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Abstract. Neural evolutionary computation has risen as a promising
approach to propose neural network architectures without human inter-
ference. However, the often high computational cost of these approaches
is a serious challenge for their application and research. In this work, we
empirically analyse standard practices with Coevolution of Deep Neu-
roEvolution of Augmenting Topologies (CoDeepNEAT) and the effect
that different initialization functions have when experiments are tuned
for quick evolving networks on a small number of generations and small
populations. We compare networks initialized with the He, Glorot, and
Random initializations on different settings of population size, number of
generations, training epochs, etc. Our results suggest that properly set-
ting hyperparameters for short training sessions in each generation may
be sufficient to produce competitive neural networks. We also observed
that the He initialization, when associated with neural evolution, has
a tendency to create architectures with multiple residual connections,
while the Glorot initializer has the opposite effect.

Keywords: Deep NeuralEvolution · Genetic algorithms · Weight
initialization

1 Introduction

Deep Neural Networks (DNNs) are among the most used machine learning meth-
ods nowadays. They can be applied in multiple scenarios and are able to approx-
imate functions that are often considered too complex for “classic” models, such
as Support Vector Machines and shallow Neural Networks. However, DNNs tend
to be complex, so their training usually requires very large datasets and they
are computationally expensive. This is particularly challenging for the task of
fine-turning hyperparameters, since their validation may take considerable time.
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When designing a DNN, several factors must be considered, especially the
number and design of the layers. Once the architecture has been chosen, training
a DNN for a specific task requires defining several hyperparameters, such as the
number of epochs, learning rate, optimization function, batch size, etc. Consider-
ing the advances in the last decade in the development of Deep Learning models
to deal with challenging tasks and the remarkable effort involved in designing
these models “by hand”, methods capable of automatically finding ideal DNN
architectures without human intervention have been growing increasingly rele-
vant. Many of these advances were possible with the birth of the field of Deep
Learning and Bio-Inspired Algorithms, which created a new area of study: Deep
Evolutionary Neural Networks, also called Deep NeuroEvolution [1].

Deep NeuroEvolution (DNE) deals with using evolutionary algorithms with
the specific purpose of optimizing the architecture of a DNN to solve difficult
problems. Like “classical” evolutionary algorithms, the DNE approach employs a
population of sub-optimal solutions, called individuals, and the goal is to identify
and combine the best elements of the individuals to find solutions that are as
close to the optimal as possible. This usually happens in cycles called generations.
In the context of DNE, it means combining the most promising elements of neural
networks (e.g., layers, neurons, or blocks of layers) at the end of each generation,
creating architectures that are increasingly more suitable for some specific task,
such as classification, anomaly detection, time series forecasting, and others.

One important issue that has received relatively little attention in NeuroEvo-
lution is the weight initialization. At each generation, the evolutionary algorithm
produces neural networks whose weights may need to be optimized from scratch.
Different initialization functions may be used to set the initial neuron param-
eters, but not all of them are equally suitable. A bad initialization choice can
lead to some undesirable behaviors such as the vanishing gradient problem and
the gradient explosion problem [2,3]. Generally, these phenomena occur when
the parameters tend to zero or to infinity, respectively, making it impossible for
the machine learning model to converge during the learning process [3,4]. Fur-
thermore, different initialization functions may lead to different architectures.

In the past decade, we have witnessed many alternative optimizations and
studies on parameter initializers. These studies draw primarily on two ground-
breaking researches that introduced the most commonly used functions at
present time: the Glorot initialization [5] and the He initialization [6].

However, these functions were proposed to suit DNNs with a fixed architec-
ture, which is designed “by hand” after meticulous choices on how many layers
the network should have and on the layout of those layers. In NeuroEvolution,
neural network components are combined in often unexpected ways, and in a
sense we can think of the individuals as networks that evolve over time. Further-
more, while in “traditional” application a DNN architecture is defined once and
then trained over a reasonable period of time for some specific application, this is
not as easily done in NeuroEvolution, where a large number of networks have to
be quickly trained at each generation, and the best elements of a DNN must be
identified and combined with others to produce better individuals. With these
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issues in mind, we ask the following question: how do standard weight initializa-
tion functions help to rapidly converge a neural network and find the ideal DNN
elements in a scenario where the network architecture is constantly changing?
This question is crucial for evolutionary algorithms to become, in fact, compet-
itive to non-evolutionary DNNs, which represent the current state of the art.

The remained of this paper is as follows. Section 2 presents related works
that address weight initiatlization or maintenace in DNE. Section 3 explains the
theoretical foundation behind this work. Section 4 describes and discusses our
results. Finally, Sect. 5 draws final remarks.

2 Related Work

Much of the research effort in DNE is directed towards finding better ways to
create ideal topological structures for the target problem, somewhat neglecting
the potential benefits of better initializing or updating the weights of the net-
works during the evolutionary process. In this section, we give attention to some
works that tackle the latter issue.

Focusing on updating weights, Koutnik et al. [7] created a new method to
encode the weights of neural networks using Fourier coefficients. This allows
exploring the spatial relationship between the weights and reducing the dimen-
sionality of the target problem. As a main result, Koutnik et al. managed to
reduce the total number of iterations to obtain the best individual in three bench-
mark problems (pole-balancing, ball throwing, and octopusarm control). Togelius
et al. [8] decided to focus efforts on the crossover stage during the evolution
of architectures, inspired by the workings of memetic algorithms, to find the
best combination of weights between individuals rather than a random one. As
benchmark they used the Race Car problem, comparing five different algorithms:
Hill-Climber, Simultaneous Climber, Memetic Climber, Constrained Memetic
Climber, and Inverse Memetic Climber. The authors report that the more fea-
tures in the input layer (dimensions), the better results the evolutionary versions
of the algorithms obtained, always outperforming the non-evolutionary versions.
Neither works, however, address the total time to carry out the experiments.

Specifically considering the weight initialization problem, Okada et al. [9] pro-
posed to represent the weights of neural networks not as scalars but as intervals,
an extension of Evolutionary Strategy for neurevolution of intervalued neural
networks, deciding not to evolve the topology of the architectures, and to work
only with the prediction of values for sinusoidal functions, considering the inter-
vals of such functions as genotypes. Also in this aspect, Desell [10], applied a
new NeuroEvolutionary algorithm, EXACT (Evolutionary eXploration of Aug-
menting Convolutional Topologies), in order to address three possible fronts dur-
ing the evolutionary process: (i) node-level mutation operations; (ii) epigenetic
weight initialization; and (iii) pooling connections. When coining the expression
epigenetic weight initialization, Desell aimed to investigate a better representa-
tion of the combination of the parents’ genomes (weights), without necessarily
changing the initial combination; in this way, the new individuals have their
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weights directly inherited from this epigenetic combination, similarly to [8]. As
benchmark, the results were compared on the MNIST database, where the best
individual obtained 99.46% accuracy. In all, Desell evolved over 225,000 neural
networks with the support of 3,500 volunteers who served as hosts to run the
experiments. None of these works comment on the total execution time.

In 2021, Lyu et al. [11] compared the performance of the NeuroEvolu-
tive EXAMM (Evolutionary eXploration of Augmenting Memory Models), a
gradient-based algorithm for recurrent neural networks, using four distinct func-
tions to initialize the weights of the neural networks: Glorot, He, Uniform Ran-
dom, and a new method called Lamarckian weight inheritence. To test the perfor-
mance, EXAMM was applied in time series forecasting on real-world databases.
The experiments were performed with 2,304 processing cores (Intel Xeon Gold
6150@2.70 GHz CPU) and a whopping 24 TB of RAM. This is the only work in
our review that directly mentions the problem of the exploding and vanishing
gradients. However, again the authors do not report the required processing time
for their experiments.

3 Theoretical Foundation

3.1 CoDeepNEAT

In this paper we intend to work with the coevolution of Deep NeuroEvolution
of Augmenting Topologies (CoDeepNEAT) algorithm [12]. As pointed out by
Papavasileiou et al. [13], CoDeepNEAT is among some of the most innovative
techniques that combine evolutionary algorithms based on non-gradient descent
and algorithms based on gradient descent. In CoDeepNEAT, chunks of layers are
developed as modules, which are merged together to create a blueprint, which
in turn is used to create multiple architectures (Fig. 1).

Fig. 1. Assembly of a neural network from a blueprint individual and a set of module
individuals [12]. The number inside each node in the blueprint represents species in the
modules population. (Color figure online)
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The algorithm works with a population of modules and a population of
blueprints, which are evolved separately. The blueprint chromosome is a graph
where each node contains a pointer to a particular module species, while each
module chromosome is a graph that represents a chunk of DNN layers.

Before the first generation, the initial population of modules is generated
according to the hyperparameters of the CoDeepNEAT algorithm. A module
may contain convolution layers or fully-connected layers, and the probability of
getting either one is specified by the user (we keep both at 50%). If the module
contains convolution layers, its hyperparameters, such as the number of filters
and the kernel size, are chosen randomly from a set of possible values that are
also user-specified. In our experiments, the number of filters ranges from [32, 256]
and the kernel size is either 1, 3, or 5.

At the beginning of each generation, a number of blueprints are randomly
chosen from the blueprint population. Each node in a blueprint is replaced with
a module that is randomly chosen from the module population. This results in a
set of assembled neural network that comprise the individuals of that generation.
Those neural networks are untrained, and their weights must be initialized, even
if they come from modules that did not change since the previous generation.
Each individual is then trained on a small number of epochs and evaluated on a
hold-out partition of the training dataset.

Since CoDeepNEAT works with two populations, there are two fitness values
to be calculated. The fitness of each blueprint individual is the average metric
(loss, accuracy, F1-score etc.) of all neural networks assembled from that individ-
ual. If the blueprint was not chosen to sprout neural networks in this generation,
then its fitness value is zero. Similarly, the fitness of each module is the average
metric of all networks that employed that module as part of their architecture.

At the end of each generation, except for the last one, new blueprints are
generated from the crossover of the best individuals, producing a new population
of blueprints. The same is done to the population of modules. After the last
generation is completed, the NeuroEvolution algorithm is ready to present to
the user the indicated DNN for some particular task. This may be the individual
with best fitness value from the final generation, or the best individual from all
generations. This individual is then trained with the entire dataset for a suitable
number of epochs, which is usually significantly larger than the number of epochs
used to calculate the fitness of blueprints and modules during evolution.

The size of the modules population is a CoDeepNEAT hyperparameter. In our
experiments, they are either 30 or 45, and the size of the blueprints population
is either 10 or 25, as explained in Sect. 4.

3.2 Short, Medium and Long Term Analyses

A major drawback of bioinspired deep learning models is that they are very time
consuming. In spite of their very competitive results, the time required for the
evolution of architectures can make reproducibility difficult and is a challenge for
researchers without access to high computational power. To put in perspective,
Bohrer et al. [14] give an estimated 480+ h to reproduce the CIFAR-10 dataset
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experiments from the inaugural work of the CoDeepNEAT [12]. They reach that
figure from the assumption that each epoch takes at least 30 s, and each of the
100 DNNs in one generation is trained for 8 epochs over a total of 72 generations.

The obvious way to reduce the required time is to reduce the complexity of
the neural networks. In [14], the hyperparameter space is drastically reduced.
To begin with, they evolved the networks for only 40 generations, instead of
the 70 initially employed in [12]. The number of neural networks, blueprints,
and modules was also reduced, as well as the complexity of the modules (fewer
filters, larger possible kernels, and no max pooling). With a smaller search space,
they also reduced the amount of training data. The CIFAR-10 dataset contains
50,000 training instances. While [12] uses all of them on a hold-out scheme to
train and validate the DNNs, [14] employs only 40% of that data.

In this work, we consider training the neural networks during merely four
generations, and we employ the same population sizes and use as much data
for training as [14]. This is what we refer to as “short-term” evolution of neu-
ral networks. The main motivation behind this experiment is to verify whether
an initialization function presents advantage over others when individuals are
evaluated after very short training episodes. We also verify whether ReLU or
hyperbolic tangent is more suitable an activation function in the short-term.

Subsequently, we also analyze the behavior of CoDeepNEAT in the medium
and long term. In both cases, we use the entirety of the training dataset, with a
train/validation hold-out partition, to evolve neural networks. And we increase
the resources available to CoDeepNEAT in both instances.

Another argument worth mentioning to justify larger evolutionary hyper-
parameters is the emergence of skip connections with output summation, which
resemble residual architectures, according to Miikkulainen et al. [12]. It is known
that the loss function tends to be chaotic in very deep architectures, which is
unfavorable for trainability and hinders generalization. Residual architectures
are very popular in deep learning [15–17] because they tend to simplify that
search space. This was experimentally validated in [18], which shows that the
loss landscape changes significantly when skip connections are introduced, as
illustrated in Fig. 2.

The residual connections implementation presents an uninterrupted flow of
gradient from a given layer to the one closest to the output, avoiding the problem
of vanishing gradient. Consequently, multiple skip connections are an alternative
to ensure the reuse of resources of the same dimensionality as the previous lay-
ers. On the other hand, these connections are also useful for recovering spatial
information lost during downsampling, and seem to stabilize gradient updates in
very deep architectures, ensuring rapid convergence. Such structure is so impor-
tant that it was the main motivator used by Miikkulainen et al. to introduce
mutation of connections between neurons in the original CoDeepNEAT [12,19].

3.3 Initialization and Activation Functions

This work focuses on the analysis of the results obtained with coevolutionary
algorithms when different initialization functions are employed. In spite of its
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Fig. 2. Loss surface of a ResNet-56 without (left) and with (right) skip connections
[18].

apparently limited impact on the algorithm, the choice of an initialization func-
tion can lead the algorithm to find a mostly linear neural network, or one with
multiple skip connections, as illustrated in Fig. 3.

The first initialization considered is Glorot, proposed in 2010 and designed
for DNNs with symmetric activation functions such as tanh and softsign [5,11].
It draws weights from a random uniform distribution such as:

W ∼ U(−
√

6
fin + fout

,

√
6

fin + fout
), (1)

where fin and fout are the input and output sizes of the layer [5,20]. It also has
a normal form, with N(0, std2) [21], where:

std =
√

2
fin + fout

. (2)

As pointed out by Goodfellow et al. [4], the formula is derived on the assump-
tion that the network consists only of a chain of matrix multiplications, with no
nonlinear activations.

He initialization, in contrast, is designed for non-symmetric activation func-
tions such as ReLU. The weights in each layer are generated to approximate the
derivative of the activation function from 0 to 1 [6,11]. Its uniform formula is as
follows [6,22]:

W ∼ U(−
√

6
fin

,

√
6

fin
). (3)

Similar to Glorot, the He function also contains a normal distribution form,
N (0, std2) [23], where:

std =
√

2
fin

. (4)
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Although we have seen the emergence of non-monotonic activation functions
as alternatives to new directions with the rise of functions such as swish [24]
and mish [25], studies are still placed considering Glorot and He initializers. For
the scope of this work, let us consider the normal and uniform versions of both
Glorot and He.

As both functions are the top choice used for initiate a DNN, those functions
are tested with CoDeepNEAT, alongside Random initialization. In the end, six
activations are used in this paper: Glorot Normal, Glorot Uniform, He Normal,
He Uniform, Random Normal and Random Uniform.

Fig. 3. Overall structure of two different networks evolved with Glorot initialization
(left) and He (right). Each node represents a layer, and the different nodes represent
different modules. Notice the linearity of the network on the left and the presence of
skip connections on the right.
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The performance between the weights initialization functions with different
activation functions also needs to be addressed. Here the Hyperbolic Tangent
(TanH, or tanh) and Rectified Linear Unit (ReLU, or relu) functions were chosen,
both non-linear and commonly used as standard functions.

tanh(x) = 2σ(2x) − 1 =
2

1 + e−2x
− 1 (5)

relu(x) = max(0, x) =

{
0, if x < 0
x, if x � 0

(6)

4 Experiments and Discussion

Our short-term, medium-term, and long-term experiments were based on and
compared against two baselines. The first, henceforth named B1, is the original
work that presented the CoDeepNEAT [12], and the second (B2), is the work of
Boher et al. [14]. The striking aspect of B1 is the very large search space of the
coevolutionary algorithm, as discussed in the previous section, whereas B2 has
a much smaller search space. This is because the objective of Bohrer et al. was
to reproduce the original experiments of the [12] with limited resources. Instead
of multiple GPUs, they used a single CPU with only 30 GB RAM.

Our short-term experiments (ST) were inspired by both baselines, but with
shorter training episodes than both of them. The sizes of the populations were
similar to B2, but we kept the possible DNNs hyperparameters closer to B1. We
also employed only a subset of the training data, and we reduced the duration
of the coevolutionary algorithm even further (4 generations rather than 40). For
medium-term (MT) and long-term (LT), we experimented with increasing the
duration of the experiment, and we trained the individuals for more epochs. The
experiments configurations are summarized in Table 1.

We compare the most commonly used initialization functions in Deep Learn-
ing: He, Glorot and Random. Each of them has a uniform and a normal variant,
which determines the distribution it will draw weights from. For the sort-term
experiments, we evaluate the CoDeepNEAT algorithm on two data sets (CIFAR-
10 and MNIST) with five hold-out iterations. However, as medium-term and
long-term experiments take substantially longer to complete, we had to limit
the experiments to a single hold-out on the CIFAR-10 data set.

The short-term results are presented in Tables 2 and 3. Table 2 gives the
accuracy of the best individual trained after the last generation on each of the
five hold-out runs. Table 3 gives the mean and standard deviations.

First, let us discuss the experiments performed with the ReLU activation.
We note that, in all runs, our results are better than the second baseline for
the MNIST data set. The worst short-term result for MNIST was 99%, whereas
B2 reported 92%. On CIFAR-10, the short-term results had a larger standard
deviation. On average, the networks found with He initialization were similar
to the baseline, while the individuals evolved with Glorot performed slightly
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Table 1. Evolutionary and topological hyperparameters. B1 and B2 are baselines. ST,
MT, and LT stand for short, medium, and long terms. B1 and B2 accuracies come from
their sources. For ST, MT, and LT we report the lowest average obtained with ReLU
and either Glorot or He in our experiments.

Parameters B1 [12] B2 [14] ST MT LT

Generations 75 40 4 25 75

DNNs population 100 10 10 100 100

Blueprints population 25 10 10 25 25

Modules population 45 30 30 45 45

Epochs during evolution 8 4 5 10 10

Epochs in final training 300 40 100 150 150

Data used during evolution 100% 40% 40% 100% 100%

Filters [32, 256] [16, 48] [32, 256]

Kernel size {1, 3} {1, 3, 5} {1, 3, 5}
Dropout rate [0, 0.7] [0, 0.5] [0, 0.5]

Max pooling {Yes, No} {No} {Yes, No}
Batch normalization {No} {No} {Yes, No}
MNIST accuracy – 92% 98.9% – –

CIFAR-10 accuracy 92.7% 77% 74.9% 80.1% 84.5%

better. Notice that the main difference from our short-term experiment to B2
was the larger search space for number of filters, and the possibility of employing
max pooling and batch normalization. This is suggestive that running the DNE
algorithm for longer generations is less important than providing the algorithm
with more flexible modules.

Next, we repeated the short-term experiments with the hyperbolic tangent
activation function (tanh). Again, the experiments were performed on CIFAR-
10 and MNIST, and repeated a hold-out partitioning scheme five times. In both
cases, the experiments were executed on single-CPU system with 15.5 GiB of
RAM and a 4 GB GPU (GeForce GTX 1650/PCIe/SSE2). The total run time
was 67 h. Thus, considering 2 activation functions, 4 initialization methods and
2 data sets, the total combinations add up to 16 distinct experimental settings,
each repeated five times, so each experiment took on average 50 min to complete.

The average accuracy and its standard deviation are in Table 3. The perfor-
mance of the individuals found with tanh was severely hindered when compared
to the individuals evolved with ReLU. Still, with the exception of Glorot Nor-
mal, the results were better than B2. Once again, this suggests that it is possible
to achieve decent results when the DNE is tuned to find “fast-learners”, DNNs
which can be trained with few epochs during the evolutionary process.

For the remaining experiments, we focused only on the CIFAR-10 data set
and ReLU activation function.
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Table 2. Short-term experiments with Glorot and He initialization functions (ReLU
activation).

CIFAR-10 MNIST

Initialization Run Accuracy Initialization Run Accuracy

Glorot normal 1 0.7681 Glorot normal 1 0.9872

Glorot normal 2 0.7861 Glorot normal 2 0.9893

Glorot normal 3 0.8057 Glorot normal 3 0.9900

Glorot normal 4 0.8034 Glorot normal 4 0.9893

Glorot normal 5 0.7995 Glorot normal 5 0.9903

Glorot uniform 1 0.8462 Glorot uniform 1 0.9890

Glorot uniform 2 0.7188 Glorot uniform 2 0.9908

Glorot uniform 3 0.8118 Glorot uniform 3 0.9876

Glorot uniform 4 0.7654 Glorot uniform 4 0.9914

Glorot uniform 5 0.8180 Glorot uniform 5 0.9881

He normal 1 0.7798 He normal 1 0.9879

He normal 2 0.6894 He normal 2 0.9910

He normal 3 0.7159 He normal 3 0.9870

He normal 4 0.7706 He normal 4 0.9921

He normal 5 0.7919 He normal 5 0.9899

He uniform 1 0.7743 He uniform 1 0.9902

He uniform 2 0.7767 He uniform 2 0.9923

He uniform 3 0.7324 He uniform 3 0.9903

He uniform 4 0.7695 He uniform 4 0.9900

He uniform 5 0.7998 He uniform 5 0.9870

Table 3. Short-term accuracy with Glorot and He initialization functions with linear
and non-linear activation functions.

Data set Initialization Activation Mean accuracy Std. dev.

MNIST Glorot normal tanh 0.9089 ±0.1116

MNIST Glorot uniform tanh 0.9723 ±0.0046

MNIST He normal tanh 0.9698 ±0.0045

MNIST He uniform tanh 0.9733 ±0.0026

CIFAR-10 Glorot normal tanh 0.4532 ±0.0547

CIFAR-10 Glorot uniform tanh 0.5487 ±0.0658

CIFAR-10 He normal tanh 0.5143 ±0.1237

CIFAR-10 He uniform tanh 0.5172 ±0.0777

MNIST Glorot normal ReLU 0.9892 ±0.0010

MNIST Glorot uniform ReLU 0.9893 ±0.0014

MNIST He normal ReLU 0.9895 ±0.0018

MNIST He uniform ReLU 0.9899 ±0.0016

CIFAR-10 Glorot normal ReLU 0.7925 ±0.0139

CIFAR-10 Glorot uniform ReLU 0.7920 ±0.0448

CIFAR-10 He normal ReLU 0.7495 ±0.0397

CIFAR-10 He uniform ReLU 0.7705 ±0.0217
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The medium-term in this section were carried out in order to contemplate
a compromise proposal between the two baselines used, since Boher et al. [14]
used a very small amount of computational power when compared to what was
used in the original CoDeepNEAT paper (2,000,000 CPUs and 5,000 GPUs). We
ran the medium-term experiments on the same architecture as the short-term (a
single 4 GB GPU). This time, however, each experiment took approximately 32 h
in lieu of the average 50 min observed in the short-term experiments. Therefore,
we limited the medium-term experiments to a single hold-out experiment.

The initialization functions were both the uniform and normal variants of He
and Glorot, and we also consider a random initialization, which assigns weight
values to the neurons without taking into consideration neither the activation
function, nor the sizes of the input or the output. The results are shown in
Table 4. In addition to the accuracy, we also report the number of trainable
parameters of the best individual and whether that individual contains residual
connections or not.

Table 4. Best individuals from experiments in medium-term for each evolutionary
process.

Data set Initialization Final individual Accuracy Parameters

CIFAR-10 He uniform Residual 0.8787 ≈3.33 M

CIFAR-10 He normal Residual 0.8336 ≈1.25 M

CIFAR-10 Glorot uniform Sequencial 0.8011 ≈2.25 M

CIFAR-10 Glorot normal Sequencial 0.8581 ≈1.15 M

CIFAR-10 Random uniform Sequencial 0.7380 ≈1.06 M

CIFAR-10 Random normal Sequencial 0.7271 ≈2.03 M

Considering the greater number of generations, the DNNs assembled by
CoDeepNEAT may obtain some residual connection due to mutations in their
blueprints. However, we noticed that only the He-like initialization were able to
produce the best individual with some residual connection, while all the others
converged to an individual whose architecture was fully sequential (total absence
of skip connections). It is important to mention that, during the evolutionary
process of all, individuals with some degree of residuality were found in all cases,
but only the architectures initialized with He Uniform or He Normal managed to
create individuals with residual architectures that surpassed the performance of
individuals with non-residual architectures during their respective evolutionary
processes.

Although one of the He initializations had the best result, as seen in Table 4,
with 87.87% accuracy, the Glorot Normal initialization achieved a similar result,
85.81%, with approximately 34.72% fewer floating-point operations and 34.53%
less total parameters, which is equivalent to the total number of parameters to
perform an inference on the model. So He Uniform got the best result, but the



310 L. G. C. Evangelista and R. Giusti

Glorot Normal initializer is just as competitive with less computing resources
required. A reasonable explanation for this fact is that the high frequency of
mutations allows the development of residual connections, but a large number
of generations may be required to produce individuals that are competitive. So
much so that Miikkulainen et al. state in [12] that it was only after the 70th

generation that the accuracy of the individuals in their experiments stabilized.
In order to explore this possibility, we executed long-term experiments, with

three times as many generations as the medium-term. However, as the neural
networks become more complex over the generations, the total time to finish
was substantially greater: 40 days per experiment (∼920 h), when compared to
the 32 h required to finish each medium-term experiment. Only 1 hold-out was
considered for Glorot Normal and He Uniform, which were the most accurate
initializations in the medium-term experiments. The results are presented in
Table 5.

Table 5. Best individuals from experiments in long-term for each evolutionary process.

Data set Initialization Final individual Accuracy Parameters

CIFAR-10 He uniform Residual 0.8991 ≈10.23 M

CIFAR-10 Glorot normal Sequencial 0.8454 ≈0.47 M

Similarly to the previous results, the best individual evolved with He ini-
tialization achieved better accuracy (89.91%) than the individual evolved with
Glorot (85.54%). However, the DNN found with Glorot was completely linear,
as shown in Fig. 3 (left). In comparison, the DNN found with He was rich in skip
connections.

5 Conclusion

In this paper we considered the influence of different experimental settings of a
coevolutionary algorithm We performed experiments with coevolution of Deep
NeuroEvolution of Augmenting Topologies (CoDeepNEAT) on two benchmark
data sets, on three different scenarios that involve increasingly more complex
search spaces. We compared the results obtained with two popular initialization
functions, He and Glorot, as well as a random-initialization strategy serving as
baseline. In addition, for short-term experiments we also compared linear and
non-linear activation functions.

In the initial experiments, focusing in short-term parameters, ReLU acti-
vation outperformed the results obtained by tanh in all experiments. While
the results are somewhat below start-of-the-art performances, they were above
99.20% in the MNIST dataset and 89.91% in the CIFAR-10 dataset, outperform-
ing the baseline study of [14] which attempted to run the CoDeepNEAT with
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limited computational resources. Our result shows that it may be more impor-
tant to fine-tune the coevolutionary algorithm hyperparameters and attempt to
evolve “fast-learners” in fewer generations than perform longer experiments.

It is important to note that the best result obtained for CIFAR-10 (89.91%)
was derived from long-term experiments. Furthermore, we draw attention to a
curious fact: considering the universe of medium and long-term experiments, all
the best individuals evolved with Glorot (both Uniform and Normal variants) did
not contain residual connections, while all of the best He individuals (Uniform
or Normal) had multiple residual connections and were deeper. Considering the
importance of residuality in neural architecture design, there seems to be evi-
dence to suggest an investigation into this greater capacity of He initializations
to facilitate the development of efficient residual architectures in short-term evo-
lution processes.
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