance for most datasets and
classifiers when used with 5 and 10 folds, for both balanced and imbalanced
datasets. When the number of folds is reduced, however, F1 scores in balanced
datasets may be better estimated by other methods such as DOBSCV and the
cluster-based splitter. For imbalanced datasets, SCV remained the most frequent
winner. In particular, traditional SCV was most significantly better when F1
score and imbalanced datasets were present. This suggests that better class-
based stratification adaptations can be developed for DBSCV and DOBSCV.
The development of a supervised version of CBDSCV is also an interesting topic
for further work. Finally, we found no significant change in the quality of the
estimations produced by CBDSCV and CBDSCV Mini, whereas the mini-batch
version is significantly less expensive in terms of computational cost.

We have not studied dataset characteristics such as the presence of subcon-
cepts in the input space, as this kind of information is not easily extracted from
a dataset. Those characteristics, however, may be relevant in determining which
performance estimator should be used and may provide deeper insight into the
use cases of each method. Similarly, we haven’t analyzed deeper whether some
splitting strategies may work better for each classifier or for datasets with differ-
ent sample sizes. Finally, in future works, we intend to expand our experimental
comparison and explore other approaches proposed in the literature [3,5].
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