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Preface

The 11th Brazilian Conference on Intelligent Systems (BRACIS 2022) was one of the
most important events in Brazil for researchers interested in publishing significant and
novel results related to Artificial and Computational Intelligence. The Brazilian Con-
ference on Intelligent Systems (BRACIS) originated from the combination of the two
most important scientific events in Brazil in Artificial Intelligence (AI) and Computa-
tional Intelligence (CI): the Brazilian Symposium on Artificial Intelligence (SBIA, 21
editions), and the Brazilian Symposium on Neural Networks (SBRN, 12 editions). The
event is supported by the Brazilian Computer Society, the Special Committee of Arti-
ficial Intelligence (CEIA), and the Special Committee of Computational Intelligence
(CEIC).

The conference aims to promote theoretical aspects and applications of Artificial
and Computational Intelligence, as well as the exchange of scientific ideas among
researchers, practitioners, scientists, and engineers.

This year, BRACIS was held in Campinas, Brazil, from November 28 to December
1, 2022, in conjunction with five other events: the National Meeting on Artificial and
Computational Intelligence (ENIAC), the SymposiumonKnowledgeDiscovery,Mining
and Learning (KDMiLe), the Concurso de Teses e Dissertações em Inteligência Artifi-
cial e Computacional (CTDIAC), the Brazilian competition on Knowledge Discovery
in Databases (KDD-BR) and the Workshop of the Brazilian Institute of Data Science
(WBI0S).

BRACIS 2022 received 225 submissions. All papers were rigorously double-blind
peer-reviewed by an international Program Committee (with an average of three reviews
per submission), which was followed by a discussion phase for conflicting reports. After
the review process, 89 papers were selected for publication in two volumes of the Lecture
Notes in Artificial Intelligence series (an acceptance rate of 39.5%).

The topics of interest included, but were not limited to, the following:

– Agent-based and Multi-Agent Systems
– Cognitive Modeling and Human Interaction
– Constraints and Search
– Foundations of AI
– Distributed AI
– Information Retrieval, Integration, and Extraction
– Knowledge Representation and Reasoning
– Knowledge Representation and Reasoning in Ontologies and the Semantic Web
– Logic-based Knowledge Representation and Reasoning
– Natural Language Processing
– Planning and Scheduling
– Evolutionary Computation and Metaheuristics
– Fuzzy Systems
– Neural Networks
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– Deep Learning
– Machine Learning and Data Mining
– Meta-learning
– Reinforcement Learning
– Molecular and Quantum Computing
– Pattern Recognition and Cluster Analysis
– Hybrid Systems
– Bioinformatics and Biomedical Engineering
– Combinatorial and Numerical Optimization
– Computer Vision
– Education
– Forecasting
– Game Playing and Intelligent Interactive Entertainment
– Intelligent Robotics
– Multidisciplinary AI and CI
– Foundation Models
– Human-centric AI
– Ethics

We would like to thank everyone involved in BRACIS 2022 for helping to make it
a success.

November 2022 João C. Xavier Júnior
Ricardo A. Rios
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Abstract. The high availability of clinical data and a heterogeneous and
complex patient population makes Intensive Care Units (ICUs) environ-
ments opportune for developing a system that analyzes large amounts of
raw data, which human specialists can neglect. Quantifying a patient’s
condition to support the definition and adjustment of clinical treatment
and predict future outcomes is a significant research problem in intensive
care. This work’s main objective is to conceive an approach to predict-
ing ICUs mortality risk. Therefore, the designed approach is a binary
classification task that aims to predict whether patients will die or sur-
vive during their ICU stay. A cohort of 17,734 patients was used from
the MIMIC-III database, considering 10 input predictor variables and
8 Machine Learning methods. Sensitivity, specificity, F1 score, AUC,
and ROC curve are used to compare different models of mortality risk
prediction in a 48-h window of data acquisition. The best performance
was achieved by the Gradient Boosting Machine (GBM) method, which
obtained 0,843 (±0,015) of AUC and 0,503 (±0,048) for the F1 score.
The approach conceived enables the generation of robust models capable
of detecting hidden patterns and having greater power of discrimination
in classifications. The results are promising and, in some cases, superior
to those obtained by other proposals identified in the literature review.
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1 Introduction

Hospital Intensive Care Units (ICUs) have attracted relevant research efforts, as
patients require continuous monitoring of their physiological parameters due to
the severity of their health condition and a high risk of rapid clinical deteriora-
tion [19,20].

A primary outcome of interest in intensive care is mortality, as its rates in
ICUs are the highest among hospital units, around 10 to 29%, depending on
age and disease. Thus, identifying patients at most significant risk is critical to
improving treatment outcomes [12].

It is worth bearing in mind that traditional clinical warning scores, such
as Mortality Probability Models (MPM), Early Warning Score (EWS), National
Early Warning Score (NEWS), Modified Early Warning Score (MEWS), Sequen-
tial Organ Failure Assessment (SOFA), Quick Sequential Organ Failure Assess-
ment (qSOFA), Simplified Acute Physiology Score (SAPS), and Acute Physiol-
ogy and Chronic Health disease Classification System (APACHE), already have
the premise of classifying patients according to the risk of death. These scores
use simple mathematical models to predict the clinical outcome. Although these
scores are still widely used in the hospital setting, several studies show that cus-
tom models for mortality risk assessment using Machine Learning outperform
these traditional scoring systems [19].

In 2012, the Laboratory for Computational Physiology (LCP) of the Mas-
sachusetts Institute of Technology (MIT) proposed a challenge to encourage the
development of new Machine Learning techniques to identify the risk of hospi-
tal mortality in patients admitted to ICUs. This challenge promoted increased
interest in this topic among the international scientific community and open
health datasets. In this sense, databases such as the Medical Information Mart
for Intensive Care (MIMIC) are gradually becoming available, contributing to
research like the one developed in this work [13].

Considering this scenario, the present research aims to investigate the use
of 8 classification methods exploring Machine Learning in developing a mortal-
ity risk prediction approach in ICUs to assist physicians in decision making.
The Machine Learning methods evaluated are Random Forest (RF), Gradient
Boosting Machine (GBM), Gaussian Naive Bayes (GNB), Multilayer Perceptron
(MLP), Adaptive Boosting (AdaBoost), eXtreme Gradient Boosting (XGBoost),
Support Vector Machines (SVM) and Linear Discriminant Analysis (LDA). The
prediction is made by analyzing different clinical data from patients collected in
the first 48 h after admission.

In turn, the specific objectives of this study are: (i) to consider the main
challenges in using Machine Learning techniques to predict the risk of hospital
mortality of patients admitted to ICUs; (ii) to propose an approach to predicting
the risk of mortality for these patients; and, (iii) evaluate and compare the
performance of different Machine Learning methods, using a database built from
real information from ICUs (MIMIC-III).
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The following Section discusses related works to the study area of this article,
which was identified from a Systematic Literature Review carried out during the
research, which is the focus of another publication.

2 Related Works Exploring Machine Learning to Predict
Mortality Risk in ICUs

As part of the efforts associated with the research presented in this article, a
Systematic Literature Review (SLR) was carried out, identifying several studies
on the theme related to the prediction of mortality risk in ICUs.

Priority was given to related works that contemplated the following aspects:
(i) use of MIMIC as a database in order to consider cohorts of patients admitted
to ICUs from a single hospital; (ii) use of a maximum of 20 clinical variables
originating from the database; and (iii) use of the AUC metric (Area Under
ROC Curve) as a way of evaluating the performance of the proposed models,
thus making possible a comparison between the different works, which are briefly
described in Table 1.

It is worth noting that the literature has pointed out the AUC as recom-
mended “single number” metric to evaluate the performance of Machine Learning
methods because it has several desirable properties compared to other alterna-
tives. [8,17].

Table 2 presents a comparison between the related works, contemplating the
central aspects considered in the conception of the approach proposed by this
study: (i) identification of the work; (ii) number of clinical variables; (iii) descrip-
tion of clinical variables; (iv) version of the MIMIC database; (v) time window for
measuring clinical variables; (vi) prediction methods evaluated (when a study
evaluated more than one method, the one with the best performance is high-
lighted in blue); (vii) metrics used to measure model performance; (viii) better
performance obtained by the work considering the AUC metric; and, (ix) cohort
of patients or admissions.

3 Prediction of Mortality Risk in ICUs: Approach Design

This Section describes the proposed approach to deal with the prediction of
mortality risk in ICU patients, considering the design decisions that guided its
construction. An overview of this approach is shown in Fig. 1.

3.1 Discussion of the Research Problem

Traditional clinical warning scores (like EWS, SOFA, APACHE, and SAPS) have
been used to identify the deterioration of the patient’s condition. These scoring



4 A. R. R. de Souza et al.

Fig. 1. Overview of the proposed approach
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Table 1. Description of related works

# Description

1 [3] proposed a hybrid model that combines CNN and BiLSTM to predict mortality risk from statistics
that describe variation in heart rate, blood pressure, respiratory rate, blood oxygen levels, and body
temperature. The best-performing model obtained 0.88 of AUC. The work concluded that using a
CNN-BiLSTM hybrid network effectively determines mortality risk for the 3, 7, and 14-day windows of
vital signs. The results show that it is possible to implement an accurate system to continuously and
automatically predict the risk of mortality, reducing the burden on health professionals and improving
the clinical outcomes of patients.

2 [1] developed models for predicting ICU length of stay and mortality risk based on the MIMIC-III
database. Six commonly used Machine Learning methods were applied to predict mortality risk, using
11 input variables (demographic data and vital signs) in each model. The best AUC achieved in the
mortality model was 0.78 using the Random Forest algorithm. The novelty in this approach was the
construction of models to predict ICU length of stay and mortality risk with reasonable accuracy based
on a combination of Machine Learning and the quantile approach that uses only the vital signs available
in the patient’s profile. The technique used is based on the feature engineering of vital signs, including
their modified means, standard deviations, and quantiles of the original variables, which provided a
more appropriate dataset to obtain a better predictive power of the models.

3 [19] presented the performance results for several clinical prediction tasks, such as mortality risk, length
of stay, and ICD-9 code using models from Deep Learning, ensembles of Machine Learning models (Super
Learner algorithms), SAPS II, and SOFA scores. ICD-9 is the official code system for diagnoses and
procedures in hospitals in the United States. The MIMIC-III set was used as a data source. The results
showed that Deep Learning models consistently outperform all other approaches, mainly when raw
clinical time series data are used as input variables for the models. The MMDL deep learning method
(Multimodal Deep Learning Model) achieved an AUC of 0.87 using 17 predictor variables and 48 hours
of data.

4 [6] proposed a new algorithm for predicting ICU mortality risk to solve the class imbalance problem.
The method is based on the transformation of predictor variables to reduce the existing correlation. The
effectiveness of the algorithm was demonstrated in simulated datasets and MIMIC-II. An advantage of
the proposal is using only 6 patient clinical data (mean blood pressure, heart rate, body temperature,
sodium level, potassium level, and magnesium level). In comparison, other scoring methods or systems
use measures that may not be available to all patients and may therefore require manual intervention or
review of clinical scores. The model developed, called CHISQ-NEW by the authors, obtained an AUC
of 0.87.

5 [18] developed a Super Learner algorithm for predicting mortality risk for ICU patients, comparing
its performance with traditional scores. The calibration, discrimination, and risk classification of pre-
dicted hospital mortality based on Super Learner compared to SAPS-II, APACHE-II, and SOFA were
evaluated. The clinical data of 24,508 patients from the MIMIC-II database was used as a primary
data source. Two sets of predictions were produced based on Super Learner; the first based on the 17
variables as shown in the SAPS-II score (SL1), and the second based on the original variables without
transformations (SL2). Super Learner achieved an AUC of 0.85 when using SL1 and 0.88 with SL2.
Compared with traditional scores, the proposed model better predicted the risk of hospital mortality
in ICU patients

6 [12] presented four clinical prediction tasks using data derived from MIMIC-III. These tasks cover a
range of clinical problems, including mortality risk modeling, length of stay prediction, physiological
deterioration detection, and phenotype classification. Linear and neural network models were proposed
for all four tasks. The effect of deep supervision, multitask training, and modifications of specific data
architectures on the performance of neural models were evaluated. The work identified that LSTM-based
models significantly outperformed linear models and presented the advantages of using channel-wise
LSTMs to predict multiple tasks using a single neural model. The highest AUC achieved by the work
for predicting mortality risk was 0.87.

7 [2] investigated how the risk of hospital mortality can be predicted for ICU patients. The results showed
that the discriminating power of Machine Learning classification methods after 6 hours of admission
outperformed the traditional scoring systems used in intensive care medicine (APACHE, SAPS, and
SOFA) after 48h of admission. The best performing classifier was RF (AUC of 0.90), followed by NB and
PART in different experimental settings. The authors concluded that: (i) there is a marked improvement
in performance at the 6th hour of ICU admission; (ii) the percentage of missing values in the dataset
drastically reduces at the 6th hour of ICU admission and continues to decrease gradually until the
48th hour. The work alerts to the problem of the missing values of the variables collected to emphasize
the importance of collecting specific measures from the beginning of the hospitalization, as this will
influence the predictive performance of mortality risk prediction models.

8 [This work], whose technical-scientific contributions are discussed in this article, also appears in Table 2
to promote a summary of its characteristics in the literature. A discussion of this comparison is given
in Section 4.2.
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Table 2. Comparison of related works

#

n

Clinical Variables

Description MIMIC Time
Prediction

Methods

Performance

Metrics
AUC Cohort

1 9 BT, DBP, HR, age, MAP,
RR, SBP, gender, SpO2

III 24h hybrid neural

network

(CNN-

BiLSTM)

AUC, AUPRC,
accuracy,
specificity,
sensitivity, ROC
curve

0,88 51.279
patients

2 11 height, BT, DBP, glucose,
HR, age, weight, RR, SBP,
gender, SpO2

III - RF, LR, LDA,
kNN, SVM,
XGBoost

accuracy,
sensitivity,
specificity, NPV,
PPV, AUC, ROC
curve

0,78 44.626
admis-
sions

3 17 AIDS, bicarbonate level,
bilirubin level, BT, urinary
output, GCS, HR, age,
hematologic malignancy,
metastatic cancer,
PaO2/FiO2, potassium
level, SBP, sodium level,
admission type, urea level,
WBC count

III 24/48h super learner,
MMDL

AUC, AUPRC 0,87 35.627
admis-
sions

4 6 BT, HR, magnesium level,
MAP, potassium level,
sodium level

II - CHISQ-

NEW, SVM,
RF, LR, LDA,
QDA, Adaboost

AUC 0,87 4.000
patients

5 17 AIDS, bicarbonate level,
bilirubin level, BT, urinary
output, GCS, HR, age,
hematologic malignancy,
metastatic cancer,
PaO2/FiO2, potassium
level, SBP, sodium level,
admission type, urea level,
WBC count

II - super learner AUC, ROC curve 0,88 24.508
patients

6 17 height, BT, DBP, capillary
refill rate, FiO2, GCS
total, GCS motor response,
GCS eye opening, GCS
verbal response, glucose,
HR, MAP, weight, pH, RR,
SBP, SpO2

III - LR,
channel-wise
LSTM,
multitask
standard
LSTM,
standart
LSTM, deep
supervision,
multitask

channel-wise

LSTM

AUC, AUPRC,
ROC curve

0,87 21.139
admis-
sions

7 8 BT, creatinine, GCS, HR,
age, PaO2, RR, SBP

II 48h RF, NB,
PART, DT,
SVM, JRip

AUC, ROC curve 0,90 11.722
patients

8 10 BT, GCS, glucose, HR,
age, MAP, pH, RR, gender,
SpO2

III 48h RF, GBM,
GNB, MLP,
Adaboost,
XGBoost,
SVM, LDA

sensitivity,
specificity, F1
score, AUC, ROC
curve

0,84 17.734
patients

Description of variables:
HR - Heart Rate; SBP - Systolic Blood Pressure; DBP - Diastolic Blood Pressure; MAP - Mean Arterial
Pressure; RR - Respiratory Rate; SpO2 - Peripheral Oxygen Saturation; BT - Body Temperature; GCS

- Glasgow Coma Scale; FiO2 - Fraction of Inspired Oxygen; PaO2 - Partial Pressure of Oxygen; WBC -
White Blood Cell Count; AIDS - Acquired Immunodeficiency Syndrome; pH - Hydrogenionic Potential.

Prediction Methods:
CNN - Convolutional Neural Networks; LSTM - Long Short-Term Memory; BiLSTM - bidirectional
Long Short-Term Memory; RF - Random Forest; LR - Logistic Regression; kNN - k-Nearest Neighbors;
SVM - Support Vector Machines; XGBoost - eXtreme Gradient Boosting; MMDL - Multimodal
Deep Learning Model; LDA - Linear Discriminant Analysis; QDA - Quadratic Discriminant Analysis;
AdaBoost - Adaptive Boosting; NB - Naive Bayes; DT - Decision Tree; PART - partial Decision Tree;
JRip - Repeated Incremental Pruning to Produce Error Reduction (RIPPER); RNN - Recurrent Neural
Network; GNB - Gaussian Naive Bayes; MLP - Multilayer Perceptron; GBM - Gradient Boosting
Machine; LDA - Linear Discriminant Analysis.

Performance Metrics:
ROC - Receiver Operating Characteristic; AUC - Area Under the Curve; AUPRC - Area Under Precision-
Recall Curve; NPV - Negative Predictive Value; PPV - Positive Predictive Value.
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systems, however, only take into account health data from a given moment in
time without considering their tendency to vary during ICU stay [10].

In turn, the increasing implementation of Electronic Health Records (EHR) in
hospitals has made it possible to record patients’ historical data, whose vital signs
and laboratory test results collected over time can be interpreted as time series.
This scenario has promoted the application of computational techniques that
process these data and make it possible to produce predictions of the evolution
of the clinical status of patients.

The approach whose design is discussed in this article aims to predict whether
patients will die or survive during their stay in ICUs. The MIMIC-III will be used
as the database for this binary classification task. The performances of various
machine learning methods were compared using data collected in the first 48
h after the patient was admitted to an ICU. This time window was established
from the Systematic Literature Review, which showed that a sufficiently accurate
mortality risk estimate is already possible with this time interval [2].

3.2 Database and Study Population

The relevant patient cohort to the approach design was extracted from the Medi-
cal Information Mart for Intensive Care (MIMIC-III). MIMIC-III [14] is a public
access clinical data repository created based on patients from the Beth Israel
Deaconess Medical Center (BIDMC), a teaching hospital of Harvard Medical
School. For the development of the model used in the approach, only records of
patients aged 18 years or older who remained hospitalized in ICUs for a minimum
of 48 h were included. These requirements resulted in a cohort of 17,734 patients
and 1,456,610 observations. Of these patients, 15,328 survived, and 2,406 died,
resulting in a mortality rate of 13.57%.

3.3 Exploratory Data Analysis and Variable Selection

Clinical variables selected and extracted from MIMIC-III to develop the pro-
posed approach contains patient demographic information, laboratory test
results, vital signs, and the Glasgow Coma Scale, as listed in Table 3.

Table 3. Selected clinical variables

Variable Abbreviation Type Unit Observations Incidence

Gender - demographic data - 1.456.610 100%
Age - demographic data years 1.456.610 100%
Mean Arterial Pressure MAP vital sign mmHg 1.006.905 69%
Body Temperature BT vital sign °C 320.929 22%
Respiratory Rate RR vital sign RPM 1.064.918 73%
Heart Rate HR vital sign BPM 1.055.868 72%
Peripheral Oxygen Saturation SpO2 vital sign % 1.063.682 73%
Glucose - lab test mg/dL 246.892 17%
Hydrogenionic Potential pH lab test - 122.296 8%
Glasgow Coma Scale GCS score - 158.842 11%
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Figure 2 presents the matrix with Pearson’s correlation coefficients (r) of the
clinical predictor variables, whose function is quantifying the linear relationships
between their pairs.

Correlation coefficients are in the range of –1 to +1. Thus, in Fig. 2, two
variables have a perfect positive correlation if r = +1, no correlation if r = 0
and a perfect negative correlation if r = –1.

Fig. 2. Correlation between predictor clinical variables

A timely procedure should select variables that contribute the best gain of
information to predict the result, minimizing the redundancy of information [15].
As shown in the matrix, there is no strong correlation between any pairs of
variables since the highest coefficient is 0.26 between BT and HR.

3.4 Data Preprocessing

The quality and quantity of helpful information are essential factors that will
influence the efficiency of a Machine Learning method. Based on this premise, it
should be taken into account that the existing data in Electronic Health Records
have different formats, dimensions, and characteristics, so they are generally not
ready to be entered directly into these methods. Therefore, data preparation is
essential before feeding the models [4]. This task is performed by preprocessing,
which is composed of the following steps:

– Data Cleaning. Data extracted from MIMIC-III have erroneous values due
to noise, incorrect records, typographical errors, and inconsistent information
imputation or units [19]. The specifications in work [12] were used to address
these outliers present in the database, which was defined by clinical specialists
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based on their knowledge of valid measurement intervals. In the proposed
model, each numerical variable is associated with upper and lower limits
defined by specialists to detect unusable values (outliers). The observed value
will be excluded if it is outside these limits. When applying these rules to
generate the model cohort, 7,425 observations (0.51%) classified as extreme
outliers were removed.

– Hourly Aggregation. MIMIC-III data have a date/time register of capture
for each measurement performed. However, most measurements are sampled
on a non-periodic time basis, so the time series for each raw variable is con-
siderably sparse. Thus, to obtain a denser representation of the physiological
data to provide a better inference by the algorithms, the observations of each
time series were aggregated in hourly intervals by calculating the median [21].

– Missing Values Handling. To minimize the impact on prediction perfor-
mance due to lack of data, only patients who had all variables recorded at
least once at three different times within the 48-h measurement window were
included. This criterion resulted in a dataset of 6,184 patients.

3.5 Feature Construction and Data Normalization

Feature construction addresses the problem of finding the transformation of vari-
ables that have the most helpful information. For the treatment of missing infor-
mation in the MIMIC-III time series, the proposed model calculates each vari-
able’s statistical data (minimum value, maximum value, standard deviation, and
mean) within the 48-h time window. This strategy reduces the complexity of the
Machine Learning model generated, as it uses more relevant information as input
for the prediction task.

Determining the minimum and maximum values of each series aims to show
the extreme events during ICU stay. The standard deviation was used to quantify
the variability of events. The mean was calculated to provide a representation
of the mean event for each variable.

Many Machine Learning methods require the selected variables to be on the
same scale for better performance [11]. This requirement is usually achieved
by turning the features into the interval [0, 1] or a standard normal distribution
with zero mean and unity variance. This technique prevents the model from being
influenced by variables with higher values than the others. The normalization
method called âĂĲmin-maxâĂİ was chosen for this work, through which the
values were transformed to a minimum-zero and maximum-one scale.

4 Prediction of Mortality Risk in ICUs: Approach
Evaluation

The training dataset was used to evaluate the mortality risk prediction perfor-
mance of 8 Machine Learning methods. Table 4 presents the results of mean AUC
and standard deviation, which were quantified using the default adjustment of
the hyperparameters of each algorithm. The best performance was achieved by
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the GBM method, which obtained 0.841 (±0.024) of AUC. Performance values
were obtained by cross-validation to avoid biased evaluations. The technique
Stratified 10-fold Cross-Validation (StratifiedKFold) was used, a variation of k-
fold that returns stratified data subsets, where each data subset contains the
same percentage of surviving and dead patients as the complete set.

Figure 3 presents the ROC curves of the evaluated prediction methods.
Despite the different AUC performances, it can be seen from the curves that
the RF, GBM, MLP, Adaboost, XGBoost, SVM, and LDA methods have very
similar behavior considering Specificity and Sensitivity. The lower-left corner of
the ROC curves shows that the GNB algorithm showed lower sensitivity at low
false-positive rates than the other methods, which indicates a lower ability to
predict correctly patients who died.

4.1 Tuning of the Best Performing Machine Learning Method

After identifying that the GBM Machine Learning method achieved the best pre-
diction performance, its hyperparameters were adjusted to increase the model’s
performance. This adjustment was accomplished using the training dataset, and
the performance was evaluated using the AUC metric. The method tuning
was performed using Randomized Search Cross-Validation [5]. This technique
aims to find the combination of hyperparameter values that result in the high-
est performance of the model. For this, a search is implemented where each
configuration is sampled from a list of specified values. The hyperparameters
considered were: learning_rate, n_estimators, max_depth, min_samples_split,
min_samples_leaf, max_features, and subsample.

Table 4. Classification perfor-
mances

Method Average
AUC

Standard
Devia-
tion

RF 0.830 0.025
GBM 0.841 0.024
GNB 0.786 0.029
MLP 0.838 0.025
Adaboost 0.815 0.031
XGBoost 0.823 0.019
SVM 0.821 0.025
LDA 0.830 0.025 Fig. 3. ROC curves of prediction methods

4.2 Performance Analysis of the Best Performance Method

After finding the optimized hyperparameter values for the GBM method, the test
dataset was used to perform the final performance evaluation. Cross-validation
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was employed to investigate variability in model performance across 10 different
data partitions. It is time to reiterate that the test dataset had not yet been
applied along with the prediction model.

Sensitivity, Specificity, F1 score, and AUC were used to evaluate the model
for predicting mortality risk. Therefore, the designed approach is a binary clas-
sification task that aims to predict whether patients will die or survive during
their ICU stay. The Sensitivity indicates the ability of the classification method
to predict patients who died (positive class) correctly. The Specificity indicates
the ability of the classification method to predict the patients who survived
(negative class) correctly. F1 score is a harmonic average calculated based on
Precision and Sensitivity [11]. The AUC is a scalar quantity between 0 and 1
representing the area under the ROC curve and measuring the quality of model
predictions regardless of the classifier operating point [17]. Accordingly, AUC
measures the inherent ability of the model to discriminate between patients who
died and those who survived.

An AUC performance of 0.843 (±0.015) was achieved after tuning the GBM
method by adjusting its hyperparameters, as shown in Table 5. The measure was
obtained through cross-validation (10-folds). These results of AUC, Sensitivity,
Specificity and F1 Score show the robustness of the proposed approach. They
indicate that the model can identify patients at high risk of dying and avoid
false mortality classifications of surviving patients.

Figure 4 shows the average ROC curve, also obtained through cross-
validation. The gray region shows the variance of the ROC curve when the data
is split into different subsets for training and testing, showing how the classifier’s
output is affected by changes in the data [9].

Table 5. GBM model perfor-
mance

Method Average
AUC

Standard
Deviation

AUC 0,843 0,015
Sensitivity 0,754 0,031
Specificity 0,761 0,035
F1 Score 0,503 0,048

Fig. 4. Average ROC curve obtained through cross-
validation (10-folds)

The performance comparison of the proposed approach with other works in
the literature will be made based on Table 2. The AUC metric was used for
this comparison because the literature points it out as the most relevant for
measuring performance in predicting the risk of ICUs mortality [17].
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The AUC performance of 0.84 achieved by the proposed approach is superior
to the work of [1], which obtained an AUC of 0.78. In turn, the works [19] (AUC
of 0.87), [18] (AUC of 0.88), and [12] (AUC of 0.87) present better performance.
However, they require a total of 17 predictor variables, depending on up to 6
laboratory tests or requiring the individual values of the 4 criteria of the Glasgow
scale, of which often only the total value is recorded. These aspects can make
their implementation difficult, as health professionals would have to update them
during the patient’s hospitalization, and, as a rule, these values are not measured
regularly.

Although the proposed approach does not use the least amount of predictor
variables, it still presents a performance similar to works [2,3,6] that include
other strategies for the prediction effort, which will be the object of study in the
continuity of the search. Finally, it is worth emphasizing that the performance
obtained by the approach discussed in this article is superior to the traditional
SAPS-II (AUC of 0.78) and SOFA (AUC of 0.71) [18] scores, which is an excellent
indicator significant for research continuity.

5 Conclusions

This work contributed to designing an approach to predicting the risk of mor-
tality, exploring Machine Learning, and using data collected during the first
48 h of hospitalization in ICUs. MIMIC-III was used as a database of clinical
information collected from the real patients.

We understand that a mortality prediction system implemented in an ICU
hospital environment could provide valuable information about the patient’s
response to clinical treatment as a whole, allowing medical professionals to
promptly make adjustments when the model predicts an increase in the patient’s
risk of death.

The article includes a synthesis of the model development stages from the
data preparation phase, which consists of processes necessary to transform raw
clinical data into structured data, which can then be used as input to the Machine
Learning methods [7].

The proposed model employs age, sex, GCS score, vital signs, and some
laboratory test results as predictors. These necessary attributes are recorded
regularly in ICU settings with the minimum effort required by healthcare pro-
fessionals. The simplicity of the attributes chosen also makes it possible for the
mortality prediction to be recalculated continuously and automatically during
the patient’s stay in the ICU. The small number of variables used also improves
the interpretability of the model, thus increasing the likelihood that healthcare
professionals will trust their predictions.

Several Machine Learning methods were tested: Random Forest (RF), Gra-
dient Boosting Machine (GBM), Gaussian Naive Bayes (GNB), Multilayer Per-
ceptron (MLP), Adaptive Boosting (AdaBoost), eXtreme Gradient Boosting
(XGBoost), Support Vector Machines (SVM) e Linear Discriminant Analysis
(LDA). Their performances were quantified according to the metrics indicated
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by the literature in evaluating models for mortality prediction. The highest per-
formance was achieved by the GBM algorithm, which obtained 0,843 (±0,015)
of AUC and 0,503 (±0,048) for F1 score, using data collected in the first 48 h of
ICU stay. As shown in Table 2, the model results are promising, use a small num-
ber of variables, and performance is equivalent to other architectures proposed
in the literature.

Compared to traditional clinical scores, the proposed approach uses data min-
ing and Machine Learning techniques that generate more sophisticated, robust
models capable of detecting hidden patterns and having greater power of dis-
crimination in classifying mortality risk in ICUs.

As a prospect of continuing the research, the expectation for this approach
will be explored in the hospital ICU environment. To this end, this work will be
integrated into the efforts of the Laboratory of Ubiquitous and Parallel Systems
(LUPS/UFPel). This research group employs the middleware EXEHDA [16]
and Lifemed’s multiparametric monitors in studies cases involving inpatients.
Lifemed is an industrial partner that, with its different certifications, enables
the provision of solutions applied in real clinical environments.
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Abstract. Context: During software development in the context of Arti-
ficial Intelligence (AI), just like any other software, there is the require-
ments elicitation phase. In this phase, developers alongside stakeholders
make use of various techniques, methodologies, and tools available to
elicit software requirements. Problem: The need of understanding which
techniques, methodologies, and tools are suitable in requirements elic-
itation in the context of AI, taking into consideration ethical issues.
Solution: Investigation of the ICT practitioners’ perception about their
approaches regarding the requirements elicitation process for AI sys-
tems. Method: We have conducted a survey with ICT practitioners and
reviewed the literature to identify requirements elicitation practices in
the context of AI. Summary of Results: Most ICT practitioners work
with the techniques and methodologies found in the literature. Regard-
ing tools, our findings were inconclusive, as most practitioners do not
use the tools identified in the literature, or even do not use any tools. As
for ethical requirements, some were well consolidated with practitioners
but others were not, such as the principle of equity and inclusion. Con-
tributions and Impact in the IS area: An overview of how AI systems are
being developed across organizations and the treatment that is given to
ethical requirements. Our findings reveal that there is a need for organi-
zations to consolidate ethical and legal notions with developers so that
they can be applied during the requirements elicitation phase.

Keywords: Requirements elicitation · Artificial intelligence · Ethical
issues techniques · Tools

1 Introduction

Artificial Intelligence (AI) is used in everyday life by many people, helping to
solve various problems in many different areas and streamlining services. With
the increase in the use of AI in recent years, the problems involving it also grow
and show the need for care regarding several ethical issues associated with the
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creation of AI-based systems. Some of these issues have made global headlines
posing questions to users about the security of their data and their privacy.
In this context, AI systems are still far from trouble-free, even though there
are many tools available that help to improve security in these systems [38].
Moreover, ethical issues persist with the advancement of technology, since the
virtualization process requires numerous data from users who usually do not
know how their data is being treated [18,32,37].

This shows the need for greater coordination in the development of AI sys-
tems, which leads to the use of tools that help to follow ethical principles during
development. A more ethical approach to developing, deploying, and using AI
can be a competitive advantage for any company [31]. However, many of these
tools are relatively immature making it difficult to encourage adoption by devel-
opers. AI faces other issues in addition to ethical barriers, which are equally
important and may be related to development, deployment, and use. A research
conducted by IBM shows that 78% of the leaders of large organizations which
use AI or intend to use it, consider it “very” or “critically important” knowing
that their AI models are being built fairly, securely, and reliably [22]. The survey
also shows that 26% see development tools as the biggest obstacle to adopting
AI in their systems [22].

The reliability, integrity, and privacy concerns of AI systems need to be
addressed at the earliest steps of development when system requirements are
being defined. The elicitation of requirements is an initial process that continues
even after development has begun. It aims to determine the scope and speci-
fication of the product [36], being the initial door to bar possible ethical and
technical problems that may occur during and after creating an application in
the AI context [11,12,16].

Knowing the best requirements elicitation techniques for developing an appli-
cation in the context of ethics-centric AI is an important factor to better under-
stand what stakeholders and even users expect from the software and define a
better path to a final system without ethical and technical problems. Bearing
in mind the difficulties inherent in the development of an AI system, it is nec-
essary to have a strategy to face them. Therefore, the general objective of this
work is to investigate the techniques, methodologies, and tools of Requirements
Engineering to carry out the elicitation of functional and non-functional software
requirements in the context of AI.

2 Background

The term Artificial Intelligence (AI) was created by a study proposal by John
MacCarthy and Marvin Minsky when an invitation was made for a study to
be carried out in 1956 at Dartmouth College [17]. It consisted of creating an
Artificial Intelligence in which a machine could simulate every aspect of learning
or any characteristic of intelligence, given that these aspects and characteristics
are precisely described [30].

Artificial Intelligence is considered a multidisciplinary field of study, coming
from computing, psychology, engineering, cybernetics, and mathematics, with
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the main objective of building intelligent behavior systems that perform tasks
with competence equivalent or superior to what a human specialist would per-
form [34]. Most current AI systems perform only a fraction of main activities
such as pattern recognition (recognition of plant or animal images or human
faces), language processing (language understanding, translating or answering
questions), practical suggestions (recommend purchases, provide information,
logistical planning or optimize industrial processes), and so on [9]. There are
even systems that can combine many of these capabilities, such as autonomous
vehicles or assistance robots [33].

The High-Level AI Expert Group (HLEG) [33] characterized the scope of AI
research as a scientific discipline, which includes various approaches and tech-
niques such as machine learning (deep learning and reinforcement learning for
example), machine reasoning (planning, programming, knowledge representation
and reasoning, research and optimization) and robotics (which includes control,
perception, sensors, and actuators). To this definition, we could also add commu-
nication as well, and particularly the understanding and generation of language,
as well as the domains of perception and vision.

2.1 Software Requirements

Software requirements can be classified as descriptions and limitations of what
a system and its services must provide. Such limitations meet the needs of
stakeholders during software development. Requirements engineering is critical
since misinterpreting what services are required of the system can lead to prob-
lems during the implementation phase. Requirements Engineering has four main
activities [36]: Feasibility study; Requirements elicitation and analysis; Require-
ments specification; and Requirements validation.

Requirements can be statements in natural language of the services the sys-
tem provides and its operational constraints or a structured document with
detailed descriptions of the system, the first being a user requirement and the
later a system requirement [29]. Moreover, they can also be divided into func-
tional requirements or non-functional requirements. The first are statements
about the functioning, services, and behavior that the system should perform
and it is expected that the description of a functional requirement is as complete
and consistent as possible, as it determines much of the scope and specification
of the software. Non-functional requirements are the characteristics and restric-
tions applied to the software’s functionalities, which are generally more critical
than the functional requirements [40].

Several methods can be used to elicit software requirements. The require-
ments elicitation process for a project is not restricted to the use of just one
technique, but a combination of them [24]. In this way, from a given scenario, it
is possible to define the characteristics associated with the context and obtain
the most appropriate techniques for a given configuration, observing which tech-
niques are used together.
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2.2 Ethical Requirements for AI

The High-Level AI Expert Group (HLEG) [33] characterized the scope of AI
research as a scientific discipline, which includes various approaches and tech-
niques such as machine learning (deep learning and reinforcement learning for
example), machine reasoning (planning, programming, knowledge representation
and reasoning, research and optimization) and robotics (which includes control,
perception, sensors, and actuators). To this definition, we could also add commu-
nication as well, and particularly the understanding and generation of language,
as well as the domains of perception and vision.

From the beginning of the construction of an AI application, it is necessary
to keep in mind the ethical issues applicable to it. There are several issues that
permeate this theme and one of them is data privacy and security. Siau and Wang
[35] showed that in 7 out of 8 frameworks on ethics applied to AI, privacy is one
of the most relevant factors. The development of an AI system relies heavily on
a huge amount of data, including personal data and private data. With more
data generated in societies and companies, there is a greater chance of misuse
of that data. Thus, data must be properly managed to prevent misuse [20].

To keep the data safe, every action taken with the data must be detailed and
recorded. Both the data itself and the transaction record can cause risks related
to privacy. It is also important to consider what should be recorded, who should
be in charge registration action and who can have access to the data and records.
In the elicitation process, it must be considered how the data processed by the
AI will be saved and made available to its users [20].

Another important point raised by Bibal et al. [6] was the ability to explain
why the AI got that result after analyzing the data, which is a practice imposed
by privacy laws, such as the GDPR. It is extremely important that organizations
that build AI systems are able to explain and understand the result of it and thus
provide a reliable service to people. Therefore, in the requirements elicitation
process, it is necessary to guarantee the explainability of AI models, leaving
aside black-box models that hinder the understanding of the model. Once the
explainability is guaranteed, it makes it easier to ensure that justice, equity and
transparency are being applied, which are other practices required by privacy
laws [10]. Moreover, these aspects make the application more reliable because
users will be fully aware of its operation and all the resources behind its design.

With responsibility and accountability we can also prevent malfeasance
caused by an AI [19], as those who develop or sponsor it will not want their names
related to something that harms human beings. Even though it is not possible to
prevent maleficence, such responsibilities can lead to the application’s creators
being arrested or paying fines, setting an example for other developers and spon-
sors not to do the same. Charity and freedom are also frequently cited ethical
principles and must clearly be respected from the stage of eliciting requirements
[28]. With them, it is possible can ensure the promotion of well-being, peace and
happiness, the creation of socioeconomic opportunities and economic prosperity
with an alignment of AI with human values. It also guarantees the freedom of
expression or self-determination.
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Freedom and beneficence can be guaranteed through transparency and pre-
dictable (explicable) AI, as it does not reduce citizens’ choices and knowledge,
increasing people’s knowledge about AI, giving notice and consent, or, conversely,
avoiding actively collecting and disclosing data in the absence of consent informa-
tion [15]. Regarding dignity and sustainability, we know that many AI systems
can end up replacing humans doing their job equally or even better [20], there-
fore it is important during the elicitation phase to have a discussion about the
possible impacts of the application on jobs and people in general in view of what
AI will provide for its users. It is also important to emphasize a possible impact
on the environment, as issues related to the environment are currently widely
discussed and an AI that can cause damage to it must be avoided in order to
preserve the quality of life.

2.3 Related Works

Aiming to broaden the discussion on ethics in AI, Cerqueira et al. [12] conducted
a study of the literature alongside mining GitHub to find projects related to
ethics in AI, exploring practical implementations and relating them with the
discoveries within the literature. They found total of 182 abstracts in SCOPUS
related to ethics in AI and 21 tools from GitHub for implementing AI ethics.
The study also says that it is critical that the main focus of regulations should
be on the work of the software developer and that implementing ethics in AI is
not an easy task, it takes constant dedication.

In order to identify the methods and tools available to help ML developers,
engineers and designers reflect and apply “ethics”, Morle et al. [31], designed a
typology for the ML community focused on the practice that “combined” the
tools and methods identified according to the ethical principles (beneficence,
non-maleficence, autonomy, justice and explainability). Based on the fact that
companies do not provide their practitioners with tools focused on the ethical
development of AI, the study moves on to the study of the literature on the
subject discussed. Research has shown that there is an uneven distribution of
efforts across the entire “AI Ethics” typology, and many of the tools included
are relatively immature.

Vakkuri et al. [38] discussed the ethics of AI and concluded that it is currently
an area with a large gap between research and practice. Much of the research
done is theoretical and conceptual, with a focus on defining the principles for AI
ethics and how to address them. Many studies have tried to fill this gap to bring
these principles to developers, but it didn’t seem to have much success and the
author tries to bring another approach, and proposes a method to implement AI
Ethics, ECCOLA. ECCOLA is a guide that is designed to provide developers
with an actionable tool to implement AI ethics and to assist in using the various
AI ethics guidelines in practice. As for the results obtained, there is currently
no way to do an ethical benchmarking in the context of AI ethics, so it becomes
indisputably a limitation for any method. It is equally difficult for a method
to have a quantitatively proven effect because ethical issues are often context
specific and require contextual reflection. ECCOLA raises awareness of ethics
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AI by making its users aware of various ethical issues and facilitates ethical
discussion within the team and also produces system development transparency
[38].

Requirements for AI systems are derived from ethical principles or ethical
codes (standards) and are similar to legal requirements [13]. Guizzardi et al. [16]
is interested in defining the sources of ethical requirements, ethical principles and
ethical codes as well as outlining a systematic process to differentiate require-
ments from their sources. The authors’ main thesis is that techniques developed
in requirements engineering that have been practiced for decades can also be
used to make AI systems compatible with ethical principles and codes found in
the literature. As for the implementation of functional and quality requirements
derived from ethical requirements, the authors emphasize that the system must
be able to perform as well as well-trained humans performing the same task.
AI systems must explain their reasoning, rather than just providing results and
making decisions.

Aiming to help software managers, mainly in the prioritization of features
and improvements for a large amount of information, Mangabeira [29] aimed to
create a classifier of user requests, expressed in natural language, automating
this solution with processing natural language and machine learning algorithms.
The author highlighted the difficulty of software managers with regard to com-
munication with end users of developed software products, and also based on
authors in the area, it is possible to say that traditional elicitation methods miss
the opportunity to involve a large number of users. Even when performed for
a target audience, such as questionnaires, elicitations need reasonable human
and financial resources to be applied and evaluated considering a large group of
people. On the other hand, today there are many aspects that can be directly
elicited by the users of the products themselves, through the investigation of
social networks and comments from these users about the use of those products.
These aspects can be very useful in the requirements elicitation process.

The work of Cerqueira et al. [14] made use of Design Science Research to
identify the guidelines and ethical principles for systems based on Artificial Intel-
ligence existing in the literature. Vogelsang and Borg [39] conducted an interview
with four data scientists define characteristics and challenges unique to Require-
ments Engineering (RE) for ML-based systems. The interview approached elici-
tation, specification, and assurance of requirements and expectations and showed
the need of adaptation for requirements engineering process according to the
development paradigm. To the best of our knowledge, we are not aware of any
work that investigates the use of existing techniques in the literature to elicit
ethical requirements in the context of AI in industry.

3 Research Methodology

This work have investigated the requirements elicitation techniques, methodolo-
gies and tools used in the industry in the context of AI through a survey with
Information and Communications Technology (ICT) practitioners. The survey
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has as main objective to collect the perception of ICT practitioners in relation
to the findings in the literature review. Survey questions are show in Table 1.
Questions Q1 to Q3 are to understand the profile of the survey ICT practi-
tioner. Questions Q4 to Q9 investigate the techniques, methodologies and tools
used in requirements elicitation and also seek to know which of the techniques,
methodologies and tools the ICT practitioner does not know, giving a notion of
the respondent’s knowledge in relation to the techniques identified in the liter-
ature. Questions Q10 to Q17, on the other hand, have questions about ethics
applied to the AI context, to get an idea of how much the subject is being talked
about within organizations and also to get an idea of the knowledge of ICT
practitioners about the projects they work with.

Table 1. Survey questions

ID Question

Q1 What is the nature of your organization’s operations?

Q2 What is your position in the organization?

Q3 How many years have you worked in your position?

Q4 What requirements elicitation techniques have your organization used? (You can choose more than one if your organization
uses multiple techniques)

Q5 Which of these requirements elicitation techniques are you not familiar with? (You can choose more than one if you don’t
know some of these techniques)

Q6 What requirements elicitation methodologies have your organization used? (You can choose more than one if your
organization uses multiple methodologies)

Q7 Which of these requirements elicitation methodologies are you unfamiliar with? (You can choose more than one if you don’t
know some of these methodologies)

Q8 What requirements elicitation tools have your organization used? (You can choose more than one if your organization uses
multiple tools)

Q8 Which of these requirements elicitation tools are you not familiar with? (You can choose more than one if you don’t know
some of these tools)

Q10 During and after the requirements elicitation phase, is the data needed for AI modeling/construction transparently
obtained and its origins well known?

Q11 During and after the requirements elicitation phase, are the tools used to obtain the data needed for AI
modeling/construction secure and is your organization fully aware of the tools’ data warehousing policy?

Q12 During and after the requirements elicitation phase, is it well defined for what purpose the AI will be used?

Q13 During and after the requirements elicitation phase, is the privacy of the user who will use it already taken into account
(AI Security, LGPD Application, etc)?

Q14 During and after the requirements elicitation phase, is your organization concerned about trust in the tools and methods
that will be used in development?

Q15 During and after the requirements elicitation phase, is it taking into account the positions/jobs that the AI can take away
from other people by doing their work?

Q16 During and after the requirements elicitation phase, is it taking into account diversity, non-discrimination and equity, so
that the AI does not make decisions based on something that could be framed as prejudice?

Q17 During and after the requirements elicitation phase, is accountability taken into account (definition of AI providers’
responsibility and its results)?

4 Survey Results and Discussion

The survey was prepared by two researchers, one of them with more than 20
years of experience, and the guidelines proposed by Kitchenham et al. [26,27].
We carried out a pilot with 5 professionals who work in the requirements area
and, after the pilot, we made some adjustments to the questions. The pilot’s
responses were not considered in the analysis of the results. The survey consisted
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of closed questions with multiple choices. In some questions we used a Likert scale
[5]. The survey was available online from November 9 until February 7, 2021.
We contacted professionals in our relationship network and these professionals
suggested other professionals in their relationship network. In total, we contacted
98 professionals, but only 50 agreed to respond to the survey.

The survey with 17 questions, as shown in Table 1. 56% of people were from
private organizations and 44% from public organizations. According to results
of Q2 which questions ICT practitioners’ roles, 16% are project managers, 24%
are application developers, 12% are students, 34% are from areas related to data
analysis, 4% are Researchers, 6% are from other ICT areas, 2% are proofreaders
and 2% are financial analysts. Thus, a total of 80% of the ICT practitioners
work with ICT. As for the length of time that ICT practitioners have held their
current positions in organizations, 32% have been less than 1 year, 22% 1 to 3
years, 12% 3 to 5 years, 14% of 6 to 9 years and finally 20% over 10 years. It
is important to notice that only 46% of the ICT practitioners have more than 3
years of experience in their current position.

Regarding the elicitation techniques used by the ICT practitioners, Fig. 1(a)
shows the most used techniques according to results of Q4. It is possible to notice
results very similar to those found in the literature [3,4,21,23] considering that
interviews, meetings and document analysis are most used ones. However, tech-
niques such as questionnaires and usability tests are commonly cited in the liter-
ature as being widely used, although in the survey this result cannot be observed.
Other techniques were selected by less than 30% of the ICT practitioners.

Figure 1(b) shows the results of question Q5, which seeks to know the ICT
practitioner’s knowledge about the techniques presented, and also to have a
relationship between unused techniques and unknown techniques. It is easy to
notice that the Laddering, JAD, and Cognitive Mapping are the most unknown
techniques by the ICT practitioners which supports the results of the previous
question, in which these techniques are not part of the majority of answers.

Fig. 1. Figure (a) shows requirements elicitation techniques used by the ICT practi-
tioners, while (b) shows the requirements elicitation techniques that ICT practitioners
do not know.
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As for the methodologies, Fig. 2(a) shows the results of question Q6, and
provides a view of the methodologies used. 64% have used design thinking, 42%
have used user-centered design and 14% have used participatory design. These
results are similar to the results of Ainhoa Aldave et al. [3] in which design
thinking is also the most used followed by user-centered design, except that they
appear with lower percentages.

Figure 2(b) shows the results of question Q7 regarding participants’ knowl-
edge about techniques. 58% of the ICT practitioners do not know participatory
design, 36% do not know user-centered design and only 12% do not know design
thinking. This indicates that the low percentage of usage of these techniques is
due to participants’ lack of knowledge about them.

Fig. 2. Figure (a) shows methodologies used by ICT practitioners, while (b) shows the
methodologies that the ICT practitioners do not know about.

Figure 3(a) shows the results of question Q8 and aims to know the tools used
by the ICT practitioners in the requirements elicitation. Of the ICT practition-
ers, 36% use WebRatio (UML), 18% use Analyst Pro, 14% use no tools, 14%
use Objectiver, and 12% use RequisitePro. As for the tools, both the literature
review and the survey could not identify the most used tools, since the most
chosen tool has only 36% of the total responses, and the other tools are very old
and unknown by users.

As presented by Aguilar et al. [1] and Jazlyn Hellman et al. [8] WebRatio
is a well-established tool in the market even though it is not recommended for
large-scale projects. In general, WebML or UML tools are the most used for their
ease of access and also their simplicity in understanding and building diagrams,
so this would be the most suitable tool. Analyst Pro, which was right behind
WebRatio, is still a used tool that has great scalability and version control [7],
[2], and even though it is an old tool, it still has support from its developers.
Other tools will not be considered as many ICT practitioners did not choose
them and are very old and no longer supported by their developers.

The results for question Q9 are shown in Fig. 3(b). It is possible to observe
that many of the presented tools are not known by the ICT practitioners. Our
findings reveal that 80% of ICT practitioners do not know the DOORS tool,
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60% do not know the Objectiver tool, 60% do not know the Optimal Trace tool,
58% Analyst Pro, 50% RequisitePro and finally 34% do not know the WebRatio
(UML) tool. Thus, it is evident that the knowledge of developers about possible
tools is very small or the tools found in our literature review are very outdated
or unknown in Brazil, for example. Therefore, the results about the tools are
weaker when compared to the techniques and methodologies.

Fig. 3. Figure (a) shows tools used by ICT practitioners, while (b) shows the tools the
ICT practitioners do not know about.

The results shown in Fig. 4 refer to questions Q10 to Q17, which are questions
related to ethics in several areas applied to AI and also to requirements elici-
tation. According to the results of Q10 in Fig. 4, 56% of respondents strongly
agree or agree that the data used during and after requirements elicitation is
from known sources or is obtained transparently, 26% neither agree or disagree
and 18% strongly disagree or disagree. With this it is easy to see that the ICT
practitioners do not have full knowledge about the origin of the data, even using
such data in the construction of software.

Similarly, according to the results of Q11 in Fig. 4, only 52% of respondents
agree or fully agree on their knowledge of the data storage policy of the tools
used in requirements elicitation, 34% neither agree or disagree, and 14% strongly
disagree or disagree. We know from previous discussions [20,35] that data is
a very important part in the development of an AI, so its correct storage and
acquisition need to be taken into account from the requirements elicitation phase,
and in the elicitation phase itself as discussions about the software begin in it
and this generates data that may be sensitive.

About 74% of ICT practitioners agree or fully agree that the purpose for
which the AI will be used is well defined, from the requirements elicitation phase,
which is shown in the results of Q12 in Fig. 4. By looking at this result, it is
evident that the ICT practitioners’ knowledge about the use of the AI even after
its completion is already determined from the elicitation of the requirements.
Alongside a good definition of usage, AI systems need to guarantee privacy
laws are being followed. According to the results of Q13 in Fig. 4, 72% of ICT
practitioners agree or fully agree that the privacy of the user who will use the
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AI is already taken into account from the requirements elicitation phase, 22%
neither agree or disagree and only 6% strongly disagree or disagree. As stated
by Jobin et al. [25], explainability is very important and has been increasingly
demanded.

Analyzing the responses of the ICT practitioners regarding the organization’s
concern about the tools and methodologies being adequate for development in
Q16, we see that 74% of the ICT practitioners agree or totally agree that the
organization is concerned with trust in the tools and methods that will be used
in the development, 18% neither agree or disagree and 8% disagree or totally
disagree. In the same line of reasoning in Q17, only 36% of respondents agree
or fully agree that they care about the issue of developed AI taking out posi-
tions/jobs from other people doing their work, during or after the requirements
elicitation phase. As for diversity, inclusion and equity approached in Q18, 58%
of the ICT practitioners agree or totally agree that, since the elicitation phase,
the AI is designed so that it does not make decisions based on something that
can be classified as prejudice.

Along with these results, 64% of the ICT practitioners agree or totally agree
that since the AI elicitation phase there is a definition of the responsibility of
the AI account providers and their results according to results of Q19. These
results are in agreement with Adrien Bibal et al. [6] and Tobias Krafft et al. [28]
regarding equity and accountability which can be guaranteed by explainability,
since knowing how to explain the results can ensure that choices based on prej-
udice and racism do not happen and consequently the accountability of those
responsible for the AI becomes more clear.

Fig. 4. ICT practitioners’ perception of ethical issues

4.1 Threats to Validity

The conclusions obtained from the survey were derived from a limited number
of ICT practitioners working with software development in some organizations
from Brazil. Moreover, we cannot guarantee that all of the respondents have



26 A. F. de Sousa Silva et al.

worked with AI although we did mentioned it was targeted this audience, which
impacts interpretations about practices in AI based on these responses. Another
threat to validity is the response of practitioners with less than a year of expe-
rience, since their limited experience may hinder working with varied tools and
methodologies. Regarding the tools and methodologies listed in the survey that
ICT practitioners could select from, we mitigated the possible threat to validity
of not having found all possible tools and methodologies by adding open fields
to the questionnaire. That way, if the tool or methodology used by the ICT
practitioner was not listed, he could add this option himself.

5 Conclusions

In this paper, we carry out a survey to understand the perception of ICT prac-
titioners in relation to techniques, methodologies and tools for eliciting require-
ments and ethical requirements for AI, seeking to know how the organizations
they work to deal with the need to develop systems compatible with ethical
requirements. Most of the ICT practitioners who responded to the survey have
more than three years of experience, 80% work in the ICT field and 34% work in
data analysis related fields. Survey results show that the techniques and method-
ologies found in the literature are widely used by practitioners, but the tools
found are not well known and thus became the most inconclusive part of the
survey. As for ethical requirements, most practitioners are aware as well as the
organization of the importance of the requirements and most of them already
use them, and of all the least applied requirement was the issue of jobs that an
AI can affect.

The results of this work also demonstrate the need for organizations and
developers to experiment with different development techniques and methodolo-
gies since many are unaware of distinct techniques and methodologies and that
it could perhaps improve the work. As for the ethical requirements, some are
already well consolidated with practitioners but others are not, such as in rela-
tion to equity and inclusion and also the jobs that can be taken away by AI. The
answers were much more varied when compared to questions such as defining
the purpose of the AI and accountability. This shows that it is still necessary
to consolidate such notions with developers so that they can be applied in the
construction of the AI from the requirements elicitation phase.

For future work, it is possible to carry out a survey with a broader population
and control the area of work of practitioners to have a large majority working
directly with AI. It would also be interesting to include more methodologies and
especially tools, as those found in the literature are very old and unknown by
survey ICT practitioners.
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Abstract. In the data stream (DS) context, data is received at high
speed, and it must be processed as soon as possible. Furthermore, it is
not possible to guarantee that all data is labelled. Consequently, semi-
supervised learning (SSL) becomes an efficient attempt to build an effec-
tive model in this context. Dynamic Data Stream Learning (DyDaSL) is
a framework that uses a SSL algorithm to build a model able to classify
instances in a data stream context. In this paper, an extension of the
DyDaSL drift detection module is proposed. Its main aim is to make
drift detection more flexible and, in turn, to improve the whole data
stream process. An empirical analysis is conducted using real and syn-
thetic datasets. The proposed approach achieved better results than the
original one and some state-of-art drift detection methods.

Keywords: Semi-supervised · Data stream classification · Concept
drift

1 Introduction

The Machine Learning (ML) area provides a set of tools and techniques to
develop the learning capacity of machines. These techniques can be divided
into several different taxonomies and the most frequent is using the degree of
supervision: supervised, semi-supervised, and unsupervised. The main difference
between these types of learning is the dataset: an instance is labelled when a
tuple (instance) has a target (desired output); otherwise, it is an unlabelled
instance. So, when all labelled instances are available, the supervised machine
learning technique is selected to carry out a task. However, the unsupervised
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machine learning technique is recommended in cases where all dataset instances
are unlabelled. Finally, when both types of instances are present in a dataset
and the unlabelled instances are more frequent than labelled, the semi-supervised
technique builds models to carry out the tasks [1,2].

Each learning type has particular tasks; both supervised and semi-supervised
are used to solve the same problems, classification and regression. In these tasks,
the objective is to predict the label of an instance, but the difference is that
the regression is used when the output is continuous. The output must be a
previously known category or class in a classification task. On the other hand,
unsupervised learning has the clustering task to segregate instances into groups
with similar characteristics based on their attributes (features) [2].

There is a model training phase in all these tasks, in which the ML algorithm
is applied to the data to build a model. In traditional ML, once the model is
trained, it is expected that it does not need to be adjusted unless the databases
have a concept drift. Concept drift is a phenom in which a change is identified in
the original data distribution. In non-stationary environments, the original data
distribution may change during the training and testing phases, and this model
must be adapted when this occurs.

In these environments, data stream classification is a widespread application.
Hence, these applications have some common characteristics, such as i) follow-
ing non-stationary data distributions, ii) having limited availability of hardware
resources, and iii) having to process data when it is available [3]. In addition,
the data stream can have few labelled instances, and the classification task in
data streams leads to the semi-supervised context.

The framework DyDaSL for semi-supervised classification in the DS context
was proposed in [4]. However, that proposal uses a fixed threshold in the drift
detection module, which is very time-consuming, mainly in the DS context. So,
in order to solve the drawbacks of the drift detection module of DyDaSL, this
paper proposes an extension in the drift detection module of DyDaSL in order
to make a more effective drift detection on the streaming data. Therefore, the
main contributions of this paper can be summarised as follows:

a) This study performs a more robust investigation in the drift detection module,
investigating different methods and assessing them in several datasets;

b) This study proposes the use of a flexible threshold based on the effectiveness
of the ensemble in the drift detection module; and

c) This study extends [4], exploring more datasets and batches sizes.

This paper has seven sections, Sect. 2 describes the main concepts related to
the context of this research, while Sect. 3 presents some related studies. Section 4
presents the proposed approach. The experimental methodology is presented in
Sect. 5, while the results are described in Sect. 6. Finally, Sect. 7 presents the
main conclusions and future works.
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2 Background

2.1 Flexible Confidence of a Classifier Semi-supervised Technique

In a semi-supervised context, a dataset (D) has two types of data, labelled
(L) when an instance has an associated target and unlabelled (U) when an
instance does not have a target. Also, a dataset represents the union of both sets,
D = L ∪ U . Hence, when the labelled set can be expressed as L = {(xi, yi)}li=1

and unlabelled set U = {(xj)}l+u
j=l+1, the dataset can be expressed as D =

{(x1, y1), (x2, y2), . . . , (xl, yl),xl+1, . . . ,xl+u}.
In [5], it was proposed a new approach to select instances in a semi-supervised

context. This approach, named Flexible Confidence of a Classifier (FlexCon-C),
builds a model with selected instances to evaluate the effectiveness of the classi-
fication process during the training phase. FlexCon-C has a dynamic threshold
that is calculated in each iteration of the classification process. This threshold
refers to the premise that if the classifier has acceptable effectiveness in initially
labelled instances, the threshold can be decreased. On the other hand, if the
classification does not achieve the minimum acceptable value, more restrictive
is the selection step to avoid the noise.

2.2 Classifier Ensemble

An ensemble of classifiers is a model built using two or more classifiers (base
classifiers) to solve a classification task, reducing the variance of a single model
[6,7]. One characteristic of an ensemble is that the type of all base classifiers
determines if the structure of the ensemble is homogeneous or heterogeneous.
The first one occurs when all base classifiers of an ensemble are the same type,
and the last one occurs when at least one of the base classifiers is a different
type from the others [7].

The idea of creating an ensemble of classifiers to combine their different
outputs and improve the performance of a classification task is a promising
possibility. However, it is necessary to select only one label for each instance,
combining the outputs of base classifiers through majority, weighted vote, or an
oracle [8]. The majority vote selects the most voted label among those presented
by the base classifiers, while the weighted vote computes the vote using weight
criteria to weigh the classifiers with the most effectiveness. On the other hand,
the oracle classifier is a model with all knowledge and always correctly predicts
an instance [8]. In the DS context, this classifier has the best evaluation compared
to the ensemble or base classifiers since the oracle is trained with the most recent
instances while the others are not. Also, this classifier helps the labelling process
when the base classifiers do not agree with a label of an instance.

2.3 Data Stream Classification

As mentioned earlier, the dataset has as many instances as possible in a data
stream context. These instances must be processed in sequential order one-to-one
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(online) or in batches (offline). In addition, it is impossible to store all instances
into a dataset to create a model in one training phase since there is not enough
memory to store the amount of incoming data in the data stream. In this context,
the traditional approaches to the classification task are ineffective, and they can
not be adapted to the drifts that occur in a data stream [3].

In the traditional approaches, there are two well-defined classification phases:
training and testing. The training phase focuses on building a model using all
instances in the dataset, while the test phase evaluates the built model in the
previous phase. However, when the number of instances grows to infinite, it
is impossible to finish the training to start the testing phase. Hence, the data
stream approaches change both phases to satisfy these criteria.

The training phase is continuous in the data stream applications since the
built model must be constantly adapted to incoming data. So, a data stream
algorithm must be able to identify a drift and adapt itself to maintain the same
effect during the whole process. The drift detection strategy can be of two types,
active and passive. The active strategy tries to detect the drift before it occurs,
making some processes with the new data available. On the other hand, the
passive strategy waits for the drift and slowly evolves the model to adapt to the
new data [3]. In addition, the active strategy detects abrupt drifts easier since
the data distribution changes very quickly.

In contrast, the passive approaches have more efficient in detecting the incre-
mental and gradual types because it has a transition window where the data
distribution slowly evolves inner this window. Usually, the passive approach has
more computational cost than the active, because the model is updated regard-
less of whether a drift occurs. However, the passive approach is more simple than
the active one since the last one needs to evaluate some metric to determine the
occurrence of the drift in the data. Sometimes, it is impossible to guarantee that
enough instances were labelled to train a supervised model. However, SSL can be
used instead of that learning type. Also, the data must be processed sequentially
to generate models capable of classifying the new instances in the data stream
processing. Therefore, SSL can be applied in these applications to generate a
model with few labelled instances, and the results were auspicious [4,9–11].

3 Related Work

This section describes research that uses semi-supervised approaches and/or
data stream classification tasks once the main topic of interest of this paper is a
semi-supervised ensemble approach in the context of data streams [9,11–13].

In [11] proposed a semi-supervised drift detector for the data stream context.
Their proposal was based on a weighted detector ensemble, where each ensemble
member consists of a set of weights to detect the drift. The detection step consists
of how each base member of the ensemble predicts a drift occurrence, and the
ensemble weighs the outputs and determines whether a drift occurred.

Another classification system in the same context was proposed in [9]. That
approach uses cluster algorithms in Self-training to build the learning model. The
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ensemble update strategy was based on two approaches: i) when the ensemble
determines; or ii) when drift occurs, a newly built cluster model was added to
the ensemble by Kullback-Leibler divergence. In [12] the authors propose a drift
detector, called CPSSDS, that uses the Kolmogorov-Smirnov statistical test to
determine the occurrence or not of the drift. In this approach, a drift is detected
when the p-value of this test is below 0.05, comparing the current batch and the
previous one. This detector was used and assessed using supervised learning.

Another drift detector (Hinkley) was proposed in [13], their proposal an app-
roach based on an instance-by-instance drift detector using the Page-Hinkley
statistical test [14]. This detector performs a cumulative sum of the classification
effectiveness for each instance in the batch. A drift is detected when the cumu-
lative sum is below a threshold representing the magnitude of changes allowed
after drift. This detector was also used and assessed using supervised learning.

All mentioned studies proposed a drift detector using another approach or
apparatus. Unlike these studies, this paper presents a different drift detector
that works based on the performance of its main component, a classifier ensem-
ble. Furthermore, the drift detection threshold is dynamically updated to better
adjust to the dataset characteristics, leading to better performance for problems
in the non-stationary context.

4 The Proposed Approach

As previously mentioned, this paper extends [4], in which an improvement in the
detection module of the DyDaSL framework is proposed. In the original DyDaSL
framework, the drift detection module, or simply the detection module, uses a
fixed threshold to determine a drift occurrence. However, it was noted that this
fixed threshold approach could make drift detection a complex task. Several
mistakes can be triggered using a high threshold; on the other hand, with a low
threshold, a proper drift can be detected too late for the reaction or never seen.
Therefore, in this paper, two new ways to make the threshold of the detection
module flexible during the execution (running time) are proposed.

In this paper, we propose to use classifier ensembles to determine a flexi-
ble threshold for drift detection. This flexible threshold strategy was developed
using the effectiveness of the current ensemble in the labelled instances of the
subsequent batch in the analysed stream. Based on this flexible threshold, two
versions of this approach are developed: one using the simple vote (DyDaSL - N)
and one with a weighted vote (DyDaSL - W) using a classification effectiveness
metric to calculate the confidence (weight) of each base classifier.

The DyDaSL workflow is presented in Fig. 1 and Algorithm 1. Initially, each
dataset is divided into batches - to simulate a data stream environment - that will
be used as input data. In addition, each batch contains two groups of instances
labelled and unlabelled. In the first batch, an ensemble is trained using the
FlexCon-C method. In the immediately subsequent batch, the ensemble calcu-
lates the classification effectiveness and determines a new threshold to detect a
drift in the next batches. This new threshold is determined by ensemble effec-
tiveness (classification metric such as accuracy score, f-measure, and others) in
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the subsequent batch. A drift is detected when the ensemble classification effec-
tiveness is below the current threshold. The reaction module starts training a
new classifier (an oracle) to substitute the worst base classifier in the ensem-
ble. This process is repeated until the last batch is processed, and the ensemble
dynamically changes its structure in terms of base classifiers.

Algorithm 1: The DyDaSL algorithm
while data stream has instances do

create a batch with next n instances;
if first batch then

train an ensemble using FlexCon-C with labelled instances of the batch;
else

if detection module then
train oracle with labelled instances;
exchange the worst ensemble base classifier by oracle based on
oracle prediction;

end
classify instances of the current batch;

end

end

Fig. 1. Workflow of the DyDaSL method

Algorithm 2 shows the steps of the detection module, which define a drift
occurrence. In this module, the ensemble predicts the labelled instances in
the current batch and measures a classification metric using a simple vote or
weighted vote as an ensemble combination module. It is important to emphasise
that the ensemble is updated in the current batch when a drift is detected, and
the new threshold is only defined for the next batch using the labelled instances.
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Algorithm 2: DyDaSL detection module
ensemble pred ← classify batch(ensemble, DL);
metric ← calculate(ensemble pred, DL);
if metric < threshold then

threshold ← new threshold(ensemble, current batch);
return Drift detected ;

else
return No drift detected ;

end

5 Experimental Methodology

This section describes the main aspects of the empirical study conducted in this
paper. The main aim is to evaluate the accuracy, F-Score, and kappa metrics of the
proposed drift detection approach in the DyDaSL framework. For a comparative
analysis, some existing state-of-art drift detectors will also be evaluated, which
are: i) Conformal prediction for semi-supervised classification on data streams
(CPSSDS) [12]; and ii) Hinkley [13]. The CPSSDS is a semi-supervised drift detec-
tor based on statistical evaluation of the chunks, while the Hinkley performs an
instance-by-instance detection. These approaches were selected in other to com-
pare the effectiveness of the proposals versus these different drift detectors.

The source code is developed in R using the “RMOA” package, an API for
Massive Online Analysis (MOA) framework [15] to simulate the data stream envi-
ronment and to process all used datasets. Four classification algorithms are used
as base classifiers of the FlexCon-C method, which are: Näıve Bayes (NB) [16],
Decision Tree (DT) [17], ripper [18] and k -NN [19]. These algorithms were
available in the “RWeka” package, an API for WEKA [20].

Table 1 shows the characteristics of the analysed datasets in terms of the
number of instances, features and classes for each dataset [15,21].

Table 1. Description of the used datasets

Datasets Number of instances Features Classes

Real datasets

Adult 32 561 14 2

Airlines 539 383 7 2

Connect-4 67 557 42 3

Fars 100 968 29 8

Forest Cover Type 581 012 54 7

Poker 829 201 10 10

Shuttle 58 000 9 7

Synthetic datasets

Gears2C2D 200 000 2 2

UG2C3D 200 000 3 2
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In order to simulate a data stream environment, a conversion of the static
datasets into dynamic ones is required. Therefore, subsets with n instances are
grouped to generate data conglomerates (batches), and the same batch is used
to train all analysed approaches. This study assesses seven batch sizes, with 100,
250, 500, 750, 1000, 2500, and 5000 instances.

Only 10% of data maintains its label for each batch, and the remaining data
have their label removed. All proposed drift detectors are evaluated using the
DyDaSL framework changing the drift detector to evaluate their performance in
the semi-supervised context versus this paper proposal. It is essential to highlight
that the parameters of the FlexCon-C are set as proposed in [5].

6 Experimental Results

The results obtained from the empirical analysis performed in this paper are pre-
sented in the subsections below, using the following strategies: 1) Analysing the
performance by batch size; 2) Comparing the proposed versions of the DyDaSL
versus the original DyDaSL, selecting two batch sizes; 3) Comparing the pro-
posed methods versus the state-of-art, also selecting two batch sizes.

Additionally, the Critical Difference (CD) diagrams are used to present the
ranking of the evaluated approaches, since these diagrams are easier to analyse
and clearly show which algorithm is better than the others. It uses a post-hoc
Friedman test, the Nemenyi test. The leftmost method obtained the lowest ranks
(better results), and the rightmost method obtained the highest (worst results)
when the results were ranked. Moreover, methods not covered by a horizontal
line (critical difference) are statistically different. Otherwise, the null hypothesis
of the Friedman test cannot be refuted.

6.1 Batch Size Analysis

Table 2 shows the results of all analysed methods. For simplicity reasons, values
in this table are averaged over all datasets since the main aim is to evaluate the
overall behaviour of all analysed methods when changing the batch size from
100 to 5000. This table is subdivided into three parts: one for each performance
metric, Accuracy, F-Score, and Kappa. Then, the rows represent a combination
of batch size and a metric, while the columns represent the different concept drift
methods. In this table, columns 2 to 6 present, respectively, the results of the
following methods: CPSSDS; Hinkley; DyDaSL - FT; DyDaSL - N and DyDaSL
- W. Finally, the highest result for each row is highlighted in bold and coloured
in purple, while the yellow cells are used to highlight the DyDaSL results that
outperformed both values of the state-of-art methods (CPSSDS and Hinkley).

The results in Table 2 point out that the proposed approaches outperformed
the state-of-art results in all analysed scenarios for all three metrics. On the
other hand, only the accuracy of DyDaSL - N using 100 instances batch is not
numerically superior to both state-of-art methods. This approach achieved better
results than Hinkley and worse than CPSSDS. Additionally, it can be observed
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Table 2. Results of the analysed methods by batch size

Batch size
State-of-art Standard Proposals

CPSSDS Hinkley DyDaSL - FT DyDaSL - N DyDaSL - W

Accuracy

100 60.79 54.15 73.15 60.12 73.68

250 68.15 63.57 75.13 71.79 76.08

500 68.62 64.65 75.13 71.27 75.61

750 69.25 68.04 74.85 72.10 77.07

1000 68.21 68.81 76.17 72.87 75.33

2500 71.46 68.22 75.87 72.23 77.52

5000 70.24 66.95 76.19 71.80 76.12

Average 68.10 64.91 75.21 70.31 75.92

F-Score

100 49.06 44.01 60.06 50.48 60.28

250 54.87 51.18 60.14 58.61 61.82

500 53.64 51.01 59.33 57.10 62.57

750 55.67 54.60 59.90 57.71 64.04

1000 52.86 55.11 61.36 58.12 61.62

2500 55.66 52.68 60.05 57.00 63.10

5000 52.25 52.25 59.76 56.51 61.30

Average 53.43 51.55 60.09 56.50 62.10

Kappa

100 8.69 5.76 32.44 25.38 25.91

250 28.61 22.82 36.52 35.01 37.18

500 28.12 23.19 38.76 35.29 40.48

750 29.00 27.05 38.91 35.11 43.97

1000 26.94 29.78 44.13 37.88 40.70

2500 37.65 31.64 44.40 40.85 49.25

5000 31.53 33.29 46.00 41.96 48.51

Average 27.22 24.79 40.17 35.93 40.86

that the worst results occur in the “Forest Cover Type” dataset, particularly
for semi-supervised drift detection since this dataset contains a high number of
features and classes. Furthermore, this dataset proved to be quite challenging
in the semi-supervised context with 10% of labelled instances. Despite that, the
DyDaSL - N method achieved higher average results when compared to CPSSDS.

Among all analysed methods, the highest average results for each metric are
obtained by DyDaSL - W, showing that the use of a flexible threshold to detect
drift can lead to a performance improvement in a data stream task. In general,
the average results of all versions of the DyDaSL outperformed the state-of-
art methods in all analysed metrics, with the DyDaSL - W the DyDaSL - FT
approaches delivering the best results.

The CD Diagrams presented in Fig. 2 demonstrate the superiority of DyDaSL
approaches when compared to the state-of-art methods. The Kappa and F-Score
diagrams show that DyDaSL - W is statistically better than all other methods
and that the DyDaSL - N is statistically similar to DyDaSL - FT for both metrics.
Besides that, the accuracy diagram (Fig. 2a) shows that the two best results,
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obtained by DyDaSL - W and DyDaSL - FT, are statistically superior to all
other methods. These statistical results are expected since the numerical results
indicate the superiority of the DyDaSL - W and DyDaSL - FT. Furthermore,
the statistical similarity between DyDaSL - N and CPSSDS is also expected,
whereas the numerical results of these approaches are very similar.

(a) Accuracy (b) F-Score

(c) Kappa

Fig. 2. CD diagram for all analysed methods

6.2 The Proposed Methods versus DyDaSL - FT

In this section, two different scenarios are analysed, one considering 750 instances
and the other considering 5000 instances per batch. These scenarios were selected
to analyse the behaviour of all analysed methods in terms of classification effec-
tiveness when a few labelled (75 of 750) instances and a large number of labelled
(500 of 5000) instances are available to build the learning model. Table 3 presents
the results for all datasets when 750 instances are processed for each batch.
Considering the last three columns, DyDaSL - W achieves the best results in 17
cases, out of 27 (62.96%). Then, when analysing both proposed methods, they
outperformed DyDaSL - FT results in 21 out of 27 cases (77.78%).

Figure 3 presents the critical difference diagrams for all evaluated metrics
when 750 are processed for each batch. In all evaluated cases, DyDaSL - W is
statistically superior to the original DyDaSL.

Table 4 shows the results for each dataset when 5000 instances are processed.
Once again, DyDaSL - W achieves the best results in 21 cases out of 27 (77.78%).
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Table 3. Results of the analysed methods with a 750 instances batch

Dataset
State-of-art Standard Proposals

CPSSDS Hinkley DyDaSL - FT DyDaSL - N DyDaSL - W

Accuracy

Adult 76.23 76.23 76.47 76.29 76.33

Airlines 55.44 55.46 58.60 58.09 61.02

Connect-4 65.23 65.23 65.23 65.23 64.38

Fars 74.22 68.81 73.02 73.46 75.22

ForestCover 56.19 50.60 72.43 48.75 67.52

GEARS2C2D 95.59 95.58 95.58 95.67 95.64

Poker 49.88 49.63 51.99 49.50 63.09

Shuttle 91.53 91.51 92.31 91.61 99.46

UG2C3D 58.91 59.34 87.99 90.32 91.00

Average 69.25 68.04 74.85 72.10 77.07

F-Score

Adult 63.02 63.02 62.14 63.05 62.68

Airlines 51.35 51.74 54.07 54.00 56.28

Connect-4 43.16 43.16 43.16 43.16 43.55

Fars 52.10 48.27 47.71 49.38 58.58

ForestCover 41.69 37.94 54.86 35.58 50.84

GEARS2C2D 95.63 95.63 95.63 95.70 95.68

Poker 29.20 26.55 29.68 25.10 37.91

Shuttle 62.84 62.80 63.51 62.85 79.58

UG2C3D 62.01 62.28 88.33 90.55 91.24

Average 55.67 54.60 59.90 57.71 64.04

Kappa

Adult 1.81 1.81 3.70 2.18 2.48

Airlines 0.19 0.03 1.10 3.79 7.28

Connect-4 0.00 0.00 0.00 0.00 9.22

Fars 64.73 57.44 62.58 63.36 66.11

ForestCover 9.94 2.06 36.45 0.04 33.02

GEARS2C2D 91.17 91.16 91.16 91.33 91.27

Poker 3.09 0.17 2.49 0.61 5.94

Shuttle 72.25 72.12 76.78 74.06 98.44

UG2C3D 17.84 18.70 75.95 80.64 81.98

Average 29.00 27.05 38.91 35.11 43.97

In contrast to the previous results, DyDaSL - W wins in three cases (all in the
Gears dataset) when analysing both proposed methods; once again, their supe-
riority against the DyDaSL - FT was presented in 24 cases, out of 27 (88.89%).

Figure 4 presents the results of the statistical test using batches with 5000
instances. The accuracy CD (Fig. 4a) shows statistically similarity between
DyDaSL - FT and DyDaSL - W. In the other evaluated metrics (Figs. 4b, 4c),
DyDaSL - W is statistically superior among other evaluated approaches.
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(a) Accuracy (b) F-Score

(c) Kappa

Fig. 3. CD diagram for 750 instances batch

(a) Accuracy (b) F-Score

(c) Kappa

Fig. 4. CD diagram for 5000 instances batch
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Table 4. Results of the analysed methods with a 5000 instances batch

Dataset
State-of-art Standard Proposals

CPSSDS Hinkley DyDaSL - FT DyDaSL - N DyDaSL - W

Accuracy

Adult 81.30 81.30 81.30 82.19 81.06

Airlines 59.18 55.97 62.15 59.65 62.37

Connect-4 65.76 64.70 65.66 64.04 65.84

Fars 71.76 72.97 74.65 73.59 76.15

ForestCover 58.04 30.06 67.79 49.64 60.41

GEARS2C2D 95.31 95.31 95.31 95.47 95.76

Poker 59.09 50.94 58.95 53.83 62.58

Shuttle 83.24 92.79 99.40 99.40 99.52

UG2C3D 58.52 58.52 80.50 68.40 81.39

Average 70.24 66.95 76.19 71.80 76.12

F-Score

Adult 71.60 71.60 71.60 73.03 70.93

Airlines 56.60 55.68 58.56 58.21 59.40

Connect-4 40.63 39.92 42.26 39.30 47.66

Fars 45.98 48.60 48.29 49.17 53.30

ForestCover 38.89 23.04 49.16 34.73 43.64

GEARS2C2D 95.31 95.31 95.31 95.47 95.77

Poker 29.28 25.63 29.18 27.51 32.46

Shuttle 35.23 53.72 61.48 61.48 66.24

UG2C3D 56.75 56.75 82.01 69.65 82.29

Average 52.25 52.25 59.76 56.51 61.30

Kappa

Adult 33.77 33.77 33.77 38.94 33.29

Airlines 5.86 2.36 10.15 7.31 16.57

Connect-4 4.77 7.42 2.44 5.48 19.50

Fars 60.25 62.34 64.81 63.23 66.90

ForestCover 19.62 5.21 32.74 20.30 26.22

GEARS2C2D 90.61 90.61 90.61 90.92 91.53

Poker 20.86 2.39 20.13 16.33 21.11

Shuttle 30.97 78.47 98.32 98.32 98.65

UG2C3D 17.06 17.06 60.99 36.80 62.80

Average 31.53 33.29 46.00 41.96 48.51

6.3 DyDaSL versus State-of-Art

When analysing Tables 3 and 4 to compare DyDaSL - W to the state-of-art
methods, DyDaSL - W outperformed the results in 49 of 54 cases (90.74%) in
both tables. In addition, the average results of the DyDaSL - W were superior
to CPSSDS and Hinkley, for all analysed cases.

For the 750 instances scenario, Fig. 3 demonstrates the superiority of
DyDaSL, for all evaluated metrics, in which both DyDaSL - W and DyDaSL
- FT are superior in 100% of evaluated cases (6 wins/0 draws/0 losses) to the
state-of-art methods, while the DyDaSL - N achieves superiority in 50% of the
analysed cases (3 wins/1 draw/2 losses). When grouping proposals DyDaSL ver-
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sions, the overall performance improved in 75% of the analysed cases (9 wins/1
draw/2 losses), from a statistical point of view.

For the 5000 instances scenario, Fig. 4 shows that proposals DyDaSL
approaches are statistically superior to Hinkley. When compared to the CPSSDS
approach, DyDaSL - N is similar, and DyDaSL - W is superior to this approach.
Considering all CD diagrams of this figure, DyDaSL improved the drift detection
performance in 75% of the analysed cases (9 wins/3 draws/0 losses).

7 Final Remarks

This paper presented an extension of the DyDaSL framework in which an
improvement in the drift detection method is proposed, using a flexible threshold
in the detection module. This improvement led to two DyDaSL new versions,
named DyDaSL - N and DyDaSL - W.

An empirical analysis was conducted to assess the feasibility of the new
DyDaSL versions in a non-stationary DS environment. Thus, a comparative analy-
sis was designed to compare the proposed approaches to two state-of-art methods,
CPSSDS and Hinkley. Additionally, this analysis was designed considering: nine
datasets, seven batch sizes scenarios (100, 250, 500, 750, 1000, 2500, and 5000),
and three performance metrics: Accuracy, F-Score and Kappa statistics.

When comparing only the proposed methods the DyDaSL - W provided the
best results in 46 cases, out of 54 (85.18%). When comparing the best proposed
version to the original one, in general, DyDaSL - W is superior to DyDaSL - FT
in 42 out of 54 (77.78%) cases. Finally, when comparing the proposed method, to
the other methods, in a scenario with a large batch (5000 instances), for instance,
the proposed version outperformed both the original DyDaSL version (77.78%
of the analysed cases) and the state-of-art methods (88.89%) of evaluated cases.

In the statistical analysis, when comparing only the best proposed DyDaSL
version (DyDaSL - W) and the original DyDaSL version, DyDaSL - W delivered
the best results in 92% of the analysed cases, from a statistical point of view.
Based on these results, it can state that the use of a flexible threshold in the
drift detection method led to an improvement in the DyDaSL performance.

In future work, we can investigate other percentages of initially labelled data
or evaluate the performance of this framework using other ensemble settings.
Additionally, it is possible to evaluate other updates to make the ensemble more
dynamic regarding the number of base classifiers. Finally, a deeper analysis of
these approaches could consider other datasets and more specific drift detection
metrics to assess the effectiveness and robustness of our proposal.
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Abstract. The choice of heuristic operators is strongly related to the
performance of a (meta-)heuristic algorithm. Hence, applying an auto-
mated selection approach can increase the robustness of an optimization
system. In this work, we investigate the use of a reinforcement learn-
ing technique as the selection mechanism of a hyper-heuristic algorithm.
Specifically, we use the approximate Q-learning using an Artificial Neural
Network as function approximation. Moreover, we evaluate different sets
of metrics for representing the state of the environment, which in this
scenario, must indicate the search stage of the optimization algorithm.
The experiments conducted on six combinatorial problem domains indi-
cate that, with simple state measures (combining the last action vector
and fitness improvement rate), our approach yields better results com-
pared to a state-of-the-art Multi-Armed Bandit approach, which does
not have state representation.

Keywords: Hyper-heuristic · Reinforcement learning · Combinatorial
optimization

1 Introduction

Heuristic approaches are useful techniques for many complex real-world opti-
mization problems, where exact methods are often unfeasible [2]. However, their
performance are highly dependent on the configuration setting, which must be
tuned for the problem-domain at hand [2]. Because of that, there are several
adaptive search methodologies that aim to tackle this issue, which are normally
termed in the literature as Hyper-Heuristics (HH) [3] or Adaptive Operator
Selection (AOS) [5].

Reinforcement Learning (RL) [15] techniques have been widely investigated
for HH and AOS applications. However, most of them are traditionally simple
additive reinforcement strategies, such as Probability Matching (PM) and Adap-
tive Pursuit (AP) [5], that use the received feedback to update a probability
vector. Others are based on selection rules, that takes into account the feedback
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and the frequency of appliances to deal with the exploration versus exploitation
dilemma (e.g., Choice Function and Multi-Armed Bandit based strategies [5]).

Although those approaches presented good overall results, they lack a state
representation according to the formal RL definition [15], in which an agent
learns a policy (directly or not) by interacting with an environment based on
the observed state and the received feedback (reward or penalty). Moreover,
approaches that make use of a state representation for this selection task has
been shown to be advantageous over stateless strategies [16].

There is a large literature on stateless Reinforcement Learning techniques for
HH and AOS tasks. For instance, the winning algorithm from the CHeSC 2011
competition, AdapHH [9], dynamically updates the selection probabilities of the
heuristics based on the number of best improvements found with respect to the
execution time taken. Moreover, it also uses RL for controlling the parameter
values (intensity of mutation and depth of search) of each low-level heuristics.

However, the literature is much more scarce when it comes to modeling the
selection task as a RL environment with a state representation. Therefore, we
must investigate which metrics can be used to correctly define a search state
and how to properly reward and penalize a selected operator under this setting.
Then, we can explore the existing RL techniques in order to learn a policy that
is able to attain high quality solutions on different problem domains, preferably
with minimal additional configuration.

There are a few works in the literature that have successfully defined a state
representation for HH and AOS. [6] applies the Q-learning algorithm to update
the state-action values, which are used to select the crossover operator of an
evolutionary algorithm applied on the Quadratic Assignment Problem. Their
state definition contains three information: a binary state indicating if a restart
has been triggered; a binary state indicating if a new best solution has been
found; and a discretized diversity level of the population (low, medium, or high).
The experimental results demonstrated that the approach is competitive with
classical credit assignment mechanisms, while being less sensitive to the number
of operators.

Similarly, [4] applied Q-Learning to select crossover and mutation operators
for the Traveling Salesman Problem. The state is defined by a 2-tuple containing
the current generation and the fitness improvement of the current best individual
over the initial best individual. These values are in the range [0, 1] and are
then discretized into 4 intervals of equal size (bins of 0.25). Their approach
outperformed a random selection, indicating that the agent was able to learn a
working policy while solving the instances.

Meanwhile, [10] proposed a Simulated Annealing (SA) based HH that uses
Q-Learning to select the moving operators. Each action is a triplet of three
operators, and the state is the number of times that the previous actions succeed
(times that an operator generated an accepted solution under the SA conditions).
The approach was significantly superior to other versions of SA and two software
packages, with respect to both the quality of the solution and the computation
time.
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One limitation of these works is the use of a discrete state space, which
may limit the representation of the search stage [16]. However, when defining a
continuous state representation, the classical Q-Learning becomes infeasible due
to the high dimensional Q-Table. Therefore, a function approximation model is
necessary to estimate the state-action values [15]. The work from [16] defined
a continuous state space that includes landscape measures about the current
population and some parent-oriented features. The landscape measures are some
properties of the population, such as diversity and the proportions of improving,
equal or worsening offsprings. The remaining features are measures correlating
the offsprings to their respective parent solutions. Then, a Self-Organizing Neural
Network is trained offline to select the crossover operator. The performance of
this approach was competitive with other selection mechanisms (including a
tabular Q-Learning) and even better on some instances, thus highlighting the
advantages of using a continuous MDP-based selection strategy.

In [13], the authors use a Double Deep Q-Network to select mutation oper-
ators of a Differential Evolution algorithm applied on several CEC2005 bench-
mark functions. The target network, which is trained offline during the training
phase, receives as input 99 continuous features, where 19 are related to the cur-
rent population, such as diversity of fitness and chromosomes, and the remaining
80 characterize the performance of each operator, such as the improvement of
offspring over the parent, best solution, and the median population fitness. This
approach outperformed other non-adaptive algorithms and was competitive with
state-of-the-art adaptive approaches.

In this work, we apply a standard online selection Hyper-Heuristic, where
the operators are chosen based on an approximate Q-learning algorithm. More
specifically, we evaluate a few set of measures for defining the state representation
and use an Artificial Neural Network as function approximator. Moreover, we
also evaluate a discrete state representation with both the approximate and
the tabular versions of Q-learning. In contrast with the later related works,
that also apply some form of approximate Q-Learning, our approach has an
online configuration. In other words, we do not train the approximation model
beforehand, instead, it learns while it is solving one instance. Additionally, our
work evaluates the Hyper-Heuristic in a cross-domain setup, in which we select
low-level heuristics for six combinatorial optimization problems.

In summary, our goal with this work is to answer the following research
questions:

– R1: Among the features we evaluate, which is the best combination of features
for representing the search state?

– R2: Can the approximate Q-learning using a discrete state beat the tabular
Q-learning?

– R3: Is defining a state better than using a stateless reinforcement learning
approach (e.g., the Fitness Rate-Rank Multi-Armed Bandit)?

The remainder of this paper is organized as follows: Sect. 2 introduces the
main concepts of Reinforcement Learning, also giving a brief explanation of
the Q-learning algorithm. In Sect. 3 we give the outline of the Hyper-Heuristic
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algorithm and framework that we use throughout the experiments, and in Sect. 4
we present our proposed approach. The experimental setup and results are given
in Sect. 5 and Sect. 6, respectively. Finally, we draw some conclusions and indicate
future works in Sect. 7.

2 Reinforcement Learning

Reinforcement Learning is a computational approach that learns a mapping from
situations to actions by interacting with an environment [15]. It differs from other
machine learning paradigms, such as supervised and unsupervised learning, in
the sense that there is no pre-available dataset. Instead, the learning agent must
be able to sense the state of its environment to some extent, and with that, it
must decides which action to take based on its observation, with the goal to
maximize a numerical reward signal [15].

The task of learning from interaction to achieve a goal can be framed as a
Markov Decision Process (MDP). MDPs are classical formalization of sequential
decision making, in which actions influence not only the immediate rewards, but
also the subsequent situations [15]. Figure 1 illustrates this interaction, where
at each time step t the agent receives some representation of the environment’s
state St and, based on that, selects an action At. Then, after acting, the agent
moves to a new state St+1 and receives a numerical reward Rt+1.

Fig. 1. Agent-environment interaction of a Markov Decision Process [15]

The definition of the state is a fundamental component of a Reinforcement
Learning system. In general, the state can be any information that is available
to the agent about its environment.

Then, for learning the mapping of states to actions, we use some reinforce-
ment learning algorithm. Among them, Q-learning [17] is an off-policy Temporal-
Difference control algorithm [15] that makes estimates on the Q-values, i.e., the
estimate of state-action values. Hence, Q-learning gives quality estimates for
choosing an action a ∈ A from state s ∈ S at time step t, and updates the
estimates by

Qt+1 (st, at) ← Q (st, at) + α

[
Rt+1 + γ max

a
Q (st+1, a) − Q (st, at)

]
(1)

This is called the tabular Q-learning, since all state-action pairs are stored
in a table, which is only possible for small discrete problems. For large and
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continuous problems, we must rely on a funcion approximation model (called
the Q-model). Here, we use as Q-model an Artificial Neural Network (ANN), in
which the inputs are the current observed state representation, and the output
layer yields the predicted Q-values for the current state-action pairs.

After performing an action, receiving the reward and observing the next
state, the Q-model is updated by running one iteration of gradient descent on
the ANN, with the target value Tt+1 defined as

Tt+1 = Rt+1 + γ max
a

Q (st+1, a) (2)

where st+1 is the next state after performing the action, and maxa Q (st+1, a) is
the highest Q-value of all possible actions from state st+1. The discount factor
γ ([0, 1]) controls the influence of the future estimate rewards.

Finally, when dealing with trial-and-error methods, such as the Q-learning,
we face the exploitation vs exploration dilemma. While learning, it is desirable to
have a proper balance between choosing the actions with highest values known
so far (exploitation) and trying out different actions that can hopefully lead to
higher rewards (exploration) [15]. A common policy to handle this is the ε-greedy
policy, that selects a random action with probability ε, and selects the action
with the highest value with probability 1−ε. Thus, ε is a parameter that controls
the degree of exploration of the agent and is usually set to a small value [15].

3 Selection Hyper-heuristic

As a search methodology, selection HHs explore the search space of low-level
heuristics (e.g., evolutionary operators) [3]. To avoid getting stuck into local
optima solutions, good HHs must know which is the appropriate low-level heuris-
tic to explore a different area of the search space at the time [3]. Algorithm 1
shows a standard selection Hyper-Heuristic algorithm. Iteratively, it selects and
applies a low-level heuristic on the current solution and computes the reward.
Then, the acceptance criteria decides if the new solution is accepted and, at last,
the HH calls the update method of the corresponding selection model.

Algorithm 1: Selection Hyper-Heuristic
Input: A initial solution φ with size n
Output: The best found solution
repeat

heuristic ← SelectHeuristic()

φ′ ← ApplyHeuristic(φ, heuristic)

reward ← GetReward(f(φ), f(φ′))
if AcceptSolution(φ′) then

φ ← φ′

end
UpdateSelectionModel(reward)

until stopping criteria is not met
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The reward must be a metric that reflects the recent performance of the
selected operator. Normally, fitness and diversity measures are used. Moreover,
the acceptance criteria must also be defined.

In this work, we use the Hylex Framework, which is a tool that has become
the standard benchmark for comparing cross-domain search methods [11]. It
implements all of the problem-specific components, such as the representation,
initialization, objective function and low-level heuristics.

The HyFlex provides 6 combinatorial optimization problem domains: One
Dimensional Bin Packing (BP), Flow Shop (FS), Personal Scheduling (PS),
Boolean Satisfiability (MAX-SAT), Traveling Salesman Problem (TSP), and
Vehicle Routing Problem (VRP). For each domain, there is an available set of
low-level heuritics that are classified into 4 types: mutational, ruin-and-recreate,
local search, and crossover. The HyFlex was the benchmark of a competition,
the Cross-Domain Hueritic Search Challenge (CHeSC 2011)1, which attracted
significant international attention.

One common approach for the selection mechanism in the HH, is to use
any variation of a Multi-Armed Bandit framework, which is composed of N
arms (e.g., operators) and a selection rule for selecting an arm at each step.
The goal is to maximize the cumulative reward gathered over time [14]. Among
several algorithms to solve the MAB, the Upper Confidence Bound (UCB) [1]
is one of the most known in the literature, as it provides asymptotic optimality
guarantees. The UCB chooses an action based on the following rule.

pi,t + C

√√√√2log(
∑N

j=1 nj,t)

ni,t

(3)

where ni,t is the number of times the ith arm has been chosen, and pi,t is the
average reward it has received up to time t. The scaling factor C gives a balance
between selecting the best arm so far (pi,t, i.e., exploitation) and those that have
not been selected for a while (second term in the Eq. 3, i.e., exploration).

The FRRMAB [8] variation proposes the use of Fitness Improvement Rate
(FIR) to measure the impact of the application of an operator i at time t (see
Eq. 6). Moreover, the FFRMAB uses a sliding window of size W to store the
indexes of past operators, and their respective FIRs. This sliding window is
organized as a First-in First-out structure and reflects the state of the search
process. Then, the empirical reward Rewardi is computed as the sum of all FIR
values for each operator i in the sliding window.

In order to give an appropriate credit value for an operator, the FRRMAB
ranks all the computed Rewardi in descending order. Then, it assigns a decay
value to them based on their rank value Ranki and on a decaying factor D ∈ [0, 1]

Decayi = D
Ranki × Rewardi (4)

The D factor controls the influence for the best operator (the smaller the
value, the larger influence). Finally, the Fitness-Rate-Rank (FRR) of an operator
i is given by
1 http://www.asap.cs.nott.ac.uk/external/chesc2011/.

http://www.asap.cs.nott.ac.uk/external/chesc2011/
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FRRi,t =
Decayi∑N

j=1 Decayj

(5)

The FRRi,t value is set as the value estimate pi,t in the UCB equation (3).
Also, the ni,t value considers only the amount of time that the operator appears
in the current sliding window. This differs from the traditional MAB, where the
value estimate pi,t is computed as the average of all rewards received so far.

4 Proposed Approach

The goal of our approach is to treat the task of selecting low-level heuristics as a
formal Reinforcement Learning problem. Figure 2 gives an overview of the pro-
posed system, in which the RL components interacts with the problem domain
by selecting the operator and receiving the fitness of the resulting solution.

Domain Barrier

Pool of 
Low-Level 
Heuristics

Feature 
vector

Q-model

State
Module

Q-values

Update Selection
Policy

Reward
Module

Apply 
LLH

Compute 
Fitness

Fig. 2. Diagram of the proposed system

Hence, we must define three main aspects of the system: the state module,
the reward module, and the agent module (Q-model and Selection Policy).

4.1 State Module

In this work, we define a simple set of features for representing the search state,
and then we evaluate the RL-based Hyper-Heuristics strategy using different
combinations of features.

The first state feature is the Fitness Improvement Rate (FIR), which mea-
sures the change of fitness when applying an operator i at time t as

FIRi,t =
pfi,t − cfi,t

pfi,t

(6)
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where pfi,t is the fitness value of the original solution, and cfi,t is the fitness
value of the offspring. Additionally, we also tested a discretized version of this
feature, the Discrete Fitness Improvement (DFI), which is defined as

DFIi,t =

⎧⎨
⎩

−1, if FIRi,t < 0
0, if FIRi,t = 0
1, if FIRi,t > 0

(7)

Another measure that can indicate useful information to the agent is the
elapsed time of the search. In fact, there are several classic and new algorithms
that uses this notion to control the search in some degree. The Simulated Anneal-
ing, for example, has a more explorative behavior at first, and gradually increases
its exploitation based on the elapsed time [7]. Here, the elapsed time is measured
as

Elapsed Time =
current time

max time
(8)

where time can be either evaluation functions, iterations or CPU time, depending
on the defined stopping criteria.

Finally, it is known that the performance of an operator is often related to the
appliance of past operators (e.g. a perturbation operator can be advantageous
after a local search operator). Hence, the third feature that we evaluated is
the Last Operator Vector, which is a binary vector flagging which operator was
applied in the previous agent iteration. Therefore, the size of this feature depends
on the number of available low-level heuristic for a given domain.

In summary, we compare 5 different sets combining these three features, as
displayed in Table 1.

Table 1. Evaluated state feature vectors

State Name Features

S1 Last Operator Vector

S2 Fitness Improvement Rate, Last Operator Vector

S3 Elapsed Time, Last Operator Vector

S4 Fitness Improvement Rate, Elapsed Time, Last Operator Vector

S5 Discrete Fitness Improvement, Last Operator Vector

4.2 Reward Module

The reward must be a measure that gives the agent a notion of goodness or
badness of its decisions. In an optimization context, a straightforward reward
is the fitness improvement, which indicates how much the last operator could
improve over the current or the best solution. Hence, we set as reward the Fit-
ness Improvement Rate (6) between the current and the previous solutions.
Although using only the fitness improvement as the measure of reward may
penalize long-term strategies, the Q-learning algorithm introduces a long-term
reward mechanism, while the ε-greedy policy introduces exploration [15].
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4.3 Agent Module

This module defines the agent that will act as the selection rule within the Hyper-
Heuristic. As discussed in Sect. 2, our approach uses an Artificial Network model
estimating the quality of the state-action pairs (the Q-values). The weights of the
network are updated using (2) according to the Q-Learning algorithm. Moreover,
we also evaluated a standard tabular Q-learning version, using the discrete state
representation (S5 in Table 1). Finally, as the selection policy, we use the ε-greedy
policy.

5 Experimental Setup

Our first set of experiments aimed to answer the research question R1 (see
Sect. 1). Therefore, we evaluated the approximate Q-learning approach using
each set of features from Table 1 for representing the state. Here, we assessed
their overall performance in terms of final achieved solution across all domains.

Then, after identifying the best set of features for this task, we moved on to
answer the research questions R2 and R3. Hence, we compared the approximate
Q-learning approach against a tabular Q-learning and also against a state-of-
the-art selection rule for Hyper-Heuristics (the FRRMAB).

For each approach, we executed the Hyper-Heuristic 31 times on every
instance with different random seeds. We set the stopping criteria as 300 s of
CPU running time on a Intel(R) Core(TM) i7-5930K CPU @ 3.50 GHz. These
configurations were set following the CHeSC 2011 competition rules.

Moreover, Table 2 displays the parameters we used throughout the experi-
ments. For the FRRMAB parameters, we followed the recommendations from
[5]. Then, we kept the same window size (W) for DQN and set γ and ε win
the intent to give high importance to long-term rewards and a low exploration
degree, respectively. For the ANN (Q-model), we set a low learning rate with a
state-of-the-art optimizer, and a network architecture with an appropriate size
for its input. We used the Multi-Layer Perceptron Regressor implementation
from the scikit-learn library [12].

Table 2. Parameters setting

Parameter Value

FRRMAB C 8

W 100

D 1

Approximate Q-Learning γ 0.9

W 100

ε 0.05

ANN hidden layers (30, 20)

Learning rate 0.001

Solver Adam
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6 Results and Discussion

First we evaluated the approximate Q-learning approach using each of the fea-
ture sets from Table 1. For this, we compared the mean performance obtained by
each approach on all domains using the Friedman hypothesis test and a pairwise
post-hoc test with the Bergmann correction. Figure 3 displays this comparison,
in which the approaches are displayed according to their rank (the smaller the
better), and the connected bold lines indicate the approaches that are statisti-
cally equivalent (p < 0.05).

Fig. 3. Friedman ranking of the five compared states on all instances with post-hoc
tests

As we can observe, the top 2 best states (S5 and S2) are the ones using the
Fitness Improvement information, either continuous or discrete, and the Last
Operator Vector. Nevertheless, S5 ranked better, even tough it is a discrete
state, which could benefit from the possibility of using the tabular Q-learning
instead (we investigate this next).

Meanwhile, states S3 and S4, that includes the elapsed time, were equivalent
to each other, but worse than the best ones. This indicates that, in this scenario,
the progress of the search in terms of time is not a very informative measure for
the Reinforcement Learning agent.

Finally, the state set with the worst performance was S1, which uses only
the Last Operator Vector. Since this feature was present in the best sets, we
can conclude that it is more useful when coupled with additional information
regarding the impact of the last operator. In summary, knowing which was the
last action and if it impacted positively or negatively the search worked better
on guiding the agent into learning a proper selection rule.

After assessing the best set for representing the state, we compared the
approximate Q-learning against its tabular counterpart and also against the
FRRMAB selection mechanism, aiming at answering research questions R2 and
R3. Here, we compared the results of the three approaches on each instance indi-
vidually, using the Kruskal-Wallis hypothesis test, followed by a pairwise Dunn’s
test, with the best ranked approach set as the control variable. Next we present
these results for each problem domain.
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6.1 Bin Packing

Table 3 reports the average and standard deviation of the best solution found
by each selection strategy for the 31 runs. Bold values indicate that the cor-
responding approach achieved a better performance with statistical difference
(p < 0.05), and gray background highlights all approaches that were statistically
equivalent to the approach with the best rank on that instance.

As we can see, in the Bin Packing domain, our approximate approach out-
performed the other two on 9 out of 10 instances.

Table 3. Performance comparison on Bin Packing

ID Approximate FRRMAB Tabular

0 0.1096 (0.0083) 0.1866 (0.0093) 0.1132 (0.0157)

1 0.0219 (0.0029) 0.0535 (0.0033) 0.0505 (0.0029)

2 0.1331 (0.009) 0.181 (0.0085) 0.146 (0.0122)

3 0.0619 (0.0032) 0.1577 (0.0054) 0.1517 (0.0055)

4 0.0186 (0.0024) 0.0875 (0.0082) 0.0431 (0.014)

5 0.0203 (0.0025) 0.0894 (0.0071) 0.042 (0.0117)

6 0.0242 (0.0006) 0.0882 (0.0187) 0.0262 (0.0014)

7 0.0255 (0.0007) 0.0782 (0.0162) 0.0277 (0.0013)

8 0.0087 (0.0019) 0.0419 (0.0039) 0.0153 (0.005)

9 0.0071 (0.0018) 0.0425 (0.0029) 0.0127 (0.005)

6.2 Flow Shop

Similarly, on the Flow Shop we could achieve better results on 9 instances using
the approximate Q-learning, as shown in Table 4

Table 4. Performance comparison on Flow Shop

ID Approximate FRRMAB Tabular

0 26750.0323 (25.0554) 26894.5161 (44.7083) 26774.9355 (24.4658)

1 26923.5484 (32.4622) 27077.2581 (58.2187) 26947.2581 (36.9742)

2 26418.0968 (24.4017) 26629.6774 (52.228) 26456.0 (25.164)

3 10962.8387 (5.7311) 11046.0645 (20.8434) 10978.4516 (12.5154)

4 10530.0968 (7.1091) 10599.0968 (25.9744) 10548.6452 (8.2874)

5 6372.2258 (8.1822) 6481.5161 (25.7768) 6387.3871 (11.1693)

6 6392.5806 (8.1509) 6511.8387 (25.4395) 6408.1935 (9.3098)

7 6315.7419 (7.0709) 6427.5484 (22.4325) 6330.7097 (10.2774)

8 6453.4839 (9.1541) 6575.3871 (28.1318) 6473.6452 (12.9504)

9 6365.9677 (9.2718) 6476.7742 (23.5957) 6385.2581 (11.3364)
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6.3 MAX-SAT

In the MAX-SAT domain, besides getting statically better results, there was a
high difference in the scale of the obtained solution objective functions on several
instances, as we can see in Table 5.

Table 5. Performance comparison on MAX-SAT

ID Approximate FRRMAB Tabular

0 5.5484 (0.5587) 27.2903 (19.9874) 6.0 (0.8032)

1 5.4194 (0.4935) 30.0645 (21.8513) 6.3871 (1.0057)

2 12.4516 (3.3873) 104.3226 (99.0058) 25.9032 (12.6296)

3 9.4839 (1.5213) 49.1613 (44.7632) 13.4839 (2.4346)

4 6.3548 (1.7879) 53.9677 (47.0055) 11.0 (5.0289)

5 7.1935 (1.4902) 34.0645 (26.4928) 8.0968 (1.146)

6 8.6129 (4.0614) 71.4839 (110.7412) 22.3226 (3.7793)

7 21.0968 (2.2195) 119.0 (105.6186) 24.0 (2.6274)

8 210.4194 (1.0403) 263.9355 (63.5594) 211.7097 (1.887)

9 26.2581 (2.7704) 142.8387 (119.6026) 28.7742 (2.1659)

6.4 Personnel Scheduling

The Personnel Scheduling domain was the only one in which all three approaches
were overall equivalent, as displayed in Table 6, thus indicating that there are
still room for improvement regarding the state representation.

Table 6. Performance comparison on Personnel Scheduling

ID Approximate FRRMAB Tabular

0 27.5161 (4.7374) 30.3548 (4.8894) 28.1613 (4.9324)

1 1390.2581 (516.5635) 1267.5161 (83.1038) 1789.3226 (2503.471)

2 28.2581 (19.5216) 27.3871 (5.1159) 25.9677 (4.028)

3 3340.7419 (27.8799) 3353.1935 (26.5396) 13227.7419 (18073.267)

4 818.871 (713.1831) 526.9677 (296.2138) 513.7419 (316.738)

5 2583.5806 (562.6071) 2467.2903 (222.0301) 2618.0645 (647.2554)

6 2813.7097 (2242.7199) 2379.1613 (102.3385) 2398.3871 (159.6132)

7 14077.4194 (13894.9304) 9836.4194 (120.1678) 62573.8387 (46163.5512)

8 3502.7742 (435.8312) 3419.8065 (119.6747) 5217.7742 (10068.5096)

9 26.5806 (4.0781) 30.2903 (4.7055) 39.7742 (38.447)

6.5 Traveling Salesman Problem

Again, the approximate Q-learning presented better performance in the Travel-
ing Salesman Problem (Table 7). However, this time it was only statically better
than the tabular counterpart on 5 out of 10 instances.
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Table 7. Performance comparison on Traveling Salesman Problem

ID Approximate FRRMAB Tabular

0 9079.3939 (24.0413) 9340.6525 (37.203) 9154.316 (25.4277)

1 23304981.3829 (1294778.9725) 25088764.1283 (144515.4733) 24126892.4793 (921926.7273)

2 70693.6559 (1039.2317) 79291.076 (1208.747) 73228.5042 (1476.128)

3 48646.3748 (113.3912) 53221.526 (649.4599) 48653.3713 (290.5162)

4 6948.8743 (14.781) 7129.7775 (22.2897) 6992.6067 (36.2744)

5 58976.9946 (258.2069) 62975.4419 (470.6619) 60130.984 (535.9722)

6 110809.0592 (994.5147) 135768.9563 (3802.5602) 110545.4157 (910.252)

6 61341.4821 (1949.9552) 61675.8326 (1474.6458) 61040.8453 (1715.0968)

8 714626.5632 (41446.5249) 792607.6786 (3129.0284) 719052.5763 (39618.5471)

9 42834.1968 (124.6904) 44936.0668 (344.2229) 43264.6181 (235.2842)

6.6 Vehicle Routing Problem

Finally, in the Vehicle Routing domain, our approach achieved the highest per-
formance among the three methods, yielding statistically better results on 6
instances and being at least equivalent on other 3, as we can see in Table 8.

Table 8. Performance comparison on Vehicle Routing Problem

ID Approximate FRRMAB Tabular

0 15191.3914 (387.2835) 19885.8136 (2575.4348) 15363.451 (326.6109)

1 6215.9084 (288.108) 8364.8595 (1773.5206) 6282.1684 (212.7539)

2 5284.6472 (37.7519) 7053.5233 (1344.2861) 5244.3875 (35.8729)

3 14452.5897 (188.9685) 17494.6077 (1987.017) 14468.0252 (350.7753)

4 21625.9059 (247.9696) 28615.1606 (3593.0337) 22723.4958 (1782.7663)

5 184561.7378 (1791.5329) 263334.8528 (54411.5145) 215440.5099 (17378.5754)

6 72418.9902 (2014.5027) 122517.6802 (15800.6161) 87703.4683 (10489.226)

7 170200.6952 (2333.6021) 215798.7689 (30716.4777) 194088.2141 (14213.8397)

8 226102.5325 (8135.8159) 339904.5134 (108719.3493) 305037.2796 (52841.9473)

9 206931.991 (5423.4539) 304608.2208 (73962.4556) 264701.1088 (48061.9512)

6.7 Overall Comparison

We have shown that the approximate Q-learning presented better results on 5 out
of 6 problems, which highlights the robustness of the approach on a cross-domain
environment. Figure 4 shows the Friedman statistical comparison when consid-
ering the results in all domains, where we can see that our approached outper-
formed the tabular Q-learning, which, in turn, also outperformed the FRRMAB
approach.

Moreover, Fig. 5 displays the amount of instances that each approach was
better than the others (black bars) and the amount in which it was at least
among the best equivalent ones (gray bars).
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Fig. 4. Friedman ranking with post-hoc tests off the approaches on all instances

Fig. 5. Instance-wise performance comparison on all problem domains

7 Conclusion

This work investigated the use of straightforward measures for representing the
state of an optimization search, in order to learn a policy to guide a selection
Hyper-Heuristic algorithm. For this end, we employed an approximate Q-learning
algorithm with an Artifical Neural Network for function approximation. Our goal
was mainly to answer three questions: which is the best subset of measures?; is
approximate Q-learning better than the traditional tabular version?; is this app-
roach better than a state-of-the-art Multi-Armed Bandit? (stateless approach).

We conducted experiments on a cross-domain framework, considering six dif-
ferent combinatorial optimization problems. With the results we could conclude
that informing the agent which was the last action and how it impacted the
fitness is a feasible state representation for selecting low-level heuristics.

Moreover, we also demonstrated that, even with a discrete state, using the
approximate Q-learning is more robust in this scenario than the standard Q-
learning, where all state-action pairs are kept in a table. Finally, both Q-learning
approaches achieved statistically better results than a stateless agent, namely,
the Fitness-Rate-Rank Multi-Armed Bandit.

Future works include extracting other measures that can possibly represent
the state of the search, such as metrics derived from Fitness Landscape Anal-
ysis. Besides, the selection Hyper-Heristic that we used was a standard single-
solution based algorithm. We can instead define complex and populational high
level strategies, which would allow us to get some additional measures such as
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population statistics. Moreover, with a properly defined Reinforcement Learning
environment, we can evaluate and compare different and novel RL algorithms.
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Paris XI (Dec, Theses (2010)

6. Handoko, S.D., Nguyen, D.T., Yuan, Z., Lau, H.C.: Reinforcement learning for
adaptive operator selection in memetic search applied to quadratic assignment
problem. In: Proceedings of the Companion Publication of the 2014 Annual Con-
ference on Genetic and Evolutionary Computation, pp. 193–194. GECCO Comp
2014, Association for Computing Machinery, New York, NY, USA (2014)

7. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671–680 (1983)
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Abstract. Effectiveness in swarm robotics relies on aspects such as
coordination and collective knowledge about the environment. By con-
sidering the evolution of intra-swarm communications over time as a
temporal network, different strategies can be used in the data analysis.
Information visualisation techniques are useful in this context because
they can enhance the analysis of individual and global performances by
including the user in the data exploration. This work proposes a visual
analytics approach that considers a new matrix-based layout and other
well-established ones to assess the swarm’s efficiency. To analyse this
approach, we also propose a temporal network dataset that models the
evolution of the communications of a swarm of robots in the surveillance
task, including eventual failures. We performed visual analyses in this
network and demonstrated that the proposed approach allows easy iden-
tification of patterns, trends, and anomalies related to communication
and task evolution. As a consequence, the decision-making process and
eventual adjustments become faster and more reliable.

Keywords: Swarm robotics · Information visualisation · Complex
networks · Data analysis · Surveillance task · Evolutionary models

1 Introduction

The employment of swarm robotics in tasks such as surveillance, exploration
and foraging, allows environments to be covered more efficiently without a-
priori spatial knowledge, as the combination of efforts of each robot results
in a complex global behaviour [6]. Although robots can perform their individ-
ual tasks without collective knowledge, effective communication provides, on a
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global basis, updated information on current conditions, improving the overall
performance [4]. Failures related to communication (e.g., the ones caused by a
robot’s hardware failure or wireless signal loss [12]) can affect swarm efficiency
and impair the progress of the investigated task.

Understanding the communication patterns of robots throughout time can
play a key role in the evaluation of swarm robotics. These patterns can be mod-
elled as a complex network, commonly used to model parts of a system through
instances (nodes) and their connections (edges) [1]. A complex network that
considers the information of when each connection occurs is denominated tem-
poral network [11]. In our context, a network is composed of robots (nodes)
that interact with each other according to their communication (edges) in spe-
cific time steps. The modelling of swarm robotics communication using temporal
networks provides means to identify temporal communication patterns, anoma-
lies and other behaviours (e.g., whether a robot stops communicating during a
particular time interval or a high flow of information between two robots).

Statistical analyses of temporal networks represent a useful resource for iden-
tifying specific trends and patterns. Numeric outputs, however, may represent a
“black-box” that impairs pattern comprehension [17,19]. In this sense, the use of
Information Visualisation techniques includes the user in the data analysis pro-
cess through graphical and interactive computational tools [31]. The visual anal-
ysis of swarm communication networks opens new ways to perform comparisons
between different system configurations, identify (un)desired behaviours, assess
robots’ performance and, finally, support fast and reliable decision-making.

Existing visualisation layouts, such as node-link diagrams [2], Massive
Sequence View [18], and Temporal Activity Map [18], can be used to analyse
aspects related to swarm communication, for example, to observe whether a
robot is communicating more frequently than the others and to identify who
communicates with whom and when. Although such aspects, especially those
involving communication failures, highly affect the efficiency of the task, none of
these layouts allows us to fully assess the task execution progress of the robots.

In this paper, we employ visual analytics to evaluate swarm of robots per-
forming the surveillance task. We propose a new layout designed for this task,
but also show the usefulness of some of the aforementioned layouts in this con-
text. Our main contributions can be summarised as: (i) a matrix-based layout
designed to analyse the surveillance performance of swarm of robots; (ii) a new
dataset (temporal network) that models the evolution of intra-swarm communi-
cations during a surveillance task execution. It is composed of a task evaluation
metric and contains several simulated communication failures over time; and,
(iii) a visual analytics approach that combines our proposed layout and well-
established ones to allow easy identification of patterns, trends, and anomalies
related to communication and task evolution.

2 Related Work

This section introduces relevant concepts and a review of the related literature.
It presents strategies for visual analysis of temporal networks and shows how
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they can be used in our context. It also describes the swarm coordination model
used as a basis for the temporal network generation.

2.1 Visualisation in Robotics

Different visualisation techniques are used in the swarm robotics literature [14].
Each technique has its purposes, advantages and disadvantages. Among the most
common ones, are the statistical charts [8,30] (e.g., lines, bars, regression, and
box-plots charts), which, in most cases, show final outcomes. These charts sum-
marise comparative results (e.g., mean and standard deviation) of mass tests
with different configurations of the model being analysed. Network modelling
and visualisation are also used in swarm robotics [13,22]. Networks provide a
mathematical formalism and abstraction for the problem under study.

In other studies, snapshots are used as a visualisation technique [5,28,32].
Snapshots illustrate the configuration and disposition of robots in an environ-
ment at a specific time step. Informally, they can be defined as a photo of the
environment. For instance, Masar et al. [20] used snapshots to visualise swarms
of robots performing the surveillance and exploration tasks. Although the use of
snapshots in modelling is remarkable, they have limited information: they show
only one time-step and the notion of temporality is very limited.

Another important technique is the heatmap [24,29]. It graphically describes
an environment through heat signatures, and can be used to represent the con-
centration of chemical substances and spatial coverage [25]. Besides, due to
their natural compatibility, heatmaps have a strong relationship with some bio-
inspired techniques. Although heatmaps are important for parameter calibration,
they do not allow the visualisation of the evolution of the task.

Trail charts illustrate the paths taken by the robots during the execution
of a task [15,21,23]. To produce these charts, the coordinates of the robots are
stored between pre-specified time intervals, or the robots are equipped with some
mechanism that allows them to mark the floor of the environment. However,
with the evolution of the task, these charts become difficult to interpret. This is
because the trails can overlap, and in tasks such as surveillance, which in turn
must be performed cyclically, the information becomes obscured.

In the work of Calvo et al. [7], a visualization technique was applied to
identify each robot’s positioning throughout its evolution. The objective was to
verify, in the surveillance task, the frequency and efficiency that the rooms in
an environment were visited. In a two-dimensional chart, the x-axis represented
the time evolution and the y-axis the combination of each robot with each room
that composes the environment. The authors used three robots and a 6-room
environment in the experiments, resulting in eighteen possibilities on the ver-
tical axis. Thus, due to its combinatorial search-space, this technique becomes
unfeasible to represent swarms of robots.
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2.2 Visualisation of Temporal Networks

Visual analysis of temporal networks comprehends an effective resource for fast
identification of patterns, trends, anomalies, and other properties existent in real-
world temporal data [17]. Although the tabular description (Fig. 1a) is convenient
for statistical analysis and data storage, qualitative and visual analysis can be
performed by employing different layouts [18]. Two of them, namely structural
and Temporal Activity Map (TAM) layouts (Fig. 1b–c), are widely used in the
analysis of network evolution [17,18].
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Fig. 1. Temporal network visualisation: (a) Tabular data; (b) Structural Layout (also
known as node-link diagram); and (c) Temporal Activity Map (TAM).

In the structural layout (also called node-link diagram), nodes are spatially
placed with edges (straight lines) linking them (Fig. 1b). It allows analyses
that vary from global perspectives (identification of patterns considering the
entire/aggregated network) to local ones (analysis of particular time steps—
possible when adopting animation to represent time information [9]). For better
layout exploration, different node positioning methods are commonly used (e.g.,
force-based, hierarchical, and circular algorithms [2]).

The Temporal Activity Map (TAM) is a timeline-based layout that uses the
vertical and horizontal axes to represent nodes and time steps (Fig. 1c). TAM’s
main objective is to highlight node activity. For this purpose, it omits all edges
(fewer visual elements decrease visual clutter) and adopts squares instead of
circles to represent nodes, which leads to a better sense of continuity [31]. The
node activity over time is highlighted by a colour scale that represents the level
of connectivity of each node [18], which can be measured by a network centrality,
for example the node degree adopted in the example of Fig. 1(c). Node ordering
and edge sampling strategies, such as [17,18], can be applied to TAM as well.

2.3 PheroCom Model

The PheroCom [27] is a model to coordinate a swarm of robots, mainly in tasks
like surveillance, foraging, and exploration. Its movement mechanism is based on
three bio-inspired strategies: Inverted Ant System (IAS) [7], Cellular Automata
(CA) [16] and the Vibroacoustic Based Indirect Transmission (ViBIT) [27].
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Briefly, the CA are applied in the discretization of the environment in two
grids of identical squared cells (Fig. 2), that are maintained in the internal mem-
ory of each robot of the swarm. The first grid (Fig. 2a) is used to represent physi-
cal objects that are inserted into the environment and the second one (Fig. 2b) to
simulate the dynamics of the pheromone deposited by the robots (feature inher-
ited from the IAS). Whereas the physical grid possesses discrete states {Robot,
Obstacle, Free}, the pheromone grid has continuous states, which are defined by
values between [0.0, 1.0].

Fig. 2. Cellular Automata grids in an environment with 6 rooms and size (20 × 30)
cells in: (a) Physical grid; (b) Pheromone grid. Black dots in (a) refer to robots, white
squares are free cells, and grey squares are obstacles [Extracted from [27]]. (Color figure
online)

Considering the information provided by the CA, the robots use it to coor-
dinate themselves throughout the environment. Since the IAS is applied in the
decision-making process, the pheromone information represents the probability
of the robot moving to a cell in a determined time step. This pheromone is repul-
sive, so the robots tend to spread rather than stay close to each other [26]. In
turn, applying the ViBIT protocol, the robots can share information regarding
the pheromone, characterising the symbiosis of the model.

Tinoco and Oliveira [27] used an evaluation methodology based on task points
to validate the PheroCom model. Task points can be formally defined as follows:

Definition 1 (Task-Point). Let E be an environment composed of ‘m’ rooms
and S a swarm composed of ‘n’ robots. A room i belonging to the environment
E is described as {ri | (i ≤ m) and (i ∈ N∗)}. Similarly, a robot i belonging to
the swarm S is described as {si | (i ≤ n) and (i ∈ N∗)}. Therefore, a task point
is reached iff every room ri ∈ E receives a visit from at least one robot si ∈ S.

It is noteworthy that, when a task-point is reached, the count of visited rooms
is restarted to start the counting of a new task-point. Besides, in the time step
subsequent to the reset of the counting, all rooms that have the presence of robots
are considered visited in the current task-point. Accordingly, it is an optimisation
problem where the objective is to visit all areas of a given environment, at the
same time that the intervals between task points are minimised.
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3 Visualisation Proposal

Network visualisation is commonly used to understand and explore complex
systems behaviours, such as existing patterns and anomalies. In our context, it
has already been used to analyse tasks in swarm robotics [13]. In this sense, we
propose a matrix-based visualisation divided into three parts: (i) Visited Rooms;
(ii) Unique Rooms; and (iii) Repeated Rooms. Figure 3 illustrates the proposed
layout considering one task point (visiting cycle) and a hypothetical environment
with 22 rooms and four robots. Fig. 3(a) shows the Visited Rooms for each robot
over time, with robots and time steps being represented by the vertical and
horizontal axes, respectively. The value of each cell represents the number of
different rooms visited by such robot until the corresponding time step.

40 0 1 3 3 3 3 4

4 6 9 10 13 17 21 22

Time

R
ob

ot
s

1

1

1

1

2

2

1

1 2 2

2 2 2

3 3

3

3

4

4

3 4

4

5

4

5

5 5

6

6

7

7 7

A

B

C

D

1 2 3 4 5 6 7 8

(a)

(b)

(c)

Fig. 3. Proposed layout of visited rooms evolution. (a) Visited Rooms for each robot
over time, with robots and time steps being represented by the vertical and horizontal
axes, respectively; (b) Unique Rooms, i.e., the number of different rooms visited so far;
and (c) Repeated Rooms, i.e., the number of rooms visited more than once so far.

A cell with red borders indicates that the robot is visiting a room already
visited by itself, i.e., the robot left a room at a previous time step and entered
it again. Thus, it shows robots that are not progressing in the task. The red
border only disappears when the robot visits a room not previously visited by
itself (it can be hidden via user interaction). In Fig. 3(b–c), two global values
are considered: how many different rooms were visited so far (Unique Rooms
– Fig. 3b); and how many rooms were visited more than once so far (Repeated
Rooms – Fig. 3c). When a robot visits a room not previously visited by itself
but that was already visited by other robots, we increment the number of visited
rooms for this robot (Fig. 3a) and the overall number of repeated rooms (Fig. 3c).
Stronger and darker colours indicate higher numbers of visited rooms.
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In the example of Fig. 3, each robot is positioned in a different room
at time step 1, and so the number of visited rooms is one for each one
of them (e.g., V isitedRooms(A, 1) = 1). Therefore, there are four unique
rooms visited and no repeated rooms at time step 1. At time step 2, robots
A and C go to unvisited rooms while robots B and D do not leave their
rooms (V isitedRooms(B, 2) = V isitedRooms(B, 1) and V isitedRooms(D, 2)
= V isitedRooms(D, 1)). Although all robots reach new rooms at time step
3, one of them has entered a room already visited by another robot (as indi-
cated by the change in the number of Repeated Rooms at this time step
(RepeatedRooms(time step 3) = 1)). Robots A and B leave their rooms and
enter rooms already visited by themselves at time step 4 (cells with red borders
in the layout). This pattern tends to be more frequent near the end of a visiting
cycle, since the robots are searching for the remaining unvisited rooms but end
up visiting repeated ones. At time step 8, robot A visits the remaining unvisited
room and then the cycle (task point) of 22 visited rooms is finished. In this
example, all 22 rooms were visited after 8 time steps (cycle/task point duration)
and with 4 repeated visitations.

Since a robot may visit a room that is new to it but that was already visited
by others, the number of individual visitations does not necessarily match the
number of unique visited rooms. For instance, at time step 8 of Fig. 3, the four
robots visited 23 different rooms (7 + 4 + 7 + 5), but there is only 22 unique
rooms (Fig. 3b). We show individual (Fig. 3a) and global performances (Fig. 3b–
c) to allow analyses of the task-points under both perspectives.

At the end of the cycle, the number of unique rooms is equal to the number of
rooms in the environment. The robot with the highest number of visited rooms
is responsible for visiting more unique rooms in relation to the others. When a
new cycle begins, all counters and colours reset. Ideally, cycles should present
short duration, few repeated rooms, and uniform activity among the robots.

Fig. 4. Interactively, the user can freely explore the layout: (a) Zoom; (b) Selection.

Initially, all visiting cycles are exhibited in the layout. Interactive tools were
included so the user can freely explore the layout, as established in the visuali-
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sation mantra “overview first, zoom and filter, then details-on-demand” [18]. By
using pan and zoom, the user may analyse the performance of the robots in a
global view or in a more detailed perspective (Fig. 4a). Moreover, the user is able
to (i) follow a specific group of robots during the task (by selecting specific robots
in the layout) and (ii) consider a particular time interval, even particular cycles
(by selecting specific time steps, as illustrated in Fig. 4b). By comparing different
cycles in the layout, one may identify similarities and discrepancies among them,
which may lead to further investigations and help the user in decision-making
and eventual adjustments.

4 Case Study

This section presents a visual analytics approach that considers well-established
layouts and our proposed one to evaluate swarms of robots performing the
surveillance task from global to local perspectives. We also describe our surveil-
lance network dataset that is used in the experiments.

4.1 Surveillance Network

Taking into account that the PheroCom model [27] (see Sect. 2.3) is based on
swarm intelligence, a complex global behaviour must arise through simple local
interactions during the execution of the tasks. In this case, its global behaviour
is a direct consequence of the information propagation from the pheromone grids
of each robot with the whole swarm. Since the robots use the information present
in local pheromone grids to decide their movements, when the pheromone infor-
mation from other robots’ grids is aggregated, decision-making becomes more
efficient. In fact, in the aggregation, the local grids start to represent the swarm
as a whole and not just the information of a single robot.

Although the main characteristic of the ViBIT protocol is indirect commu-
nication (based on gossiping [10]), the spread of pheromone information can be
described through a complex network representing the information dissemina-
tion and aggregation. In this way, an edge can be created in the network when
a robot is within another robot’s transmission area. Thus, for each time step,
there is a likelihood that there will be a complete network in the swarm (all
robots communicate with all), a connected network (there is a path between
all pairs of robots), disconnected networks forming groups of robots (connected
components) or even no connection at all, if no robot is within the transmission
area of any other robot. Besides, since robots are always in motion, this com-
plex network has a high dynamism rate, which makes it necessary to perform its
temporal analysis in order to observe its intrinsic characteristics.

Here, we have injected failures in the intra-swarm communications to sub-
stantiate our proposed visualisation approach. The failures were described as
robot failure, cluster failure and swarm failure. Robot failure represents local
failures of the robots’ communication system, i.e., robots continue to perform
the task, however, without propagating local information. In turn, cluster failure
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describes a subgroup of robots that are in a failure state, considering that these
robots are in the same region of the environment. Finally, in swarm failure, all
robots of the swarm are unable to communicate.

By applying the PheroCom model to the surveillance task, a network1 was
generated containing 12 nodes (robots) and 63, 743 edges distributed in 7 vis-
iting cycles (task points). There is a total of 20 failures: 14 robot failures, 04
cluster failures and 02 swarm failures. The environment is composed of 40 rooms
and dimensions equal to (80 × 120) cells. The robots were arranged in different
rooms at the beginning of the simulation. Usually, a task-end is not defined in
the surveillance, since it must be performed cyclically. However, to allow the
analysis of the proposed layout, it was applied a limit of T = 10, 000 time steps.
Considering the configurations described, a transmission radius equal to thirteen
cells (r = 13) allows satisfactory outcomes [27]. As mentioned, the transmission
radius represents the possibility of communication, i.e., if two or more robots are
within this transmission radius of each other, data transmissions may occur (i.e.,
an edge might be created) depending on the occurrence of failures; otherwise,
there is no data propagation (no edge).

4.2 Experiments

Different layouts provide different perspectives of analysis, so we used DyNetVis
[18], a free interactive software for visualising temporal networks, to complement
our analyses with the structural layout and TAM (see Sect. 2.2).

Fig. 5. Structural layout with circular node positioning. The more interactions between
two nodes, the darker and thicker is the edge.

Figure 5 shows the structural layout with circular node positioning. The com-
munications appear to involve all nodes (complete network) when considering
the aggregated network, i.e., not taking into account the times in which each
1 Freely available at www.github.com/claudiodgl/PheroComNetwork.

www.github.com/claudiodgl/PheroComNetwork
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of them occurs. Such layout provides an overview of the network, facilitating
the identification of global patterns involving the robots. In the figure, the more
interactions between two nodes, the darker and thicker is the edge linking them.
We see that the pairs of nodes (2,6), (4,10) and (1,10) are those with more
connections between themselves over time. On the other hand, several other
pairs of nodes have few connections between themselves, for example, the pairs
(5,10) and (1,9). Since it is expected a uniform distribution involving robots’
communication for better task execution, the perception of too many or too few
interactions may require further investigations to optimise the system.

Figure 6(a) presents an overview of all cycles of the network using TAM. At
least four failure events are visible (Fig. 6b–e). Figure 6(b) shows a cluster failure,
i.e., a particular group of robots that lost communication during a time interval
(perceived by white spaces over time). Figures 6(c–d) show swarm failures, i.e.,
time intervals in which there are no communications at all (recalling that the
network contains exactly two swarm failures). Not least, Fig. 6(e) presents some
blank horizontal lines, indicating that the corresponding robots are unable to
communicate in the respective interval. Robots without communication for sev-
eral consecutive time steps (such as the one indicated in Fig. 6e) are probably in
a robot failure state. Without communicating with others, a robot with failure
may impair the visiting task. The analysis of both communication behaviour
and presence of failure events is important to support decision-making related
to system optimisation. TAM thus represents a useful tool for this purpose.

Fig. 6. Network cycles visualised with Temporal Activity Map (TAM). (a) Overview;
(b) cluster failure; (c–d) swarm failure; (e) robot failure.

Figure 7 shows the duration of the cycles (number of time steps) when decom-
posing our proposed layout according to the beginning of each of them. Cycles
1, 3, 4, and 7 had a duration shorter than average. Since the goal is to perform
the visiting task as fast as possible, the robots’ performances in cycles 1 and 7
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were the best ones. In turn, cycles 2 and 6 presented the worst performances
and thus represent good candidates for further investigation.
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Fig. 7. Duration of the cycles exhibited when decomposing our proposed layout (with
hidden red borders) according to the beginning of each of them.

To analyse the performance of the robots, Fig. 8 shows the proposed layout for
the last three time steps of cycles 1, 2, 5, and 6. Recall that darker and stronger
colours in the layout refer to more visited rooms, which is expected to occur
more frequently in long cycles. During cycle 2 (the second longest duration), each
robot visited 12.83 rooms on average and 343 repeated rooms were necessary.
In contrast, during cycle 1 (the shortest one), each robot visited 5.83 rooms on
average and 73 repeated rooms were needed to complete the task. Considering
the number of robots in the network (12) and the number of rooms (40), a
best-case scenario would require 3.33 visited rooms per robot on average, which
supports cycle 1 good efficiency. During cycle 5, robots R01 and R05 visited 17 of
the 40 rooms whilst the other robots visited 7.5 rooms on average each. Further
investigation considering communication-based aspects (amount and evolution,
up/out-dated information, failure events) could be used to analyse and fix such
discrepancies in the individual performances.

To exemplify how the aforementioned communication-based aspects affect
the swarm performance and, consequently, the task efficiency, Fig. 9 shows our
proposed layout (Fig. 9a) along with the corresponding TAM layout (Fig. 9b)
for the cycle 6 execution. A few time steps after the cycle begins, the 12 robots
had reached 35 out of the 40 rooms (Fig. 9a). However, they got stuck between
unique rooms 36 and 38 for approximately 75% of the time used to complete the
cycle. During this time interval, at least one cluster failure, one swarm failure,
and a few robot failures occurred in the network (Fig. 9b). Each failure event
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impairs robot communication and may lead to delays, outdated information and,
consequently, lack of efficiency.
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R11

R12

cycle 1 cycle 2 cycle 5 cycle 6

Fig. 8. Proposed layout showing the last three time steps of cycles 1, 2, 5, and 6. Darker
and stronger colours refer to more visited rooms, which occur more in long cycles.

5 Limitations

Depending on the number of robots and rooms in the environment, there may be
a lot of visual information in the layout. Matrix-based layouts represent a useful
approach as they improve readability even when applied to large networks (high
number of nodes and edges) when compared with other layouts [3]. In our case,
besides the adoption of such representation, we also provide interactive tools,
such as zoom in/out and selections, for better visual analysis.

Furthermore, methods for node reordering and edge sampling, among others,
are commonly used in the structural and TAM layouts. Some of these meth-
ods are even visually scalable (e.g., Community-based Node Ordering [17]) and
would allow joint analysis using these layouts and ours in large temporal net-
works. Besides, each time step in the layout refers to a pre-defined duration time
interval. The adoption of different temporal resolution scales may affect the per-
ception of patterns [18]. Changes in the resolution scale and the employment of



A Visual Approach for Evaluating Swarms of Robots in a Surveillance Task 73

1- 35 36 38 39 - 4037

cluster 
failure

robot 
failure

swarm 
failure

(a)

(b)

Fig. 9. Analysis of the longest cycle of the network (cycle 6). (a) Proposed visualisation
with the number of Unique Rooms highlighted in green; (b) Corresponding TAM layout
highlighting three failure events.

node reordering and edge sampling methods affect the layouts’ quality, but a
detailed analysis is outside the scope of this paper.

The parameters applied to the PheroCom model were based on the out-
comes obtained in [27]. Among these parameters, it is worth mentioning the
number of robots in the composition of the swarm, the communication radius,
the pheromone evaporation rate, the size of the environment, and the num-
ber of rooms. Each configuration highly affects global efficiency, considering,
for instance, a good spreading of the robots, avoiding agglomerations in spe-
cific areas. Finding the best configuration is not trivial and requests an initial
exploratory analysis. The proposed visual analysis facilitates system performance
assessment and leads to faster and more reliable adjustments.

Not least, PheroCom considers the IAS in its composition. The inverted char-
acteristic of the pheromone, i.e., instead of being attractive, the pheromone gen-
erates a repulsive behaviour, causing robots to avoid areas with high pheromone
concentrations. Thus, the robots can create blockages in some areas due to
pheromone deposits, which, consequently, would compromise the efficiency in
reaching task points. Nevertheless, this is not a limitation of our proposal but
an intrinsic characteristic of the IAS.

6 Conclusion and Future Work

The analysis of different layouts allows understanding the network data from
different perspectives. This paper presented a visual analytics approach that
combines our proposed matrix-based layout with TAM and structural, which
are well-established in network visualisation. With this approach, one can assess
and further investigate (un)desired aspects that affect surveillance performance.
We also proposed a temporal network dataset that models the evolution of swarm
robotics communication and considers three types of eventual failures.
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A major advantage of visual analytics is the insertion of the user in the data
exploration. Through graphical and interactive visualisations, we have shown
individual and global performances, as, for example, the non-uniform distribu-
tion of (i) robots’ communication; (ii) cycle duration; (iii) individual and over-
all visitation rate. As demonstrated, communication failures represent relevant
aspects that should be considered in the analysis as they impair task execution.

In future works, we intend to perform user evaluation to better understand
the advantages of the layouts regarding mental map preservation and perceptual
complexity. Future plans also include complementing the visual analysis with
statistical evaluations and adapting the layout to run in a real-time fashion.
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Nádia F. F. da Silva3,4 , André Carlos Ponce
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1 Introduction

As consequence of the expanding use of Information Retrieval (IR) to fetch
textual documents, there is a strong interest in its use in the legal domain.
This is largely due to the high, and fast growing, number of legal texts being
produced, resulting in a large workload for the professionals working with legal
documents. This created a new IR subarea: Legal Information Retrieval (LIR),
which includes tasks such as jurisprudence analysis, as well as to support the
law-making process [18].

Within the scope of legislative activity, the need to adopt automated IR tech-
niques is consequence of the increasing growth in the number of documents cre-
ated by parliamentarians. This growth, together with the non-structured nature
of these documents, makes their organization, access, and retrieval a challenging
task [7]. As an example, in the Brazilian legislative process, before a Parliament
member proposal becomes a bill that can be voted by the Chamber of Deputies,
one of the departments of the House, called Legislative Consulting (Conle), must
retrieve and analyze similar, previously submitted proposals. This is a very time-
consuming process whose automation will enable Conle to deal with the large
number of proposals submitted every year: since its founding, the Chamber has
processed more than 144,000 bills [6], most of them redundant. Despite the high
demand for this task, we found only one other study applying IR to legislative
text in Portuguese [3].

One way to improve the document retrieval process is through the use of
Relevance Feedback (RF), in which the relevance of the retrieved documents is
evaluated by users [12]. RF uses this feedback iteratively to improve its results,
usually by expanding the query or using the relevant and non-relevant documents
information as a training set for a supervised Machine Learning algorithm. For
such, it usually aims to improve only the retrieval for the current query, i.e., the
feedback provided by the user will only be used in that session [33].

An alternative for RF to be used in order to make the retrieval model better in
a way that impacts other searches is the storage and utilization of this feedback to
improve IR for similar queries. Few studies, though, have been performed aiming
to use past queries information for this purpose, namely improving Information
Retrieval for new queries. This is due to the lack of available datasets containing
relevance information for similar queries [12].

In this sense, this paper presents Ulysses-RFSQ, a novel IR method that
considers the past queries RF information aiming to improve the retrieval for
new queries. It is based on the BM25 algorithm [23], but can be easily used
together with any IR algorithm that computes a relevance score for the docu-
ments. Experiments using legislative documents and requests from the Brazilian
Chamber of Deputies were performed to compare Ulysses-RFSQ with the use of
BM25 variants without the RF information. Legislative documents are used in
the experiments because: 1) the importance of IR for the legal task; and 2) the
aforementioned presence of redundancy in the parliamentarian requests, which
makes the assessment of the proposed method possible.
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This research was conducted in the context of the Ulysses project, an insti-
tutional set of artificial intelligence initiatives with the purpose of increasing
transparency, improving the Chamber’s relationship with citizens, and support-
ing the legislative activity with complex analysis [2].

The rest of this paper is organized as follows: Sect. 2 presents a literature
review for Legal Information Retrieval and for the use of Relevance Feedback for
similar queries; Sects. 3 and 4 detail the proposed method and the experimental
setup used, respectively; the results are presented and discussed in Sect. 5; finally,
Sect. 6 points out the main conclusions from this work.

2 Literature Review

2.1 Legal Information Retrieval

LIR is an important topic in the application of Artificial Intelligence in Law. The
fast retrieval of relevant legal documents from a very large dataset is a strong
requirement for the proper functioning of the juridical and legislative institu-
tions. This requirement has become stronger with the information revolution
and the Open Data movement, which increased the availability of legal data,
particularly on the Internet. However, data accessibility did not keep up with
this growth [32].

In the juridical scope, a court decision for a legal case should be based on
jurisprudence: previous decisions for cases similar to the current case. For such,
similar cases should be retrieved and made available for judges and lawyers. Nev-
ertheless, the concept of similarity between the documents is not well defined,
needing specialized opinions [4]. Courts commonly employ computational sys-
tems to retrieve similar cases. Nevertheless, most of these systems are usually
inefficient legacy systems, based on Boolean logic [11], which uses keywords and
operators to formulate the query, being complex and depending on the user’s
knowledge of the problem in order to choose the right keywords [24].

To analyze the retrieval of similar juridical documents, [11] used jurispruden-
tial data from the Brazilian Superior Court of Justice (STJ). Their goal was to
compare STJ’s legacy system, which uses Boolean queries, with IR approaches
based on document similarity, such as TF-IDF, BM25, and word embeddings lan-
guage models. According to their experimental results, the IR techniques were
able to overcome the legacy system both in performance and usability. Mean-
while, [21] used data from the Court of Justice of the State of Sergipe (TJSE) to
evaluate the efficiency and impact of Stemming algorithms for IR from juridical
texts. For such, the authors compared four radicalization algorithms (Porter,
RSLP, RSLP-S, and UniNE) to evaluate: 1) their gain in dimensionality reduc-
tion; 2) their predictive performance regarding legal document retrieval; and
pointed out that the use of radicalization deteriorated the BM25 performance.

For the legislative scenario, the situation is more complex. Legislative infor-
mation produced in the course of the law-making process can largely impact
and promote changes in the citizens’ lives, providing very relevant information
for the retrieval of similar legislation. For such, this information must also be
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properly stored, organized and made available, making its access easier for cit-
izens and parliamentarians [5]. To efficiently access information regarding the
legal text and the law-making process, and keep up with the growing need for
information, new and more efficient legal document retrieval methods must be
developed.

For the analysis of the retrieval of legislative texts, [3] proposed a new method
to compute the similarity between documents in a non-supervised way, based on
a synset, i.e, a set of synonyms. They used it to rank the legislative documents
according to their relevance to a query, regardless of the language used, perform-
ing multilingual IR with data written in four languages, from the JRC-Acquis
dataset1. [7], in their turn, investigated document retrieval from the Spanish
Congress of Deputies, such as debate transcripts and law proposals, which are
part of the Parlamento2030 dataset. For such, they added a semantic relation
measure to the Vector Space Model (VSM) [25], combining it with an ontology-
based document representation model.

Finally, [9] investigated regulatory compliance in European Union and United
Kingdom legislation using IR. They proposed a new approach: the retrieval of
relevant documents according to similarity and their re-ranking using BERT
(Bidirectional Encoder Representations from Transformers) [10] neural networks.
IR algorithms, such as BM25, and different versions of BERT were evaluated.

2.2 Relevance Feedback and Its Use for Similar Queries

Relevance Feedback (RF) consists of using a user’s annotation about the rele-
vance of a document as a way to improve IR for a specific query. Usually, this
information is used to select terms and expressions from the relevant documents
in order to expand and create a new query [26]. The IR process becomes iter-
ative, repeating the processing a few times aiming to achieve better results for
a query. However, as aforementioned, this improvement is only for that specific
query, not being used for future ones.

Another way to use the RF information takes place through Supervised
Machine Learning, in which IR is understood as a two classes classification prob-
lem: relevant and irrelevant. A classifier is trained using the user’s feedback as
a training set, and then the classification algorithm is used to label new docu-
ments as relevant or irrelevant for that query. [20,22] used Relevance Feedback
to interactively train a Support Vector Machine (SVM) classifier with the goal
of improving the document retrieval performance. The authors used a simple IR
technique based on VSM to select the first set of documents, which were man-
ually labeled according to their relevance, and an SVM trained with this data
was used to provide the final list of documents.

Nevertheless, due to the fact that RF is commonly used only to improve the
retrieval for the current query, it is necessary to investigate new ways to use
this information also for future queries. As the retrieval process for each query is

1 https://joint-research-centre.ec.europa.eu/language-technology-resources/jrc-
acquis en.

https://joint-research-centre.ec.europa.eu/language-technology-resources/jrc-acquis_en
https://joint-research-centre.ec.europa.eu/language-technology-resources/jrc-acquis_en
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unique, since the documents that are relevant to one query may not be relevant
to any other, the alternative is to consider past queries that are similar to the
current one. If there are very similar queries in the model usage history, the
documents labeled as relevant to those queries probably also are relevant to the
one currently being processed [14].

Although it is possible to note the use of this historical feedback for image
retrieval for at least two decades [33], there are only a few studies in the literature
that deal with this kind of use for textual document retrieval. According to [12],
this is due to the fact that there are no available benchmark datasets with
relevance information for similar queries, as popular IR evaluation collections,
such as the ones from TREC2 and CLEF3, only provide sets of dissimilar queries.
So, most of the techniques that perform IR considering historical data are in the
Personalized Information Retrieval area, in which information about a user is
used to improve the retrieved information for that user, within a session. This
process is commonly used in search engines on the Internet [12].

Considering the use of old queries and their lists of relevant documents in
order to improve document retrieval regardless of session, [16] proposed tech-
niques for query expansion. [8], in their turn, computed the similarity between
the current query and past ones for resource selection in a Distributed Informa-
tion Retrieval system. They could estimate the usefulness of available informa-
tion sources for a new query by combining the results of past queries. Aiming
to re-rank search engines results, [19] also used past queries information, but
without considering the Relevance Feedback. They built a similarity graph to
obtain a set of features and train a Decision Tree classifier. The authors stated
that the main challenge was to find the similar queries set.

[29] focused on using historical information aiming to build a new term-
weighting method for document retrieval. They assumed that the role of a specific
term in previous queries is important to the IR process, and used the ranking and
similarity of relevant and irrelevant documents to compute the weight of a term.
According to their results, the proposed method outperformed traditional IR
techniques, such as TF-IDF and BM25, besides language-based methods. They
reported an increase from 0.22% to 1.5% in Mean Average Precision (MAP) for
the BM25-based methods in the TREC collections used.

Finally, due to the lack of benchmark datasets containing similar queries, the
authors of [12–15] had to simulate an RF dataset to perform their experiments.
Their objective was to store and use the list of documents considered relevant
for old queries to improve the IR precision for new queries, evaluating four
randomized algorithms to select and reuse documents from the most similar past
query. When considering this set of relevant documents, the authors pointed out
better results in comparison with traditional IR methods.

These last two studies were the only ones found in the literature using RF
for similar queries to improve the IR method itself, without modifying the query
or training a classifier. Thereby, they are the most similar works to the one

2 https://trec.nist.gov.
3 http://www.clef-initiative.eu.

https://trec.nist.gov
http://www.clef-initiative.eu
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presented in this paper. However, they differ from our method as they proposed
new IR algorithms and/or a new term weighting scheme, while we presented a
method to be used together with existing IR algorithms, such as BM25.

3 Ulysses-RFSQ: Improving LIR With Relevance
Feedback

In this section, the proposed method, which is called Ulysses-RFSQ (RFSQ:
Relevance Feedback for Similar Queries), is described. It consists of reward-
ing the documents that were labeled as relevant for old queries similar to the
current one. It is composed by four steps, which are detailed in the following
subsections: 1) the preliminary ranking of documents by an IR algorithm; 2) the
similar queries selection; 3) the ranking update; and 4) the Relevance Feedback
acquisition.

Figure 1 presents the method’s pipeline, in which the new parts added by
Ulysses-RFSQ are in yellow, while the blue elements represent the standard IR
process, and the RF process is represented by the pink ones. The numbers point
out the four mentioned steps.

Fig. 1. Ulysses-RFSQ pipeline, pointing out the stages added by it (in yellow) to the
standard IR process (in blue), as well as the Relevance Feedback stages (in pink).
(Color figure online)
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3.1 Step 1: Ranking The Documents

The first step consists in the simple scoring and ranking of documents through
an IR algorithm: in this paper, we used BM25 as the base algorithm. However,
as aforementioned, any algorithm that results in a score for the documents can
be used. The choice for BM25 lies in the simplicity of this technique and in its
usage for retrieving legal documents [9,11,21].

In the standard BM25 process, the algorithm computes a score for each doc-
ument and, according to it, the documents are ranked from the highest relevant
to the lowest. Then, a list containing the top n documents usually is presented to
the user. Okapi BM25 [23] is the original BM25 algorithm, whose scoring func-
tion estimates the relevance of a document d to a query q based on the query
terms appearing in d, regardless of their proximity within d.

As the scores computed by BM25 don’t have an upper limit value, they need
to be normalized, in order to be in the range of [0, 1]. Without this normalization,
the bonus given for the documents might not be enough to have any effect in the
posterior document re-ranking. For this, we used the Min-Max Normalization
(Eq. 1).

normalized score(d, q) =
score(d, q) − min(all scores)

max(all scores) − min(all scores)
, (1)

in which d is a document, q is a query, and all scores is the set of scores for all
documents.

3.2 Step 2: Selecting Similar Queries

As Ulysses-RFSQ focuses on using the feedback given for past queries to improve
the documents retrieval, it is necessary to maintain and store the old queries in
a database. This database contains the query text and its RF information, with
data about the documents marked as relevant for that query.

In the second step, the similarity between the current query and each query
stored in the database is computed, then those queries that have a similarity
greater than a cut-off threshold are selected. This threshold, which we called
cut, is a parameter of the method that needs to be set and can vary between 0
and 1, according to the chosen similarity measure. If there are no queries that
have a similarity greater than the threshold, the third step is skipped and the
base IR algorithm list of ranked documents is presented to the user, without any
modification.

For this paper, the cosine measure was chosen to compute the similarity
between the queries, being this choice based on the work of [12], which also used
this measure.

3.3 Step 3: Updating The Ranking

After selecting the similar queries, each document has its score updated by the
addition of a bonus. We call this bonus lambda (λ) and it is computed by Eq. 2:
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λ(d, q) = ln

⎛
⎝ ∑

qj∈Q

(sim(q, qj) · normalized score(d, qj)) + 1

⎞
⎠ , (2)

in which q is the current query, Q is the set of similar old queries, and sim(q, qj)
is the similarity between q and qj . We decided to use the natural logarithm to
keep the bonus value in a small range, and we added 1 to the sum to prevent
the bonus from being negative.

As can be noticed by Eq. 2, the lambda bonus is computed based on two
values: the similarity between the past query and the current one, and the IR
algorithm (e.g. BM25) normalized score computed to that document according
to the past query, which is also stored in the database.

Another characteristic of this equation is that if a document is present in
more than one similar query, its bonus increases, as lambda considers the sum of
all occurrences of that document in the similar queries set. On the other hand,
if the document is not present in any similar query, its bonus is 0, i.e., its score
will remain the same.

Thus, using this method, the final score for each document is computed by
Eq. 3:

final score(d, q) = normalized score(d, q) + λ(d, q). (3)

With these final scores, the documents are re-ranked and this new ordered
list is the result of the IR process.

3.4 Step 4: Acquiring The Relevance Feedback Information

Finally, the n documents with the highest final score are presented to the user.
The user, then, provides a feedback, pointing out which documents they consider
relevant for their request. This list of relevant documents is stored with their
respective scores in the database, as well as the query. Table 1 presents a fic-
tional example of how the RF data can be stored in the database: the Relevance
Feedback column contains, for each document, its id, the BM25 score for that
document, and the score after normalization.

Table 1. Fictional examples of data stored in the database.

ID Timestamp Query text Relevance feedback

1 2022-01-01 10:01:35 “query 1” (DOC025, 124.75, 1.00); (DOC011, 115.02, 0.85)

2 2022-01-01 13:19:21 “test 2” (DOC112, 201.04, 0.97); (DOC114, 196.98, 0.93)

3 2022-01-01 21:56:02 “sample 3” (DOC066, 110.42, 0.89)

These data will be used for future requests, so the IR system is always being
improved by the feedback provided by users. It is worth mentioning that this
method can be used in two ways: 1) without any previous stored queries, so, for
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the first use, the queries database is empty and Step 3 is skipped until this IR
system is sufficiently used; or 2) using a previous feedback database, with which
the lambda bonus might impact the performance from the start.

4 Experimental Setup

4.1 Corpora

To perform the experiments and evaluate our method, two different corpora from
the Brazilian Chamber of Deputies were used: one containing bills, and other
containing job requests (user’s queries) and their RF information. The former
is publicly available4, however the latter contains private information and it is
confidential.

Bills Corpus. The Bills corpus was used to perform the IR main process and
has a total of 147,008 documents. These documents corresponds to the differ-
ent types of Brazilian bills. The three most common types were selected for the
experiments: Law Project (Projeto de Lei - PL), Complementary Law Project
(Projeto de Lei Complementar - PLC), and Constitutional Amendment Proposal
(Proposta de Emenda Constituicional - PEC), resulting in a final corpus with
48,555 bills. The corpus is composed by seven attributes describing the bills:
codProposicao, txtNome, txtEmenta, txtExplicacaoEmenta, txtIndexacao, imgAr-
quivoTeorPDF, idTema, which are, respectively, (1) the unique code of the propo-
sition; (2) the name of the bill (e.g., PL 4395/1998); (3) the bill summary; (4)
an explanation of the bill summary; (5) the keywords; (6) the bill itself; and (7)
the bill theme. For the experiments, we used the attribute imgArquivoTeorPDF.

Job Requests + Relevance Feedback Corpus. Job requests (legislative
consultations) are demands from parliamentarians to the Legislative Consulting
(Conle) department of the Brazilian Chamber of Deputies. In order to create a
new bill, or to verify if there is a similar bill being discussed in the House, a par-
liamentarian requests, through a query in the SisConle5 system, a list of relevant
documents: active or inactive bills and other job requests. Then, the Conle team
searches for similar documents using the two legacy systems available: SisConle
and SiLeg6, within a task called Preliminary Search. However, a large amount of
this work is manual, as the search engine uses Boolean logic and the consultants
build the final list adding the documents manually. So, there is a strong need
for a computational tool able to automate this process, reducing manual labor,
cost, subjectivity, and human error.

The corpus used in this paper contains the result of preliminary searches, i.e.,
a set of job requests (queries) and the list of bills found for that query by the

4 https://drive.camara.leg.br/s/c3p2nLgLRcMz6eX.
5 Legislative Consulting Job Request and Monitoring System - SisConle.
6 Legislative Information System - SiLeg.

https://drive.camara.leg.br/s/c3p2nLgLRcMz6eX
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Conle team. As we have a dataset of queries and their list of relevant documents,
we can use it as the RF information needed to evaluate Ulysses-RFSQ, and, as
most of requests received by Conle are redundant, this corpus is well-suited for
this evaluation.

It has a total of 2,420 job requests, which were used for two different steps:
we split the corpus into a testing set, used to evaluate the method, and a Rel-
evance Feedback set, working as the queries database presented in Fig. 1. Thus,
the job requests from the testing set were used as queries to perform the IR task,
returning a list of documents from the Bills corpus, while their lists of relevant
documents were used to be compared with the retrieved documents, evaluat-
ing the method’s performance. Meanwhile, the job requests from the Relevance
Feedback set worked as the past queries, had their similarities computed, and
their lists of documents were used to update, through the lambda bonus, the
document ranking.

To perform a fair evaluation, we used the 10-fold cross-validation technique
to split the corpus into the two aforementioned sets, in order to ensure that
all data were used for both steps. We also had to process this corpus using
the standard BM25 algorithm to compute the documents score and store this
information in a way similar to that presented in Table 1. Finally, as we used this
corpus containing queries already stored together with their RF information, the
Step 4 of our method was not performed for this evaluation.

4.2 Pre-processing

In a previous work, we presented an IR pipeline for the Brazilian legislative
domain [31] using the Bills corpus described in Sect. 4.1. We evaluated many
different pre-processing techniques, from which the combination of punctuation,
accentuation, and stopwords removal + Stemming (with the Savoy algorithm
[27], which was the best Stemming technique in another previous work [30]) +
unigram and bigram achieved the best results. So, we opted to use this com-
bination to pre-process both queries and documents during the IR task in this
paper.

4.3 BM25 Algorithms

We opted to perform the evaluation using two variants of BM25 as the base
algorithm, so we evaluated Ulysses-RFSQ-Okapi, which uses Okapi BM25 [23]
and Ulysses-RFSQ-BM25L, using BM25L [17], which fixes the Okapi’s preference
for shorter documents. The former is the original version of BM25, while the
latter achieved the best results in our pipeline evaluation [31].

For the evaluation presented here, we followed the recommendations of the
original paper’s authors to set the BM25 parameters.

4.4 Cut-off Parameter

As mentioned in Sect. 3.2, to perform the Step 2 of our method, a cut-off thresh-
old needs to be set. This threshold defines whether an old query is considered
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similar to the current query or not: if its similarity is greater or equal than the
threshold, it is a similar query and its relevant documents will receive the lambda
bonus. Thus, for this paper, we set cut = 0.3, in order to select a greater number
of queries, although disregarding queries not too similar.

4.5 IR Evaluation Measure

Finally, we used the Recall measure, which is the fraction of relevant documents
that are retrieved, to obtain the results of our experiments: we analyzed the
results from R@1 (Recall at 1 document) to R@20 (Recall at 20 documents).

5 Results and Discussion

To evaluate the main contribution of this study: the proposal of a novel Rele-
vance Feedback based method to improve the IR system also for future queries,
we compared the results achieved by Ulysses-RFSQ and the standard BM25
algorithms without the lambda bonus.

Figures 2 and 3 present the comparison, in terms of Recall and considering the
retrieval from 1 to 20 documents, using Ulysses-RFSQ-Okapi and Ulysses-RFSQ-
BM25L, respectively. The results point out that Ulysses-RFSQ improved the IR
performance for any amount of retrieved documents and for both algorithms.

Fig. 2. Comparison between Ulysses-RFSQ-Okapi (with lambda bonus) and standard
Okapi BM25 without RF.

Using Okapi BM25 as the base algorithm, the average improvement in Recall
was 0.0210, i.e., 2.1% more relevant documents were successfully retrieved, on
average, with a maximum improvement of 0.0310 (3.1%) when retrieving 5
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Fig. 3. Comparison between Ulysses-RFSQ-BM25L (with lambda bonus) and standard
BM25L without RF.

documents. Using BM25L, on the other hand, Ulysses-RFSQ improved the Recall
by 2.18%, with a maximum improvement of 0.0294 (2.94%), for the retrieval of
20 documents.

This is a considerable improvement, mainly in view of the fact that we per-
formed the experiments on a difficult dataset, for which the Recall@20 did not
exceed 45%. The fact that the Preliminary Search is performed in an almost
manually way makes the list of relevant documents for each query not so reli-
able, and needing context that an IR algorithm, such as BM25, does not have
to perform the retrieval.

So, an improvement of more than 2% is useful, and it is worthy mentioning
that Ulysses-RFSQ does not need much extra processing and uses information
that is easy to catch, as the Relevance Feedback is already normally given by
the users at the end of the legislative retrieval process.

5.1 BM25 Algorithms Comparison

Finally, we performed experiments using two variants of BM25 in order to check
if Ulysses-RFSQ could improve the IR results for different versions of this algo-
rithm. In a previous work [30], we used a subset of the Bills corpus and found
that Stemming techniques can improve the IR results for BM25L, but not for
Okapi BM25. So, we needed to confirm if the Relevance Feedback lambda bonus
works well for both variants.

Considering all the results presented before and comparing the results for the
two BM25 algorithms, we can confirm the finding of [31] that BM25L performs
better than Okapi BM25 for the Bills corpus. Meanwhile, considering only the
impact of the lambda bonus on the BM25 variants, we could notice that the
average improvement is practically the same for both of them.
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6 Conclusion

In this paper, we presented Ulysses-RFSQ, a novel method based on the Rel-
evance Feedback given to past queries to improve the Information Retrieval
performance, and evaluated it using legislative data from the Brazilian Cham-
ber of Deputies. The method adds a bonus, called lambda, to documents that
were considered relevant to old queries similar to the current one, wherewith the
ranking created by a scoring based IR algorithm, such as BM25, is updated.

The results showed that Ulysses-RFSQ improves both Okapi BM25 and
BM25L performances considering different amounts of retrieved documents. This
is a considerable improvement, in view of the simplicity of this method, the need
of progress in this domain, and the ease of obtaining the RF information, as this
method feeds itself back.

As future work we intend to evaluate BERT [10] and other language models,
such as the one from [28], which was built from Brazilian legislative data, to
select the similar queries from the database. As pointed out by [19], one of the
great challenges is to find the similar queries set, and using techniques that can
find semantic similarities between the queries may improve our method; as well
as techniques for Named Entity Recognition (NER), using a dataset created by
us for the Brazilian legislative domain and called UlyssesNER-Br [1].

We also plan to modify the lambda equation in order to consider different
relevance levels that may be presented by the user, such as a little relevant or very
relevant. Finally, an evaluation of the cut-off threshold, as well as investigations
using others datasets, have to be performed.
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Abstract. The increasing generation of data by devices, people and sys-
tems arises the need for processing non-stationary data streams, which
continuously change over time. It was noticed that when compared to
data stream classification, there is a lack of data stream regression stud-
ies. This work proposes AFXGBReg-D, an Adaptive Fast regression
algorithm using XGBoost and active concept drift detectors. AFXG-
BReg uses an alternate model training strategy to achieve lean models
adapted to concept drift, combined with a set of drift detector algo-
rithms: ADWIN, KSWIN and DMM. We compared two AFXGBReg
variants with other regressors and data stream regressors, simulating
using synthetic datasets with different kinds of concept drifts. We show
that AFXGBReg models have similar MSE to ARFReg, with these mod-
els achieving the best performance than others as proven statistically.
Also AFXGBReg is 33 times faster than ARFReg, meaning that it is able
to keep the same MSE level while being much faster. Another improve-
ment is its ability of doing a faster recovery from concept drifts, having
a smaller MSE peak.

Keywords: Data stream regression · Concept drift · XGBoost

1 Introduction

Currently, with the evolution of cloud storage technologies, the improvement of
communications infrastructure and the popularization of mobile devices, data
is continuously produced on an increasing scale. With this abundance of data,
the concept of Big Data emerged, whose data science tries to extract potential
benefits from its analysis for society [13]. The name Big Data aims to describe
the exponential growth of data based on five principles: i) the volume of data, ii)
the variability of data types, iii) the speed at which data is generated, captured
and processed , iv) its veracity, in order to obtain true data, according to reality
and v) the value, the costs involved in this operation and the added value of all
this work [12].

Considering the potential benefits of extracting patterns and relevant infor-
mation from large volumes of data, the concept of data mining was consolidated
within data science. In it, using machine learning algorithms, it is possible to
explore a set of data in order to establish relationships that are difficult to visu-
alize manually.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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In the context of machine learning, the vast majority of research focuses on
building static models, which are trained once on a training dataset and then
applied to the analysis of new data [9]. However, the increasing generation of data
by sensors, IoT (Internet of Things) devices, computer network traffic, telephone
conversations and financial transactions, arises the demand for processing non-
stationary data streams, which continuously change over time. Data streams
can be defined as sequences of non-stationary data generated constantly and
indefinitely [26]. These characteristics mean that mining algorithms cannot store
the data and that they have to deal with changes in concepts inherent to the
non-stationary characteristic of streams [11].

Thus, data stream mining deals with challenges on the following dimensions:
i) speed: data is processed in limited time; ii) memory efficiency: previously
processed data needs to be discarded; iii) non-iterative: data is processed only
once; and iv) adaptive: the learning model must be adjusted to concept drifts [16].

As on classification problems, in the context of data stream regression the
predictive model needs to adapt to changes in concept. Therefore, for dynami-
cally changing data, traditional supervised learning methods are inappropriate
and can cause loss of model performance. To try to maintain the best possible
precision, the trained model needs to adapt using new input data. Therefore, pre-
dictive models need to be trained incrementally, either by continuous updating
or by retraining using recent batches of data [8].

Although there are some proposed approaches to data stream regression,
when compared to data stream classification studies, it was not yet much
explored by the scientific community, as it is considered a more complex problem
and therefore requires more effort to solve [26].

In machine learning, a concept drift means that the statistical properties of
the target variable, which the model is trying to predict, change over time in
an unforeseen way [14]. Therefore, this results in problems in the predictions
as the model becomes less accurate over time. Concept drift detection methods
for adaptive machine learning can be classified into two main categories: passive
and active. In passive approaches, learning models are updated without prior
detection of the concept drift [6], therefore, they tend to be slower in detect-
ing the change. In active mode, approaches are focused on first detecting the
deviation/change of concept and, later, accelerating the process of updating the
model so that the change is adsorbed by the model as soon as possible, making
the detection process faster than in the passive one [7].

To deal with concept drifts in non-stationary data, passive approaches are
able to adapt with continuous updates, but require more computational efforts
because they are slower [19]. On the other hand, even though active approaches
tend to be faster, they introduce to the learning process one more task to be
performed, which is the execution of the drift detection algorithm. In this work,
the use of active concept drift detection will be investigated in order to explore
its potential benefits and limitations in relation to passive concept drift detection
in data stream regression.
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Among the studies on classification and regression of data streams, the
ensemble of models stands out as the most robust and accurate. Looking specif-
ically at classifier ensembles, boosting algorithms are a promising approach, as
they are able to produce an accurate general model from the combination of
several moderately imprecise models [23]. The basic idea of these algorithms is
to iteratively apply classifiers and combine their solutions to get a better predic-
tive result [18]. Two of its most famous algorithms are AdaBoost and Gradient
Boosting, which work by sequentially adding models that correct the residual
prediction errors of the previous model, usually made up of decision trees.

However, building models based on the boosting approach can be slow, espe-
cially for large data sets. Therefore, to mitigate this problem, the algorithm
eXtreme Gradient Boosting (XGBoost) was proposed, which creates individ-
ual trees using several processors and the data is organized to minimize the
search time, which decreases the training time and improves the performance
[22]. The XGBoost algorithm is effective for a wide range of classification and
regression problems [4], however, its application in data streams is still not much
explored. The main studies are dedicated to the classification of data streams,
such as Adaptive Extreme Gradient Boosting (AXGB). AXGB uses an incre-
mental strategy to create the set, instead of using the same data to select each
function, it uses subsamples of data taken from non-overlapping windows [20].
An adaptation of AXGB was proposed in [3], called AFXGB, which made use
of an alternating model training strategy instead of an ensemble of classifiers.
It achieved great improvement on running time while keeping the same level of
accuracy of AXGB.

Therefore, considering that AFXGB technique has shown good results in
classification problems, but has not yet been applied in data stream regression,
this work explores AFXGB for regression (AFXGBReg) combined with active
concept drift detection techniques. We compare AFXGBReg runtime and mean
squared error with other data streams regressors synthetic datasets with different
kinds of concept drifts.

The paper is organized as follows: Sect. 2 presents an overview of concept drift
detector techniques and data stream regressors, Sect. 3 describes the proposed
algorithm and in Sect. 4 we present the testing methodology and discuss the
results. Lastly, Sect. 5 features the conclusion and future work.

2 Related Works

This section presents the summary of the literature review that was carried out
on themes involving decision trees, data stream regression and strategies to deal
with concept drifts.

On the matter of dealing with concept drifts, the detection of drifts can be
done in two ways [11]: i) Active: designed to detect concept drifts using different
types of detectors, so if there is a concept deviation, the model is updated and ii)
Passive: the model is continually updated whenever new data becomes available,
regardless of whether the change is taking place or not [17].
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One of the most popular active concept drift detector algorithms is the Adap-
tive Sliding Window (ADWIN). It monitors a sequence of real value inputs using
sliding windows [2]. It uses two windows: a reference window and a test window.
ADWIN notices the occurrence of concept drift by identifying a large difference
between the averages of the two subwindows. Once a drift point is detected,
all old data samples before that drift time point are discarded [25]. A more
recent method for concept drift detection is the KSWIN, which is based on the
Kolmogorov-Smirnov (KS) [15] statistical test. Similar to ADWIN, KSWIN also
implements two functions: one for adding the new one-dimensional data in the
local sliding window and the second to inform if the deviation was detected
or not. Another algorithm called Drift Detection Method (DDM) monitors the
error rate, assuming it will decrease as the number of instances increases and
the data distribution is stationary in the incremental learning process [24]. DDM
was the first algorithm to define an warning level and change level for concept
change detection [1]. If the confidence level of the observed error rate reaches the
warning level, DDM starts building a new learner by using the old learner for
predictions. If the change has reached the concept drift level, the old learner will
be replaced by the new learner for other prediction tasks [16]. DDM works best
with sudden change data where concepts can gradually pass without triggering
the change level [8].

In [14] it was developed a work involving regression in data streams with
passive adaptation to concept drifts, called Rival Learner. The algorithm uses an
ensemble of regressors and has two submodels, one based on historical samples,
called the global model, and the other based on samples from current sliding
windows, called the local model. These two models compete with each other
to see who has the best performance and the winner takes over as the global
model. In the tests performed by the authors, when a concept deviation occurs,
the proposed algorithm keeps the model effectively updated without the need
for active detection.

An algorithm called Adaptive eXtreme Gradient Boosting (AXGB) was pre-
sented in [20], using XGBoost for classification of data streams with concept
drifts. The central logic of AXGB is the incremental creation/updating of an
ensemble of classifiers, with a fixed size, and when this size is reached the oldest
classifiers are discarded to make way for the new models. AXGB uses ADWIN
to detect concept drifts, triggering a routine to update the ensemble based on
the change detection signal. In [3] it was proposed an adaptation of AXGB [20]
called AFXGB. In order to reduce its training and testing time, it eliminated
the set of classifiers from the original proposal and made use of an alternating
model training strategy. This means that the classifier has a lifetime and before
this lifetime is reached, an alternate model is trained in background to replace
the current model. Using this strategy the model becomes incremental without
the need to use a set of models and it also avoids over-specialization.

On the ensemble of classifiers and active concept drift detectors, in [25] it
was developed a framework called Performance Weighted Probability Averaging
Ensemble (PWPAE). The proposed framework is based on learning a set of mod-
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els that uses combinations of two detection methods, ADWIN and DDM, and
two drift adaptation methods, Adaptive Random Forest (ARF) and Streaming
Random Patches (SRP), to build basic learners. The results presented by the
authors show that the algorithm reached high levels of accuracy compared to
recent works.

Regarding data stream regression, in [10] it was proposed an adaptation to
Adaptive Random Forest (ARF) for data stream regression task, called ARF-
Reg. The algorithm works in a voting system responsible for averaging the indi-
vidual predictions to obtain the final prediction, with its base learner being a
regression tree, with the FIMT-DD algorithm. The update dynamics in ARF-
Reg are both passive and active using ADWIN as concept drift detectors. As a
result, ARF-Reg achieved considerably small error rates, especially in real-world
scenarios, thus showing its effectiveness.

It is noticed that the regression task, despite being one of the most com-
mon topics in the area of machine learning, is not a topic widely discussed and
studied in the analysis of data streams. Therefore, this work aims to adapt the
AXGB algorithm to support data stream regression with active concept change
detection.

3 Proposal: Adaptive Fast XGBoost Regressor

The original proposal of AXGB uses an ensemble of XGBoost classifiers, however
this considerably harmed the performance of the model. Therefore, the AFXGB
algorithm proposed by [3] will be used as the basis of this work, an adaptation
to the AXGB that obtained a shorter training time while maintaining the same
accuracy as the original AXGB. In the proposal of AFXGB, only one XGBoost
model is trained and incrementally updated. However, after this classifier exceeds
a limit of trained data, another classifier is trained as the replacement, thus
avoiding the overfitting of the first one.

Although the incremental AFXGB model update strategy can handle passive
detection of concept change as the model is updated based on more recent data,
adjustment for abrupt concept drifts is not adequately supported, due to its delay
in the perception of change. Therefore, this work proposes the inclusion of active
concept drift detection techniques to AFXGB, while porting it to regression. We
call it Adaptive Fast XGBoost Regressor (AFXGBReg).

Therefore, this work proposes to explore the following active concept change
detection techniques: ADWIN, KSWIN and DDM. These detectors are intended
to identify concept drifts and trigger the model update mechanism. This mech-
anism consists of resetting the size of the data window coming from the stream
used to update the model, causing the model to be updated faster, resulting in
a quicker response to the change in concept.

3.1 Implementation

A pseudo-code for the proposed algorithm is presented in Algorithm 1. The mod-
ifications implemented AFXGB started with the inclusion of an active detection
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step of concept drift performed by the set of detectors composed by: ADWIN,
KSWIN and DDM. Afterwards, the classification model was ported to regression
and a new flag which allows the execution of the algorithm with a window-size
reset mechanism was implemented, happening when the regressor is replaced by
the new one.

Algorithm 1: Adaptive Fast XGBoost Regressor algorithm
Input: (x, y) ε Data Stream
Data: w = maximum number of samples on the window, M = XGBoost

classifier model, W = window, SW = sliding window of data, life time =
lifetime of each classifier, training time = training time of each regressor,
count = how many times the window has run

1 Adds (x, y) to window (W)
2 if |W | > w then
3 if M <> NULL then
4 if training time ≥ (life time - cont) then
5 # Checks if it is inside the training time of next regressor
6 nextM = trains next XGBoost regressor;

7 else if count ≥ life time then
8 # resets counter and starts to use the new classifier
9 count = 0;

10 M = nextM;
11 if active reset == ’Y’ then
12 w = 0;

13 M = loads the previous model;
14 M’ = trains regressor with W using M and adds to M;
15 M = M’;
16 Saves new M model recently trained;

17 else
18 M = Trains regressor with W;
19 Saves new M model recently trained;

20 if detect drift == True then
21 # Calculate the absolute error
22 error = abs(self.predict(X) - y);
23 foreach active detector of D do
24 if drift detection(active detector, error) then
25 # If any active concept drift detector detects a drift based on

the absolute error, the window size is reset to zero.
26 w = 0;
27 # In the first detection of concept drift by some detector the

loop is broken, advancing to next instances
28 break;

29 W = W - W’;
30 count = count + 1; # counts how many times the window has run

31 returns M;
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As input, the set x and y belonging to the data stream are present: with x
being the input data while y is the value that will be predicted. In the algorithm,
when the sliding window of data coming from the stream is full, the algorithm
checks if there is any already trained XGBoost regression model (Line 3). If it
does not exist, an XGBoost regressor is trained (Line 17). If it already exists,
other conditions are tested with the proposal of verifying the life time of the
regressor (Lines 4 to 12) and then the regressor is loaded (Line 13) and updated
(Line 15).

The adaptation to port XGBoost for regression is carried out in order to
change the objective function of the algorithm in the configurable parameters of
boosting of the XGB to reg:squarederror, having as an internal metric for data
validation by the algorithm the Root Mean Square Error (RMSE). In addition,
the prediction function was also transformed, in order to return floating values
from X instances instead of labels as in classification. With the model loaded,
an array of active detectors is iterated to detect a concept drift. Each detector
must be complementary to each other, in order to aggregate in accuracy/MSE
or R2, not considerably increasing the execution time or memory weight of the
model (Lines 20 to 21). For this implementation, ADWIN, KSWIN and DDM
detectors were chosen.

Since AXGB was developed for classification, the instances passed to each
detector were the ones incorrectly classified. Now, to make the portability of the
algorithm for regression, a function was created (Line 22) to calculate the Mean
Absolute Error (MAE), whose value is treated in order to identify changes in
concept by the active detection algorithms. MAE is calculated by the absolute
difference between observed (actual) and predicted (hypothesis) values. Each
time a change in concept is detected by some detector, the size of the sliding
window is reset and the iteration loop over all other detectors for that instant
analyzed is broken by means of a break (Line 28).

With the implementation of the break after a detection, the final execution
time of the algorithm is reduced without harming the calculated MSE, because
if all the detectors used detected a change in concept at a certain moment,
they would all need to be called, making it more costly in time and memory
the process, as well as causing an unnecessary reset of the same sliding window
times the number of detectors used.

3.1.1 Drift Detectors Scheduling
In addition to choosing which detectors would integrate the algorithm, an analy-
sis was also necessary considering their order of execution and scheduling, as well
as hyperparameter values for each detector. Analyzing in depth the characteris-
tics of the chosen detectors, the sensitivity for detecting changes in concept by
the KSWIN detector was identified through experiments and empirical analysis.
Considering aspects related to the amount of concept changes by the KSWIN
detector and detection quality by the ADWIN detector, the detectors were stag-
gered in an orderly manner:
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1. ADWIN: It was chosen as the first detection option due to its assertiveness
for recurrent and gradual concept changes, while maintaining a good detection
rate for abrupt changes;

2. DDM: Effective and neutral performance for abrupt concept changes;
3. KSWIN: As a last option, if a change in concept is not detected by any of the

other detectors mentioned above, KSWIN has a high quantitative percentage
of detections for changes in concept, especially abrupt ones.

3.1.2 Parameters

– Learning Rate (eta): a value between 0 and 1. The learning rate applies
a weighting factor to new trees added to the XGBoost model. When next to
0 the algorithm will make less corrections, this resulting in more trees and
slower processing time.

– Maximum depth (max depth): the maximum depth which the tree can
reach. Increasing this number created a more complex model and increases
the memory consumption.

– Maximum window size (max window size): maximum size of the win-
dow which stores the data from the data stream. The algorithm updated the
models only when maximum window size is reached.

– Classifier life time (life time): Lifetime of each alternate classifier. This
value is based on the number of times which the sliding window was reset.

– Training time (training time): training time of each alternate classifier.
This value is based on the number of times which the sliding window was
reset.

– Reset window size when regressor is exchanged (active reset):
Boolean used to identify whether the window size reset strategy in the regres-
sor exchange will be used or not;

– Concept drift (detect drift): This boolean determines whether the concept
change with the array of detectors will be applied during learning.

4 Results Assessment

This section presents the results of tests performed with the AFXGBReg algo-
rithm. The Sect. 4.1 outlines the methodology that was used for the tests and
the Sect. 4.2 details the results obtained.

4.1 Testing Methodology

To evaluate of the proposed algorithm, six implementations were considered. Of
these six algorithms, two were proposed by the author and four external for
comparison, are described below:

– AFXGBReg-Dr: algorithm proposed in this work, using alternating regres-
sors, ensemble of active detectors of concept drift and window reset in con-
cept drift detections as well as in the step where the regressor is replaced by
a new one previously trained.
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– AFXGBReg-D: algorithm also proposed in this work, using alternate regres-
sors, ensemble of active detectors of concept drift and window reset ONLY
in detections of concept drift.

– HTR (Hoeffding Tree Regressor): is a regression adaptation of the incremental
tree algorithm of the same name for classification. HTR uses Hoeffding’s
inequality to control its node division decisions.

– HTRA (Hoeffding Adaptive Tree Regressor): similar to the previous imple-
mentation, but with the addition of the tree using the ADWIN concept change
detector and PERCEPTRON (single layer neural network) to make predic-
tions.

– KNN (k-Nearest Neighbors regressor): nonparametric regression method
where predictions are obtained by aggregating the values of stored samples
from n nearest neighbors against a query sample.

– ARFReg (Adaptive Random Forest Regressor): adaptation for regression of
the existing algorithm for classification, using the ADWIN concept drift detec-
tor.

Evaluated aspects include runtime, Mean Squared Error (MSE), and the abil-
ity to adapt to different types of concept drift. The evaluation method selected
is Prequential Evaluation, where the data are analyzed sequentially when they
arrive at the model.

The databases used for the tests were taken from the scikit-multiflow library
provided by [21], being synthetic databases generated through the Hyperplane
Generator and ConceptDriftStream generation methods. Table 1 presents the
bases selected for the evaluation.

Table 1. Datasets used on evaluation.

Dataset Drift type # Instances # Drifts

CDS A Abrupt 500.000 10

HYP Incremental 500.000 1

CDS G Gradual 500.000 3

The Prequential Evaluation simulation was executed 5 times for each algo-
rithm and dataset to obtain the average MSE, training time, testing time and
total time.

The AFXGBReg hyperparameters were selected empirically based on numer-
ous simulations and were defined as the following: No. Estimators = 30,
Learning Rate = 0.3, Max Window Size = 1000, Max Tree Depth = 6.
The active drift detectors hyperparameters were defined as: adwin delta =
0.0000001, kswin alpha = 0.0000001, kswin window size = 100, kswin stat size =
30, ddm min num instances = 30, ddm warning level = 2, ddm out control level
= 3.
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4.2 Analysis of the Results

We present on Table 2 the average MSE of the 5 executions of the considered
models for each dataset. The best MSE is highlighted, and the corresponding
ranking of the model for that dataset is next to the MSE. The model rank is
defined by ordering all model’s MSE for that dataset from lowest to highest, this
meaning that the smallest ranking is the better one.

Table 2. Average MSE and rankings for the six algorithms considered in the study
over 3 datasets.

Dataset AFXGBReg-Dr AFXGBReg-D HTR HTRA KNN ARFReg

CDS A 3459.59 (1) 3833.69 (2) 9806.61 (6) 7971.14 (5) 7190.04 (4) 5064.42 (3)

HYP 0.14 (5.2) 0.15(5.6) 0.109 (2.2) 0.105 (2.4) 0.13 (4.2) 0.10 (1.4)

CDS G 4037.43(1) 4399.73 (2) 11587.09 (6) 9268.18 (5) 7663.68 (4) 5273.96 (3)

Avg. MSE 2499.06 2744.52 7131.27 5746.48 4951.28 3446.16

Avg. rank 2.4 3.2 4.733 4.133 4.067 2.467

In the following sections we analyze the MSE, runtime and concept drift
recovery results.

4.2.1 MSE Analysis
It is noticed that the average MSE of all algorithms varies a lot. To confirm the
performance difference between the algorithms, we apply a pair-wise post-hoc
test for multiple comparisons [5]. The post-hoc test applied was a Nemenyi test
using the algorithms average ranking. This test determines a Critical Difference
(CD), meaning that two algorithms whose ranking difference is greater that the
critical difference are considered significantly different. The Nemenyi resulted on
a CD of 1.38 and pair-wise comparisons are shown on Fig. 1.

Fig. 1. Nemenyi test of model’s average rankings.

It is noticeable that AFXGBReg-Dr and ARFReg have similar performances,
followed by AFXGBReg-D. Since the difference of average ranks between these
three models is smaller than the value of CD, this test confirms that the differ-
ence in regression capability is not significant. This also means that the models
AFXGBReg-Dr, ARFReg and AFXGBReg-D are superior than the other models
in terms of MSE.
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4.2.2 Runtime Analysis
We now focus on comparing the simulated models runtimes, especially of
AFXGBReg-Dr, AFXGBReg-D and ARFReg, which were the ones who pre-
sented best performance of MSE. Table 3 presents the average training time,
average testing time and average total time on minutes of all simulations on all
datasets.

Table 3. Average times of simulations for the algorithms considered in the study.

Time (minutes)

Model Avg. training Avg. testing Avg. total

AFXGBReg-Dr 3.53 1.88 5.41

AFXGBReg-D 3.53 1.87 5.40

HTR 1.52 0.24 1.75

HTRA 5.89 0.23 6.12

KNN 0.22 3.79 4.01

ARFReg 179.30 3.27 182.57

It is apparent that HTR and KNN have the smaller total times. This is
expected because of the algorithms simplicity, since they were not developed
for data streams. On the other hand, they also had worse MSE performance
than other models. Regarding the superior MSE group, AFXGBReg-Dr and
AFXGBReg-D have similar times, as expected since the algorithms are related,
but ARFReg shows an outstanding training time when compared to them. The
average total time of ARFReg model is 33 times larger than AFXGBReg models.

It is worth mentioning that AFXGBReg’s runtime could be reduced even
further by using a smaller lifetime, thus decreasing the model’s build-up by
resetting it more frequently, but this needs to be balanced with possible MSE
increase.

4.2.3 Concept Drift Recovery Analysis
To evaluate the ability of the models on recovering from a concept drift we
analyzed the accuracy of each model over time after each drift. We selected one
simulation of CDS A to show the model’s behavior on abrupt concept drift.

On Fig. 2 we observe the models MSE for the simulation of CDS A dataset,
where both AFXGBReg models have a smaller peak of MSE than the others.
This can be perceived in more detail on Fig. 3 and 4, where the drifts of points
50k and 450k are highlighted. It is seen that HTR and HTRA have higher MSE
peaks, and also that HTR and KNN do not recover completely from the drift.
This happens because HTR and KNN do not have features to reset the model,
accumulating obsolete concepts.
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On the 50k CDS A drift depicted by Fig. 3, we can see that AFXGBReg
models recovery is faster than other models, showing the effectiveness of the
array of active concept drift detectors and model reset. This can be further
observed on Table 4, where the MSE of all models is displayed for five data
points related to the 50k concept drift of CDS A.

Fig. 2. MSE over time for evaluated models on CDS A dataset.

Fig. 3. Highlight of 50k concept drift of CDS A simulation.

On data 50k the drift has not happened yet, so all models are at their lowest
MSE, then on the following data register after the drift (50.2k) all models suffer
a great increase in MSE, prominent on ARFReg, HTR and HTRA models. On
the next observed data point of 50.4k the models start to adjust to the new
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Fig. 4. Highlight of 450k concept drift of CDS A simulation.

concept, decreasing MSE and are able to arrive on stable predictions for the
new concept by point 55.6k. In this scenario it took about 5.6k of data volume
for achieving full concept drift recovery. The last data point highlighted on the
table is the lowest MSE obtained on this concept, achieved by AFXGBReg-Dr
on 82.4k. We can see that none of the models were able to achieve MSE as low as
they previously had, but in comparison to AFXGBReg variants and ARFReg,
the other models had much larger error.

Table 4. MSE of models on data points before and after the 50k concept drift for the
1st simulation of CDS A dataset.

# data AFXGBReg-Dr AFXGBReg-D ARFReg HTR HTRA KNN

50k 1,326 1,432 1,963 2,918 2,991 4,750

50.2k 26,358 30,496 35,018 37,292 37,220 28,408

50.4k 18,703 16,580 21,904 32,722 32,722 22,855

55.6k 8,520 8,726 11,613 28,335 24,888 11,196

82.4k 5,646 9,823 7,950 22,663 15,872 11,912

5 Conclusion and Future Work

In this work we proposed a Fast Adaptive XGboost Regression model with active
concept drift detetction (AFXGBReg-D) to handle data streams. AFXGBReg
uses an alternate model training strategy in order to reduce the model piling up
complexity and adapt faster to concept drifts. It was also proposed a variation of
AFXGBReg-D with a fixed window size reset each time the regressor is replaced
by the new model, called AFXGBReg-Dr.
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Comparing their MSE, speed and ability to adapt to concept drift with
other models on synthetic datasets with different kinds of concept drifts, it was
seen that AFXGBReg variations are able to achieve the same level of MSE of
ARFReg, obtaining superior performance than the other models, as proven sta-
tistically. Meanwhile, AFXGBReg models are also 33 times faster than ARFReg,
meaning that it is able to keep the same MSE performance while being much
faster.

Regarding to concept drifts adaptation, AFXGBReg-Dr model presented a
smaller peak in MSE and faster adaptation than the other models, including
AFXGBReg-D. It was seen that it needs less volume of data to comeback from
the MSE increase and it is able to keep a low long-term average MSE, since old
concepts are forgotten when the model is resetted and substituted.

For future works we intend to explore AFXGBReg models with semi-
supervised learning. Still, we intend to study more about other detection strate-
gies besides the active one, as well as explore the AFXGBReg algorithm in order
to make it increasingly performant for different types of concept drift.
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8. Gama, J., Žliobaitundefined, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A sur-
vey on concept drift adaptation. ACM Comput. Surv. 46(4) (2014). https://doi.
org/10.1145/2523813

9. Gamage, S., Premaratne, U.: Detecting and adapting to concept drift in continually
evolving stochastic processes. In: Proceedings of the International Conference on
Big Data and Internet of Thing, BDIOT 2017, pp. 109–114. Association for Com-
puting Machinery, New York (2017). https://doi.org/10.1145/3175684.3175723

https://doi.org/10.1631/FITEE.1400398
https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://doi.org/10.1145/3175684.3175723


106 F. M. de Souza et al.

10. Gomes, H.M., Barddal, J.P., Ferreira, L.E.B., Bifet, A.: Adaptive random forests
for data stream regression. In: ESANN. IEEE, Curitiba (2018)

11. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble
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Abstract. This paper presents the results of experiments with under-
sampling and oversampling applied to machine learning classifiers used
in the identification of exoplanet transits with low signal-to-noise ratio
(SNR) data. We start by giving an overview of the most popular method
for exoplanet detection, followed by an analysis of the Kepler Object of
Interest (KOI ) data set, along with an overview of the state of the art
machine learning models applied to this problem, and how complex it is
to correctly identify exoplanets on low SNR data. We then briefly discuss
our signal-to noise ratio reduction procedure, used to generate the low
SNR data for our experiments. Finally we use our low SNR data set to
train and evaluate some models in scenarios with no sampling strategy
and with oversampling and undersampling, using repeated holdout vali-
dation. Results show that current classifiers can identify transits in low
SNR data sets, with accuracy varying between 69% and 81%, and that
sampling strategies can affect simpler classifiers, making them less con-
servative, but do not show significant effects on more complex classifiers.

Keywords: Exoplanet transit identification · Low signal-to-noise
exoplanet detection · Oversampling · Undersampling

1 Introduction

Exoplanets, i.e. planets found outside the boundaries of our solar system [8,10],
and the search for such celestial bodies have recently gained large attention by
the scientific community and by the media in general, as a way of expanding
the limits of human knowledge. Finding these planets not only allows us to
better understand how solar systems are formed and how they evolve, but also
represents an important step in the search for habitable planets and even for
extraterrestrial life [9].

There are currently various ways of finding exoplanets [35], but among them,
the detection through the transit method is the most successful one, with about
78% of all confirmed exoplanets being first detected through this method [21].
The idea behind this approach is to detect periodic small changes in the star’s
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Fig. 1. Simplified diagram of a transit. Adapted from [21].

brightness, which might be due to a planet transiting between the star and the
observer, as shown in Fig. 1.

To detect such events, the star’s brightness is measured at regular intervals.
These time ordered measures then build up a time series known as a light curve
– (LC ) (bottom part of the figure). The expected behavior of a planetary transit
consists of a “U” shaped event in the LC (as shown in the figure), with a reduc-
tion in the star’s brightness (t1 to t2), followed by a period of lower brightness
(t2 to t3), and then a return to the star’s previous brightness (t3 to t4) [20].
Finding this kind of behavior at the LC is what is called transit detection.

After the detection of a transit-like event in an LC, it is necessary to identify
its origin. Aside from an exoplanet orbiting that star, other causes can produce a
similar behavior in the LC. These are normally grouped into two classes of False
Positives [15,25,32]: the Non-transit Phenomenon, when a transit-like event is
detected but no transit exists (i.e. a “real” false positive); and the Astronomi-
cal False Positives, when a transit really occurred in the LC, but which was not
caused by an exoplanet orbiting that star, but instead by, for example, the inter-
action of the stars in a binary system, the “centroid offset” (when the detected
transit corresponds to that of some nearby star), and contamination from other
nearby celestial bodies, among others [15].

At the beginning, the identification step of the transit method, i.e. the def-
inition of the origin of some transit-like event (cf. [22]), was manually car-
ried out by a group of specialists which must reach a consensus on the cause
of the transit, based on the LC and other information regarding the host
star [25,32]. This manual identification became however a bottle neck, and
Machine Learning (ML) came into the picture to allow the whole process to
scale up to the large amounts of data being captured. Many different ML
techniques were successfully applied in this scenario, such as Random Forests
– RF (e.g. [5,6,11,12,19,21,23,25,26,30]), Convolutional Neural Networks –
CNN (e.g. [2,4,13,14,16,21,27,28,30,32,36,37]), Multilayer Perceptrons – MLP
(e.g. [5,14,21,28]), and Support Vector Machines – SVM (e.g. [11,19,21,28,30]),
among others.



Under and over Sampling in the Identification of Exoplanet Transits 109

Existing efforts, however, either focus on high signal-to-noise ratios (SNR),
that is the relation between the strength of the signal and the noise present
in the data (we will return to this concept in Sect. 3), removing data below a
specific threshold (e.g. [4,5,16,25,26,32,36]), or do not tackle this issue at all
(e.g. [3,11,19,23,30]). This procedure can nevertheless miss the identification
of some exoplanets which, despite still remaining unknown to science, may be
already present in the available data [32], although being kept away from current
detection methods, given its low SNR.

However, in recovering these low SNR exoplanets, we could not only find
smaller exoplanets (and, consequently, with smaller SNRs), which would be more
similar to Earth, but also discover exoplanets with longer transit periods, which
currently require long observations times, so as to increase their SNR (see Sect. 3
for details). The ability to detect low SNR transits could even allow us to scan a
larger portion of the galaxy, by detecting exoplanets which, despite being large
enough to be captured through current methods, present a low SNR given their
distance to Earth.

In this article, we aim at moving one step further in this direction, by report-
ing on the results regarding the performance of current state of art ML classi-
fiers for transit identification in low SNR real data, along with the effect some
sampling strategies, such as undersampling and oversampling, can have in their
performance. To do so, we also introduce our “data impoverishment” procedure,
whereby one can reduce the SNR of current data so as to train and test ML
techniques in low SNR scenarios. As it turned out, the performance of current
classifiers with low SNR data lies between 71% and 81% accuracy, with sampling
techniques being effective with some, but not all, of them.

The rest of this article is organized as follows. Section 2 gives a brief overview
of current uses of ML to exoplanet detection. In Sect. 3, we describe the process
researchers follow to build the light curves (known as folding), whereas in Sect. 4
we give details of the experiments we carried out, such as data sets, our procedure
to reduce SNR and tested methods. Results are shown in Sect. 5 and discussed in
Sect. 6. Finally, in Sect. 7 we present our final remarks and directions for future
work.

2 Related Work

Dating back to 2012, Random Forests (RF ) were one of the first classifiers
applied, in the context of the transit method, to identify transits previously
detected by Kepler’s pipeline [23], achieving a True Positive Rate (TPR) of 90%
with a 1% False Positive Rate (FPR). They were also applied later on, using
only four features directly derived from the LC, and achieving a 97.0% accuracy
over Kepler’s data and 96.8% over simulated data [26].

Self-Organizing Maps (SOM ) were also used in this task, to map the transits’
characteristics into its topology, and then extract a statistic representing the
probability of that transit being an exoplanet [7]. The classifier was tested with
Kepler’s first mission data, with 87% accuracy, 86% precision and 87% recall,
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and with K2’s data, with 93% accuracy, 95% precision and 97% recall. This work
was later expanded by using SOM ’s results as input to an RF classifier, along
with other LC attributes. Tests of this system over NGTS ’ data achieved 90%
precision, 91% recall and an AUC of 0.98.

It did not take longer for Convolutional Neural Networks (CNN ) to be tested.
Initial experiments, with simulated data, achieved 0.96 AUC, 1.0 FPR and 94.00
TPR [37]. Using Kepler’s data, CNN s were found to deliver 96% accuracy and
0.988 AUC [32]. Although reporting the discovery of new exoplanets, this work
also points out that low SNR transits could have been previously misclassified
or discarded by the pipeline. By the same time, comparative experiments with
simulated data, between a CNN, an MLP and other techniques, reported on a
99.6% accuracy, 88.5% recall and 0.96 AUC for one of the tested CNN s, with
the MLP delivering 99.8% accuracy, 91.5% recall and a 0.96 AUC [28].

Other initiatives evolved over Shallue and Vanderburg’s model [32], being
tested in Kepler’s data (e.g. [4]), K2’s data (e.g. [16]), WASP ’s data (e.g. [30])
and TESS ’ data (e.g. [27,36]), with different values for accuracy, precision and
AUC. In a large comparative study [21], where different ML techniques were
tested, along with a Discrete Wavelet Transform (DWT ) implementation, a CNN
model outscored its counterparts over simulated data, with 99.1% accuracy, pre-
cision and recall. When running with artificially altered Kepler data, however,
best results were delivered by an RF model, with 98.5% accuracy, 98.6% preci-
sion and 98.4% recall.

Although sometimes not addressed by current research (e.g. [23,30]), the
effect SNR has on ML results has been studied mostly with simulated or artifi-
cially altered data (e.g. [6,27,28,37]), since simulated scenarios make it possible
to control for the desired SNR values. Within this set-up, it was possible to deter-
mine that the lower the SNR, the worse a classifier’s performance, although by
how much depended on the classifier, the simulation model and tampering strat-
egy used. Performance losses range from a 21% decrease [27] to an almost 50%
decrease in accuracy [28].

Another reason for the focus in artificial data, when studying how different
SNRs affect classifiers’ performance, may lie in the fact that research based on
real data is bound to comply with the limitations of its data source. As an
example, initiatives using Kepler’s data (e.g. [4,16,25,26,32] are subject to its
original data processing pipeline’s significance threshold, which only considered
for further evaluation events with a measure of Multi Event Statistic1 MES ≥
7.1σ, with some of existing efforts adopting even higher thresholds (e.g. [36]).

In this research, we not only present a new methodology to derive low SNR
data from high SNRs, so that researchers can take advantage of already mapped
exoplanets to train and test their models, but also move one step further, by
presenting our results with some common sampling strategies, designed to reduce
data imbalance.

1 MES is a significance metric derived, among other things, from the transit SNR, so
that the greater a transit’s SNR, the greater its MES [15].
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3 Folding the Light Curve

The transit method’s greatest challenge is to correctly detect and identify transit
events within the noise present in the LCs. Consider, for example, the variation
the transit of a Jupiter-sized planet causes to its hosting star’s brightness. It is
estimated that this variation lies around 1%, whereas for an Earth-sized planet
it would be less than 0.01%. Such a small fluctuation in the signal’s amplitude
can be completely hidden or absorbed by the noise present in the LC [17]. As
a result, the signal-to-noise ratio – (SNR), used to indicate the strength of the
real signal relative to the noise present in the data, is one of the most limiting
factors to the discovery of new exoplanets.

To address this problem, a folding procedure is usually applied [22], whereby
the LC for a long period of observations is folded, as illustrated in Fig. 2, around
a set of approximate transit periods. The resulting LC is then compared to a
predefined function which approximates the expected transit behavior, in the
search for the best matching configuration. If this best matching configuration
crosses a predefined threshold, the transit event is considered valid for identifica-
tion [25]. This process not only helps to estimate the transit period, i.e. the time
taken by the exoplanet to orbit its host star, but also reduces noise by diluting
the local fluctuations in the LC.

As it will be made clearer in Sect. 4, this folding process lies at the heart of
our “impoverishment” procedure since, as the number of transits considered in
the folding increases, more noise can be softened, thereby increasing the transit’s
Signal do Noise Ratio (SNR). Hence, all one has to do to have a lower SNR from
a high SNR transit is to “unfold” it to the desired SNR.

4 Materials and Methods

Kepler’s data are amongst the most well studied exoplanet’s data sets, so we’ve
decided to use it as our source. It comes separated in two different groups: The
first group comprises transit events data, such as the Kepler Object of Inter-
est (KOI ) catalog, which has information regarding some attributes of transit
events, such as its class, if the transit is a “PC” or some false positive accord-
ing to the result of the identification step and the post processing validation,
the transit’s SNR, its duration, period, the timestamp of the first transit in the
sequence, and the id of the observed star in which the transit was detected,
among others [15]; The second comprehends LC data, which contains the star’s
raw brightness time series, captured in the first step of the pipeline, along with its
preprocessed equivalent, generated in the preprocessing step of the pipeline [22].

Due to the limitations noise can impose on the discovery of exoplanets, as
discussed in Sect. 1, even well studied data sets, like the one from Kepler, lack a
significant amount of labeled low SNR transits, which would allow the training
of a ML classifier. By looking at Fig. 3, which shows an analysis of the KOI
catalog’s transit events grouped by ranges of SNR, we can see that there are
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Fig. 2. Example of a folding process. Top: the LC across 320 measurements of the star’s
brightness. Middle: the overlapped curve, folded at every 40 measurements, generating
8 overlapping splits. Bottom: the mean brightness of the 8 overlapping folds.

considerably fewer analyzed transit events (as represented by the green and red
bars) with low SNR, independently of their cause2.

In face of this matter, and taking into account our desire to analyze the effects
of sampling strategies in low SNR scenarios, we devised an “impoverishment”
procedure, loosely based on the folding method shown in Fig. 2, so as to lower
the SNR of transit events to a desired approximated value without including
any artificial modification to the LCs. To do so, we began with an estimate for
a transit’s SNR [34]:

2 Kepler’s KOI catalog has three possible classes for transit events. “CONFIRMED”
is a transit which was identified as a PC and lately confirmed by another method;
“FALSE POSITIVES” are transits confirmed to fall into one of the false positive
categories from Sect. 1; and “CANDIDATE” are transits identified as PC by the
pipeline, but which were not yet confirmed by another method.
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Fig. 3. KOI distribution by class and SNR range.

SNR =
(RP /R∗)2

√
nObs

CDPP6h

√
6h/Dur

where a transit’s SNR is a function of the planet radius (RP ), the host star’s
radius (R∗), the number of observed transits (nObs), and the Combined Differen-
tial Photometric Precision taken on a interval (e.g. 6 h), weighted by the duration
of that transit in regard of that interval (CDPP6h

√
6h/Dur). Although all these

values are actually available in the KOI catalog, we can take them to be constant
(except for the number of observed transits), since a light curve reflects different
transits of the same planet around the same star and these values would not
change, and work the equation out to obtain the expected number of observed
transits needed to reach some target SNR:

NTarget Obs =
(

Target SNR

Original SNR

)2

NObs

From the KOI catalog, we selected the transits, excluding the ones still
labeled as “CANDIDATE”, with SNR in the ranges 20, 00 < SNR ≤ 30, 00,
30, 00 < SNR ≤ 50, 00 and 50, 00 < SNR ≤ 100, 00, since these ranges offer
an interesting balance of classes. By defining a target SNR of 5.00 and using it
to calculate the number of transit observations for each KOI in those ranges to
achieve this SNR, we divided each LC into splits containing only this amount
of transit observations. These splits are then to be treated by the classifiers as
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different lower SNR transit events. The resulting data set comprises 40,828 exam-
ples, being 27,864 of the negative class, henceforth called “AFP” (False positives
in Fig. 3), and 12,964 of the positive class, henceforth called “PC” (Confirmed
in Fig. 3), creating a unbalanced data set with proportions 68.25% / 31.75%,
respectively.

To select our classifiers, we refer to the state of art in the application of
ML to the transit method, discussed in Sect. 2. We then chose three different
classifiers, which used different ML techniques, to study their behavior in low
SNR data, and how our sampling strategies might affect them. We began with
those whose source code was available for download, and that we could easily
make compatible to our data set. From this criterion, we selected AstroNet [32],
a CNN which has two convolutional columns, one for a whole vision of the LC
folded over 2,001 buckets, called “global view”, and a second with a zoomed
in vision of the transit event, with only 201 buckets, called “local view”. The
available implementation already contains all the preprocessing and execution
framework necessary for AstroNet out of the box.

Since we could find no other classifiers with these characteristics, we changed
our criterion to reflect easiness of implementation and code reuse. So our next
choice was SIDRA [26], a RF which uses only four input features, derived directly
from the LC. As our third classifier, we selected the SVM from [21], henceforth
called ExoplanetSVM, since we can reuse in it AstroNet ’s preprocessing by mak-
ing a minor tweak, changing the original 2.048 inputs from [21] to the 2.001
inputs AstroNet generates. This change is expected not to cause great impacts
on the classifier, since it was made only to better accommodate data treated
with DWT, a preprocessing technique which we are not going to use. Imple-
mentations were done in Python 3, using the configuration described in each
method’s article, with AstroNet using the TensorFlow package [1], and SIDRA
and ExoplanetSVM using the Scikit-Learn package [29].

As mentioned, we modeled the problem as a binary classification task,
whereby a classifier had to tell exoplanets from false positives in the LC (i.e.
Confirmed × False Positive in Fig. 3). To deal with class imbalance, we applied
two strategies. The first one consisted in the Random Undersampling (RUS ) of
the majority class, where the examples of this class are chosen at random to
build the training set. The second strategy, in turn, comprehends the Random
Oversampling (ROS ) of the minority class, whereby examples from the minor-
ity class are randomly chosen (with reposition) to build the training set. For
the implementation of RUS and ROS we used Python’s Imbalanced-Learn [24]
package.

Finally, to evaluate our classifiers, we defined four quality metrics [18]:

– Accuracy : The rate of correct predictions

A = (TP + TN)/(Pos + Neg)

where TP (True Positives) is the number of positive examples correctly clas-
sified as such, TN (True Negatives) is the number of negative examples cor-
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rectly classified as such, FP (False Positives) is the number of negative exam-
ples misclassified as positives, Pos is the total number of positive examples
and Neg is the total number of negative examples;

– Recall : The rate of correctly classified examples of the positive class in regard-
ing to the number of positive examples

R = TP/Pos

– Precision: Ratio between the correctly classified positive examples over the
total predictions of the positive class

P = TP/(TP + FP )

– Specificity : The rate of correctly classified examples of the negative class in
relation to the number of negative examples

S = TN/Neg

5 Results

Our experiments followed a repeated hold-out strategy with n = 10 repetitions,
with random stratified sampling for the train and test sets split [18]. Within
this setup, one randomly separates the data set into training and testing sets,
training the models in the training set and evaluating them, according to the
metrics listed in Sect. 4, in the test set. This process is repeated a number of
times (in our case, 10), each time separating 70% of the data for training, with
the remaining 30% being left for test purposes.

Since we are following the configuration and hyperparameter values defined
by the authors of each method, hyperparameter tuning was not necessary. The
application of RUS or ROS was always done over the sampled training set, not
affecting the test set. Through all repetitions, all models were trained and tested
in the same sets. The seed for the random split of the training and test sets was
the number of the repetition, i.e. 1 for the first, 2 for the second and so forth.

Our first round of experiments was done without the application of RUS or
ROS, so as to build a baseline for each classifier. Table 1 gives the mean results
for our quality metrics. Differences were found to be statistically significant,
according to an ANOVA test (F = 402.28, p � 0, 001, at the 95% confidence
level3), with a pairwise confirmation by a post hoc Tukey HSD test run on
accuracy figures4. This led us to believe the three classifiers actually generated
distinct classification models.

With this baseline, we proceeded to experiment with RUS. Since our origi-
nal data set had a 31, 75%/68, 25% proportion for Positive and Negative cases,

3 The test was executed through the f oneway function of the SciPy package [33].
4 Calculated with the pairwise tukeyhsd function of the statsmodels package [31], lead-

ing to AstroNet × SIDRA t = −0, 0561, p � 0, 001; AstroNet × ExoplanetSVM
t = −0, 0908, p � 0, 001; SIDRA × ExoplanetSVM t = −0, 0347, p � 0, 001.
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Table 1. Mean accuracy (A), specificity (S), recall (R) and precision (P) in the test
set, over 10 executions, for the classifiers trained with so sampling strategy.

Classifier A S R P

SIDRA 75.16% 89.92% 43.88% 67.23%

AstroNet 80.77% 83.97% 73.99% 68.52%

ExoplanetSVM 71.69% 93.15% 26.20% 64.32%

respectively, and due to limitations of the RUS implementation, we were forced
to work with the intervals between the original proportion and 50, 00%/50, 00%.
So we decided to experiment with two different proportions to better under-
stand how undersampling can affect our classifiers: 40, 00%/60, 00% (closer to
the original proportion) and and 50, 00%/50, 00% (a balanced data set).

We then retrained our classifiers in the new undersampled training sets and
tested them against the original (not modified) test sets, producing the results
shown in Table 2. Once again, overall differences in accuracy were found to be
statistically significant (ANOVA F = 406, 12, p � 0, 001). However, a pairwise
post hoc Tukey HSD, run with all ten possible pairs of classifiers, showed there
to be no significant difference between AstroNet 50, 00%/50, 00% and AstroNet
40, 00%/60, 00% (p = 1.000), and between SIDRA 50, 00%/50, 00% and Exo-
planetSVM 40, 00%/60, 00% (p = 0.798). Interestingly, no difference could be
observed between AstroNet 50, 00%/50, 00% and AstroNet 40, 00%/60, 00% in
any of the adopted metrics.

Table 2. Mean accuracy (A), specificity (S), recall (R) and precision (P) on the test
set, over 10 executions, for our three classifiers trained with RUS using the proportions
50, 00%/50, 00% and 40, 00%/60, 00%.

Classifier 50, 00%/50, 00% 40, 00%/60, 00%

A S R P A S R P

SIDRA 69.44% 64.70% 79.50% 51.54% 74.89% 83.37% 56.89% 61.76%

AstroNet 80.49% 83.50% 74.08% 68.09% 80.41% 83.74% 73.33% 68.12%

ExoplanetSVM 66.31% 64.28% 70.61% 48.25% 70.59% 79.38% 51.93% 54.30%

Next, we executed ourROS experiments, following the same steps as withRUS,
with the same class proportions, as shown in Table 3. As previously, overall differ-
ences were found to be significant (ANOVA F = 191.48, p � 0.001). A pairwise
analysis, however, pointed there to be four pairs with no significant differences in
accuracy. These were AstroNet 50, 00%/50, 00% and AstroNet 40, 00%/60, 00%
(p > 0.876); SIDRA 50, 00%/50, 00% and ExoplanetSVM 40, 00%/60, 00% (p >
0.876); SIDRA 50, 00%/50, 00% andExoplanetSVM 40, 00%/60, 00% (p > 0.074);
and ExoplanetSVM 50, 00%/50, 00% and ExoplanetSVM 40, 00%/60, 00% (p >
0.074). Of these, only AstroNet 50, 00%/ 50, 00% and AstroNet 40, 00%/60, 00%
showed no significant difference across all metrics.
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Table 3. Mean accuracy (A), specificity (S), recall (R) and precision (P) on the test
set, over 10 executions, for our three classifiers trained with ROS using the proportions
50, 00%/50, 00% and 40, 00%/60, 00%.

Classifier 50, 00%/50, 00% 40, 00%/60, 00%

A S R P A S R P

SIDRA 70.00% 65.90% 78.70% 52.16% 74.96% 84.25% 55.27% 62.35%

AstroNet 81.02% 83.67% 75.42% 68.74% 80.45% 83.54% 73.93% 68.04%

ExoplanetSVM 70.00% 77.07% 55.02% 53.09% 71.44% 84.91% 42.88% 57.27%

6 Discussion

All classifiers were found to perform better than random guessing or zero rule
classifiers, ranging from 69% to 81% accuracy, as shown in Fig. 4, even under
very low SNR conditions (recall that our target SNR was only 5, whereas most
of current results work with values above 20). There has been, however, some
differences found across ML models, with AstroNet ’s CNN delivering the best
results (around 80% accuracy), independently of the applied sampling strategy.

Fig. 4. Mean accuracy results for each classifier and sampling strategy.

As a matter of fact, AstroNet ’s accuracy and precision figures outscored
its counterparts in all experiments, only loosing to SIDRA in the context of
a 50, 00%/50, 00% sampling strategy, with recall. The fact that AstroNet per-
formed very similarly across the experiments shows this classifier to be rather
stable, even when presented with an unbalanced data set, in comparison to a
more balanced one. In comparison with its original results, AstroNet ’s accuracy
decreased almost 15%, which shows the difficulties in processing low SNR data.

SIDRA, in turn, was an average performing classifier, with its results being
the closest ones to AstroNet ’s, while still lying roughly 5.00% accuracy and 6.00%
precision below it when no sampling is applied, and being almost 22% bellow its
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original results. This is nonetheless an interesting result, given this classifier’s
lower complexity, taking only four inputs (against AstroNet ’s 2,202 and Exo-
planetSVM ’s 2,001). These features translate into a fluent training of multiple
instances at a really low computational cost. On the other hand, SIDRA seems
to be affected by different sampling strategies. Lastly, ExoplanetSVM was the
worst performing classifier, being also affected, as it was the case with SIDRA,
by the adopted sampling strategy.

All in all, accuracy does change across sampling strategies. At the same
time, specificity and precision drop, whereas recall raises. The only exception to
these rules is AstroNet, which shows little change across the tested scenarios.
Despite these results, the decision on whether to use or not a sampling strategy
is actually deeply tied to the goal and background of the proposed model. For
instance, new missions or equipment, which are still generating lots of data,
might prefer a more conservative classifier, which has a higher precision and a
lower recall, so false positives might not overburden the scientists doing the post
pipeline validation of the “PC” transits, and so using sampling strategies with
simple classifiers might not help.

On the other hand, older missions or equipment, such as the Kepler telescope,
which are generating little to no new data, and whose data was already deeply
studied, might benefit from being processed by a less conservative classifier, that
will allow more false positives in exchange for a greater recall of real exoplan-
ets, which can be understood as retrieving the maximum possible exoplanets
from that already stalled data. All this must be weighted when deciding which
procedure to adopt.

7 Conclusions

In this work we described our proposal to generate a low SNR data set based
on Kepler’s KOI catalog, without tampering the light curve artificially. We then
used this data set to train and test three ML classifiers (SIDRA, AstroNet and
ExoplanetSVM ) for the transit identification problem, under different sampling
strategies involving undersampling and oversampling of the training set.

The results point that AstroNet was basically unaffected by the adopted
sampling strategy. On the other hand, both SIDRA and ExoplanetSVM seem
to be affected, in a similar way, by both undersampling and oversampling. As
it tuned out, with these classifiers, the closer the proportion of both classes to
each other in the training set, the higher the classifiers’ recall in the test set,
whereas the lower their precision, sensitivity and accuracy. As a result, although
sampling strategies can be used in the context of exoplanet transit identification,
more complex classifiers do not seem to benefit from them, and so the overhead
caused by these strategies may not justify their use in these cases.

Obtained results are nonetheless encouraging since, despite the difference, all
classifiers were found to perform rather well, ranging from 69% to 81% accuracy.
As already pointed out, being able to correctly identify low SNR transits can lead
to the identification of smaller exoplanets (which cause only small fluctuations
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in a star’s LC ), potentially leading to an explosion in the number of known
exoplanets.

These results also show there to be a good chance of identifying planets with
long transit periods, and which would take a long time to produce the number
of folds necessary for a high SNR, but that might otherwise be detected through
techniques capable of dealing with low SNR values. In addition, top accuracy
techniques could be used to expand the range of stars under consideration, by
including stars farther from earth which, despite being massive, produce low
SNR values. Last, but not least, our findings could lead to a reduction in the
time needed to capture an LC, if only by demanding fewer transit observations
to be made.

As for directions for future work, we believe other techniques should be tested
on the same grounds as those we report here, so that their behavior in low SNR
scenarios could be assessed. Also, other techniques could be applied, such as
ensemble models, that could benefit from the best each of its comprising models
can deliver. This is a direction we intend to pursue in the near future.
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Abstract. Osteoporosis is a global health problem characterized by low
bone density and deterioration of bone tissue that increases the risk of
fracture. Early identification of low bone mineral density (BMD) is cru-
cial to reducing risks by providing correct treatment or prevention meth-
ods. Dual-energy x-ray absorptiometry (DXA) is often used to measure
BMD. However, it is not affordable or accessible to some patients and is
rarely suggested to non-risk groups. Alternatively, information such as
age, sex, weight, height, and body circumferences have shown an associa-
tion with BMD and are inexpensive and easy to obtain. Thus, this paper
proposes a method to estimate BMD through anthropometric measure-
ments, age, and sex. We also introduce BMD-10, a dataset containing
911 patients with their respective BMD values and 10 other features.
Our approach evaluates the performance of different types of regression
algorithms through nested cross-validation. A Least-Squares Support-
Vector Machine achieves the lowest Mean Absolute Error: 0.0769 g/cm2.
Lastly, we interpret the model predictions with SHAP (SHapley Additive
exPlanations), finding that weight is the most important feature for the
estimation.

Keywords: Bone mineral density · Regression · Anthropometric
measurements

1 Introduction

Low bone mass and calcium leading to a deterioration of bone structure are
characteristics of osteoporosis, a disease that affects the skeleton [1]. Its incidence
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has been rising in developed and developing countries, thus becoming a global
health concern. Approximately 2.5 million fractures reported in the USA and
Europe yearly are associated with osteoporosis. Furthermore, the complication
of such fractures and costs related to surgery, extended care, disability, and
hospitalizations carry considerable economic expenses [25]. An example of such
fractures is hip fractures. They often require hospitalization and are considered
one of the most critical fracture types. In Latin America, more than 23% of
patients die in the first year after a hip fracture [3].

Bone mineral density (BMD) value is a source of information about the
patient’s bone health that can be used to diagnose osteoporosis and deter-
mine fracture risk [22]. There are several methods to determine the BMD;
among them, one of the most popular is the dual energy x-ray absorptiome-
try (DXA). Although the DXA is considered the most reliable method for esti-
mating BMD [25], it presents challenges regarding its lack of portability and
cost [8,21]. Therefore, people of lower income, rural communities, and popula-
tions from underdeveloped countries may have difficulty accessing or affording
this procedure.

Lately, machine learning methods are becoming more popular due to their
versatility and their capacity to establish convoluted connections between fea-
tures and predictions [4,6]. Several papers sought to predict fracture risks in indi-
viduals with osteoporosis [16]. Other papers aimed the BMD estimation using
computed tomography (CT) scan or X-ray images [11]. Many studies focused on
predicting osteoporosis in postmenopausal women since this data is more readily
available [15,24]. However, there is a lack of research on estimating BMD with
more accessible features in a broader range of demographic groups.

Often, osteoporosis is not detected until it has reached an advanced state.
Most of the time, the first symptom that manifests in a patient is a broken
bone. However, bone fracture risk can be mitigated significantly with preventive
measures or early detection and treatment of osteoporosis [25]. Thus, we propose
a method that uses artificial intelligence (AI) to estimate BMD using age, sex at
birth, and anthropometric measurements such as weight, height, and six body
circumferences measured by a specialist. Our main contributions are enumerated
as follows:

1. An evaluation of different methods for BMD estimation using easy to obtain
features: age, sex at birth, and anthropometric measurements;

2. A new dataset for estimating BMD, consisting of 911 female and male patients
(ages between 18 and 65) with a wide variety of body types;

3. An interpretation and analysis of the impact of features on the model output,
which can increase the trust in the algorithm and bring insights to other
researchers.

This paper is organized into enumerated sections. Section 2 introduces related
works to this study. The proposed dataset, the learning process, evaluation, and
interpretation steps are explained in Sect. 3. The experiment results and their
discussion are exhibited in Sect. 4. Finally, in Sect. 5, we conclude our findings
and present future works.
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2 Related Work

This section presents related works that use machine learning to aid in osteo-
porosis detection or bone-related risk prediction.

Iliou and Anagnostopoulos [12] evaluated the use of machine learning and
feature selection to detect osteoporosis. They used a dataset composed of 3426
patients. The authors concluded that only age and weight achieved satisfactory
results in predicting osteoporosis. However, their dataset was primarily composed
of women (98%). In addition, the authors did not provide the dataset and did
not present the data distribution.

Kim et al. [15] proposed the use of machine learning to predict osteoporo-
sis risk. The dataset used in the study comprised 1674 postmenopausal women,
which included clinical and demographic data, such as age, weight, waist cir-
cumference, fracture history, and osteoarthritis, among other information. They
reached an accuracy of 76.7% and 0.827 of area under the curve when using the
Support Vector Machine (SVM) classifier. Nevertheless, the main shortcoming
of this study is that using only postmenopausal women limits the demographic
portion of the population in which the method can be applied.

Yang et al. [26] developed a machine learning model to predict osteoporosis.
The authors evaluated several machine learning methods, achieving 0.843 as the
highest area under the receiver operating characteristic curve for men and 0.811
for women. The dataset was composed of 2929 female patients and 3053 male
individuals. However, this study also focuses on a strict age group and uses
several hematological and biochemical tests as features.

Kilic and Hosgormez [14] proposed using six bone densitometry feature
sets and the patient’s age (resulting in 24 attributes from 350 postmenopausal
women) to perform a 3-class classification: osteoporosis, osteopenia, and con-
trol group. The authors concluded that selecting five BMD measures and five
T-Score values achieved the best result in identifying osteoporosis using the Ran-
dom Subspace Method combined with Random Forest. Nonetheless, they also
concentrated their study on postmenopausal women. Furthermore, the detailed
data was composed of measures from high-end equipment that is already used
for osteoporosis diagnoses.

3 Methodology

In this section, we describe how we built the proposed dataset and we investigate
the data. We also inform which regression models are used, the configuration of
the experiments, and the methodology used to train, evaluate and interpret these
models.

3.1 Dataset

We have not found any public datasets for estimating BMD through anthropo-
metric measurements. Therefore, we have built a new dataset, called BMD-10,
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and will make it available to other researchers. The BMD-10 contains data from
911 adults living in Brazil. More specifically, all patients reported their current
age and sex at birth, and we measured their height, weight, total body BMD,
and six body circumferences: arm, forearm, waist, hip, thigh, and calf. For mea-
suring the body circumferences, we followed the protocol from the International
Society for the Advancement of Kinanthropometry (ISAK). For obtaining the
total body BMD, all patients underwent a DXA scan (GE Prodigy Advance).

Table 1 presents the means, standard deviations (SD), and range for each
feature and the target (BMD). In addition, we compare these statistics between
the subset of male patients (containing 411 people) and the subset of female
patients (containing 500 people). From Table 1, we observe that all patients are
adults aged between 18 and 65. Moreover, we notice that the BMD has a range
of 0.9 g/cm2, reaching as high as 1.689 g/cm2 and as low as 0.789 g/cm2. When
comparing the means of the subsets, we verify that male patients tend to have
higher anthropometric measurements than female ones, with the only exception
being the hip circumference.

Table 1. Measure of the mean, standard deviation (SD), minimum, and maximum
values for the features and the target of all patients in the dataset. Additionally, the
same statistics are shown for the male and female patients, separately.

Features All patients (N = 911) Male patients (N = 411) Female patients (N = 500)

Mean (SD) Range Mean (SD) Range Mean (SD) Range

age (years) 34.69 (11.90) [18, 65] 33.66 (11.36) [18, 65] 35.53 (12.26) [19, 65]

height (cm) 168.2 (9.258) [144.0, 199.0] 175.6 (6.670) [160.5, 199.0] 162.2 (6.155) [144.0, 182.0]

weight (kg) 73.42 (16.61) [30.0, 143.5] 82.37 (14.69) [53.9, 143.5] 66.06 (14.33) [30.0, 141.6]

arm (cm) 31.93 (4.614) [20.65, 48.55] 34.43 (3.703) [25.30, 48.55] 29.88 (4.264) [20.65, 46.25]

forearm (cm) 26.23 (3.293) [7.85, 50.45] 28.67 (2.580) [7.85, 50.45] 24.23 (2.316) [15.95, 34.30]

waist (cm) 81.30 (12.61) [37.40, 134.2] 86.55 (11.63) [37.40, 134.2] 76.98 (11.71) [55.05, 124.0]

hip (cm) 100.5 (9.427) [47.50, 148.5] 99.96 (8.161) [82.75, 135.1] 101.1 (10.32) [47.50, 148.5]

thigh (cm) 54.28 (6.381) [28.00, 98.35] 55.43 (5.730) [28.00, 79.95] 53.34 (6.725) [37.90, 98.35]

calf (cm) 37.26 (3.555) [24.55, 53.70] 38.27 (3.096) [30.00, 49.50] 36.43 (3.690) [24.55, 53.70]

BMD (g/cm2) 1.232 (0.136) [0.789, 1.689] 1.313 (0.123) [0.944, 1.689] 1.166 (0.107) [0.789, 1.465]

Figure 1 investigates the linear association between features and target pairs,
showing the matrix of Pearson’s correlation coefficients. The sex feature is
encoded as 1 for female and 0 for male. From the figure, we see that all anthropo-
metric measurements positively correlate with each other, especially weight and
arm circumference (coefficient of 0.89). In addition, all these measurements have
a positive correlation with BMD, especially the forearm circumference (coeffi-
cient of 0.61). The only features that negatively correlate with BMD are age and
especially sex (coefficient of -0.54), indicating that people identified as female at
birth tend to have lower BMD.
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Fig. 1. Matrix of Pearson’s correlation coefficients measured between every feature-
feature and feature-target pairs. The features that positively correlate with bone min-
eral density, in descending order, are the forearm, weight, arm, height, calf, thigh, waist,
and hip. The features that negatively correlate with bone mineral density, in ascending
order, are sex and age.

3.2 Learning Process

For the BMD estimation task, we train and compare 11 regression models. We
choose algorithms from different categories to evaluate a wider variety of learning
methods. These categories and their respective models are listed below:

– Linear Models: Simple Linear Regression (LR) and Elastic Net (EN);
– Nearest Neighbors: k-Nearest Neighbors (kNN);
– Neural Networks: Multilayer Perceptron (MLP);
– Kernel-based: Support-Vector Machines with a polynomial kernel (SVM-

Poly) and a sigmoid kernel (SVM-Sig); and Least-Squares Support-Vector
Machines with a linear kernel (LSSVM-Linear) and a radial basis function
kernel (LSSVM-RBF).

– Tree-based: Decision Trees (DT), Random Forest (RF), and Gradient-
Boosted Decision Trees (GBDT).
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We perform nested cross-validation (CV) for hyperparameter tuning (inner
loop) and model selection (outer loop). In both loops, we execute a 10-fold CV.
In the hyperparameter optimization, we perform a grid search, and the search
space for each model is defined in Table 2. In every loop, we standardize the
training set and transform the test set using the original mean and standard
deviation values from the training set, avoiding data leakage.

Table 2. Hyperparameters tuned by Grid Search and their respective search spaces
and models.

Hyperparameter Search space Models

alpha (a + b) 10i, i ∈ [−6..6] EN

L1 ratio (a/(a + b)) {0, 0.01, 0.1, 0.5, 0.9, 0.95, 0.99, 1} EN

k (number of neighbours) {1, 2, 5, 10, 25, 50, 75, 100} kNN

number of hidden layers {1, 2} MLP

neurons in hidden layer 3i, i ∈ [0..3] MLP

activation function {logistic, tanh, ReLU} MLP

C 10i, i ∈ [−2..6] All SVM and LSSVM

gamma 10i, i ∈ [−6..2] SVM (RBF, Poly, and Sig), and LSSVM-RBF

degree {2, 3, 4, 5} SVM-Poly

criterion {MSE, MAE, Friedman’s MSE} DT and RF

minimum samples at a leaf (%) {1, 2.5, 5, 7.5, 10, 25} DT and RF

maximum tree depth {1, 2, 4, 6, 8, none} DT, RF, and GBDT

number of trees {10, 50, 100, 500} RF and GBDT

maximum number of leaves {2, 4, 16} GBDT

3.3 Evaluation

Our method uses the coefficient of determination (R2) to evaluate model per-
formance and select the best hyperparameter configuration in the grid search.
For the model selection, besides the R2 metric, we also report the mean absolute
error (MAE) of the estimations.

For a proper comparison among the models, we perform statistical tests on
the models’ results. First, we use the Friedman test to determine if there are
any significant differences between the mean values of the metrics obtained in
the outer loop of the nested CV. If we reject the null hypothesis, we conclude
that at least two models have significantly different performances. If we arrive at
that conclusion, we apply the post hoc Nemenyi test to determine which groups
of models have different results.

3.4 Interpretation

Clinicians are responsible for analyzing patient information and recommending
the proper treatments or preventive actions. Thus, the lack of transparency in
an AI system reduces the level of trust from health professionals, causing it to
be one of the main barriers to implementation [19].
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Therefore, we use Shapley Additive Explanations (SHAP) [18] to interpret
the predictions of the best-performing model. SHAP is a popular model-agnostic
method that uses Shapley values (from game theory) to measure the contribu-
tions of each feature to the model’s prediction [10].

4 Results and Discussion

In this section, we report and discuss the results of the nested cross-validation,
the statistical tests, and the interpretation analyses. We make the dataset and the
code (with clear instructions) available in a Github repository for computational
reproducibility1.

4.1 Cross-Validation Results

Table 3 presents the mean and standard deviation of the metrics (R2 and MAE)
achieved by the 11 models after the nested CV. We sort the models ascendingly
according to the mean MAE and highlight in italics the model that achieved the
highest mean R2 and lowest mean MAE.

Table 3. Results of model evaluation considering the means and standard deviations
of MAE and R2.

Model MAE (g/cm2) R2

LSSVM-RBF 0.0769 (0.0056) 0.4870 (0.0652)

MLP 0.0784 (0.0038) 0.4586 (0.0519)

kNN 0.0787 (0.0053) 0.4583 (0.0731)

LSSVM-Linear 0.0788 (0.0054) 0.4540 (0.0704)

EN 0.0788 (0.0054) 0.4543 (0.0706)

LR 0.0789 (0.0053) 0.4526 (0.0667)

RF 0.0789 (0.0054) 0.4598 (0.0567)

SVM-Sig 0.0790 (0.0055) 0.4519 (0.0710)

GBDT 0.0793 (0.0057) 0.4506 (0.0667)

DT 0.0841 (0.0065) 0.3884 (0.0703)

SVM-Poly 0.0842 (0.0051) 0.2928 (0.2188)

Except for Decision Tree and SVM-Poly, all models achieved an R2 of at least
0.45 and an MAE of less than 0.08 g/cm2. The algorithm that obtained the best
mean value in both metrics was LSSVM-RBF, achieving an R2 of 0.4870 and an
MAE of only 0.0769 g/cm2. This MAE value represents only 8.5% of the BMD
range found in the dataset.

1 https://github.com/gmaiab/Estimating-Bone-Mineral-Density.

https://github.com/gmaiab/Estimating-Bone-Mineral-Density
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However, we cannot assume beforehand that the LSSVM-RBF had better and
significantly different results than the other models. For that analysis, we apply
the Friedman test to the MAE sets obtained in the ten iterations of the nested CV
outer loop. We reject the null hypothesis, concluding that there are significant
differences among the regression methods. Thus, we use the Nemenyi test to
identify which groups of models have no significant differences. The test shows
that algorithms with a mean rank greater than the critical distance (CD) of
4.774 are significantly different. In Fig. 2, we show the critical difference diagram.
The image shows that LSSVM-RBF, MLP, and Linear Regression performed
significantly better than SMV-Poly and the Decision Tree. We can also observe
that LSSVM-RBF achieved a mean rank of 2.4, which is the closest to 1.

Fig. 2. Critical difference diagram showing the mean rank of each model regarding
their MAE.

4.2 Interpretation

First, we calculate the SHAP values for each observation in the data. Then we
aggregate these values into a swarm plot, shown in Fig. 3. This plot summarizes
the distribution of the impact of each feature on the model’s output. Each row
shows one feature, and we sort the features by the sum of the SHAP value
magnitudes for all patients (the top row has the highest sum).

In a row, each dot represents one observation. Dots further to the left repre-
sent cases where the feature contributed to a lower BMD estimation. In contrast,
those to the right represent contributions to a higher BMD estimation. Dots with
the same impact are distributed vertically to represent the density in the region.
In addition, the dots are color-coded to represent the value of the feature: red,
yellow, and blue represent high, intermediate, and low values, respectively.

From Fig. 3, we observe that weight has the highest impact on the output of
the LSSVM-RBF for BMD prediction, while arm circumference had the lowest
impact. The association between weight and BMD is expected and has been
found by other researchers [20]. From the distributions presented, high values
of weight, height, and forearm, thigh, and arm circumference positively impact
the model’s output. On the other hand, high values of age and waist, hip, and
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Fig. 3. Swarm plot of the distribution of SHAP values for each observation. The fea-
tures in descending order by impact are listed as follows: weight, forearm, thigh, waist,
height, hip, sex, age, calf, and arm.

calf circumference negatively impact the model’s output. Being born female also
tends to decrease the estimated BMD value.

It is worth mentioning that, in general, the lowest age values made little
difference in the output or even impacted negatively. To evaluate this behavior,
we plot the SHAP values for age in Fig. 4. In addition, we explore how the
interaction between age and sex affects the model’s output.

In Fig. 4, we notice that age has a different impact on the model’s output
depending on the sex of birth. Younger male patients tend to have a lower BMD
estimate than female patients. The peak impact of age happens earlier for female
individuals. However, starting at about 40 years of age, advancing age causes a
more significant negative impact in female patients than in male patients. This
behavior is consistent with studies showing that men have a peak BMD later than
women [2,23] and that after menopause, women’s BMD drops considerably [13].

Other distributions that stand out are the forearm, the waist, and the hip.
The forearm proved to be the second feature with the greatest impact on model
output. It was also the feature with the highest correlation with BMD, as pre-
sented in Fig. 1. This relationship can be explained by the high correlation
between forearm circumference and lean body mass [5], which has a high associa-
tion with BMD [9]. On the other hand, the SHAP values showed that high waist
or hip circumference values negatively affect the model output. This behavior
could be caused by the fact that the waist and the hip have a high associa-
tion with body fat percentage [7], which has been shown to impact BMD nega-
tively [17].
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Fig. 4. Scatter plot of the SHAP value for age and its interaction with sex. Red obser-
vations represent female patients, and blue observations represent male patients. (Color
figure online)

Fig. 5. Scatter plot of the SHAP value for forearm circumference and its interaction
with waist circumference. Red, yellow, and blue dots represent high, intermediate, and
low waist circumference values, respectively. (Color figure online)

To better analyze the impact of the forearm on model output and its rela-
tionship to waist circumference, we plot the chart in Fig. 5. The distribution
shows that low forearm values cause a negative impact on the model’s output,
while high values cause a positive impact. In addition, the x-axis region between
26 and 32 cm indicates that, for people with similar forearm values, there is a
more positive impact for patients with low or intermediate waist values than
high values. This behavior is consistent with the previous discussion.
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5 Conclusion

Osteoporosis is a disease with a high incidence worldwide. It generates high costs
for health systems and is responsible for many cases of fracture, hospitalization,
and even death. However, not every patient has easy access to DXA, the most
recommended test to measure BMD (which allows the diagnosis of osteoporosis).

Our results showed that it is possible to estimate BMD using easily accessible
information such as age, sex at birth, height, weight, and body circumference
measurements. Most of the algorithms evaluated had satisfactory results. How-
ever, the highlight was the LSSVM-RBF, which achieved R2 of 0.4870 and MAE
of 0.0769 g/cm2.

The proposed approach has not yet been applied and evaluated in a clinical
setting. Therefore, it does not replace an official test. However, this method
can become a tool to complement the medical examination and assist in the
professional’s decision. A low BMD estimate might suggest that the patient
needs an official test to confirm the value. A low estimate could also influence
the health care provider to suggest lifestyles for osteoporosis prevention, such
as dietary changes and exercise. Finally, a high BMD estimate, combined with
the physician’s analysis of other factors, could indicate that the patient does not
need to have a DXA at that time, which would reduce costs and avoid radiation
exposure.

An essential contribution of our research is the creation and availability of
a new dataset for BMD estimation. BMD-10 contains the BMD value, age, sex,
and anthropometric measurements of 911 adult patients. Another contribution is
the interpretation of the estimates made by the model, which allows for a better
understanding of its functioning. The impacts of the features also showed behav-
ior consistent with studies conducted in the area. This consistency brings greater
confidence to the specialists who may use the model. In addition, the analysis of
the importance of the features and their interactions can bring insights to other
researchers and reveal associations that have not yet been widely studied.

For future work, we aim to include and analyze new features, such as eating
habits, frequency of sports practice, medication use, and medical history. In
addition, we intend to include more patients and patients from other countries.
Finally, we would like to evaluate the use of patient images for BMD estimation,
which could remove the need for a professional to perform the circumference
measurements.
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Abstract. Brain-Computer Interfaces (BCI) open a two-way communi-
cation channel between a computer and the brain: while the brain can
control the computer, the computer can induce changes in the brain
through feedback. This mechanism is used in post-stroke motor rehabil-
itation, in which a BCI provides feedback by classifying signals collected
from a patient’s brain. Single Feature Genetic Programming (SFGP)
can create classifiers for these signals. However, the Genetic Program-
ming (GP) step in SFGP requires a set of extracted features to generate
its model. To the best of our knowledge, the LogPower function is the
only initial feature extraction function used in SFGP. Nevertheless, other
functions can improve the quality of the generated classifiers. Thus, we
analyze new initial feature extraction functions for GP in SFGP. We test
the Common Spatial Patterns, Nonlinear Energy, Average Power Spec-
tral Density, and Curve Length methods on two datasets suitable for
post-stroke rehabilitation training. The results obtained show that the
analyzed functions outperform LogPower in all our experiments, with a
kappa value up to 25.20% better. We further test the proposed meth-
ods on a third dataset, created with low-cost equipment. In this case,
we show that the Average Power Spectral Density function outperforms
LogPower by 11.39% when three electrodes are used. Thus, we demon-
strate that the new approach can be used with low-cost equipment and
a small number of electrodes, reducing the financial costs of treatment
and improving patients’ comfort.

Keywords: Brain-machine interface · Common spatial pattern ·
Stroke rehabilitation · Power spectral density

1 Introduction

Brain-Computer Interfaces (BCI) aim at providing a non-muscular channel for
sending commands to the external world using electroencephalographic activity
or other electrophysiological measurements of the brain function [5]. Any system
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that takes human input to control an electronic device can use a BCI approach.
Therefore, BCIs have a variety of applications, including prosthesis control [36],
computer spelling [40], drone control [16], neuromarketing [42], and security [23].
In addition, there are healthcare applications such as post-stroke motor rehabil-
itation [4], attention deficit/hyperactivity disorder treatment [25], brain tumor
detection [30], epileptic seizure detection [39], and dyslexia diagnosis [9].

BCI software usually classifies brain signals in order to perform tasks. In
this process, many methods can be used, including Bandpass Filtering [29],
Wavelet Transform [27], Common Spatial Pattern [28], Convolutional Neural
Network [26], Support Vector Machine [28]. In addition, several evolutionary
computing techniques have been used to improve the efficiency of classifying
BCIs such as Genetic Algorithm [8], Particle Swarm Optimization [21], Differ-
ential Evolution [34], Genetic Programming [35], and Ant Colony Optimiza-
tion [22].

The design of BCI software consists of four main phases: signal acquisition,
preprocessing, feature extraction, and classification [1]. Feature extraction is an
important task to predict outcomes from the raw signal [2]. Genetic Program-
ming (GP) is an efficient way to extract features from EEG data [35]. However,
GP requires the extraction of initial features for its leaves. In the literature, the
LogPower function is used to generate these initial features for a post-stroke
motor rehabilitation BCI [35].

We propose the use of new functions to extract the initial features for a
post-stroke motor rehabilitation BCI, which help patients recover motor abil-
ity. Within this treatment, the patient imagines the movement of their body,
and the BCI provides the patient with feedback about the imagined movement.
We evaluate the Power Spectral Density, Common Spatial Pattern, Non-Linear
Energy, and Curve Length Functions to extract these initial features for GP.
The experiments show that these functions are more suitable for extracting the
initial features for GP than the Logpower function.

2 Brain-Computer Interface and Post-stroke Motor
Rehabilitation

BCI development is an interdisciplinary problem, involving neurobiology, psy-
chology, engineering, mathematics, computer science, and clinical rehabilita-
tion [41]. A BCI transforms brain signals from reflections of the central nervous
system into the products of that activity: messages or commands [41].

The BCI pipeline consists of four main steps [1], as shown in Fig. 1: (i) the
person imagines/performs an activity, (ii) a device collects brain signals, (iii) a
BCI software classifies the signals, and (iv) an application executes the command.
After performing the command, the person observes the result of the application
(feedback) and the BCI pipeline restarts. A BCI software receives the recorded
signal and returns its label. To that end, the signal goes through three main
steps [1]: (i) a preprocessing step consisting of temporal and spatial filters, (ii) a
feature extraction step, and (iii) a classification step. The preprocessing step
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aims to reduce signal noise. The feature extraction step aims to extract good
features for the classifier. Finally, the classifier predicts the label corresponding
to the input signal.

ApplicationAction

Recording Interpretation

Feedback

Temporal
filter

Spatial
filter

Feature
extraction Classifier

Fig. 1. Brain-Computer Interface pipeline.

In 2019, there were 113.2 million cases of stroke worldwide, which caused 6.55
million deaths and 143 million DALYs [10]. A large proportion of people who
survive a stroke need treatments in stroke units. There are several types of inter-
vention for post-stroke rehabilitation such as pharmacological, technological, and
neuromodulation-based treatments [37]. Other strategies based on neuroplastic-
ity can be used, such as robot-assisted therapy, reinforced feedback in virtual
environment, and Brain-Computer Interface [31]. Most BCIs for motor rehabil-
itation are based on motor imagery and motor execution. The typical activities
for these types of BCI are: (i) the patient imagines a movement and (ii) they
receive a feedback of this movement from a screen or a robotic arm. This feed-
back is able to reinforce the brain circuit of the imagined movement [31]. It is
recommended to use few electrodes in this application to facilitate the treatment
and to increase the comfort of the patient [19,34].

3 Datasets

Several BCI datasets are available in the literature. In general, brain activity pat-
terns are measured using electroencephalography (EEG) which is a noninvasive,
easy to use, low cost method [24]. EEG uses electrodes to record the electrical
potential on the scalp. We used two datasets from BCI Competition IV and a
third dataset collected by our research group. We obtained and processed the
two first datasets using the MOABB [15] and MNE [13] libraries.
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3.1 BCI Competition IV 2a

The BCI Competition IV 2a dataset [38] is a motor imagery dataset with four
motor imagery tasks (left-hand, right-hand, both-feet, and tongue). The signals
were collected using twenty-two monopolar electrodes with left-mastoid as a ref-
erence. The signals were sampled 250 Hz and then preprocessed with a bandpass
filter of 0.5–100 Hz, and 50 Hz notch filter. The positions of the 22 electrodes are
Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz,
CP2, CP4, P1, Pz, P2, POz. The dataset contains EEG signals from 9 subjects.
Each subject has two sessions collected on different days. Each session has six
runs with 48 trials in each one (12 per class), resulting in 288 trials per session.
Each trial is approximately 8 s long and adhere to the following steps: (i) 0 to
2 s: a fixation cross appears in the screen; (ii) 2 to 3.25 s: a cue in the form of
an arrow pointing left, right, down, or up is shown; (iii) 3 to 6 s: the subject
imagines the indicated movement; and (iv) 6 to ∼8 s: a short break is provided
before the next run.

3.2 BCI Competition IV 2b

The BCI Competition IV 2b dataset [20] is a motor imagery dataset with two
motor imagery tasks (left-hand and right-hand). The signals were collected using
three bipolar electrodes at a sampling rate 250 Hz, and then preprocessed with a
bandpass filter of 0.5–100 Hz and 50 Hz notch filter. The bipolar electrodes are
C3 (difference between FC3 and CP3), Cz (difference between FCz and CPz),
and C4 (difference between FC4 and CP4). The dataset contains data from nine
participants and each subject has five sessions. The last three sessions contain
feedback and the subject can see the classification while they execute the task.
Each session has a 2 weeks interval and 6 runs with 20 trials (10 per class),
resulting in 120 trials per session. The sessions with feedback contain 160 trials
per session. Each trial is approximately 9 s long, and comprises the following
steps: (i) 0 to 2 s: a gray smiling face appears in the screen; (ii) 2 s: a beep
sounds; (ii) 3 to 7.5 s: a cue is shown in the screen; (iii) 3 to 7.5 s: the subject
imagines the movement; and (iv) 7.5 to ∼9 s: a short break is provided before
next run.

3.3 Our Dataset

The collection of these data was approved by an ethical committee1. We collected
the data using the OpenBCI Cyton+Daisy Biosensing Boards (16-Channels) and
electrode cap equipment2. This is a low-cost BCI equipment that has suitable
accuracy for BCI applications [11]. The signals were sampled 125 Hz and were
collected through 16 electrodes: Fp1, Fz, C3, C4, T5, T6, Cz, Pz, F7, F8, F3, F4,

1 Approved by the ethics committee of Federal University of Juiz de Fora under the
number 47866121.5.0000.5147.

2 https://openbci.com/.

https://openbci.com/
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T3, T4, P3, P4. The dataset consists of left-hand and right-hand motor imagery
task data from six healthy subjects. Each subject has one session with 4 runs
with 40 trials (20 per class). In this way, this dataset has 160 trials per subject.
Each trial is 10 s long and comprises the following steps: (i) 0 to 3 s: a fixation
cross appeared in the screen; (ii) 2 s: a beep sounds; (ii) 3 to 5 s: a cue is shown
in the screen; (iii) 5 to 9 s: the subject imagine the movement; and (iv) 9 to 10 s:
a short break is provided before next run.

4 Proposed Method

Feature extraction is an important step within the BCI software pipeline. These
features try to represent the main signal information for the classifier. Single
Feature Genetic Programming (SFGP) is a BCI pipeline that uses genetic pro-
gramming (GP) to extract a feature from EEG data [35]. Figure 2 shows the
SFGP pipeline, which has three main steps: (i) preprocessing, (ii) initial feature
extraction, (iii) feature extraction, and (iv) classification.

Initial Features 
Extraction FunctionGenetic 

Programming

Preprocessing Feature 
ExtractionEEG Signal Classifier Label

EEG Training 
set Preprocessing Feature 

Extraction Fit Classifier Fit

Training Phase

Use Phase

Fig. 2. Steps of training and use phases of single feature genetic programming [35].

In the first step, a preprocessing methodology must be applied to the signal
in order to increase the signal-to-noise ratio [2]. Band-pass filter, wavelet trans-
formation, and filter bank are commonly used for this purpose, with Band Pass
filter yielding the best results for SFGP according to the literature [35]. The
Bandpass Filter preprocessing can be represented as Zi = BP7−35(Xi), where
Xi ∈ R

e×t is the ith trial of the training dataset, e is the number of electrodes,
t is the number of time samples in the trial, BP7−35(·) is the 7–35 Hz bandpass
function, and Zi ∈ R

e×t is the filtered signal.

4.1 Initial Feature Extraction

After the preprocessing step, the signal Zi goes through the feature extrac-
tion step. The feature extraction has 2 parts: (i) Initial feature extraction; and
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(ii) Genetic Programming. The initial feature extraction transforms each elec-
trode series in a number Ii = E(Zi), where Ii ∈ R

e×t is the initial features of
Zc,i and E(·) is the initial feature extraction function. The literature uses the
LogPower function to extract these initial features as

ILogPower
i,e = log

(
N∑
j

|Zi,e,j |
N

)
(1)

where N is the number of electrodes and Zi,e is the eth electrode of the trial Zi.
However, it is possible to use other initial feature extraction functions. In this
work, we propose and analyze the use of four new functions to extract the initial
features on SFGP: Common Spatial Patterns, Nonlinear Energy, Average Power
Spectral Density, and Curve Length.

Common Spatial Pattern. Common Spatial Pattern (CSP) is a spatial filter
and a feature extraction method. It is a transformation that aims to maximize the
variance between two groups and minimize the variances within each group [12].
The initial feature in CSP is

ICSP = log
[
diag(WT Zi × (WT Zi)T )
tr(WT Zi × (WT Zi)T )

]
(2)

where diag(·) and tr(·) are, respectively, the main diagonal and the trace of
a matrix and W is the CSP matrix. The matrix W is calculated by solving a
generalized eigenvalue problem [3], defined as

Σ(1)W =
(
Σ(1) + Σ(2)

)
WΛ (3)

where Λ are the eigenvalues and Σ(c) is the correlation matrix between the
electrodes of a class c trial, defined as

Σ(c) =
1
N

N∑
i

Z
(c)
i × Z

(c)
i

T
(4)

Nonlinear Energy. The Nonlinear Energy (NE) is a extension of the concept
of quadratic measure energy [6,17] and can be calculated as

INE =
N−2∑
j=1

(Z2
i [j] − Zi[j + 1] · Zi[j − 1]) (5)

where Zi is the ith electrode of a trial Z.
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Average Power Spectral Density. Power Spectral Density (PSD) extracts
the power intensity in the frequency spectrum. PSD is calculated by estimating
the autocorrelation sequence across frequencies. Here, we use the Welch’s method
to estimate the autocorrelation [14,32]. Thus, the initial feature using the average
PSD (APSD) is obtained by

IAPSD =
1
K

K−1∑
i=0

1
MU

∣∣∣∣∣
N−1∑
j=0

w(n)Zni+iDe−j2πfn

∣∣∣∣
2

(6)

where N is the number of time samples of the trial, f is the sampling rate, K is
the number of overlapping segments, M is the length of each segment, Di is the
overlapped segment, j =

√−1, w(n) is the window function, Zt is the tth time
step of a electrode Z and U is the power of the window function.

Curve Length. Curve Length (CL) is the total vertical length of the signal.
CL was proposed to approximate the Katz’s fractal dimension [6]. The initial
feature using CL can be defined as

ICL =
N−1∑
j=1

|Zi[j] − Zi[j − 1]| (7)

where Zi is the ith electrode of a trial Z.

4.2 Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm for generating pro-
grams in arbitrary languages [18]. These programs can be a function, a circuit
design, a formal language, a classifier, among other structures. Like most evo-
lutionary algorithms, GP has four fundamental steps: (i) create an initial pop-
ulation, (ii) reproduce the population, (iii) select the individuals for the next
generation, and (iv) verify a stop criterion.

The tree structure is used to represent the candidate functions in SFGP. The
operators are in the internal nodes and the initial features are in the leaves of the
trees. GP creates the initial population randomly and Fig. 3 shows an example
of an individual.

The GP algorithm creates new individuals by applying crossover and muta-
tion operators on the current population. The parents are chosen by a tour-
nament selection. The one-point crossover swaps a subtree from the selected
individuals with a user-defined probability. Thereafter, the uniform mutation
operator replaces a subtree of the new individual with a new subtree with a
user-defined probability.

We used the cross-entropy as the fitness function. The cross-entropy of each
individual is calculated as

G(W ) = −
N∑

i=1

C∑
j=1

ln(1 − YW (Xi, j)) · int(j �= θi)

+ ln(YW (Xi, j)) · int(j = θi)

(8)
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Fig. 3. Function V (F ) = (ln(F2) × F3) + |F9/F3| represented using a tree [35]

where N is the number of training samples, C is the number of classes, YW (Xi, j)
is the probability calculated by the classifier for the sample Xi being of class j
when using the spatial filter W , int(.) is a function that returns 1 if its argument
is true, and 0 otherwise, and θi is the class of the i-th sample [34]. The probability
calculated by the classifier YW (Xi, j) in Eq. 8 is defined as

YW (Xi, j) =
1

1 + e−(α+βV )
(9)

where V is the final feature calculated by GP using the initial features, α and β
are estimated by the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algo-
rithm (LBFGS) [7] using the training data.

The new generation totally replaces the previous generation and the best indi-
vidual in each generation is stored. The process is repeated until the maximum
number of generations is reached. Finally, the best individual of all generations
is used to evaluate the test data.

5 Computational Experiments

Computational experiments were performed to evaluate the performance of the
feature extraction methods when compared to other approaches from the liter-
ature. We chose the datasets for the computational experiments to simulate the
most suitable conditions for post-stroke motor rehabilitation. The conditions of
interest in choosing the dataset were: (i) 3 electrodes or the possibility of reduc-
tion to 3 electrodes, (ii) 2 classes of motor imagery or the possibility of reduction
to 2 classes, and (iii) different forms of acquisition (monopolar and bipolar). We
used only right-hand and left-hand classes in the experiments as two classes
are enough for post-stroke motor rehabilitation. Using few electrodes are rec-
ommended to increase comfort of the patient during treatment and preparation
time. Therefore, different numbers of electrodes were evaluated with dataset 2a
in Sect. 5.1 to verify if the quality of the results are affected by the reduction of
the number of electrodes. We selected dataset 2b to verify if a bipolar acquisition
improves the SFGP efficiency. Bipolar acquisition requires approximately twice
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as many electrodes to collect the same amount of signals compared to monopo-
lar acquisition. In addition, as the 2b dataset has a 2-weeks interval between
sessions, we also evaluated the cross-session result. SFGP was also compared
against Single Electrode Energy (SEE) [33], the BCI method used by the win-
ning team of the Clinical BCI Challenge 20203. This competition was focused on
motor imagery classification for post-stroke rehabilitation and, thus, SEE was
developed for the same application addressed here and obtained results better
than those found by other approaches. For all experiments, we used 5-fold cross-
validation for each subject/session pair, except for the cross-session case. We
use the same method for evaluating the results of the BCI Competition IV, from
where we take datasets 2a and 2b. We used a 2-second window for training and
testing. The training was performed with the window starting at 0.5 s after the
exhibition of the cue. We calculated the kappa every 0.1 s of the test trials (the
first window started when the cue is presented), and the final result is the best
kappa found. We implemented SFGP using the DEAP library4, and the source
code of the proposed method and other implemented techniques are available5.
The parameters used for GP were: (i) population size = 100; (ii) number of
generation = 300; (iii) crossover probability = 0.85; (iv) mutation probability
= 0.2; (v) max depth = 6; (vi) max initial population death = 3; (vii) max
mutation tree depth = 2. Similar to the parameters used in the literature for the
SFGP [35].

5.1 Analysis of the Number of Electrodes

We used the 2a dataset to evaluate the use of three different numbers of elec-
trodes for monopolar acquisition. We consider the following configurations: (i) all
22 electrodes presented in Sect. 3.1; (ii) 8 electrodes (FC3, C3, CP3, FCz, CPz,
FC4, C4, CP4); and (iii) 3 electrodes (C3, Cz, C4). The results for each number
of electrodes can be seen in Tables 1 and 2.

Table 1 shows the results for 22 electrodes. SFGP presented better results
than SEE regardless of the extraction function and the best result was found
with the APSD function. The SFGP-APSD was the best method for 4 of 9
subjects. Its average result for all subjects was 74.01% better than that reached
by SEE and 25.20% better than SFGP-LogPower. It is also interesting to notice
that SFGP-CSP presented results similar to those found by SFGP-APSD (4.05%
difference). Table 2 shows the results for 8 electrodes. SFGP presented better
results than SEE regardless of the extraction function and LogPower function
presented the best result for 4 out of 9 subjects. However, SFGP-CSP presented
the best average result, and SFGP-LogPower was only the third-best average
result. SFGP-CSP presented an average result 69.44% better than that found
by SEE and 19.14% better than SFGP-LogPower.

Table 2 shows the results for 3 electrodes. Again, SFGP presented better
results than SEE regardless of the extraction function used. SFGP-CL and
3 https://sites.google.com/view/bci-comp-wcci.
4 https://github.com/DEAP/deap.
5 https://github.com/ghdesouza/bci.

https://sites.google.com/view/bci-comp-wcci
https://github.com/DEAP/deap
https://github.com/ghdesouza/bci
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Table 1. Median kappa for 5-fold cross-validation for dataset 2a. The best results are
boldfaced.

ID SEE SFGP SFGP SFGP SFGP SFGP

LogPower CSP NE APSD CL

1 0.089 0.235 0.331 0.281 0.301 0.301

2 0.086 0.214 0.276 0.159 0.346 0.173

3 0.179 0.407 0.374 0.248 0.418 0.313

4 0.165 0.233 0.268 0.090 0.298 0.157

5 0.308 0.202 0.244 0.207 0.266 0.249

6 0.115 0.242 0.213 0.207 0.165 0.159

7 0.173 0.274 0.264 0.138 0.294 0.132

8 0.136 0.303 0.308 0.346 0.278 0.302

9 0.312 0.347 0.380 0.316 0.316 0.422

All 0.177 0.246 0.296 0.239 0.308 0.248

SFGP-LogPower presented the best result for 3 out of 9 subjects each. However,
SFGP-APSD presented the best average result, and SFGP-LogPower reached
the third-best average result. SFGP-APSD performed an average result 63.64%
better than that found by SEE and 22.89% better than SFGP-LogPower. SFGP-
APSD presented the best average result using both 22 and 3 electrodes. Further-
more, the result with 22 electrodes was only 0.65% better than that obtained
with 3 electrodes. This result indicates that the reduction in the number of elec-
trodes does not significantly impact the final result for the best method found
(SFGP-APSD). It is important to remember that it’s recommends the use of
few electrodes in this application to facilitate the treatment and to increase the
comfort of the patient [19,34]. Thus, the possibility of reducing the number of
electrodes without reducing the classification efficiency is an important advan-
tage of SFGP-APSD.

Table 2. Median kappa for 5-fold cross-validation for dataset 2a using 8 and 3 elec-
trodes. The best results are boldfaced.

8 electrodes 3 electrodes

ID SEE SFGP SFGP SFGP SFGP SFGP SEE SFGP SFGP SFGP SFGP SFGP

LogPower CSP NE APSD CL LogPower CSP NE APSD CL

1 0.238 0.244 0.337 0.279 0.276 0.237 0.104 0.179 0.251 0.246 0.228 0.266

2 0.116 0.270 0.244 0.244 0.239 0.246 0.111 0.196 0.185 0.109 0.306 0.189

3 0.167 0.383 0.345 0.290 0.314 0.316 0.187 0.449 0.308 0.278 0.401 0.377

4 0.250 0.251 0.325 0.202 0.159 0.212 0.242 0.232 0.236 0.167 0.308 0.313

5 0.283 0.185 0.303 0.283 0.230 0.175 0.280 0.301 0.246 0.113 0.264 0.228

6 0.080 0.269 0.239 0.244 0.248 0.178 0.019 0.237 0.228 0.183 0.201 0.152

7 0.161 0.256 0.140 0.155 0.226 0.163 0.226 0.239 0.248 0.231 0.239 0.226

8 0.153 0.335 0.342 0.209 0.257 0.414 0.067 0.209 0.327 0.204 0.357 0.379

9 0.380 0.313 0.550 0.366 0.366 0.471 0.374 0.251 0.415 0.332 0.382 0.386

All 0.187 0.256 0.305 0.244 0.269 0.246 0.187 0.249 0.251 0.214 0.306 0.268



Feature Extraction for a GP-Based BCI 145

5.2 Analysis of Within and Cross-Session Training

We use the 2b dataset to evaluate within-session and cross-session experimen-
tal procedures. This dataset has five sessions with two weeks intervals between
each of them. We performed two experiments considering this interval between
sessions: (i) within-session: we performed 5-fold cross-validation for each session
separately; and (ii) cross-session: we mixed all sessions before splitting the 5 folds.
Table 3 presents the results for the within and cross-session cases. For the within-
session case, the best method was SFGP-CSP. Again, it is possible to observe
that SFGP presented results better than those found by SEE regardless of the
extraction function used. SFGP-CSP performed a kappa average 101.20% better
than SEE and 33.60% better than SFGP-LogPower. Also, the results obtained by
SFGP-CL showed an average kappa difference of only 0.60% compared to SFGP-
CSP. We also compared with-session monopolar and bipolar acquisitions and the
results are presented, respectively, in Tables 2 and (Table 3. The results obtained
using monopolar acquisition are better than those reached using bipolar acqui-
sition. However, bipolar acquisition requires approximately twice as many elec-
trodes compared to monopolar acquisition to record the same amount of signal.
For the cross-session case, the best methods were SFGP-APSD and SFGP-CL,
both with a kappa of 0.063. However, the results obtained for the cross-session
case were not satisfactory. The results obtained with the within-session case was
165.08% better than the those with the cross-session case, indicating that the
features found by SFGP change over the weeks. Thus, it is necessary to retrain
the model periodically for its continued use.

Table 3. Median kappa for within-subject within- and cross-session 5-fold cross-
validation for dataset 2b. The best results are boldfaced.

Within-session Cross-session

ID SEE SFGP SFGP SFGP SFGP SFGP SEE SFGP SFGP SFGP SFGP SFGP

LogPower CSP NE APSD CL LogPower CSP NE APSD CL

1 0.083 0.188 0.188 0.167 0.125 0.250 0.042 0.042 0.042 0.083 0.083 0.063

2 0.083 0.167 0.167 0.167 0.167 0.188 0.000 0.068 0.023 0.023 0.023 0.068

3 0.083 0.125 0.250 0.167 0.125 0.083 0.125 0.021 0.021 −0.021 0.125 0.063

4 0.083 0.143 0.188 0.125 0.063 0.167 0.000 0.021 0.000 0.083 −0.042 0.104

5 0.167 0.143 0.125 0.188 0.188 0.188 0.125 0.125 0.042 0.083 0.188 0.146

6 0.000 0.188 0.167 0.125 0.188 0.188 0.063 0.042 0.021 0.000 0.063 0.021

7 0.083 0.063 0.167 0.083 0.125 0.063 0.000 0.083 0.021 0.021 0.042 0.063

8 0.063 0.125 0.188 0.188 0.125 0.167 0.125 0.021 0.021 0.000 0.083 0.042

9 0.125 0.125 0.188 0.083 0.167 0.167 0.104 0.042 0.021 0.042 0.000 0.021

all 0.083 0.125 0.167 0.125 0.125 0.166 0.042 0.042 0.021 0.023 0.063 0.063

5.3 Analysis Using Data Obtained with Low-Cost Equipment

We created the protocol presented in Sect. 3.3 based on the results presented in
Sects. 5.1 and 5.2. We collected data from 6 subjects with 16 electrodes, and we
used an acquisition protocol similar to the other two datasets. We used within-
session monopolar acquisition as this setup yielded the best results in the other
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datasets. In this Section, we performed the experiments using 16 and 3 electrodes.
The case of 3 electrodes using OpenBCI is interesting as it is the most suitable
for post-stroke motor rehabilitation. This experiment was performed with low-
cost equipment, when compared to the others results, and has the advantage
of using a small number of electrodes. This allows for greater diffusion of this
treatment. Table 4 shows the results for 16 electrodes. SFGP-NE obtained the
best result with a average kappa of 0.344. SFGP-NE average kappa was 37.60%
better than SEE and 10.97% better than SFGP-LogPower.

The results for 3 electrodes are shown in Table 4. SFGP-APSD and SFGP-
CL obtained the best results with an average kappa of 0.313. This result was
25.20% better than SEE and 11.39% better than SFGP-LogPower. This result
is the most promising initiative for the dissemination of the use of BCIs for
post-stroke motor rehabilitation.

Table 4. Median kappa for 5-fold cross-validation for our dataset with 8 and 3 elec-
trodes. The best results are boldfaced.

8 electrodes 3 electrodes

ID SEE SFGP SFGP SFGP SFGP SFGP SEE SFGP SFGP SFGP SFGP SFGP

LogPower CSP NE APSD CL LogPower CSP NE APSD CL

1 0.438 0.313 0.125 0.375 0.313 0.438 0.438 0.375 0.313 0.438 0.438 0.438

2 0.250 0.313 0.188 0.375 0.438 0.375 0.250 0.313 0.188 0.375 0.375 0.438

3 0.313 0.438 0.563 0.375 0.438 0.438 0.313 0.313 0.313 0.375 0.250 0.250

4 0.125 0.250 0.063 0.188 0.125 0.125 0.125 0.125 0.063 0.188 0.125 0.063

5 0.125 0.250 0.063 0.375 0.313 0.250 0.125 0.125 0.063 0.063 0.250 0.313

6 0.188 0.063 0.125 0.313 0.188 0.125 0.188 0.125 0.063 0.188 0.188 0.125

all 0.250 0.313 0.125 0.344 0.313 0.313 0.250 0.281 0.125 0.281 0.313 0.313

6 Concluding Remarks and Future Work

BCIs can be used in many types of applications, including post-stroke motor
rehabilitation. This work introduced four new initial feature extraction meth-
ods for genetic programming in BCI training: Common Spatial Patterns, Non-
linear Energy, Average Power Spectral Density, and Curve Length. We per-
formed the experiments with three different datasets. Each dataset experi-
mented with has its characteristics, such as the number of electrodes, acquisi-
tion method, and data collection protocol. We tested different feature extraction
functions in three relevant situations for the advancement and dissemination
of BCI: (i) different number of electrodes; (ii) cross-session training; (iii) low-
cost equipment. The new evaluated functions obtained better results than single
electrode energy (SEE) and single feature genetic programming with the Log-
Power (SFGP-LogPower) function for all experiments performed. The results
obtained show that the average power spectral density (APSD) function is the
best feature extraction function for SFGP. Furthermore, the results show that
SFGP-APSD is robust in terms of the number of electrodes, achieving simi-
lar results with 22, 16, or 3 electrodes. Using SFGP-APSD, proposed in this
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work, we obtained a better result than datasets 2a and 2b using low-cost equip-
ment with only three electrodes. This approach reduces the financial cost of
treatment, improves patient comfort, shortens the time to prepare patient ses-
sions, and increases the classification capability of the BCI. For the cross-session
case, none of the evaluated functions presented satisfactory results. In addition,
more experiments are needed to verify the statistical significance of the results
obtained. In future work, it is possible to investigate ways to improve SFGP for
the cross-session case. The possibility of cross-session training with SFGP can
further improve the practicality of using BCI for post-stroke motor rehabilita-
tion.

References

1. Abdallah, N., Khawandi, S., Daya, B., Chauvet, P.: A survey of methods for the
construction of a brain computer interface. In: 2017 Sensors Networks Smart and
Emerging Technologies (SENSET), pp. 1–4. IEEE (2017)

2. Alamdari, N., Haider, A., Arefin, R., Verma, A.K., Tavakolian, K., Fazel-Rezai,
R.: A review of methods and applications of brain computer interface systems. In:
2016 IEEE International Conference on Electro Information Technology (EIT), pp.
0345–0350. IEEE (2016)

3. Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial
pattern algorithm on BCI competition iv datasets 2a and 2b. Front. Neurosci. 6,
39 (2012)

4. Ang, K.K., Guan, C.: Brain-computer interface in stroke rehabilitation. J. Comput.
Sci. Eng. 7(2), 139–146 (2013)

5. Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal pro-
cessing algorithms in brain-computer interfaces based on electrical brain signals.
J. Neural Eng. 4(2), R32 (2007)

6. Boonyakitanont, P., Lek-Uthai, A., Chomtho, K., Songsiri, J.: A review of feature
extraction and performance evaluation in epileptic seizure detection using EEG.
Biomed. Signal Process. Control 57, 101702 (2020)

7. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms
1. general considerations. IMA J. Appl. Math. 6(1), 76–90 (1970)

8. Eslahi, S.V., Dabanloo, N.J., Maghooli, K.: A GA-based feature selection of the
EEG signals by classification evaluation: application in BCI systems. arXiv preprint
arXiv:1903.02081 (2019)

9. Fadzal, C., Mansor, W., Khuan, L.: Review of brain computer interface application
in diagnosing dyslexia. In: 2011 IEEE Control and System Graduate Research
Colloquium, pp. 124–128. IEEE (2011)

10. Feigin, V.L., et al.: Global, regional, and national burden of stroke and its risk
factors, 1990–2019: a systematic analysis for the global burden of disease study
2019. Lancet Neurol. 20(10), 795–820 (2021)

11. Frey, J.: Comparison of an open-hardware electroencephalography amplifier with
medical grade device in brain-computer interface applications. arXiv preprint
arXiv:1606.02438 (2016)

12. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press,
San Diego (1990)

13. Gramfort, A., et al.: MEG and EEG data analysis with MNE-python. Front. Neu-
rosci. 7, 267 (2013)

http://arxiv.org/abs/1903.02081
http://arxiv.org/abs/1606.02438


148 G. H. de Souza et al.

14. Gupta, A., et al.: On the utility of power spectral techniques with feature selection
techniques for effective mental task classification in noninvasive BCI. IEEE Trans.
Syst. Man Cybern. Syst. 51(5), 3080–3092 (2019)

15. Jayaram, V., Barachant, A.: MOABB: trustworthy algorithm benchmarking for
BCIs. J. Neural Eng. 15(6), 066011 (2018)

16. Jeong, J.H., Lee, D.H., Ahn, H.J., Lee, S.W.: Towards brain-computer interfaces
for drone swarm control. In: 2020 8th International Winter Conference on Brain-
Computer Interface (BCI), pp. 1–4. IEEE (2020)

17. Kaiser, J.F.: On a simple algorithm to calculate the ‘energy’ of a signal. In: Interna-
tional Conference on Acoustics, Speech, and Signal Processing, pp. 381–384. IEEE
(1990)

18. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge (1992)

19. Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain-
computer communication: motivation, aim, and impact of exploring a virtual apart-
ment. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007)

20. Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain-
computer communication: motivation, aim, and impact of exploring a virtual apart-
ment. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007)

21. Li, Z., et al.: Enhancing BCI-based emotion recognition using an improved particle
swarm optimization for feature selection. Sensors 20(11), 3028 (2020)

22. Miao, M., Zhang, W., Hu, W., Wang, R.: An adaptive multi-domain feature joint
optimization framework based on composite kernels and ant colony optimization
for motor imagery EEG classification. Biomed. Signal Process. Control 61, 101994
(2020)

23. Nakanishi, I., Ozaki, K., Li, S.: Evaluation of the brain wave as biometrics in a
simulated driving environment. In: 2012 BIOSIG-Proceedings of the International
Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–5. IEEE (2012)

24. Pawar, D., Dhage, S.: Feature extraction methods for electroencephalography
based brain-computer interface: a review. IAENG Int. J. Comput. Sci. 47(3) (2020)

25. Qian, X., et al.: Brain-computer-interface-based intervention re-normalizes brain
functional network topology in children with attention deficit/hyperactivity disor-
der. Transl. Psychiatry 8(1), 1–11 (2018)

26. Ravi, A., Beni, N.H., Manuel, J., Jiang, N.: Comparing user-dependent and user-
independent training of CNN for SSVEP BCI. J. Neural Eng. 17(2), 026028 (2020)

27. Sadiq, M.T., Yu, X., Yuan, Z., Aziz, M.Z.: Motor imagery BCI classification based
on novel two-dimensional modelling in empirical wavelet transform. Electron. Lett.
56(25), 1367–1369 (2020)

28. Selim, S., Tantawi, M.M., Shedeed, H.A., Badr, A.: A CSP\-BA-SVM approach
for motor imagery BCI system. IEEE Access 6, 49192–49208 (2018)

29. Shajil, N., Mohan, S., Srinivasan, P., Arivudaiyanambi, J., Murrugesan, A.A.: Mul-
ticlass classification of spatially filtered motor imagery EEG signals using convolu-
tional neural network for BCI based applications. J. Med. Biol. Eng. 40(5), 663–672
(2020)

30. Sharanreddy, M., Kulkarni, P.: Detection of primary brain tumor present in EEG
signal using wavelet transform and neural network. Int. J. Biol. Med. Res. 4(1),
2855–9 (2013)

31. Silvoni, S., et al.: Brain-computer interface in stroke: a review of progress. Clin.
EEG Neurosci. 42(4), 245–252 (2011)

32. Solomon, O.M., Jr.: PSD computations using Welch’s method. NASA STI/Recon
Technical Report N, vol. 92, p. 23584 (1991)



Feature Extraction for a GP-Based BCI 149

33. de Souza, G.H., Bernardino, H.S., Vieira, A.B.: Single electrode energy on clinical
brain-computer interface challenge. Biomed. Signal Process. Control 70, 102993
(2021)

34. de Souza, G.H., Bernardino, H.S., Vieira, A.B., Barbosa, H.J.C.: Differential evolu-
tion based spatial filter optimization for brain-computer interface. In: Proceedings
of the ACM Genetic and Evolutionary Computation Conference, pp. 1165–1173
(2019)

35. de Souza, G.H., Bernardino, H.S., Vieira, A.B., Barbosa, H.J.C.: Genetic program-
ming for feature extraction in motor imagery brain-computer interface. In: Mar-
reiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds.) EPIA 2021.
LNCS (LNAI), vol. 12981, pp. 227–238. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-86230-5 18

36. Staffa, M., Giordano, M., Ficuciello, F.: A WiSARD network approach for a BCI-
based robotic prosthetic control. Int. J. Soc. Robot. 12(3), 749–764 (2020)

37. Stinear, C.M., Lang, C.E., Zeiler, S., Byblow, W.D.: Advances and challenges in
stroke rehabilitation. Lancet Neurol. 19(4), 348–360 (2020)

38. Tangermann, M., et al.: Review of the BCI competition IV. Front. Neurosci. 6(55)
(2012)

39. Tzallas, A.T., et al.: EEG classification and short-term epilepsy prognosis using
brain computer interface software. In: 2017 IEEE 30th International Symposium
on Computer-Based Medical Systems (CBMS), pp. 349–353. IEEE (2017)

40. Vansteensel, M.J., Jarosiewicz, B.: Brain-computer interfaces for communication.
In: Handbook of Clinical Neurology, vol. 168, pp. 67–85. Elsevier (2020)

41. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.:
Brain-computer interfaces for communication and control. Clin. Neurophysiol.
113(6), 767–791 (2002)

42. Yoshioka, M., Inoue, T., Ozawa, J.: Brain signal pattern of engrossed subjects using
near infrared spectroscopy (NIRS) and its application to tv commercial evaluation.
In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6.
IEEE (2012)

https://doi.org/10.1007/978-3-030-86230-5_18
https://doi.org/10.1007/978-3-030-86230-5_18


Selecting Optimal Trace Clustering
Pipelines with Meta-learning

Gabriel Marques Tavares1(B) , Sylvio Barbon Junior2 , Ernesto Damiani3 ,
and Paolo Ceravolo1
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2 Università degli Studi di Trieste (UniTS), Trieste, Italy
sylvio.barbonjunior@units.it

3 Khalifa University (KUST), Abu Dhabi, UAE
ernesto.damiani@kustar.ac.ae

Abstract. Trace clustering has been extensively used to discover
aspects of the data from event logs. Process Mining techniques guide
the identification of sub-logs by grouping traces with similar behaviors,
producing more understandable models and improving conformance indi-
cators. Nevertheless, little attention has been posed to the relationship
among event log properties, the pipeline of encoding and clustering algo-
rithms, and the quality of the obtained outcome. The present study con-
tributes to the understanding of the aforementioned relationships and
provides an automatic selection of a proper combination of algorithms for
clustering a given event log. We propose a Meta-Learning framework to
recommend the most suitable pipeline for trace clustering, which encom-
passes the encoding method, clustering algorithm, and its hyperparame-
ters. Our experiments were conducted using a thousand event logs, four
encoding techniques, and three clustering methods. Results indicate that
our framework sheds light on the trace clustering problem and can assist
users in choosing the best pipeline considering their environment.

Keywords: Process mining · Trace clustering · Meta-learning ·
Recommendation · Pipeline design

1 Introduction

Executing business processes leaves trails of the accomplished activities, perfor-
mances achieved, and resources consumed. This information is stored in event
logs, which embrace the history of the process. Executions generating the same
sequence of activities are observed as the same trace by Process Mining (PM)
algorithms that can group multiple executions in a single representation. Often,
the variability of traces is however remarkable, and traces by themselves do not
offer a helpful representation of the process. This variability causes problems
for existing PM techniques. For instance, business processes with high trace
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variability generate spaghetti-like models, i.e., complex models with an enor-
mous number of relations, often unreadable [1]. Neubauer et al. [24] identified
two elements that contribute primarily to the inherent complexity of business
processes: (i) knowledge-intensive processes where decision-making is human-
dependent, and (ii) processes from large organizations with a fast generation
rate, and therefore high volume output. Therefore, it is of interest to simplify
the analysis representation, thus, allowing an easier interpretation for stakehold-
ers and leveraging efficiency. For instance, consider an event log and its sequences
of activities (traces) L = {〈a, b, c, d, e〉, 〈a, d, c, e〉, 〈a, b, c〉, 〈a, d, c〉}, it is possible
to notice two groups of closely related traces, i.e., trace 〈a, b, c, d, e〉 is similar to
〈a, b, c〉 whereas trace 〈a, d, c〉 has a sequence closer to trace 〈a, d, c, e〉. Grouping
these similar traces may improve the accuracy and comprehensibility of process
discovery techniques [11], and at the same time, support the identification of
deviating or anomalous instances [17]. Moreover, concurrency might also be a
problem in some domains. For instance, traces 〈a, b, c, e〉 and 〈a, c, b, e〉 may be
considered the same from a business perspective if the order of activities b and c
do not affect the process outcome. This way, these trace representations should
be close when projected into the feature space.

Trace clustering techniques have been adopted to solve these issues by iden-
tifying sub-logs grouped by trace similarity. This way, by detecting groups with
homogeneous behavior, process discovery techniques can be executed in sub-logs,
producing higher quality models, which are instead accessible for stakeholders
[14]. Trace clustering has also been studied in the context of explainability for PM
[20] and, more recently, adapted to incorporate expert knowledge [19]. However,
selecting the appropriate clustering technique is a complex task. Many trans-
formation methods were presented, treating traces as vectors generated from
bags of activities [22], edit distance [4] or dependency spaces [12], discriminant
rules [15,26] or log footprints [20]. The set of clustering algorithms applied is
also ample, e.g., k -means [15], hierarchical clustering [4], spectral clustering [12],
constrained clustering [19], among others. Given this large set of options to set
up a clustering pipeline, a non-expert user can likely feel overwhelmed.

Considering the challenge of designing pipelines to identify the correct encod-
ing method, clustering algorithms, and hyperparameters to use for a specific log,
we propose a framework based on Meta-learning (MtL). Our framework recom-
mends the trace clustering pipeline that best fits a specific event log. MtL is a
learning process applied to meta-data representing other learning processes [31]
and has been used successfully to emulate experts’ recommendations, maximize
performance, and improve quality metrics [16].

The problem of simultaneously recommending an algorithm and tuning its
hyperparameters to optimize a task is defined as the combined algorithm selec-
tion and hyperparameter optimization problem [28]. Alternatively, it is possible
to exploit similar recommending tasks, in which algorithms and hyperparameters
are represented as discrete spaces, mapping possible inter-correlations between
the different hyperparameters as a multi-output machine learning problem. In
this work, the meta-data consists of a large set of event log features that are
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provided as input to the MtL workflow that outputs trace clustering pipelines
described by an encoding technique, a clustering algorithm, and hyperparam-
eters modeled using a problem transformation approach. In our scenario, MtL
serves as an automated approach as it suppresses the need for expert interaction
to work correctly. The relationship between event log features and the quality of
PM techniques has been already pointed out in the literature [2,3]. We introduce
a general framework for studying this relationship for the trace clustering task
using MtL. Moreover, we instantiate this framework to provide an example of its
functionality. In particular, in our experiments, we submit the method to a set
of 1091 event logs described by 93 log features, four encoding techniques, and
three clustering algorithms. Results show that our approach achieves consider-
able performance for recommending encoding and clustering techniques. We also
provide a comparison with two baseline methods, highlighting the improvement
supported by the MtL strategy.

The remainder of this paper is organized as follows. Section 2 gives a historical
overview of trace clustering solutions, focusing on the employed transformation
and clustering methods. Section 3 defines the task and its configuration steps,
while Sect. 4 presents our proposed framework to solve the trace clustering rec-
ommendation problem. Section 5 presents the material used for experiments, the
techniques, and quality metrics adopted. Section 6 shows the results and raises
a discussion around them. Section 7 concludes the paper and Sect. 8 lists its
broader impact.

2 Related Work

Trace clustering research is deeply connected to the variant analysis problem,
that is, detecting groups of similar behavior within a single business process [20].
Clustering traces is partitioning an event log into groups of comparable traces
such that each trace is assigned to a unique group [19]. Since its initial adoption,
trace clustering has been proposed as an instrument to reduce variability. Dis-
covering process models from clusters, for example, generally improves quality
[14]. An early work in the area used a set of n-grams to encode a trace activ-
ity sequence, thus, mapping traces to a feature vector space [15]. Song et al.
[26] went further by defining multiple encoding procedures, named profiles, to
represent traces as vectors. Furthermore, the authors call attention to the mod-
ularity between the profiling and clustering steps. Bose and Aalst [4] represent
traces as strings and apply edit distance to measure trace similarity. Delias et
al. [12] proposed a measure to calculate trace distance based on dependency.
However, approaches based on instance-level similarity may be applicable only
to particular domains. Thaler et al. [27] highlight that bags of activities may lose
critical information regarding the execution order. Delias et al. [12] show that
no single optimal similarity metric is applicable for all domains and applications
while Zandkarimi et al. [34] stated that trace clustering is a context-specific task.
Koninck et al. [20] characterize the complexity of clustering with the assessment
of the best event log splitting operations. A well-performing encoding method
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improves a wide range of posterior analyses without the need to tune them [3].
The authors also showed that there is no best encoding method for every sce-
nario, that is, different event logs are encoded better, considering several quality
criteria, by different encoding techniques. A similar conclusion is achieved in [27]
when analyzing clustering algorithms applied to PM.

The authors stated that some techniques are suitable for particular scenar-
ios, reinforcing the argument that process characteristics may guide the deci-
sion of the appropriate clustering technique. Besides, different from supervised
approaches, unsupervised learning performance is severely affected by small
changes in hyperparameters, depending heavily on user-domain knowledge [18].
This implies that the solutions proposed today are far from optimal as they are
attached to a unique set of encoding and clustering algorithms.

Considering the multiple available profiling and clustering algorithms, we
envision two main building blocks regulating the success of clustering techniques.
The first regards the encoding method, i.e., converting the trace sequences
into feature vectors, and the latter comprises the clustering techniques. The
approaches currently available in the literature are strictly attached to a specific
combination of these building blocks; hence, they neither offer a means to study
the relationship between the different steps that compose a pipeline nor relate
process behavior to optimal solutions.

3 Problem Statement

Given the plethora of configuration steps and parametrization, designing the
appropriate trace clustering pipeline is a complex issue even for experts. We
identified in the literature three configuration steps that highly affect the clus-
tering results: (i) trace encoding, (ii) clustering algorithm, and (iii) hyperparam-
eters regulating the clustering algorithm. The choice of each step is critical since
slight changes deeply affect the clustering results.

PM techniques ingest event logs. An event log is the set of events executed
in a business process. An event records the execution of an activity. It follows
that each event is strictly related to a unique process instance, identified by its
case. A unique end to end sequence of activities within a case is known as a
trace. Let Σ be the event universe, i.e. the set of all possible event identifiers;
Σ∗ denotes the set of all sequences over Σ. A trace is a non-empty sequence of
events t ∈ Σ∗ where each event appears only once and time is non-decreasing,
i.e., for 1 ≤ i < j ≤ |t| : t(i) �= t(j). In PM applications, encoding aims at
transforming traces into vectors, mapping process instances into a feature space.
Therefore, an encoding method is a function E() that maps a set of traces into
a n-dimensional feature space, projecting the instances’ distances according to
their trace sequence.

The problem of selecting a trace clustering pipeline is different from the
traditional algorithm selection, in which it is expected to recommend a tuple
〈encoding, clustering, hyperparameters〉. It is worth mentioning that the hyperpa-
rameters are continuous values with a high dimensional space that might present
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different inter-correlations between them. Here, they were discretized at frequent
intervals to cover a wide range of promising possibilities. Further, we employed a
multi-output strategy to take advantage of inter-correlations from the clustering
algorithm and its hyperparameters.

We formulate the problem as a set of encoding methods E = {E(1), ..., E(j)},
clustering algorithms C = {C(1), ..., C(l)} associated with a hyperparameter
space H = {H(1), ...,H(l)} and event log data mapped by meta-features and
best pipeline as D = {(x(i), Y (s)|s = 2)}. We have j encoding methods, l com-
binations of clustering algorithms and hyperparameters, and s is the number of
expected pipelines’ steps to be recommended. It is important to mention that
the clustering algorithm and hyperparameter recommendation were modeled as
a single step of the pipeline. For each event log sample (x(i), Y (i)), x(i) ∈ X is
a d-dimensional meta-feature vector (x(i1), x(i2), ..., x(id)) and Y (i) ⊆ Y is the
tuple 〈encoding, clustering, hyperparameters〉 associated to x(i). The goal is that
for any unseen event log x, the MtL model hE() recommends hE(x) ∈ E as
the proper encoding method for x and hCH() recommends hCH(x) ∈ L. In the
proposed setup, we are facing a multi-output problem, where a set of labels
C ×H ⊆ L is associated with a single instance [29]. Following the taxonomy pro-
posed in [29], we adopt a problem transformation approach, which converts the
data into a format that can be used in conjunction with traditional techniques.
More specifically, we employed the Binary Relevance (BR) problem transforma-
tion approach [33]. BR works by transforming the original data set into q data
sets Dλj

, where j = [1, ..., q] contains all instances of the original data that are
labeled according to the existence or not of single labels λj . Thus, BR learns q
binary classifiers, one for each label L. Given a new instance, BR provides the
union of the labels λj predicted by the q classifiers.

There are several ways to model this problem. In this paper, we followed the
supervised machine learning approach to build hE() and hCH() towards deter-
mining a promising pipeline candidate configuration. The problem is, in nature,
a multi-output problem. Therefore, we model this through the BR approach
to combine outputs from both hE() and hCH(). Alternative optimization-based
modeling methods to control the trade-off between exploitation versus explo-
ration of pipeline combinations exists, but as an initial study exploring new
meta-features and meta-target selection in a new application on the PM domain,
we adopted this modeling strategy for simplicity.

4 MtL-Based Solution for Trace Clustering

Trace clustering solutions must be able to adapt according to domain charac-
teristics. We then propose a framework grounded in MtL capable of delivering
suitable recommendations according to different business process behaviors. The
main goal of our approach is to recommend a tuple 〈encoding, clustering, hyper-
parameters〉 that maximizes quality metrics for the trace clustering problem.
Figure 1 shows the overview of the framework. First, an event log repository is
created to represent different business scenarios. The Meta-Feature Extraction
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step mines features for each event log in the repository, creating meta-features
according to MtL terminology. The description quality of the meta-features is an
important constraint bounding the performance of the complete pipeline. More-
over, the Meta-Target Definition defines a set of encoding and clustering (cou-
pled with its hyperparameter) techniques that are assessed by quality metrics
and ranked according to a ranking function. Then, the Meta-Database combines
the meta-features and meta-targets defined in previous steps, creating a data set
populated by meta-instances. Using the meta-database, the Meta-learning step
induces a Meta-model that is, then, used to recommend a pipeline for a given
event log considering its meta-features. It is worth mentioning that multi-output
machine learning modeling for the meta-model can bring important achieve-
ments in terms of performance, considering the interrelations between each step
of the pipeline. In Fig. 1, green arrows indicate the steps that are used for the
creation and training of the framework, while blue arrows represent a production
environment where one assesses the meta-model for recommendation.

Given the adaptable setup of our framework, one can implement it using
a different set of meta-features and meta-targets. The automatic aspect of this
approach provides the user with recommendations based on event log behavior,
considering the possible options among the configurable steps. Moreover, other
aspects are adaptable, such as the adopted quality metrics and the ranking
function. Nonetheless, we note that the robustness of the approach depends on
the MtL structure, which must be maintained when the framework is instantiated
in real scenarios.

Fig. 1. Overview of MtL proposal for trace clustering.

5 Experimental Setup

In this section, we expose the details of each framework step, as seen in Fig. 1,
and reveal the experiments implemented to study a possible instance of our MtL
framework. The implementation is available for replication purposes1.
1 https://github.com/gbrltv/meta trace clustering/.

https://github.com/gbrltv/meta_trace_clustering/
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5.1 Event Logs and Featurization

MtL benefits from using a large set of instances in the meta-database. Hence, we
are aiming at a heterogeneous set of business process logs representing different
scenarios and behaviors. For that, we rely on the set of logs proposed in [2]. These
event logs were grouped to represent a plethora of business behaviors, mapping
the relationship between process characteristics and quality metrics. This set
contains both real and synthetic event logs. Regarding real-life data, there are
six logs from past Business Process Intelligence Challenges (BPIC)2, the envi-
ronmental permit3, helpdesk4 and sepsis5 logs. For synthetic data, the authors
adopted 192 logs from the Process Discovery Contest (PDC) 20206, an annual
event organized to evaluate the efficiency of process discovery algorithms. The
PDC logs are complex given the nature of employed behaviors, such as depen-
dent tasks, loops, invisible and duplicate tasks, and noise. The next group of
synthetic data contains 750 logs proposed in the context of online PM [7]. These
logs are built to depict process drifts, i.e., behavior change during the business
process execution, containing four drift types, five noise percentages, and three
trace lengths. The final group of synthetic event logs was proposed for the evalu-
ation of trace encoding techniques [3]. This set contains 140 logs generated from
five process models, six anomaly types, and four frequency percentages.

The performance of the meta-model is directly dependent on the quality
of the meta-features. Thus, the meta-features extracted from event logs must
capture the process behavior and describe it from complementary perspectives.
We adopted the featurization introduced in [2]. The authors presented a group
of features that capture several layers of business processes. These features are
based on the distribution of trace behavior, considering trace length, activity
frequencies, and trace variants. Regarding activity-level features, the group is
subdivided into all activities, start activities, and end activities. 12 features are
extracted for each group, they are the number of activities, minimum, maximum,
mean, median, standard deviation, variance, the 25th and 75th percentile of
data, interquartile range, skewness, and kurtosis coefficients. To capture the
behavior at the trace level, the authors propose features for trace lengths and
trace variants. The former group contains 29 attributes: minimum, maximum,
mean, median, mode, standard deviation, variance, the 25th and 75th percentile
of data, interquartile range, geometric mean and standard variation, harmonic
mean, coefficient of variation, entropy, and a histogram of 10 bins along with its
skewness and kurtosis coefficients. Trace variants are captured by 11 descriptors:
mean number of traces per variant, standard variation, skewness coefficient,
kurtosis coefficient, the ratio of the most common variant to the number of
traces, and ratios of the top 1%, 5%, 10%, 20%, 50% and 75% variants to the total
number of traces. Log-level behavior is captured by: number of traces, unique

2 https://www.tf-pm.org/resources/logs.
3 https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270.
4 https://doi.org/10.17632/39bp3vv62t.1.
5 https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.
6 https://doi.org/10.4121/14626020.v1.

https://www.tf-pm.org/resources/logs
https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270
https://doi.org/10.17632/39bp3vv62t.1
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/14626020.v1
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traces, their ratio, and number of events. To describe log complexity, entropy-
based measures have been adopted recently in PM literature [1] aiming at the
discretization between logs that are better mined by declarative or imperative
algorithms. Hence, such metrics capture the structuredness and variability of
the log. The 14 entropy features we adopt are: trace, prefix, k -block difference
and ratio (k values of 1, 3 and 5), global block, k -nearest neighbor (k values of
3, 5, and 7), Lempel-Ziv, and Kozachenko-Leonenko. Considering all groups, 93
meta-features were used to extract log behavior covering log structuredness and
variability, statistical dispersion, probability distribution shape, and tendency.

5.2 Trace Encoding Techniques

Many PM techniques rely on encoding to transform event log-specific represen-
tations to other formats [8,25,30]. The transformation usually applies at the
trace-level, that is, converting the sequence of activities respective to a unique
trace into a feature vector. In [3], the authors compared ten different encoding
techniques through the lens of quality metrics measuring data dispersity, repre-
sentativeness, and compactedness. They concluded that there is no encoding that
excels in all tasks and perspectives concomitantly. For instance, graph embed-
dings outperform the others in the classification task and representation quality.
However, these encoding methods are costly and usually sparse, meaning that
there are better encoding techniques considering space and time complexity. The
trace clustering literature has already experimented with several types of encod-
ing methods, such as one-hot encoding [15,26], edit distance [4], log footprints
[20], activity profiles and n-grams [9]. Nonetheless, no trace similarity measure
is general enough to be applicable in all scenarios [10].

In this work, we adopt four encoding techniques that were frequently applied
in the context of trace clustering. The first one is one-hot encoding. This tech-
nique encodes activities as categorical dimensions, creating a feature vector of
binary values for each trace based on the occurrence of activities in a trace. Next,
we adopt n-grams, a common technique used in text mining applications. This
encoding maps groups of activities of size n into a feature vector, accounting for
their occurrence or not. More specifically, we apply bi-gram and tri-gram. Finally,
we applied position profiles [6], an approach that relates activity frequency and
position. A log profile is created by computing the activity appearances in each
trace position and its respective frequency. A trace is encoded considering the
frequency of its activities in their positions according to the log profile.

5.3 Trace Clustering Algorithms

We selected three clustering techniques commonly applied in data mining and
trace clustering literature. These techniques are grounded in different heuristics,
and with this, we aim to evaluate if a particular clustering structure outperforms
the others. The choice of parameters was also guided by considering the literature
on trace clustering, comprising different trace behaviors and complexities. It is
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important to note that we selected a range of possible values to support the
exploration of the algorithmic space.

First, we adopt the Density-based Spatial Clustering of Applications with
Noise (dbscan) algorithm [13]. The dbscan method guides its clustering based on
the density of the feature space, hence, instances in high-density regions form
a cluster while instances sitting at low-density regions are regarded as outliers.
The main hyperparameter affecting the clustering results is eps, which regulates
the maximum distance between two points for them to be considered of the same
neighborhood. We explore different configurations of the eps hyperparameter to
evaluate its impact and to recommend the best configuration in the meta-model
step. For that, we apply the following eps values: 0.001, 0.005, 0.01, 0.05, 0.1,
0.5, 1. Moreover, we adopt k -means [21], a clustering technique that randomly
selects centroids, which are the initial cluster points, and works by iteratively
optimizing the centroid positions. The k -means technique requires the expected
number of clusters (k) from a given data set as a hyperparameter. We set k to
these values: 2, 3, 4, 5, 6, 7, 8, 9, 10. Finally, the last technique is agglomerative
clustering [32], a type of hierarchical clustering with a bottom-up approach. The
algorithm starts by considering each point as a cluster and merges the clusters as
the hierarchy moves up, creating a tree-like structure depicting the cluster levels
and merges. As with k -means, agglomerative clustering requires the number of
clusters as input, we then adopted the same range of values for the k parameter.

5.4 Ranking Metrics

To complete the creation of a meta-database, meta-targets must be defined for
each meta-instance. This way, a ranking strategy is required to compare the
possible trace clustering pipelines. Hence, the technique sitting at the top of the
ranking strategy is the one recommended for a meta-instance, i.e., it is defined
as the meta-target. As pointed out in the literature [3,10], there is no unique
solution for a problem that outperforms the others from all perspectives. Con-
sidering this hypothesis, we propose three complementary metrics to evaluate
trace clustering solutions, this way, capturing different degrees of performance.
Moreover, a user applying a trace clustering solution may expect to evaluate
the results from several perspectives. Here, we support such a user by assessing
clustering quality from a set of criteria.

Silhouette coefficient (s), the first metric we propose to measure performance,
is based on the traditional clustering literature. The Silhouette score is computed
at the cluster level to capture its tightness and separation, judging instances
that fit their cluster or are in between different clusters. The scores of a group of
clusters can be combined to assess the relative quality of the clustering technique.

v =

∑
Ci∈C var(Ci) − 1

#traces
(1)

To complement this evaluation with a PM-
inspired metric, we propose to measure the qual-
ity of clusters concerning trace variants. This way,
by computing the trace variant frequency in each
cluster, we can evaluate if the solution provides a clear separation of variants in
the feature space. For that, we compute the unique traces in a cluster, and by
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a weighted mean, the Variant score (v) is obtained. Consider C the group of all
clusters, Ci the cluster of index i, var(Ci) the number of unique traces found in
cluster Ci and #traces the total number of traces in the event log, Eq. 1 depicts
the Variant score calculation, 0 is the optimal value. As resource consumption
is an important aspect in organizations, we also consider the clustering time (t)
as a metric to assess its quality. The lower the t metric for a particular solution,
the better it is ranked compared to others.

Table 1. Ranking trace clustering
pipelines.

Log Encoding Clustering s v t Rs Rv Rt R
L E1 C1 0.9 0.5 50 1 2 3 2
L E2 C2 0.3 0 10 3 1 1 1.67
L E3 C3 0.8 0.7 15 2 3 2 2.33

Given this set of metrics, i.e. s for
silhouette coefficient, v for the vari-
ant score, and t for computational
time, a meta-target 〈encoding, cluster-
ing, hyperparameters〉 has to success-
fully balance between all metrics to be
considered good. This way, the app-
roach rewards techniques that excel in the three metrics, such as ignoring one or
more may lead to a lack of tightness, improper variant identification, and high
resource consumption. Hence, we propose a ranking strategy (R) that combines
all dimensions. Table 1 presents an example of the ranking strategy we propose.
For each pair of encoding techniques and clustering algorithms, we apply it for
a given event log (L) and measure the quality metrics (s, v, t). Following, a
positional rank is built for each metric (Rs, Rv, Rt), i.e, comparing the pairs of
encodings and clustering in each dimension. Finally, a rank (R) is computed by
the average of the metrics ranks. For example, considering the pairs 〈E1, C1〉,
〈E2, C2〉 and 〈E3, C3〉, their respective final ranks are 2, 1.67 and 2.33. The solu-
tion chosen as the meta-target is the one that minimizes the R function, which,
in this example, is the pair 〈E2, C2〉.

5.5 Meta-model

Regarding the meta-learner, we applied the Random Forest (RF) algorithm [5]
due to its robustness, being less prone to overfitting. Moreover, we applied a
hyperparameter tuning technique to improve performance in the recommenda-
tion task. For that, we adopted a holdout strategy where 80% of the meta-
database was used for tuning and 20% as the validation set. After a grid search
tuning strategy with 5-fold cross-validation, the best hyperparameters were: (i)
50 as the number of trees composing the forest, (ii) gini as the criterion measur-
ing split quality, (iii) 3 as the required minimum number of samples for a node
split, (iv) 1 as the minimum number of samples required to be a leaf node, and
(v) log2 as the number of considered features for a split. The results reported in
Sect. 6 were extracted when applying the tuned meta-model to validation data.

6 Results and Discussion

This section explores the meta-database composition by observing the encoding
techniques and clustering algorithms chosen by their performance and balancing.
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Next, an overall analysis, including the comparison of the proposed strategy with
the baselines, is introduced.

6.1 Meta-learning Exploratory Analysis

The rank results, considering all algorithms for setting the meta-database,
including the metrics used for ranking the meta-targets, are presented in Fig. 2.
The heatmap plots show the ranking of the metrics s, v, and t for encoding
(Fig. 2a) and clustering (Fig. 2b) used to sort and identify promising algorithms
as meta-targets. Each ranking varies from 1 to 81, in which 1 is the best-ranked
algorithm for a given metric.

(a) Encoding Ranking (b) Clustering Ranking

Fig. 2. Encoding and clustering rankings. Color gradient represents the ranking posi-
tion variation.

Observing the encoding techniques (Fig. 2a), it is possible to identify a large
discrepancy between them when evaluated by s, revealing the superiority of
one-hot and position profile algorithms, whereas v score and t do not present
a such prominent variation, leading to closer ranking positions. Note that the
results report the average ranking position. In other words, one-hot encoding is
the most well-ranked across the set of event logs, although it is not unanimous.
However, when observing the clustering algorithms (Fig. 2b), it is possible to
note a balance regarding s while v and t reveal discrepancies. The former (v)
exposes the importance of hyperparameter definition since agglomerative and
k -means ranged throughout the rankings when changing their hyperparameter
k. Moreover, the t metric delivered an important perspective, in which each clus-
tering algorithm is recognizable regardless of its hyperparameters. In particular,
agglomerative and dbscan were superior to k -means. This superiority led to no
usage of k -means as a clustering meta-target.

The meta-database was built using the combination of the top-ranked
algorithms for each meta-instance (event logs). This combination leads to
an imbalanced multi-output dataset. Combinations such as one-hot encoding
with agglomerative clustering using 10 as k value (onehot agglomerative k10)
represented 469 meta-instances. The second most frequent combination (171
meta-instances) was position profile with agglomerative clustering using 10 as
k (position profile agglomerative k10). The third was one-hot using dbscan
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adopting a eps equals 0.001 (onehot dbscan eps0.001) in 125 meta-instances.
These meta-target frequencies show the evident dominance of one-hot and posi-
tion profile over the other encoding methods. Bi-gram was the best encoding
technique for 37 meta-instances while tri-gram was the best one, combined with
dbscan, only with four meta-instances. When evaluating from a clustering per-
spective, we observe a balance between dbscan with a wide range of eps and
agglomerative using k as 10. Different values of k for agglomerative did not
meet many meta-instances. Conversely, dbscan demonstrates the necessity of
hyperparameter adjustments since different values of eps could match particular
meta-instances. The imbalance issue was addressed by removing the minority
class combinations, that is, meta-targets that appear less than five times. The
final meta-database was composed of 1036 samples, with fifteen different com-
binations of one-hot, position profile, and bi-gram with agglomerative (k in {8,
9, 10}) and dbscan (eps in {0.001, 0.005, 0.05, 0.01, 0.1, 0.5, 1}).

6.2 Meta-model Performance

Using RF as our meta-model built over the meta-database, we analyzed the per-
formance for both encoding and clustering algorithm recommendations (Fig. 3).
It is worth mentioning that the problem was modeled as a multi-output problem
using the BR transformation approach, addressing encoding and clustering at
once. Since there are no other literature references, we employed majority voting
and random selection as baseline approaches for comparison reasons. Majority
voting works by always indicating the most common meta-target, i.e., the major-
ity class in the meta-database. In this setup, one-hot and agglomerative k10
are the most common encoding technique and clustering algorithm, respectively.
Although a simple baseline, majority voting is a suitable comparison in machine
learning applications, clearly specifying the minimum performance threshold.
The random selection approach randomly chooses one of the possible pipeline
combinations (coming from the set of meta-targets). This technique simulates
a PM practitioner in a scenario without the availability of experts, a common
situation in real environments. This way, we situate our method’s performance
both in relation to the machine learning and PM landscapes, creating an initial
assessment and benchmark for the trace clustering problem.

Fig. 3. Performance of the MtL framework to recommend the encoding technique and
clustering algorithm in terms of accuracy and F1.
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As observed in Fig. 3, our proposal obtained an F1 of 0.81 (±0.01) when
recommending the encoding technique and an F1 of 0.59 (±0.01) for the rec-
ommendation of the clustering algorithm. The majority baseline for encoding
obtained an F1 of 0.71 while the random baseline achieved 0.42 (±0.03). Regard-
ing clustering, the majority obtained 0.49 of F1, and random selection reached
0.14 (±0.03). Our approach obtained a mean predictive performance of 0.7 for
the whole trace clustering pipeline. The results were superior to the majority
and random baselines, which averaged 0.59 and 0.28, respectively. Note that the
majority voting results are boosted by the imbalanced scenario, for balanced
meta-databases, the tendency is to underperform. The superior performance of
our proposal confirms our hypothesis, i.e., there is a relationship between event
log behavior and optimal pipelines. Since this relationship exists (and is partially
captured by our proposed meta-features), our method outperforms the baselines.
Given the universe of possibilities (81 combinations) and the limitations imposed
by the imbalanced scenario, we consider the F1 performances suitable. Further-
more, this assessment serves as a benchmark for the area to be compared to
alternative solutions proposed in the future.

7 Conclusion

This paper proposes an MtL framework to recommend the best pipeline for trace
clustering based on a specific event log and its behavior. For that, we extract
meta-features to describe event logs and match them with the best clustering
pipeline by assessing three complementary metrics. The framework recommends
a tuple 〈encoding, clustering, hyperparameters〉, making trace clustering solutions
accessible for non-expert users and assisting experts with guided recommenda-
tions. Results have shown that the framework outperforms baseline approaches.
In future research, we aim to extend the experimental evaluation to gather fur-
ther insights into the relationship between trace clustering quality and event
log behavior. Moreover, we plan to improve the modeling of the multi-output
approach by testing different techniques, possibly taking advantage of the inter-
correlation between different steps of the recommended pipeline.

8 Limitations and Broader Impact Statement

Our approach could be applied in a wide range of PM tasks, including process
discovery, conformance checking, trace clustering, anomaly detection, and several
others. This way, our research paves the way for automation in the business pro-
cess domain, complemented with a supporting data-driven framework to study
PM problems. Therefore, there are multiple benefits unlocked by the proposed
technology, such as guidance for non-expert users and insights for experienced
analysts. However, not enough attention has been paid to the over-application of
automation techniques in PM. An important aspect touches the validity of the
research and experimental design [23]. More specifically, the underlying behavior
distribution of event logs might lead to unexpected results. This way, adopters
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of this tool should be careful in selecting a representative set of event logs to
serve as the basis of the meta-database. Otherwise, the insights or recommen-
dation quality might decrease. Being a technique that abstracts the pipeline for
non-experts, the possibility of results misuse rises, thus requiring understanding
about the possible domain risks when applying the tool.
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Abstract. The amount of news generated on the internet has increased
significantly in recent years. As a trend, text data has gained attention
from industry, government, academia, and the financial market. This
information is potentially valuable to assist domain experts in decision
making. Therefore, related applications based on machine learning have
been widely available in several areas of knowledge. However, for super-
vised learning tasks, the availability of annotated texts in quantity and
quality is a recurring problem. This work proposes a time-series-driven
approach to labeling chronologically arranged documents. Our proposal
categorizes short texts for a particular domain according to the level
and trend patterns of a given time series. We use the obtained weak
labels with the understanding that they are imperfect but still useful
for building predictive text models. Documents and agribusiness com-
modity price series were employed to assess performance in four classi-
fication scenarios. The experimental evaluation considered nine textual
representations and different learning paradigms. Neural language-based
models demonstrated better classification performance than traditional
ones. The results indicate that the proposed approach can be an alter-
native for automatically labeling a large news volume.

Keywords: Data labeling · Machine learning · Text mining · Weak
supervision

1 Introduction

We have witnessed an increased interest in machine learning-based applications
for industry, government, academia, and the financial market [18]. Supervised
learning tasks such as classification and regression have been widely explored to
assist domain experts in decision making. In this way, emerging intelligent tech-
nologies have enhanced the offer of computational resources capable of storing,
analyzing, and predicting information from a large volume of data [7].
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Predictive models are generally learned from a dataset containing many train-
ing samples, each corresponding to an object or event. In this context, the per-
formance of machine learning models depends on the availability of labeled data
in sufficient quantity and quality [6]. However, annotated data for some domains
can be scarce, and the typical process of obtaining labels with experts inspecting
individual samples is usually expensive and time-consuming. Thus, to overcome
this limitation, machine learning techniques should be able to work under weak
supervision [27].

Weak supervision provides a significantly inexpensive alternative to tradi-
tional annotation, reducing the need for humans to hand label large datasets
to train machine learning models [6,8,25]. Researchers have employed this tech-
nique to support many applications, including annotating and detecting fake
news [12,21,25], labeling images from social media posts [9], recognizing named
entities [16], and classifying texts using external sources [8,18].

In recent decades, the amount of news generated and made available on the
internet has grown exponentially [14]. Text mining and natural language process-
ing methods allowed the conversion of such documents into helpful information
for experts in different domains [11]. However, due to the lack of annotated news,
unsupervised and semi-supervised learning tasks have been adopted for these
applications [24]. In light of this, this paper proposes a time-series-driven app-
roach to labeling chronologically arranged documents. Time series are ordered
sequences of numerical observations recorded over time. In finance, the price
series represents daily records of prices practiced on the stock exchange or com-
modities. Sudden fluctuations in the price series can mean political, climatic and
macro-economic events, as well as market supply and demand.

Interestingly, events that alter market behavior are often reported explicitly
in text news. Thus, we design in this work a function that uses the price series of
two Brazilian agribusiness commodities to label short texts that correspond to
agricultural news. Our proposal weakly categorizes the documents according to
the time series’s level and trend patterns. We use the obtained weak labels with
the understanding that they are imperfect but still useful for building predictive
text models. An experimental evaluation estimated the efficiency of our approach
in the face of nine textual representations and different learning paradigms.
Furthermore, we propose a vector representation of texts based on bag-of-words
that uses a distance measure between Terms and Documents through pre-trained
BERT models, designated here as TD-BERT.

The remainder of this paper is structured as follows: Section 2 describes and
contrasts related work. Section 3 presents our contribution. Section 4 reports
the empirical evaluation and discusses the results. Finally, Sect. 5 concludes our
study and lists future work.

2 Related Work

There are many strategies for labeling training data automatically. These annota-
tion tactics generate imperfect (less accurate) labels based on domain knowledge
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and are commonly pervasive as weak supervision [18]. We can categorize weak
supervision approaches into three types [27]: (i) incomplete supervision, where
only a small subset of training data is available with annotations; (ii) inexact
supervision, in which training data is only provided with coarse annotations; and
(iii) inaccurate supervision, where available labels are not always ground-truth.

Many incomplete supervision approaches have been proposed to identify fake
news. The studies developed techniques to annotate social media news and
increase the amount of training data from various sources [12,21,25]. Inexact
supervision approaches have been proposed in which some supervisory informa-
tion is provided but not as accurate as desired [3,9,13]. For example, a study
[6] developed a framework for weak interactive supervision where a method pro-
poses heuristics and learns from user feedback on each heuristic. The experiments
demonstrated that only a few feedback iterations are needed to train models
that achieve highly competitive test performance without access to ground-truth
training labels.

In this paper, we focus on inaccurate supervision procedures due to the simi-
larity of the proposed approach. Inaccurate supervision concerns the situation in
which the supervision information is not always ground-truth, and some annota-
tions may suffer from errors [27]. Weak labeling techniques in text classification
tasks are known as distant supervision [17]. Distant supervision generates train-
ing annotations by heuristically aligning data points with an external knowledge
base [2,15]. In addition, heuristic rules for labeling data are also common sources
of weak supervision. That is, weak supervision sources mainly contain distant
supervision [5,20,26] and heuristic rules [10,19].

A study presented a practical approach for treating the identification of fake
news on Twitter as a binary machine learning problem [12]. The tweets were
labeled by their sources, i.e., tweets issued by accounts known to spread fake
news were labeled as fake, and tweets issued by accounts known as trustworthy
were labeled as accurate. Two datasets and six textual representation models
were considered for experimental evaluation. Two alternatives were explored to
represent the tweet textual contents: a Bag-of-Words (BoW) employing TF-IDF
vectors and a neural Doc2vec model trained on the corpus. Instead of creating
a small but accurate hand-labeled dataset, the authors demonstrated that using
a large-scale dataset with inaccurate labels yields competitive results.

A more specific study for short-text classification involving insufficient unla-
beled data, data sparsity, and imbalanced classification was reported in [8]. The
proposed method can generate probabilistic labels through the conditional inde-
pendent model. Six pre-training models were adopted: BERT Base and Multi-
lingual Chinese, RoBERTa Base and Large Chinese, ERNIE and ERNIE Chi-
nese. According to experimental results on public and synthetic datasets, unla-
beled imbalanced short-text classification problems can be solved effectively by
multiple weak supervision. Notably, recall and F1Score can be improved with-
out reducing precision by adding distant supervision clustering, which can be
employed to meet different application needs.



168 I. J. R. Filho et al.

The authors [16] presented an approach to bootstrap named entity recogni-
tion models without requiring any labeled data from the target domain. Instead,
the approach relies on labeling functions by automatically annotating documents
with named entity labels. A Hidden Markov Model (HMM) was trained to unify
the noisy labeling functions into a single (probabilistic) annotation, considering
each labeling function.

The success of machine learning methods for texts is closely related to the
pre-processing strategy of textual data and the characteristics of the applica-
tion domains [4]. We highlight that studies on textual representations for weak
supervision tasks have received much attention in the literature. However, no
in-depth studies were found on text classification for supervision heuristically
aligning textual and time series data. In this sense, we introduce the proposed
method in Sect. 3.

3 Methods

This work investigates a short-text labeling function of the commodity market
using time series data (Fig. 1). In addition, it contemplates a vector text repre-
sentation model based on BoW that adopts a measure of distance between Terms
and Documents from pre-trained BERT models, called TD-BERT. Thus, classi-
fication models are applied to assess the predictive performance of the proposed
approaches. Figure 1 illustrates the steps performed in this study.

Textual Data

Prices series

Datasets Pre-processing Classification Models

Texts Preparation

Intraday difference

Model Training

Model Evaluation

Vector representation of texts 
(Bow, BERT, TD-BERT)

Labelling Function

+

time alignment

time series split

Fig. 1. Conceptual model of the proposed method.

3.1 Labeling Function

A price series S of size m is defined as an ordered sequence of observations, i.e.,
S = (s1, s2, ..., sm), where st represents an observation s at time t. The textual
documents D is also an ordered sequence D = (d1, d2, ..., dk), where dt is a text
d at time t, and size n. Therefore, we attribute via time alignment a label (–1,
0 or 1) to texts using the following equation:
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dt =

⎧
⎨

⎩

−1 if st+lag < (st + st−lag)/2
1 if st+lag > (st + st−lag)/2
0 otherwise

(1)

the text dt receives a label according to the level and trend patterns of the time
series S. The constant lag corresponds to the seasonal period of the time series in
number of observations. To exemplify, Fig. 2 portrays the result of Eq. 1 applied
to a synthetic time series with lag = 5. This function aims to capture the time
series’ stable, increasing, and decreasing behaviors to assign labels to short texts
arranged chronologically in time.

0 50 100 150 200 250
Time (Day)

0

0.5

1

1.5

2

Y

Time Series

0 50 100 150 200 250
News

-1
0
1

La
be

l

Labeling Results

Fig. 2. Illustration of how the labeling function works.

3.2 TD-BERT

We implemented the proposed approach to obtain a new textual representation
that considers the semantic features. First, we extract a collection of documents
D = [d1, d2, ..., dk] containing k documents and a set T = [w1, w2, ..., wb] with b
terms from D. This process is similar to the one used in BoW. However, we take
into account here the sentence transformers of the pre-trained BERT models to
obtain the cosine distance of each term in each document.

The textual representation D with sentence transformers is defined as DS =
([B1], [B2], ...[Bk]), where each B is a BERT vector of h positions representing
a document d at time t. The representation of Terms with the sentence trans-
formers is defined as TS = ([W1], [W2], ...[Wb]), where Wj is a BERT vector of
h positions that represents a term wj . The set of documents is represented as
a document-term matrix constituted by cosine distance c from each vector k
composed of b dimensions, as depicted in Fig. 3.

The matrix values correspond to the cosine distance of each term in each
document, i.e., c(Bk,Wb) equals the distance between vectors Wj and Bi. The
vector values DS and TS are assigned according to a pre-trained BERT model.
Thus, in this work, we evaluate the classification performance applying three
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Fig. 3. Illustration of the representation of document k as a document-term matrix.

pre-trained models: BERT base multilingual (TD-BERT), DistilBERT base mul-
tilingual (TD-DistilBERT), and BERT base Portuguese (TD-BERTimbau) [23].

4 Evaluation

We present a weak supervision evaluation of two agricultural commodities
datasets: corn and soybean. Furthermore, we compare several predictive mod-
els for the classification task, considering distinct textual representations. We
selected methods from different machine learning paradigms to better com-
pare the investigated configurations. The K-Nearest Neighbors (KNN) method
belongs to the instance-based classification paradigm. Multi-Layer Perceptron
(MLP) is an algorithm from the connectionist paradigm. Gaussian Naive Bayes
(GNB) and Multinomial Naive Bayes (MNB) are probabilistic methods. Support
Vector Machine (SVM), in turn, is a model of the statistical learning theory
paradigm.

The following subsections report the steps illustrated in Fig. 1. We present an
analysis of the impact of textual representations on the classification of agricul-
tural commodity headlines. These tasks are relevant to emerging research topics
related to classifying large volumes of unlabeled text. For reproducibility pur-
poses, we provide a GitHub repository at https://github.com/ivanfilhoreis/ws
text with the source code of the classification methods and the textual represen-
tations.

4.1 Datasets

We used texts and time series of corn and soybean. The Portuguese textual data
were extracted from an agricultural news website1. Founded in 1997, Not́ıcias
Agŕıcolas is one of the Brazilian agribusiness’s most influential media. Table 1
describes the dataset period, the number of days, and information about the
text data.

Time series data were extracted from the Center for Advanced Studies in
Applied Economics (CEPEA) at the University of São Paulo (USP).

1 https://www.noticiasagricolas.com.br/.

https://github.com/ivanfilhoreis/ws_text
https://github.com/ivanfilhoreis/ws_text
https://www.noticiasagricolas.com.br/
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Table 1. Overview of the time series and textual data used in our experimental eval-
uation.

Commodity Corn and Soybean

Period 2015-01-05 to 2021-12-10

Number of days 1753

TS Attributes Values (Open, Close, High, Low)

Number of headlines/News 7172 (Corn) - 8394 (Soybean)

4.2 Pre-processing

We evaluated the predictive model performances considering weak labels in
positive and negative binary scenarios. The Positive Binary (PB) scenario has
the labels [0, 1], and Negative Binary (NB) one has the labels [–1, 0]. Table 2
presents examples of labeled headlines in agreement with the function formalized
in Sect. 3.1.

Table 2. News samples labeled using the labeling function.

Com. Date Headline Lab.

Corn 2016-01-12 Dólar sobe nesta 4a com atenção à poĺıtica interna; milho
acompanha

1

2016-06-21 Preços do milho recuam até 15% no Brasil com colheita
da 2a safra

–1

2017-03-27 Incerteza sobre a demanda por milho resulta em nova
queda de preço

–1

2018-02-27 USDA reporta a venda de 130 mil toneladas para destinos
desconhecidos

1

Soybean 2016-05-10 Chuva do ińıcio de outubro ainda não foi suficiente para
as lavouras no Sul do MS

1

2017-01-30 Com queda do dólar e perspectiva de safra elevada, preço
da soja cai no Brasil

–1

2018-11-30 Soja opera estável na Bolsa de Chicago observando ińıcio
da reunião do G20

–1

2020-09-21 USDA informa nova venda de 435 mil t de soja para
China e demais destinos

1

Among the 7172 corn headlines, 3209 were labeled as negative (–1), 66 as
neutral (0), and 3897 as positive (1). Regarding soybean headlines, 3681 were
labeled as negative, 82 as neutral, and 4631 as positive. In order to make a binary
assessment, negative labels were assigned as neutral in the PB scenario, and in
the NB one, positive labels were also changed to neutral.

Our work applies BoW-based representations, pre-trained NLM models, and
the proposed TD-BERT model for vector representation of the texts. In the BoW
modeling, we used three-term weighting techniques: Binary, TF, and TF-IDF.
We considered only unigram versions of each of these weighting terms. In these
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models, we applied a text cleaning process to decrease the data dimensionality
and increase representation quality. According to [1], this process improves the
quality of the classification algorithms. The cleaning steps were: (1) converting
words to lowercase and removal of accents; (2) removal of punctuation marks
and alphanumeric characters; (3) removal of stopwords; and (4) word-stemming.

We used three pre-trained neural language models to assess weak supervision
techniques: Multilingual (M) versions of BERT, M. DistilBERT, and the Por-
tuguese version BERTimbau [22]. In the pre-trained models, we do not use text
cleaning techniques to maintain the original text structure, which is essential for
context-dependent NLMs. Thus, the sentence transformers of each trained model
were employed as input for the predictive models. Also, we used the pre-trained
models to build the proposed models: TD-BERT (TD-Be), TD-DilstilBERT
(TD-Di), and TD-BERTimbau (TD-Ba).

4.3 Classification Models and Experimental Setup

We used five traditional classification algorithms: MLP, SVM, KNN, GNB, and
MNB. The parameters of the ML algorithms we adopted in our experiments
were default values of the scikit-learn library.

The time series split evaluation strategy was employed to consider temporal
dependence of the textual data, i.e., we train past news to evaluate a future
scenario. Thus, seven splits were used for eight evaluations. In this configuration,
each split represents one year of the textual dataset. Figure 4 outlines the time
series split assessment strategy adopted in this study.

Fig. 4. Time series split used in the experimental setup.

For the evaluation step, we used the F1 evaluation measure, which corre-
sponds to the harmonic mean of Precision 3 and Recall 4. Equation 2 defines
the F1 index. We employed this metric because the classes are imbalanced in all
evaluation splits.

F1 =
2 × Prec×Rec

Prec + Rec
, (2)

Prec =
TP

TP + FP
, (3)
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Rec =
TP

TP + FN
, (4)

where TP (True Positive) refers to the number of documents of a class in which
the algorithm has correctly classified, and FP (False) indicates the number of
documents that do not belong to a class the algorithm wrongly classified as
belonging. Finally, FN (False Negative) refers to the number of documents from
a class that the algorithm wrongly classified as another class.

4.4 Results and Discussion

We conducted an experimental evaluation to investigate two aspects of weak
supervision. In the first aspect, we sought to analyze each textual representation
model’s impact considering the five different classification algorithms. In the
second aspect, we assessed the influence of the neural language model on two
weak supervision classification tasks.

Concerning the first aspect, Tables 3 and 5 present the classification results
of the MLP, SVM, KNN, GNB, and MNB algorithms on the corn and soybean
datasets. This table covers an evaluation scenario PB for Corn and Soybean,
which we named CPB and SPB. Each row represents the result of F1 for a spe-
cific algorithm. In bold, we highlighted the highest values for each classification
model. The underlined values reflect the best performance of the textual repre-
sentation models (BoW, BERT and TD-BERT), and the value in parenthesis is
the best result considering all the performances.

Table 3. Positive binary evaluation results. Comparison (macro F1 measure) of BoW
models, pre-trained neural language and the proposed TD-BERT hybrid model.

Corn - Positive Binary (CPB)

Mod. Bin. TF TFIDF BERT Distil. B.Br TD-B TD-D TD-Br

MLP 0.496 0.495 0.495 0.486 0.488 (0.499) 0.378 0.342 0.356

SVM 0.456 0.454 0.452 0.431 0.422 0.412 0.416 0.389 0.388

KNN 0.484 0.483 0.490 0.476 0.479 0.492 0.483 0.486 0.495

GNB 0.439 0.439 0.444 0.496 0.485 0.497 0.494 0.495 0.462

MNB 0.487 0.488 0.451 – – – – – –

Soybean - Positive Binary (SPB)

Mod. Bin. TF TFIDF BERT Distil. B.Br TD-B TD-D TD-Br

MLP 0.490 0.488 0.488 0.476 0.489 0.485 0.344 0.312 0.352

SVM 0.440 0.439 0.442 0.398 0.371 0.387 0.381 0.355 0.357

KNN 0.483 0.481 0.484 0.478 0.474 0.486 0.477 0.474 0.481

GNB 0.470 0.470 0.469 0.498 0.499 (0.500) 0.494 0.481 0.469

MNB 0.472 0.472 0.436 – – – – – –

The neural language models were not processed for MNB because it does
not accept vectors with negative values. However, we considered it essential to
keep the MNB results for the BoW representations in order to compare them
with other results. Analyzing the highlighted values of CPB (bold) for each
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classification model, we observed that the representations BERTimbau (B.Br),
Binary (Bin), and TD-BERTimbau (TD-Br) obtained the best values F1. We
also noticed that the BERTimbau (MLP) model had the highest value among
all results (0.499). The SPB results showed Binary, TF-IDF, and BERTImbau
as the best values for each F1 ranking ratio, with BERTimbau (0.500) being the
highest value among all the SPB results. Table 4 presents the best CPB and SPB
results in terms of precision, recall, and accuracy.

Table 4. Evaluation metrics concerning the best SPB and CPB classification results.

CPB: BERTimbau (MLP) SPB: BERTimbau (GNB)

Prec Recall F1-score Support Prec Recall F1-score Support

0 0.489 0.385 0.422 2917 0.478 0.465 0.458 3358

1 0.534 0.636 0.574 3227 0.544 0.559 0.540 3836

Accuracy 0.518 0.511

Macro avg 0.512 0.511 0.499 6144 0.511 0.512 0.500 7194

Weighted avg 0.527 0.518 0.500 6144 0.546 0.511 0.517 7194

The CPB and SPB accuracies were 0.518 and 0.51, respectively. However,
looking at the support values of Table 4, we can see that the weak labels are
reasonably balanced. Therefore, by analyzing results for this type of evaluation,
Macro F1 becomes more appropriate. Regarding NB, Table 5 displays two assess-
ment scenarios. We called them the Negative Binary classification of Corn (CNB)
and Soybean (SNB) approaches. Table 6 lists the best results of CNB and SNB
concerning precision, accuracy, and recall.

Table 5. Negative Binary evaluation results. Comparison (macro F1 measure) of BoW
models, pre-trained neural language, and the proposed TD-BERT hybrid model.

Corn - Negative Binary (CNB)

Mod. Bin. TF TFIDF BERT Distil. B.Br TD-B TD-D TD-Br

MLP 0.491 0.495 0.496 0.482 0.497 0.493 0.358 0.343 0.362

SVM 0.452 0.451 0.451 0.428 0.418 0.411 0.406 0.375 0.374

KNN 0.484 0.481 0.490 0.474 0.479 0.492 0.485 0.483 0.494

GNB 0.439 0.439 0.443 0.497 0.490 (0.507) 0.493 0.494 0.469

MNB 0.491 0.490 0.446 – – – – – –

Soybean - Negative Binary (SNB)

Mod. Bin. TF TFIDF BERT Distil. B.Br TD-B TD-D TD-Br

MLP 0.48 0.487 0.488 0.474 0.481 0.485 0.339 0.288 0.344

SVM 0.434 0.432 0.432 0.389 0.363 0.378 0.376 0.358 0.364

KNN 0.471 0.471 0.472 0.471 0.468 0.480 0.47 0.47 0.478

GNB 0.451 0.452 0.453 0.500 (0.501) 0.496 0.485 0.486 0.461

MNB 0.474 0.473 0.429 0 0 0 0 0 0
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Table 6. Evaluation metrics regarding the best CNB and SNB classification results.

CNB: BERTimbau (GNB) SNB: DistilBERT (GNB)

Prec Recall F1-score Support Prec Recall F1-score Support

–1 0.489 0.520 0.492 2881 0.479 0.524 0.483 3339

0 0.554 0.520 0.520 3263 0.553 0.512 0.517 3855

Accuracy 0.517 0.506

Macro avg 0.521 0.520 0.507 6144 0.516 0.518 0.501 7194

Weighted avg 0.534 0.517 0.511 6144 0.552 0.506 0.513 7194

Observing the CNB results, we emphasize that the DistilBERT (Diltil.),
Binary, TD-BERTimbau, and BERTimbau (B.Br) representations had the high-
est values (bold) of F1 for each classification algorithm, respectively. Regarding
the SNB results, the TF-IDF, Binary, BERTimbau, and DiltilBERT represen-
tations achieved the best results. In this case, the values 0.517 and 0.569, in
parentheses, represent the best results of CNB and SNB, respectively.

Aiming to investigate the second aspect of the experimental evaluation, we
analyzed the impact of the neural language model on weak supervision. Accord-
ing to the underlined result of CPB and SPB in Table 3, the binary representa-
tion had the highest F1 values, i.e., 0.496 and 0.490, respectively. The Neural
language model BERTimbau performed better in the two scenarios with F1 val-
ues of 0.499 and 0.500. Finally, TD-BERTimbau and TD-BERT representations
achieved F1 results with values of 0.495 and 0.494. Thus, representations mod-
els based on neural language had better performance than the BoW models.
To illustrate the vector distribution of the texts, Fig. 5 presents a graph of the
textual representations that performed better in each representation model of
Table 3 (underlined values).

Fig. 5. CPB and SPB. PCA technique for plotting textual representations.
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The PCA technique was used to reduce the dimensionality of the textual
representation of the agricultural commodities dataset. We observed that head-
lines classified as positive (1) are more concentrated in the graph distribution,
while headlines classified as neutral are a little more sparse. Furthermore, the
CPB (TF-IDF) and SPB (TF) representations have smaller ranges on the axes
than the BERT-based representations. In this sense, we believe that this broader
spectrum can abstract more semantic information from texts.

Comparing the CNB and SNB underlined results in Table 5, the TF-IDF,
BERTimbau, DistilBERT, TD-DistilBERT, and TD-BERTimbau obtained the
best classification performance for the learning algorithms, respectively. The
DistilBERT and BERTimbau neural language models performed better for the
GNB method. In both experiments (PB and NB), we observed that the best
results came from representations based on Distilbert and BERTimbau with the
GNB and MLP models. Figure 6 illustrates a graph of the textual representations
that performed better in each representation model of Table 5.

Fig. 6. CNB and SNB. PCA technique for plotting textual representations.

Confronting the investigated strategies, we found that using BoW may reduce
performance. On the other hand, semantic features allow satisfactory results
when considering an extensive training set. Thus, we compared only the per-
formances of the BERT representations (BERT and Dist. B.Bau) and the pro-
posed TD-BERT model (TD-Be, TD-Di and TD-Bau) regarding the PB and
NB assessments. We can observe in Table 3 that among the best results, 75%
are from BERT models and 25% are from TD-BERT models. Concerning the
performances of Table 5, there was a tie of 50% for each representation model.
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5 Conclusion

We introduced an automatic text labeling approach using information extracted
from time series. This paper innovates by considering a weak supervision tech-
nique to label a large volume of texts. Text documents and agribusiness com-
modity price series were employed to assess performance in four classification
scenarios (CPB, SPB, CNB and SNB). Our experimental evaluation considered
nine textual representations and different learning paradigms. In addition, we
proposed a text representation model that measures the distance between Terms
and Documents from pre-trained BERT models (TD-BERT).

Regarding the best results of the Positive Binary and Negative Binary assess-
ment scenarios, ten between sixteen are representations from the BERT mod-
els (62.5%). The proposed TD-BERT models performed better in some cases
by analyzing neural language-based representation models. In general, neural
language-based representation models outperformed BoW-based models. How-
ever, a limitation of the TD-BERT models is processing time, and future work
can be conducted to reduce computational costs.

The designed labeling function can be an alternative to annotating a large
volume of text documents. Automatic labeling can be imprecise but useful when
many texts are not labeled. In this study, the limitation of the weak supervision
analysis consisted of the class imbalance. Future research can developed strate-
gies to propagate labels through semi-supervised learning to reinforce labeling.
In addition, through connectionist approaches, other external factors can be
used in the labeling function; e.g., we can consider a weighting coefficient in the
labeling of news.
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Abstract. The detection of transcription factor binding sites (TFBS)
play a important role inside bioinformatics challenges. Its correct identi-
fication in the promoter regions of co-expressed genes is a crucial step for
understanding gene expression mechanisms and creating new drugs and
vaccines. The problem of finding motifs consists of looking for conserved
patterns in biological datasets of sequences through the use of unsuper-
vised learning algorithms. For that reason, it is considered one of the clas-
sic problems of computational biology, which in its simplest formulation
has been proven to be NP-HARD. Moreover, heuristic and meta-heuristic
algorithms have been shown to be very promising in solving combina-
torial problems with very large search spaces. In this work, we propose
an evaluation of different heuristics and meta-heuristics approaches in
order to measure its performance: Variable Neighborhood Search (VNS),
Expectation Maximization (EM) and Iterated Local Search (ILS). For
each of them, two sets of experiments were carried out: In the first,
the heuristics were performed alone and in the second, a constructive
procedure was introduced with respect to improve the quality of ini-
tial solutions. Finally, the metrics were compared with the state-of-art
MEME algorithm, which is very used in biological motif discovery. The
results obtained suggest that the heuristics are more efficient when used
together and also, a constructive procedure was very promising, man-
aging to improve the performance metrics of the evaluated heuristics in
most experiments. Also, the combination between a constructive proce-
dure and EM proved to be quite competitive, managing to outperform
the MEME algorithm in several datasets.
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1 Introduction

In biological sequence analysis, motifs are small fragments of conserved
nucleotides that are presumed to have some biological significance. These small
patterns, most of the time, appear recurrently in the promoter regions of the
co-expressed genes [6]. They act as binding sites for specific proteins and play a
key role in the activation and primary repression of gene expression. Although
they are often found in promoter regions, they also appear in exonic sequences,
within introns, or on the negative strand of genes [19]. Although it is possi-
ble to identify motifs with relative precision using experimental techniques such
as DNAse footprinting, ChIPseq, gel-shift, and reporter construct assays, these
approaches are often expensive and time-consuming [12]. Furthermore, in each
experiment, it is possible to analyze only a small region of the gene. With the
increase in available data due to the number of sequenced genomes, it was nec-
essary to develop faster and cheaper techniques that would maintain a good
level of reliability in data analysis [5]. For this reason, computational techniques
have gained importance and are being widely used in the analysis of biological
sequences.

The main objective of finding motifs is to identify the sites responsible for the
gene transcription initiation. Through this information, it is possible to recognize
which sub-sequences have over-representation in relation to the others. In recent
years, many approaches have been proposed in the literature. In general, they are
divided into: i) approaches that use probabilistic models and ii) approaches that
use consensus sequences. Both techniques are reviewed in Sect. 2. Probabilis-
tic methods seek to maximize some type of probabilistic model or probabilistic
function created from the oligo sequences dataset, such as relative entropy or
some other statistical measure. These algorithms are generally quick to run,
however, depending on the optimization strategy, they can get stuck in local
optima. Exact approaches generally use the consensus sequence for motif repre-
sentation, employing some mathematical optimization as a search model. Often,
these approaches have a high convergence time, in particular for long motif
lengths.

This work aims to investigate the behavior of the VNS, EM, and ILS algo-
rithms applied to biological motif discovery problem. In that case, two different
evaluations were performed: i) first, the algorithms were executed alone on 10
datasets extracted from the Jaspar repository [17] and their results were col-
lected, ii) after that, the same tests were performed, but now, the construc-
tive procedure were used to initialize the solutions. Furthermore, this study
contributes to better understand the relationship among the heuristics used
applied to biological motif discovery, and also providing valuable information
that can guide for future works, such as build integrated frameworks for the motif
discovery.

The results suggest that using an initialization heuristic is a good way and
contributes positively to the quality of the solutions found, and this was even
more evident in the tests performed with the EM algorithm. The rest of the
paper is organized as follows: The bibliographic review is presented in Sect. 2. In
Sect. 3 the problem is defined and the implementation details of each algorithm
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are presented. In Sect. 4, the results are displayed and the discussion takes place.
Finally, in Sect. 5 the conclusion and the future steps that should be followed in
the continuation of this work are presented.

2 Literature Review

Due to its importance, the problem of finding motifs has already been the subject
of much research. One of the first surveys published in the area was in 2006 by
Sandve and Drabløs [18]. In their article, they listed more than 100 algorithms
applied in motif problem. In 2018, Nung Kion Lee et al. [10] published a work
whose focus was to enumerate the main Evolutionary Algorithms used in this
domain. The last review published until the writing of this work was in 2020, by
the authors Ying He et al. [9] whose essence was the survey of the main Deep
Learning techniques successfully employed in this context.

Due to the high density of algorithms, we will review just a few of them here.
Pavesi et al. published the WEEDER algorithm [16], in which motifs are mod-
eled as strings. The main idea of the weeder is to looking for strings (with some
degeneration degrees) that occur many times (as much as possible) in the input
sequences. To do this, they employed a suffix tree data structure and a strategy in
which a pattern-oriented search was used on the given strings. STREME [2] was
published by Timothy L. Bailey and finds fixed-length ungapped motifs. This
algorithm can find motifs limited to 30 columns wide in large sets of sequence
data. Its input consists of one or two sets of sequences, with the control sequences
having approximately the same distribution as the primary sequences. The pro-
gram uses Fisher’s Exact Test or Binomial Test to determine the significance of
each motif found in the positive set compared to its representation in the control
set. Just like WEEDER, STREME employs a suffix tree as its data structure
and this gives it high speed in the optimization process.

MEME [3] is a classic approach and is currently the most used algorithm by
the scientific community. Developed by Timothy L. Bailey and Charles Elkan,
its purpose is to perform the alignment of sequences using weight matrices.
Motifs are represented as probability matrices and optimized using a strategy
based on Expectation Maximization (EM). Although it was published in 1995,
MEME underwent constant updates and the last one, according to the MEME
SUITE platform [4], was carried out in August 2021. MotifSampler [22] is a
probabilistic motif detection tool idealized by Gert Thijs et al. The search is
performed through a stochastic optimization strategy, based on the Gibbs Sam-
pling approach, which looks for all possible sets of short DNA segments that are
over-represented in the sequence dataset. MotifSampler was originally published
in 2001, however, according to the authors, it was last updated in August 2020.

FMGA [13] is an approach based on Genetic Algorithms (GA) developed by
Liu F.F.M. et al. According to its authors, its aims to locate motifs between
–2000bp upstream and +1000bp downstream of several groups of co-expressed
genes. The motif pattern length is fixed until the end of GA and a distance-
based fitness function has been employed. An initial population of individuals is
randomly generated and after evaluation, an elitist competition is held so that
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individuals with the best fitness values are automatically qualified for the next
generation. MFEA [1] is an approach conceived by Faisal Bin Ashraf and Md
Shafiur Raihan Shafi, based on meta-heuristics that aims to minimize the trade-
off between exploration and exploitation of the search space through a mutation
technique defined over a normal distribution, thus managing to efficiently mea-
sure the adequacy of a candidate motif. The authors used a reference dataset
published by Tompa et al. [23] to evaluate the motifs found.

The heuristics implemented in this paper employ probabilistic scoring func-
tions, being therefore classified as belonging to the group of approaches that use
probabilistic models (group i). Furthermore, algorithms that use the constructive
procedure are better described by hybridization theory, which can be consulted
in article [21]. In this way, the results obtained by them were compared to the
results achieved by the MEME algorithm, which is a reference in the area and
one of the most used techniques by the scientific community to find biological
motifs.

3 Problem Definition and Algorithms

Let X = {x1, . . . , xN}, be a set of N sequences of length M , defined over an
alphabet Σ = {A,C,G, T}. Let w be the length of the motif. We start from
the premise that the relation 0 < w � M is true. Let Y = {y1, . . . yn} be a
set of n sequences of length w extracted from X. Each xi has L = M − w + 1
overlapping substrings. Thus, Y has L ∗ N substrings of length w. The problem
consists of classification the w-mers1 using only the data provided as input (ab-
initio). Motif finding can also be defined in a combinatorial way, in which we
want to find X∗ = {x∗

1, . . . , x
∗
N} and their respective initial positions in X.

The choice of a given pattern is based on the definition of one or more score
functions that measure the similarity or difference between motifs and their
respective occurrences. Li et al. [11] proved that the canonical definition of the
motif problem is NP-HARD even with the most simplified assumptions.

The solutions were implemented as integer vectors (the pseudo-code of all
algorithms used in this paper are available in the supplementary material). Each
vector index corresponds to a sequence in the dataset and each value reflects the
estimated starting position of each motif, with 1 ≤ pi ≤ L. For example, for a
dataset with N = 4 sequences and L = 10, S1 = {1, 6, 5, 10}, S2 = {2, 2, 7, 3}
and S3 = {6, 1, 2, 4} are valid solutions. The total number of valid solutions
is given by LN . First, each solution is converted into a set of oligo sequences,
as shown in Fig. 1a. Also in this figure, we have the frequency matrix (PFM).
Each PFMi,j element corresponds to the count of symbols in each column of the
string set. Given the assumption that symbols are independent and identically
distributed (i.i.d.), then each column of the PFM matrix can be modeled as a
Multinomial distribution, as shown in Eq. 1. To the left of Fig. 1b, we have the
PFM matrix with the addition of pseudo-counters. This technique is also known
1 Text segment of size w.
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as Rule of Succession or Laplace’s rule and its objective is to add small values
(normally one) to the PFM matrix when there are few available observations,
preventing further calculations from tending to infinity. To the right of Fig. 1b
we have the PWM matrix, which is calculated by dividing each entry of the PFM
matrix by n, where n is equal to the sum of the elements of an arbitrary column
of the PFM (all PFM columns add the same value). Assuming that the values of
a PWM are i.i.d, then each column can be modeled as a Dirichlet distribution,
as shown in Eq. 2. Finally, Fig. 1c displays the PSSM matrix. It is generated
by calculating the logarithm of the division of each entry in the PWM matrix
by the background probability (which can be obtained by counting the symbols
belonging to the genome of the studied organism). A positive entry in this matrix
implies that the probability of the symbol belonging to a specific distribution
is greater than the background probability. For this reason, the PSSM matrix
is also known as the log-odds matrix. Equation 4 shows how the PSSM matrix
is calculated. Once the PSSM matrix is created, then we can easily score the
substrings just by adding the values corresponding to each symbol. The sum of
all values in the PSSM matrix is called Information Content (IC). Equation 4
shows how this value is calculated. Through the IC, it is possible to assess the
suitability of each solution.

Pr(X1 = x1,X2 = x2, . . . , Xk = xk) =
Γ (

∑
i)xi + 1

∏
i Γ (xi + 1)

k∏

i

pxi
i (1)

where xi represents the counts and pi represents the probability of the i-th
symbol respectively.

Pr(P1 = p1, . . . , Pk = pk;α1, . . . , αk) =
1

β(α)

k∏

i

pαi−1
i (2)

where pi represents the probability and αi represents the counts of the i-th
symbol respectively.

PSSMk,j = log2

[
(PWMk,j)

bk

]

(3)

where PWMk,j represents the j-th probability of the line k and bk represents
the background probability of the k-th symbol.

IC =
Σ∑

i=1

w∑

j=1

Θ(i,j) log2

[
Θ(i,j)

Θ(0,i)

]

(4)

where w is the length of the motif, Σ is the number of symbols in the alphabet
(Σ = 4 for nucleotides), Θ(i, j) is the matrix of relative frequencies and Θ(0, i)
is the background probability vector.
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Fig. 1. Step-by-step construction of the PSSM matrix. (a) Left, motif alignment; on the
right, PFM matrix (Position Frequency Matrix). (b) Left, PFM with pseudo-counters;
on the right, PWM matrix (Position Weight Matrix); (c) PSSM matrix.

3.1 VNS

VNS is a meta-heuristic proposed by Mladenović and Hansen [15] whose objec-
tive is to solve complex combinatorial problems in large search spaces. Its basic
operation is based on searching increasingly distant neighborhoods with the hope
of finding more promising solutions. According to its authors, the VNS is based
on the following principles: i) a local minimum found with the help of a certain
neighborhood structure is not necessarily a local minimum for another neigh-
borhood; ii) The global minimum is a local minimum for any neighborhood
structure; iii) local minima are located close to each other.

First, the initial solution S is generated randomly. It is then converted to a
PSSM matrix and its score is calculated. From this point onwards, the search
for more distant neighborhoods starts. The search starts with k = 1 and goes to
kmax. An intermediate solution Q is generated from a perturbation applied to S.
The level of disturbance depends on the value of k, the greater the disturbance,
the more intense it is. In practice, this is reflected in the search for a more
distant neighborhood. If IC(Q) > IC(S), then S = Q and k = 1. Otherwise,
k is incremented and a new perturbation is applied. This is until the algorithm
reaches convergence or a maximum number of iterations has been reached.
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3.2 EM

Originally created by Dempster 1977, the EM algorithm consists of basically
two main steps, called E and M . In step E, the expectation is calculated using
the log-likelihood function and in step M , the model is re-estimated with the
data obtained in step E. The premise is that the samples belonging to Y have
originated from at least two distributions belonging to the same family. Mixture
models can be used to represent a p(y) distribution through a convex combina-
tion of k distributions. In this implementation, we model the following distribu-
tions: i) background distribution and ii) motif distribution. Both are categorical,
but the latter is positional.

Let a dataset Y = {y1, . . . , yn}, in which yi was extracted i.i.d. from an
unknown distribution p(y). The objective of the algorithm is to find an approxi-
mate representation of this unknown distribution through a mixture model with
k = 2 components. The model parameters are Θ = {θ1, θ2} and Λ = {λ1, λ2},
where θ1 and θ2 represent the background distribution and the motif distribu-
tion respectively. The parameters λ1 and λ2 are the weights of each model, such
that λ1 +λ2 = 1. The E step of the algorithm starts with defining the predictive
distribution of yi which is given by Eq. 5. From this equation, we can write the
likelihood function of the Y dataset (Eq. 6). For numerical reasons, it’s better to
work with the odds log. Thus, we finally have the log-likelihood, represented by
Eq. 7. To find the parameters that maximize this equation, we resort to calculus.
For that, we need to derive 7 with respect to Θ and Λ (Eqs. 8 and 9). By solving
Eqs. 8 and 9 for Θ and Λ, Eqs. 10 and 11 appear. After the expectation step,
EM re-estimates the parameters of the k models through Eqs. 12 and 13 (step
M). The algorithm alternates between steps E and M until convergence or by
a number of iterations defined a priori. The models Θ0 and Λ0 are initialized
randomly. In particular, to initialize θ2 (distribution of the motifs model) the
algorithm converts a set of oligo sequences into a probability matrix, as shown in
Eq. 14. The parameter θ1 is initialized using the following uniform distribution,
θ1 = {0.25, 0.25, 0.25, 0.25}.

p(yi|Θ,Λ) =
2∑

k=1

λkp(yi|θk) (5)

where p(yi|Θ,Λ) represents the predictive distribution of the example yi and
p(yi|θk) is the likelihood function of yi given the model k.

p(Y |Θ,Λ) =
n∏

i=1

p(yi|Θ,Λ) (6)

where p(Y |Θ,Λ) is the probability of the dataset given the model.

L =
n∑

i=1

log(p(yi|Θ,Λ)) (7)
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where L is the log-likelihood of the dataset given the model.

∂L
∂θk

=
n∑

i=1

∂ log(p(yi|Θ,Λ))
∂θk

(8)

∂L
∂λk

=
n∑

i=1

∂ log(p(yi|Θ,Λ))
∂λk

(9)

∂L
∂θk

=
n∑

i=1

1
p(yi|Θ)

∂p(yi|Θ)
∂θk

(10)

∂L
∂λk

=
n∑

i=1

1
p(yi|Θ)

∂p(yi|Θ)
∂λk

(11)

where ∂L
∂θk

and ∂L
∂λk

are the partial derivatives of the log-likelihood function in
with respect to θk and λk.

θknew =
∑n

i=1 yiλkp(yi|θk, λk)
∑n

i=1

∑2
k=1 yiλkp(yi|θk, λk)

(12)

λknew =
∑n

i=1 λkp(yi|θk, λk)
n

(13)

where θknew and λknew are the models θk and λk after the j-th iteration.

θ2 =
F (x; i)

∑
y∈a,c,g,t F (y; i)

,∀i, 1 ≤ i ≤ w (14)

where F (x, i) represents the absolute frequency of the symbol x in the column i.

3.3 ILS

The ILS algorithm was first published under that name in the seminal work of
Thomas Stützle in 1998 [20]. Since then, several works have been done, including
the recent study in [14]. At first, a solution S is generated randomly, and then
the EM algorithm is used to perform a local search in S, generating S∗. After
that, a perturbation is applied to S∗ generating S∗∗.

The perturbation needs to be strong enough to allow the local search to
explore different solutions and weak enough to prevent a random restart. An
adaptive function was used for this purpose. In that case, the function can per-
turb up to k = w components of the vector S∗. With the increase of iterations,
the value of k progressively decays according to Eq. 15. This equation has the
following property: limi→∞ k = 1 This means that the algorithm will explore
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more at the beginning and exploit more at the end. If δ = IC(S∗∗) − IC(S∗)
is positive, then the solution S∗∗ is accepted. Otherwise, an uniform distributed
variable r is drawn. If r < g(T, δ), then the solution S∗∗ is accepted, otherwise
S∗ remains the current solution. g is an exponential decay function such that
g(δ, T ) = exp(δ/T ).

k = h(i) = �1 + imax/(
imax

w
+ i)� (15)

where i is the value of the i-th iteration, imax is the hyperparameter represent
the expected number of iterations until convergence.

3.4 Constructive Procedure

The constructive procedure used in this paper was based on GRASP meta-
heuristic published in 1995 by Thomas A. Feo and Mauŕıcio GC. Resende [7]. In
general, the algorithm has two stages: i) constructive phase and ii) local search.
In this work, we have used only the constructive step, and all details are described
as follow: the constructive step of GRASP can be carried out through several
types of strategies. In this paper, the randomized greedy procedure created by
Hart and Shogan [8] was used. This process is known to make a random choice
from a restricted set, greedily organized.

This set is called the Restricted Candidate List (LCR). What the algorithm
does is sort each solution by its cost (for this Eq. 4 is used) and add them to the
LCR. LCR size is a hyper-parameter that needs to be controlled. If |LCR| = 1,
then the algorithm becomes greedy, otherwise, if |LCR| is too big, then the
algorithm becomes random. In the motifs problem, an important point is to
know which will be the first element to be inserted in the solution vector. If the
starting position is too far from the correct position, the solution will be poor.
To solve this problem, L solutions are created with GRASP and only the best
ones are chosen at the end of the process. This guarantees that, ∀l ∈ L, ∃S such
that S = G(l), where G(.) is the GRASP constructive function. In other words,
GRASP generates a valid solution for each starting position in the string dataset.
To make it easier to read, from this point forward we will call our construction
procedure GRASP.

4 Experiments

The following combinations of experiments were performed: i) VNS, ii) EM, iii)
ILS, iv) GRASP+VNS, v) GRASP+EM, vi) GRASP+ILS, and vii) MEME.
Each experiment was run 30 times on each dataset. In addition, each algo-
rithm received 300 s of processing time for stop condition, except for the MEME
that ran to completion. This was necessary so that the tests were adequate
from a computational point of view and the comparison between the approaches
could be carried out without bias. All algorithms and their respective parameters
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can be found at the following address: https://drive.google.com/drive/folders/
1oPW0plMuD9SmQMtJuXxkO3ll9paVVoMK?usp=sharing. In addition, the
MEME algorithm was downloaded from the following site: https://meme-suite.
org/meme/. It is important to note that the best parameters were chosen through
trial and error, since this choice is an optimization process by in itself.

4.1 Datasets

To perform the experiments, 10 datasets of organisms H. sapiens and Mus.
musculus were randomly extracted from the Jaspar repository [17]. For each
algorithm, the mean and standard deviation of the f-score was calculated. This
procedure was not performed for the MEME, as it is a deterministic approach,
its score does not vary over the runs. Therefore, the metrics extracted from
this algorithm were obtained from only a single execution. To calculate the f-
score, the initial positions found by each approach were converted into a matrix
N×M of 0s and 1s in which 0 indicates absence and 1 presence of motif. For each
position p, w sequences of 1s are generated. The same procedure is performed
for the real motif locations. This method allowed a very accurate calculation
of motifs positioning and, consequently, greater rigor in measuring the f-score.
After that, the confusion matrix was generated and the f-scores was calculated
according to: F1 = 2 × precison×recall

precison+recall .

4.2 Results and Discussion

Table 1 illustrates the results achieved by each approach. In that case, we can
note VNS, EM and ILS approaches had a weak performance to find good results
when executed by itself (without GRASP combination). Moreover, considering
the quality of results found by MEME, it is important to highlight MEME
is also based on Expectation Maximization, but it also employs other helper
mechanisms that guide the optimization process across the search space. For
that reason, we realized the limitations found by EM when compared to MEME.

Furthermore, after GRASP inclusion in the experiments, we noted an increase
of the quality of solutions by the improved initialization strategy. Also, all algo-
rithms combined with GRASP have improved the quality of solutions when
compared to its stand alone version. These results indicate the benefits of
GRASP algorithm as a constructive heuristic. In addition, we realized a signifi-
cant improvement with GRASP+EM in 8 (MA0036.2, MA0463.1, MA0475.1,
MA0479.1, MA0497.1, MA0506.1, MA0508.1, and MA0518.1) out of the 10
evaluated datasets. The major important difference was identified in MA0036.2
dataset, where the GRASP+EM approach scored an average of 0.964 ± 0.059,
followed by GRASP+ILS (0.951±0.081) and MEME (0.913). GRASP+ILS algo-
rithm had also achieved good results compared with MEME, achieving higher
scores in 4 datasets (MA0036.2, MA0497.1, MA0506.1, and MA0518.1) and tying
in 2 (MA0463.1 and MA0508.1). However, this approach has still some limita-
tions to found best solutions in some datasets. A possible limitation of this
approach is related to decrease process of k value or the stochastic nature of

https://drive.google.com/drive/folders/1oPW0plMuD9SmQMtJuXxkO3ll9paVVoMK?usp=sharing
https://drive.google.com/drive/folders/1oPW0plMuD9SmQMtJuXxkO3ll9paVVoMK?usp=sharing
https://meme-suite.org/meme/
https://meme-suite.org/meme/
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the acceptance function. Also, these limitations will be further investigated in
future works. Finally, MEME was the best algorithm in 2 datasets (MA0106.2,
MA0523.1) and performed better than GRASP+ILS in 4 (MA0106.2, MA0475.1,
MA0479.1, and MA0523.1). In summary, GRASP+EM had 8 wins and 2 losses,
with a balance of 6. GRASP+ILS had no wins, with a final balance of –10, and
MEME had 2 wins and 8 losses, ending with a balance of –8.

Table 1. F-measure achieved by each algorithm in the performed experiments.

ID VNS EM ILS GRASP+VNS GRASP+EM GRASP+ILS MEME

MA0036.2 0.156 ± 0.003 0.308 ± 0.002 0.809 ± 0.099 0.411 ± 0.029 0.964 ± 0.059 0.951 ± 0.081 0.913

MA0106.2 0.164 ± 0.001 0.141 ± 0.013 0.802 ± 0.111 0.341 ± 0.004 0.946 ± 0.067 0.942 ± 0.063 0.952

MA0463.1 0.156 ± 0.002 0.126 ± 0.006 0.591 ± 0.247 0.408 ± 0.052 0.969 ± 0.009 0.962 ± 0.008 0.962

MA0475.1 0.116 ± 0.004 0.361 ± 0.013 0.669 ± 0.102 0.343 ± 0.025 0.905 ± 0.014 0.898 ± 0.002 0.900

MA0479.1 0.112 ± 0.002 0.146 ± 0.072 0.841 ± 0.137 0.035 ± 0.058 0.986 ± 0.004 0.982 ± 0.005 0.983

MA0497.1 0.213 ± 0.008 0.425 ± 0.009 0.691 ± 0.105 0.529 ± 0.042 0.962 ± 0.009 0.957 ± 0.023 0.956

MA0506.1 0.111 ± 0.003 0.079 ± 0.003 0.786 ± 0.052 0.034 ± 0.024 0.840 ± 0.014 0.838 ± 0.034 0.832

MA0508.1 0.158 ± 0.004 0.585 ± 0.001 0.828 ± 0.034 0.556 ± 0.032 0.956 ± 0.007 0.951 ± 0.019 0.951

MA0518.1 0.146 ± 0.006 0.239 ± 0.002 0.619 ± 0.152 0.504 ± 0.026 0.990 ± 0.005 0.983 ± 0.051 0.968

MA0523.1 0.146 ± 0.005 0.352 ± 0.091 0.821 ± 0.108 0.435 ± 0.039 0.971 ± 0.007 0.971 ± 0.012 0.984

4.3 Statistical Analysis

Analysis by counting wins and losses is insufficient to conclude whether one
approach is superior to another. For this reason, we performed a hypothesis test
on the results obtained by each algorithm. The non-parametric Friedman test
with post-hoc Dunn-Bonferroni was applied because the data failed the Shapiro-
Wilk test.

The objective of this analysis was to compare the results obtained by the
algorithms using statistical methods, in order to identify significant differences
between the metrics obtained by the approaches. Statistical significance tests
were performed between the methods that achieved the highest f-scores in the
experiment steps: GRASP+EM, GRASP+ILS, and MEME. The tested hypothe-
ses were: {

H0 : median of differences = 0
H1 : median of differences 
= 0

Table 2 displays the results achieved by the algorithms in the Friedman and
Dunn-Bonferroni tests (Bonferroni correction is used in paired tests with the
objective of repairing type-i errors). Through it, we can conclude that, for most
datasets, the Friedman test showed that there is a predictor effect on the f-scores.
Furthermore, Dunn-Bonferroni’s post-hoc pointed out that the f-scores achieved
by GRASP+EM tend to be higher than the f-scores obtained by GRASP+ILS
and MEME. According to the calculated p-values, of the 10 datasets, it is possible
to conclude that GRASP+EM was better in 7 of them (MA0036.2, MA0463.1,
MA0475.1, MA0497.1, MA0506.1, MA0508.1 and MA0518.1). MEME achieved
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significantly better results in 2 (MA0106.2 and MA0523.1). With a p-value of
0.272531, it was not possible to conclude which approach did better in dataset
MA0479.1. Figure 2b shows the distribution of data, considering the average of
the 30 executions in the 10 datasets. It is interesting to note in Fig. 2a that,
although GRASP+EM has some outliers, the dispersion (interquartile range) is
the smallest all of them. This indicates that their results were more homogeneous
and consequently more consistent. Furthermore, if we disregard the outliers,
GRASP+EM achieved the highest f-score among the maximums and minimums
obtained by the 3 approaches. Although GRASP+ILS achieved worse results
than MEME in statistical tests, its metrics spread less, which indicates greater
similarity. Also according to Fig. 2a, MEME was the algorithm that presented
the greatest dispersion of data, suggesting a greater variation between its results
across all datasets. Figure 2b shows the data distribution in stack histogram
format. In that case, it is possible to notice that the metrics were concentrated
0.90 and 1.00 (space most to the right of the graph). Analyzing this region,
it is evident that the GRASP+EM algorithm has a greater representation in
relation to the others. In the other regions of the graph, the algorithms were
visually similar, with the exception of the central region, where GRASP+EM
has a smaller representation.

Figure 3a estimates kernel density (KDE) belonging to each distribution con-
sidering the average of the f-scores achieved by each approach in each dataset.
In it, we can verify that the curves drawn by each algorithm escape the “bell”
format, characteristic of Gaussian’s distributions, exhibiting in some cases multi-
modality. In addition, Figure 3b shows the classic quantile-quantile plot, which
represents the empirical and theoretical quantiles, assuming a normal distribu-
tion. We can note that the data on the diagonal of the graph are not well-fitted,
indicating that they cannot be approximated by a Gaussian distribution. Ana-
lyzing Fig. 3 in its entirety, we can see that the pooled data cannot be approx-
imated by a normal distribution. This analysis was necessary to provide the
correct direction for the next tests performed. Figure 4a shows the critical differ-
ences plot between the approaches. This graph is interesting because it visually
shows whether there is a significant difference between the examined algorithms.
Through it, we can clearly see that there is a difference between GRASP+EM
and GRASP+ILS. Although this diagram did not show that GRASP+EM was
different from MEME, it is possible to see that a horizontal line separating them
is quite long, which indicates a borderline value. To aid in the analysis of the
previous figure, we plot Fig. 4b. Through it, we can directly visualize the p-
value matrix constructed by making all pairwise comparisons (corrected using
the Bergmann and Hommel procedure). Also in this figure, it is possible to con-
clude that the GRASP+EM algorithm was different (p-value ≤ 0.05) in relation
to the MEME and GRASP+ILS approaches. It was not possible to conclude
whether MEME and GRASP+ILS achieved different performances.
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Table 2. P-values obtained in the tests of Friedman e Dunn-Bonferroni. ***(0.001),
**( 0.01), *(0.05), =(no difference). G+EM (GRASP+EM), G+ILS (GRASP+ILS).

Dunn Bonferroni pairwise p-value

ID Friedman p-value Result G+EM vs G+ILS G+EM vs MEME G+ILS vs MEME Winner

MA0036.2 2.460e–13 *** 0.000901 7.797e–14 0.000188 G+EM

MA0106.2 1.094e–09 *** 0.084557 0.000108 7.55e–10 MEME

MA0463.1 0.007202 ** 0.029469 0.013526 1 G+EM

MA0475.1 0.017715 * 0.466741 0.013526 0.466741 G+EM

MA0479.1 0.272531 = 0.364005 1 0.735834 None

MA0497.1 5.095e-11 *** 1.373e–10 0.364005 1.434e–06 G+EM

MA0506.1 5.942e–06 *** 0.466741 5.346e–06 0.002367 G+EM

MA0508.1 0.003345 ** 0.005837 0.020118 1 G+EM

MA0518.1 2.997e–12 *** 0.013526 1.453e–12 3.410e–05 G+EM

MA0523.1 9.925e–11 *** 0.905098 3.608e–07 7.554e–10 MEME

Fig. 2. Distribution of f-scores considering all datasets. (a) Boxplots of the best algo-
rithms. (b) Histogram in stack format of the best algorithms.

Fig. 3. (a) Kernel density estimation (KDE) of the sample distributions. (b) Quantile-
quantile plots representing the empirical and theoretical quantiles of the data.
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Fig. 4. (a) Critical plot differences between algorithms. (b) P-value matrix using Fried-
man test with Bergmann and Hommel correction.

5 Conclusion

In this paper, we present an evaluation among different heuristics approaches
and highlighting the benefits when these heuristics are associated with a non-
randomly initialization strategy. This was evident when all algorithms were ini-
tialized with a constructive procedure. Also, GRASP proved to be a very promis-
ing constructive heuristic, contributing to each heuristic optimize the search
space. At the same time, EM algorithm proved to be an important enhancer,
achieving good results when associated with a some kind of constructive meth-
ods. Although EM has a fast convergence and, some times, gets stuck into local
optima, it has proven to be very effective in improving non-randomly initial-
ized solutions. In general, EM needs good initial sampling to get satisfactory
results and GRASP can provide this through its constructive mechanism. The
ILS-based approach proved to be quite promising, but it still needs some adjust-
ments in future works, especially in relation to the perturbation and acceptance
function. Finally, we intend to use the results achieved in this study to explore
new heuristics and, in this way, propose an unified framework that can be used
in different domains of problems.
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Abstract. In this paper, a variation of a genetic algorithm for optimiza-
tion problems is presented, focusing on the adjustment of the mutation
rate parameter by fuzzifying the diversity of the population and the value
of the individual’s adaptation. Here, it is important to remember that
this parameter directly interferes with the convergence and quality of the
solution found by the genetic algorithm. To evaluate the performance of
the proposed solution, experiments were conducted on the OneMax prob-
lem, analyzing aspects such as: convergence, quality of the solution, the
diversity of the population, and the number of individuals evaluated.
Obtained results and their impacts are presented in this paper.

Keywords: Genetic algorithm · Mutation rate · Fuzzy logic · OneMax

1 Introduction

The Genetic algorithms simulate the process of species evolution described in
Darwin’s theory combined with the concepts of heredity, crossover, and mutation
from genetic biology [5]. With the goal of exploring the search space of complex
problems behind a global optimal solution, by performing both a macro search
and a micro search in the investigation space of the problem.

The macro search is performed by mutation and serves to identify the promis-
ing sub-spaces. These are the sub-spaces of the search space whose solutions have
better quality than the solutions of the neighboring sub-spaces. Micro search is
performed by crossover, on the other hand, it will work on the promising sub-
spaces in order to find the local optimal solutions of a promising subspace, as
shown in Fig. 1.

To perform macro search, genetic algorithms make use of the mutation rate,
which is responsible for determining how many new search sub-spaces will be
considered for construction in the next iteration of the algorithm. Finding the
best value for the mutation rate is a challenge, since different problems may
require different values. The choice of mutation rate is determined before the
algorithm is run by the programmer, who may use a default value, a success value
for a problem in the same class, or a value obtained by trial-and-error. However,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. C. Xavier-Junior and R. A. Rios (Eds.): BRACIS 2022, LNAI 13653, pp. 195–208, 2022.
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Fig. 1. Search space illustration

all of these ways of choosing the mutation rate can produce an inefficient macro
search. A macro search is considered efficient when the diversity of the population
worked on by the genetic algorithm is maintained throughout its execution.

One proposal for maintaining population diversity is to have the mutation
rate value calculated as a function of the diversity present in the current pop-
ulation and the quality value assigned to an element of the population. In the
literature there are several approaches for performing this calculation, such as:

– The study by FERRARI (2014) [6], used Fuzzy Logic to determine the
crossover and mutation rate parameters iteratively in Differential Evolution,
showing that the algorithm using Fuzzy Logic converges faster than the con-
ventional Differential Algorithm.

– In the master’s dissertation by BURDELIS (2019) [3] Fuzzy Logic was also
used to decrease the number of generations and the time required for the
Genetic Algorithm to converge for different problems such as Traveling Sales-
man, Function Minimization, thus showing a great approach to using this
logic for problem solving.

– The work in CARVALHO (2017) [4], analyzed the mutation rate and the
crossover rate, in relation to the convergence time of elitist GAs. These rates
ranged from 0.11 to 0.9, using the 8-bit binary representation. It was applied
to one-dimensional and two-dimensional problems. Hence, the author con-
cluded that the mutation operator had the greatest influence on convergence
speed relative to the crossover operator.

The present work proposes a calculation method for the value of the mutation
rate based on the fuzzyfication of the diversity found in the current population
and the value of the quality assigned to the individual to be mutated, where,
initially was develop the Holland’s genetic algorithm [8] to be compared with
the algorithm proposed in the paper.

2 Background

2.1 Genetic Algorithm

Simple genetic algorithm (Simple GA) is a parallel guided random search algo-
rithm for solutions to an NP-complete problem [9], whose idea is to assume the
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existence of one or more operators capable of modifying a bag of solutions of fixed
size, called population, for the problem in focus into another bag of solutions
with better quality.

The solutions that make up the population are called individuals. Each indi-
vidual represents the encoding, in a binary vector of fixed size, of a solution
belonging to the solution space of the problem. The quality of the population
is the sum of the quality of all its individuals. The quality of an individual is
calculated by a function defined by the programmer that relates the objective
and the intention of the problem.

The operators responsible for transforming the initial population into a final
population containing the individual that is the solution to the problem are
selection, crossover, and mutation as shown in Fig. 2.

Fig. 2. Basic structure of simple GA

According to this Fig. 2, the genetic algorithm starts in the population mod-
ule, which can be generated by a population according to some heuristic or
captured from the environment the population. If the solution to the problem
is present in this population, the algorithm will finish its execution and display
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the individuals with the best quality. Otherwise, the search operators will start
their work.

First, the individuals in the population go through the quality assessment
procedure, which calculates the fitness adaptation of each individual. Next, the
selection operator uses the roulette wheel method, which consists of a roulette
wheel that assigns each individual a slice with a size proportional to its score
[11]. Once the roulette wheel is created, it is spun n times until a section corre-
sponding to an individual is selected. This process is repeated until the number
of parents is equal to the expected number, thus composing the population of
Ancestral individuals, which will undergo both crossover and mutation by the
genetic operator.

The crossover or recombination operator is inspired by sexual reproduction,
with the goal of heritable transmission of adapted characteristics from the cur-
rent population to future generations [13]. This operator takes as input a real
value, n individuals from the Ancestry population and a set of n − 1 integer
values. It then generates a random number belonging to the interval [0, 100] and
asks if it is smaller than the real number, if yes, it will generate n individuals
formed by interweaving the pieces of the provided individuals from position 1
to the first provided integer value i1, from position i1 to the second provided
integer value i2, ..., from position in−2 to the last provided integer value in−1

(Fig. 3).

Fig. 3. Crossover
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The mutation operator (Fig. 4) is intended to ensure the appearance of new
features in the population [9]. Thus, it serves to drive the evolution of the pop-
ulation through search sub-spaces not yet investigated. This operator takes an
individual from the Ancestry population and a real value. It then generates a
random number belonging to the range [0, 100] and asks if this value is smaller
than the provided real number, if yes for each position of the provided individual
a random value between [0, 1] is generated, if the rounded value is 1 then the
position value is changed.

Fig. 4. Mutation operator

Finally, the fitness evaluation procedure will calculate the fitness of each
individual generated by the action of the genetic crossover and mutation opera-
tors, then the selection operator will select the most valued individuals to join
the best-fit chromosomes from the current population, thus forming the new
population.

2.2 Fuzzy Logic

Fuzzy logic may be seen as a response to the need to perform the representation
of imprecise knowledge expressed in natural language by a human, being a form
of many-valued logic in which the truth-values of the propositions are interpreted
as degrees of truth, typically expressed by any real number between 0 and 1 [7].
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Unlike classical logic, in fuzzy logic a given proposition is evaluated by assign-
ing degrees of truth to it, considering a degree of membership, typically expressed
by any real number between 0 and 1, ranging between completely true and com-
pletely false. The information is fuzzified using a membership function.

The fuzzy sets and its subsets comes from mathematical modeling, where a
subset A of a set of subsets U is considered a fuzzy subset of subsets U, and can
be described as a set of ordered pairs:

A = {(x, µA(x)); x ∈ U(x) ∈ [0, 1])µA(x) ∈ [0, 1]} (1)

where:

– µA(x), is a membership function that determines to what extent x is in A;
– µA(x) = 1, x belongs entirely to the set A;
– 0 < µA(x) < 1, x partially belongs to the set A;
– µA(x) = 0, x does not belong to the set A;

The fuzzy subset A of x is defined using a function µ, which is called a
membership function. This function associates each element of x with a degree
µA(x ), between 0.0 and 1.0, where x belongs to A:

µA : x → [0, 1]

Fuzzification. The fuzzification process occurs through the relationship of the
imprecision found in natural language when being translated into input values for
fuzzy description. According to the author IVANQUI [1], the fuzzification process
aims to transform the numerical values (non-fuzzy) of the input variables into
fuzzy values, that is, this process occurs to allow the mathematical modeling of
the input information through fuzzy sets, which can be represented by functions,
such as triangular, trapezoidal and Gaussian functions.

Fuzzy Rules and Inference. The behavior of the fuzzy system is dynamic,
being modeled by means of fuzzy rules. These rules are important in the knowl-
edge structure of the inference system, related to the fuzzy variables associated
with one of its predicates or linguistic terms, being defined as follows:

If < antecedents > then < consequents >

The antecedents and consequents of a fuzzy rule are: propositions containing
linguistic variables and associated fuzzy sets:

If A is a and B is b then C is c

These rules are obtained by experts, in the form of linguistic sentences, and
are a key aspect in the performance of a fuzzy inference system. The rule base
and the data base form the knowledge base of a fuzzy system [1].
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Defuzzification. In the defuzzification phase, the values inferred through fuzzy
rules, will have a numeric (non-fuzzy) value as equivalence. In this phase, we look
for a single discrete numeric value that can represent the values inferred through
the output variables [1]

3 Methodology

3.1 Test Environment

The test environment used to make the comparisons was Google Colab (Google
Computer Engine)1 which has the following settings:

– RAM: approximately 12 GB;
– HD: approximately 108 GB;

Python version 3.7.13 was used, and some libraries were also used, such as:

– ipython-autotime version 0.3.1 to determine the runtime;
– matplotlib version 3.2.2 to show the graphs;
– scikit fuzzy version 0.4.2 to build the fuzzy system;

3.2 Problem Description

The problem worked on in this paper was OneMax, which consists of counting
the one (1) bits that each chromosome has, and also represents the fitness of the
individual. Thus, the optimal binary is the string where all bits are one (1). The
solution space or domain of the OneMax problem depends on the length of the
string, an important feature of the OneMax domain is that all bits are unrelated
[8]. The simplicity of the OneMax problem makes it an excellent candidate for
studying the performance evaluation of simple genetic algorithm, Fuzzy logic on
mutation rate.

3.3 Genetic Algorithm

The genetic algorithm developed in this work follows the following specification
[8]:

– Representation of the individual: binary vector of size m.
– Population representation: vector of individuals of size n.
– Genetic operators:

1. Roulette Selection: creates a roulette wheel of individuals, where the
area occupied by each individual is proportional to its adaptation, so the
adapted individuals occupy a larger area [9].

2. Crossover: of a cut-off point with rate in 90%, both defined in according
the theoretical reference.

1 https://colab.research.google.com.

https://colab.research.google.com
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3. Mutation: per complement defined in the theoretical reference, with
mutation rate adjustable by fuzzy rules.

4. Elitist Selection: which chooses the best-fit individuals present in the
current population and generated by genetic operators to compose the
next population.

3.4 Application of Fuzzy Logic

In our application of fuzzy logic, we have considered the possibility of twenty-
five rules for the OneMax problem, using the triangular membership function
representation. The rules have the following antecedent values of the individual’s
adaptation and population diversity (PD), both with the fuzzy set ‘very bad’,
‘bad’, ‘medium’, ‘good’, ‘verygood’ as represented in Fig. 5 and as a consequence
the individual’s mutation percentage (MP), which is represented by the fuzzy
set ‘verylow’, ‘low’, ‘medium’, ‘high’, ‘veryhigh’, which is described in Fig. 6
[0, 100] (Table 1).

Fig. 5. Population quality and diversity

Fig. 6. Mutation percentage graph
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The rules adopted in the fuzzy system were expressed as follows:

Table 1. Fuzzy rules

3.5 Evaluation Metrics

The metrics chosen in this work to perform the comparison were the number of
generations, the diversity of the population, the runtime required for the genetic
algorithm to find the solution to the problem, the score of the best chromosome
per generation interval, and the T-Student test analysis.
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4 Results and Discussions

Each algorithm was run 100 times, that is, each run means that the algorithm
was started and is only stopped when it finds the solution to the problem. When
it is found, the data is stored and then the system is restarted, this looping
happens until the 100 runs are completed, and then the results are extracted, as
shown in the graph in Fig. 7.

Fig. 7. Execution graph

Figure 8 shows the total time of the 100 runs that each algorithm obtained,
that is, the arithmetic mean of the time that each run took to find the best
solution to the OneMax problem. Given the Fig. 7, it is remarkable how much
difference there is in the execution time of the two algorithms.

The simple genetic algorithm performed worse, about 54.0s, when compared
to the performance of the auto adaptive genetic algorithm, with a run time of
about 16.0s. Across all runs, the run time of the simple GA is about 237.5%
longer than the fuzzy logic algorithm.

One of the reasons analyzed for this difference in the time of the simple GA
compared to the self-adaptive GA was the delayed convergence of the population,
as seen in (LINDEN, 2012), due to destruction or chromosomes with good scores.
The destruction being generated by the action of the genetic operators and the
loss of the choice of chromosomes that will generate offspring and remain in the
population.

The self-adaptive GA, on the other hand, maintains a high search rate in
macro regions, i.e., it efficiently searches a larger number of search spaces. This
is due to the fact that it can infer an appropriate mutation rate for each chro-
mosome in the population, taking into account the diversity of the population
and the quality of the chromosome, which interferes with faster convergence.
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Fig. 8. Population diversity by generation

In addition, the diversity of the population present in a run was verified, in
which the first 200 generations of each algorithm were extracted, as shown in
Fig. 8, in which, it was observed that the proposed GA presents at the beginning
a diversity equal to that of the simple GA, but throughout the generations this
diversity increases, thus generating greater chances of finding the individual that
satisfies the OneMax problem.

Fig. 9. Best suited by generation interval



206 J. V. R. Ferro et al.

Figure 9 shows the results of the best-fit chromosomes in the first 200 genera-
tions, divided into four intervals which are [0,50[, [50,100[, [100,150[, [150,200],
where each interval is shown the highest score chromosome present in the given
algorithm.

Finally, Student’s T-test with 95% confidence interval is used to compare the
mean between the generation of the two algorithms, these data being in the gen-
eration range, where this variation will determine how significant the statistical
difference between these algorithms is [10].

V arholland = 976434.48 , V arfuzzy = 1195.27
Meanholland = 945.49 , Meanfuzzy = 68.389 ,

SX1−X2 =

√
(100 ∗ 976434.48 + 100 ∗ 1195.27)

100 + 100 − 2
∗ 100 + 100

100 ∗ 100
= 99.37 (2)

tObs =
945.49 − 68.389

99.37
= 8.82 (3)

GL = 100 + 100 − 2 = 198 (4)

When obtaining the degree of freedom (GL), it was verified in the t-Student
distribution table that T Critical is 1.960. Thus, it is proven that there is a
statistically significant difference between the algorithms, since the T observed
is 8.82, in other words, it exceeds the T Critical interval, as can be seen in the
Fig. 10.

Fig. 10. Student’s t test chart
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5 Conclusion

In this paper, we have presented a variation of a genetic algorithm for optimiza-
tion problems in order to adjust of the mutation rate parameter by using fuzzy
logic to model the diversity of the population and the value of the individual’s
adaptation. From the previous analyses, it was observed that the genetic algo-
rithm with the mutation rate derived from the Fuzzy rules in general presented a
performance in execution time 237.5% lower than the Simple Genetic Algorithm,
which corroborates the work of BARCELLOS, 2000 [2]. However, the way fuzzy
logic was used in the proposed algorithm is simpler to implement than the one
presented in these works, which confirms the adoption of these modifications
in its implementation, as presented in the works in [4,11,12], thus showing the
importance of the modification in the interactive mutation rate sensitive to the
current population.

For immediate future work, it is most important, at this point, to apply
the proposed GA solution to other classes of problems where the chromosome
bits are not correlated and analyze how this algorithm behaves. In this way, it
becomes easier for the developer to make a decision about which problems it is
recommended to adopt the self-adaptive genetic algorithm.
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Abstract. Fuzzy Rule-Based Classification System (FRBCS) is a well
known technique to deal with classification problems. Recent studies
have considered the usage of the Choquet integral and its generaliza-
tions to enhance the quality of such systems. Precisely, it was applied to
the Fuzzy Reasoning Method (FRM) to aggregate the fired fuzzy rules
when classify new data. On the other side, the Sugeno integral, another
well known aggregation operator, obtained good results when applied to
brain-computer interfaces. Those facts led to the present study in which
we consider the Sugeno integral in classification problems. That is, the
Sugeno integral is applied in the FRM of a widely used FRBCS and its
performance is analyzed over 33 different datasets from the literature. In
order to show the efficiency of this new approach, the obtained results
are also compared to past studies involving the application of different
aggregation functions. Finally, we perform a statistical analysis of the
application.

Keywords: Classification problem · Fuzzy Rule-Based Classification
System · Fuzzy reasoning method · Sugeno integral · Choquet integral

1 Introduction

Fuzzy Rule-Based Classification Systems (FRBCS’s) [18] is a technique used to
deal with classification problems [13] which has been applied to diverse problems,
e.g., big data [32], image segmentation [21], health [22] and others. The Fuzzy
Reasoning Method (FRM) [7,8] used by FRBCSs is a key component which is
composed by four steps. One of them is the aggregation, where the information of
the system’s fired rules is aggregated, per class. For this step, the FRM normally
uses an aggregation function [5], and by doing so, the system will have a different
performance (notice that performance in this paper is related to the method
accuracy, and not the runtime one) whenever one changes the function.
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The work proposed by Barrenechea et al. [4] introduced a new FRM that
accounts the usage of all given information by the fired fuzzy rules when classi-
fying a new instance. To do so, they have considered the Choquet integral [10].
Moreover, they introduced a fuzzy measure [30] that is adapted for each class of
the problem.

Considering the Choquet integral as basis, was introduced by Lucca et al.
[24] the concept of pre-aggregation functions. One way to produce such function
is by generalizing the base integral by different t-norms [19]. The generalizations
where applied in the FRM to cope with classification problems and elevated
the system quality. After that, also considering the Choquet integral as basis,
different generalizations where provided and applied, namelY: CC-integral [27],
CF -integral [28], CF1F2-integrals [23] and gCF1F2-integrals [12]. Additionally,
this generalizations were also applied in multi-criteria decision making problems
[35,36] and image processing [29]1.

On the otter hand, the Sugeno integral [33] is another fuzzy integral which has
been applied to diverse problems in the literature. More recently it was applied to
a Motor-Imagery Brain-Computer Interface [20], where it obtained good results
when compared to the standard Choquet integral (for more information see [20]).

Having in consideration that the Choquet integral was used as base to dif-
ferent generalizations and the good results that the Sugeno integral achieved
in recent applications, this paper intends to analyze if the usage of the Sugeno
integral as aggregation function in the FRM is able to produce a system with
competitive results. To do so, we apply and analyze this new base function in
the FRM of a state-of-art classifier and provided an analysis over 33 distinct
datasets from the literature.

This work is organized as follows. Section 2 presents the background theory
in respect to the following sections. In Sect. 3, the new framework of FRBCS
using the Sugeno integral is presented. Then, Sect. 4 presents and discuss the
results. Lastly, Sect. 5 is the conclusion thoughts of the work.

2 Preliminary Concepts and the Sugeno-like
Generalization

In this section the theoretical background necessary to better understanding of
the paper is provided. In what follows consider the following notation: N =
{1, . . . , n}, that is, the subset of the natural numbers up to n.

An aggregation function (AF) [14] is a function f : [0, 1]n → [0, 1] such
that the boundary conditions, f(0) = 0 and f(1) = 1, where 0 = (0, . . . , 0)
and 1 = (1, . . . , 1), and the monotonicity properties, x ≤ y =⇒ f(x) ≤
f(y), ∀x,y ∈ [0, 1]n, hold.

A triangular norm (t-norm) is an aggregation function T : [0, 1]2 → [0, 1]
that satisfies, for any x, y, z ∈ [0, 1]: the commutative (T (x, y) = T (y, x)), the

1 An overview of the different generalizations of the Choquet integral is available
in [11].
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associative (T (T (x, y), z) = T (x, T (y, z))) properties and the boundary condi-
tion.

An example of t-norm is the Hamacher t-norm, defined for x, y ∈ [0, 1] as:

THP (x, y) =

{
0 if x = y = 0

xy
x+y−xy otherwise .

A fuzzy measure [33] is a function m : 2N → [0, 1] that for all X,Y ⊆ N holds
the conditions: (i) m(∅) = 0 and m(N) = 1; (ii) if X ⊂ Y , then m(X) ≤ m(Y ).

In this study the Power Measure (PM) is considered as the fuzzy measure.
It is defined for X ⊆ N as: mP (X) = (|X|/n)q , with q > 0 being genetically
learned.

Let m be a fuzzy measure. The standard Choquet integral [6] Cm : [0, 1]n →
[0, 1] of x ∈ [0, 1]n with respect to m is defined as:

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

) · m(A(i))

where (i) is a permutation on 2N such that x(i−1) ≤ x(i) for all i = 1, . . . , n,
with x(0) = 0 and A(i) = {(1), . . . , (i)}.

Let m be a fuzzy measure and T : [0, 1]2 → [0, 1] a t-norm. Then a CT -integral
is defined as CT

m : [0, 1]n → [0, 1], given, for all x ∈ [0, 1]n, by

CT
m(x) =

n∑
i=1

T
(
x(i) − x(i−1), m(A(i))

)
where x(i), A(i) and i is defined as the standard Choquet integral.

Notice that the Choquet integral is an averaging functions [14], i.e., it always
holds that for any x ∈ [0, 1] and any fuzzy measure m, min(x) ≤ CT

m(x) ≤
max(x)

Let Co be a bivariate copula [31]. The Choquet-like integral based on copula
with respect to a fuzzy measure m, named CC-integral, is defined as a function
CCo
m : [0, 1]n → [0, 1], for all x ∈ [0, 1]n, by

CCo
m (x) =

n∑
i=1

Co
(
x(i), m(A(i))

) − Co
(
x(i−1), m(A(i))

)
where x(i), A(i) and i is defined as the standard Choquet integral.

Lastly, the CF -integral [28] is a generalization of the standard Choquet inte-
gral which uses an generic function F instead of the product operator. The
definition is as follows: let F : [0, 1]2 → [0, 1] be a function and m : 2N → [0, 1]
a fuzzy measure. Then the CF -integral CF

m : [0, 1]n → [0, 1] is defined, for all
x ∈ [0, 1]n by:

CF
m(x) = min

{
1,

n∑
i=1

F
(
x(i) − x(i−1),m

(
A(i)

))}
,
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where x(i), A(i) and i is defined as the standard Choquet integral.
In this study as function F the following is considered, FNA : [0, 1]2 → [0, 1]:

FNA(x, y) =

{
x, if x ≤ y,

min{x
2 , y}, otherwise.

The Sugeno integral is a well know operator, that have been used in many
different applications. It is defined with respect to a fuzzy measure m by:

Sum(x) =
n∨

i=1

(
x(i) ∧ m(A(i))

)

where x(i), A(i) and i is defined as the Choquet integral. Moreover, it is observ-
able that this integral share the same averaging characteristic as the Choquet
integral [14].

3 Application of the Sugeno Integral to Classification in
FRBCS

In this section, the application of the Sugeno integral in a Fuzzy Rule-Based
Classification System is presented. We begin presenting the new Fuzzy Reasoning
Method that uses of the Sugeno integral. Thereafter, the experimental framework
is described. At the end, the obtained results are shown.

3.1 The New Fuzzy Reasoning Method

In this paper, the application of the Sugeno integral take into account a fuzzy
classifier that is widely used. Precisely, it considers the Fuzzy Association Rule-
based Classification model for High Dimensional Problems (FARC-HD) [1].

The rules used by FARC-HD follows this structure:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class is Cj with RWj ,

where Rj is the label of the j-th rule, Aji is a fuzzy set representing a linguistic
term modeled by a triangular shaped membership function, Cj is the class label,
and RWj ∈ [0, 1] is the rule weight [17], which in this case is computed as the
confidence of the fuzzy rule.

Once the fuzzy rules composing the system have been created, the FRM is
responsible for classifying new examples. Specifically, let xp = (xp1, . . . , xpn) be
a new example to be classified, L being the number of rules in the rule base,
and M being the number of classes of the problem. The new FRM, where the
Sugeno integral is used, consist of 4 different steps:
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1. To compute the matching degree, that is, the strength of the activation of
the if-part of the rules for the example xp, which is computed using a t-norm
T ′ : [0, 1]n → [0, 1]:

μAj
(xp) =T ′(μAj1(xp1), . . . , μAjn

(xpn)),
with j = 1, . . . , L.

2. Association degree computation, that is, for the class of each rule the matching
degree is weighted with the corresponding rule weight, given by:

bkj (xp) =μAj
(xp) · RW k

j ,

with k = Class(Rj), j = 1, . . . , L.

3. The example classification soundness degree for all classes in this step that the
aggregation functions are applied to combine the association degrees obtained
in the previous step. The Sugeno integral Su is used as follows:

Yk(xp) =Su
(
bk1(xp), . . . , bkL(xp)

)
, (1)

with k = 1, . . . , M.

Since, whenever bkj (xp) = 0, it holds that:

Su
(
bk1(xp), . . . , bkL(xp)

)
= Su

(
bk1(xp), . . . , bkj−1(xp), bkj+1(xp), . . . , bkL(xp)

)
,

then, for practical reasons, only those bkj > 0 are considered in Equation (1).
4. A Classification decision function C : [0, 1]M → {1, . . . , M} is applied over

the example classification soundness degrees of all classes and thus, the class
corresponding to the maximum soundness degree is determined.

C(Y1, . . . , YM ) = min
k=1,...,M

k s.t. Yk = max
w=1,...,M

(Yw).

In practical applications, it is sufficient to consider

C(Y1, . . . , YM ) = arg max
k=1,...,M

(Yk).

Finally, its necessary highlight that the fuzzy measure used by the Sugeno
and the generalizations of the Choquet integral is the Power Measure, with the
exponent q genetically learned as proposed by Barrenechea et al. [4]. This is
due to the fact that this fuzzy measure achieved the superior performance in
all generalizations. A comparison of the usage of the PM (applied with different
generalizations in the FRM) against different fuzzy measure is done in [25].
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Table 1. Summary of the datasets used in the study.

Id Dataset #Inst. #Atts. #Class Id. Dataset #Inst. #Atts. #Class

App Appendicitis 106 7 2 Pen Penbased 10,992 16 10

Bal Balance 625 4 3 Pho Phoneme 5,404 5 2

Ban Banana 5,300 2 2 Pim Pima 768 8 2

Bnd Bands 365 19 2 Rin Ring 740 20 2

Bup Bupa 345 6 2 Sah Saheart 462 9 2

Cle Cleveland 297 13 5 Sat Satimage 6,435 36 7

Con Contraceptive 1,473 9 3 Seg Segment 2,310 19 7

Eco Ecoli 336 7 8 Shu Shuttle 58,000 9 7

Gla Glass 214 9 6 Son Sonar 208 60 2

Hab Haberman 306 3 2 Spe Spectfheart 267 44 2

Hay Hayes-Roth 160 4 3 Tit Titanic 2,201 3 2

Ion Ionosphere 351 33 2 Two Twonorm 740 20 2

Iri Iris 150 4 3 Veh Vehicle 846 18 4

Led led7digit 500 7 10 Win Wine 178 13 3

Mag Magic 1,902 10 2 Wis Wisconsin 683 11 2

New Newthyroid 215 5 3 Yea Yeast 1,484 8 10

Pag Pageblocks 5,472 10 5

3.2 Experimental Framework

To demonstrate the efficiency and the quality of the proposal, this study uses
33 different datasets. It is necessary to highlight that these datasets are public
available in KEEL dataset repository [2]. Also, these datasets are the same used
in previous studies (see [23,28] and [25]).

In Table 1, the characteristics of the datasets are summarized. Then, for
each dataset, it is presented the corresponding identification (Id), the number of
instances (#Inst), attributes (#Atts), and classes (#Class).

Following the idea of previous generalizations, the results are presented taking
into account a 5-fold cross-validation procedure [34]. To analyze the classifier
performance the accuracy [34] is used. Consequently, the results presented in
this study are related to the average accuracy obtained in the five different
folds.

As mentioned before, the fuzzy classifier used in this paper is the FARC-
HD, therefore, the configuration of this classifier follows the original author’s
suggestion. That is, the product t-norm as conjunction operator, the certainty
factor is the RW, with 0.05 as minimum support, the threshold for the confidence
as 0.8, the depth of the tree is 3, and kt equals 2.

In relation to the parameters used by the genetic algorithm applied to learn
the fuzzy measure, it is considered the same configuration used in different stud-
ies ([23,27] and [28]). To the genetic part of the algorithm it have a population
composed by 50 individuals, 30 bits per gene in the gray codification, 20.000
evaluations and the fitness is calculated in therms of the accuracy.
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4 Experimental Results

This section describes the obtained results. As discussed in [28] the application of
non-averaging functions in the FRM statistically outperformed all the averaging
functions. Thus, considering that the proposed FRM, using the Sugeno integral
as aggregation, is an averaging approach, in order to provide a fair comparison,
in this study we have only performed comparisons against averaging operators.

Again, it is necessary to point out that this study intend to observe that the
usage of the Sugeno integral in the FRM can produce a competitive model to
deal with classification problems. We are mainly interested in observing if this
function is comparable against the standard Choquet integral, since this can
allow promising researches on future generalizations of the Sugeno integral, in a
similar way that was done with the Choquet integral.

However, aiming at providing a more robust and complete study, compar-
isons of the new approach against classical FRMs are provided. Precisely, against
the Winning Rule (WR) [8], the standard Choquet integral and the best gen-
eralizations of the Choquet integral. In this sense we selected the CC-integral
(the Choquet integral in its expanded form and generalized by Copulas func-
tions) [27], the best CT -integral [24] that is based on the Hammacher t-norm
and the best averaging CF -integral that is based in the FNA function.

The obtained results are shown in Table 2. In it, the rows are related to the
different datasets (for more details about the dataset see Table 1), per columns
different FRMs are compared. The result in each cell is related to the accuracy
mean obtained in the cross-validation process. The largest obtained mean in the
study, among all approaches, is highlighted in boldface.

By taking a general look over the obtained results one can notice that the
behavior of FRMs considering the Sugeno integral and the CC-integral are simi-
lar. In fact, only in four specific datasets (Ban, Bup, Mag and Two) the achieved
result are different.

The biggest obtained accuracy mean is obtained by the CT - integral, followed
closely by the CF - integral (mean difference of 0.10), CC-integral(mean differ-
ence of 0.20) and Sugeno (mean difference of 0.20). Considering the WR and the
Choquet integral the obtained mean achieved a low performance.

In a closer look, considering the specific cases where the FRM’s provided the
largest results (the ones highlighted in boldface), the CT -integral obtained the
largest accuracy in 10 of the 33 datasets. However, another interesting result is
seen for both, the Sugeno and the CC-integral, where the obtained results are
the biggest accuracy in 9 of the 33 datasets. For the remaining cases, the CF -
integral, the Choquet integral and the WR present 6, 4 and 4 of the 33 datasets,
respectively. Notice that for the Tit dataset, the obtained means are all equal
and therefore are not included in the above count.

By considering and comparing only the Sugeno and Choquet integrals we
have that for 19 different datasets the obtained means are superior in favor of
the Sugeno integral in comparison to the Choquet (13 cases). On the other hand,
when comparing the Sugeno integral against the CT -integral, the latter achieves
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Table 2. Accuracy mean obtained in test by the application of different averaging
functions in the FRM.

Dataset WR Choquet CC-integral CT -integral CF -integral Sugeno integral

App 83.03 80.13 85.84 82.99 82.99 85.84

Bal 81.92 82.40 81.60 82.72 82.56 81.60

Ban 83.94 86.32 84.30 85.96 86.09 85.26

Bnd 69.40 68.56 71.06 72.13 69.40 71.06

Bup 62.03 66.96 61.45 65.80 67.83 60.87

Cle 56.91 55.58 54.88 55.58 57.92 54.88

Com 52.07 51.26 52.61 53.09 52.27 52.61

Ecp 75.62 76.51 77.09 80.07 78.88 77.09

Gla 64.99 64.02 69.17 63.10 64.51 69.17

Hab 70.89 72.52 74.17 72.21 73.51 74.17

Hay 78.69 79.49 81.74 79.49 78.72 81.74

Ion 90.03 90.04 88.89 89.18 90.60 88.89

Iri 94.00 91.33 92.67 93.33 93.33 92.67

Led 69.40 68.20 68.40 68.60 68.60 68.40

Mag 78.60 78.86 79.81 79.76 80.02 79.70

New 94.88 94.88 93.95 95.35 93.49 93.95

Pag 94.16 94.16 93.97 94.34 93.97 93.97

Pen 91.45 90.55 91.27 90.82 91.45 91.27

Pho 82.29 82.98 82.94 83.83 82.86 82.94

Pim 74.60 73.95 74.21 74.87 75.64 74.21

Rin 90.00 90.95 87.97 88.78 90.27 87.97

Sah 68.61 69.69 70.78 70.77 68.61 70.78

Sat 79.63 79.47 79.01 80.40 78.54 79.01

Seg 93.03 93.46 92.25 93.33 92.55 92.25

Shu 96.00 97.61 98.16 97.20 96.78 98.16

Son 77.42 77.43 76.95 79.34 78.85 76.95

Spe 77.90 77.88 78.99 76.02 78.26 78.99

Tit 78.87 78.87 78.87 78.87 78.87 78.87

Two 86.49 84.46 85.14 85.27 83.92 84.86

Veh 66.67 68.44 69.86 68.20 67.97 69.86

Win 96.60 93.79 93.83 96.63 96.03 93.83

Wis 96.34 97.22 95.90 96.78 96.34 95.90

Yea 55.32 55.73 57.01 56.53 56.40 57.01

Mean 79.15 79.20 79.54 79.74 79.64 79.54
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Table 3. Average Rankings of the algorithms by using the Aligned Friedman and the
obtained APV

(Pre-)Aggregation function Ranking APV

CT -integral 80.19

CF -integral 91.33 0.56

Sugeno integral 97.98 0.56

CC-integral 98.74 0.56

Choquet integral 114.18 0.07

WR 114.56 0.07

Table 4. Results obtained by the Wilcoxon test to pair-wise comparison among the
different approaches.

WR Choquet CC-integral CT -integral CF -integral

Sugeno integral P-value 0.26 0.21 0.87 0.19 0.88

R+ 338.5 350.5 250.5 204.5 272

R− 222.5 210.5 310.5 356.5 289

superior mean in more than double the number of datasets than the former.
However, it is necessary to point that the CT -integral is a generalization of the
Choquet integral, and that the t-norm T was chosen because of its superior
results in the FRM, and in this study only the standard Sugeno is considered.
Lastly, the results of both FNA and WR are quite similar.

4.1 Statistical Analysis

Making comparisons considering the obtained means is a good approach. How-
ever, in order to provide a more robust study, in this subsection, we provide a
statistical analysis from the different approaches, since it is an interesting ques-
tion that can enligh the efficiency of the usage of the Sugeno integral.

The statistical analysis consider a non-parametric tests [9], the first analysis is
a group comparison using the Aligned Friedman rank test [15]. This test consider
a reverse ranking, where the lowest one is considered as control variable and is
compared against the others. The results of this test is available in Table 3, which
is sorted from the lowest to the largest rank. Also, the Adjusted P-Value (APV)
is provided. To calculate the APV the post-hoc Holm’s test [16] is used. In this
Table the cases where the null hypothesis is rejected are underlined, having a
significance level of 90% (α = 10%).

It can be observed from the group test that the CT -integral is considered
as control method and present statistical differences against the standard Cho-
quet integral and WR. However, when compared to the remaining methods no
significant difference were found.
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Up to this point, to clarify even more the efficiency of the usage of the Sugeno
integral, we have performed a set of pairwise comparisons, with the Wilcoxon
signed-rank test [37]. This allows to direct compare the Sugeno integral with the
different considered approaches.

The results of the Wilcoxon’s test is provided in Table 4. In this table, is
shown the obtained p-value, the rank obtained by the Sugeno integral (R+) and
the ranking obtained by the compared method (R−).

The obtained results reinforce that the Sugeno integral is equivalent to any
averaging operator used in different FRMs in the literature, since no statistical
difference were found. Moreover, it is observable that comparing our approach
against the standard Choquet integral, the obtained ranking is superior.

5 Conclusion

The usage of Fuzzy Rule-Based Classification Systems are an interesting tech-
nique to deal with classification problems. The Fuzzy Reasoning Method is the
mechanism to perform the classification of different examples. The aggregation
used in the FRM is a key point to define the performance of the system.

The usage of the standard Choquet integral in the FRM have been proposed
in the literature and provided satisfactory results. After that, many general-
izations of this integral where provided, such as: CT -integral, CC-integral,CF -
integral and otters.

In this paper we provided an application of the Sugeno integral in the FRM.
Precisely, the Sugeno integral. This function have been applied, among otters,
in the Brain-Computer Interface (BCI) and demonstrated promising results.

In the experimental results we have compared our approach against classical
FRMs using the maximum and the Choquet integral and the ones composed by
the generalizations of the Choquet integral. The results demonstrated that the
Sugeno integral is able to provide superior results in many different datasets and
also that this method is statistically equivalent to the compared ones.

Considering the satisfactory obtained results, some future works can be fol-
lowed. For instance, to create generalizations of the Sugeno integral, e.g. the
FG-functional [3], in the FRM and compare the results to past results from gen-
eralizations of the Choquet integral. A deep analysis on the characteristics of
the datasets (by using data complexity measures for example [26]) that could
affect the performance of the classifier by using the Sugeno integral, is another
interesting path.
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Abstract. Reinforcement learning algorithms allow agents to learn from
experience, without the need for prior knowledge. For this reason, they
have been widely used and the use of low and medium complexity digital
games as benchmark environments has become a common practice. In
2013, a new algorithm, called DQN (Deep Q Network), caused a great
impact in the academic environment by obtaining human-level results in
several Atari 2600 games, using artificial neural networks. Consequently,
new lines of research emerged and new derived algorithms were proposed.
Among these, the FQF (Fully Parameterized Quantile Function) stands
out, an algorithm that has become the state of the art among the non-
distributed algorithms in the Atari 2600 domain. However, the FQF has
not yet achieved results obtained by a human expert in all evaluated
games, thus demonstrating that better results than current ones can still
be obtained. Therefore, this work sought to combine two improvements
in the FQF that brought success in algorithms proposed before the FQF,
with the objective of improving it. The improvements applied to the FQF
are: the use of 3 steps in the temporal difference and the application of
the Munchausen approach. The FQF changed with the improvements
was evaluated in 5 MinAtar games and the results obtained brought
gains of approximately 147% over the original FQF in the median of
agent’s returns.

Keywords: Reiforcement learning · Deep learning · Distributional
reinforcement learning

1 Introduction

Learning is a concept shared and explored by several areas of study, such as
pedagogy, psychology, neuroscience and computer science. Although each area
and author have a different formal definition of what learning is, it is common for
the term to be exemplified using the development process of a child, who learns
as he observes, interacts with his environment and memorizes [17]. It is also
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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possible to elucidate learning through animals, such as, for example, a domestic
dog, which receives a reward when it has a good attitude or a punishment when
it takes an action considered improper by its owner.

In computer science, specifically in the area of artificial intelligence, such
behaviors of living beings and natural phenomena are often studied in order
to obtain efficient algorithms capable of teaching machines, these being called
machine learning algorithms [12]. Although interaction learning is a reference
on the subject, the most studied machine learning algorithms are supervised
learning [18], in which a predictive model is built based on a previously labeled
dataset. There are also algorithms called unsupervised, which, in turn, seek
to group unlabeled data. Finally, a third paradigm encompasses reinforcement
learning algorithms, which are the only ones that actually learn by interaction.

Reinforcement learning algorithms differ from others in that they do not
require a database and, mainly, have a fixed objective in each task, which
involves challenges of exploring environments and planning [18]. A new rein-
forcement learning algorithm, called DQN (Deep Q Network) [13], appeared
in 2013 and revolutionized the literature by combining classical reinforcement
learning algorithms with deep learning techniques, which had been obtaining
important results in algorithms of supervised learning. DQN was the first algo-
rithm to be able to play several Atari 2600 games at the same level as a human,
which boosted a new line of research: that of reinforcement learning algorithms
evaluated in Atari 2600 games.

In this context, it is important to emphasize that digital games are just
environments used to study the algorithms, which can later be applied in other
environments, such as in industry - through the control of machines [16] - or
even on public roads, driving autonomous vehicles [11]. In addition, the grow-
ing worldwide technological expansion, together with the possibility of applying
reinforcement learning algorithms in complex tasks, demands that they are con-
stantly evolving, which in fact has happened.

After the emergence of DQN, several derived algorithms were proposed in the
literature. Among these, the FQF (Fully Parameterized Quantile Function) [22]
stands out, which has become the state of the art among the non-distributional
algorithms in the Atari 2600 domain. However, the FQF has not yet achieved
results obtained by a human expert in all evaluated games and thus better results
can still be obtained. Therefore, considering the relevance of the contributions of
several works present in the literature and the need for a constant improvement of
the methods, this paper seeks to improve the FQF, inserting two improvements
that were able to boost the results of algorithms proposed before the FQF.
The improvements applied to the FQF are: the use of 3 steps in the temporal
difference and the application of the Munchausen approach. The FQF was run
with these improvements and evaluated in the MinAtar [23] domain, which is
a smaller graphical environment. The results obtained with the FQF altered
with the improvements tend to be superior to the original FQF in the initial
experiments.
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This paper is organized as follows. In Sect. 2, an introduction to reinforcement
learning is presented, describing the main concepts used throughout the text. In
Sect. 3, some related works are described, taking the publication of the DQN
as a starting point. This section also includes a description of Distributional
Reinforcement Learning and the FQF algorithm. Sections 4, 5 and 6 present the
methodology, results of the experiments and the conclusion, respectively.

2 Reinforcement Learning

A reinforcement learning problem can be modeled using finite Markov Decision
Process (MDP). In this type of problem, an agent interacts with an environ-
ment in a discrete sequence of time steps t = 0, 1, 2, 3, .... After each action
At ∈ A(s), in the state St ∈ S, the agent observes the new state St+1 and the
reward Rt+1 ∈ R ⊂ R, which indicates how good it is for the agent to be in
St+1. This sequence of interactions gives rise to a trajectory which begins with:
S0, A0, R1, S1, A1, R2, S2, A2, ....

At each step t, the agent’s objective is to maximize the expected return
of rewards received up to the final step T . The return is formulated as shown
in Eq. 1. However, usually the rewards in Gt are weighted by a discount factor
γ ∈ [0, 1], representing how much future rewards will be considered, which makes
common, the representation Gt = Rt+1 + γGt+1.

Gt
.= Rt+1 + Rt+2 + Rt+3 + · · · + RT (1)

The agent chooses the actions to take at each step according to its policy,
which defines a probability distribution over actions for each state. For this, the
policy can be based on two important functions, which are: i) vπ(s)

.= E[Gt|St =
s], which returns how good it is for the agent to be in a state s following a policy
π, and ii) qπ(s, a)

.= E[Gt|St = s,At = a], which tells how good it is for the
agent to take an action a in a state s following a policy π afterwards.

Considering that all MDP transition probability functions are known, it can
be solved using dynamic programming (DP) methods, which use tables to store
the values of qπ(s, a) or vπ(s). These values are constantly updated. However,
problems in which the probability functions of the MDP are known are rare,
which makes the application of DP in the context of reinforcement learning very
limited [18]. This work addresses a class of methods that is model-free and seeks
to estimate state values by sampling, without the need for model equations, such
as Monte Carlo (MC) and temporal difference (TD) methods.

MC methods are only applicable to tasks that are composed of episodes.
The central idea of the method is based on a list that stores all the rewards
received by the agent in the episode, as well as the states and actions that the
agent went through. So, at the end of the episode, the algorithm goes through
this list backwards, adding up the rewards and updating the algorithm table.
TD methods, on the other hand, update their tables throughout the episode,
through an estimate of later states. An example of an algorithm that uses TD
is Sarsa [14], where the step update equation is represented in Eq. 2:
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Q(S,A) ← Q(S,A) + α[R + γQ(S′, A′) − Q(S,A)] (2)

α ∈ (0, 1], here, is an adjustable parameter of the learning factor and S′, A′ is
the pair of the next state and action taken, respectively.

Note that the Sarsa equation uses as a target R + γQ(S′, A′). This type
of composition, in which an explicit reward is used in the target and the rest
of the return estimated by the next state, is called TD(0). TD(0) algorithms
bring agility to the table update, but also have greater divergence, because they
learn one guess from the next [18]. On the other hand, MC methods do not use
estimates of the remainder of the return, but they have to wait for the end of
the episode (which can be huge) to update the table. One way to balance the
benefits of MC with TD(0) is to use n-step TD methods. This means that more
rewards are explicitly represented in the equation, deferring the estimation of
the next states to a lower weighted part of the return, without delaying the table
update too much. A 3-step version of Sarsa, for example, would have, as a target,
Rt+1 + γRt+2 + γ2Rt+3 + γ3Q(St+3, At+3).

Besides Sarsa, another famous TD(0) algorithm is Q-learning [21]. Q-learning
has, as a target, R + γmaxaQ(S′, a), which considers the estimate of the most
promising action of the next state. However, this action is not necessarily the one
chosen by the agent in S′, which makes the algorithm considered off-policy. Off-
policy algorithms have greater generalization capacity and are applicable to a
greater number of tasks, as they can learn from data generated by an agent that
is not learning, such as a human expert. However, they take longer to converge
and have greater divergence than single-policy algorithms, called on-policy. Both
Sarsa and Q-learning use a table to store function values qπ(s, a). In applications
where the number of states is very large, the use of tables can become unfeasible,
and the use of function approximators is a viable alternative. Section 3 presents
some works that use neural networks to obtain an estimate of qπ(s, a).

3 Related Work

3.1 DQN

In [13], a reinforcement learning algorithm called DQN (Deep Q Network) was
proposed with the aim of learning to play Atari 2600 games through ALE (Arcade
Learning Environment) [2]. The DQN makes use of a convolutional neural net-
work and therefore has an image as a representation of the state, not being
necessary to perform state feature extraction. For this reason, DQN is able to
learn several Atari 2600 games just adjusting the number of neurons in the last
layer for the number of possible actions in each game. The authors of DQN have
opened up the frontiers of deep reinforcement learning and made ALE and its
Atari games an important set of benchmark environments for the algorithms,
being used in several later works.
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Another important contribution of the authors of DQN was to apply the tech-
nique of experience replay, together with mini-batch in reinforcement learning.
The experience replay consists of keeping a record of the last n state transitions
in a buffer. Thus, the update of the weights in the network is based on a batch
that is formed through samples chosen in each update step in a uniformly ran-
dom way among the n stored in the buffer. This is an important characteristic
of the DQN, as training the network based on consecutive samples can be inef-
ficient due to the strong correlation between samples. In DQN, the objective
of the network is to approximate the values of state and action following the
Q-Learning algorithm, which as already seen is an off-policy algorithm.

By using a temporal difference algorithm, the DQN would fit into the algo-
rithms that are considered semi gradient and consequently have great variation.
To alleviate this problem, the authors of the DQN rely on another neural net-
work called the target network. The target network has the same structure as the
main network, however its weights θ− are only updated every k steps, as a copy
of the weights of the original network. This auxiliary network was important to
reduce the variance in the DQN.

3.2 Prioritized Experience Replay

In [15], one important improvement for the DQN algorithm has been proposed,
altering the way in which the experience replay occurs. The authors proposed
the creation of a priority queue, in which transition samples that have a greater
temporal difference are more likely to be selected. The motivation for the use
of this technique is that, many times, important transitions for the evolution of
the agent are not selected and consequently learned as well.

3.3 Rainbow

After the publication of the DQN, several works appeared proposing improve-
ments in the algorithm. However, as many were produced simultaneously, there
was not a good synchronization between them. Thus, in [9], an algorithm called
Rainbow was proposed, which combined several of these improvements, becom-
ing the state of the art in the Atari 2600 domain until then.

Rainbow combined features of C51 [1], a distributional reinforcement learn-
ing algorithm; DDQN [8], which uses Double Learning techniques; the Dueling
Network [20], which uses a concept of an action’s advantage function over others;
the Noisy Nets [6], which offer greater exploration capabilities to the agent; in
addition to incorporating the prioritized repetition replay and the n-step, with
n = 3. According to the results of the experiments, the authors observed that the
components that most positively impacted individually on Rainbom have been
the n steps algorithm, the prioritized repetition replay and the representation of
the distribution of returns.
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3.4 Distributional Reinforcement Learning and FQF

DQN, and several other algorithms reported so far, seek to learn the qπ function,
and for each state entered, the network provides several outputs, one for each
action. It is worth remembering that the functions qπ and vπ are the expectation
of a distribution of returns Gt. However, learning the mean of a random variable
can be a difficult task, due to the possibility of large sample divergence. For
this reason, in [1], a discussion was started on the application of distributional
reinforcement learning.

The authors presented important theoretical contributions and presented a
distributional reinforcement learning algorithm called C51. C51 sought to learn
a discretized distribution of returns for each action, which is composed of several
atoms, each represented by an output in the network. Each atom in the network
represents a range of values that a return can take, and the atom’s output is
an indicator of the frequency of this value range, later normalized by a softmax
function. The C51 presented important results, but it has the limitation of act-
ing in only a pre-defined distribution range, in addition to not having proof of
convergence.

Therefore, in [5], the QR-DQN algorithm was proposed, which performs a
quantile regression and transposes the parameterization of C51. While the C51
fixes distribution values and estimates probabilities, the QR-DQN has quantiles
fixed at the network outputs and estimates the values of such quantiles. One more
evolution was proposed in [4], with an implicit version of QR-DQN called IQN.
In the IQN, the network has only one output per action, but it is dependent on
an extra network that receives the quantile for which the value is to be estimated.
Thus, to obtain a distribution of values, it is necessary to forward the network
several times1.

In the IQN, the quantiles entered for processing in the network are chosen
randomly. However, as it is not feasible to use a huge number of quantiles, the
choice of which quantiles will compose the distribution can significantly affect
the final result. For this reason, in [22], the FQF (Fully Parameterized Quantile
Function) algorithm was proposed, which adds one more flow in the network to
provide quantiles whose values must be estimated, thus parameterizing the entire
distribution. In Fig. 1, there is an illustration of the distributional reinforcement
learning algorithms described here, in which it is observed that the FQF has one
more network than the IQN, called ϕ. This network aims to provide 32 quantiles
to be estimated by the φ network.

1 As the quantiles are processed by a parallel network, the IQN main stream that
processes the state does not need to be reprocessed.
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Fig. 1. Distributional reinforcement learning algorithms presented in this paper. The
illustrations are extracted from [22] and [4].

The FQF training takes place in two parts: first, the ϕ network is adjusted
by a function based on the Wassertein metric and then the φ and ψ networks
are trained, in the same way as in the IQN : training each quantile individually,
based on the Huber loss function [10]. A comparison presented in [22] shows
the superiority of FQF over other algorithms discussed here when analyzing its
performance in 55 Atari 2600 games, creating a new record for the Atari Learning
Environment for non-distributed agents. However, the results also point out that
the FQF still fails to surpass the human baseline in 9 out of 55 games.

It is important to note that although these algorithms estimate a return
distribution, they use this distribution to estimate the value of qπ posteriorly
and thus choose an action to take based on qπ. They also inherit DQN technical
features such as the use of a target network and experience replay.

3.5 Munchausen R.L.

In 2020, a new and simple improvement applied to the DQN emerged and was
named Munchausen R.L. (MRL) [19]. Based on elementary knowledge of rein-
forcement learning, this approach assumes that, indirectly, the policy is always
being evolved and that, therefore, it can emit a reinforcement in the agent’s
learning. If an optimal policy is assumed, the log of the probability of taking
the best action will always be 0, while for the other actions it will be −∞. The
MRL adds this signal to the reward, replacing Rt by Rt + bln(π(At|St)), where
b is an adjustable parameter.

An initial problem with the application of this approach in DQN is the fact
that the network does not learn stochastic policies, but the optimal policy, which
is an obstacle for the application of the log, which would always result in 0 or −∞.
Before introducing the Munchausen approach, let’s rewrite the DQN target (Q-
Learning) in the same way as in the Expected Sarsa algorithm, but remembering
that the DQN learning policy is greedy and deterministic:
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Y DQN
t = Rt+1 + γ

∑

a

π(a|St+1)q̂(St+1, a; θ−
t ) (3)

The first change replaces the optimal policy by a softmax policy with a
temperature factor τ. A term for entropy maximization is also adopted in the
algorithm, by subtracting τlnπ(a|St+1)) in the estimation of the next state, as
performed in [7]. Finally, the Munchausen term bτln(π(At|St)) is added, leaving
the target as in Eq. 4, where b and τ are adjustable parameters:

Y M−DQN = Rt+1+bτln(π(At|St))+γ
∑

a

π(a|St+1)(q̂(St+1, a; θ−
t )−τlnπ(a|St+1))

(4)
with π = sm( q̂(St+1,a;θ−

t )
τ

).
To avoid large variance, the authors also implemented an upper and lower

bound for the value of the Munchausen term and use a stable implementation of
the policy’s softmax function. The adapted version of DQN was named M-DQN
and achieved excellent results, which made M-DQN the first non-distributional
reinforcement learning algorithm to outperform a distributional one.

3.6 MinAtar

ALE with its Atari 2600 games has established itself as one of the main bench-
mark environments for reinforcement learning algorithms, being used in sev-
eral works. Its games bring two main challenges: learning features and learning
behavior. Initially, learning features was an interesting challenge. However, it is
observed that, after the emergence of DQN, all evolutions are focused on learning
behavior, as the convolutional layers of networks have not received much atten-
tion. Despite this, the learning of features is the most computationally expensive
part of the algorithms, and can even be considered an obstacle for those who
want to explore the behavior more. The high computational cost prevents more
diversified experiments from being carried out [23].

Considering that feature learning is a problem that has already been shown to
be solvable with the proper adjustment of convolutional layers, in [23], a new set
of environments called MinAtar is proposed. This environment is a miniaturized
version of 5 Atari 2600 games (Seaquest, Breakout, Asterix, Freeway and Space
invaders)2 and seeks to simplify the game frame so that researchers can focus
on reinforcement learning algorithms.

In [3], the authors performed a set of tests using the 5 MinAtar games with
the same algorithms evaluated in [9], in addition to including QR-DQN and IQN
(FQF was not evaluated in [3]). The results found in these environments were in
agreement with those of Rainbow, presented in [9], with 57 Atari 2600 games.
This highlights the relevance of MinAtar and leads us to believe that it is possible
to evaluate an algorithm in this simpler environment initially, before evaluating
it in a complex environment that requires a higher computational cost.
2 Information on game modeling can be found at [23].



Improving the FQF D.R.L. Algorithm in MinAtar Environment 229

4 Methodology

According to the works discussed in Sect. 3, it is notable that there have been
great evolutions since the emergence of DQN. Among these, FQF stands out,
a powerful distributional reinforcement learning algorithm. However, it is also
notorious that the results obtained by FQF can still be improved, as this algo-
rithm has not yet achieved results obtained by a human expert in all rated Atari
2600 games. Considering that features from related works were able to improve
the C51 algorithm considerably, producing the Rainbow, in this work, we evalu-
ated the addition of two features in the FQF, which has already presented better
results than the C51 algorithm. Initially, we chose to evaluate the addition of
the n-steps method, which had a high impact on Rainbow, and also the addition
of the Munchausen approach, as this was an evolution that showed promise and
has not been evaluated in Rainbow. These improvements were combined and the
algorithms created as follows:

– FQF: Nature FQF
– FQFn3: FQF + n-step with n = 3

– FQFM: FQF + MRL
– FQFn3M: FQF + 3-steps + MRL

These algorithms were evaluated in the 5 games of the MinAtar environment,
which is a less complex environment, but which proved to be a good environment
for tests in [3]. Since the algorithms were evaluated in a continuous process
of training, it is possible to observe the evolution of their performance. In the
experiments performed in this work, the algorithms were evaluated by 20 million
steps, which were grouped into 20 iterations, and each iteration, having 1 million
steps, represents several episodes. Note that, in this type of grouping by number
of steps, the number of episodes will vary according to the agent’s performance
in each iteration. It is normal that the agent has a low performance at the
beginning, which causes the episodes to be shorter and therefore more numerous
in the same iteration. The opposite happens when the agent is already more
mature. In this case, the agent is expected to survive longer in episodes, thus
accumulating more rewards. For this reason, cluster measures in relation to the
return of episodes represent good alternatives for agent evaluation.

Here, we use the same evaluation measures used in [1,4,5,9,22], which are
the mean and median of the returns in the last iteration (LI). In the cited works,
these values were normalized in relation to a human score. As in MinAtar we do
not have the data from a human base and the work is focused on improvements
over the FQF, we normalized the scores against the FQF. In addition, we also
evaluated the area under the curve (AUC) of the iterations using the same
aggregating measures, which allows us to identify those algorithms that evolved
faster.

The algorithms evaluated in this work were implemented using the Python
language, together with the Rljax3, 4 framework, which is a framework for rein-
3 The Rljax original source code can be found here: https://github.com/ku2482/rljax.
4 The source code used in this work can be found here: https://github.com/julio-

cmdr/rljax.

https://github.com/ku2482/rljax
https://github.com/julio-cmdr/rljax
https://github.com/julio-cmdr/rljax
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forcement learning with the implementation of several algorithms, including the
FQF. All experiments were performed using GPUs.

5 Experiments and Analysis of Results

Like several of the algorithms mentioned in this work, the FQF also has a large
set of hyperparameters, which were proposed based mainly on the parameter-
ization presented for the DQN in ALE. Since we did not find evaluations of
the FQF in MinAtar in the literature, the hyperparameters for it were defined
here based on the work presented in [3], which evaluated several algorithms in
MinAtar, with the exception of the FQF. Hyperparameters that are particular
to the FQF, such as the learning rate of the fraction proposal network, were
initially maintained as proposed in [22].

However, running the FQF on MinAtar in initial experiments carried out
in this work, the FQF showed characteristics of catastrophic forgetting (espe-
cially in the game Space Invaders), in which the agent has a sudden drop in
its performance after some training time. Although it is a classic problem of
neural networks in continuous learning, this behavior has not been reported in
previous works, possibly due to the use of several techniques originally proposed
in DQN, such as the experience replay. For this reason, we believed this is a
hyperparameter tuning issue.

5.1 Hyperparameter Tuning

Tuning a large number of hyperparameters can easily result in a combinatorial
explosion, which is compounded when it comes to deep learning, which are com-
putationally expensive algorithms. Therefore, an initial adjustment was made in
3 hyperparameters that are highly related to the learning capacity of the algo-
rithm: the learning rate of the fraction proposal network (lr_frac_net), which
was not adjusted for MinAtar, the learning rate of the main network (lr) and
the batch size.

A combinational evaluation of these 3 hyperparameters was carried out, and
in each hyperparameter, through changes in the exponent, an alternative value
greater and another smaller than the original value was added (extracted from
[3] and [22]), which resulted in 27 combinations. For the batch size, usually
defined as a power of 2, the values 16, 32 and 64 were evaluated. In the case of
lr, the values 2.5e−05, 2.5e−04 and 2.5e−03 were evaluated. For lr_frac_net,
the values used were 2.5e−10, 2.5e−09 and 2.5e−08.

The evaluation of hyperparameters was performed sequentially with 9 seeds
in the game Space Invaders, which was the game that in preliminary analyzes
caused catastrophic forgetting in the FQF. As the focus of this analysis was to
find a set of hyperparameters that did not suffer from catastrophic forgetting
in any execution, whenever a set of hyperparameters led to a sudden drop in
performance in an algorithm, it was eliminated from the next executions.



Improving the FQF D.R.L. Algorithm in MinAtar Environment 231

To detect when a sudden drop occurred or not, we use a stopping criterion
that terminates the algorithm whenever the average of the returns in an iteration
is less than or equal to 50% of the highest average obtained by the algorithm in
the execution in question. The result of this analysis can be seen in Fig. 2, where
the shaded area on the curve represents the 95% confidence interval with respect
to aggregate returns. In the graphs, it is observed that after 5 executions, only
one set of hyperparameters remained, which is the set that uses batch_size =
16, lr_frac_net = 2.5e−10 and lr = 2.5e−05, the only hyperparameter that kept
the original value. These values are used in all subsequent runs in this work, in
the 5 games.

Fig. 2. Sequential analysis of hyperparameters of the FQF algorithm applied in the
game Space Invaders with 9 seeds. Every time a set of hyperparameters caused an
algorithm to crash, it was eliminated from subsequent runs.



232 J. C. M. Resende et al.

5.2 Main Results

With the hyperparameters defined, the improvements were applied to the FQF.
Each algorithm was executed 5 times in each game, using seeds 0, 1, 2, 3 and 4,
which totaled 100 executions. The graphs in Fig. 3 allow to follow the evolution
of the algorithms for each game through the average of the returns, with the
shaded area representing the 95% confidence interval of this value, according to
the average of each seed. In the analysis of these graphs, we consider that when
there is an overlap of the shaded areas between two algorithms in an iteration,
the algorithms tie, given the confidence level considered.

Analyzing the average returns in the graphs in Fig. 3, we observed that the
FQFM algorithm was better than the FQF in 4 of the 5 games, with a tie in
the seaquest game. The FQFn3 and FQFn3M algorithms were also better than
the FQF in 4 out of 5 games, but tied in the breakout game. No improved
FQF algorithm was worse than the original FQF. To quantify these gains, we
normalized the values of the metrics mentioned in the previous section (LI and
AUC), obtained by each algorithm, in relation to the FQF, and then these values
were aggregated for the 5 games. The results can be seen in the Table 1.

According to Table 1, it is observed that, in isolation, the use of 3 steps in
the FQF has already brought considerable gains in all the considered metrics.
However, the combined use of the Munchausen approach with 3 steps in the
FQF was even better, increasing the median of LI by almost 150%. It is observed
that, although the improvements had a positive impact, both in LI and AUC,
the gains in LI were slightly more expressive. This is because all algorithms
have very similar behavior in the initial iterations. In addition, in the FQFn3M
algorithm, where the results between LI and AUC were more divergent, there
is an influence of the results of the seaquest game. In this game, the algorithm
took a while to converge in some seeds, even causing a large confidence interval
for this game in the initial and intermediate iterations, as can be seen in Fig. 3.

Table 1. Mean and median of returns represented as gains over the FQF. Aggregate
values referring to the scores of the 5 games, with 5 different seeds in each game.

Last iteration Area under the curve
Algorithm Mean Median Mean Median
FQFM 37.43% 42.20% 32.46% 32.75%
FQFn3 60.08% 103.07% 59.00% 97.08%
FQFn3M 90.95% 146.79% 72.85% 115.96%
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Fig. 3. Evolution of the average of returns for the 4 algorithms evaluated in the 5
games. Aggregated values referring to runs with 5 different seeds.
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6 Conclusions and Future Works

FQF is a distributional reinforcement learning algorithm, which has outper-
formed several previous algorithms in the Atari 2600 gaming domain. Despite
the good results, this algorithm has not yet achieved results obtained by a human
expert in all evaluated Atari 2600 games. This leads to believe that better results
than the current ones can still be obtained, given the ability of artificial intelli-
gence to detect patterns that are often not perceived by a human. Therefore, in
this paper, we proposed to apply two improvements to FQF which had shown to
be promising when applied in algorithms prior to the FQF. The improvements
applied to the FQF are: the use of 3 steps in the temporal difference and the
application of Munchausen approach. These improvements were combined in the
FQF and evaluated in the domain of MinAtar, which is a smaller graphical envi-
ronment, ideal for experiments where the focus is on learning of behavior, but
without eliminating the learning of features.

The isolated addition in the FQF of both approached improvements was
already able to present significant gains in the evaluated games. However, the
combination of the two improvements with the FQF (algorithm here called
FQFn3M) was more impactful, increasing approximately 91% and 147% in the
mean and median, respectively, of the returns of the last iteration, when com-
pared to the original FQF. While these results come from a smaller-scale set of
games than the Atari 2600, where the FQF was introduced, they are extremely
relevant, because they act as a direction for later works that want to make appli-
cations in environments of greater graphic complexity. In these environments,
performing comparisons such as those performed here may become unfeasible
for many researchers, due to the high demand for computational power.

In addition, the relevant gains obtained by FQFn3M in relation to FQF in
the game Seaquest, wich is the most difficult game as reported in [23], lead us
to believe that the inclusion of both approached improvements may generate
gains in environments of greater complexity (such as the Atari 2600). This can
boost FQF gains over a human considerably. This hypothesis can be confirmed
through experiments using the Atari 2600 in future works. Another proposal is
the evaluation of other improvements that proved to be relevant, but that were
not considered in this paper, as is the case of the prioritized experience replay.

Acknowledgement. The authors thank the Department of Computer Science at
UFSJ, especially professor Diego Colombo and professor Elverton Fazzion, for their
support with powerful computers to carry out the experiments.
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Abstract. Glomerulosclerosis is a common kidney disease characterized
by the deposition of scar tissue, which replaces the renal parenchyma,
and is quantified by renal pathologists to indicate the presence and extent
of renal damage. It is paramount to guide the appropriate treatment and
minimize the chances of the disease progressing to chronic stages. Thus,
to identify glomerulus with sclerosis, this article proposes a convolutional
neural network (CNN) inspired by convolutional blocks of DenseNet-
201 but with smaller dense layers. We analyzed five CNNs - VGG-19,
Inception-V3, ResNet-50, DenseNet-201, and EfficientNet-B2 - to define
the best CNN model and evaluated several configurations for the fully
connected layers. In total, 25 different models were analyzed. The exper-
iments were carried out in three datasets, composed of 1,062 images,
on which we applied data-augmentation techniques in the training set.
These CNNs demonstrated effectiveness in the task and achieved an accu-
racy of 92.7% and kappa of 85.3%, considered excellent.

Keywords: Transfer learning · Kidney disease · Computer-aided
diagnosis · Image analysis

1 Introduction

Glomerulosclerosis (GS) is a health condition that causes morphological alter-
ations, including sclerosis scarring or hardening, of tiny blood vessels in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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kidneys called glomeruli [2]. Within the glomeruli, waste and fluid are filtered
from the blood and removed from the body through urine. Children and adults
can be diagnosed with glomerulosclerosis, and almost 20% of adults with kidney
disease will develop it1. The greater the delay in diagnosing it, the less chance a
patient can preserve their kidney function.

A kidney biopsy is often required to diagnose kidney diseases accurately.
In addition to establishing the diagnosis, the biopsy allows assessing chronicity
and activity to define prognosis and choose the proper therapy [4]. However,
making an accurate diagnosis is time-consuming, even for trained pathologists.
Thus, there is an expectation that automated processing to support this task will
improve the efficiency of renal pathology, contributing to a more objective and
standardized diagnosis, especially in hospitals or countries with poor numbers
of nephropathologists.

According to Yi et al. [25], the integration of artificial intelligence and clinical
medicine allows the development of tools and resources to support clinical decision-
making at the bedside. Several aspects of nephrology are likely to be affected by
these new technologies. Renal pathology is a good example where improvements in
workflows and more subtle histological phenotyping are expected, although much
work remains to be done to validate these new methods [8].

Machine learning algorithms, especially those based on Convolutional Neural
Networks (CNNs), have achieved excellent performance in image classification
and are applied in several research areas, including medicine [26]. They have
acquired considerable attention in histology and pathology [12]. Considering the
importance of diagnostics and the potential of computer-aided diagnosis sys-
tems, in this work, we propose a convolutional neural network (CNN) inspired
by convolutional blocks of DenseNet-201 but with smaller dense layers to detect
glomerulosclerosis in glomerulus images. To establish the best model, we modi-
fied and fine-tuned the architecture of five general-purpose CNNs: VGG-19 [20],
Inception-V3 [21], ResNet-50 [6], DenseNet-201 [7], and EfficientNet-B2 [23].

We organized this work as follows: in Sect. 2 we presented recent works and
methodologies on the problem under study. Section 3 presents the proposed
method, the image data sets, the applied techniques, and the evaluation metrics
adopted to validate our results. The results and their discussion are presented
in Sect. 4. Finally, conclusions and future work are drawn in Sect. 5.

2 Related Works

Several studies applied image processing techniques and artificial intelligence to
renal pathology. Some have analyzed tubules, blood vessels, and interstitium [10,
27]. However, most studies have focused on the glomeruli, which have several
essential histological findings for the diagnosis [17,28].

The first step in the glomerulosclerosis diagnostic procedure is the detection
of a glomerulus on a whole-slide image of kidney tissue samples. This problem is
also the subject of recent studies. The proposed solutions use methods to define
various characteristics [18] or use CNNs [5].
1 www.davita.com/education/kidney-disease/symptoms/what-is-glomerulosclerosis.

www.davita.com/education/kidney-disease/symptoms/what-is-glomerulosclerosis.
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With the same purpose as our methodology, Araujo et al. [1], Marsh et al.
[14], Kannan et al. [9], and Pesce et al. [15] reported solutions to distinguish
between sclerotic and non-sclerotic glomeruli.

Araujo et al. [1] used images of single glomeruli to detect segmental glomeru-
losclerosis. Their architecture had the typical structure, consisting of a digital
image processing and pattern recognition system. Three feature vectors were
extracted and supplied to four classifiers: KNN, SVM, a neural network, and
Naive Bayes.

Marsh et al. [14] described the development of a deep learning model that
identifies and classifies glomeruli with and without sclerosis in 48 images of
donor kidney biopsy entire sections. This differentiation is meaningful because
the criterion for accepting or rejecting the donor’s kidneys relies heavily on the
pathologist’s determination of the percentages of glomeruli that are normal and
sclerotic. According to the authors, the model achieved a precision of 81.28% in
identifying non-sclerosed glomeruli.

Kannan et al. [9] proposed a CNN capable of classifying portions of slides into
three classes: no glomerulus, normal or partially sclerosed (NPS) glomerulus, and
globally sclerosed (GS) glomerulus. According to the authors, the CNN model
could accurately discriminate non-glomerular images from NPS and GS images
with an accuracy of 92.67%.

Pesce et al. [15] designed, tested, and compared two artificial neural net-
works (ANN) classifiers. The former implements a shallow ANN classifying hand-
crafted features extracted from Regions of Interest (ROIs) employing image-
processing procedures. The latter, instead, employs the IBM Watson Visual
Recognition System, which uses a deep artificial neural network to make deci-
sions taking the images as input. The input dataset consisted of 428 sclerotic
glomeruli and 2,344 non-sclerotic glomeruli derived from images of kidney biop-
sies scanned by the Aperio ScanScope System. According to the authors, the two
approaches allowed accurately distinguishing between sclerotic and non-sclerotic
glomeruli with a mean accuracy of 99%.

A common factor among the works that distinguish between sclerotic and
non-sclerotic glomeruli was the creation of models based on deep learning. On
the other hand, several researchers in medical image processing demonstrate
that, despite the proposal of numerous CNNs, for implementation in a natural
system to aid the diagnosis, the consolidated architectures are the ones that tend
to present better effectiveness. The authors achieved promising results with con-
solidated state-of-the-art CNNs, such as VGGs, DenseNet, ResNet, and Incep-
tion. In this way, we investigated the use of five well-known CNNs, evaluated the
shallow and deep fine-tuning, and proposed modifications in the fully connected
layers.

3 Materials and Methods

This work presents a method based on modified CNN architectures to detect
glomerulosclerosis in renal biopsy images. To reach the proposed solution, we
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used the methodology shown in Fig. 1. As an initial step, we select pre-trained
CNN and extract the convolutional layers with their weights. Then, we add
new fully connected layers and perform the fine-tuning in two steps: in shallow
fine-tuning (SFT), we freeze the convolutional weights and train only the new
layers; in Deep Fine-Tuning (DFT), we retrain the entire CNN. After that, we
conduct the performance analyses and choose the proposed method by analyz-
ing the performances obtained. The following subsections describe the proposed
methodology, the image dataset, and the techniques and metrics adopted to
assess the solution.

Fig. 1. Summary of the experimental set. We took the convolutional layers of pre-
trained CNNs and added new dense architectures. Then we fine-tuned the models in
two stages, SFT (train only the dense part) and DFT (train the entire network) with
our dataset. Finally, we evaluate the trained models performance.

3.1 Proposed Methodology

Following the methodology illustrated in Fig. 1 and analyzing the achieved
results with each CNNs, we reached the proposed approach shown in Fig. 2.

The input image goes through a pre-processing step, aiming to adapt its
dimensions and pixel values range to the CNN’s inputs. The image is classified
by a DenseNet architecture fine-tuned to perform this task.

3.2 Image Dataset

The dataset contains 1,062 optical microscopy images of renal biopsies with one
glomerulus per image. Biological material samples were treated with three chem-
ical stains: Hematoxylin-Eosin (HE), Periodic Acid-Schiff (PAS), and Periodic
Schiff-Methenamine Silver (PASM).
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Fig. 2. Proposed methodology. The image undergoes dimensional and scale adjust-
ments, after which it goes to CNN model for final classification.

We used images from three different datasets. Most of them are from the
dataset (here called PSK1) built by pathologists from the Gonçalo Moniz Insti-
tute from Oswaldo Cruz Foundation, and made available in the PathoSpotter2

project scope. The others were extracted from the DME and INetDB databases
found in the work of Santos et al. [17].

In Fig. 3 we show dataset samples. We verified that the tissue is complex
with various colors (mainly due to staining), textures, and glomerulus shapes.
In addition, there are visually similar images belonging to different classes and
vice versa. Such characteristics make the classification task more challenging.

Fig. 3. Samples of images from the used dataset. a and b: HE stained; c and d : PAS
stained; e and f : PASM stained. The first row has glomeruli with glomerulosclerosis
and the second row has healthy glomeruli.

The images from the healthy class were randomly selected from a larger
dataset provided by the authors of the PSK1 dataset. We selected images that
contained a single glomerulus and were treated with the same stain as sample
images with glomerulosclerosis. It was also sought to balance classes in the num-
ber of samples. Table 1 shows the distribution of the final number of images by
staining and class.
2 https://pathospotter.bahia.fiocruz.br.

https://pathospotter.bahia.fiocruz.br
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Table 1. Dataset image count.

Dataset HE PAS PASM Total

PSK1 244 | 240 195 | 182 92 | 92 531 | 514

DME 0 | 3 0 | 6 0 | 0 0 | 9

INetDB 0 | 1 0 | 7 0 | 0 0 | 8

Total 244 | 244 195 | 195 92 | 92 531 | 531

Each pair of values means healthy and Glomeru-
losclerosis image count respectively.

3.3 Pre-processing and Data Augmentation

The input dimensions (height and width) of the CNNs evaluated are different
in absolute values and proportional terms from the original image’s dimensions.
Therefore, we added black borders (padding) to the images to make their appear-
ance square before resizing. This strategy avoids deformations in the format of
the objects present in the image and an eventual loss of data when performing
procedures to cut specific regions.

To increase the number of images to improve the generalization perfor-
mance [19], we apply transformations to the training input images. Some oper-
ations, such as shear or zoom, can cause image deformation and data loss. We
decided, then, to define simple spatial transformations that can happen naturally
when the expert analyzes the sample.

Thus, we defined two transformations: vertical and horizontal flip, since, for
the present dataset, they are label-preserving transformations [19]. These trans-
formations are randomly applied to the images at runtime of the training, mul-
tiplying by up to four times the variety of input images. Figure 4 presents one
image sample after the padding operation (from pre-processing) and shows the
results of the data-augmentation operations.

Before being taken to the CNNs, the images undergo a pre-processing process,
where specific operations for each architecture are performed. Such operations
may include adjusting pixel values, scaling, and normalization. In this way, the
images acquire the same representation for which the network was pre-trained
in ImageNet.

3.4 Evaluated Convolutional Neural Networks

CNNs have been widely used in machine learning, especially in medical imaging.
With their deep architectures, CNNs can map image features at different levels
of abstraction and have been successfully used in the development of medical
diagnostics tools, often surpassing in accuracy conventional feature extraction
methods [22].

The typical architecture of a CNN can be divided into two parts: (1) in the
convolutional part, there are convolution operations with matrix weight filters,
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Fig. 4. Pre-processing and data augmentation operations. a is an image with padding
addiction; b, c and d are generated from a by data-agumentation transformations,
respectively vertical flip, horizontal flip and in both directions.

which extract feature maps, and pooling operations, which reduce the dimen-
sionality of the maps, preserving the more essential features. After a succession
of these operations, the map features are taken to the dense part (2), similar
to a fully connected multi-layer perceptron, producing the desired output (clas-
sification). Strictly speaking, there are other topologies with residual flows and
normalization layers, for example. For convenience, we will call the initial part
of the network up to the point where the maps are linearized as convolutional.

We use pre-trained CNNs on the ImageNet [16] dataset, which contains over
1.2 million images and 1,000 classes. We only took the convolutional part (with
the weights) of five architectures already established in the literature and with
high generalization capacity: VGG-19 [20], Inception-V3 [21], ResNet-50 [6],
DenseNet-201 [7] and EfficientNet-B2 [23]. Table 2 provides details of these net-
works. According to Kornblith et al. [11], the better the architecture performs
on the ImageNet dataset, the better the transfer to other natural image datasets.

Table 2. Evaluated convolutional architectures summary.

Name Abbr. Parameters
(original)

Parameters
(without dense)

Top-5 acc
(ImageNet)

VGG-19 v19 143,667,240 20,024,384 90.0%

Inception-V3 iv3 23,851,784 21,802,784 93.7%

Resnet-50 rsn 25,636,712 23,587,712 92.1%

DenseNet-201 dsn 20,242,984 18,321,984 93.6%

EfficientNet-B2 ef2 9,177,569 7,768,569 94.9%

3.5 Transfer Learning and Fine-Tunning

Training a CNN from scratch is computationally expensive and requires a large
amount of training data to achieve good generalization power. An alternative is
the use of transfer of learning (TL) techniques, which allow reusing knowledge
learned in one field and applying it in another related field [22].
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We took each of the CNNs, and after the convolutional part, we added a layer
of Global Average Pooling3. The operation performed on this layer synthesizes
each generated feature map into a value based on the average, in this way it
produces one-dimensional vectors to supply the dense part. After this layer, we
concatenated a new dense part, which completes the network architecture and
provides the classification.

For the dense part, we evaluated five architectural alternatives. The simplest
of them only consists of a classification layer with two neurons. The other four
include a hidden layer containing 64, 256, 512, or 1024 neurons. We found that
adding more hidden layers did not bring benefits in initial tests. We will use
the abbreviations from Table 2 followed by the representation of its dense layers,
separated by “ ” to name a specific architecture. Ex. rsn 64 2 represents the
Resnet-50 with a hidden layer of 64 neurons and the output layer with two
neurons.

The training strategy occurred in two stages. We applied shallow fine-tuning
(SFT) in the first step, where only the dense layers were trained. Moreover, in
the second step, deep fine-tuning (DFT), the entire network is trained at a very
low learning rate.

The network training process was followed and monitored through the loss
function during 80 epochs in the SFT stage, as illustrated in Fig. 5. For the sec-
ond training stage, each network was taken when it presented the lowest loss in
the validation set, and the training process continued from this state for another
80 epochs or until stagnation or an increase in loss for 20 consecutive epochs
(early stopping) was observed. We used the RMSprop algorithm optimizer [24],
a learning rate of 10−3 in SFT and 10−6 in the DFT, and the categorical crossen-
tropy as the loss function.

Fig. 5. Loss monitoring on the validation set during the training process. Dot marks
show epoch with minimal loss. DFT stage starts over the green dot marked epoch.
(Color figure online)

3.6 Evaluation Metrics

We employed the stratified k-fold cross-validation. This technique randomly dis-
tributed the dataset instances into k mutually exclusive subsets (folds) of approx-
3 https://keras.io/api/layers/pooling layers/global average pooling2d/.

https://keras.io/api/layers/pooling_layers/global_average_pooling2d/
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imately equal size and in the same proportion observed in the original dataset. In
this way, the CNN is fine-tuned and tested k times. Each round uses a different
subset for evaluation, and the remaining k − 1 subsets are used for fine-tuning.

We splited the image dataset into five folds (k = 5), so 20% of the instances
make up the test subset, which is not used during the training of the network,
but in the evaluation of the final performance of the classifiers. The images
from the remaining folds were splited into two subsets: the training subset (70%
from total), and the network weights are adjusted based on this subset’s loss.
Furthermore, the validation subset (10% from total) was used to monitor training
and detect overfitting.

The confusion matrix confronts the predicted and actual results for the same
set of tests. There are four values in this matrix: the true positive (TP), which
indicates the number of images correctly classified as GS; the true negative
(TN), corresponding to the number of correct healthy classifications; the false
positive (FP), representing the number of images classified as GS, but which
are healthy; and finally, the false negative (FN), which refers to the number of
images erroneously classified as healthy. From the confusion matrix, we evaluated
the classification performance in the test set by the mean values of four metrics:
accuracy (A), precision (P ), recall (R), and kappa (K) [3].

The kappa (Eq. 1) allows measuring the degree of agreement between the
classifier and the expert. We used kappa as the main evaluation metric because
it is more challenging than accuracy, as it takes into account the expected prob-
ability (Pe) of the evaluators agreeing on the classification. This metric is also
calculated based on the entire confusion matrix, i.e., correct and wrong results
of both classes are considered.

K =
A − Pe

1 − Pe
. (1)

The maximum kappa value (100%) indicates the perfect agreement among
the evaluators; other ranges of values are categorized according to to the k value
as follows: k ≤ 20: Bad; 20 < k ≤ 40: Fair; 40 < k ≤ 60: Good; 60 < k ≤ 80:
Very Good and k > 80: Excellent [13].

4 Results and Discussion

Here we detail the individual results obtained with the 25 CNNs architectures
evaluated. The metrics presented were obtained in the test subsets and represent
the average of the values measured in the five folds of the cross-validation.

Table 3 presents the results observed in architectures based on VGG-19. Com-
paring the results obtained in the training stages, we verified that the continuity
of training to adjust the weights of the convolutional layers (at the DFT stage)
had positive effects on all architectures based on VGG-19.

The topology of VGG-19 is simple (sequential type), and compared to the
other architectures evaluated, it originally had more parameters in the dense part
(Table 2). We believe that when replacing the original dense part with a much
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Table 3. Results from VGG-19 based architectures.

Architecture A (%) P (%) R (%) K (%)

S
F
T

v19 2 83.6 ±4.5 85.1 ±5.0 81.9 ±9.0 67.2 ±9.0

v19 64 2 86.2 ±4.1 86.7 ±4.9 85.7 ±6.0 72.3 ±8.2

v19 256 2 86.4 ±5.0 85.2 ±6.1 88.5 ±4.5 72.9 ±10.1

v19 512 2 86.3 ±4.9 85.6 ±6.0 87.7 ±5.5 72.7 ±9.7

v19 1024 2 85.0 ±4.6 83.3 ±4.6 87.8 ±5.3 70.0 ±9.3

D
F
T

v19 2 88.5 ±3.7 88.8 ±5.8 88.7 ±6.3 77.0 ±7.4

v19 64 2 90.9 ±3.3 90.0 ±3.6 92.1 ±4.3 81.7 ±6.5

v19 256 2 90.9 ±2.4 90.2 ±2.1 91.7 ±3.5 81.7 ±4.9

v19 512 2 89.3 ±3.7 89.4 ±3.6 89.4 ±6.5 78.7 ±7.4

v19 1024 2 89.2 ±4.0 88.5 ±3.8 90.0 ±5.4 78.3 ±8.0

- Bold are the best values.

smaller one with fewer layers and parameters, it was not able to perform well
the necessary transformations in the attributes received from the convolutional
layer. So the general adjustment of the weights (at the DFT) made possible a
better accord between the convolutional and dense parts in the network and
allowed more adaptation to the new data.

Table 4 presents the results observed in architectures based on Inception-V3.
The original architecture of this CNN contains only one dense layer (the output
layer), which shows that the convolutional part performs almost all the pro-
cessing and already delivers a simpler task to the final layers. The DFT also
positively affected the results in Inception-V3, but the improvement was smaller
than that observed in VGG-19.

Table 4. Results from Inception-V3 based architectures.

Architecture A (%) P (%) R (%) K (%)

S
F
T

iv3 2 89.2 ±3.1 88.4 ±3.6 90.2 ±2.7 78.4 ±6.2

iv3 64 2 89.5 ±1.8 88.9 ±1.9 90.2 ±4.1 78.9 ±3.6

iv3 256 2 89.5 ±1.2 89.6 ±1.7 89.3 ±1.5 78.9 ±2.5

iv3 512 2 88.9 ±2.8 88.6 ±3.3 89.3 ±2.7 77.8 ±5.6

iv3 1024 2 88.8 ±2.2 88.0 ±2.3 89.8 ±3.4 77.6 ±4.4

D
F
T

iv3 2 90.0 ±2.1 88.7 ±3.7 91.9 ±1.1 80.0 ±4.1

iv3 64 2 90.5 ±2.2 89.9 ±3.3 91.3 ±1.2 81.0 ±4.3

iv3 256 2 89.9 ±1.7 90.0 ±2.2 89.8 ±2.3 79.8 ±3.5

iv3 512 2 90.3 ±1.8 90.4 ±2.7 90.2 ±1.1 80.6 ±3.7

iv3 1024 2 90.8 ±1.5 90.9 ±3.3 90.8 ±1.3 81.5 ±3.0

- Bold are the best values.
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Table 5 presents the results observed in architectures based on Resnet-50.
The continuity of training in the DFT, in some scenarios, had diffuse and small-
magnitude effects on the measured metrics. We verified the early stagnation of
the loss (in the validation set) in the ninth epoch on average, so minor effects
are expected, considering the low learning rate inherent to the DFT stage. The
rsn 256 2 architecture achieved the best kappa, reaching 82.9%.

Table 5. Results from Resnet-50 based architectures.

Architecture A (%) P (%) R (%) K (%)

S
F
T

rsn 2 89.3 ±2.3 89.2 ±2.3 89.5 ±4.6 78.5 ±4.6

rsn 64 2 90.6 ±2.2 91.0 ±2.9 90.2 ±2.5 81.2 ±4.4

rsn 256 2 90.3 ±2.8 90.6 ±4.2 90.2 ±4.7 80.6 ±5.5

rsn 512 2 91.1 ±2.6 91.1 ±4.5 91.3 ±4.2 82.1 ±5.2

rsn 1024 2 90.3 ±2.0 92.1 ±3.0 88.3 ±5.6 80.6 ±3.9

D
F
T

rsn 2 89.8 ±3.2 90.0 ±3.2 89.6 ±4.9 79.7 ±6.4

rsn 64 2 91.0 ±2.3 91.0 ±2.8 91.0 ±3.5 81.9 ±4.6

rsn 256 2 91.4 ±2.2 90.3 ±3.5 93.0 ±2.1 82.9 ±4.3

rsn 512 2 90.5 ±2.3 89.6 ±2.7 91.7 ±2.3 81.0 ±4.6

rsn 1024 2 90.9 ±1.9 90.3 ±2.8 91.7 ±4.2 81.7 ±3.8

- Bold are the best values.

Table 6 presents the results observed in architectures based on DenseNet-
201. Similar to Inception-V3, we see a positive impact generated by the DFT;
all metrics improved after DFT training stage. We also verify the DFT duration
in training epochs, the loss stagnation occurred at the 17th epoch on average.
The dsn 512 2 architecture got the best results at DFT, reaching 85.3% of kappa.

Table 6. Results from DenseNet-201 based architectures.

Architecture A (%) P (%) R (%) K (%)

S
F
T

dsn 2 91.9 ±2.0 91.8 ±1.8 92.1 ±2.8 83.8 ±4.1

dsn 64 2 91.9 ±2.0 92.1 ±1.4 91.7 ±3.5 83.8 ±4.0

dsn 256 2 90.8 ±1.8 91.4 ±3.2 90.2 ±1.1 81.6 ±3.6

dsn 512 2 91.1 ±2.9 90.8 ±4.1 91.5 ±2.5 82.1 ±5.8

dsn 1024 2 90.6 ±2.5 90.4 ±3.7 91.0 ±2.4 81.2 ±5.0

D
F
T

dsn 2 92.4 ±2.4 92.2 ±3.0 92.6 ±2.7 84.7 ±4.9

dsn 64 2 92.6 ±1.9 92.6 ±2.1 92.5 ±1.9 85.1 ±3.9

dsn 256 2 92.3 ±1.9 92.5 ±2.4 92.1 ±1.3 84.6 ±3.8

dsn 512 2 92.7 ±2.7 92.6 ±3.5 92.8 ±2.2 85.3 ±5.3

dsn 1024 2 92.6 ±2.7 92.7 ±3.0 92.5 ±2.3 85.1 ±5.4

- Bold are the best values.
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Table 7 presents the results observed in the architectures based on
EfficientNet-B2. Training this network in the DFT stage promoted accuracy,
Precision, and Kappa improvements. However, the recall was reduced, which
indicates that the DFT decreased the classifier’s ability to find the positive sam-
ples.

The part used in TL (convolutional only) from the EfficientNet-B2 is about
1/3 of the other networks, considering the number of parameters. It indicates
that their few weights were well refined to the original problem (ImageNet). So, in
this case, the DFT fulfilled its function more intensely. It is still worth reporting
that the networks based on EfficientNet-B2 had a more extended training at the
DFT stage (the loss stagnation happened about the 42th epoch in average).

Table 7. Results from EfficientNet-B2 based architectures.

Architecture A (%) P (%) R (%) K (%)

S
F
T

ef2 2 90.0 ±2.2 89.1 ±2.0 91.1 ±2.6 80.0 ±4.5

ef2 64 2 90.5 ±1.7 89.3 ±2.8 92.1 ±2.2 81.0 ±3.5

ef2 256 2 89.8 ±2.2 88.5 ±3.7 91.7 ±2.3 79.7 ±4.5

ef2 512 2 90.6 ±2.1 89.5 ±3.4 92.1 ±2.2 81.2 ±4.2

ef2 1024 2 89.7 ±2.7 88.2 ±3.7 91.9 ±3.2 79.5 ±5.4

D
F
T

ef2 2 91.6 ±1.6 92.3 ±1.7 90.8 ±2.0 83.2 ±3.2

ef2 64 2 90.9 ±2.1 91.8 ±3.3 89.8 ±2.1 81.7 ±4.2

ef2 256 2 90.7 ±2.0 91.1 ±1.9 90.2 ±2.9 81.4 ±4.0

ef2 512 2 90.9 ±1.5 91.5 ±1.8 90.2 ±3.4 81.7 ±3.1

ef2 1024 2 89.9 ±2.1 90.0 ±2.3 89.8 ±2.7 79.9 ±4.1

- Bold are the best values.

We reach the best results using the Densenet-201 convolutional part, folowed
by two dense layers having 512 and 2 neurons (dsn 512 2). The accuracy achieved
was 92.7%, and the kappa was 85.3%, which characterizes almost perfect agree-
ment with the classification performed by the specialist. The other evaluation
metrics also reached similar levels: The precision of 92.6% and the recall of
92.8% point to low FP and FN ratings, respectively. The graph in Fig. 6 allows
comparing the overall performance of the best of each CNN based architecture.
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Fig. 6. Performance comparison between each best CNN-based architecture.

Figure 7 presents the dsn 512 2 predictions for some images from the test
set; we include in the figure the percentage of each category from the confusion
matrix (TP, TN, FP, and FN) separately for each staining. Considering the
images treated with HE, for example, in the True Positive quadrant we have
TPHE/NHE = 47.5%, and in the True Negative we have TNHE/NHE = 46.1%,
totaling 93.6% success. Since there were 3.9% FP, and 2.5% of FN, 6.4% of errors
completes 100% of the images of this staining. The accuracy among the images
treated with PAS is 92.8%, in the PASM stained images, 89.7%.

Fig. 7. Sample results from classifications made by dsn 512 2.

Figure 8 presents the accuracy and loss ratio of the training and validation
sets over the dsn 512 2 training epochs. We can observe that, although there are
some peaks, there is a relationship between the curves (training and validation),
and there are no inflection points, which characterizes a good generalization
capacity [19]. From the results, it is possible to conclude that there was no
overfitting during training. We attribute this fact to the decrease in complexity
provided by the reduction in fully connected layers and the application of data
augmentation techniques.
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Fig. 8. Accuracy and loss of DenseNet based-model in training and validation sets by
epochs of SFT stage. These plots show no inflection point, and accuracy increases for
both sets together, indicating no overfitting.

5 Conclusion and Future Works

This work presented a DenseNet-based CNN architecture and training strategy
to identify glomerulus with sclerosis. Several architectures, fine-tuning schemes,
and other convolutional architectures were studied to define the proposed model.
The experiments showed that the deep fine-tuning was more efficient than the
shallow fine-tuning.

The results obtained were promising, but they can be improved. Future work
may also investigate the use of generative adversarial networks in increasing data
availability; notably, these networks can generate heterogeneous images that
adequately represent the original distribution. Furthermore, we also intend to
improve the models by applying meta-learning to adjust the architecture design
and the definition of other parameters, e.g., learning rate and loss function.
Finally, the evaluation of the computational results by additional experts would
be crucial for the routine use of the proposed model.
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Abstract. In this article, we propose an aggregation of denoising dif-
fusion probabilistic models (DDPMs) onto an end-to-end text-to-speech
system to learn a distribution of reference speaking styles in an unsuper-
vised manner. By applying a few steps of a forward noising process to an
embedding extracted from a reference mel spectrogram, we make profit of
its information to reduce the diffusion chain and reconstruct an improved
style embedding with only a few reverse steps, performing style trans-
fer. Additionally, a proposed combination of spectrogram reconstruction
and denoising losses allows for conditioning of the acoustic model on the
synthesized style embeddings. A subjective perceptual evaluation is con-
ducted to evaluate naturalness and style transfer capability of the proposed
approach. The results show a 5-point increment on the mean of natural-
ness ratings and a preference of the raters (43%) of our proposed approach
over state-of-the-art models (29%) in the style transfer scenario.

Keywords: Expressive speech synthesis · Style modeling · Diffusion
models

1 Introduction

Among the techniques used in text-to-speech (TTS) systems, the neural approach
has receivedmuch attention due to its state-of-the-art, natural-sounding generated
speech that is almost indistinguishable from humans’ [11,22]. However, besides
naturalness, one crucial factor that still differs human speech from synthesized
speech is its expressiveness. Current TTS systems only learn an average of the
prosody distribution, producing a monotonous and tedious speech [8]. In this con-
text, speech prosody, which is the information in speech not conveyed through its
phonetic content, becomes determinant to make speech spontaneous [17].

Prosody can be defined as “the variation in speech signals that remains
after accounting for variation due to phonetics, speaker identity, and channel
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effects” [23]. Prosody is also viewed as a confluence of several factors: linguis-
tic (modality, discourse, semantics, syntactics), paralinguistic (attitude, emotion,
pragmatics) and extra-linguistic (physiological, idiolectal, geographical, sociolog-
ical, situational and temporal aspects) [20], that influence the interplay between
low-level acoustic characteristics, such as pitch, stress, breaks, rhythm, etc. [25].
Hence, it is an arduous task to develop explicit labels for prosody.

Speaking style, on the other hand, whilst being an ill-defined concept, can be
intuitively understood as higher-level affective characteristics of speech, such as
emotional valence (“good”-ness/“bad”-ness) and arousal (excitement level) [25].
Even though the speaking styles, referred here as “styles”, influence prosody
directly, they can provide a better comprehension of expressiveness in speech.

In the context of TTS, style modeling has been explored in a broader perspec-
tive when compared to the traditional approach of categorical emotion labels,
such as the “Big-Six” emotions [6]. A few examples of modeled styles are: nar-
rative, mean, whispering and depressive in the context of storytelling [27].

This alternative method aims at providing artificial socially interactive agents
with more common and natural styles of communication that are typically
observed among humans in their daily interactions. Expressive speech synthesis
is a key technology to equip avatars and social robots to inform empathy in
assistance tasks and show typical human social behaviors in applications such as
cognitive therapy for children, elderly care, and learning tutoring [2,10]. Also,
through expressive speech, voice cloning systems can create personalized voice
assistants and empower individuals with speech loss [19].

Most of the successful work present in literature attempts to model style via
a latent representation, which was shown to be able to modify the synthesized
speech’s prosody to comprise the target style without the need of explicitly con-
trolling the acoustic parameters [29]. In these architectures on which the varying
information is modeled implicitly in an unsupervised fashion, an style encoder
neural network is the module responsible for extracting the style embedding,
that is itself added or concatenated to condition a regular TTS acoustic model
(generates Mel-spectrograms from text). On the context of implicit models, in
which this work is inserted, there exists several approaches to style modeling
using mostly different classes of deep generative models, such as Generative
Adversarial Networks (GANs) [18], Variational Autoencoders (VAEs) [35] and
Flow-based models [1].

When considering state-of-the-art generative neural networks, diffusion mod-
els [24] have been addressed a lot in recent research. This is largely due to
the report that these models exhibited state-of-the-art performance by beating
GANs on the image synthesis task, both on image sample quality, and in the
Fréchet Inception Distance (FID) score [5]. The diffusion model consists in a
forward diffusion process that converts any complex distribution into a simple
and tractable distribution (Gaussian). And then in order to generate samples,
the reverse process is learned, taking the Gaussian distribution from the data
distribution with several denoising steps [24].
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Diffusion models have already been exploited in the context of TTS. There
are several approaches to a vocoder model, which converts the Mel-spectrograms
generated by a TTS acoustic model into the audio speech waveforms [3,4,14].
There has also been approaches to the acoustic model itself using diffusion mod-
els, as in [11,15]. A notable property of these models is their capability of acquir-
ing high quality audio in the case of vocoders, and high mean opinion scores
(MOS) for the neural acoustic models, with the drawback of being slow, due
its reverse process that requires several model passes. As a consequence, a lot of
research is being conducted on how to speed up sampling in diffusion models [13].

In spite of that, to the best of the authors’ knowledge, diffusion models
have not been exploited in the case of style modeling. From this perspective,
we explore inserting these models into a style encoder, hypothesizing that the
generative power of these models can learn to reconstruct samples that better
condition the acoustic model to induce the desired style.

Our contributions are the following:

1. We introduce a new technique of modeling style in TTS with a shallow diffu-
sion mechanism, that allows the use of a reference spectrogram as input for
style transfer (rather than starting from a noise distribution), and a smaller
diffusion chain, speeding up training and inference.

2. We propose a new manner of training diffusion models: jointly optimizing
the denoiser with a diffusion and spectrogram reconstruction losses. By going
through the whole reverse diffusion chain, instead of only a single denoising
step during training, we are able to generate style embeddings during training
that condition the acoustic model.

3. We conduct the experiments in an expressive dataset in Brazilian Portuguese,
a low resource language.

This work is divided as follows: Sect. 2 compiles the most noted works in
neural TTS style modeling and the current trends; Sect. 3 details the theoretical
background of the diffusion models; Sect. 4 details the proposed model archi-
tecture and the procedures of training and inference; Sect. 5 describes in detail
both the setup and the experiments performed; Sect. 6 contains a brief discussion
concerning the results obtained and Sect. 7 ends with the conclusion and some
future work to be done.

2 Related Works

In terms of technique, there are several relevant approaches in the literature on
how to model either prosody or style. In our work we consider solely approaches
that use a reference audio to transfer its style to the given text. This choice is
due to the fact that theoretically any style/prosody of a given reference could
be transferred. However, no style extrapolation/generalization is possible from
those seen in training, and current techniques still have limited performance,
meaning that the problem is still being strongly tackled.
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– Reference Encoder [23]: The reference encoder consists of a neural network
with six convolutional and batch normalization layers followed by a Gated
Recurrent Unit (GRU) network. It was proposed to map a reference audio
spectrogram to a fixed size embedding, the style embedding, which is shared
across all decoding timesteps. With this, the authors aim to define a “prosody
space”. During training, the target audio is used as input to the reference
encoder, driven by the spectrogram reconstruction loss, and on inference, any
utterance could be used to perform prosodic transfer to the inserted text.
One major drawback of this approach is that there is not a guarantee that all
styles drawn from the space will be meaningful, since the space itself is not
compact. Practically almost all works after this use the reference encoder to
consider an audio input together with some other improvement.

– Style Tokens [31,32]: The attention-based style tokens approach was the
first relevant for style modeling in neural TTS. It consists in a bank of embed-
dings learned in an unsupervised manner that could decompose the reference
audio into latent interpretable factors, that combined in a weighted sum, out-
putted a style embedding. One notable drawback of this approach is the fact
that, with the bank of embeddings, there is no predictable way to manipulate
either prosody or style, since there is no direct relation between a token and
a prosodic attribute. Also, the tokens could represent anything in particular,
not only factors related to expressiveness, such as noise.

– VAE [35]: The VAE-based style encoder consists in a reference encoder, as
detailed previously, to obtain a reference embedding which passes through
two separate fully connected layers in order to predict the mean and standard
deviation of a style embedding distribution (assumed Gaussian). The VAE
style encoder is trained to maximize the variational lower bound, through
a combination of the acoustic models’ reconstruction loss and an annealed
Kullback-Leibler (KL) divergence loss. Due to the insertion of the VAE after
the reference encoder, new style embeddings can now be sampled by using the
reparameterization trick. This way, the authors manage to sample meaningful
embeddings more often and perform style control.

– VAE+Flow [28]: This model aims to improve the posterior distribution of
the VAE style encoder: since it is modeled as a Gaussian with learned mean
and diagonal covariance matrix, the approach is not flexible enough. Thus,
Householder flows [28] were proposed to enrich the model. The flow starts with
a simple Gaussian distribution and then applies a series of volume-preserving
transformations to obtain a more flexible distribution for the variational pos-
terior. Thus, [1] enriches the VAE-based style encoder with the householder
flows. They reported better KL and reconstruction losses and an improve-
ment on the perceived naturalness and expressiveness in the one-shot text to
speech scenario, in which the model is finetuned with only one sample from
a new unseen style.

All these techniques are based on an augmentation of the acoustic Tacotron
2 [22] model. There are also other approaches in the literature for style and
prosody modeling rather than those mentioned, such as: hierarchical [26] and
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fine-grained [12] approaches, that consider different levels of variation informa-
tion (phone-level, word-level, etc.); approaches that use low-level prosodic refer-
ence information [33] instead of the mel-spectrograms, such as pitch, duration
and energy; and style strength quantization approaches [9].

3 Background

3.1 Denoising Diffusion Probabilistic Models

Diffusion models [24] are a type of generative model. They consist on a Markov
chain that destroys data by gradually adding noise (forward process) and then
learns the reverse process to generate a new sample from noise. The forward
trajectory taking the data z0 ∼ q(z0) to its latent noisy version is given by:

q(z1:T |z0) :=
T∏

t=1

q(zt|zt−1) (1)

in which T is the number of steps in the chain and q is the transition probabil-
ity, modeled as a multivariate Gaussian according to a predefined (or learned)
variance schedule βt:

q(zt|zt−1) := N (zt;
√

1 − βtzt−1, βtI) (2)

One property of this forward noising process is that it admits sampling zt at an
arbitrary noise level t in closed form, given the original sample, according to:

q(zt|z0) = N (zt;
√

ᾱtz0, (1 − ᾱt)I) (3)

being αt := 1 − βt and ᾱt :=
∏t

s=1 αs. Then, the noisy version zt is obtained by
reparameterization, with ε ∼ N (0, I):

zt(z0, ε) =
√

ᾱtz0 +
√

1 − ᾱtε (4)

Assuming T is large enough, q(zT ) is nearly an isotropic Gaussian distribu-
tion [7], thus the reverse process is given by:

pθ(z0:T ) := p(zT )
T∏

t=1

pθ(zt−1|zt) (5)

in which p(zT ) = N (zT ;0, I), and θ is the model’s parameters. Each reverse
transition is normally intractable, so they are modeled as multivariate Gaussians
whose mean’s and covariance’s can be learned by a neural network:

pθ(zt−1|zt) := N (zt−1;μθ(zt, t),Σθ(zt, t)) (6)

On training, the negative log-likelihood is indirectly optimized through the Vari-
ational Lower Bound:

Eq[− log pθ(z0)] ≥ Eq

[
− log

pθ(z0:T )
q(z1:T |z0)

]
:= L (7)



258 L. B. de M. M. Marques et al.

L can be decomposed in combination of losses each corresponding to a time step.
In this context, [7] showed that efficient training can be achieved by optimizing
with stochastic gradient descent separate random terms of L, each given by:

Lt−1 := DKL(q(zt−1|zt,z0)||pθ(zt−1|zt)) (8)

Developing each loss term, fixing Σθ(zt, t) = σ2
t I, and choosing the neural net-

work to predict the noise ε in zt given t (thus denoising diffusion probabilistic
models), we obtain the following objective:

Ez0,ε

[
β2

t

2σ2
t αt(1 − ᾱt)

||ε − εθ(
√

ᾱtz0 +
√

1 − ᾱtε, t)||2
]

(9)

With this parameterization, sampling zt−1 ∼ pθ(zt−1|zt) corresponds to:

zt−1 =
1√
αt

(
zt − βt√

1 − ᾱt
εθ(zt, t)

)
+ σtη (10)

in which η ∼ N (0, I).
Finally, [7] found that the following simplified variant (ignoring the scaling

term) of the objective was better for both simplification and sample quality:

Lsimple := Et,z0,ε

[||ε − εθ(
√

ᾱtz0 +
√

1 − ᾱtε, t)||2
]

(11)

3.2 Shallow Diffusion Mechanism

The shallow diffusion mechanism [15], instead of starting the reverse diffusion
process from the noise Gaussian distribution, it takes profit of prior knowledge to
assist the chain in the synthesis of a new sample. On inference, the authors take
over-smoothed mel-spectrograms outputted by a simple decoder trained with L1
loss directly on mel-specs and apply k steps of noise. Then, the decoder is able
to synthesize a sample by taking this noisy over-smoothed mel-spectrogram and
performing the reverse denoising process with only k steps, in which k < T (the
diffusion chain size when starting from noise).

The noise level (number of noising steps) k is set when both ground-truth and
over-smoothed mel-spectrograms are indistinguishable (both manifolds inter-
sect), thus allowing the model to generate mel-spectrograms with rich details
between neighboring harmonics whilst starting from the noisy over-smoothed
version. This procedure was used in a TTS acoustic model and was found to
accelerate inference and improve the quality of the synthesized audio.

4 Model

4.1 Model Architecture

Our architecture, shown in Fig. 1, consists of an acoustic TTS model, chosen to
be a Tacotron 2 network with the same hyperparameters as described in [22],
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augmented with a style encoder module based on denoising diffusion probabilis-
tic models. The style encoder consists of a reference encoder with the same
hyperparameters described in [23], and a denoiser which, for generality, was con-
figured as a sequence of five Feed-Forward Transformer blocks [21], although
other architectures are possible as well.

Commonly, the diffusion-based generation starts by sampling random noise
from a standard Gaussian distribution that goes through an iterative denoising
process, resulting in the synthesis of a sample, as detailed in Eq. 5. However,
since our objective is to transfer style from a reference mel-spectrogram to the
desired input phoneme sequence, we apply a mechanism similar to the shallow
diffusion process [15], described in Sect. 3.2, which allows the generation of the
style embedding from the reference embedding. So, we use a diffusion chain with
only up to 25 steps.

Fig. 1. Block diagram of the proposed architecture. The green blocks represent the
required entries, the blue blocks compose the style encoder that generates the style
embedding, used to condition the acoustic model, comprised by the gray blocks. (Color
figure online)

4.2 Training and Inference

As shown in Fig. 1, in our training approach, the model receives the text
sequence; the target mel-spectrogram, which is also passed as reference to the
style encoder and converted to a reference embedding z by the reference encoder,
and t, the parameter that controls number of noise-adding steps on the extracted
reference embedding, taking it to the noise level zt. After this noising process of
the reference embedding, the reconstruction (reverse process) takes place.

In each denoising step, presented in Fig. 2, the denoiser takes a concatenation
of the reference embedding at noise level t (obtained with the noising process), zt,
and a time-step embedding et, which is a Transformer-like sinusoidal positional
embedding to indicate which step of the chain is being executed, and outputs the
predicted noise contained in the reference embedding, εt. With these parameters
combined and a reparameterization trick, the denoised embedding at noise level
t − 1, zt−1, is obtained.

To condition the acoustic model, we propose a new training procedure. Com-
monly, the diffusion model does not synthesize any sample during training, since
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each weight update is done only on isolated random steps of the diffusion chain,
not requiring going through the whole reverse process. This would not enable to
condition the Tacotron on the learned distribution given that no style embedding
would be outputted during training.

Fig. 2. A denoising step. The denoiser receives the noisy embedding zt at noise level t,
the correspondent time-step embedding et, and predicts its contained noise εt. Then,
with a combination of the predicted noise εt, the chain parameters (α’s and β’s), the
noise embedding zt, and a reparameterization trick, the one-step denoised embedding
zt−1 is obtained, through the operations shown in the red blocks.

To solve this problem, instead of only performing a single denoising step to
zt−1, shown in Fig. 2, we reconstruct the style embedding z0, by going through
the whole reverse chain (t denoising steps). The style embedding is then con-
catenated to the encoder states of the Tacotron 2 to condition the decoder with
style information, as exhibited in Fig. 1.

This approach allows us to train the denoiser simultaneously with a com-
bined loss composed with both standard simple diffusion loss presented in Eq. 11
between the noise levels t and t − 1 and also the Tacotron 2 loss, given that we
are now able to generated a style embedding and concatenate it to the encoder
outputs. The extra denoising steps needed could lead to slower training, but
this is compensated by the shallow diffusion mechanism since it allows a smaller
diffusion chain. Our loss is thus given as:

Lcomb = Lsimple + LMel + LGate, (12)

in which the mel loss is an MSE between the outputs of the Tacotron 2 pre-net
and post-net with the target spectrogram (reconstruction loss); the gate loss is
a simple BCE (generation stop loss). Both the acoustic model and the reference
encoder are updated with the gradients from these losses.

The denoiser is also trained with the mel and gate loss, whose gradients
update the model t times through all denoising steps in a single backward
pass, and additionally the simple diffusion loss solely between the steps t and
t − 1. So, the denoiser learns simultaneously how to reconstruct the style
embedding such that it improves the mel reconstruction, and also the reverse
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conditional distribution of the diffusion process to synthesize style embeddings
(q(zt−1|zt ,z0) ≈ pθ(zt−1|zt) := N (zt−1;μθ(zt, t),Σθ(zt, t))).

During inference, the model is fed with the text sequence, a reference spec-
trogram whose style is to be captured, and an input t corresponding to the noise
level that the reference embedding will be submitted to and reconstructed from.
We hypothesize that, the smaller the t, the more the output style will be similar
to the input style, and the greater the t the more information of the reference
embedding will be lost to noise and a more different style will be generated.

While previous approaches such as the VAE and the VAE+Flow based style
encoders focus directly on constructing a disentangled space of styles, diffusion
models’ latent variables are naturally defined on noisy spaces. Thus, the dis-
entangling concept cannot be easily applied. However, in this specific case, our
latent variables contains prior information from the noisy reference embedding
vector. Therefore, we hypothesize that the diffusion chain is able to synthesize
styles conditioned on the reference input by learning a reconstruction in a way
that better guides the acoustic model while pondering useful information from
the noisy reference embedding, as the whole chain is driven by both reconstruc-
tion and denoising losses.

5 Experiments

5.1 Experimental Setup

An internal Brazilian Portuguese single speaker dataset was used in all experi-
ments. It consists of 15 h of speech, with 6 h of expressive content, spoken by a
professional voice actress. The expressive styles present in the dataset are labeled
as “lively”, “welcoming”, and “harsh”, and were projected in a non-archetypal
manner, such that all of them are applicable to real-life customer-based services.
There is a total of 12400 neutral, 1307 lively, 1308 welcoming, and 1256 harsh
utterances. For each label, 90% of the sentences were used for training and 10%
was used for validation and testing.

Phonemes are used as inputs to the model. To extract the audio features, the
22 kHz audios are converted to 80-dimensional mel-spectrograms with Hanning
windowing, a window length of ≈46 ms, a hop length of ≈11 ms and a 1024-point
Fourier transform.

All models were trained using the Coqui TTS1 framework for 1000 epochs on
a single NVIDIA T4 GPU, with a batch size of 32. The whole training process
took up to 4 days2. The optimizer used was the RAdam [16] with β1 = 0.9,
β2 = 0.998, and ε = 10−6. A scheduler [30] for the learning rate initiating in
10−4 was used. The Parallel WaveGAN [34] vocoder trained in a proprietary
database with 30 h of Brazilian Portuguese (2 male and 4 female speakers) was
used to synthesize all waveforms from the mel-spectrograms generated by the
models.

1 https://github.com/coqui-ai/TTS.
2 Our code is available at https://github.com/AI-Unicamp/TTS.

https://github.com/coqui-ai/TTS
https://github.com/AI-Unicamp/TTS
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In order to evaluate the developed diffusion-based approach to style mod-
eling, we ran a subjective perceptual evaluation.4 In our experiments, VAETa-
cotron [35] and the VAE+Flow [1] model were used as baselines to be compared.

The subjective experiments were performed with 30 randomly selected native
Brazilian Portuguese speakers (15 male and 15 female volunteers) ranging from
18 to 61 years old. The first experiment was a test in which the listeners were
given instructions to rate the naturalness of each sample from 0 meaning “com-
pletely artificial” to 100 meaning “completely natural”, whilst ignoring any audio
quality issues. The second was a comparison test to analyze style transfer capa-
bility between the proposed approach and the VAE+Flow model. In this test,
the listeners were given instructions on what consists a speaking style, and were
asked to select which style of the synthesized utterances was closer to the refer-
ence, with the option of equally close also being considered.

5.2 Naturalness

In order to evaluate the naturalness of the proposed approach, 40 utterances
(10 of each style) from the test set were used. All models synthesized the audios
by receiving the unseen text, their corresponding unseen audios, and with the t
parameter manually adjusted to 5 noising/denoising steps, which was shown to
yield better results. For each utterance, four audios were rated: a re-synthesis
of the GT mel-spectrogram with the vocoder (GT+Vocoder), and the synthesis
with the three considered models: VAE [35], VAE+Flow [1] and our proposed
approach (Diffusion). The results are shown in Fig. 3.

Fig. 3. Results for the naturalness subjective evaluation. The ratings of the listeners
are shown in box plots grouped by style. The black stripe represents each median and
each white cross the mean.

4 Listening samples are available in https://ai-unicamp.github.io/publications/tts/
diffusion for style/.

https://ai-unicamp.github.io/publications/tts/diffusion_for_style/
https://ai-unicamp.github.io/publications/tts/diffusion_for_style/
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5.3 Style Transfer

We evaluate both parallel (when the text content of the reference audio is the
same as the input) and non-parallel (when the content of the reference audio is
different from the input) style transfer. Taken from the test set, 16 parallel and
16 non-parallel (four of each style) utterances that were conditioned on other
unseen utterances of the test set were used for rating. The raters had to make a
choice between the synthesis of the model A (our diffusion-based approach), the
model B (the VAE+Flow [1]) and also a third option stating that both models’
audios style were equally distant to the reference’s style (Neutral). The results
are presented in Fig. 4.

Fig. 4. Results for the style transfer test. We plot each model’s score in percentage
grouped by the style transfer type.

6 Discussion

From a general perspective, our proposed approach to model style based on
denoising diffusion models was shown to improve the performance on both natu-
ralness and style transfer on the scenario of expressive TTS. On the naturalness
case, our approach resulted in an improvement in both the aggregated styles (≈5
points in the mean), the lively (≈8 points in the mean) and harsh (≈9 points
in the mean). A better rating means the raters found the model’s samples to be
closer to “completely natural”. On the other styles, neutral and welcoming, our
approach performed only slightly worse than the baseline models (≈−1 point in
the mean from both the neutral and welcoming styles). We hypothesize this is
due to the fact that the lively and harsh are styles have more emotional strength
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and arousal than the neutral and welcoming, showing that our approach behaves
better for the more expressive cases while performing similar to baseline in the
more close-to-neutral examples.

On the style transfer experiment, our model had a greater percentage of
choices among the examples on both the parallel, with a gain of 30% more choices
than the baseline VAE+Flow model, and on the aggregated transfer (ensemble
of the parallel and non-parallel cases) with a gain of 14.41 in the percentage of
choices. On the non-parallel case our approach was outperformed by the baseline
with only 0.83% of the choices, meaning a similar performance. This behavior
was associated to the struggle of both models on the difficult non-parallel style
transfer task.

7 Conclusion

A diffusion-based style encoder module was aggregated in an end-to-end TTS
model to improve the latent representation of the style space. Through a mech-
anism similar to the shallow diffusion (a noising-denoising process) applied on
the reference embedding, both style transfer and a better conditioning of the
acoustic model are acquired with the generative power of diffusion models. This
is verified with a subjective evaluation on naturalness and style transfer: the pro-
posed approach outperforms current style encoder based architectures especially
on more expressive styles and shows good development perspectives to become
a competitive model.

Future work will focus on: the improvement of the chain with the guided
diffusion [5] process, making use of the gradients of style classifiers to guide
the style embedding generation process; the direct use of low-level features of
audio, such as pitch and energy as inputs to the style encoder, to reduce the
amount of unnecessary information present on spectrograms passed to the ref-
erence encoder; the use of fine-grained style information; and a refinement of
the subjective evaluation to achieve more reliable results by focusing more on
better explaining the experiment to the raters rather than having more samples
to evaluate.
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Abstract. Computer simulation of land dynamics have been widely
used for several proposes, for example in epidemiological models. Cel-
lular Automata (CA) is one of the strategies capable of predicting future
land states over time based on a set of transitional rules. Building this
set is not a straightforward task. It may require technical knowledge
about the process, through years of scientific research. If machine learn-
ing techniques are applied, there is still the challenge of finding the best
set of hyperparameters. In this context, the main goal of this paper is
presenting a different approach of CA transitional rules set construction,
based exclusively on historical data of a phenomenon. A multivariate
Fuzzy Time Series (FTS) model is applied to learn and represent the
local rules of the automaton. Therefore, we combine FTS and CA into
an integrated modeling technique. The proposed approach was able to
predict future behavior of a CA, with errors around 12%, confirming the
potential of FTS transitional rules for CA.

Keywords: Cellular automata · Fuzzy time series · Land cover land
usage · Dynamics modeling

1 Introduction

Modeling land dynamics over time through computer simulations has been consid-
ered a relevant approach in order to study and evaluate different types of real world
scenarios [9]. Comprehending and analyzing the mechanisms of land changes can
help define effective and efficient public policies and strategic planning.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. Supported by CNPq Grant
312991/2020-7 and FAPEMIG Grant no. APQ-01779-21.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. C. Xavier-Junior and R. A. Rios (Eds.): BRACIS 2022, LNAI 13653, pp. 268–282, 2022.
https://doi.org/10.1007/978-3-031-21686-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21686-2_19&domain=pdf
https://doi.org/10.1007/978-3-031-21686-2_19


Automatic Rule Generation for CA Using FTS 269

On this basis, in the past decades, Cellular Automata (CA) and Markov
Chain models have been widely used in geographic and spatial applications [8].
CA-based models offer ways to predict and understand the land behavior in a
variety of study areas such as forest cover, urban sprawl and spread of diseases
such as the pandemic of Coronavirus Disease-2019 (COVID-19) [5], Chagas [6]
and Dengue fever [7]. Its intrinsic discrete representation of space with a lattice
of cells allows the development of models capable of simulating complex dynamic
systems instead of using differential equations, which usually demand expensive
computer processing for their solution.

The basic principle of a typical CA model is building a set of transition
rules that describe the future cell states over time based on the neighboring cell
states [1]. This can be characterized as a spatio-temporal forecasting method and
comes from the idea that local changes are affected by the states of nearby cells.
Determining this set of rules might require expert knowledge, which is laborious
and takes time and effort to formulate. It can be found in the literature some
works towards reducing this effort, for example by using shape grammar [2],
genetic algorithms and genetic programming [3,4].

Another challenging task is the adjustment of several parameters that a mul-
tivariate model can hold, increasing the complexity of the modeling process.
In terms of achieving the right parameters values, optimization methods and
machine learning strategies have been applied to build a forecasting model, for
example using multistage evolutionary strategy based on genetic algorithm [10].

In machine learning models, various methods use labeled data set in order to
train the algorithms to predict a target output variable. This class of algorithms
are known as supervised learning and has been popular among Artificial Intelli-
gence (AI) techniques. It is notable that the advances in this field were possible
due to new technologies of data capturing and storage in the past decades, lead-
ing to the emergence of the Big Data phenomenon [11]. A large set of historical
data can be powerful in order to understand patterns and predicting variables.
In this sense, Fuzzy Time Series (FTS) have been drawing attention in time
series modeling and forecasting as they are computationally cheap and readable
models [12].

In this context, the main goal of this paper is to employ the FTS approach to
learn and generate the rules of a given Cellular Automaton from the historical
data set. The rule base will then represent the transition rules of cells and the
underlying dynamics of the phenomenon that generated the data. This is the first
attempt in the literature to combine Fuzzy Time Series and Cellular Automata
into an integrated modeling technique, to the best of our knowledge. The great
advantage of the proposed approach is that the transition rules governing the
CA dynamics are completely induced by the data without the need to formulate
tailored rules and to calibrate specific parameters of these rules, making the
whole process more automated and almost effortless.

In the results, we considered a simulation model of CA of Chagas disease in
order to validate the proposed approach. The predicted values were compared
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with the original data using graphic analysis and the Evaluation Metrics used
produced errors within 12% when comparing both data.

2 Background

2.1 Cellular Automata

Modeling phenomena using CA was first conceptualized by John Von Neumann
and Stanislaw Ulam, in the late 1940s [13]. Cellular Automata can be defined as
a mathematical abstraction of the real world in a discrete universe, composed
with a structure of spatially grouped cells as lattice, which evolve from state
in time, conditioned by a set of transition rules. The lattice of cells are mostly
found in 1D or 2D, but they can have 3D structure as well. The transition rules
are used in order to determine the future cell state q(t+1) based on the neighbor
cell states and the current state q(t). As described in [8], CA is composed of five
elements that form the tuple <A,S, t, ν, δ>:

1. Regular discrete space A of the set of cells (lattice of cells), which can have
different configuration formats;

2. Set S of possible states (q(t)) of cells;
3. State update cycle t (time steps), i.e., in each time step the space A is updated;
4. Definition of size and layout of the neighborhood ν to be considered for state

update.
5. Transition rules functions δ, that determine the states dynamics that an ele-

mentary cell can be in, i.e., q(t + 1) = δ(q(t), a(t));

Figure 1(a) presents possible configurations applicable to CA-based models.
Regarding the neighborhood, it is possible to highlight the two most traditional
ones found in the literature of radius 1, that of (I) Von Neumann in which
the four cells to the north, south, east and west of the target cell are considered
neighbors, and (II) Moore that considers all cells around the target one, and can
be expanded to more cells around it by increasing the radius. Figure 1(b) shows
the arrangement of the aforementioned neighborhoods, where P (x, y) can be
considered as an element of a matrix of discrete cells [8]. It is worth mentioning
that there are several other types of neighborhood dispositions since it is a
configuration that can be adjusted according to the system to be modeled [1].

In terms of transitional rules, CA models can be either deterministic or prob-
abilistic. For a given transitional rule, if there is a probability associated to a
decision of the next cell stage, thus it is a probabilistic CA. Most of natural
phenomena are probabilistic and their values and distribution are defined for
each study case.

2.2 Fuzzy Time Series

As Singh [14] states, the increase in information storage capacity must be accom-
panied by the development and improvement of processing and analysis tech-
niques. The goals of gathering large data packages should help classify, identify
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Fig. 1. Differents configurations of a CA.

and predict events and assist decision making. In this sense, forecasting models
using Machine learning, statistics and soft computing (neural networks, fuzzy
theory and genetic algorithms) constitute a vast area of studies today.

FTS method was first presented by Song and Chissom in the 1990s decade
and its central principle is based on building a forecasting model of a given time
series data through fuzzy set based representation [30]. FTS is a soft computing
and data-driven technique and it has been widely applied due to its flexibility,
affording a variety of data types (not normally distributed data, for instance),
readability, since it is interpretable, and scalability, dealing with uncertainties
of real-world data. Since its conceptualization, FTS was applied in a myriad of
studies such as seasonal time series [31], stock index prices [32], electric load [33]
and others [12,40].

Time series can be defined as a set of successive observations of the behavior
of one or more variables over time. Such observations should not be analyzed
individually or randomly, but considering the historical temporal dependence of
the data. Time series forecasting is a methodology that integrates several pattern
recognition techniques and creates models based on the data past behavior of a
given phenomenon or process capable of conjecturing future scenarios. Examples
of applications include observations of seasonality of rainfall and temperature
variation in a given region, population growth, electroencephalogram examina-
tion patterns [15] and more current topics such as social media sentiment analysis
[16].

As [34] describes, a Fuzzy Time Series model can be defined as: Let Yt,
t ∈ Z, a conventional time series in a subset of real numbers. Let the universe
of discourse be divided as U = u1, u2, ..., un and the fuzzy sets Ai, i ∈ Z defined
over the U intervals with corresponding membership functions fAi

. Thus, F (t)
is a collection of fAi

and is considered an FTS on Yt.
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A causal relationship between the past (t − p) and current (t) observations
in FTS, known as Fuzzy Logic Relationship (FLR), can be defined as:

F (t) = F (t − p) ◦ R(t − p, t) (1)

or, equivalently:
F (t − p) → F (t) (2)

The arithmetic operator ◦ establishes the fuzzy relationship and (2) shows
that F (t) is caused by F (t − p) and in terms of fuzzy sets, it can be written
as: Ai → Aj , where Ai represents the left-hand side (LHS) or inputs and Aj

the right-hand side (RHS) or the output of the FLR. An FTS model can have
multiple fuzzy sets in the LHS, in general an order-p FLR is denoted by:

F (t − 1), F (t − 2), ..., F (t − p) → F (t) (3)

Thus, Eq. (3) shows that the weight of each F (t − p) for obtaining the fuzzy
forecast at time t, i.e. F (t), is equal to one.

The set of rules is grouped by the precedents, creating Fuzzy Logical Rela-
tionship Groups (FLRGs). In other words, given a conventional time series, it is
determined which fuzzy sets can be the resultant (RHS) of left-hand sets (LHS),
forming, for example:

Ai → A1, A3, ..., Aj (4)

Another relevant information in FTS modeling is the number of variables
that a simulation requires. For example, in deforestation forecasting, the ampli-
tude, the wind speed, the weather and other parameters are pertinent in order
to predict forest cover future states. For a multivariate FTS model with dimen-
sionality d and order p, the FLR is expressed by:

(F1(t − p), F2(t − p), . . . , Fd(t − p)),
...

(F1(t − 2), F2(t − 2), . . . , Fd(t − 2)),
(F1(t − 1), F2(t − 1), . . . , Fd(t − 1)) → F1(t), F2(t), ..., Fd(t)

(5)

Some FTS methods use weights, based on the frequency of the patterns in the
data, known as Weighted FTS model (WFTS). It was first announced by [35] and
followed by some improvements such as Trend WFTS [38], Improved WFTS [36],
Exponentially WFTS [37] and Probabilistic WFTS [39]. The Weighted Fuzzy
Logical Relationship Group (WFLRG) includes a weight matrix on FLRGs,
giving greater importance to recent data in the forecast [41], satisfying the same
condition

∑k
h=1 w′

h = 1.
Thus, the matrix is standardized W (t) and the final forecast value Y(t+1) is

equal to the product of the defuzzified matrix and the transpose of the weight
matrix [35]:
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Y(t+1) = M(t) × W (t)T (6)

where M(t) is the defuzzified matrix forecast of F (t) and × is the matrix product
operator.

3 Related Work

Cellular Automata applications can be found in several areas, such as ecological
models of succession in vegetation [17], urban growth [18,19], deforestation and
fire propagation [20,21], fluid dynamics simulation and physical systems [22,23],
urban traffic simulation [24], scattering study epidemics [7,25]. Techniques are
applied in CA, either to achieve better forecasting results or searching for better
model parameters via optimization algorithms.

The use of Fuzzy logic in CA models (so called Fuzzy Cellular Automata
– FCA) was first proposed by [26] and it allows greater flexibility in the con-
sideration of factors in the transition rules of states and modeling vagueness
in real-world scenarios. For example, fuzzy constrained CA model was used to
simulate forest insect infestations [27], or to understand logistic trends of urban
development process [28]. A common usage of Fuzzy logic into CA models are
related to simulate states gradient, since this logic works based on fuzzification
of sharp and hard values by means of membership functions mfAi

: R → [0, 1].
Other FCA usage example is a fuzzy neighborhood CA [29], where instead of
using traditional CA neighborhood configuration, a function is used to evaluate
the influence of the neighboring cells, modeling it as fuzzy sets [8].

Although it can be found in the literature a variety of approaches for com-
bining fuzzy sets into CA, none of them has used Fuzzy Time Series strategy as
a forecast model. Here, the fuzzy sets are applied to the historical land dynam-
ics dataset, in order to build a multivariate FTS model and then apply it as a
transitional CA rules to predict future land states.

4 Proposed Method

As mentioned in the previous sections, the proposed method is essentially based
on the development of a multivariate FTS forecasting model formed from his-
torical data of a geospatial phenomenon and, from that, apply the model as
transition rules in a simulation of a cellular automaton. In other words, for each
cell in a CA grid, the FTS model is applied and thus the future state of the cells
is determined. To evaluate the method, simulations were carried out using the
Python programming language, due to its wide diversity of libraries, especially
pyFTS (Fuzzy Time Series for Python) [42].

4.1 Training Procedure

Starting from a collection of time series historical data Y , the training procedure
are summarized in the construction of a multivariate FTS model. Each sample
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of the collection Y is a frame over the unit of time, representing the geospatial
states of the phenomena, i.e. the collection groups the data of each time unit.
The training steps are described:

1) Data Preprocessing: The system variables are determined, as well as the
variable of interest, and the values of their states are stored following the data
collection. The system variables rely on the neighborhood chosen for the model,
for example taking Moore neighborhood the variables would be all the cells
surrounding the center cell. In terms of CA simulation, the variable of interest
usually is the state of the center cell in the future. Each variable represents the
historical states pattern over the unit time.

2) Dataset Split: The dataset is divided into training and testing data sets.
The training data is then used to build the model, using the pyFTS library, and
the test data is used during the model validation through the evaluation metrics.

3) Universe of Discourse Partitioning: The pyFTS library offers different
types of partitioning in order to build the membership functions. Here, it was
used the Grid Partitioning which divides the universe into n overlapping equal
length intervals with triangular membership functions. All the variables have the
same partitioning and number of fuzzy sets.

4) Data Fuzzification: The process of converting the numerical values
into fuzzy linguistic variables. The crisp value from the time series Y (t)
is now represented by the maximum membership value fuzzy set: F (t) =
arg maxAi

μAi
(Y (t)), since the fuzzy sets are overlapped.

5) Weighted MVFTS Model Training: In Sect. 2.2, Eq. (5) was presented
for a generic case of a multivariate FTS forecast model. From a CA perspective,
considering the Von Neumann neighborhood shown in Fig. 1(b), the proposed
equation becomes:

(FN (t − p), FS(t − p), FW (t − p), FE(t − p), FC(t − p)),
...

(FN (t − 2), FS(t − 2), FW (t − 2), FE(t − 2), FC(t − 2)),
(FN (t − 1), FS(t − 1), FW (t − 1), FE(t − 1), FC(t − 1)) → FC(t)

(7)

where Fi(t − p) now considers the space from the lattice, for i ∈ {North, South,
West, East, Center}. Thus, the temporal patterns and rules LHS → RHS are
created considering the matrix weights, forming the WFLRG model.
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4.2 Forecast Procedure

The pyFTS model trained from the historical data is applied to the CA. The
algorithm consists of scanning the CA cells at time (t) and building it at time
(t + 1). That is, the trained pyFTS model is used as CA state transition rules.
Figure 2 shows the summary of the steps through a diagram.

Fig. 2. Illustration of the proposed method steps.

Finally, the test data is used to compare with the period determined by
the model. As a qualitative metric, a comparative graph was made between
such results and a visual graphical simulation of state changes in the CA. For
quantitative metrics, we chose the normalized Root Mean Square Error (nRMSE)
and the Mean Absolute Error (MAE). The formulas are described as follows:

nRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

A
(8)

MAE =
1
n

n∑

i=1

|yi − ŷi| (9)
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where n is the length of the test dataset, yi is the observed value index i, ŷi
denotes the predicted value and A amplitude range of the data, considering
both observed and predicted values.

5 Computational Experiments

5.1 Dataset Description

For the purpose of applying the methodology described in this work, a simulation
model of CA of Chagas disease [6] was reproduced to build the historical data
and to validate the model. It is important to emphasize that this work started
with a CA model to obtain the original data set, but any historical data of
spatio-temporal models can be used.

In [6], a research was carried out on the spreading dynamics of the trans-
mitting agent of Chagas disease, in the adult stage and larvae, in a village in
the Yucatan peninsula region, in Mexico. The model parameters were calculated
based on real data and the probabilistic CA simulation was built considering
a 30 × 30 lattice of cells. Each cell is composed of a vector with the number
of larvae and adult insects, respectively (ny, na). In addition, a maximum limit
of 5 adults and 5 larvae per cell is established. The transition rules were built
according to a typical CA model, that is, bringing together specific knowledge
and characteristics of the region. As described in the article, these rules were
divided into two processes: Demography and Dispersion.

1. Demography: composed of the phases reproduction, survival and develop-
ment.
(a) Reproduction: the adults reproduces with probability pr, generating F =

1 larvae. The number of larvae generated per cell is described as a random
variable following a binomial distribution B(F.na, pr). The state of the
cell after reproduction is: (ny + nry, na)

(b) Survival: corresponding the amount larvae and adults survived at each
time-step. It is also given by a binomial distribution B(n∗, p∗). The prob-
abilities are psy and psa for larvae and adults respectively. The final state
after survival phase is: (nry + nsy, nsa)

(c) Development: the processes of larvae becoming adults insects. Each larva
has the probability pd to develop and the binomial distribution takes
the survival larvae B(nsy, pd). After the development the final states is:
(nsy + nry − nda, nsa + nda).

2. Dispersion: Only adults insects are able to move along the cells. The CA
boundary condition is related to the migration of the insects from the forest
to the village, with the probability or dispersal coefficient Df = Qf

4M , where
Qf = 50 insects/day and M the lattice dimension.
The migration happens only in the infestation period (from April to June, or
90 days). Concerning the movement through the village cells in the lattice,
each adult cells have the same probability to enter or leave the cell, given by
p = D

(2r−1)2−1 . where D is the dispersal coefficient in the village equals to
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0.9 during the infestation period and 0.1 during the non-infestation, r is the
infestation radius, equals to 4 in infestation and 1 in the non-infestation.

All the parameters of the model had to be optimized (calibrated) by using a
Genetic Algorithm. The rules parameters of the CA model are: pr = 0.004111;
psy = 0.90272518; psa = 0.9828095; pd = 0.004158;

The neighborhood considered was Moore neighborhood. For the analysis of
the model, the target variable is determined by the total sum of adult individuals
and larvae in the village, that is, in the lattice of cells L.

N
(t)
l =

∑
c∈L n

(t)
l (c) N

(t)
a =

∑
c∈L n

(t)
a (c) (10)

where c is a cell, nl is the number of a larvae and na is the number of adults.

5.2 CA-FTS Modeling

The CA model described in the previous section was used to generate realizations
of the time series of number of adults N

(t)
a . This is the only input data to the

proposed CA-FTS model. The same strategy was used for larvae N
(t)
l . The

idea here is to show that starting from the historical time series data, the CA-
FTS model can automatically generate the transition rules and reconstruct the
original data.

The next step is the development of the proposed model. For each time-step,
in the daily case, the grid was traversed, extracting the variables of interest from
the model. Thus, a table was created where each row refers to the configuration
of states at an instant (t) that conditioned the state of the central cell at (t+1).
The data set was split into train and test, about 70% and 30% respectively.
Then, the WMVFTS model from the pyFTS library was used, which builds
the model from the historical data of the variables of the constructed table. In
terms of parameters used to evaluate the model, it was analyzed two different
configurations for model variables: Moore’s and Von Neumann’s neighborhood,
and four different values for the number of fuzzy sets: 5, 10, 20 and 30.

Once the model is built, the next step is to apply it to the CA simulation.
At this point, the test dataset was used, and for each time (t) in each cell of
the lattice, the FTS model (represented by the learned rule base) was used to
determine the state of the cell at (t + 1).

The graphs in Figs. 3 and 4 illustrate the simulation results. In green, the test
data for adults (AA), in blue the forecasting results using the FTS model for
adults (PA), in orange the test data for larvae (AL) and in red the predicted val-
ues for larvae (PL). In other words, the continuous lines are the model predicted
values and the dashed lines are the actual values.

The metrics were obtained comparing the original test data with the results
from the CA-FTS model simulation. Table 1 presents the respective values of
nRMSE and MAE according with the FTS model order and number of fuzzy
sets used. In general the results were around 12% and the best configuration was
with the FTS model using Von Neumann neighborhood with 30 fuzzy sets, for
adults and Moore neighborhood with 30 fuzzy sets for larvae.
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Fig. 3. Simulation results considering Von Neumann Neighborhood with 5, 10, 20 and
30 fuzzy sets. (Color figure online)

5.3 Discussion

The simulation results, as observed in Figs. 3 and 4, demonstrate the model
capacity to capture and predict spatio-temporal behavior, based exclusively on
a set of a phenomenon historical data. This alternative strategy for CA modeling
and simulation has a very low computational cost, since most of the functions
used were already developed and it is available in the pyFTS library.

It is relevant to highlight that the complexity of a multivariate model
increases with the number of variables due to the number of rules combination
[31]. Nevertheless, it takes less than 10 min to build an FTS model using the
pyFTS library. This represents a fraction of the total cost of applying a genetic
algorithm (or any other metaheuristic search algorithm) to calibrate a usual
CA model, which can take hours, given that fitness calculation would require
simulating the CA. As discussed in the earlier sections, optimization algorithms
have to be used for tuning the parameters of CA rules. Furthermore, the pro-
posed method can be used to model a natural phenomenon that does not have
advanced studies or important information in order to build a set of transitional
rules based on technical knowledge, once the method is fully data-driven.

For the specific study case, the best FTS model was obtained with increas-
ing the number of fuzzy sets (30). Additionally, in terms of metrics, it can be
noticed that using Von Neumann’s neighborhood seems a better option, because
the number of variables in the model is reduced compared to Moore’s neighbor-
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Fig. 4. Simulation results considering Moore with 5, 10, 20 and 30 fuzzy sets. (Color
figure online)

Table 1. Evaluation metrics for Adults and Larvae.

Neighborhood N fuzzy sets Insect nRSME MAE Insect nRSME MAE

Von Neumann 5 Adults 42,41% 179,11 Larvae 38,73% 12,91

10 12,93% 53,07 38,51% 12,80

20 12,69% 52,14 31,59% 9,88

30 11,71% 48,13 29,50% 8,97

Moore 5 44,83% 189,94 38,04% 12,98

10 13,01% 48,81 37,79% 12,88

20 12,79% 48,06 30,53% 9,94

30 11,81% 44,71 28,31% 8,96

hood. The flexibility of the FTS method is positive once it allows to adapt the
model parameters, meeting the problem specifications, in order to select the best
metrics results.

6 Conclusions and Future Work

The proposed method was able to automatically build a set of CA transitional
rules using Fuzzy Times Series model. This characterizes an alternative strategy
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for land dynamics simulation studies, once it has the ability to forecast land
states changes looking exclusively into what happened in the past, i.e. the phe-
nomena historical data. The multivariate model proposed has the potential to
simplify the dependence of technical knowledge to build a set of CA rules and the
computationally expensive calibration step, which is done by using optimization
algorithms. The calibration of parameters demands expensive computational
processing.

The simulation was validated using a data-set based on an epidemiological
model of Chagas disease. The input data was built using a typical CA model.
Therefore, 70% was used to train the FTS model and 30% for testing. The
total number of adults in the lattice at each time step was used to measure
the dynamics of the disease along the days. In order to obtain a qualitative
analysis, a comparative graph showed the predicted values using the CA-FTS
model against the original test data. In terms of a quantitative analysis, two
metrics were calculated, the normalized RSME and MAE, and the results have
shown an average of 12% error.

This preliminary result clearly shows that the proposed CA-FTS can induce
transition rules for a cellular automaton in order to reproduce the spatial tempo-
ral dynamics that generated the original data. By integrating the FTS approach
to CA modeling process, it is possible to obtain a modeling technique that is
data driven and not relying too much on expert knowledge and expensive param-
eter calibration. The discovered rules are interpretable and can potentially help
understanding the underlying dynamics of the problem. Future refinements are
needed in order to understand the combination of both methods. This alterna-
tive approach can be validated for other types of data-set, such as land images
from drones or satellites. Another future work is implementing the method in
the pyFTS library such that it can be made available to the community at large.
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jose.ribeiro@ifpa.edu.br
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Abstract. Intelligent systems that use Machine Learning classification
algorithms are increasingly common in everyday society. However, many
systems use black-box models that do not have characteristics that allow
for self-explanation of their predictions. This situation leads researchers
in the field and society to the following question: How can I trust the
prediction of a model I cannot understand? In this sense, XAI emerges
as a field of AI that aims to create techniques capable of explaining the
decisions of the classifier to the end-user. As a result, several techniques
have emerged, such as Explanation-by-Example, which has a few initia-
tives consolidated by the community currently working with XAI. This
research explores the Item Response Theory (IRT) as a tool to explain-
ing the models and measuring the level of reliability of the Explanation-
by-Example approach. To this end, four datasets with different levels
of complexity were used, and the Random Forest model was used as a
hypothesis test. From the test set, 83.8% of the errors are from instances
in which the IRT points out the model as unreliable.

Keywords: Explainable Artificial Intelligence (XAI) · Machine
Learning (ML) · Item Response Theory (IRT) · Classification

1 Introduction

The expansion and increasing use of Artificial Intelligence (AI) systems creates
advances that enable these systems to learn and make decisions on their own
[11]. Thus, AI becomes increasingly common in everyday society by providing for
simple or complex decisions in people’s lives to be taken via intelligent systems.
Such decisions range from recommending movies based on the user’s preferences
to diagnosing a disease based on patient’s exams [15].
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The question “Can the decision made by a black-box model be trusted for
a context-sensitive problem?” has been asked not only by the scientific commu-
nity, but also by the society as a whole. For example, in 2018 the General Data
Protection Regulation was implemented in the European Union. It is geared at
securing anyone the right to an explanation as to why an intelligent system made
a given decision [20]. In this sense, for a continuous advance in AI applications,
the entire community is faced with the barrier of model explainability [9,11]. To
address this issue, a new field of study is growing rapidly: Explained Artificial
Intelligence (XAI). Developed by AI and Human Computer Interaction (HCI)
researchers, XAI is a user-centric field of study aimed at developing techniques
to make the functioning of these systems and models more transparent and con-
sequently more reliable [2]. Recent research shows that the trust calibration on
the models’ decision is very important, since exaggerated or measured confidence
can lead to critical problems depending on the context [19].

The models that have high success rates to solve real-world problems are
usually of the black-box type. In other words, they are not easily explained and,
therefore, applying XAI techniques is required so that they can be explained
and then interpreted by the end user [2,9]. The emergence of XAI techniques
based on different methodologies is a real fact today, but there are still many
gaps in literatute. For example, XAI methods based on Explanation-by-Example
in a model-agnostic fashion1 are still underexplored by the scientific community
[8,10,18]. Techniques based on Explanation-by-Example use previously known
ou model-generated data instances to explain them, thus providing for a good
understanding of this model and decisions thereof. This is a technique that may
be natural for human beings, since humans seek to explain certain decisions they
themselves make based on previously known examples and experiences [2].

This research explores a new measure of XAI based on the working principles
of Item Response Theory (IRT), which is commonly used in psychometric tests
to assess the performance of individuals on a set of items (e.g., questions) with
different levels of difficulty [3]. To this end, the IRT was adapted for Machine
Learning (ML) evaluation, treating classifiers as individuals and test instances
as items [16]. In previous works [5,16] IRT was used to evaluate ML models and
datasets for classification problems. By applying IRT concepts, the authors were
able to provide new information about the data and the performance of the mod-
els in order to grant more robustness to the preexisting evaluation techniques.
In addition, the IRT’s main feature is to explore the individual’s performance on
a specific item and then compute the information about the individual’s ability
and item complexity in order to explain why a respondent got an item right or
wrong. Thus, it is understood that IRT can be used as a means to comprehend
the relationship between the performance of a model and the data, thus helping
in explaining models and understanding the model’s predictions at a local level.

Given the intrinsic characteristics of the IRT, it is understood that it can be
fitted within the universe of techniques based on Explanation-by-Example. At
the same time, the IRT also has concepts that allow to explain and interpret

1 Model-Agnostic: it does not depend on the type of model to be explained [18].
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the model in general and to shed light on details not yet explored by other XAI
techniques. Based on this motivation, this research work proposes the use of IRT
as a new Explanation-by-Example approach, in a model-agnostic way, aiming at
greater reliability on the model’s decisions by the end user. For the experiment,
4 datasets were selected with different levels of complexity indicated by [22]
with the Random Forest algorithm acting as the target of the explanation. The
objective of this research is to explore how the concepts from the IRT can help
to open the black-box and indicate the confidence of the model’s prediction.

The remainder of this paper is divided into the following sections: Sect. 2
provides a contextualization about XAI and IRT; Sect. 3 explains how IRT is
applied to ML and then to XAI; Sect. 4 provides the results and discussions of
the proposal presented herein; Sect. 5 carries the conclusion of the herein research
and final considerations related thereof.

2 Background

2.1 Explainable Artificial Intelligence - XAI

Based on the growing need to gain confidence in black-box models, the XAI com-
munity has proposed different methodologies, techniques and tools to explain
these models. It is argued that, based on the creation of model explanation lay-
ers, a human user can create their interpretations and thus better understand
how the model’s decisions were generated, therefore obtaining greater confidence
[2,17]. One of the most popular categories of XAI techniques currently available
is the so-called post-hoc explanations. The main particularity of these post-hoc
explanations is the fact that they only use training data, test data, model output
data and the model itself, already properly trained to generate the explanations
[2]. One of the most current and necessary characteristics that an XAI technique
can feature is the fact that it is applicable to computational models of indepen-
dent structural natures (neural network, tree, vector of weights etc., ...). This
feature is called model-agnostic [17].

Among the current post-hoc XAI techniques, the following stand out:
Text Explanations, Visual Explanations, Local Explanations, Explanations-by-
Example, Explanations-by-Simplification and Feature Relevance Explanations.
Out of these, this research highlights the Explanation-by-Example as a poorly
explored technique by the XAI community. In fact, there is a smaller number
of research works that present a clear proposal or tool that can be used in a
replicable way for different real-world problems [8,10,17,18].

Example-based explanation methods select specific instances of the dataset
in order to explain the behavior of models or to explain the underlying data dis-
tribution [17]. Explanations based on examples are mostly model-agnostic, since
they make any model more interpretable. The most popular tool proposals for
example-based explanations are: Counterfactual explanations [25], Adversarial
examples [4], Prototypes [13] and Influential instances [14]. Each of these propos-
als seeks to carry out the process of identifying relevant instances of the dataset,
which directly, or even indirectly, explain and justify the model’s output [17].
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It should be clear that the aforementioned tools feature individual differences
in terms of their ability to point to meaningful instances to explain an ML model.
Therefore, they may provide different results even on the same dataset. This is
directly linked to the base algorithm or function on which each tool is based, as
well as the complexity of the model (dataset and algorithm) analyzed [11,22].
Thus, it is understood that the proposed study of using the IRT to explain
the ML model may generate merely different results when compared to other
techniques mentioned previously, so it would be difficult to make an objective
comparison. Furthermore, this research aims to apply the IRT to actually explore
different details from the interpretation of the IRT estimators.

2.2 Item Response Theory - IRT

Traditionally, the number of correct answers is used to evaluate the performance
of individuals in a test. However, this approach has limitations to assess the real
ability of an individual. On the other hand, the IRT allows for evaluating the
latent characteristics of an individual that cannot be directly observed, and it
aims to present the relationship between the likelihood of an individual respond-
ing correctly to an item and their ability. One of the main characteristics of the
IRT is that the core elements are the items and not the test as a whole, that
is, an individual’s performance is evaluated based on their ability to get certain
items right in a test and not how many items they get right [3].

The IRT is a set of mathematical models that seek to represent the prob-
ability of an individual correctly responding an item as a function of the item
parameters and the respondent’s skill, as the greater the individual’s skill, the
greater the chance of getting the item right. Dichotomous items are the most
used, as it is only considered whether the item was answered correctly or not [3].
The IRT allows for simultaneous assessment of both the items and the respon-
dents. In order to characterize the items, the following parameters are commonly
considered by IRT models: Discrimination (ai), which represents how much the
item i differentiates between good and bad respondents. The higher its value,
the more discriminating the item; Difficulty (bi), which represents how difficult
an item is to be answered correctly and the higher its value, the more difficult
the item; Guessing (ci) represents the probability of a random hit or also the
probability of a low-skill respondent hit the item.

To estimate item parameters, the response set of all individuals for all items
to be evaluated is used. Respondents are evaluated based on the estimated abil-
ity (θj) and the probability of a correct answer calculated as a function of an
individual’s ability and the parameters of item i. The logistic IRT model that
uses the three parameters (the 3PL IRT model) calculates the probability of a
correct answer Uij by the following equation:

P (Uij = 1|θj) = ci + (1 − ci)
1

1 + e−ai(θj−bi)
(1)

Both item and individual parameters are simultaneously estimated using the
response set, usually by maximizing the likehood of the model given the response
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Fig. 1. Methodology for the application of IRT in ML and XAI.

data. The IRT can then be understood as a “magnifying glass” that allows for
observing the individual’s performance in a specific way on each item and for
estimating a probable skill level in the area being evaluated.

3 Methodology

The IRT is generally applied for educational purposes, where the respondents
are students and the items are test questions. To analyze datasets and learning
algorithms through IRT in the herein research, instances of a dataset were used,
with items and classifiers being assumed as respondents. The 3PL-IRT model
was used because it is the most complete and consistent to fit responses [16].

Figure 1 illustrates the proposed methodology for applying IRT to open the
box and then help explain ML models through the following steps:

1. A supervised learning dataset or benchmark is chosen and divided into train-
ing and testing;

2. Several ML models are built by using the training set and are adopted to
predict the instances in the test dataset;

3. The response from these classifiers is collected in matrix form. Each row
is associated with the classifier and each column is associated with a test
instance. Each matrix entry represents whether an instance was correctly
classified or not by a model (a 0|1 indicator);

4. The response matrix is used to build the IRT model and thus to estimate the
item parameters of the test instances;

5. Finally, IRT estimators are used to open the box and assess the reliability of
the model’s predictions.

3.1 ML and IRT

Initially, given a dataset of interest and a pool of ML algorithms, steps 1, 2 and
3 in the proposed methodology result in a matrix of responses given as input
to IRT (step 4). By default, the dataset is divided in a stratified manner, being
70% for training and 30% for validation (step 1). In order to generate a large
number of responses, three sets of classifiers were built (step 2):

1. The first set is composed of 120 Random Forests models, where the number
of trees gradually increases from 1 to 120;
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2. The second set of classifiers is: Standard Naive Bayes Gaussian, Standard
Naive Bayes Bernoulli, KNN (with 2, 3, 5 and 8 Neighbors), Standard Deci-
sion Trees, Random Forest (RF) with 3 Trees, Random Forest with 5 Trees,
Standard Random Forests, Standard SVM and Standard MLP. The models
classified as standard mean that the standard hyperparameters of Scikit-learn
[21] were used. All models are trained using 10-fold cross-validation;

3. The third set is composed of 7 artificial classifiers advised in [16] to provide
limit performance indicators of real classifiers and provide greater variability
in the responses: an optimal classifier (classifies all instances correctly), a
pessimal classifier (misses all classifications), a majority classifier (classifies
all instances with the majority class), a minority classifier (classifies with the
minority class) and three random classifiers (classifies randomly).

A matrix of responses is generated based on the predictions provided by the
classifiers (step 3). The decodIRT tool [5], which automates from step 1 to step
4, was adopted in the herein paper. By definition, the tool generates 120 MLP
models as the first set of classifiers. However, as one of the objectives of this
study is to explain the Random Forest model, the tool was modified to suit the
research objectives. To calculate the IRT estimators (step 4), the tool depends on
the item parameters calculated from the model responses, the classifiers ability
and the probability of success derived from the IRT logistic model.

This research proposes that the models can be explained based on the inter-
pretation of the IRT estimators generated in the experiments (step 5). At first,
it analyzes the item parameters generated for each dataset more generically to
generate a general interpretation without a specific model. Then the item param-
eters are analyzed considering particular characteristics of the datasets. To this
end, 3D graphs and histograms are generated to understand the relationship
between data and item parameters. The probability of success and the ability
of the models are used to measure the confidence of the classification result by
comparing it to classic ML metrics. In addition, this research intends to explore
the instances from the correlation analysis between the item parameters and the
vector of features that make up the data to analyze and what examples are more
interesting to explain and interpret a model decision. At same time exposing the
models’ confidence on its decision (Is the model basically guessing?).

3.2 Evaluated Datasets

As a case study, 4 binary datasets with different levels of complexity were chosen:
Credit-g, Sonar, PC1 and Heart-Statlog. These datasets were selected from a
total of 41 datasets, referring to binary classification problems extracted from
OpenML [24]. These datasets were selected by relying on a clustering processes
that identified groups of datasets in OpenML with distinct properties. Then
more varied datasets across clusters were selected.

In the clustering process, K-means algorithm followed by a Multiple Corre-
spondence Analysis - MCA [22] were adopted to cluster the datasets described
by 15 different properties. The clustering process resulted in three main clusters,
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with respectively 21, 17 and 3 datasets. It is worth mentioning that this number
of clusters was found from silhouette coefficient values, as recommended by the
literature [12]. The MCA analysis also took into account the 15 different proper-
ties used in the clustering process, but with the addition of the label indicating
the cluster to which each dataset belonged. Thus, as a result of the MCA, a
graph was obtained with the spatial arrangement of all the analyzed datasets in
relation to their 15 properties [1].

Thus, by inspecting the graph resulting from the MCA, it was possible to
choose the 4 datasets mentioned previously in this topic, while taking due care to
select 2 datasets from each cluster that exhibited considerable distances from one
another, since datasets are therefore obtained with the most distinct properties
possible. The cluster with 3 datasets was disregarded for being too small and
for not showing sufficient separation from the other clusters according to the
visual inspection of the MCA graph. It should be noted that the Credit-g and
Heart-Statlog datasets belong to the most complex dataset cluster, while the
Sonar and PC1 datasets belong to the simplest dataset cluster, as seen in [22].

The Heart-Statlog is a heart disease dataset, where each instance represents
a diagnosed individual whether or not you have a heart disease. The dataset
has 270 instances and 13 features. The dataset also has a slight class imbalance,
with 55.56% of the instances being the majority. Sonar is a dataset of sonar
signals, where each instance represents a sonar signal that has been reflected
by a cylindrical rock or a metal cylinder. With 208 instances and 60 features,
being 53.36% of the majority instances. Credit-g is a dataset for credit analysis
that classifies the credit risk of individuals as good or bad. It is composed of
1000 instances, with 20 features, this dataset being more unbalanced with 70%
of instances of the majority class. The PC1 dataset is a dataset and defects of
the NASA Metrics Data Program, it is composed of data from the flight software
for a satellite in Earth’s orbit, where each instance informs whether or not the
module has a defect. It has 1109 instances, with 21 features, 93% belonging to
the majority class, thus configuring a very unbalanced dataset.

4 Results and Discussion

The evaluation of the use of IRT, regarding the Explanation-by-Example process,
was split in two stages2:

1. The first focuses on the dataset and what explanations the item parameters
can reveal about the data;

2. The second is about the specific model generated and how the IRT estimators
can act in the explanation process at the local level.

4.1 Datasets Through the Lens of IRT

First, only the item parameters that were estimated for the test instances of
the datasets will be evaluated. In IRT, discrimination and difficulty values can
2 All results can be accessed at: https://github.com/LucasFerraroCardoso/IRT XAI.

https://github.com/LucasFerraroCardoso/IRT_XAI
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range from −∞ to +∞. Thus, in order to consider whether the items have
high values of discrimination and difficulty, the established assessment value was
zero (0). Thus, instances are considered very difficult and very discriminative if
their respective values are greater than 0. For the guessing parameter, the limit
presented by [5] was used, which considers that instances with high guessing
values are those with values greater than or equal to 0.2. Despite the difficulty
and discrimination parameters being the most directly linked to the data, due to
their characteristics, it is understood that the guessing parameter is important
to consider for an indirect evaluation of the model. In view of this, the following
data were computed.

As can be seen in Table 1, all datasets can be considered as being very discrim-
inative because they feature a high percentage of instances with discrimination
above 0. This means that the datasets can discriminate high and low skill clas-
sifiers. Therefore, models that feature a high hit rate for these datasets, indeed,
can be considered skillful.

Table 1. Table with the percentage of test instances with high values of discrimination,
difficulty and guessing.

Dataset Discrimination Difficulty Gessing

Sonar 87.30% 4.76% 14.29%

PC1 93.99% 2.1% 3.9%

Heart-Statlog 85.19% 3.7% 25.93%

Credit-g 77.67% 6% 15%

The difficulty parameter can also reveal important information. In this case,
all datasets have few instances with high difficulty values, this can mean that the
datasets themselves are easy to classify and are not a challenge. To assess model
confidence, this information can be interpreted in two ways: first, considering
that a dataset represents the real world very well, with more than 90% of the
instances being considered easy, skilled models trained with that dataset have
high chances of being reliable and correctly hitting new cases. However, if the
dataset is not a reliable representation of the real world, this could also mean that
few truly challenging cases are addressed by the dataset and thus the resulting
model would only be prepared to correctly classify the easier cases. Thus, one
can explain the model as being of high precision, but only for easy cases.

The guessing parameter is still difficult to assess. Regarding the application
of IRT in ML, no research work was found that has deeply explored the impact
of the guessing parameter; but, by using the IRT concepts, it is possible to
raise some hypotheses. In IRT, high guesswork values usually mean that there
is something in the item itself that gives a “hint” to the low-skill respondent on
what the correct answer is. In ML, this may mean that within the dataset the
data may have some bias that facilitates its correct classification. This may be
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related to the concept of “shortcut learning” [7] that happens during training
when the model finds a gven characteristic in the data that correlates with the
correct class and then the model starts using this shortcut instead of evaluating
the entire data. Thus, if the model has low skill, then its correct classification
may be biased by the data and this may not be repeated in the real world as the
model would not have generalized properly. An unskilled model for high-guess
data would be unreliable. Future research would involve exploring this condition
through the purposeful insertion of such biases and then evaluate with the IRT.

In order to deepen the explanation of the datasets by the IRT, the specific
characteristics of the datasets will be considered. It is noted that the Credit-g
and Heart-Statlog datasets, when compared to the Sonar and PC1 datasets, are
on average less discriminative, more difficult and have a greater chance of casual
accuracy. Even if by little difference, this corroborates the classification of [22]
as being more complex. However, it is clear that the Sonar dataset, considered
less complex, has the second highest percentage of difficulty and this may be
related to the high dimensionality of the dataset.

Furthermore, it is understood that other metadata can also help explain a
model. Although all datasets have high discrimination values, the reason these
values can be different for each dataset and metadata can help reveal this dif-
ference. For the very unbalanced Credit-g and PC1 datasets, it can be seen that
the percentage of very discriminative instances is very close to the percentage
of the majority class, with PC1 having 93% of instances of the majority class
and 93.99% of discrimination and Credit-g, which is composed of 70% of the
majority class and has 77.67% of very discriminating instances.

(a) Credit-g (b) PC1

Fig. 2. Discrimination Histogram separated by majority and minority class.

It is common in IRT that items with high discrimination also have low dif-
ficulty, as it is understood that if a respondent makes a mistake with an item
considered easy, then the ability must be low. In ML, a classifier can be consid-
ered unskilled if it cannot hit the instances referring to the majority class, as
they are more recurrent in the dataset. So, it is correct to imagine that for very
unbalanced datasets the percentage of very discriminative and easy instances
may coincide with the majority class. As can be seen in Fig. 2 for the Credit-g
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(a) and PC1 (b) datasets, note that the histogram shows the highest number
of instances with discrimination values above 0 for the majority class, while the
minority class has more instances with negative discrimination. On the other
hand, it is interesting that the highest discrimination values are for the minor-
ity class, this may occur due to the lower number of items and because some
instances may have a strong characteristic that links them to the minority class.
This can then reveal which instances of the minority class are most represen-
tative of the group and may be the most informative instances to explain the
model. Besides, this information can also be useful in selecting the most suitable
instances to feed oversampling techniques.

Fig. 3. Credit-g instances arranged over item parameters.

The Fig. 3 shows the relationship between the majority and minority classes
of the Credit-g dataset from the item parameters, it can be seen that the guess-
ing parameter is what best distinguishes the classes, so that the minority class
exhibits the more instances with high guessing values, so they are easier to hit
casually. Despite assuming that this may be related to class imbalance, the same
behavior is not repeated for the PC1 dataset (see supplementary material (see
footnote 2)), which is the most imbalanced one. This condition may be unique to
the dataset’s characteristics and would reinforce the assumption that the model
may not be reliable for minority class instances if it does not have a high ability.
The item parameter and model relationship will be explored in the next section.

4.2 Random Forest Through the Lens of IRT

In addition to evaluating the data in general, IRT also allows for evaluating
the classifier’s ability to correctly classify a specific instance. Thus, this second
part of the section addresses how the IRT explains the decisions made by the
evaluated model, a Random Forest with 100 trees.



Explanation-by-Example Based on Item Response Theory 293

Table 2 shows the results of the test set classification of datasets by Random
Forest. Due to the accuracy, a model is in place with good performance in almost
all cases, only for Credit-g the model showed a lower hit rate. Considering the
existing imbalance in the datasets, the Matthews Correlation Coefficient (MCC)
[6] of each model was also calculated and even for the least unbalanced datasets
(Sonar and Heart-Statlog) the highest value of MCC was 0.71, indicating low
correlation between classes and reinforcing the imbalance problem when con-
sidering all test instances. IRT, in turn, points to Random Forest as a skillful
model, as the skill value is greater than the difficulty value in more than 90% of
the instances in all datasets. In the IRT, the respondent’s skill and the item’s
difficulty are measured on the same scale, so that if the skill value (θ) is equal
to the item’s difficulty, the chance of hitting must be equal to 50%.

Table 2. Random Forest performance for all test instances and for instances without
negative discrimination.

Dataset Acc total MCC total Ability θ Acc WNG* MCC WNG*

Sonar 86% 0.71 1.40 94% 0.88

PC1 94% 0.36 3.76 99% 0.92

Heart-Statlog 84% 0.68 1.20 97% 0.94

Credit-g 76% 0.38 2.07 96% 0.88

*Without Negative Discrimination.

When the difficulty limit is changed to the model’s ability, it is noticed that
the difficulty of the datasets has decreased considerably, reaching zero in the
case of the Heart-Statlog dataset. In the specific case of this dataset, the IRT
states that the generated model has a confidence of more than 50% of success
in all test instances, at least. Furthermore, the difficulty is practically zero for
PC1 as well, with 0.3% difficulty. The exception was the Sonar dataset, which
kept exactly the same level of difficulty as before (4.76%), by IRT this means
that the model has less than 50% confidence of success for 3 instances of the
test set. For Credit-g the new percentage of difficult instances is 2.33%, which
means that the model has less than a 50% hit chance for 7 instances of the test
set. Such instances become very interesting to explain in what cases the model
does not have a reliable prediction.

But if the model has such a high estimated skill and the datasets showed
difficulty below the skill level of the model, then why were there still more errors
and the MCC value was low? The answer to this question may also lie in the
IRT discrimination parameter. In the IRT, negative discrimination values are
not expected, despite being possible. The reason is that negative discrimination
constitutes a situation where the less skilled respondents have the highest chance
of getting it right, while the most skilled respondent has the least chance. Taking
as an example two instances of Credit-g with very close values of difficulty and
guessing, the probability of success of Random Forest can be completely different
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in both cases if the discrimination is negative. For the first instance with 1.59
discrimination the chance of success is almost 100%, while for the instance with
-1.57 discrimination the chance of success is less than 40% (see Fig. 4).

Fig. 4. Comparison between items with positive and negative discrimination.

It was observed that, on average, 83.8% of the instances that Random Forest
missed in the four datasets have negative discrimination. Commonly, negative
discrimination values usually mean something wrong with the item that makes
it difficult to answer correctly. For the ML field, this could mean the existence
of noise or an outlier in the instance. Such values may also arise when the item
is different from the others, so the respondent does not have sufficient prior
knowledge to answer the item correctly. For ML, this could mean that there
was not enough data in training for the classifier to learn how to classify the
item, as in unbalanced data correctly. Martinez et al. [16] already pointed to
discrimination as a more exciting parameter than the difficulty itself.

Fig. 5. Probability of correct answer for each Credit-g test instance.

Figure 5 displays the drop in the probability of success of Random Forest for
the Credit-g dataset as the discrimination value of the test instances decreases;
this exact configuration is repeated for the other datasets. A priori, this situation
can be analyzed as follows: the model has an accuracy level above the obtained
one because the instances with negative discrimination have some inconsistency
and therefore can be disregarded, or the accuracy is correct, and these instances
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may represent types of data that the model is not able to classify correctly, as
these data were not explored adequately during the training stage. In any case,
this means that the model is not reliable for instances of negative discrimination.

Table 2 reveals that the impact of negative discrimination is inherent to the
type of data, since datasets of different complexity and characteristics were cho-
sen and even so, all models showed improved performance when considering only
instances with positive discrimination, for both the accuracy and the MCC value
that more than doubled for the unbalanced datasets. The other model errors are
usually related to the difficulty of the instance. As can be seen in Fig. 5, even
for instances with positive discrimination, in some cases the model has a low
probability of success and this occurs when the difficulty of the instance exceeds
the model’s ability. It is interesting, then, to open the instances and study how
the features relate to the item parameters.

Using the Heart-Statlog as an example because it is a context-sensitive
dataset, a correlation analysis was performed between the values of the features
and the item parameters of each instance. Out of all the test instances, only the
“chest” feature has a slightly higher correlation with the difficulty parameter
at 0.2485. However, when filtering the instances only for those that the model
missed, it is already possible to notice greater correlations as can be seen in
Table 3.

Table 3. Features with correlation above 0.4 for some item parameters of the Heart-
statlog dataset.

Dataset Discrimination Difficulty Guessing

chest 0.0285 0.6395 −0.3330

fasting blood sugar −0.4560 0.1320 −0.1815

resting electrocardiographic −0.0911 −0.3875 0.4592

number of major vessels −0.5391 0.2031 −0.2924

For misclassified instances, the “chest” feature has the highest correlation,
with 0.6395 for difficulty, this means that this is the feature that makes it the
most difficult to classify these instances. The “chest” feature is about the type of
chest pain that a patient may have and when the specific context of the dataset
is explored, it is noted that this evaluation by the IRT makes sense, as other
studies have already pointed out that it is difficult to identify if chest pain is a
sign of heart disease [23]. In addition, the “resting electrocardiographic results”
feature was identified as the feature that most correlates with guesswork, at
0.4592. Therefore, this would be the feature that “gives’ the most clues, so that
an unskilled model can get the classification of an instance right. The “fast-
ing blood sugar” and “number of major vessels” features are the ones that have
the highest correlation with discrimination, so these may be the instances that
can best be used to discriminate poorly defined models. Trusted of the most
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trusted. Thus, a model that has these features as the most important to clas-
sify an instance, and the model misses, means that the model has low skill.
And as expected, these same features have a high correlation with negative dis-
crimination, as it is already known that they have a high correlation with the
discrimination parameter itself. However, the “oldpeak” feature also presented a
high correlation, at 0.4495 for negative discrimination, which indicates that this
feature may be responsible for the composition of poorly formulated instances
that impair the performance of the model. When performing a percentile analy-
sis, it was seen that 90% of the test instances have less than half of the maximum
possible value of this feature, both for the majority and minority classes, this sit-
uation indicates that any value above half the maximum value can turn out to be
an outlier, thus bringing about an inconsistency in the instances and resulting in
negative discrimination. This does not mean that this or the other features indi-
cated by the IRT should be removed from the dataset, but that it is important
to be aware of their values and aware of their impact on the model’s confidence.

5 Final Considerations

This research paper presented how the IRT can be used in the Explanation-by-
Example process, aiming to assist in the process of explaining a black-box model
with a focus on explaining the decision made by the model and thus greater reli-
ability for the end user. To this end, four binary datasets of different complexity
were used: Heart-statlog, Credit-g, Sonar and PC1. Along with the Random
Forest black-box classifier as a case study. It was observed that the IRT is able
to provide new pertinent information about the classifier and data relationship,
where the item parameters can be used to evaluate if the dataset concerned
really encompasses all types of cases and if its own data composition can make
or break a model’s classification. It was also observed that the calculation of
the IRT success probability can be used to measure the level of reliability that
one can have on a classifier, when the model is faced with a specific instance,
and thus indicating in what specific cases the model is or is not reliable, where
in 83.8% of the wrongly classified instances the IRT points out that the model
is not reliable. Future research would further explore what conditions within
the instances make them have a higher or lower difficulty and discrimination, in
order to create conditional rules that can predict how the model will behave in
view of a new instance.
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Abstract. Neural evolutionary computation has risen as a promising
approach to propose neural network architectures without human inter-
ference. However, the often high computational cost of these approaches
is a serious challenge for their application and research. In this work, we
empirically analyse standard practices with Coevolution of Deep Neu-
roEvolution of Augmenting Topologies (CoDeepNEAT) and the effect
that different initialization functions have when experiments are tuned
for quick evolving networks on a small number of generations and small
populations. We compare networks initialized with the He, Glorot, and
Random initializations on different settings of population size, number of
generations, training epochs, etc. Our results suggest that properly set-
ting hyperparameters for short training sessions in each generation may
be sufficient to produce competitive neural networks. We also observed
that the He initialization, when associated with neural evolution, has
a tendency to create architectures with multiple residual connections,
while the Glorot initializer has the opposite effect.

Keywords: Deep NeuralEvolution · Genetic algorithms · Weight
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1 Introduction

Deep Neural Networks (DNNs) are among the most used machine learning meth-
ods nowadays. They can be applied in multiple scenarios and are able to approx-
imate functions that are often considered too complex for “classic” models, such
as Support Vector Machines and shallow Neural Networks. However, DNNs tend
to be complex, so their training usually requires very large datasets and they
are computationally expensive. This is particularly challenging for the task of
fine-turning hyperparameters, since their validation may take considerable time.
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When designing a DNN, several factors must be considered, especially the
number and design of the layers. Once the architecture has been chosen, training
a DNN for a specific task requires defining several hyperparameters, such as the
number of epochs, learning rate, optimization function, batch size, etc. Consider-
ing the advances in the last decade in the development of Deep Learning models
to deal with challenging tasks and the remarkable effort involved in designing
these models “by hand”, methods capable of automatically finding ideal DNN
architectures without human intervention have been growing increasingly rele-
vant. Many of these advances were possible with the birth of the field of Deep
Learning and Bio-Inspired Algorithms, which created a new area of study: Deep
Evolutionary Neural Networks, also called Deep NeuroEvolution [1].

Deep NeuroEvolution (DNE) deals with using evolutionary algorithms with
the specific purpose of optimizing the architecture of a DNN to solve difficult
problems. Like “classical” evolutionary algorithms, the DNE approach employs a
population of sub-optimal solutions, called individuals, and the goal is to identify
and combine the best elements of the individuals to find solutions that are as
close to the optimal as possible. This usually happens in cycles called generations.
In the context of DNE, it means combining the most promising elements of neural
networks (e.g., layers, neurons, or blocks of layers) at the end of each generation,
creating architectures that are increasingly more suitable for some specific task,
such as classification, anomaly detection, time series forecasting, and others.

One important issue that has received relatively little attention in NeuroEvo-
lution is the weight initialization. At each generation, the evolutionary algorithm
produces neural networks whose weights may need to be optimized from scratch.
Different initialization functions may be used to set the initial neuron param-
eters, but not all of them are equally suitable. A bad initialization choice can
lead to some undesirable behaviors such as the vanishing gradient problem and
the gradient explosion problem [2,3]. Generally, these phenomena occur when
the parameters tend to zero or to infinity, respectively, making it impossible for
the machine learning model to converge during the learning process [3,4]. Fur-
thermore, different initialization functions may lead to different architectures.

In the past decade, we have witnessed many alternative optimizations and
studies on parameter initializers. These studies draw primarily on two ground-
breaking researches that introduced the most commonly used functions at
present time: the Glorot initialization [5] and the He initialization [6].

However, these functions were proposed to suit DNNs with a fixed architec-
ture, which is designed “by hand” after meticulous choices on how many layers
the network should have and on the layout of those layers. In NeuroEvolution,
neural network components are combined in often unexpected ways, and in a
sense we can think of the individuals as networks that evolve over time. Further-
more, while in “traditional” application a DNN architecture is defined once and
then trained over a reasonable period of time for some specific application, this is
not as easily done in NeuroEvolution, where a large number of networks have to
be quickly trained at each generation, and the best elements of a DNN must be
identified and combined with others to produce better individuals. With these
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issues in mind, we ask the following question: how do standard weight initializa-
tion functions help to rapidly converge a neural network and find the ideal DNN
elements in a scenario where the network architecture is constantly changing?
This question is crucial for evolutionary algorithms to become, in fact, compet-
itive to non-evolutionary DNNs, which represent the current state of the art.

The remained of this paper is as follows. Section 2 presents related works
that address weight initiatlization or maintenace in DNE. Section 3 explains the
theoretical foundation behind this work. Section 4 describes and discusses our
results. Finally, Sect. 5 draws final remarks.

2 Related Work

Much of the research effort in DNE is directed towards finding better ways to
create ideal topological structures for the target problem, somewhat neglecting
the potential benefits of better initializing or updating the weights of the net-
works during the evolutionary process. In this section, we give attention to some
works that tackle the latter issue.

Focusing on updating weights, Koutnik et al. [7] created a new method to
encode the weights of neural networks using Fourier coefficients. This allows
exploring the spatial relationship between the weights and reducing the dimen-
sionality of the target problem. As a main result, Koutnik et al. managed to
reduce the total number of iterations to obtain the best individual in three bench-
mark problems (pole-balancing, ball throwing, and octopusarm control). Togelius
et al. [8] decided to focus efforts on the crossover stage during the evolution
of architectures, inspired by the workings of memetic algorithms, to find the
best combination of weights between individuals rather than a random one. As
benchmark they used the Race Car problem, comparing five different algorithms:
Hill-Climber, Simultaneous Climber, Memetic Climber, Constrained Memetic
Climber, and Inverse Memetic Climber. The authors report that the more fea-
tures in the input layer (dimensions), the better results the evolutionary versions
of the algorithms obtained, always outperforming the non-evolutionary versions.
Neither works, however, address the total time to carry out the experiments.

Specifically considering the weight initialization problem, Okada et al. [9] pro-
posed to represent the weights of neural networks not as scalars but as intervals,
an extension of Evolutionary Strategy for neurevolution of intervalued neural
networks, deciding not to evolve the topology of the architectures, and to work
only with the prediction of values for sinusoidal functions, considering the inter-
vals of such functions as genotypes. Also in this aspect, Desell [10], applied a
new NeuroEvolutionary algorithm, EXACT (Evolutionary eXploration of Aug-
menting Convolutional Topologies), in order to address three possible fronts dur-
ing the evolutionary process: (i) node-level mutation operations; (ii) epigenetic
weight initialization; and (iii) pooling connections. When coining the expression
epigenetic weight initialization, Desell aimed to investigate a better representa-
tion of the combination of the parents’ genomes (weights), without necessarily
changing the initial combination; in this way, the new individuals have their
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weights directly inherited from this epigenetic combination, similarly to [8]. As
benchmark, the results were compared on the MNIST database, where the best
individual obtained 99.46% accuracy. In all, Desell evolved over 225,000 neural
networks with the support of 3,500 volunteers who served as hosts to run the
experiments. None of these works comment on the total execution time.

In 2021, Lyu et al. [11] compared the performance of the NeuroEvolu-
tive EXAMM (Evolutionary eXploration of Augmenting Memory Models), a
gradient-based algorithm for recurrent neural networks, using four distinct func-
tions to initialize the weights of the neural networks: Glorot, He, Uniform Ran-
dom, and a new method called Lamarckian weight inheritence. To test the perfor-
mance, EXAMM was applied in time series forecasting on real-world databases.
The experiments were performed with 2,304 processing cores (Intel Xeon Gold
6150@2.70 GHz CPU) and a whopping 24 TB of RAM. This is the only work in
our review that directly mentions the problem of the exploding and vanishing
gradients. However, again the authors do not report the required processing time
for their experiments.

3 Theoretical Foundation

3.1 CoDeepNEAT

In this paper we intend to work with the coevolution of Deep NeuroEvolution
of Augmenting Topologies (CoDeepNEAT) algorithm [12]. As pointed out by
Papavasileiou et al. [13], CoDeepNEAT is among some of the most innovative
techniques that combine evolutionary algorithms based on non-gradient descent
and algorithms based on gradient descent. In CoDeepNEAT, chunks of layers are
developed as modules, which are merged together to create a blueprint, which
in turn is used to create multiple architectures (Fig. 1).

Fig. 1. Assembly of a neural network from a blueprint individual and a set of module
individuals [12]. The number inside each node in the blueprint represents species in the
modules population. (Color figure online)
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The algorithm works with a population of modules and a population of
blueprints, which are evolved separately. The blueprint chromosome is a graph
where each node contains a pointer to a particular module species, while each
module chromosome is a graph that represents a chunk of DNN layers.

Before the first generation, the initial population of modules is generated
according to the hyperparameters of the CoDeepNEAT algorithm. A module
may contain convolution layers or fully-connected layers, and the probability of
getting either one is specified by the user (we keep both at 50%). If the module
contains convolution layers, its hyperparameters, such as the number of filters
and the kernel size, are chosen randomly from a set of possible values that are
also user-specified. In our experiments, the number of filters ranges from [32, 256]
and the kernel size is either 1, 3, or 5.

At the beginning of each generation, a number of blueprints are randomly
chosen from the blueprint population. Each node in a blueprint is replaced with
a module that is randomly chosen from the module population. This results in a
set of assembled neural network that comprise the individuals of that generation.
Those neural networks are untrained, and their weights must be initialized, even
if they come from modules that did not change since the previous generation.
Each individual is then trained on a small number of epochs and evaluated on a
hold-out partition of the training dataset.

Since CoDeepNEAT works with two populations, there are two fitness values
to be calculated. The fitness of each blueprint individual is the average metric
(loss, accuracy, F1-score etc.) of all neural networks assembled from that individ-
ual. If the blueprint was not chosen to sprout neural networks in this generation,
then its fitness value is zero. Similarly, the fitness of each module is the average
metric of all networks that employed that module as part of their architecture.

At the end of each generation, except for the last one, new blueprints are
generated from the crossover of the best individuals, producing a new population
of blueprints. The same is done to the population of modules. After the last
generation is completed, the NeuroEvolution algorithm is ready to present to
the user the indicated DNN for some particular task. This may be the individual
with best fitness value from the final generation, or the best individual from all
generations. This individual is then trained with the entire dataset for a suitable
number of epochs, which is usually significantly larger than the number of epochs
used to calculate the fitness of blueprints and modules during evolution.

The size of the modules population is a CoDeepNEAT hyperparameter. In our
experiments, they are either 30 or 45, and the size of the blueprints population
is either 10 or 25, as explained in Sect. 4.

3.2 Short, Medium and Long Term Analyses

A major drawback of bioinspired deep learning models is that they are very time
consuming. In spite of their very competitive results, the time required for the
evolution of architectures can make reproducibility difficult and is a challenge for
researchers without access to high computational power. To put in perspective,
Bohrer et al. [14] give an estimated 480+ h to reproduce the CIFAR-10 dataset
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experiments from the inaugural work of the CoDeepNEAT [12]. They reach that
figure from the assumption that each epoch takes at least 30 s, and each of the
100 DNNs in one generation is trained for 8 epochs over a total of 72 generations.

The obvious way to reduce the required time is to reduce the complexity of
the neural networks. In [14], the hyperparameter space is drastically reduced.
To begin with, they evolved the networks for only 40 generations, instead of
the 70 initially employed in [12]. The number of neural networks, blueprints,
and modules was also reduced, as well as the complexity of the modules (fewer
filters, larger possible kernels, and no max pooling). With a smaller search space,
they also reduced the amount of training data. The CIFAR-10 dataset contains
50,000 training instances. While [12] uses all of them on a hold-out scheme to
train and validate the DNNs, [14] employs only 40% of that data.

In this work, we consider training the neural networks during merely four
generations, and we employ the same population sizes and use as much data
for training as [14]. This is what we refer to as “short-term” evolution of neu-
ral networks. The main motivation behind this experiment is to verify whether
an initialization function presents advantage over others when individuals are
evaluated after very short training episodes. We also verify whether ReLU or
hyperbolic tangent is more suitable an activation function in the short-term.

Subsequently, we also analyze the behavior of CoDeepNEAT in the medium
and long term. In both cases, we use the entirety of the training dataset, with a
train/validation hold-out partition, to evolve neural networks. And we increase
the resources available to CoDeepNEAT in both instances.

Another argument worth mentioning to justify larger evolutionary hyper-
parameters is the emergence of skip connections with output summation, which
resemble residual architectures, according to Miikkulainen et al. [12]. It is known
that the loss function tends to be chaotic in very deep architectures, which is
unfavorable for trainability and hinders generalization. Residual architectures
are very popular in deep learning [15–17] because they tend to simplify that
search space. This was experimentally validated in [18], which shows that the
loss landscape changes significantly when skip connections are introduced, as
illustrated in Fig. 2.

The residual connections implementation presents an uninterrupted flow of
gradient from a given layer to the one closest to the output, avoiding the problem
of vanishing gradient. Consequently, multiple skip connections are an alternative
to ensure the reuse of resources of the same dimensionality as the previous lay-
ers. On the other hand, these connections are also useful for recovering spatial
information lost during downsampling, and seem to stabilize gradient updates in
very deep architectures, ensuring rapid convergence. Such structure is so impor-
tant that it was the main motivator used by Miikkulainen et al. to introduce
mutation of connections between neurons in the original CoDeepNEAT [12,19].

3.3 Initialization and Activation Functions

This work focuses on the analysis of the results obtained with coevolutionary
algorithms when different initialization functions are employed. In spite of its
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Fig. 2. Loss surface of a ResNet-56 without (left) and with (right) skip connections
[18].

apparently limited impact on the algorithm, the choice of an initialization func-
tion can lead the algorithm to find a mostly linear neural network, or one with
multiple skip connections, as illustrated in Fig. 3.

The first initialization considered is Glorot, proposed in 2010 and designed
for DNNs with symmetric activation functions such as tanh and softsign [5,11].
It draws weights from a random uniform distribution such as:

W ∼ U(−
√

6
fin + fout

,

√
6

fin + fout
), (1)

where fin and fout are the input and output sizes of the layer [5,20]. It also has
a normal form, with N(0, std2) [21], where:

std =
√

2
fin + fout

. (2)

As pointed out by Goodfellow et al. [4], the formula is derived on the assump-
tion that the network consists only of a chain of matrix multiplications, with no
nonlinear activations.

He initialization, in contrast, is designed for non-symmetric activation func-
tions such as ReLU. The weights in each layer are generated to approximate the
derivative of the activation function from 0 to 1 [6,11]. Its uniform formula is as
follows [6,22]:

W ∼ U(−
√

6
fin

,

√
6

fin
). (3)

Similar to Glorot, the He function also contains a normal distribution form,
N (0, std2) [23], where:

std =
√

2
fin

. (4)
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Although we have seen the emergence of non-monotonic activation functions
as alternatives to new directions with the rise of functions such as swish [24]
and mish [25], studies are still placed considering Glorot and He initializers. For
the scope of this work, let us consider the normal and uniform versions of both
Glorot and He.

As both functions are the top choice used for initiate a DNN, those functions
are tested with CoDeepNEAT, alongside Random initialization. In the end, six
activations are used in this paper: Glorot Normal, Glorot Uniform, He Normal,
He Uniform, Random Normal and Random Uniform.

Fig. 3. Overall structure of two different networks evolved with Glorot initialization
(left) and He (right). Each node represents a layer, and the different nodes represent
different modules. Notice the linearity of the network on the left and the presence of
skip connections on the right.
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The performance between the weights initialization functions with different
activation functions also needs to be addressed. Here the Hyperbolic Tangent
(TanH, or tanh) and Rectified Linear Unit (ReLU, or relu) functions were chosen,
both non-linear and commonly used as standard functions.

tanh(x) = 2σ(2x) − 1 =
2

1 + e−2x
− 1 (5)

relu(x) = max(0, x) =

{
0, if x < 0
x, if x � 0

(6)

4 Experiments and Discussion

Our short-term, medium-term, and long-term experiments were based on and
compared against two baselines. The first, henceforth named B1, is the original
work that presented the CoDeepNEAT [12], and the second (B2), is the work of
Boher et al. [14]. The striking aspect of B1 is the very large search space of the
coevolutionary algorithm, as discussed in the previous section, whereas B2 has
a much smaller search space. This is because the objective of Bohrer et al. was
to reproduce the original experiments of the [12] with limited resources. Instead
of multiple GPUs, they used a single CPU with only 30 GB RAM.

Our short-term experiments (ST) were inspired by both baselines, but with
shorter training episodes than both of them. The sizes of the populations were
similar to B2, but we kept the possible DNNs hyperparameters closer to B1. We
also employed only a subset of the training data, and we reduced the duration
of the coevolutionary algorithm even further (4 generations rather than 40). For
medium-term (MT) and long-term (LT), we experimented with increasing the
duration of the experiment, and we trained the individuals for more epochs. The
experiments configurations are summarized in Table 1.

We compare the most commonly used initialization functions in Deep Learn-
ing: He, Glorot and Random. Each of them has a uniform and a normal variant,
which determines the distribution it will draw weights from. For the sort-term
experiments, we evaluate the CoDeepNEAT algorithm on two data sets (CIFAR-
10 and MNIST) with five hold-out iterations. However, as medium-term and
long-term experiments take substantially longer to complete, we had to limit
the experiments to a single hold-out on the CIFAR-10 data set.

The short-term results are presented in Tables 2 and 3. Table 2 gives the
accuracy of the best individual trained after the last generation on each of the
five hold-out runs. Table 3 gives the mean and standard deviations.

First, let us discuss the experiments performed with the ReLU activation.
We note that, in all runs, our results are better than the second baseline for
the MNIST data set. The worst short-term result for MNIST was 99%, whereas
B2 reported 92%. On CIFAR-10, the short-term results had a larger standard
deviation. On average, the networks found with He initialization were similar
to the baseline, while the individuals evolved with Glorot performed slightly
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Table 1. Evolutionary and topological hyperparameters. B1 and B2 are baselines. ST,
MT, and LT stand for short, medium, and long terms. B1 and B2 accuracies come from
their sources. For ST, MT, and LT we report the lowest average obtained with ReLU
and either Glorot or He in our experiments.

Parameters B1 [12] B2 [14] ST MT LT

Generations 75 40 4 25 75

DNNs population 100 10 10 100 100

Blueprints population 25 10 10 25 25

Modules population 45 30 30 45 45

Epochs during evolution 8 4 5 10 10

Epochs in final training 300 40 100 150 150

Data used during evolution 100% 40% 40% 100% 100%

Filters [32, 256] [16, 48] [32, 256]

Kernel size {1, 3} {1, 3, 5} {1, 3, 5}
Dropout rate [0, 0.7] [0, 0.5] [0, 0.5]

Max pooling {Yes, No} {No} {Yes, No}
Batch normalization {No} {No} {Yes, No}
MNIST accuracy – 92% 98.9% – –

CIFAR-10 accuracy 92.7% 77% 74.9% 80.1% 84.5%

better. Notice that the main difference from our short-term experiment to B2
was the larger search space for number of filters, and the possibility of employing
max pooling and batch normalization. This is suggestive that running the DNE
algorithm for longer generations is less important than providing the algorithm
with more flexible modules.

Next, we repeated the short-term experiments with the hyperbolic tangent
activation function (tanh). Again, the experiments were performed on CIFAR-
10 and MNIST, and repeated a hold-out partitioning scheme five times. In both
cases, the experiments were executed on single-CPU system with 15.5 GiB of
RAM and a 4 GB GPU (GeForce GTX 1650/PCIe/SSE2). The total run time
was 67 h. Thus, considering 2 activation functions, 4 initialization methods and
2 data sets, the total combinations add up to 16 distinct experimental settings,
each repeated five times, so each experiment took on average 50 min to complete.

The average accuracy and its standard deviation are in Table 3. The perfor-
mance of the individuals found with tanh was severely hindered when compared
to the individuals evolved with ReLU. Still, with the exception of Glorot Nor-
mal, the results were better than B2. Once again, this suggests that it is possible
to achieve decent results when the DNE is tuned to find “fast-learners”, DNNs
which can be trained with few epochs during the evolutionary process.

For the remaining experiments, we focused only on the CIFAR-10 data set
and ReLU activation function.
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Table 2. Short-term experiments with Glorot and He initialization functions (ReLU
activation).

CIFAR-10 MNIST

Initialization Run Accuracy Initialization Run Accuracy

Glorot normal 1 0.7681 Glorot normal 1 0.9872

Glorot normal 2 0.7861 Glorot normal 2 0.9893

Glorot normal 3 0.8057 Glorot normal 3 0.9900

Glorot normal 4 0.8034 Glorot normal 4 0.9893

Glorot normal 5 0.7995 Glorot normal 5 0.9903

Glorot uniform 1 0.8462 Glorot uniform 1 0.9890

Glorot uniform 2 0.7188 Glorot uniform 2 0.9908

Glorot uniform 3 0.8118 Glorot uniform 3 0.9876

Glorot uniform 4 0.7654 Glorot uniform 4 0.9914

Glorot uniform 5 0.8180 Glorot uniform 5 0.9881

He normal 1 0.7798 He normal 1 0.9879

He normal 2 0.6894 He normal 2 0.9910

He normal 3 0.7159 He normal 3 0.9870

He normal 4 0.7706 He normal 4 0.9921

He normal 5 0.7919 He normal 5 0.9899

He uniform 1 0.7743 He uniform 1 0.9902

He uniform 2 0.7767 He uniform 2 0.9923

He uniform 3 0.7324 He uniform 3 0.9903

He uniform 4 0.7695 He uniform 4 0.9900

He uniform 5 0.7998 He uniform 5 0.9870

Table 3. Short-term accuracy with Glorot and He initialization functions with linear
and non-linear activation functions.

Data set Initialization Activation Mean accuracy Std. dev.

MNIST Glorot normal tanh 0.9089 ±0.1116

MNIST Glorot uniform tanh 0.9723 ±0.0046

MNIST He normal tanh 0.9698 ±0.0045

MNIST He uniform tanh 0.9733 ±0.0026

CIFAR-10 Glorot normal tanh 0.4532 ±0.0547

CIFAR-10 Glorot uniform tanh 0.5487 ±0.0658

CIFAR-10 He normal tanh 0.5143 ±0.1237

CIFAR-10 He uniform tanh 0.5172 ±0.0777

MNIST Glorot normal ReLU 0.9892 ±0.0010

MNIST Glorot uniform ReLU 0.9893 ±0.0014

MNIST He normal ReLU 0.9895 ±0.0018

MNIST He uniform ReLU 0.9899 ±0.0016

CIFAR-10 Glorot normal ReLU 0.7925 ±0.0139

CIFAR-10 Glorot uniform ReLU 0.7920 ±0.0448

CIFAR-10 He normal ReLU 0.7495 ±0.0397

CIFAR-10 He uniform ReLU 0.7705 ±0.0217
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The medium-term in this section were carried out in order to contemplate
a compromise proposal between the two baselines used, since Boher et al. [14]
used a very small amount of computational power when compared to what was
used in the original CoDeepNEAT paper (2,000,000 CPUs and 5,000 GPUs). We
ran the medium-term experiments on the same architecture as the short-term (a
single 4 GB GPU). This time, however, each experiment took approximately 32 h
in lieu of the average 50 min observed in the short-term experiments. Therefore,
we limited the medium-term experiments to a single hold-out experiment.

The initialization functions were both the uniform and normal variants of He
and Glorot, and we also consider a random initialization, which assigns weight
values to the neurons without taking into consideration neither the activation
function, nor the sizes of the input or the output. The results are shown in
Table 4. In addition to the accuracy, we also report the number of trainable
parameters of the best individual and whether that individual contains residual
connections or not.

Table 4. Best individuals from experiments in medium-term for each evolutionary
process.

Data set Initialization Final individual Accuracy Parameters

CIFAR-10 He uniform Residual 0.8787 ≈3.33 M

CIFAR-10 He normal Residual 0.8336 ≈1.25 M

CIFAR-10 Glorot uniform Sequencial 0.8011 ≈2.25 M

CIFAR-10 Glorot normal Sequencial 0.8581 ≈1.15 M

CIFAR-10 Random uniform Sequencial 0.7380 ≈1.06 M

CIFAR-10 Random normal Sequencial 0.7271 ≈2.03 M

Considering the greater number of generations, the DNNs assembled by
CoDeepNEAT may obtain some residual connection due to mutations in their
blueprints. However, we noticed that only the He-like initialization were able to
produce the best individual with some residual connection, while all the others
converged to an individual whose architecture was fully sequential (total absence
of skip connections). It is important to mention that, during the evolutionary
process of all, individuals with some degree of residuality were found in all cases,
but only the architectures initialized with He Uniform or He Normal managed to
create individuals with residual architectures that surpassed the performance of
individuals with non-residual architectures during their respective evolutionary
processes.

Although one of the He initializations had the best result, as seen in Table 4,
with 87.87% accuracy, the Glorot Normal initialization achieved a similar result,
85.81%, with approximately 34.72% fewer floating-point operations and 34.53%
less total parameters, which is equivalent to the total number of parameters to
perform an inference on the model. So He Uniform got the best result, but the
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Glorot Normal initializer is just as competitive with less computing resources
required. A reasonable explanation for this fact is that the high frequency of
mutations allows the development of residual connections, but a large number
of generations may be required to produce individuals that are competitive. So
much so that Miikkulainen et al. state in [12] that it was only after the 70th

generation that the accuracy of the individuals in their experiments stabilized.
In order to explore this possibility, we executed long-term experiments, with

three times as many generations as the medium-term. However, as the neural
networks become more complex over the generations, the total time to finish
was substantially greater: 40 days per experiment (∼920 h), when compared to
the 32 h required to finish each medium-term experiment. Only 1 hold-out was
considered for Glorot Normal and He Uniform, which were the most accurate
initializations in the medium-term experiments. The results are presented in
Table 5.

Table 5. Best individuals from experiments in long-term for each evolutionary process.

Data set Initialization Final individual Accuracy Parameters

CIFAR-10 He uniform Residual 0.8991 ≈10.23 M

CIFAR-10 Glorot normal Sequencial 0.8454 ≈0.47 M

Similarly to the previous results, the best individual evolved with He ini-
tialization achieved better accuracy (89.91%) than the individual evolved with
Glorot (85.54%). However, the DNN found with Glorot was completely linear,
as shown in Fig. 3 (left). In comparison, the DNN found with He was rich in skip
connections.

5 Conclusion

In this paper we considered the influence of different experimental settings of a
coevolutionary algorithm We performed experiments with coevolution of Deep
NeuroEvolution of Augmenting Topologies (CoDeepNEAT) on two benchmark
data sets, on three different scenarios that involve increasingly more complex
search spaces. We compared the results obtained with two popular initialization
functions, He and Glorot, as well as a random-initialization strategy serving as
baseline. In addition, for short-term experiments we also compared linear and
non-linear activation functions.

In the initial experiments, focusing in short-term parameters, ReLU acti-
vation outperformed the results obtained by tanh in all experiments. While
the results are somewhat below start-of-the-art performances, they were above
99.20% in the MNIST dataset and 89.91% in the CIFAR-10 dataset, outperform-
ing the baseline study of [14] which attempted to run the CoDeepNEAT with
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limited computational resources. Our result shows that it may be more impor-
tant to fine-tune the coevolutionary algorithm hyperparameters and attempt to
evolve “fast-learners” in fewer generations than perform longer experiments.

It is important to note that the best result obtained for CIFAR-10 (89.91%)
was derived from long-term experiments. Furthermore, we draw attention to a
curious fact: considering the universe of medium and long-term experiments, all
the best individuals evolved with Glorot (both Uniform and Normal variants) did
not contain residual connections, while all of the best He individuals (Uniform
or Normal) had multiple residual connections and were deeper. Considering the
importance of residuality in neural architecture design, there seems to be evi-
dence to suggest an investigation into this greater capacity of He initializations
to facilitate the development of efficient residual architectures in short-term evo-
lution processes.
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Abstract. Brain-Computer Interface (BCI) is a communication method
based on brain signals analysis. The interface enables controlling applica-
tions such as a wheelchair with minimal muscle effort, making BCI sys-
tems attractive in assistive technology development. Currently, Steady-
State Visually Evoked Potential (SSVEP) represents one of the most
promising BCI paradigms, since a specific physiological brain response
is evoked when a subject is exposed to continuously flickering visual
stimuli. In this study, we evaluated how the parameters of the Minimum
Variance Distortionless Response (MVDR) filter impact the performance
of the SSVEP-based BCI. Three parameters were analyzed: filter order,
number of EEG signals combined at the filter input, and number of elec-
trodes employed for filtering. Our results show that it is convenient to
employ fewer electrodes, as they are closer to the visual cortex region,
and to combine them spatially, using low filter orders. The best perfor-
mance, among the tested configurations, was 80.20 ± 6.65%, obtained
with filter order nine, employing nine EEG signals and spatially combin-
ing the inputs with eight signals at a time.

Keywords: Brain-computer interface · Steady-state visually evoked
potential · Minimum variance distortionless response · Spatiotemporal
filtering

1 Introduction

Brain-Computer Interface (BCI) is a technology that involves the acquisition,
processing and translation of brain signals to control an external device, bypass-
ing the conventional neuromuscular channel. Nowadays, the Steady-State Visu-
ally Evoked Potential (SSVEP) represents one of the most promising BCI
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paradigms [17]. In an SSVEP-based BCI, the possible commands are exclusively
associated with visual stimuli. Thus, the subject focuses their gaze on the stim-
ulus that corresponds to the desired command to be operated by the application
[2,15].

There are two techniques used to acquire brain signals, one being invasive and
the other not. The invasive recording methods, such as electrocorticogram, pro-
vide spatial resolution and a high signal-to-noise ratio (SNR). However, this app-
roach is expensive and presents health risks as surgical procedures are needed [8].
Meanwhile, non-invasive methods, such as electroencephalogram (EEG), tend to
be advantageous for the development of BCI systems since it is a safer, more
practical and less expensive technique [7], given that the electrodes are positioned
directly on the user’s scalp. In contrast, the brain signal acquired presents more
noise components and lower spatial resolution.

Fig. 1. Stages of a SSVEP-based BCI.

The steps of an SSVEP-based BCI System are presented in Fig. 1. Initially,
brain signals are acquired by EEG, amplified and digitalized. Subsequently, the
steps of pre-processing, feature extraction and classification are performed. The
classifier output indicates which signal the subject was focused on and therefore
generates the control signal that must be sent to the application. So, the user
receives feedback on the application execution and can choose the next command
to be executed.

This research focuses on the pre-processing stage, more specifically on digital
filtering. The EEG signal is full of noise and interference and filtering allows for
improving the SNR to generate more accurate outcomes. In this study, the digi-
tal filtering process was executed using the Common Average Reference (CAR)
spatial filter, followed by a Minimum Variance Distortionless Response (MVDR)
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spatiotemporal filter. We evaluated how the MVDR filter order and the com-
bination of electrodes impact the performance of the SSVEP-based BCI. This
work deepens the order analysis carried out in our previous studies [1,13].

This paper is organized as follows: Sect. 2 presents an overview of the dataset
and describes the signal processing techniques applied to conceive an SSVEP-
based BCI at all stages: MVDR and CAR filters, the feature extraction via Fast
Fourier Transform (FFT) and the linear classifier. Section 3 outlines the results
and discussion, and Sect. 4 provides the conclusions.

2 Methodology

2.1 Database Description

In this study, a public database with EEG data from 35 healthy subjects (17
females), with average age of 22 years (17–34 years) was used [16]. During the
experimental protocol, subjects were exposed to 40 visual stimuli, flickering at
different frequencies ranging from 8 to 15.8 Hz with a regular interval of 0.2 Hz.
Six samples of 5 s of valid data were collected for each visual stimulus using 64
electrodes placed according to the extended 10–20 pattern, as shown in Fig. 2.
The sampling frequency 250 Hz. In our tests, we consider four visual stimuli, at
the frequencies of 8, 10, 12 15 Hz. Each trial of 5 s was segmented into windows
of 1 s, without overlapping. This public database was chosen with the aim of
maintaining parallelism and comparing the results with our previous works [1,13]
and, works by other authors [6,9].

2.2 CAR

The Common Average Reference is a filter technique that grants input signals
a neutral reference value. This technique consists of obtaining the average of
the input signals considering all electrodes and then subtracting the content of
each electrode from the calculated average [11]. This procedure reduces the noise
present in the brain signals. Mathematically, we can calculate the output of the
CAR filter as:

xCAR
i = xi − 1

N

N∑

j=1

xelectrode
j (1)

where xi is the signal collected between the i-th electrode and the reference and
N is the total number of electrodes.
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Fig. 2. Layout employed for positioning the 64 electrodes based on the 10–20 pattern.

2.3 MVDR Filter

The Minimum Variance Distortionless Response is a classic spatiotemporal fil-
tering technique in the field of antenna positioning. It is a non-parametric [5]
method which is adapted to SSVEP-based BCI systems.

The MVDR filter can process evoked signals at different frequencies by com-
bining the input data, k by k, and producing a single output, referred to here
as a channel. The objective is to apply the MVDR filter to highlight the desired
frequencies and attenuate the interfering frequencies that decrease the quality
of the brain signals.

The filter structure can be understood through Fig. 3, in which k from the
total number of electrodes are jointly processed by finite impulse response (FIR)
filters with length m, whose coefficients are mathematically represented by wj .
This way, a brain signal xj(n), representing a signal from the j-th electrode at
time n is filtered as follows:

yj(n) = wT
j xj(n) (2)

Each filtered signal is summed so that a general response (channel) y(n) is
obtained. The number of channels is defined by the combination of the total
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number of electrodes (L) taken k by k at a time, CL,k, and it is given by the
equation below:

CL,k =
L!

k!(L− k)!
(3)

The complete formulation of the filter is discussed by [1] and presents a
closed-form solution according to the constrained problem that arises from the
considered restrictions.

Fig. 3. Example of a scheme of an MVDR filter.

An important detail about the MVDR application for BCI-SSVEP systems
is that the input signals are subtracted from an average value considering all
electrodes, as is provided by the CAR [14] filtering method.

2.4 Feature Extraction

The feature extraction step consists of applying signal processing methodologies
to obtain relevant attributes for the discrimination of classes associated with
user intentions [4].

In this study, the Discrete Fourier Transform (DFT) was used to extract
information on how the input signal is distributed in the frequency spectrum.
The DFT is able to satisfactorily map the frequency domain and extract, through
the magnitude of the signal, characteristics attributed to the evoked frequencies.
Computationally, the DFT is quick and efficiently calculated through the algo-
rithm of Fast Fourier Transform (FFT) [10].
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2.5 Linear Classifier

Classification is a process of categorizing an input dataset into classes. This
can be achieved by creating linear decision boundaries that categorize the input
signals into a discrete class, based on a linear combination of their features,
grouping the signals when they have the same class and separating them when
they have different classes.

The built model defines the decision surfaces in the data. There are several
types of linear classifiers, which vary in the decision frontier definition methods.
The linear classifier based on Least Squares is used in this work, in which the
objective is to find an optimal set of weights that minimize the result of the
squared error of the classifier’s estimation for the evoked potentials. The higher
the value of the residuals, the worse the decision frontier is established concerning
the input signals, the least squares method will iterate until the sum of squared
residuals is equal to an established limit.

For an input x coming from the feature extraction stage, properly separated
into test and validation data, an output y(n) deciding which class the signals
belong to is established, and it is still necessary to find which weights w promote
the least error of the classifier output. Mathematically it can be written as:

y(n) = wTx (4)

The weight vector w indicates where the decision boundary will be located
at. Classifier performance is measured by the hit ratio between the BCI user’s
intent and the actual identified command [12].

3 Results and Discussion

For each of the subjects in the dataset, different filter orders and electrodes
combinations were evaluated, in order to find out the optimal set of parameters
that provides the best accuracy for the BCI-SSVEP using the MVDR filter.
To ensure the precision of the results in all scenarios, a 20-cross fold validation
scheme was realized with data of each subject, then the average accuracy was
calculated. The k-cross fold validation approach was adopted since the system
is subject-dependent, i.e., 35 SSVEP-based BCI systems (one for each subject)
were designed.

It was computationally impracticable to run all possible combinations con-
sidering the 64 electrodes, therefore four scenarios were chosen. The electrode
arrangement in each follows the schematic shown in Fig. 2.

– Scenario 1: nine electrodes placed at O1, O2, Oz, PO3, PO4, POz, P1, P2
and Pz. Combination of electrodes k by k, with k ranging from 2 to 8. MVDR
filter orders tested: m = 5, 7, 9, 10, 11, 13, 15, 20, 25, 30, 35, 40, 45 and 50.
The 35-subject average accuracy was considered as a performance metric.
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– Scenario 2: 16 electrodes placed at O1, O2, Oz, PO3, PO4, PO7, PO8, POz,
C1, C2, Cz, P1, P2, Pz, CPz and FCz. Combination of electrodes k by k, with
k = 13, 14 and 15. MVDR filter orders tested: m = 5 and 10. The accuracy
of SSVEP-based BCI for subjects 11, 20 and 32 were evaluated.

– Scenario 3: similar to Scenario 2, except for the location of the 16 electrodes,
which are: O1, O2, Oz, PO3, PO4, PO5, PO6, PO7, PO8, POz, C1, C2, Cz,
P1, P2 and Pz.

– Scenario 4: is also similar to Scenario 2, except that now, all the 64 electrodes
were employed, combined 63 by 63 (k = 63).

Fig. 4. Scenario 1 - SSVEP-based BCI average performance for each MVDR filter order
evaluated.

Figure 4 presents the overall average accuracy of the tests for each filter order
considering the average accuracy obtained for all k in Scenario 1. As it shows,
lower filter orders provided better results, being order m = 5 the only where the
average accuracy surpassed 75%.

Table 1 details the average accuracy of the 35 subjects for each combination of
k and m tested in Scenario 1. Combinations of k = 8 electrodes resulted in more
accurate outcomes for all tested m, except for m = 50. This fact indicates that
the spatial combination, operated by the MVDR filter, becomes more effective
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Table 1. SSVEP-based BCI performance considering filter order variations (m) and
the number of combined signals at the MVDR filter input (k) in Scenario 1. The values
highlighted in blue are the best accuracies considering different m, in green are the best
accuracies for the variations of k, in cyan the best overall case and in red the worst
overall case.

k

m
5 7 9 10 11 13 15 20 25 30 35 40 45 50

2 69.3 68.4 67.7 67.8 67.5 67.4 67.9 68.2 66.5 65.8 65.6 64.6 66.2 64.4

3 77.6 76.3 75.3 75.9 74.3 75.3 75.5 73.9 73.9 72.5 73.4 71.7 73.3 71.0

4 77.0 75.2 74.9 74.3 74.7 73.9 74.7 74.1 73.4 72.6 72.5 71.6 73.8 71.4

5 77.1 75.8 74.5 74.3 74.6 74.2 75.0 74.1 73.9 72.8 72.5 72.3 73.7 72.0

6 78.1 76.9 75.0 75.0 74.8 74.5 74.6 74.2 73.8 72.8 72.9 72.5 73.5 70.0

7 70.1 69.3 67.9 67.8 66.9 67.7 67.4 68.0 67.1 66.6 66.0 64.8 66.3 61.7

8 79.5 80.1 80.2 79.7 79.5 79.9 80.1 78.9 78.5 77.5 76.8 75.3 74.4 70,0

when there are more electrodes at its input. Also, the ideal combination of filter
order and the number of electrodes spatially matched have an interesting impact
on the final performance of the SSVEP-based BCI. From Table 1, it is observed
that the worst performance (61.7%) was obtained with m = 50 and k = 7, while
with m = 9 and k = 8 it was possible to obtain, using the same input data, an
accuracy 18.5% higher, of (80.2%).

Scenarios 2 and 3 were considered to precisely assess the impact of the spatial
combination, when more electrodes are available to be used. Then, the tests
focused on combinations with k = 13, 14 and 15, with filter order m = 5 and 10.
Due to the computational cost, only three subjects were evaluated. They were
selected considering the results presented in the tests of Scenario 1: Subject 11
with low performance, Subject 20 with average performance and Subject 32 with
high performance [3]. These results are presented in Figs. 5 and 6. Further, to
compare Scenarios 2 and 3 with the results of Scenario 1, Table 2 presents the
performance of Subjects 11, 20 and 32 in Scenario 1, considering m = 5, m = 10
and k = 8.

Thus, the results of Scenarios 1–3, presented in Table 2 and Figs. 5 and 6,
show that the best case varied between m = 5 and 10 according to the subject
in Scenarios 1 and 2, but it was always obtained with filter order m = 5 for
Scenario 3. Still, it is interesting to note that Subject 32, who performs well, was
quite sensitive to k =13 and 14, as seen in Figs. 5 and 6, with a performance
difference of about 30%. This performance difference was smaller for the other
two subjects tested. Also, we observed that in Scenarios 2 and 3, the best per-
formance for all tested subjects was obtained with k = 14, and not with k = 15,
which would be the largest possible combination of electrodes at the input. In
scenario 1, the maximum value of combinations k = 8 tended to present the
best performance. This fact can be better understood by looking at the results
of Table 3, which presents the average SSVEP-based BCI performance for these
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Fig. 5. Scenario 2 - SSVEP-based BCI average performance with variations of MVDR
filter order and the number of entries matched in its input.

Fig. 6. Scenario 3 - SSVEP-based BCI average performance with variations of MVDR
filter order and the number of entries matched in its input.
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3 subjects considering all the signals acquired by the 64 available electrodes.
The spatial combination at the filter input used k = 63 and, for comparison,
the same MVDR filter orders were tested, i.e. m = 5 and m = 10. Results show
that, by including other electrodes, the accuracy was reduced. This probably
occurred because, when adding electrodes far from the visual cortex, the infor-
mation regarding the visually evoked potential was masked by noise during the
spatial combination of the filter, resulting in a reduction in the accuracy of the
system, although more tests can be run to verify this effect.

Table 2. Scenario 1 - SSVEP-based BCI average performance for MVDR filter order
of m = 5 and m = 10.

Subject k Accuracy (m = 5) Accuracy (m = 10)

11 8 61% 67%

20 8 85% 81%

32 8 98% 99%

Table 3. Scenario 4 - SSVEP-based BCI average performance for MVDR filter order
of m = 5 and m = 10.

Subject k Accuracy (m = 5) Accuracy (m = 10)

11 63 24% 25%

20 63 24% 26%

32 63 24% 23%

4 Conclusion

In this study, the behavior of MVDR space-time filtering applied to EEG signals
for SSVEP-based BCI systems was evaluated. Motivated by the contributions
proposed by [1,13], this paper deepens the analysis of the MVDR filter order and
the impact of the spatial combination of electrodes at the filter input, in order
to evaluate the filtering potential and also its limits. In addition to the MVDR
filter, which was the focus of our analysis, the digital processing of the EEG
signal from the SSVEP-based BCI consisted of CAR filtering, feature extraction
via FFT and linear classification. Our tests considered 1 s window-length and
four visual stimulation frequencies: 8, 10, 12 and 15 Hz. Four scenarios were
evaluated, varying the number of electrodes (9, 16 and 64) and their position.
The metric used to evaluate the parameters and define the best configuration
was the average accuracy of the SSVEP-based BCI, considering the 20-fold cross-
validation scheme for each subject.

The best average accuracy of 80.2% was obtained in Scenario 1 (with 9
electrodes), combining the inputs with k = 8 and using the filter order m = 9.
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Our analyses, considering three subjects, show that by adding more elec-
trodes, the average accuracy decreases slightly, and in Scenario 4 it was greatly
reduced. The best average performance for Scenario 1 was 82.33%, with k = 8
and m = 10; for Scenario 2 was 79.02%, obtained with k = 14 for both tested
orders (m = 5 and m = 10); for Scenario 3, 78.96% with k = 14 and m = 5;
and for Scenario 4, it was 24.67% with k = 63 and m = 10. Although further
analysis is needed, our initial hypothesis is that this is due to the fact that when
inserting combinations with electrodes far from the visual cortex, spatial filtering
ends up reducing the amplitudes of the FFT at visually stimulated frequencies,
negatively impacting the performance of the system.

In general, we can say that MVDR filtering achieves high success rates for an
SSVEP-based BCI. However, the main disadvantage of this technique is the high
computational cost that increases with the expansion of the number of electrodes
combined at the filter inputs and the number of visual stimuli. Future work will
focus on evaluating the MVDR space-time filter considering convolutional neural
networks in the classification process, as the feature space tends to increase with
the application of this filter, this approach seems promising.
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Abstract. Per-instance algorithm configuration (PIAC) is an important
task in which, given a base problem instance, a recommendation model
indicates the best configuration to solve it. Whereas typical Automated
Algorithm Configuration (AAC) prescribes configurations for a fixed set
of instances, in PIAC, a model is trained using problem features and
past experience in solving the base problem and is tested individually on
new instances. This work proposes a novel formulation for PIAC called
Multi-Objective Automated Algorithm Configuration based on Decom-
position (MOAAC/D). Unlike other PIAC approaches, it decomposes
the problem space by associating different instance sets with each objec-
tive. Using a particular implementation called iMOEA/D, we show an
efficient search with irace as a local search of the Multi-objective Algo-
rithm based on Decomposition (MOEA/D). Experiments on 6,480 base
problem instances show that our proposal is general and performs well
on flowshop, a well-studied combinatorial optimization problem with
many variants addressed as real-world applications. During the train-
ing phase, iMOEA/D searches for good configurations by tuning Iter-
ated Local Search with Iterated Greedy operators. The testing phase
uses the generated Pareto front to recommend parameters for new flow-
shop instances. The results show that the proposed approach outper-
forms a random selection baseline, a generalist solution provided by irace,
and is an alternative to a meta-learning-based approach. We believe the
proposed MOAAC/D formulation has the potential to open up a novel
research area: multi-objective tuners capable of providing specialist and
generalist configurations simultaneously.
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1 Introduction

Algorithm Selection (AS) [15] aims to find mappings between base problems and
the best algorithms to solve them. AS is related to the Automated Algorithm
Configuration (AAC) [17] problem, where search algorithms find the best con-
figuration given a set of base problems. AACs like irace [8] can efficiently find
a single best algorithm (generalist) but usually fail to yield configurations that
focus on small subsets of problems (specialist). On the other hand, AS can train
models that, given descriptive problem instances and well-explored performance
data, map each problem to specialized algorithms. The generalist versus special-
ist is a relevant discussion in parameter configuration literature [18], and both
have advantages and disadvantages depending on the base problem application.

The Per-Instance Algorithm Configuration (PIAC) [7] problem is a general-
ization of AS and AAC since it focuses on learning the mapping between each
base problem instance and a well-fit configuration. PIAC proposals are less com-
mon, mainly due to PIAC formulation that can be hard to solve for diverse sets
of base problem instances, particularly considering the optimization context. In
some scenarios, quite different algorithms and configurations can efficiently solve
the same subset of problems.

In this work, we approach PIAC through a novel formulation – MOAAC/D
(Multi-Objective Automated Algorithm Configuration based on Decomposition),
which uses a decomposition-based framework to provide generalist and specialist
configurations at the same time. Given the configuration space as the decision
space, small subsets of base problem instances are associated with each objective
and the final Pareto Set ought to contain specialist (extremes) and generalist
(knees) configurations. We can also select appropriated configurations from the
Pareto set for new base problems. In the experiments we test this framework for
tuning stochastic local search parameters (decision space) for different flowshop
instances (base problems).

The remainder of the paper is organized as follows. Section 2 presents related
works and Sect. 3 discusses our novel PIAC formulation as well as the pro-
posed implementation to solve it. Section 4 presents the experiments performed,
whereas results are discussed in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Works

There are many AAC tools proposed to optimize the parameter values for a
given set of problem instances. Despite that, not all AAC proposals can deal
with unseen problem instances, most neither make use of problem features nor
give insights into why a given configuration is chosen. Some works address
the traditional AAC task under multiple criteria, by considering, for example,
multiple base-problem objectives [2] or different budgets for solving the base-
problem [3,5]. Hydra proposes an automatic way of building algorithm portfo-
lios [21]. Similar to our proposal, it also uses an internal AAC procedure and
iteratively samples and compares solvers to cover a heterogeneous instance set.
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The main difference is that it needs an explicit portfolio builder strategy, i.e.,
a predefined decision-maker. The framework proposed here provides a decision-
maker built in the partition method and uses the mapping from problem features
to well-suited configurations. Another issue in Hydra is that its internal AACs
can face difficulties updating the portfolio, which encompasses the whole set
of instances. We overcome this issue by running AAC with a localized set of
problems to promote specialization of the configurations.

Although very important, PIAC remains an open problem due to the com-
plexity of recommendation space [7] and previous proposals on PIAC are lim-
ited by the problem or algorithm space. Recent applications use random forest
models to learn configurations of a modular version of CMA-ES for continuous
problems [13]. Also related to our proposal, Instance Space Analysis [6,19] inves-
tigates regions of the problem space in terms of algorithms’ performance. None
of them decompose the problem space like in MOAAC/D.

Despite the contribution of recent approaches, to the best of our knowledge,
it is the first time a multi-objective formulation for PIAC based on problem space
decomposition is proposed. Moreover, the proposed formulation contributes to
the per-instance algorithm configuration for flowshop problems.

3 MOAAC/D: Multi-objective Automated Algorithm
Configuration Based on Problem Space Decomposition

The proposed MOAAC/D formulation associates every objective with a differ-
ent set of instances of the base problem – flowshop in the present work. The
main idea of the framework is to build a Pareto set of configurations that can
efficiently solve problems from all partitions. On the recommendation phase, we
select well-suited configurations from the Pareto set. Figure 1 shows the proposed
framework, including the mapping from problem features to the decomposed
space that will support the Pareto set of configurations tuned to solve the base
flowshop problems.

As Fig. 1 shows, the core component (in gray) of the proposed framework
encompasses irace as local search and MOEA/D as the multi-objective algorithm
based on decomposition used to find configurations. The diagram also highlights
the principal components (flowshop features and partitioning method - PCA)
used in the multi-objective decomposition, and the heuristics analyzed in the
present paper, ILS and IG.

From the flowshop problem space we can extract features like the number of
jobs, fitness landscape roughness, etc. In the building phase, this feature space
can help group similar problems and divide the problem space. The partition
could, for example, simply separate flowshop instances by their number of jobs
(small, medium, or big base problems), their objective (makespan or flowtime),
budget constraints, etc. Alternatively, all features can be clustered automatically
using Principal Component Analysis (PCA)1.
1 Although we could use other techniques, like clustering (e.g., c-means), such a com-

parison is out of the scope of the paper, and we used PCA as a proof of concept.
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Fig. 1. The proposed framework for MOAAC/D applied to flowshop problems.

Popular metaheuristics for solving flowshop problems follow Iterated Local
Search and Iterated Greedy frameworks (initialization, local search, and per-
turbation/destruction). The parameters of the metaheuristics form the config-
uration space, treated as the decision space for our multi-objective algorithm
iMOEA/D (MOEA/D with irace-based local search). The aggregated perfor-
mance on each partition set is used as the high-level objective function of the
search. The generated Pareto front contains configurations specialized on each
partition set (extreme points) and compromise solutions (knee points).

Finally, as depicted in Fig. 1(b), a decision-maker can choose from the Pareto
set the best configuration for an unseen problem during the recommendation
phase. Given the problem features, the proposed approach computes how close
a solution is to each of the partition sets using the stored PCA model. With
this information, the decision-maker determines which region of the Pareto best
fits the new problem and chooses the closest configuration. Although this final
phase could be considered per se a kind of per-instance algorithm selection since
we select one from a set of configurations, this set has not been fixed a priori
as occurs in the case of classic AS problems. Instead, it has been updated from
a large set of possible configurations during the search, and the individual rec-
ommendation for a particular testing instance can be different depending on the
stage of the evolutionary process.
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3.1 Decomposing the Problem Space: From AAC Toward
MOAAC/D

Our proposed decomposition of the problem space transforms a mono-objective
AAC problem into a multi-objective one. According to the literature, AAC con-
sists in minimizing the configuration utility value u(θ) for a set of instances
of the base optimization problem (e.g., the mean objective function value of
flowshop instances). In the present work, we propose a novel formulation for
AAC: a multi-objective version (MOAAC/D), addressed here by partitioning or
decomposing the base problem space P into non-overlapping sets of instances
{P1, . . . , PNobj

} such that P = P1 ∪ · · · ∪ PNobj
, where Nobj is the number of

objectives in the MOAAC/D formulation or the total number of problem space
partition subsets in our case. Formally, we have MOAAC/D defined as:

Minimize u(θ) = (u1(θ), . . . , uk(θ), . . . , uNobj
(θ))

subject to θ ∈ Θf
α

(1)

where uk(θ) = u(θ | Pk, Cθ , t), k = 1, . . . , Nobj . That is, each objective uk(θ),
associated with a problem partition subset Pk, represents a cost (drawn from
a cost distribution Cθ ) to be minimized within time t, considering as decision
variables the configuration vector θ ∈ Θf

α, with Θf
α ⊆ Θα as the space of feasi-

ble configurations of algorithm α. The Pareto Set resulting from this high-level
optimization problem (MOAAC/D) contains specialist configurations of each
partition set on the extremes of the Pareto front and compromise, generalist
configurations at the Pareto front’s knee.

3.2 iMOEAD: Solving the Decomposed Problem

Solving the multi-objective AAC can be difficult since the configuration space Θ
contains discrete, continuous, ordinal variables and several constraints. We can
leverage existing MOEAs using mono-objective AAC algorithms to perform a
local search using the decomposed space.

In the present paper, we consider the well-known MOEA/D [22] to solve
the problem in Eq. 1. We also embed irace as a local search operator capa-
ble of exploring well the decision space. We name this MOEA/D+irace hybrid
iMOEA/D, and Algorithm 1 shows the implementation.

As usual, iMOEA/D associates each solution θi in the population {θi} with
a weight vector called wi, according to its objective function. All the weight vec-
tors are distributed uniformly on the simplex plane in the objective space, i.e.,
||wi|| = 1, and remain constant through the search. The solution θi associated
with vector wi has neighbors Bi that are Nngh solutions with closest associ-
ated weights. New solutions are generated (through reproduction and/or local
search), and during selection, solutions with better aggregation function values
replace the previous ones. A well-known aggregation function is the Tchebycheff
function [22]. Notice that original MOEA/D for continuous problems generates
new individuals, i.e. new configurations, using simulated binary crossover and
polynomial mutation in Line 7, whereas iMOEA/D includes the irace-based local
search in Line 10 of Algorithm 1.
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Algorithm 1. iMOEAD
Require: Npop: MOEA/D population size
Require: Ngen: MOEA/D number of generations
Require: Nngh: MOEA/D neighborhood size
Require: P : problem space
Require: Nspl: irace local search number of problems samples
Require: Nevs: irace local search number of configuration’s evaluations
1: {θi} ← Npop random configurations from Θf

α

2: Calculate u(θi), i = 1, . . . , Npop

3: {wi} ← UniformWeights(Npop)
4: {Bi} ← AssignNeighbors({u(θi)}, {wi}, Nngh)
5: {P1, . . . , PNobj } ← Decompose(P, Nobj)
6: for gen = 1 to Ngen do

7: {θi}off ← reproduction({θi}) � original MOEA/D’s reproduction
8: Calculate u(θi), i = 1, . . . , Npop

9: for θi ∈ {θi}off do
10: θn

i ← iraceLS(θi, Bi,wi, {Pk}, Nspl, Nevs)
11: Calculate u(θn

i )
12: Update non-dominated archive A
13: ϑ∗

k ← min{ϑ∗
k, uk(θn

i )}, k = 1, ..., Nobj

14: for θj | j ∈ Bi do
15: if g(u(θn

i )|wi, ϑ
∗) ≤ g(u(θj)|wi, ϑ

∗) then
16: θj ← θn

i

17: u(θj) ← u(θn
i )

18: end if
19: end for
20: end for
21: end for
22: return Non-dominated archive A

Algorithm 2 details the proposed irace-based local search for iMOEA/D.
Given the i-th incumbent solution (ie. configuration) and its associated weight
vector wi, the local search samples instances from the problem partitions and
applies irace to search on its focused instance set (Pirace). The sample is per-
formed as follows. Given wi ∈ R

Nobj - the i-th weight vector that contains
elements wik corresponding to the weight given by the k-th objective, the sam-
pling process uses wik to dictate how many base problems to take from Pk. For
example, w = (0.9, 0.1) implies that the configuration specializes most (90%) in
problems like P1 and less (10%) in problems like the ones in P2. Therefore, in
lines 1–5, Algorithm 2 samples a given number of Nspl problems used in irace
search according to the rates given by wi components (wi1, ..., wik, ...wiNobj

).
In addition, the proposal also uses the neighboring solutions plus the incum-

bent one as initial configurations for the irace local search. It has the advantage
of using knowledge from good but similar configurations in the population. Irace
search iteratively looks for configurations and updates the parameter value distri-
butions. Configurations are compared against each other by solving the sampled
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Algorithm 2. irace Local Search procedure for the MOEA/D framework.
Require: θi: the i-th incumbent solution
Require: wi: weight vector associated with the incumbent solution
Require: B+

i : neighbor/closest configurations including the incumbent solution
Require: {P1, . . . , Pk, . . . , PNobj }: problem space partition sets
Require: Nspl: total number of problems sampled to compose irace problem space
Require: Nevs: total number of configuration’s evaluations
1: Pirace ← ∅
2: for k = 1, . . . , Nobj do
3: Paux ← sample �wik × Nspl� instances from Pk

4: Pirace ← Pirace

⋃
Paux

5: end for
6: θ ← Irace(Θα, B+

i , Pirace, Nevs)
7: return θ

base problem and using non-parametric Friedman tests to select the best ones.
The search stops after a maximum of Nevs configuration evaluations.

Figure 2 shows an example of a bi-objective space on which iMOEA/D could
run. Algorithm 2 uses the knowledge from the neighborhood (green areas) to
initialize the search. As shown in Fig. 2, the irace local search described in
Algorithm 2 should find good configurations focused on the sampled problems,
improving each solution θi on its search direction wi of the decomposed space.

w1 = (0, 1)

w3 = (.5, .5)

Configs’
utility

Weights Neighborhoods

w4 = (.75, .25)

w5 = (1, 0)

B+
3

B+
4

u2(θ)

u1(θ)

u(θ1)
u(θ2)

u(θ3)
u(θ4)

u(θ5)

Fig. 2. An example of problem space decomposition: bi-objective formulation
(u1(θ), u2(θ)) with five individuals in the population (θ1, . . . , θ5), five corresponding
weights (w1, . . . ,w5), and also B+

3 = {θ2, θ3, θ4}, B+
4 = {θ3, θ4, θ5}, ie. θ3 and θ4

expanded neighborhoods, respectively. (Color figure online)

Figure 2 shows 5 candidate configurations, i.e. individuals in the population
of MOEA/D. In this example of a MOAAC/D formulation with Nobj = 2 objec-
tives, every feasible configuration θ ∈ Θf

α is associated in the objective space
with a 2D coordinate:
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u(θ) = (u1(θ|P1, Cθ , t), u2(θ|P2, Cθ , t))

which represents the utility of α algorithm’s configuration θ on the problem
partition P1 and P2, respectively. In the iMOEA/D population, every candidate
configuration θi has also a corresponding weight wi. In the example shown in
Fig. 2, to provide Pirace, the proposed irace-based local search (Algorithm 2)
when performed on θ4 would sample 75% problems from partition P1 and 25%
problems from P2. It would also use the neighbors {θ3,θ4,θ5} as the initial
configurations for irace.

3.3 Decision Maker: Recommending Configurations

Given the approximated Pareto set obtained by iMOEA/D, we need to provide
a way to select the best fit configuration for new and unseen problems. The
PIAC formulation generalizes the AS problem due to its mapping from problem
features to configurations in addition to the algorithms [7]. Formally, we have
h∗ = arg minh:F→Θα

||uh||, uh = (u(h(f(p))),∀p ∈ P ), where f : P → F extracts
relevant features from instances p in the problem space P , h maps the feature
space F into the configuration space Θα for an algorithm α, and ||uh|| is the norm
of h mapping performance to be minimized, measured by an utility function u,
over all the problems or instances p in the problem space P .

A PIAC strategy can be obtained from the above formulation considering
that, for a new instance, we can find the appropriate configuration by choosing
one from the Pareto Set PS. For example, if we have two partitions P1 and P2

for small and large instances of the base problem, respectively, a new instance
of medium size could imply selecting a compromise configuration.

Formally, if we have a function that returns a vector ψ ∈ R
Nobj , indicating

the membership of the problem features to each partition Pk, k = 1, . . . , Nobj ,
we can define the decision maker of our PIAC strategy as:

θ∗
p′ = arg min

θ∈PS
||ψp′ − û(θ)||, (2)

where ψp′ is the membership vector for a new instance p′, PS is the Pareto
Set of all (near) optimal configurations, and û(θ) is the vector corresponding to
the utility vector u(θ) ∈ R

Nobj scaled to the unit space [0, 1]Nobj . Therefore, by
partitioning the problem space P = P1 ∪ · · · ∪ PNobj

; approximating the Pareto
Set of configurations (Problem in Eq. 1); defining a decision maker to select the
best fit configuration (Eq. 2); and considering h∗ : F → Θα as the best mapping
from problem features to configurations of algorithm α, we can reformulate the
PIAC problem as:

h∗ = h (f(p′)|PS∗) , PS∗ = arg min
PS⊆Θ

||uPS ||

uPS = (||ψp − û(θ)||, ||û(θ)||) , for p ∈ P,θ ∈ PS
(3)

where ||uPS || is the utility’s norm of the Pareto-Set, regarding the distance from
each membership vector ψp, p ∈ P , to every point in the Pareto-Front. As we
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might expect, finding a good Pareto-Front is equivalent to finding small distances
between ψp and û(θ) (spread) and reducing the norm ||û(θ)|| (convergence).

Therefore, by partition the problem space, the final Pareto-Front yields a
good mapping between the problems’ features and the non-dominated configu-
rations. Partitions {P1, . . . , PNobj

} can be found automatically using the feature
space F and a dimensionality reduction technique, like PCA. A set of representa-
tive instances of the base problem in each axis might form the partition sets. The
cosine squared metric for PCA could be used to obtain the membership vector
ψ as it measures the relationship between a new point and the PCA dimensions.

4 Experiments on Flowshop Problems

To evaluate the proposal, we perform a series of experiments using the Flowshop
Problem (FSP) as the base problem scenario. FSPs model a production line in
which a set of machines perform operations on a set of jobs. The goal is to find
a good job schedule that minimizes the total processing time (makespan) or the
sum of processing times (total flowtime). The usual FSP formulation has the
following conditions [1]: a set of J unrelated, multiple-operation jobs is available
for processing at time zero; each job requires M operations, and each opera-
tion requires a different machine; setup times for the operations are sequence-
independent and included in processing times; job times on each machine are
known in advance; all machines are continuously available; once the operation
begins, it proceeds without interruption.

The most studied variant of this problem is the permutation FSP, where
the goal is to find the best job permutation that minimizes a given measure, like
makespan (time to process all jobs) and total flowtime (sum of all job completion
times). Some of the current best methods include the Nawaz-Encore-Ham (NEH)
heuristic [9] and the Iterated Greedy algorithm [4,16].

In the present paper, we generate 6,480 FSPs and use 5-fold cross-validation
to train and test the proposal. The problems processing times are generated
with 5 random seeds from all combinations of J = {10, 20, 30, 50} jobs, and
M = {5, 10, 20} machines, {uniform, exponential, binomial} distributions with
mean 50, {random, job-correlated, machine-correlated} with 0.95 correlation for
correlated instances. We also explore two different base objectives, makespan and
total flowtime, and stopping criteria based on time (2J2MNtB milliseconds),
or number of evaluations (JMNeB evaluations), where the time budget NtB

and evaluations budget NeB are respectively, NtB ∈ {10−4, 10−3, 10−2} and
NeB ∈ {10, 100, 1000}.

In the experiments, configuration space Θ is based on the ILS framework; ini-
tialization, local search, perturbation, acceptance criterion, as well as their asso-
ciated parameters, are described in Table 1. Initialization can be a random or the
NEH heuristic. The local search can be based on First Improvement (FI), Best
Improvement (BI), or Best Insertion (BI) on a given percentage of the neighbor-
hood, with one or unlimited steps. The perturbation procedure could be based
on Ruiz-Stutzle (RS) destruction-construction [16] with a given destruction size
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Table 1. The ILS+IG configuration space Θ.

Parameter Domain

Initialization (random, NEH)

Local search (none, FI, BI, RBI, BIns)

Neighbor comparison operator (>, >=)

Neighborhood size (0.0, 1.0]

Single step local search (true, false)

Perturbation (RS, LSPS, swap)

RS or LSPS job insertion (randomBest, firstBest, lastBest)

LSPS local search (none, FI, BI, RBI, BIns)

LSPS single step local search (true, false)

RS or LSPS destruction size [2, 3, . . . , 8]

Swap: number of swaps [1, 2, . . . , 8]

Acceptance criterion (always, better, metropolisHastings)

Metropolis-Hastings temp. scale (0.0, 5.0]

d, or include partial solution local search (LSPS) [4], including a parameterized
inner local search. Finally, the acceptance criterion can be set to accept all, only
improvements or based on Metropolis-Hastings [20] with a given temperature
scale.

The utility function component uk(θ) is the one commonly used to compare
flowshop metaheuristics – Average Relative Percentage Deviation (ARPD) [10].
ARPD considers the difference to a reference fitness value, obtained here by run-
ning irace for a long evolution on each instance (instance-based best θr) and tak-
ing the average of 30 runs of the best configuration, uk(θ) = 1/30

∑30
j=1 ujk(θr).

The feature space F contains simple features, like the number of jobs, num-
ber of machines, budget, objective, stopping criterion, and jobs/machines ratio.
It includes processing time statistics, like standard deviation, correlation per
job, and correlation per machine. We also use fitness landscape metrics [12] like
random walk autocorrelation, entropy, partial information, information stability,
and fitness-distance correlation using different distances (all five from [14]), and
local search procedures (first improvement, best improvement, and best inser-
tion).

To investigate the MOAAC/D proposal under a PIAC perspective, we auto-
matically decomposed the FSP problem space P into four partition subsets Pk

(k = 1, 2, 3, 4), one for each principal component of the PCA model.
We perform a space reduction in the pre-processed F data by means of

PCA, providing an R
4 feature space. Notice that the choice of four dimensions

seems a good compromise between not degenerating iMOEA/D performance and
also allowing a suitable partition in the problem space. We further perform the
decision making process to choose the best configuration of each test instance.
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In the experiments, we compare MOEA/D (Algorithm 1 without local search
in Line 10) with iMOEA/D (Algorithm 1 without reproduction in Lines 7 and
8). First, we explore partition versus performance, and in the sequence we ana-
lyze FSP features aspects. Then we compare iMOEA/D in terms of recom-
mended configuration quality with three other PIAC approaches: (i) a randomly
generated configuration from the same space (randPIAC); (ii) the global-best
configuration found by running irace on the entire problem space; and (iii)
a meta-learning-based approach that uses instance-best performance data to
train multi-label random-forest models (MetaL) [11]. All experiments consider
a 5-fold cross-validation procedure where the strategies use training problems
(P 1

tr, . . . , P
5
tr) and have the same budget (1000|P fd

tr | configurations evaluations)
in each fold fd, which took about 30 CPU days. The ARPD performance results
from (P 1

ts, . . . , P
5
ts) are averaged through all test sets.

5 Results

As described in Sect. 3, we can use a PCA model of the feature space F to auto-
matically decompose the problem space P . PCA models of the feature space pro-
vide the contribution measure for the problem features to each partition. Figure 3
shows the top six features that most contribute to dimensionality reduction.
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Fig. 3. PCA variable plot for flowshop features that most contribute to each partition
(axis). For better visualization, we only show the top six features.

In the performed experiments partitioning explains 45,6% of the data vari-
ability as follows:

– Partition P1: instances with many neutral (side) edges and a low number of
steps to reach local optima using first improvement (FI mean walk length);

– Partition P2: instances with a low number of jobs and makespan objective;
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– Partition P3: instances with most variations on the correlation between fitness
and number of steps to reach a local minimum (fitness-distance correlation,
FDC) using best insertion and best improvement local searches (HC’s and
IG’s FDC with deviation distances).

– Partition P4: job-correlated instances with high entropy on random walk fit-
ness and greater variation of job times;

Figure 4a shows the ARPD performance of iMOEA/D × MOEA/D through
a parallel coordinates plot for the final 20 configurations found by both. We
notice that both cand find good solutions for partition P1 and P4, but iMOEA/D
dominates MOEA/D on P2 and P3. This shows the effectiveness of the proposed
irace-based local search when providing new individuals. The iMOEA/D non-
dominated front is explored in Fig. 4b by highlighting the destruction sizes of
each configuration. We notice that most configurations can find good solutions
(low ARPD values) on partitions P1 and P4. The instances from P3 seem much
harder, and the best configurations have low destruction sizes (darker lines).
The analyses emphasize how the proposed MOAAC/D adds interpretability to
a black-box AAC problem by investigating the Pareto front.

(a) MOEA/D iMOEA/D final s. (b) iMOEA/D final with d.

Fig. 4. Final ARPD for ILS+IG configurations on FSPs, whose instances are decom-
posed automatically by PCA into {P1, P2, P3, P4} partitions.

Using the Pareto Set found by iMOEA/D, we test our PIAC formulation
by comparing it with randomly chosen parameters (randPIAC), the global-best
configuration found by irace (G-IRACE), and a meta-learning-based approach
(MetaL) [11], all using the entire problem space with the same budget of configu-
ration evaluations. An instance-best reference (θr) is set as the best configuration
found by irace for each particular instance2. Table 2 summarizes the percentage
of times that the recommended configuration found by each approach is better,
equal, or worse than the reference one.

We notice from Table 2 that, for smaller instances, iMOEA/D outperforms
the remaining ones in all criteria. Considering the harder instances (larger
2 θr, a kind of upper bound, can be surpassed due to the stochastic nature of irace.
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Table 2. Percentage of times θ∗, recommended configuration by each approach, is
better, equal, or worse than the reference θr, on test flowshop instances p′.

Number of jobs Approach Better u(θ∗
p′ ) < u(θr

p′ ) Equal u(θ∗
p′ ) = u(θr

p′ ) Worse u(θr
p′ ) > u(θ∗

p′ )

J < 50 randPIAC 0.59 30.14 69.27

G-IRACE 3.30 54.49 42.21

MetaL 6.94 53.75 39.31

iMOEA/D 15.56 60.65 23.80

J = 50 randPIAC 0.37 17.16 82.47

G-IRACE 3.95 35.86 60.19

MetaL 11.54 37.28 51.17

iMOEA/D 27.79 10.19 62.04

u represents a cost (drawn from a cost distribution Cθ∗ resulting from different seeds)

instances with random processing times), although iMOEA/D is surpassed by
metalearning in the second and third criteria, it outperforms the others in the
first criterion, i.e. it provides almost three times better solutions than MetaL.

Table 3 shows the comparison of ARPD values of the generated configura-
tions. We see that G-IRACE and iMOEA/D provide very similar results in terms
of ARPD mean. However, iMOEA/D has the lowest mean ARPD rank indicat-
ing that, overall, it has better configurations. These conclusions are supported
by the blocked Friedman test with Nemenyi posthoc, considering 30 different
runs for each configuration.

Table 3. Mean and standard deviations of ARPDs and ARPD ranks for each approach.

Approach ARPD ARPD Rank

randPIAC 2.712 ± 10.302 3.400 ± 0.772

G-IRACE 0.082 ± 0.230 2.314 ± 0.600

MetaL 0.094 ± 1.793 2.197 ± 0.710

iMOEA/D 0.085 ± 0.466 2.089± 0.757

6 Conclusion

We have investigated the Per-Instance Algorithm Configuration problem from a
completely different perspective. The proposal includes a novel multi-objective
formulation of the Automated Algorithm Configuration problem, its generaliza-
tion to the per-instance configuration, and an efficient local search that uses
the problem space decomposition structure to find good configurations. Exper-
iments explored the space partition and the use of PCA to provide insights
into the problem characteristics and performance. The results indicated that
the proposed approach is effective in finding good per-instance configurations.
Overall, iMOEA/D outperformed the comparison approaches, except for the
metalearning-based one for more complex instances.
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Besides relieving the pressure on users that comes from the hard task of
algorithm configuration on complex problems, the proposal also contributes to
multi and many-objective optimization communities by providing novel appli-
cations for established MOEAs as powerful tuner algorithms. The work can be
expanded in many different ways, like including new problems and testing other
inner algorithms, for both local and multi-objective searches. The proposal could
also use different automatic partition techniques like clustering algorithms.
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Abstract. The amount of digital data produced daily has increased con-
siderably in the last years. The need for fast and reliable information in
real-world applications demands ever more precise algorithms and Data
Mining tools, once most of the systems in our daily lives are executed
in real-time. Data clustering is one of the most important and primitive
activities in Unsupervised Machine Learning, consisting in a fundamen-
tal mechanism for exploratory data analysis. Given the complexity of
data clustering task, standard clustering methods, such as the partitional
algorithms, are easily trapped in local optima solutions, due to their lack
of good global searching operators. In this work, three improved Group
Search Optimization-based approaches are proposed, based on merge and
split heuristics, in the context of Automatic Clustering Analysis: MGSO,
SGSO and MSGSO. Group Search Optimization (GSO) is a natural-
inspired meta-heuristic, known for its good global search abilities, and
mechanisms to escape from local optima points from the problem space.
The proposed models attempt to perform both cluster optimization and
the determination of the best number of clusters for each dataset, over-
coming the limitations of traditional partitional clustering algorithms.
The proposed GSO-based models are evaluated through a testing bed
composed of nine real-world problems, and compared to six state-of-the-
art partitional automatic clustering approaches, include standard GSO.
The experimental evaluation has been performed considering five clus-
tering metrics, and both empirical and statistical analysis. The results
showed that the proposed MGSO, SGSO and MSGSO algorithms are
very promising and reliable while tackling clustering problems.

Keywords: Group search optimization · Automatic data clustering ·
Evolutionary operators · Merge and split heuristics · Machine learning

1 Introduction

Data Clustering is one of the most important fields in Pattern Recognition and
Machine Learning, represented by an unsupervised attempt to divide a collection
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of samples (observations) into groups (clusters) according to their similarities
and dissimilarities. Clustering algorithms are important and fundamental tools
for exploratory data analysis and Knowledge Discovery in Databases (KDD),
finding applications in many fields, such as Bioinformatics, Computer Vision,
Text Mining and Big Data Analysis.

The most popular clustering technique are the partitional models, which pro-
mote a partition of the dataset in evaluation into a pre-defined number of clusters
(a parameter for such models), implementing their efforts in an attempt to opti-
mize a criterion function iteratively. But partitional methods are known for their
sensibility to the initial status of the search (their initial position on the problem
space), what may lead to weak solutions, due to the fact that most partitional
methods only perform local searches, being easily trapped in local optima points
if the algorithm starts in a poor region of the problem space. Also, it is quite
difficult to determine the final desired number of data clusters in applications in
new research fields or problems, once few information may be available (if any)
on current research subject, leading to poor clustering performances, what may
result in miscomprehension of the phenomenon in study.

Natural-inspired models, such as Evolutionary Algorithms (EAs) and Swarm
Intelligence (SIs) methods, are known as general-purpose meta-heuristics, usu-
ally employed in hard and complex optimization problems, once such models
present good global search capabilities and mechanisms to escape from local
optima points. EAs such as Genetic Algorithm (GA) [21], Differential Evolution
(DE) [38] and Backtracking Search Optimization (BSA) [7], simulate biological
processes like mutation, recombination and selection, to perform their searches.
SIs, like Ant Colony Optimization (ACO) [14], Particle Swarm Optimization
(PSO) [26] and Group Search Optimization (GSO) [19], implement their evo-
lutionary operators as simulations to the self-organizing and collective behavior
of social animals, like swarming, flocking and herding [5]. Both EAs and SIs
searching strategies are guided in an attempt to optimize a criterion function,
the fitness function, by improving a population of candidate solutions of the
problem at hand by means of their evolutionary operators.

In the last decades, many natural-inspired meta-heuristics have been adopted
to tackle data clustering problems, and, in many cases, such models are adapted
as partitional clustering approaches that estimate both the best partition that
would represent a given collection of sample observations, and the adequate
number of final clusters, at the same time, in a field also known as Dynamic Data
Clustering [31] or, more recently, Automatic Data Clustering [9]. Interesting and
recent research surveys on the subject of automatic clustering using natural-
inspired meta-heuristics can be found in [16,23,25].

In this work, we proposed three improved GSO algorithms based on the
application of merge and split operators in GSO population: MGSO, SGSO and
MSGSO. The proposed mechanisms seek to promote a faster exploration and
exploitation of the problem search space by improving GSO global search abil-
ities with local search heuristics adapted to the context of automatic clustering
analysis.
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This work is organized as follows. Section 2 discusses standard GSO algo-
rithm. Next (Sect. 3), the proposed merge and split mechanisms, as much as
the proposed GSO-based models are presented in details. Experimental results
are shown in Sect. 4, followed by some conclusions and leads to future works
(Sect. 5).

2 Group Search Optimization (GSO)

Group search optimization is inspired by animal social searching behavior and
group living theory. GSO employs the Producer-Scrounger (PS) model as a
framework. The PS model was firstly proposed by Barnard and Sibly [4] to ana-
lyze social foraging strategies of group living animals. PS model assumes that
there are two foraging strategies within groups: producing (e.g., searching for
food); and joining (scrounging, e.g., joining resources uncovered by others). For-
agers are assumed to use producing or joining strategies exclusively. Under this
framework, concepts of resource searching from animal visual scanning mecha-
nism are used to design optimum searching strategies in GSO algorithm [19].

In GSO, the population G of S individuals is called group, and each individual
is called a member. In an n-dimensional search space, the i-th member at the t-th
searching iteration (generation) has a current position Xt

i∈ �n and a head angle
αt

i ∈ �n−1. The search direction of the i-th member, which is a vector Dt
i(α

t
i) =

(dt
i1, . . . , d

t
in) can be calculated from αt

i via a polar to Cartesian coordinate
transformation:

dt
i1 =

n−1∏

q=1

cos(αt
iq), (1)

dt
ij = sin(αt

i(j−1))
n−1∏

q=1

cos(αt
iq)(j = 1, . . . , n − 1),

dt
in = sin(αt

i(n−1))

A group in GSO consists of three types of members: producers, scroungers
and dispersed members (or rangers) [19]. The rangers are introduced by GSO
model, extending standard PS framework.

During each GSO search generation, a group member which has found the
best fitness value so far (most promising area form the problem search space) is
chosen as the producer (Xp) [8], and the remaining members are scroungers or
rangers.

The producer employs a scanning strategy (producing) based on its vision
field, generalized to a n-dimensi-onal space, which is characterized by maximum
pursuit angle θmax ∈ �n−1 and maximum pursuit distance lmax ∈ �, given by
Eq. (2).

lmax=‖U−L‖=
√∑n

k=1 (Uk−Lk)2 (2)
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where Uk and Lk denote the upper bound and lower bound of the k-th dimension
from the problem space, respectively.

In GSO, at the t-th generation, the producer Xt
p will scan laterally by ran-

domly sampling three points in the scanning field: one at zero degree (Eq. (3)),
one in the right hand side hypercube (Eq. (4)) and one in the left hand side
hypercube (Eq. (5)).

Xz=Xt
p+r1lmaxD

t
p(α

t
p) (3)

Xr=Xt
p+r1lmaxD

t
p(α

t
p+

r2θmax
2 ) (4)

Xl=Xt
p+r1lmaxD

t
p(α

t
p− r2θmax

2 ) (5)

where r1 ∈ � is a normally distributed random number (mean 0 and standard
deviation 1) and r2 ∈ �n−1 is a uniformly distributed random sequence in the
range U(0, 1).

If the producer is able to find a better resource than its current position, it
will fly to this point; if no better point is found, the producer will stay in its
current position, then it will turn its head to a new generated angle (Eq. (6)).

αt+1
p =αt

p+r2αmax (6)

where αmax ∈ � is the maximum turning angle.
If after a ∈ � generations the producer cannot find a better area, it will turn

its head back to zero degree (Eq. (7)).

αk+a
p =αk

p (7)

All scroungers will join the resource found by the producer, performing
scrounging strategy according to Eq. (8).

Xt+1
i =Xt

i+r3◦(Xt
p−Xt

i) (8)

where r3 ∈ �n is a uniform random sequence in the range U(0, 1) and ◦ is the
Hadamard product or the Schur product, which calculates the entrywise product
of two vectors.

The rangers will perform random walks through the problem space [20],
according to Eq. (9).

Xt+1
i =Xt

i+liD
t
i(α

t+1
i ) (9)

where
li=ar1lmax (10)

In GSO, when a member escapes from the search space bounds, it will turn
back to its previous position inside the search space [13]. GSO algorithm is
presented in Algorithm 1.
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Algorithm 1. Group Search Optimization
t ← 0.
Initialize randomly position X

(0)
i and head angles α

(0)
i of all members X

(0)
i ∈ G.

Calculate the fitness value (fitness(X
(0)
i )) for each member X

(0)
i .

while (termination conditions are not met) do
Pick the best group member as the Xt

p for the current generation.
Execute producing (Xt

p only) by evaluating three random points in its visual
scanning field, Xt

z (Eq. (3)), Xt
r (Eq. (4)) and Xt

l (Eq. (5)).
Choose a percentage from the members (but the Xt

p) to perform scrounging (Eq.
(8)).
Ranging: The remaining members will perform ranging through random walks
(Eq. (9)).
Calculate the new fitness value fitness(Xt

i) for each group member Xt
i.

t ← t + 1.
end while
Return Xtmax

p .

GSO scrounging operator focuses the search performed by the group in the
most promising areas from the problem space, corresponding to the main explo-
ration/exploitation strategy employed by many EAs (like crossover strategy in
Genetic Algorithms and, particle movement in Particle Swarm Optimization).

Producing and ranging are the main mechanisms employed by GSO for escap-
ing local optima points. When the producer of one generation is trapped in a
local optimum point, all scroungers would follow that producer into that local
optimum point, after executing scrounging operator, leading to a premature
convergence of the group. In GSO, producing operator is proposed as a solu-
tion to the premature convergence problem, giving the producer opportunities
to escape from local optima points. Rangers also provide local optima escaping
mechanisms to GSO, once rangers will always keep performing random walks
through the problem search space that do not depend on the results found by
the producer, which may lead to most promising areas than the ones found so
far by the whole group, evading local optima points.

3 Proposed Approaches: MGSO, SGSO and MSGSO

This section introduces the proposed GSO-based models: MGSO, SGSO and
MSGSO. The proposed methods are introduced as partitional automatic clus-
tering approaches, which combine the good global search capabilities of standard
GSO algorithm with merge and split operators, inspired by mutation operators
presented in [29], as a manner to reinforce and improve GSO mechanisms to
escape from local optima points.

In the context of data clustering problems, consider a partition PC of a
dataset with N data objects xj ∈ �m (j = 1, 2, ..., N) in at most Cmax clusters.
Each cluster is represented by its centroid vector gc ∈ �m (c = 1, 2, ..., Cmax).
Each member Xi ∈ �n (where n = Cmax + Cmax × m) in group G represents
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Cmax activation threshold values and Cmax cluster centroids at the same time,
one for each candidate cluster [9,25], as illustrated in Fig. 1.

Fig. 1. Member representation: the first Cmax features represent activation thresholds
for each candidate cluster, while the following Cmax × m are the Cmax m-dimensional
candidate cluster centroids.

At the t-th generation, the Xt
i individual will be evaluated by considering only

its cluster centroids that are active, that is, cluster centroids with a threshold
value such that ttic ≥ 0.5. Many functions are commonly adopted as the fitness
function in Automatic Clustering applications [25], such as Calinski-Harabasz
Index [6], Davies-Bouldin Index [10], Dunn Index [15], and Silhouette Index
[37]. Such measures seek out the optimization of both the number of clusters
and the cluster centroids themselves at the same time.

The initialization process starts with the random choice of Cmax data objects
from the currently evaluated dataset to compose the initial cluster centroids, for
each individual X(0)

i , as much as the random determination of each activation
threshold t

(0)
ic (where c = 1, 2, . . . , Cmax), by picking a value from a uniformly

distributed random sequence in the range U(0, 1).
After the initialization and the evaluation of G(0) according to the selected

fitness function, the generational process begins.
All proposed GSO-based models will execute evolutionary operators just like

in standard GSO (i.e., producing, scrounging and ranging) in each generation
t, in an attempt to improve their current groups. After the execution of GSO
operators, each group is sorted according to the adopted fitness function, from
the worst member to the best member. For each model, a percentage sr of the
current worst members is selected to perform the alternative merge and split
operators, according to the GSO-based approach (as follows):

– MGSO: each selected member will perform Merge Operator (Algorithm 2).
The merge operator will only consider members that contain at least three
active clusters in t-th generation.

– SGSO: each selected member will perform Split Operator (Algorithm 3).
– MSGSO: each selected member will execute either Merge or Split operations

randomly, with a 50% probability.

The proposed merge and split operators are local search heuristics adapted
to the context of data clustering applications that seek out to promote faster
recovery mechanisms from local optima points from the problem search space,
once standard GSO evolutionary operators would take too many generations
to promote good recovering strategies (through producing and ranging). These
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Algorithm 2. Merge Operator
Pick all Tt

i = {tti1, . . . , t
t
iCmax

} cluster activation thresholds and all active clusters
Ck (represented by their cluster centroid gt

k, where k = 1, . . . , Cmax) from current
member Xi

t ∈ Gt.
Calculate the distance between each pair of cluster centroids gt

k1 and gt
k2 (gt

k1 �=
gt
k2) from current member Xi

t, for the active clusters only.
Select the pair of closest clusters Ck1 and Ck2 , according to their centroid distances.
Replace cluster Ck1 for the new cluster Cknew , formed by allocating all data objects
from both Ck1 and Ck2 into Cknew , and compute the its new cluster centroid gknew

as the mean value of all data objects in Cknew , keeping its activation threshold ttik1 .
Deactivate cluster Ck2 , by making its activation threshold ttik2 < 0.5.
Pick a random data object from current dataset to reinitialize cluster centroid gt

k2 .
Update Xt

i with new activation thresholds and cluster centroids.

Algorithm 3. Split Operator
Pick all Tt

i = {tti1, . . . , t
t
iCmax

} cluster activation thresholds and all active clusters
Ck (represented by their cluster centroid gt

k, where k = 1, . . . , Cmax) from current
member Xi

t ∈ Gt.
Calculate the average distance between each active cluster centroid gt

k from Xt
i and

their corresponding data objects (xj ∈ Ck).
Pick the cluster Ck with the highest average distance (highest average dispersion
value) and that contains at least two data objects (—Ck— ¿= 2).
Determine the new cluster Ck1new and Ck2new by picking a random data object
xj ∈ Ck as the new cluster centroid gk1new and the farthest data object xd ∈ Ck

from xj as the new cluster centroid gk2new .
Determine Ck1new and Ck2new , by allocating each data object xj ∈ Ck to the closest
cluster, according to their cluster centroids gk1new and gk2new .
Update gk1new and gk2new as the mean value of all data objects in their corre-
sponding clusters (Ck1new and Ck2new , respectively).
Replace cluster centroid gt

k by gk1new .
Find the cluster centroid gt

l ∈ Xt
i with the lowest activation threshold value ttil =

min{tim ∈ Tt
i}.

Replace gt
l with gk2new .

Activate the new cluster Ck2new , by making ttil > 0.5.
Update Xt

i with new activation thresholds and cluster centroids.

operators may be useful to speedup the exploration and exploitation capabilities
of standard GSO, once group members that may have been caught in local
optima points are improved by means of perturbations that may lead to more
promising regions from the problem space than the areas found so far by the
group.

All proposed GSO-based Automatic Clustering approaches are presented in
Algorithm 4.
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Algorithm 4. Merge and Split GSO (MGSO, SGSO and MSGSO)
t ← 0.
Initialization: For each member Xi

(0) ∈ G(0), pick Cmax data objects randomly as
the initial cluster centroids gic(c = 1, 2, . . . , Cmax). Randomly determine the cluster

activation thresholds t
(0)
ic and head angles α

(0)
i of all members X

(0)
i ∈ G(0). After

that, assign each data object xj to its closest active cluster.

Calculate the fitness value (fitness(X
(0)
i )) for each member X

(0)
i .

while (termination conditions are not met) do
Pick the best group member as the Xt

p for the current generation.
Execute producing (Xt

p only) by evaluating three random points in its visual
scanning field, Xt

z (Eq. (3)), Xt
r (Eq. (4)) and Xt

l (Eq. (5)). For each evaluated
point (Xt

z, X
t
r and Xt

l), determine its partition by assigning each data object to
the active cluster with the nearest centroid.
Choose a percentage from the members (but the Xt

p) to perform scrounging (Eq.
(8)).
Ranging: The remaining members will perform ranging through random walks
(Eq. (9)).
Apply GSO’s boundary control mechanism to the out-bounded members in Gt+1.
Reinitialize all members in Gt+1 presenting less than two active clusters.
Calculate the fitness value for each member fitness(Xt+1

i ) in Gt+1.
Sort all members in Gt+1 according to their fitness value, from the worst to the
best.
for (<a selected percentage sr of the current worst members Xt+1

w ∈ Gt+1>) do
if (<MGSO>) then
Execute Merge Operator (Algorithm 2) for current member Xt+1

w .
else if (<SGSO>) then
Execute Split Operator (Algorithm 3) for current member Xt+1

w .
else // MSGSO
Determine (with a 50% probability) whether to execute either Merge or Split
operator for current member Xt+1

w .
end if

end for
t ← t + 1.

end while
Return Xtmax

p .

4 Experimental Results

In this section, the proposed GSO-based Automatic Clustering models are evalu-
ated, in comparison to six other evolutionary and swarm intelligence algorithms
from the literature, by means of nine real-world datasets: Banknote Authenti-
cation, Breast Cancer Wisconsin, Pima Indians Diabetes, Heart (Statlog), Iono-
sphere, Iris, Page Blocks Classification, Seeds and Waveform. All real-world
datasets are benchmark classification and clustering problems acquired from
UCI Machine Learning Repository [3]. The selected real dataset features are
shown in Table 1, presenting different degrees of difficulties, such as unbalanced
and overlapping classes, different number of classes and features, and so on.
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Table 1. Real-world dataset features.

Dataset Instances Features Classes

Banknote Authentication 1372 4 2

Cancer 699 9 2

Diabetes 768 8 2

Heart 270 13 2

Ionosphere 351 34 2

Iris 150 4 3

Page Blocks Classification 5473 10 5

Seeds 210 7 3

Waveform 5000 21 3

Five well-known clustering measures are adopted, for comparison purposes:
the Calinski-Harabasz Index (CH) [6], the Rand Index (RI) [36], the Corrected
Rand Index (CR) [22], the Davies-Bouldin Index (DB) [10], and the Jaccard
Index (JI) [18].

The selected comparison evolutionary and swarm intelligence models are:
Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, stan-
dard Group Search Optimization and standard Backtracking Search Optimiza-
tion. The selected approaches are state-of-the-art models from evolutionary com-
puting and data clustering literature, being successfully applied in many appli-
cations [12,24,27,32,34,35,39–41]. All EAs and SIs have been adapted to the
context of partitional automatic clustering, using the same approach adopted
by the proposed models (see Sect. 3 and Algorithm 4). Also, a hybrid GSO and
BSA automatic clustering approach is employed for comparison purposes [33].
All algorithms use Calinski-Harabasz Index as their fitness function, running
in a MATLAB 7.6 environment. Thirty independent tests have been executed
for each dataset, and all methods have started with the same initial population
in each test, obtained by a random process, as explained in Sect. 3. Each algo-
rithm has been run and tested in a computer with an i7-7700K CPU, NVIDIA
GeForce GTX 1060 6 GB GPU and 32 GB RAM, independently (one algorithm
each time), and no other programs, but the Operating System, were executed
during the tests, granting the same environmental conditions to each method.

Table 2 presents the hyperparameters for each EA and SI models. The
selected values for each hyperparameter are adquired from the literature
[1,2,7,9,19,28,33]. The only exception is the sr for current proposed models,
which was determined by a trial-and-error evaluation.
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Table 2. Hyperparameters for each EA.

Algorithm Parameter Value

All EAs and SIs tmax 200

S 100

Cmax 20

GA crossover rate 0.8

mutation rate 0.1

selection rate 0.8

DE F 0.8

crossover rate 0.9

PSO c1 2.0

c2 2.0

w 0.9 to 0.4

scroungers rate 0.8

GSO, BGSO, θmax π/a2

MGSO, SGSO and MSGSO α0 π/4

αmax θmax/2

BSA and BGSO mixrate 1

F 3N(0, 1)

MGSO, SGSO and MSGSO sr 0.4*

*Hyperparameter determined by a trial-and-error approach.

The evaluation criterion includes an empirical analysis and a rank system
employed through the application of Friedman test [17] for all the selected clus-
tering measures. The Friedman test is a non-parametric hypothesis test that
ranks all algorithms for each dataset separately. If the null-hypothesis (all ranks
are not significantly different) is rejected, Nemenyi test [30] is adopted as the
post-hoc test. According to Nemenyi test, the performance of two algorithms are
considered significantly different if the corresponding average ranks differ by at
least the critical difference

CD=qa

√
nalg(nalg+1)

6ndata
(11)

where ndata represents the number of datasets, nalg represents the number of
compared algorithms and qa are critical values based on a Studentized range
statistic divided by

√
2 [11]. Since CH, RI, CR and JI are maximization metrics

(indicated by ↑), the best methods will obtain higher ranks for the Friedman test,
while for DB (a minimization metric, indicated by ↓), the best methods will find
lower average ranks for the Friedman test.

The experimental results are presented in Table 3. The empirical analysis
shows that, for the selected datasets, the proposed MGSO, SGSO and MSGSO
were able to find the best values for the fitness function (CH) for most of the
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Table 3. Experimental results for the real-world datasets (average ± standard devia-
tion).

Dataset Algorithm CH↑ CR↑ DB↓ JI↑ RI↑ C

Banknote Authentication GA 1423.4 ± 0.2024 0.0487 ± 0.0015 0.8709 ± 0.0012 0.3803 ± 0.0008 0.5249 ± 0.0007 2.000 ± 0

DE 1423.6 ± 0.1534 0.0485 ± 0.0006 0.8704 ± 0.0009 0.3804 ± 0.0006 0.5249 ± 0.0003 2.000 ± 0

PSO 1387.5 ± 107.6 0.0647 ± 0.0420 0.8863 ± 0.0378 0.3573 ± 0.0522 0.5323 ± 0.0198 2.7667 ± 2.0625

BSA 1423.5 ± 0.3278 0.0489 ± 0.0013 0.8707 ± 0.0009 0.3805 ± 0.0008 0.5251 ± 0.0007 2.000 ± 0

GSO 1423.6 ± 0.2776 0.0486 ± 0.0008 0.8701 ± 0.0004 0.3805 ± 0.0003 0.5249 ± 0.0004 2.000 ± 0

BGSO 1423.7 ± 0.0498 0.0486 ± 0.0003 0.8702 ± 0.0004 0.3805 ± 0.0002 0.5249 ± 0.0001 2.000 ± 0

MGSO 1423.7 ± 0.0155 0.0486 ± 0.0002 0.8701 ± 0.0002 0.3805 ± 0.0001 0.5249 ± 0.00008 2.000 ± 0

SGSO 1423.7 ± 0.0012 0.0486 ± 0.0002 0.8701 ± 0.0002 0.3806 ± 0.0002 0.5249 ± 0.0001 2.000 ± 0

MSGSO 1423.7 ± 0.0081 0.4858 ± 0.0002 0.8701 ± 0.0001 0.3805 ± 0.0001 0.5249 ± 0.00008 2.000 ± 0

Cancer GA 1038.9 ± 1.9792 0.8320 ± 0.0090 0.7618 ± 0.0006 0.8599 ± 0.0067 0.9169 ± 0.0044 2.000 ± 0

DE 1038.9 ± 2.5719 0.8344 ± 0.0084 0.7618 ± 0.0006 0.8618 ± 0.0062 0.9181 ± 0.0041 2.000 ± 0

PSO 1029.3 ± 65.950 0.8372 ± 0.0121 0.7873 ± 0.1429 0.8633 ± 0.0116 0.9194 ± 0.0063 2.0333 ± 0.1826

BSA 1038.9 ± 2.0758 0.8337 ± 0.0105 0.7618 ± 0.0006 0.8613 ± 0.0079 0.9177 ± 0.0052 2.000 ± 0

GSO 1041.3 ± 0.2277 0.8396 ± 0.0026 0.7612 ± 0.0001 0.8655 ± 0.0019 0.9206 ± 0.0013 2.000 ± 0

BGSO 1041.4 ± 0.0691 0.8391 ± 0.0024 0.7612 ± 0.00005 0.8651 ± 0.0018 0.9204 ± 0.0012 2.000 ± 0

MGSO 1041.4 ± 0 0.8391 ± 0 0.7612 ± 0 0.8651 ± 0 0.9204 ± 0 2.000 ± 0

SGSO 1041.4 ± 0.0187 0.8392 ± 0.0010 0.7612 ± 0.00001 0.8653 ± 0.0007 0.9204 ± 0.0005 2.000 ± 0

MSGSO 1041.4 ± 0 0.8391 ± 0 0.7612 ± 0 0.8651 ± 0 0.9204 ± 0 2.000 ± 0

Diabetes GA 1139.1 ± 2.102 0.0443 ± 0.0036 0.6646 ± 0.0042 0.3789 ± 0.0041 0.5233 ± 0.0022 3 ± 0

DE 1140.0 ± 2.251 0.0450 ± 0.0025 0.6651 ± 0.0032 0.3793 ± 0.0026 0.5236 ± 0.0014 3 ± 0

PSO 996.17 ± 187.6 0.0501 ± 0.0164 0.8084 ± 0.2226 0.3277 ± 0.0969 0.5188 ± 0.0161 4.6667 ± 2.928

BSA 1136.5 ± 3.586 0.0453 ± 0.0046 0.6638 ± 0.0037 0.3806 ± 0.0050 0.5242 ± 0.0030 3 ± 0

GSO 1141.8 ± 2.930 0.0451 ± 0.0010 0.6673 ± 0.0044 0.3783 ± 0.0017 0.5233 ± 0.0004 3 ± 0

BGSO 1142.1 ± 0.9429 0.0446 ± 0.0014 0.6679 ± 0.0018 0.3777 ± 0.0015 0.5232 ± 0.0008 3 ± 0

MGSO 1142.3 ± 1.0431 0.0451 ± 0.0004 0.6682 ± 0.0018 0.3781 ± 0.0004 0.5235 ± 0.0002 3 ± 0

SGSO 1142.6 ± 0 0.0452 ± 0 0.6681 ± 0 0.3781 ± 0 0.5235 ± 0 3 ± 0

MSGSO 1142.6 ± 0.0148 0.0452 ± 0.0002 0.6681 ± 0.00005 0.3781 ± 0.00002 0.5235 ± 0.0001 3 ± 0

Heart GA 206.95 ± 0.0036 0.0295 ± 0.0012 0.9875 ± 0.0006 0.3606 ± 0.0009 0.5150 ± 0.0006 2 ± 0

DE 206.95 ± 0 0.0302 ± 0 0.9871 ± 0 0.3611 ± 0 0.5154 ± 0 2 ± 0

PSO 206.84 ± 0.0995 0.0250 ± 0.0037 0.9871 ± 0.0014 0.3591 ± 0.0012 0.5128 ± 0.0018 2 ± 0

BSA 206.95 ± 0 0.0302 ± 0 0.9871 ± 0 0.3611 ± 0 0.5153 ± 0.0003 2 ± 0

GSO 206.95 ± 0.0041 0.0301 ± 0.0005 0.9873 ± 0.0007 0.3610 ± 0.0006 0.5154 ± 0 2 ± 0

BGSO 206.95 ± 0.0015 0.0301 ± 0.0005 0.9872 ± 0.0003 0.3610 ± 0.0004 0.5153 ± 0.0002 2 ± 0

MGSO 206.95 ± 0 0.0302 ± 0 0.9871 ± 0 0.3611 ± 0 0.5154 ± 0 2 ± 0

SGSO 206.95 ± 0 0.0302 ± 0 0.9871 ± 0 0.3611 ± 0 0.5154 ± 0 2 ± 0

MSGSO 206.95 ± 0 0.0302 ± 0 0.9871 ± 0 0.3611 ± 0 0.5154 ± 0 2 ± 0

Ionosphere GA 115.65 ± 1.198 0.1464 ± 0.0132 1.5341 ± 0.0111 0.4190 ± 0.0064 0.5734 ± 0.0066 2 ± 0

DE 115.48 ± 1.601 0.1427 ± 0.0158 1.5367 ± 0.0143 0.4175 ± 0.0074 0.5716 ± 0.0078 2 ± 0

PSO 116.13 ± 9.484 0.1791 ± 0.0214 1.5375 ± 0.0895 0.4317 ± 0.0084 0.5893 ± 0.0099 2.0667 ± 0.258

BSA 117.27 ± 0.9134 0.1564 ± 0.0151 1.5206 ± 0.0094 0.4233 ± 0.0075 0.5807 ± 0.0073 2 ± 0

GSO 118.43 ± 0.3889 0.1697 ± 0.0091 1.5158 ± 0.0052 0.4298 ± 0.0043 0.5845 ± 0.0055 2 ± 0

BGSO 118.60 ± 0.2825 0.1716 ± 0.0062 1.5137 ± 0.0035 0.4306 ± 0.0031 0.5859 ± 0.0031 2 ± 0

MGSO 118.82 ± 0.0351 0.1771 ± 0.0015 1.5134 ± 0.0007 0.4334 ± 0.0007 0.5887 ± 0.0007 2 ± 0

SGSO 118.82 ± 0.0473 0.1773 ± 0.0018 1.5134 ± 0.0007 0.4334 ± 0.0009 0.5888 ± 0.0009 2 ± 0

MSGSO 118.83 ± 0.0048 0.1773 ± 0.0012 1.5135 ± 0.0006 0.4334 ± 0.0006 0.5888 ± 0.0006 2 ± 0

Iris GA 561.58 ± 0.256 0.7302 ± 0.0001 0.6622 ± 0.0013 0.6958 ± 0.0003 0.8797 ± 0 3 ± 0

DE 561.63 ± 0 0.7302 ± 0 0.6620 ± 0 0.6959 ± 0 0.8797 ± 0 3 ± 0

PSO 560.80 ± 2.540 0.7301 ± 0.0004 0.6636 ± 0.0047 0.6956 ± 0.0007 0.8797 ± 0 3 ± 0

BSA 561.63 ± 0 0.7302 ± 0 0.6620 ± 0 0.6959 ± 0 0.8797 ± 0 3 ± 0

GSO 561.37 ± 0.8113 0.7316 ± 0.0040 0.6627 ± 0.0023 0.6971 ± 0.0037 0.8803 ± 0.0019 3 ± 0

BGSO 561.63 ± 0 0.7302 ± 0 0.6620 ± 0 0.6959 ± 0 0.8797 ± 0 3 ± 0

MGSO 561.63 ± 0 0.7302 ± 0 0.6620 ± 0 0.6959 ± 0 0.8797 ± 0 3 ± 0

SGSO 561.63 ± 0 0.7302 ± 0 0.6620 ± 0 0.6959 ± 0 0.8797 ± 0 3 ± 0

MSGSO 561.63 ± 0 0.7302 ± 0 0.6620 ± 0 0.6959 ± 0 0.8797 ± 0 3 ± 0

Page Blocks Classification GA 14395.2 ± 567.3 0.0070 ± 0.0154 0.5250 ± 0.0342 0.6044 ± 0.0893 0.6287 ± 0.0757 5.5 ± 0.509

DE 16343.2 ± 778.1 0.0003 ± 0.0129 0.6159 ± 0.0311 0.5195 ± 0.0745 0.5576 ± 0.0619 7.5 ± 0.861

PSO 13372.5 ± 1920.9 0.0109 ± 0.0059 0.5307 ± 0.0318 0.6634 ± 0.0300 0.6782 ± 0.0260 4.7000 ± 0.8769

BSA 15007.2 ± 529.4 0.0057 ± 0.0156 0.5626 ± 0.0523 0.6031 ± 0.0735 0.6196 ± 0.0675 5.9667 ± 0.8087

GSO 12456.9 ± 1436.9 0.0110 ± 0.0108 0.5364 ± 0.0267 0.6667 ± 0.0232 0.6874 ± 0.0548 4.3667 ± 0.5561

BGSO 12583.7 ± 1668.9 0.0125 ± 0.0181 0.5306 ± 0.0262 0.6711 ± 0.0371 0.6849 ± 0.0333 4.4 ± 0.6747

MGSO 11841.5 ± 1082.9 0.0202 ± 0.0252 0.5365 ± 0.0179 0.6860 ± 0.0448 0.6984 ± 0.0412 4.0667 ± 0.5208

SGSO 20292.6 ± 1141.9 -0.0103 ± 0.0058 0.5821 ± 0.0445 0.5021 ± 0.0589 0.5418 ± 0.0477 10.3667 ± 1.0981

MSGSO 19083.0 ± 1250.3 -0.0079 ± 0.0069 0.6215 ± 0.0462 0.5364 ± 0.0536 0.5700 ± 0.0442 8.9333 ± 1.1725

Seeds GA 375.31 ± 0.7548 0.7178 ± 0.0086 0.7535 ± 0.0010 0.6827 ± 0.0081 0.8749 ± 0.0039 3 ± 0

DE 372.38 ± 2.3840 0.7106 ± 0.0209 0.7564 ± 0.0041 0.6763 ± 0.0194 0.8716 ± 0.0094 3 ± 0

PSO 375.73 ± 0.2892 0.7159 ± 0.0028 0.7535 ± 0.0007 0.6808 ± 0.0026 0.8740 ± 0.0012 3 ± 0

BSA 370.66 ± 5.5973 0.6988 ± 0.0274 0.7603 ± 0.0081 0.6656 ± 0.0243 0.8627 ± 0.0261 3 ± 0

GSO 375.68 ± 0.3881 0.7153 ± 0.0040 0.7535 ± 0.0007 0.6803 ± 0.0037 0.8745 ± 0.0009 3 ± 0

BGSO 374.30 ± 4.9807 0.7095 ± 0.0452 0.7514 ± 0.0121 0.6772 ± 0.0300 0.8701 ± 0.0261 2.9667 ± 0.1826

MGSO 375.81 ± 0 0.7166 ± 0 0.7533 ± 0 0.6815 ± 0 0.8744 ± 0 3 ± 0

SGSO 375.81 ± 0 0.7166 ± 0 0.7533 ± 0 0.6815 ± 0 0.8744 ± 0 3 ± 0

MSGSO 375.81 ± 0 0.7166 ± 0 0.7533 ± 0 0.6815 ± 0 0.8744 ± 0 3 ± 0

Waveform GA 2518.7 ± 11.88 0.3473 ± 0.0112 1.3783 ± 0.0036 0.4374 ± 0.0067 0.6734 ± 0.0058 2 ± 0

DE 2544.2 ± 8.190 0.3597 ± 0.0057 1.3734 ± 0.0021 0.4450 ± 0.0035 0.6798 ± 0.0029 2 ± 0

PSO 2552.6 ± 58.11 0.3669 ± 0.0213 1.3705 ± 0.0047 0.4480 ± 0.0209 0.6848 ± 0.0033 2.0333 ± 0.1826

BSA 2536.2 ± 7.4291 0.3537 ± 0.0093 1.3745 ± 0.0027 0.4413 ± 0.0056 0.6780 ± 0.0038 2 ± 0

GSO 2546.3 ± 10.52 0.3608 ± 0.0065 1.3733 ± 0.0027 0.4456 ± 0.0040 0.6795 ± 0.0037 2 ± 0

BGSO 2558.0 ± 3.6889 0.3668 ± 0.0037 1.3704 ± 0.0009 0.4494 ± 0.0023 0.6834 ± 0.0019 2 ± 0

MGSO 2563.0 ± 0.6503 0.3705 ± 0.0014 1.3696 ± 0.0001 0.4517 ± 0.0008 0.6852 ± 0.0007 2 ± 0

SGSO 2563.0 ± 0.2500 0.3704 ± 0.0016 1.3670 ± 0.0001 0.4516 ± 0.0007 0.6852 ± 0.0006 2 ± 0

MSGSO 2563.2 ± 0.2599 0.3711 ± 0.0011 1.3696 ± 0.0001 0.4520 ± 0.0007 0.6855 ± 0.0006 2 ± 0
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cases. SGSO and MSGSO have been able to outperform standard GSO in eight
out of nine datasets, and MGSO was outperformed by GSO only in one dataset
(Page Blocks Classification), while the same model has been able to outperform
GSO in four other datasets. The proposed models also have presented the highest
degree of stability, showing their reliability. Almost all algorithms (except for
PSO) have been able to predict the exact estimated number of final clusters for
six out of nine datasets, which is a good result, compatible with many works from
the literature [39]. Even for Diabetes, Waveform and Page Blocks Classification,
the best number of clusters found by the EAs and SIs is not very much distant
from the expected values, what is quite acceptable, given the different degrees
of separability among the original classes in such datasets.

Table 4. Overall Evaluation: Average Ranks for the Friedman Test for each metric,
with CD = 4.0043, and algorithm’s score (in parenthesis).

Algorithm CH↑ CR↑ DB↓ JI↑ RI↑ Average Score

GA 80.3167(9) 105.3352(9) 160.0667(7) 110.4907(8) 104.9519 (9) 8.4

DE 105.2611(7) 112.0278(8) 170.8370(9) 109.8352(9) 106.8704(8) 8.2

PSO 132.2093(5) 144.0722(4) 118.6148(2) 137.3185(6) 142.7407(5) 4.4

BSA 83.4074(8) 118.9593(7) 166.5926(8) 121.7389(7) 119.4537(7) 7.4

GSO 132.0704(6) 143.3074(5) 130.7759(6) 140.6796(5) 142.0648(6) 5.6

BGSO 144.1111(4) 142.2259(6) 119.9611(4) 145.1019(3) 144.8389(4) 4.2

MGSO 166.6296(3) 159.6833(1) 109.6889(1) 161.1296(1) 161.8204(1) 1.4

SGSO 185.3926(2) 145.5241(3) 118.6481(3) 144.7389(4) 146.5407(3) 3.0

MSGSO 190.1019(1) 148.3648(2) 124.3148(5) 148.4667(2) 150.2185(2) 2.4

Table 4 presents the results for the overall evaluation performed through the
ranking system obtained through the application Friedman-Nemenyi hypothe-
sis tests for each clustering metric. We also included an average score system,
considering the position reached by each method in relation to each metric in
the Friedman-Nemenyi ranking system, from the best method (score “1”) to the
worst (a score “9”). Considering the overall evaluation, the proposed models have
obtained the best ranks for all evaluation metrics (except for MSGSO for Davies-
Bouldin Index, where the model only reached the fifth best rank). According to
the overall ranking and scoring systems, the best models for the evaluated sce-
narios are MGSO, MSGSO and SGSO, respectively, showing a slight preference
towards Merge Operator than the Split Operator, when all evaluation metrics
are taken into consideration the same way. But when the fitness function is eval-
uated only, the opposite situation occurs, once MSGSO and SGSO have reached
better ranks in Friedman-Nemenyi tests than MGSO.
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5 Conclusions

In this work, three improved GSO-based models are presented to tackle the
Automatic Data Clustering problem: MGSO, SGSO and MSGSO. The proposed
approaches speedup the exploration and exploitation operators of GSO, by pro-
viding perturbations on the worst members of GSO group that would lead to
better local optima points escaping and recovering mechanisms.

To evaluate the proposed GSO-based Automatic Clustering models, six state-
of-the-art partitional automatic clustering algorithms are adopted from the lit-
erature for comparison purposes: GA, DE, PSO, BSA, GSO and BGSO. Nine
real-world datasets are employed, and five clustering metrics are used in the eval-
uation. The experimental analysis included an empirical method and a ranking
system obtained from a hypothesis test (Friedman test).

The experiments showed that MGSO, SGSO and MSGSO are able to find
better solutions than standard GSO model in most cases, and in an overall
evaluation, all proposed models have been able to outperform all comparison
approaches in relation to the selected clustering indices.

As future works, we intend to extend our analysis on the behavior of MGSO,
SGSO and MSGSO by employing controlled scenarios obtained through the use
of synthetic datasets, so we can understand the best features and limitations
of the proposed models on different clustering problems. Also, we intend to
evaluate the influence of the fitness function on the behavior and performance of
the proposed approaches. In future researches, new evolutionary operators and
local search heuristics will be employed and hybridized to improve GSO search
capabilities in Automatic Data Clustering applications (in both real-world and
simulated scenarios).
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Abstract. Real estate valuation has been vastly studied by the research
community, with several articles proposing Automated Valuation Models
(AVM). However, most of those models base their estimates only on geo-
graphic location and structural characteristics of the property, disregard-
ing several factors that influence prices, such as the need for repairs and
sun exposure. To support decision making, an AVM needs to “look” for
the same type of information a person would when valuating a property,
including photos and textual descriptions. In this work, we show that the
usage of textual data can significantly increase the performance of house
price-prediction models. Our experiments explore different combinations
of learning algorithms and methods to extract relevant information from
textual descriptions, with some surprising conclusions regarding the best
combination of approaches. Overall, we shed some light on how textual
features can be leveraged by the models, explaining the paths that lead
to predictions that end up resulting in performance gains.

Keywords: House price valuation · Information retrieval · Textual
data

1 Introduction

Real estate valuation is a key component of capitalism and the structure of our
society. Being able to assess a price that properly represents the physical charac-
teristics and location amenities (both tangible and non-tangible) of a property
is an essential task in buy and sell operations. More than that, house valuation
is critical for insurance companies so they can firm fair contracts with clients. It
is also important for legal and mortgage purposes, and for a correct definition
of municipal property taxes [19].

Not surprisingly, there is a large number of papers proposing methods for
predicting the list price or trade price of real estate properties [19]. These models
vary in terms of both technique and coverage: some of them propose multivariate
linear regression models over a few of manually-collected samples, while others

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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design complex neural networks trained over millions of records provided by
multiple listing services.

Most of the related work on the subject design models for predicting prices
based solely on basic property features, such as size and number of rooms, and
also location amenities, such as distance to green areas and commute time.
Recent work [17,21,28] propose multimodal models, mixing these basic features
with visual and geographic data, for instance. However, to the best of our knowl-
edge, widely-available property textual data remains pretty much unexplored.

In this context, this paper aims to evaluate the impact of adding textual
information to house price valuation models. For that, we collect two datasets
from very different contexts—distinct cities, countries, and overall characteristics
—, and we evaluate a large number of models for structuring textual informa-
tion. Each experiment is a unique combination of property structural features
(structured data such as size and number of rooms) and a vectorized (struc-
tured) representation of its description in natural language. The foundation of
this work is to confirm whether natural-language textual information extracted
from real estate listing descriptions can improve house price valuation. Assum-
ing our hypothesis is confirmed, we also explore which terms/words and entities
contribute most to this improvement. Finally, we evaluate what are the most
promising methods for extracting (structuring) relevant knowledge from textual
information written in natural language.

The results we present in this paper confirm that textual information can
indeed improve house price valuation, while also indicating that binary term
frequency-inverse document frequency (TF-IDF) is the most promising extrac-
tion (structuring) method, outperforming much more modern and trending algo-
rithms based on deep neural networks. Finally, this work also contributes with
the research community by providing a broad evaluation of how the property
textual data is actually employed to make better predictions. We perform inter-
pretability experiments that allow us to point out which terms are correlated
to house pricing, helping the domain specialists when using machine learning
models for house price valuation.

The rest of this paper is organized as follows. Section 2 presents related
work. Section 3 describes the research methodology, including data collection,
pre-processing, extraction methods, learning algorithms, model evaluation, and
interpretability setup. Section 4 reports the observed quantitative and qualitative
results. Finally, Sect. 5 presents the conclusions of this work.

2 Related Work

Using multimodal data to optimize house price valuation models is a valuable
and promising approach. Some studies explore the usage of visual, geographic,
environmental, and economic information fused with basic property attributes
and demonstrate that such a strategy improves the results of the model [6,8,
15]. Despite the fact that using multimodal data seems to be always beneficial,
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textual information remains a virtually-unexplored field when it comes to house
price valuation1, cited as a possibility [17] but never really actually explored.

Peng et al. [20] demonstrate the potential of textual data applied to a similar
problem: they work on a case study that makes use of user reviews from Airbnb,
a world-renowned lodging company, to improve rent price predictions. By mixing
basic property features, geographic information, and textual data, the authors
state that using multimodal data had an outstanding contribution to increasing
all the evaluated metrics.

Since textual information is an unstructured data format, a crucial step for
any text-based model pipeline is choosing a method to extract (structure) rele-
vant knowledge from it. In the lack of previous works exploring this modality for
house price valuation, there are a couple of papers that demonstrate extraction
methods for similar problems. For instance, [20] uses a classifier to transform
the user review text into a single integer value representing its sentiment. In a
different approach, [22] searches the text for points of interest—relevant facilities
near the property, such as schools, hospitals, and malls —, and then use these
points of interest as house price predictors. Instead of restricting the search for
these points, we anticipate that the listing descriptions contain a broader set of
relevant aspects capable of improving the performance of AVMs.

3 Methodology

In order to assess the potential of textual data applied to house pricing predic-
tions, we tested many distinct combinations of textual information extraction
methods and learning algorithms. By methodically doing so, we cover a large
number of experiments so we can validate hypotheses on whether a specific
technique or algorithm is better than another. We consider an experiment as the
combination between extraction method and learning algorithm2.

We followed the same protocol for every executed experiment. After a pre-
processing step, we employ an extraction method to generate a vectorized repre-
sentation from the property textual data. Then we apply the Truncated Singular
Value Decomposition algorithm [13] to reduce the dimensions of this vector, oth-
erwise the high number of textual features could make the few original houses
features almost insignificant3. Finally, we append this vector to the original house
features and use the resulting data to train and evaluate the model. The pipeline
steps can be seen in Fig. 1 and we detail them in the next sections.

1 Some articles [1,27] use the term “textual features” to actually refer to numerical
house attributes, such as size and number of rooms. In this paper, when we mention
textual information we are actually referring to unstructured listing descriptions
written in natural language.

2 https://github.com/Otavio-Parraga/textual-house-pricing.
3 We use scikit-learn’s TruncatedSVD class. In this paper, all mentions of scikit-learn

refer to version 0.24.2 (https://scikit-learn.org/0.24/).

https://github.com/Otavio-Parraga/textual-house-pricing
https://scikit-learn.org/0.24/


358 L. F. Bittencourt et al.

Fig. 1. The general pipeline for training the learning models (best viewed in colors).

3.1 Data Collection

Our main dataset was obtained by scraping the website of a big real estate
agency from Porto Alegre, Brazil. We loaded properties for sale ads containing
all the variables shown in Table 1. To perform a more controlled experiment,
we removed all properties that were not apartments. In addition, we removed
properties with blank descriptions, reducing the dataset to 17, 406 samples.

Table 1. Dataset variables, types, and descriptive statistics.

Variable Area Bedrooms Bathrooms Suites Parking slots Descriptions Price (R$)

Type Real Integer Integer Integer Integer Text Real

Mean 75.56 2.13 1.56 0.47 0.93 — 483,234.72

Std Dev 42.29 0.74 0.90 0.68 0.80 — 585,227.94

Min 0.01 0.00 0.00 0.00 0.00 — 49,000.00

25% 50.00 2.00 1.00 0.00 0.00 — 220,000.00

50% 65.52 2.00 1.00 0.00 1.00 — 340,000.00

75% 86.15 3.00 2.00 1.00 1.00 — 550,000.00

Max 509.68 7.00 8.00 4.00 6.00 — 20,208,788.00

In order to assess the generalization capability of the entire learning pipeline,
we also collected a second dataset from a multiple listing service in the United
States (hereby simply called US dataset). We narrowed our search to the state
of Florida, discarding samples with missing values or related to land lots. This
dataset contains data from 22, 108 houses and has some differences from our
Porto Alegre dataset. First, its properties are houses, not apartments. Second,
it does not contain variables for suites nor parking slots. Finally, it introduces a
new variable, property age (in years).

3.2 Pre-processing and Extraction Methods

Each property listing description has gone through standard pre-processing.
We converted all text to lower case and removed diacritics, punctuation, and
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stopwords4. However, even after the preprocessing stage, these descriptions are
unstructured textual information that are not used directly as input for many
machine learning models, so we explored a few extraction methods for turning
text into numerical vectors. These methods are detailed below:

– Bag-of-words (BoW): creates a matrix representation of word frequency in a
group of documents. Each word becomes a column and each line represents
the presence of a word in a document. In this paper, we use two different
strategies to generate the representations: binary BoW and counting BoW;

– TF-IDF: uses BoW to create a new representation that employs statistical
rules to identify the importance of a specific term in a document related to a
group of documents;

– Word embeddings: vectorized local representations generated by training a
model to predict words in different contexts. These representations are located
within a latent space where similar words are close to each other. We generate
word embeddings from FastText5 [14] and BERT [9], and we use embeddings
concatenation to generate a document representation.

Since BERT is a trending representation used for a plethora of tasks [23], we
tried to optimize our results by fine-tuning it to our data. For that, we trained
two models on the Masked Language Modeling objective for two epochs using the
AdamW optimizer [18]. We use the “bert-base-cased” model for the US dataset
and its corresponding Portuguese version [24,25] for the Porto Alegre dataset.

3.3 Learning Algorithms

Our selected learning algorithms are based on ensemble strategies such as bag-
ging [4] and boosting [10]. They are state-of-the-art approaches for structured
datasets and have several advantages over neural networks, such as reduced time
complexity for both training and performing inference. We choose five algorithms
that are widely used in house price valuation tasks: Extremely Randomized
Trees [12], Gradient Boosting [11], Random Forest [5], XGBoost [7], and Light-
GBM [16].

For LightGBM and XGBoost we used the eponymous libraries, versions
3.3.06 and 1.5.07, respectively. For the other algorithms, we used scikit-learn’s
ExtraTreesRegressor, GradientBoostingRegressor, and RandomForestRegressor
classes. In all cases, we kept the default hyperparameters values of each library.

3.4 Model Evaluation

Since our goal is to determine the impact of adding textual features to AVMs,
we first define a baseline by running our models without the textual features. In
4 We make use of the stopwords provided by the NLTK library [3].
5 FastText is used directly as distributed, without any kind of fine-tuning.
6 Available documentation at https://lightgbm.readthedocs.io/en/v3.3.0/.
7 Available documentation at https://xgboost.readthedocs.io/en/release 1.5.0/.

https://lightgbm.readthedocs.io/en/v3.3.0/
https://xgboost.readthedocs.io/en/release_1.5.0/
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this stage, the pipeline is reduced to running the learning algorithm using price
as the output dependent variable and the remaining numerical attributes as
input independent variables. After setting the baseline, we define six extraction
methods to be combined with the learning algorithms:

1. Binary: binary bag-of-words;
2. Count: bag-of-words with counts;
3. TF-IDF: based on the eponymous extraction method;
4. Binary TF-IDF: a combination of TF-IDF with the binary strategy;
5. Word: word embedding using FastText;
6. BERT: word embedding using BERT.

All models follow two basic premises. First, we discard all words with a
document frequency lower than 0.1% (about 17 samples for the Porto Alegre
dataset). Second, we reduce the dimension of the textual features to 30. We
use a 10-fold cross-validation protocol to compute the estimated generalization
error. More specifically, we compute the MAE, RMSE, MAPE, MdAPE, and
R2, all widely-used AVM metrics presented in Eqs. 1, 2, 3, 4, and 5, respectively,
where y is the vector of observed values, y is the mean of observed values, ŷ is
the vector of predicted values, and n is the number of samples.

MAE =
1
n

n∑

i=1

|yi − ŷi| (1)

RMSE =

√√√√ 1
n

n∑

i=1

(yi − ŷi)2 (2)

MAPE =
1
n

n∑

i=1

|yi − ŷi|
yi

(3)

MdAPE = median

( |y1 − ŷ1|
y1

,
|y2 − ŷ2|

y2
, . . . ,

|yn − ŷn|
yn

)
(4)

R2 = 1 −
∑n

i=1 (yi − ŷi)∑n
i=1 (ŷi − y)

(5)

3.5 Interpretability Setup

We have also performed interpretability experiments to provide qualitative
assessments of the predictive models. Unlike the standard pipeline, we execute
these models using just textual features as input data, without reducing their
dimensions in any way. We assume that the algorithms behavior on how they
handle textual data does not change significantly when fused with structured
data. During those analyses, we also restrict our extraction methods to BoW
and TF-IDF, leaving out word embeddings.
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We used ELI5 framework8 permutation tests to understand the overall mod-
els behavior and how they make isolated predictions. In permutation tests, we
analyze the importance of a given feature by shuffling its values in the test set,
running the model, and comparing its results with the ones obtained with the
original test set (without feature permutation). In both cases, the results are
given by the same score function (R2 in our case). The largest the difference
between them, the more important that specific feature is [2].

4 Results

As shown in Table 2, Random Forest and LightGBM provide the best results
for the baseline experiments. Since Random Forest scored better for most of the
scale-independent metrics (MAPE and MdAPE), we decided to use its results
as the overall baseline9. Next, we execute each text-based model combined with
each learning algorithm, surpassing the baseline on almost every metric across
all experiments. The Extremely Randomized Trees (ERT) learning algorithm
was the one that consistently achieved the best metrics, which was a surprise
considering its average performance during the baseline experiments.

Table 2. Baseline results for the Porto Alegre dataset. Best scores in bold.

Learning algorithm MAE RMSE MAPE MdAPE R2

Extremely Randomized Trees 116,608 301,216 0.245 0.161 0.750

Gradient Boosting 117,910 320,622 0.268 0.196 0.724

Random Forest 111,931 304,317 0.240 0.158 0.747

XGBoost 112,182 298,465 0.248 0.179 0.757

LightGBM 115,316 295,572 0.251 0.184 0.764

The best result for all metrics among ERT-powered models was achieved
by the binary TF-IDF extraction method (see Fig. 2). With this combination,
leveraging the 30 textual features extracted from listing descriptions increased R2

by 16.06% when compared to the baseline. It also reduced MAPE and MdAPE
by 19.58% and 12.66%, respectively. Although smaller, the MdAPE reduction is
significant as this metric is more immune to outliers and thus harder to improve.

4.1 Generalization Analysis

To verify the ability of the models when leveraging textual data to generalize
to previously unseen data, we applied the pipeline described in Sect. 3 to the
8 We used version 0.12.0 (http://eli5.readthedocs.io/).
9 Scale-independent metrics are useful for comparing results from different studies.

They are also used by AVM services such as Zillow’s Zestimate (https://www.zillow.
com/z/zestimate/).

http://eli5.readthedocs.io/
https://www.zillow.com/z/zestimate/
https://www.zillow.com/z/zestimate/
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Fig. 2. Metrics for baseline and ERT models applied to the Porto Alegre dataset.

Table 3. Baseline results for the US dataset. Best scores in bold.

Learning algorithm MAE RMSE MAPE MdAPE R2

Extremely Randomized Trees 705,659 2,190,527 0.831 0.341 0.464

Gradient Boosting 689,598 2,062,933 1.046 0.467 0.535

Random Forest 683,200 2,088,720 0.823 0.346 0.517

XGBoost 695,317 2,181,905 0.876 0.400 0.474

LightGBM 681,482 2,121,460 0.929 0.416 0.504

Table 4. Best extraction method and learning algorithm for every US dataset metric.

Metric MAE RMSE MAPE MdAPE R2

Combination Binary TF-
IDF,
XGBoost

Binary TF-
IDF,
XGBoost

Binary TF-
IDF,
Random
Forest

Binary TF-
IDF,
Random
Forest

Binary TF-
IDF,
XGBoost

Result 446,416 1,415,748 0.518 0.235 0.778

Improvement 34.49% 26.10% 37.06% 31.09% 45.42%

generalization (US) dataset. The idea is to check whether the very same pipeline
of data preprocessing and model building would also work in a distinct dataset,
albeit in the same application domain. Differently than what was observed with
the Porto Alegre dataset, the generalization baseline experiments did not state
a clear “best” learning algorithm. On the contrary, Table 3 shows that only
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XGBoost does not achieve a best result for any given metric. For that reason,
we decide not to choose a single learning algorithm as the overall baseline and
we conduct our analysis by comparing experiment by experiment.

In this context, Table 4 shows the best combination of a text-based model
and a learning algorithm for every metric, as well as the corresponding result
and improvement over the best baseline for the same metric. Although the best
learning algorithms (Random Forest and XGBoost) were different from those
observed during the experiments on the Porto Alegre dataset (ERT), the best
text-based model was unanimously binary TF-IDF, which is consistent with the
previously observed results.

The general improvement over the baseline was significantly greater over the
US dataset. This can be explained by the fact that the baseline performance was
worse, as its properties are spread over a much larger area with many different
price-affecting factors. As it is naturally harder to make good predictions with
such a small feature set, the listing description can carry part of these factors,
hence the greater improvement.

Finally, the fact that the best extraction methods were based on the rela-
tively simple and well-known bag-of-words [26], especially its binary version, led
us to think that the presence or lack of some terms in the listing description is
more important for its valuation than the semantics of the text. For that rea-
son, we conducted several qualitative analyses in order to explore which terms
contributed most to improve the overall predictions. We present them next.

4.2 Qualitative Analysis

In this subsection, we detail the interpretability experiments performed to better
understand how the trained models leveraged textual data and to search for
interesting patterns that could explain the improvements previously presented
in the quantitative analysis.

Within the same dataset, permutation analysis showed that the most sig-
nificant words were quite comparable, indicating that the models discovered
approximate paths on how to use the textual information. The results were very
similar among the different extraction methods, which seems to point out that
there is no absolute best match between a representation technique and a spe-
cific model or context. As presented in Fig. 3, similar behavior was observed
among learning algorithms, with them sharing a relevant amount of best-ranked
words (up to 70% for the first 50 terms). The only exception was XGBoost, with
few overall patterns in its results. Evidence of its low stability is the fact that
combining it with different extraction methods produced considerably distinct
results, as exemplified in Fig. 4.

On the other hand, the most significant words between datasets were notably
different, although some specific words such as “elevator”, or adjectives such as
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Fig. 3. Each word cloud represents the 20 most relevant words for four learning algo-
rithms and among all extraction methods for the Porto Alegre dataset.

“masterpiece” or “unique”, were identified as relevant for both. This finding
indicates that the method used by the models to interpret textual data is very
dependent on the context in which they are used, a fact that is not surprising
per se but that shows that there are subtle differences in distinct problems from
the same application domain.

Fig. 4. Comparison between two different models of the XGBoost learning algorithm,
with notable interpretation differences. The green color is used to indicate terms related
to price increases. The red color is used for the opposite. (Color figure online)

Porto Alegre Dataset. For the Porto Alegre dataset, most of the relevant
words refer to amenities or places. Terms such as “suite”, “pool”, “fireplace”,
or “parking space” are unanimously listed as relevant, while adjectives such as
“quiet” or “sophisticated” also appears many times. We can also extract some
interesting patterns by looking at terms that are not seen in in the majority of the
experiments. We found streets, neighborhoods, and city sights, which indicates



Leveraging Textual Descriptions for House Price Valuation 365

that text can be used to leverage location information in the absence of precise
geographic information.

US Dataset. Unlike the Porto Alegre dataset, whose properties are spread over
a much smaller area, the US dataset has a much more diverse context that makes
it harder to search for patterns. Although the results only converged to a sparse
group of common words, we extracted some important information that confirms
that all models use relevant words as key to improving predictions, even through
different paths. The three most frequent words listed as relevant for the models
were “ocean”, “oceanfront”, and “estate”. A list comparing the most frequent
words among learning algorithms is presented in Table 5.

Table 5. The 20 most relevant words for four learning algorithms following the count-
based BoW extraction method for the US dataset. Underlined words are those that
appear in multiple models.

Random Forest LightGBM Gradient Boosting ERT

1 estate estate estate estate

2 oceanfront ocean ocean oceanfront

3 ocean crestron oceanfront ocean

4 views oceanfront compound views

5 skyline home crestron firm

6 firm compound masterpiece residence

7 intracoastal summer wine crestron

8 terraces lifts designed skyline

9 community dock sf elevator

10 residence sited firm wine

11 crestron architects residence compound

12 elevator residence outdoor intracoastal

13 penthouse design summer community

14 masterpiece elevator elevator feet

15 camp architect almost terraces

16 wolf staff architect wolf

17 architects completion waterfrontage searching

18 55 unit frontage camp

19 almost feet searching grand

20 completion finishes sited frontage

Finally, except for the XGBoost experiments, we see for both datasets that
textual information can be a proxy for relevant aspects of the property that may
not be available in other modalities. As an example of this, Fig. 5 shows that
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the terms considered relevant by the learning algorithms refer to a wide range
of property aspects, including amenities and location.

Fig. 5. Comparison between four learning algorithms for one description of the Porto
Alegre dataset, following the count-based BoW extraction method. The green color is
used to indicate terms related to price increases. The red color is used for the opposite.
(Color figure online)

5 Conclusion

In this paper, we show that textual descriptions, much like geographic and visual
data, may be used to reliably improve predictions in house price valuation tasks.
In addition, we examined and demonstrated how models leverage textual data in
their decision-making process. After running a thorough set of experiments, we
confirmed that textual information extracted from real estate listing descriptions
does improve the outcomes of house price valuation tasks, since all text-based
models performed better than their baseline references (that did not employ
unstructured textual data). In addition, we notice that for each dataset (Porto
Alegre and US), the models reliably selected a group of different terms, most of
which refer to what humans would consider relevant aspects while pricing a prop-
erty. Surprisingly, binary TF-IDF is the most promising method for extracting
relevant knowledge from textual information (transforming unstructured data
into structured data). On the other hand, word embeddings are the worst extrac-
tion method (also quite surprisingly).

Regarding extraction methods, the best extraction methods in our case study
are relatively simple BoW methods that have been employed for several years.
Because of their simplicity, these methods have a lower computational cost when
compared to modern methods, including deep vectorized representations such as
BERT. This conclusion allows us to ensure that multimodal AVMs can save
computational resources by choosing a simpler strategy for leveraging textual
descriptions written in natural language.
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During our experiments, binary versions of BoW performed better than those
with a counting mechanism. For all cases, binary TF-IDF was the best perform-
ing approach, indicating that what drives pricing is more related to the presence
or lack of certain terms than full-sentence semantics, as supported by our quali-
tative demonstrations. This could explain why BoW representations outperform
newer approaches like BERT.

On the other hand, the best learning algorithm varied both between datasets
and between baseline and text-based models, so we suggest not choosing a single
one upfront. For the Porto Alegre dataset, Extremely Randomized Trees consis-
tently achieved the best results. Combined with binary TF-IDF, it improved R2

by 16.06% and also reduced MAPE and MdAPE by 19.58% and 12.66%, respec-
tively. For the US dataset, the best text-based models improved R2 (+45.42%),
MAPE (−37.06%), and MdAPE (−31.09%) as well.

The fact that street and neighborhood names are considered important fea-
tures by the models may indicate that incorporating structured geographic infor-
mation, such as latitude and longitude, may reduce the improvements brought
by textual information. At the same time, it shows that descriptions can cap-
ture some of the important factors contained in geographic data. Hence, in the
lack of a large amount of structured data, which is a very common scenario in
real-world applications, textual information such as listing descriptions can be
used as a proxy that encodes important price-influencing features, leading to a
more accurate price valuation.

In future work, it would be an interesting challenge to explore different fusion
methods instead of the simple concatenation approach employed here. Moreover,
we could analyze how to incorporate additional data modalities (e.g., images)
to achieve even better results. As we mentioned before, combining geographic,
visual, and textual data may have unexpected effects on how each modality will
act in the final prediction, so we look forward to exploring more data modalities.

As an important limitation, we emphasize that our approach is very depen-
dent on the geographic cut being analyzed, something that was demonstrated
especially in our generalization experiment with the US dataset, which uses more
geographically-diverse data. Designing less context-dependent approaches could
amplify the model generalization across datasets, and thus it is an important
research direction in this area.
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Abstract. Recently, sound measures and metrics in Artificial Intelligence have
become a focus of research and development in academia, government, and indus-
try. Efforts towards measuring different phenomena have gained traction in the AI
community, as illustrated by several influential field reports and policy documents.
These metrics are designed to help decision-makers inform themselves about the
fast-moving and impacting influences of key advances in Artificial Intelligence
in general and Machine Learning in particular. In this paper, we propose to use
such newfound capabilities of AI technologies to augment our AI measuring capa-
bilities. We do so by training a model to classify publications related to ethical
issues and concerns. Our methodology uses an expert, manually curated dataset
as the training set and then evaluates an extensive collection of research papers.
Finally, we highlight the implications of AI metrics, particularly their contribu-
tion towards developing trustful and fair AI-based tools and technologies.

1 Introduction

Recently, the use of sound measures and metrics in Artificial Intelligence (AI) has
become the subject of interest of academia, government, and industry [15,20,22,32].
The widespread impact of Artificial Intelligence and Machine Learning has implied a
paradigm shift in several fields of computing research, including natural language pro-
cessing, machine translation, computer vision, and image recognition [4,17,27]. Lead-
ing scientists, public leaders, and entrepreneurs, including Bill Gates, Elon Musk, and
the late Stephen Hawking, have raised concerns about the impact of AI on every aspect
of human life. These happenings have led to increasing societal concerns about the
fairness, accountability, explainability, and interpretability of AI systems and technolo-
gies [6,7,10,12]. In addition, several scientific and political organizations, the United
Nations, European Union, OECD, and national governments have now invested in the
development of ethical guidelines and national or multilateral AI policies, regulations,
and strategies [5,22,30].

Therefore, the development of AI systems requires use of appropriate metrics for AI
ethics and policies. The Stanford’s AI Index Report [22], in particular, addresses these
and related issues. To better understand the societal impact of AI technologies, one
has to hold several useful metrics to decision-makers, including policymakers, business
and technology executives, journalists, researchers and, most importantly, the general
public. Educators also have an increasing responsibility as AI becomes a tool in several
scientific domains, with widespread applications in every economic activity [4,6,7].
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In the development of ethically bounded AI technologies, one is typically con-
fronted with a number of challenges, including key questions on how to embed ethical
principles in AI systems [25,26]. Building intelligent agent systems, or systems that
interact and work with humans in real world settings poses several challenges. Intelli-
gent agents, the key components of any AI system, as argued by [26] must also concil-
iate their subjective preferences with moral and ethical values. Thus, when specifying
the ethical behaviours, boundaries, and the AI agents goals one has to seek a balance
between an agent’s subjective preferences and ethical boundaries, which reflect in the
overall AI system behaviours [19,26].

These, of course, demand the development of clearly defined methodologies and
metrics in the domain of AI ethics [22]. The point we make here is that - in a nutshell
- AI systems must be endowed with, and subject to, clear metrics based on data driven
approaches that improve the quality, fairness, explainability, and accountability of AI
systems and technologies [12]. These will certainly contribute to mitigate one of the
most concerning characteristic of (unfortunately) more than a handful of AI systems:
algorithmic biases. In turn, such biases coupled with data biases will lead systems that
show undesired behaviours and prejudices [3,9,13]. In this paper, we shall contribute
toward the aim of developing metrics for AI ethics. In order to do so, we propose to use
the newfound capabilities of AI technologies to augment our AI-measuring capabilities.
We train an AI model to classify if a paper is ethics-related from its title and abstract
descriptions. We also use expert knowledge by means of a manually curated dataset,
which is used as a training set. We then evaluate a set of papers made available in
previous works, and compare the accuracy and results of our work.

Thus, our main contributions are as follows:(1) We provide a manually curated
dataset of papers that present ethics-related content, which can be extracted from http://
arXiv.org through their unique identifiers. We choose arXiv.org since it has become one
of a de facto open repository for most AI papers that will be published at mainstream
AI conferences and venues. (2) We provide a trained model to evaluate whether a paper
is ethics-related or not, which can be used as a tool by ethicists (and other scientists)
to help them do a primary analysis of the growing amount of AI and CS-related papers
that is useful to their research. (3) We evaluate our results by comparing them with an
earlier methodology for measuring the role of ethics in AI research. We do so by run-
ning our classifier through the same dataset of papers abstracts from a previous study
[23], and we run their methodology on our test set to compare the results.

The remainder of the paper is organised as follows. In Sect. 2 we highlight recent
research which tackles key questions in developing metrics for AI ethics. Next, we
describe a dataset for identifying ethics in AI research which shall be used in our meth-
ods and experiments. We then introduce a new AI-Based index that outputs the recent
impact of Ethics in key AI conferences and venues. Finally, we conclude and point out
directions for further research.

2 Background and Related Work

Several publications have reported efforts towards measuring different phenomena
in the AI community. Some have gained widespread attention, such as the Stanford

http://arXiv.org
http://arXiv.org
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Human-Centered AI Institute’s AI Index efforts [22,32]. These AI metrics are designed
to help policy-makers and researchers to inform themselves about this fast-moving and
impacting field. In this paper, we propose to use the newfound capabilities of AI tech-
nologies to augment our measuring ability, training a model to classify if an article is
ethics-related from the information provided in its abstract contents.

Ethical concerns on the implications of the data-driven scientific paradigm, rein-
forced by the prominence of AI technologies and methods, has also raised several soci-
etal concerns. For instance, Green [16] has recently urged those who apply data-driven
artificial intelligence and machine learning to social and political contexts to acknowl-
edge the impacts of their products and take a more firm stance as policy actors. They
discuss three of the main excuses used by engineers to avoid taking stances with regards
to how their products are used: the first, that one is “simply an engineer” and does not
dictate how the technology they produce will be used; second, that it is not the data
scientist’s “job” to take a political stance and that remaining neutral during the develop-
ment is the best course of action; third, that perfectly managing a technology’s impact
is unfeasible and that this should not be an impediment to create new products that
improve society incrementally. Green [16] opposes these arguments defending an apo-
litical stance and then proceeds to discuss one possible path to incorporating principles
into data science to strive for social justice.

In [14] the authors call for data scientists to recognise themselves as a group
and discusses issues raised as early as 2017 by France’s Commission Nationale de
l’Informatique et des Libertés [8] regarding the technologies produced by data scien-
tists. They further discuss the various already-available ethical frameworks that data
scientists can use as an azimuth, most of which had been updated in 2018, such as the
codes of conduct from the American Statistical Association [2], Association for Com-
puting Machinery [1], and German Informatics Society [15], while also stating that
uniting data scientists does not imply into forming a new society and build a code of
conduct from the ground up, but rather that these already existing codes could have
Data-Science-specific guidelines added to them. Further, [31] raises the topics brought
about in such codes of conduct and proposes a course to help professionals in the area
of AI, as well as regulators and policymakers. It invites them to come to terms with the
many and shifting ethical issues brought about by the AI paradigm change implications,
as well as the ensuing legal and regulatory debates and constraints. In this social and
scientific context, our work is situated: AI has now gone well beyond the realm of tech-
nology and has reached ubiquitous use. Therefore, measuring the social consequences
of AI use is paramount to guarantee that its tools and technologies will positively impact
human life.

A Note on Dataset Classification

To carry out our investigation, we use a manually curated dataset as a training set and
evaluate a collection of papers made available in previous work, comparing our results
with them. We chose not to use crowdsourcing or mechanical turk to classify our data.
Our decision is due to both ethical and technical reasons (see, e.g. [24] for a deeper dis-
cussion on using such techniques to classify specific kinds of data). Further, the recent
work of [29] analyses several ethical implications of using mechanical turk in natural
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language processing, AI and data analyses. Considering ethical implications and the
fact that the field of AI ethics and fairness is novel, we opted to use expert knowledge
to classify the papers in our dataset. We claim that to better understand whether a spe-
cific piece of research is qualified for our analyses, one has to refer to expert knowledge.
As we are analysing a body of technical work that demands professional expertise of AI,
an expert-curated dataset allows, in principle, a better understanding if a certain piece
of research is related or not to ethics. In addition, an expert can possibly better evaluate
if the AI research, tool, method, and technology described in a paper might have ethical
or social consequences over third parties.

Along these lines, we highlight that an earlier study provided a metric for ethics in
AI research [23] that has been used as a data source in the last two Stanford’s AI Index
editions [22,32]. In such work, the authors measured and analysed the use of ethics-
related terms in flagship AI conferences and journals over the last fifty years. In a nut-
shell, their results show that, although AI was seen as a field that potentially impacted
human life in the last decades, technical research papers typically do not explicitly anal-
yse the ethical implications of their research results, tools, technologies, and achieve-
ments. One has also to mention that our work contributes towards disseminating a cul-
ture of principles Principled AI research, as defended recently by researchers, corpo-
rations, public, governments, and social organisations [11,21,30]. Only very recently,
since its 2020 edition, conferences such as the Neural Information Processing Systems
conference (NeurIPS) have asked authors to describe the ethical consequences of their
technical work.

3 On Building a Dataset for Measuring Ethics in AI

We collected a total of 238,806 papers from Arxiv, ranging from 1989-12-31 up until
2019-10-23. These papers’ metadata contained a list field “category”, which unfiltered
amounted to about 10441 categories. Filtering for only those papers which had an “abs”
identified, there were 9839 categories. In the end, we filtered papers which had either
“cs.cy” or “Computers and Society” (to filter for ethics-related papers) and had any
of “cs.AI”, “Artificial Intelligence”, “cs.CL”, “Computation and Language”, “cs.CV”,
“Computer Vision”, “Pattern Recognition”, “cs.MA”, “Multiagent Systems”, “cs.LG”,
“Learning”, “cs.NE”, “Neural and Evolutionary Computing”, “stat.ML”, “Machine
Learning” (to filter for AI-related papers) inside one of their category identifiers. Fil-
tering for these we were left with 1425 papers to be annotated as related to the field or
had contents associated with AI ethics.

With this subset of 1425 papers, the authors then proceeded to manually annotate
and curate 200 of the papers on whether they were AI-related or ethics-related, based
solely on their titles and abstracts. The final decision was done via a majority vote,
where the paper would take on the label that the majority of the researchers assigned to
it. The vast majority of papers were already in the AI category due to how the data was
collected, however, of the 200 annotated papers there were only 54 papers which were
considered to be about ethics, the rest 146 being annotated as not ethics-related.
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3.1 Active Learning

To increase the number of papers available in the dataset we used active learning [18,28]
to augment the dataset with machine-labelld examples. To do so, we did two rounds of
machine labelling, with the first also serving as a model validation step. To keep closer
to the index produced with [23], we abstained from using complex NLP models such
as transformers or recurrent neural networks, depending on simpler models depending
instead on a Bag-of-Words or Term-Frequency representation.

We evaluated hyperparameter combinations for models using a 4-fold cross valida-
tion, testing models such as Logistic Regression, Adaptive Boosting, Gradient Boosting,
Decision Trees, Random Forests, and Multilayer Preceptrons, the combinations which
were tested can be seen in Table 1.

Table 1. Models and Hyperparameters used in the experiments. LR stands for Logistic Regres-
sion, AB for Adaptive Boosting, GB for Gradient Boosting, RF for Random Forest, DT for Deci-
sion Tree, MLP for Multilayer Perceptron. For the MLP model we used the Adam optimiser.

Model Hyperparameter Options

LR Inv. Reg. Strength 0.25, 0.5, 1, 2, 4

Regularisation l1, l2

AB Num. of Estimators 8, 32, 128, 512

Learning Rate 0.125, 0.25, 0.5, 1

GB Num. of Estimators 8, 32, 128, 512

Max. Tree Depth 1, 2 , 4, 8

RF Num. of Estimators 8, 32, 128, 512

Max. Tree Depth 1, 2 , 4, 8

DT Optimisation Criterion Gini, Entropy

Splitting Method Best, Random

Max. Tree Depth 1, 2 , 4, 8

Activation function TanH, ReLU

MLP Learning Rate 10−3, 10−4, 10−5

Learning Rate Technique Adaptative, Constant

Max. Training Iterations 32, 128, 512

Due to the highly imbalanced nature of the dataset, we used oversampling to cre-
ate a balanced version of the dataset. We avoided using oversampling techniques that
generated synthetic value such as SMOTE and ADASYN since the input values do nor
represent numeric values, and we did not want to perform generative sampling without
a generative model that worked on the original data format. We also tested the model
without handling the imbalance on the dataset, but it produced models with a signif-
icantly lower ROC-AUC score, and a higher tendency to reject papers as not being
AI-related.
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Given the initial model choices, we ended up with using a random forest classifier
with 512 estimators and a maximum depth of 8. We used L1 norm on the term frequen-
cies and used IDF scaling. Given this, we proceeded with two rounds of model training
and classification. On the first round the best classifier obtained an average ROC-AUC
score of 0.98 on the 4-fold cross validation step, leaving us with the final model being
a Random Forest with 512 estimators and a maximum tree depth of 8. The model when
trained on the entirety of the 200 samples misclassified two ethics-related paper as not
being on ethics. Furthermore, one of the human classifiers classified 300 more papers
with which the model’s results were compared, where it agreed 83.33% with the human
labeler.

After this step, the human classifiers classified another 79 papers where the model
was unsure of its predictions [18], where we considered it sure of its prediction if the
label probability was lower than 1/3 or higher than 2/3. Given this new labelled set,
containing 83 ethics-related papers on a total of 543 labelled samples, we did a 4-fold
cross validation step on model with the same hyperparameter settings, obtaining an
average ROC-AUC score of .99. We then re-trained the model on the all the labelled data
and labelled the rest of the dataset with the second model’s label whenever a human-
annotated label was not available. These entries are specified in the dataset we made
available so that future users can know which entries are machine-labelled if they wish
to avoid them.

3.2 Dataset Analysis

The final dataset we make available with this paper has 290 hand-labelled examples,
with the other 1136 being machine-labelled examples using a bag-of-words interpreta-
tion of the document and a random first classifier. Of these, 21.61% were considered to
be ethics-related.

Finally, we can use the methodology proposed in [23] and used in the AI-Index
[22] to assess their technique for identifying ethics-related material from abstracts and
titles in our dataset. First testing on the human-labelled sampled their model achieved
low scores, having a ROC AUC score of 0.68, with 68% precision and 45% recall,
both severely underestimating the number of ethics-related papers while also producing
some false positives.

When ran on the entirety of the dataset, the model had similar results, woth a ROC
AUC score of 0.86, 54% precision and 48% recall. This result further motivates our app-
roach, which tries to build a more robust method for pinpointing where the discussion
about ethics in AI is, using machine learning models to help identify these papers.

4 The Construction of the AI-Based AI-Index

In order to construct an AI-based index, We shall use the same datasets as made avail-
able by the authors of [23] to perform experiments on generating an AI-based AI-Index.
The available data were paper abstracts from flagship conferences (including e.g. AAAI
and NeurIPS) as well as paper titles from flagship AI and robotics conferences and jour-
nals, selected by the authors. Such data shall then be analysed through a model trained
on the aforementioned data.
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4.1 A Logistic Regression Model

As a first study on how an alternative AI-based AI-Index model would work, we trained
a logistic regression model with l1 normalisation. Due to how l1 normalisation works,
the model would have weights lying close to the unit square, serving either as a posi-
tive input, which would serve to classify a paper as being on ethics-related topics, or
a negative input, which would harm a paper’s likelihood to be classified as being on
an ethics-related topic. These keywords can give us insight on the composition of the
dataset as well as being able to assess likely failings that a more complex AI-based
model might associate with these papers.

The list of keywords used as ethics-related on [23] were: accountability, account-
able, employment, ethic, ethical, ethics, fool, fooled, fooling, humane, humanity, law,
machine bias, moral, morality, privacy, racism, racist, responsibility, rights, secure,
security, sentience, sentient, society, sustainability, unemployment, workforce. However,
since we have been using lemmatisation in our models so far, through which the list of
ethic-related lemmas would be: accountability, accountable, employment, ethic, ethi-
cal, fool, humane, humanity, law, machine bias, moral, morality, privacy, racism, racist,
responsibility, right, secure, security, sentience, sentient, society, sustainability, unem-
ployment, workforce.

Thus, training a Logistic Regression model as specified above on our dataset, we
obtained a model that weighted positively the following lemmatised keywords: ai, bias,
discrimination, ethical, fair, fairness, how, human, machine, may, social, these, trust.
And weighted negatively the following lemmas: by, datum, information, method, model,
network, propose, student, time, use. The model had an intercept of -0.59, even though
we used oversampling to balance the dataset.

The list of keywords learned by the model seemed to have a similar vein to that
presented by [23], however it was not without its failings. First of all, some reason-
ably generic keywords were introduced in the model, such as “ai”, “how”, “human”,
“machine”, “may” and “these”, with the first and fourth ones most likely being added
due to the bias our dataset has towards papers that talk about ethics in AI. An interesting
note to be made, however, is that the model seemed to balance some of these generic
keywords with other generic keywords on the negative part, such as by, datum, method,
model, network, propose – all of which could be interpreted as pointing more towards
an AI/ML model and further away from a paper discussing ethics in AI.

Another large failing from the AI-generated list is that it lacks keywords represent-
ing some important topics, such as AI accountability, the impact of AI in employment,
AI’s reinforcement of biases with regards to race, the relation of AI with law, and
questions about its security (although one may argue that this last topic might’ve been
slightly touched by the “trust” keyword). This shows a great gap that still needs to be
bridged with regards to building a dataset that encompasses all of these topics.

4.2 Re-Analysing the AI-Index

The analyses presented in [23] and used in the last two Stanford’s AI-Index Reports
[22,32] analysed the frequency of keywords considered as ethics-related in flagship AI
and robotics conferences as well as top AI and Robotics journals. Here we perform the
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analyses along the lines of the one done by [23], but using the random forest model
trained with the dataset we made available. The first part of this study follows closely
what we have done so far; their study analysed the frequency of these keywords in paper
abstracts for two conferences, namely AAAI and NeurIPS. The second part, however
only used paper titles.

To improve on this issue, for this part of the analysis we train our model with a
dataset containing both titles and abstracts, so the model has to learn to predict if a paper
is ethics-related both using its abstract and using only its title. From a preliminary study
training on paper abstracts and testing on paper titles we noticed a significant drop in
the model’s performance, and thus decided to continue using a model trained on both
alternatives. As we can see in Fig. 1, the model we produced disagreed slightly with the
work of [23], that is a keyword-based classification, even though it seemed to maintain
some of the peaks in Subfigure 1a in 1990, 1991, 1994, 1997, and the year 2000; on the
other years, the model seemed to estimate a larger amount of ethics-related papers than
the keyword-based model, and showed a decreasing tendency in the last years.

Fig. 1. Number of documents classified as ethics related in AAAI (Subfigure 1a) and
NeurIPS (Subfigure 1b) abstracts by our model “is_ethics_with_ai” and by following [23]
“is_ethics_ai_index”.

In Subfigure 1b, however, the model estimated a much smaller amount of papers as
being ethics-related, than what the keyword-based model estimated. Nonetheless, there
still seemed to be an updward trend in more recent conferences, and it predicted a dip
in the years of 2010, 2012 and 2014, where the keyword-based model estimated a peak
instead.

In Figs. 2 and 3, however, is where we see the biggest disagreements between the
two approaches, with both having very different scales.

In the conference titles (Fig. 2) we can see that the AI-based model seemed to pre-
dict more papers as being ethics-related in older conferences, where the keyword-based
model predicted very few. Another big difference is that the AI-based model has a very
significant peak in the AAAI conference of the year 2000, where the keyword-based
one only had a much smaller peak in 1994. The 2000’s peak is caused due to the fact
that the dataset only had 4 paper titles for AAAI in the year 2000, among which the title
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“Artificial Intelligence-Based Computer Modeling Tools for Controlling Slag Foaming
in Electric Furnaces.” was (we believe, wrongly) classified as being ethics-related.

Fig. 2. Number of documents classified as ethics related in the selected flagship conferences’
titles. The graph on 2a is our method and on 2b is using the keywords presented in [23]

Now, in the journal titles (Fig. 3) we see that the keyword-based model detects and
upward trend in for the journal “IEEE Computer”, where the AI-based model only pre-
dicts a peak in the last year for the Journal of Artificial Intelligence Research, seemingly
having a stable state in the other years and journals. Looking closely at the titles classi-
fied as ethics-related by either model in the last year (2019) for both these journals we
saw that many of the places where the models disagreed were on titles we believed not
to be ethics-related, with only 2 of the papers in IEEE Computer being unanimously
classified as such, and only 5 in total in both journals having a majority of us consider-
ing them as ethics-related. Also, the spike present in the JAIR journal for the year 2019
was mostly because of how few papers were available in the dataset used in [23].

We also present, like in [23], tables with the percentage of papers that are considered
to be AI-related by the algorithm, which serves a double purpose of being another way
to identify a conference’s or journal’s ethics in AI participation, as well as an anomaly
detection for the provided algorithm.

For example, in Table 2 we can see the proportion of papers which the model con-
sidered to be ethics-related. From looking at these numbers we can quickly detect some
anomalies in the model, for example the model classified 1 of the 4 papers present in the
dataset for AAAI 2000 as being ethics-related, which we can easily see to not be true
by looking at the paper itself, whose name was “Artificial Intelligence-Based Computer
Modeling Tools for Controlling Slag Foaming in Electric Furnaces” – clearly not ethics
related. However, this over-reporting is less self-evident in venues which have more
occurrences, since the model still tends to predict more papers as non-ethics related. In
Table 3, we can see a similar table for the analysed journal venues.

We also take 5 random examples from the conference titles and another 5 for the
journal titles to see on what cases one model or the other might fail in discerning the
values correctly. In the following paragraphs we will present the paper title between
double quotes and an indication of the proportion of authors that thought the paper was
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Fig. 3. Number of documents classified as ethics related in the selected journal venues’ titles. The
graph on 2a is our method and on 2b is using the keywords presented in [23]

ethics-related. So, if one third of the authors agreed that the paper was ethics-related, a
paper would appear as “title” (1/3). If none of the authors thought the paper to be ethics,
related it would only appear as “title”.

In the journal titles dataset, the keyword-based method predicted that the following
four titles were titles of ethics-related papers: “Secure and Efficient Handover Authenti-
cation Based on Bilinear Pairing Functions.”, “When Does Relay Transmission Give a
More Secure Connection in Wireless Ad Hoc Networks?”, “Performance of the biased
square-law sequential detector in the absence of signal.”, and “Secure program partition-
ing.”. We believe that none of these four could be considered ethics-related by looking
only at the title. However, the only title the Random Forest classified as ethics-related
– “Virtual Character Facial Expressions Influence Human Brain and Facial EMG Activ-
ity in a Decision-Making Game” (1/3), might be considered as ethics-related by some,
although most of us who reviewed it believed it not to be so.

In the conference titles, we had that the AI-based method judged the titles “Human-
machine skill transfer extended by a scaffolding framework.”, “Enhanced manipulator’s
safety with artificial pneumatic muscle”, and “Logic Programing in Artificial Intelli-
gence” were considered to be ethics-related, while the keyword-based method classi-
fied as such the following two titles: “Coherence of Laws” (2/3), “Efficient Methods for
Privacy Preserving Face Detection” (2/3). Here, the lack of relevant papers discussing
law and privacy in our training set – made apparent by the lack of these keywords as
discussed in Subsect. 4.1 – is clear, with the two titles that our method did not classify
as ethics-related, where the keyword-based model did, were exactly about these topics.

There is one important aspect to note about the more in-depth analysis of the dis-
agreements between the two models. Only in very few of the classifications, there was a
unanimous agreement about the paper being ethics-related. Thus, even when the models
theoretically should have voted them in as ethics-related, expert human labellers did not
agree. The only cases where an agreement was reached were in titles such as “Codes
of Ethics in a Post-Truth World” and “Algorithms: Law and Regulation”, one of which
was captured by the catch-all “ethics” keyword and the other touched aspects of law in
algorithms, but did not necessarily inform us in the title whether it was about artificial
intelligence or not.
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Table 2. Ratio of papers that were considered by the model to be ethics-related topic on the four
AI and two Robotics conferences.

Year AAAI ICML ICRA IJCAI IROS NeurIPS

1980 0.043 – – – – –

1981 – – – 0.037 – –

1982 0.010 – – – – –

1983 0.011 – – 0.041 – –

1984 0.029 – 0.014 – – –

1985 – – 0.012 0.050 – –

1986 0.035 – 0.015 – – –

1987 0.014 – 0.015 0.033 – 0.000

1988 0.020 – 0.006 – – 0.000

1989 – – 0.000 0.015 0.023 0.010

1990 0.040 – 0.003 – 0.029 0.000

1991 0.000 – 0.005 0.047 0.004 0.007

1992 0.038 – 0.007 – 0.003 0.008

1993 0.015 0.000 – 0.046 0.010 0.006

1994 0.020 0.044 0.011 – 0.011 0.007

1995 – 0.029 0.024 0.023 – 0.000

1996 – 0.015 0.009 – 0.013 0.007

1997 – 0.021 0.007 0.036 0.014 0.006

1998 – 0.000 0.002 – 0.013 0.020

1999 – 0.019 0.012 0.010 0.010 0.007

2000 0.250 0.007 0.003 – 0.016 0.007

2001 – 0.013 0.006 0.010 0.003 0.010

2002 – 0.000 0.004 – 0.022 0.010

2003 – 0.009 0.016 0.014 0.013 0.015

2004 0.031 0.017 0.024 – 0.012 0.015

2005 0.009 0.000 0.014 0.017 0.012 0.005

2006 0.031 0.000 0.007 – 0.011 0.005

2007 0.008 0.000 0.009 0.006 0.009 0.009

2008 0.023 0.000 0.014 – 0.010 0.012

2009 – 0.000 0.008 0.000 0.012 0.008

2010 0.010 0.006 0.007 – 0.013 0.000

2011 0.019 0.000 0.008 0.016 0.011 0.010

2012 0.026 0.000 0.014 – 0.013 0.005

2013 0.012 – 0.012 0.016 0.011 0.008

2014 0.028 0.003 0.010 – 0.011 0.005

2015 0.021 0.000 0.008 0.009 0.017 0.005

2016 0.031 0.003 0.012 0.026 0.015 0.005

2017 0.030 0.007 0.011 0.028 0.008 0.016
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5 Limitations

We acknowledge here that our model is not without its limitations. First of all, the use
of active learning as a strategy to classify the papers was done so due to a lack of
resources. If the ethics community could in turn produce a large amount of reliably
classified papers, one could certainly build a probably more robust model than we have
achieved. Nonetheless, our model is a step in the right direction of using a data-based
solution to provide such information, and the dataset we produced is undoubtedly a
contribution that can be built upon to improve this area of research.

Another issue of our work is that what defines a paper as being “ethics-related”
is based on our experience in the subject. Our working group did not let each others’
classification influence each other (we did a double-blind classification), and probably
even if we did discuss each of the controversial classifications, it is unlikely that we
could reach an agreement in all cases. We believe, again, that a large (however, ethic)
paper classification could help iron out these discrepancies and provide classifications
that are aligned with what is “commonsense” in the community.

Another issue one might have with our model is that we used a bag-of-words rep-
resentation, and a logistic regression model to classify this paper. We justify this as
to keep the model as interpretable as possible while being aligned with previous work
regarding the use of a bag-of-words to classify a paper as being ethics-related or not
[23].

6 Discussion

In this paper, we provided an AI-powered tool for classifying research papers as being
ethics-related from their own abstract. We offer a first use of this for measuring the
AI community’s engagement with ethics-related research in the main tracks of flagship
venues proceedings. As a consequence, we were able to identify both its characteristics
and the keyword-based model’s failings, providing some insight on these disagreements
with the keyword-based model. This allows us to show that many of the previously
reported papers as ethics-related might be wrongly classified as so. Although imperfect
due to the limited scale of labelled data used for its training, our model helps alleviate
this in some cases. However, one must be aware that one can work towards improving
the proposed techniques. First, the data regime used to train this model is thinner than
the one common to most machine learning approaches. Second, natural language mod-
els are known to exhibit biases contained in the data they have been trained, so one
should be mindful that the model we provide here is not without its flaws, and should
still be improved to classify correctly all the papers provided to it. Primarily, we pointed
out the lack of papers discussing law and race in our training set, which might hinder
the performance of our model in detecting papers on these topics, but this, in turn, is
a feature of most AI flagship venues so fat, which typically have published a limited
number of research papers on the social implications of AI tools and methods.

Datasets and code of this paper are available at: https://github.com/phcavelar/arxiv-
ethics

https://github.com/phcavelar/arxiv-ethics
https://github.com/phcavelar/arxiv-ethics
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Table 3. Ratio of papers that were considered by the model to be on ethics-related topics on
the analysed Journal Venues; respectively, Communications of the ACM, IEEE Computer, IEEE
Transactions, IEEE Transactions (AI), IEEE Transactions on Robotics, and Journal of Artificial
Intelligence Research.

Year CACM Computer Trans Trans. AI Trans. Robotics JAIR

1980 0.000 0.000 0.002 – – –

1981 0.000 0.010 0.008 – – –

1982 0.000 0.021 0.003 – – –

1983 0.007 0.009 0.003 – – –

1984 0.000 0.025 0.003 – – –

1985 0.007 0.021 0.007 – – –

1986 0.000 0.023 0.010 – – –

1987 0.000 0.052 0.006 – – –

1988 0.008 0.000 0.003 – – –

1989 0.000 0.030 0.009 – 0.000 –

1990 0.000 0.012 0.004 0.000 0.000 –

1991 0.000 0.000 0.004 0.000 0.010 –

1992 0.013 0.023 0.003 0.000 0.000 –

1993 0.000 0.013 0.003 0.000 0.000 0.000

1994 0.008 0.011 0.003 0.008 0.014 0.071

1995 0.008 0.006 0.003 0.000 0.000 0.037

1996 0.012 0.023 0.002 0.005 0.011 0.000

1997 0.008 0.023 0.002 0.000 0.000 0.000

1998 0.008 0.017 0.002 0.000 0.010 0.000

1999 0.004 0.017 0.002 0.000 0.002 0.000

2000 0.007 0.020 0.004 0.004 0.002 0.000

2001 0.004 0.006 0.003 0.004 0.005 0.040

2002 0.005 0.023 0.004 0.000 0.002 0.000

2003 0.009 0.027 0.003 0.000 0.007 0.000

2004 0.004 0.033 0.005 0.004 0.002 0.000

2005 0.010 0.035 0.003 0.000 0.002 0.026

2006 0.002 0.036 0.003 0.000 0.005 0.023

2007 0.007 0.011 0.006 0.004 0.010 0.000

2008 0.006 0.024 0.006 0.002 0.010 0.017

2009 0.008 0.013 0.005 0.008 0.007 0.000

2010 0.005 0.034 0.004 0.003 0.005 0.000

2011 0.005 0.020 0.007 0.003 0.006 0.000

2012 0.010 0.020 0.004 0.010 0.005 0.000

2013 0.008 0.038 0.005 0.003 0.003 0.033

2014 0.008 0.014 0.007 0.002 0.002 0.030

2015 0.011 0.026 0.004 0.016 0.003 0.000

2016 0.007 0.025 0.006 0.015 0.001 0.000

2017 0.006 0.039 0.006 0.015 0.003 0.015
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Abstract. As time passes by, the performance of real-world predictive
models degrades due to distributional shifts and learned spurious corre-
lations. Typical countermeasures, such as retraining and online learning,
can be costly and challenging in production, especially when account-
ing for business constraints and culture. Causality-based approaches
aim to identify invariant mechanisms from data, thus leading to more
robust predictors at the possible expense of decreasing short-term per-
formance. However, most such approaches scale poorly to high dimen-
sions or require extra knowledge such as data segmentation in repre-
sentative environments. In this work, we develop the Time Robust
Trees, a new algorithm for inducing decision trees with an inductive bias
towards learning time-invariant rules. The algorithm’s main innovation
is to replace the usual information-gain split criterion (or similar) with a
new criterion that examines the imbalance among classes induced by the
split through time. Experiments with real data show that our approach
improves long-term generalization, thus offering an exciting alternative
for classification problems under distributional shift.

Keywords: Invariance · Generalization · Distributional shift ·
Inductive bias

1 Introduction

Machine learning techniques are mainly evaluated by their ability to generalize,
that is, to find valuable patterns from a training data sample that satisfactory
apply to unseen instances [4]. Typically, that process involves a time dimension:
training data refers to the past, while unseen instances come from the future.
This temporal characteristic is usually dismissed by a time-stationary assump-
tion of the data generating distribution. In practice, sampling distributions are
seldom stationary, which causes spurious correlations to be learned and perfor-
mance to degrade quickly.1 A stereotypical anecdotal example is that of learning
to classify an image of a husky dog as a wolf due to the presence of snow [1]. By
blindly minimizing training error (or empirical risk), machine learning models
1 There is often an inductive bias in learning algorithms towards estimating simpler

accurate models. For complex tasks, it is often the case that spurious correlations
are often simpler than non-spurious ones [1,32].
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absorb such relationships [1] and fail to generalize, even when a generalization
promise from the validation stage is observed [8,25].

A quick and dirty solution often employed is regularly retraining predictive
models as new data arrives. However, this is unsatisfying from a business perspec-
tive, as labeling new data is often costly, and recurrently deploying new models
into production can introduce inadvertent behavior and lead to significant harm.
Also, business culture often is conservative towards adding or modifying exist-
ing systems, and such a constant update can decrease trust in machine learning
models.

Spurious correlations can be defined as the non-causal statistical relation-
ships between the target and non-target (covariate) variables [20,21]. Thus, the
impact of spurious correlations can be alleviated by incorporating causal reason-
ing into the learning process. However, performing causal inference in the absence
of interventional data can be detrimental to predictive performance (hence to
generalization) and is generally avoided unless the end task involves causal rea-
soning (such as producing counterfactuals). Recently, researchers have started
advocating the benefits of ensuring some of the properties of causal inference for
purely predictive problems without going through a full causal analysis [11].

One interesting property is invariance: causal relationships are invariant to
change of environments, which are external settings of the covariates [6,23]. By
enforcing invariance in a learning algorithm, we regularize against spurious cor-
relations and decrease the generalization error [1]. While samples from multiple
environments are available in specific circumstances (e.g., clinical data collected
at different health care centers), this type of data is missing and difficult to
generate for most prediction tasks in the real world. Instead, a different type of
information about the environment is present in the form of the temporal order
in which observations are collected, often spanning a significant time period.

To circumvent the shortcomings highlighted and make use of the often abun-
dant temporal information available in real industry datasets, in this work, we
develop the Time Robust Trees (TRT), a new decision tree-inducing algorithm
with a strong learning bias towards time-invariant predictive models. A TRT
is obtained by modifying the standard recursive partitioning algorithm used to
induce decision trees, replacing typical split criteria such as information gain or
standard deviation with a new criterion that measures impurity across differ-
ent time periods. We thus assume that the data is temporally ordered and the
training set is segmented by, e.g., yearly data. A hyper-parameter defines the
minimum number of examples by segment the model should keep as it learns
new rules. This ensures that predictions on unseen data (which do not need
temporal information) are more robust to spurious correlations in training data
without requiring specific information about environments, causal relationships,
or retraining.

Our experiments with seven real-world datasets show that when domain shift
is significant, as measured by a domain classifier [24], there is a benefit to using
TRTs as a base estimator for an ensemble instead of Decision Trees. The higher
the change between the training period and future data, the higher the benefit
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of signaling to the model via the TRT design that we prefer to learn stable
relationships.

The rest of the paper is organized as follows. We start in Sect. 2 reviewing
related work in invariance learning, robust learning, and causal analysis. We
then present our proposal in Sect. 3. We explain the experimental setup and
present the empirical results with real data in Sect. 4. We conclude the paper
in Sect. 5 with a discussion about the limitations of the proposed method and
some possible improvements for the future.

2 Related Work

As discussed in the introduction, one way of hedging against spurious correlations
is to explicitly consider causal relationships in model building. While there are
many ways that can be achieved in the literature, a common approach is to resort
to the principle of Independent Causal Mechanisms (ICM), which states that the
causal generative process of a phenomenon is composed of autonomous modules
that do not inform or influence each other [26]. In the probabilistic case, this
means that the conditional distribution of each variable given its direct causes
(i.e., its causal mechanism) does not inform or influence the other conditional
distributions (mechanisms). Recall that an environment is defined as an exter-
nal setting of the covariates and target variables. As such, data from different
environments can be used to identify and learn the causal mechanisms and avoid
learning spurious correlations. The hypothesis is that such causal mechanisms
are time-invariant, hence improving the generalization ability of the model.

The Invariant Causal Prediction (ICP) [22] is a feature selection algorithm
that finds the subset of causal features by testing if the error in the residual on
this subset follows a property only found on the target variable’s parents under
the needed assumptions. ICP requires some mild conditions to be met and scales
poorly to high-dimensional data.

The Invariant Risk Minimization (IRM) [1] exploits invariance without
explicitly modeling causal relationships. Instead, it modifies the objective func-
tion to iterate in training environments and penalizes the lack of invariance
across environments. A penalization term is derived for the case of linear clas-
sifiers (possibly after the input has been modified by a feature extractor), and
the more general case of nonlinear (e.g., neural net) classifiers is left open. ICP
requires data to be collected from different environments and annotated accord-
ingly.

There are many other approaches designed to take advantage of the ICM
principle. In the Recurrent Independent Mechanisms (RIM) network [10], atten-
tion [30] is used to activate different modules composed by RIMs. These mod-
ules learn different aspects of the problem, and it is expected that the invariant
aspects will be useful when it needs to predict data that differ from the training
distribution. Neural Causal Models [15] leverage known or unknown interven-
tions in the observational data to learn. The weakly supervised disentanglement
approach [16] learns how to disentangle components from high-dimensional fea-
ture spaces, like images, using the hypothesis that they are composed of a small
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number of relevant factors that can change, thus exploring the modularity of
ICMs. The do-calculus in the presence of interventional data [3] is also used to
tackle the problem of learning from available data from a few environments and
generalizing to unseen environments.

In Robust Supervised-Learning (RSL) [2], the concept of an environment is
explicitly missing, but the learning algorithm assigns weights to the training
data and optimizes a worst-case scenario for such weights, hoping that such a
scenario will also protect the performance at future unseen examples [12]. The
first difference with respect to the model we propose here is that RSL considers
an adversarial optimization problem while our approach considers worst-case
optimization by segmenting the training data.

Our proposed learning algorithm is heavily inspired by the Causal Forest
algorithm [31], which induces a decision tree from interventional data segmented
into treatment and control groups. The algorithm enforces invariance by requir-
ing a minimum number of examples from treatment and control groups at each
split to contrast them in the leaves and reveal heterogeneous causal effects. In
contrast, our proposed method assumes purely observational data and regularizes
against spurious correlations and distributional shifts by requiring a minimum
number of examples from every time period in every node of the decision tree.

There are also approaches that exploit temporal information as an environ-
ment proxy like ours in order to mitigate the effects of distributional shifts. The
Temporal Decision Trees [13,14] use timestamped data to induce a decision tree,
targeting the construction of sequential predictions; as is the case with sequential
prediction, the algorithm assumes time-dependence among examples with a sta-
tionary generating process. Our method instead makes the common assumption
of independent and identically distributed data points.

3 Learning Time Robust Trees

Before formally describing the proposed algorithm, we will first motivate the
necessity of time-robust learning methods and explain the limitations of current
approaches with a toy example.

3.1 Motivational Example

Consider a setting with two finite-valued input variables X1 and X2, a binary
target variable Y , and a time period variable Tperiod, used to segment the data
into different diverse environments. We use three time periods to illustrate, thus
Tperiod = {1, 2, 3}. Suppose we collect the data shown in Fig. 1, where the data
segments for t = 1, 2 consist of the available training set, and the data segment
for t = 3 is observed after model deployment. We will call it the holdout set
(note: this is not the typical validation dataset since we assume it is taken from a
different distribution, arising possibly from a different environment and certainly
from a different time period in the future). According to the example, X1 is
mildly predictive and stable for Y , while X2 is a perfect predictor at t = 1 but
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Fig. 1. An artificial example of data with spurious correlations. In the time period 1,
there is an pure split on X2 that leads to maximum accuracy in that data, but does
much poorer performance for the time periods 2 and 3. The Time Robust Tree prefers
the impure split on X1, which provides more stable performance across different time
periods.

irrelevant for t = 2 and t = 3. Thus, X2 can be considered a spurious correlation
or a non-static causal relation that shifted.

If the modeler uses all the available training data, a typical Decision Tree
(DT) inducing algorithm will combine the data from periods 1 and 2 into a
single training data set to evaluate the possible splits. In contrast, in the Time
Robust Tree (TRT), as long as the modeler sets the period information as the
environment, we consider the split performance separately when looking at every
period. To illustrate it, we prune the example tree to have a single split in both
cases. We use the Gini impurity (GI) minimization process in Table 1.

Table 1. Split evaluation process for the Decision Tree and the Time Robust Tree for
the motivating example

DT TRT
Variable Split value GI GI at t = 1 GI at t = 2 Max. GI value

X1 3 0.49 0.50 0.40 0.50
X1 4 0.44 0.44 0.44 0.44
X1 5 0.49 0.50 0.40 0.50
X2 1 0.27 0.00 0.50 0.50

We use the Area Under the Curve (AUC) to evaluate the prediction quality.
The measure goes from 0 to 1, and the higher, the better. By learning these
splits, the Decision Tree achieves a 0.83 AUC on training but a poor result
on holdout data of 0.50 AUC. The Time Robust Tree performs significantly
worse in training, achieving an AUC of 0.67; however, it maintains that same
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performance in the holdout dataset, largely outperforming the Decision Tree.
As this example shows, our proposal sacrifices training accuracy in the hopes of
achieving superior performance on unseen data that suffer distributional shifts
due to the presence of spurious correlations.

3.2 Time Robust Forests

We can now formally describe the Time Robust Tree induction algorithm. We
denote an arbitrary impurity function used to evaluate the quality of a dataset
split as L. The algorithm work as follows. Consider a timestamp column Tstamp

representing the data point’s capture time with the exact dimension of the ran-
dom variables vectors (X1, ...,Xd, Y ), where the X variables represent inputs
and Y the variable of interest, that is, the target. The time period Tperiod is
an aggregation of sequential examples when ordered by Tstamp using a human-
centered concept, like hourly, daily, weekly, monthly, yearly, or simply putting
together a fixed number of examples and reducing Tstamp granularity.

Given n time periods Tperiod = t1, t2, . . . , tn in the training set, we find the
best split s∗ to divide the examples in Xnode using the rule Xf ≤ vf where f
is a feature from all available features F at a certain value vf from all possible
values for the feature f in the training set Vf by applying recursively to every
node data Xnode until the constraints are not satisfied, being the first node the
root containing all the training set:

s∗ = min
∀f∈F,∀v∈Vf

max
t∈Tperiod

L(Xnode),

subject to |Xright,t| ≥ ρ and |Xleft,t| ≥ ρ,∀t ∈ Tperiod .
(1)

The ρ is a scalar representing the minimum number of examples in every time
period to perform a split. The model also accepts the average loss criteria.

s∗ = min
∀f∈F,∀v∈Vf

1
|Tperiod|

Tperiod∑

t=1

L(Xt),

subject to |Xright,t| > ρ and |Xleft,t| > ρ,∀t ∈ Tperiod .

(2)

For the predictions Ŷ , the average from the leaf is taken without any consid-
eration about the time period it belongs, Ŷ = 1

|Y |
∑

yi.
It is worth isolating in the Eq. 3 one of the differences from TRT. This period-

wise score considers how the model performs in the different periods defined by
the user to decide the optimal split. The other difference is the hyper-parameter
ρ. It interacts a lot with this part of the process-higher ρ guarantees a higher
sample in each period for their evaluation regarding the split.

1
|Tperiod|

Tperiod∑

t=1

L(Xt) . (3)
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There is nothing particularly different in the step from Time Robust Tree
to Time Robust Forest (TRF) in comparison to the one from a Decision Tree
to a Random Forest [5]. Considering M trees, the final prediction Ŷ becomes
1
M

∑M
m=1 Ŷm, a random proportion of the input features F is considered when

finding the best split for a node on Eq. 1, and bootstrapping is performed in the
training data before learning every tree.

3.3 Synthetic Example

In order to see how TRT prevents spurious correlations from a causal perspec-
tive, consider the following artificial example. Once again, we include a spurious
feature X2 in the data generating process that makes the prediction non-stable
in the training data. The example is extreme, since X2 mimics Y in t = 1, while
it is random in t = 2, both of them available for training. The X2 keeps random
in the following periods, consisting of the holdout set. It emulates the hypothesis
that unstable properties are less likely to persist.

X1 ∼ N(0, 1)
Y ∼ X1 + N(0, 1)

X2 ∼ f(e)
(4)

where e is the time period variable, which is our environment. In the training, we
have two training environments εtrain = {1, 2}. The f(e) defines X2 following:

f(e) =

{
Y , if e = 1
N(0, 1), if e �= 1

(5)

We make it a binary classification task by converting y to a positive class
when greater than 0.5 and to the negative one otherwise. The holdout is com-
posed of the following periods, starting at t = 3.

At first, we apply the TRT and the DT using similar hyper-parameters: 30 as
maximum depth, 0.01 as minimum impurity decrease, 10 as a minimum sample
by period for the TRT, and 20 as a minimum sample to split for the DT since
we have two periods. The TRT presents an AUC of 0.83 in train and 0.81 in
the holdout, while the DT performs around 0.92 AUC in training and 0.64 in
the holdout. It shows how the TRT avoids learning from the spurious variable
X2, which lowers its training performance but makes it succeed in the holdout,
while the DT goes in the opposite direction. However, we need to define the
hyper-parameters following a process and objective criteria in a real-world case.
In the following subsection, we show how to execute this step when using the
TRT.

3.4 Hyper-parameter Optimization

When selecting hyper-parameters, a common strategy is to use the K-fold valida-
tion design [29]. However, during the hyper-parameter selection, this design pools
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Fig. 2. A hyper-parameter optimization design that keeps the period-wise evaluation
from the TRT algorithm is important to make the model keep its purpose of learning
stable relationships.

the data from the periods and then select the set of parameters in which the per-
formance is the highest. This process does not favor the period-wise design from
TRT. We use a K-fold that generates folds containing just one environment, used
as test folds to overcome it. We identify this approach as Environment K-Folds
(Env K-Folds). Similar to what we use to learn the best split in the TRT. Besides
taking the average performance in the folds to decide the hyper-parameters, we
evaluate a second strategy when using the Env K-Folds. First, we average the
performance in all folds consisting of the same environment and hyper-parameter
set, then we group by only hyper-parameters sets and select the minimum per-
formance, which is the worst environment case. Finally, we take the set with the
highest performance among the worst cases to determine the model using the
best worst case. We identify this approach as Env K-folds Min-Max.

We bootstrap the data and repeat the process ten times to evaluate these
different designs. The results are the average of these ten best models following
each approach. As seen in Fig. 2, the TRT performs significantly better than the
DT in the holdout set when using the Env K-folds Min-Max, while in the other
two strategies, they are very similar.

4 Experiments

To validate the approach, seven public datasets in which a timestamp informa-
tion and a reasonable time range are available were selected [7,9,17–19,27,28].

We split every dataset into two time periods: training and holdout. Then
training period data is split randomly between training and test. For both bench-
mark and challenger, we use the Time Robust Forest python package.2 The

2 The source code and datasets used and install instructions are available on GitHub
at (https://github.com/lgmoneda/time-robust-tree-paper).

https://github.com/lgmoneda/time-robust-tree-paper
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benchmark has all training examples with the same Tperiod, which is a special
case the TRF becomes a regular Random Forest. The challenger uses yearly or
year-monthly segments.

In Table 2, it is possible to verify that the cases where TRF is an exciting
challenger are the ones in which the benchmark has problems performing in
the holdout as well as it does in the test. We train a domain classifier using
the holdout as the target to clarify the evidence under scenarios the future
data changes the most. The higher the AUC, the more significant the difference
between test and holdout in that dataset. As seen in Fig. 3, the results show
the TRF performed better in the datasets with a more remarkable shift between
training data and holdout data.

Table 2. Performance results. When comparing the AUC in the holdout from the
TRF to the RF, the benchmark gets better performance on three cases. However, the
difference between challenger and benchmark in the holdout always drops compared to
the same difference in the test.

Dataset Data split Volume Time range RF TRF Δ TRF-RF

Kickstarter Train 98k 2010–2013 .736 .717 –.019
Test 24k 2010–2013 .705 .701 –.004
Holdout 254k 2014–2017 .647 .661 .014

GE News Train 21k 2015–2018 .927 .865 –.062
Test 5k 2015–2018 .879 .839 –.040
Holdout 58k 2019–2021 .805 .821 .017

20 News Train 8k – .939 .869 –.070
Test 2k – .867 .828 –.039
Holdout 8k – .768 .774 .006

Animal Shelter Train 75k 2014–2017 .814 .803 –.011
Test 19k 2014–2017 .792 .790 –.002
Holdout 61k 2018–2021 .791 .791 .000

Olist Train 41k 2017 .799 .695 –.104
Test 10k 2017 .664 .641 –.023
Holdout 62k 2018 .635 .635 .000

Chicago Crime Train 100k 2001–2010 .936 .909 –.027
Test 61k 2001–2010 .904 .899 –.005
Holdout 90k 2011–2017 .905 .902 –.003

Building Permits Train 90k 2013–2015 .990 .984 –.006
Test 22k 2013–2015 .974 .972 –.002
Holdout 193k 2016–2017 .977 .973 –.004
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Fig. 3. Domain classifier performance by the delta improvement in the TRF. The
greater the difference between the source and target data, translated by a high AUC
for the domain classifier, the greater the benefit of learning invariant relationships to
generalize to future unseen data.

5 Discussion and Conclusion

Ultimately, machine learning models are evaluated by their ability to general-
ize observed patterns to unseen data. In realistic scenarios, this often involves
using the model under different conditions than those observed in the train-
ing stage, causing models learned by standard empirical risk minimization to
perform unsatisfactorily when deployed. Common solutions such as constantly
retraining are costly, unwanted from a business perspective, and may introduce
inadvertent behavior in the system.

Typical real-world datasets are often collected during a significant period and
contain temporal order information (i.e., timestamps) that is most often ignored
during model construction. In this work, we proposed the Time Robust Trees, a
new decision tree induction algorithm that uses temporal order to improve the
generalization ability of predictions on unseen, future data. Our method seg-
ments data according to time and minimizes the variance of predictions across
different time segments, delivering more time-stable models. Experiments with
real-world data showing varying degrees of distributional shift suggest that Time
Robust Forests are a promising alternative for applications where it is not possi-
ble to update the model continuously. Beyond the immediate practical purpose,
the experiments show that exploiting time invariance as an inductive learning
bias is attractive for non-sequential predictive tasks.

A main limitation of the proposed method is the requirements of temporal
order (that is, a timestamp column in the dataset), a reasonable time range,
and overlapping empirical distribution support for every period regarding the
input features. Timestamp information is most commonly available in real-world
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datasets since every data is generated in time, and standard practice stores such
information. Data collected during long time periods is not uncommon since
(unlabeled), as businesses often store data continuously for significant amounts of
time. Therefore, the most severe limitation is the need for overlapping empirical
distribution support of the input features in every period. We can mitigate such
a shortcoming by considering different time scales for the time periods while
evaluating model performance and overlap. For example, consider an application
that predicts customer acquisition success rate and has customer age as one of
the input features. If the time period scale is too small, such as in days, it is very
likely that certain age ranges be present in one time period and not in others.
In the limit, each period would consist of a single example, causing the learned
model to ignore age as a relevant predictive feature. By considering increasingly
larger periods (say, of months or years), we can ensure that every data segment
contains enough examples for every age range.

The proposed method identifies time periods and environments which are
prone to problems. For example, considering two time periods as different
environments while they were generated under the same environment will not
degrade performance if data is sufficiently abundant but might do so if data is
less abundant since it will require more data to meet the cut-off level in the splits.
Instead, suppose we place two different environments in the same time period
segment. In that case, we are losing an opportunity to offer the model two cases
we want to keep relationships invariant and potentially enable the algorithm to
create splits that are good only for one of the environments in the same period.
However, we still want invariance between this period with the two environments
and other periods in the training data. While fewer segments provides a higher
volume of data in every period and enables learning more complex rules, it will
also make it more likely that two different environments share the same period,
compromising the inductive bias for invariant rules.

Real-world data with a good time range should offer enough flexibility to
enable a period segmentation to overcome the requirement of overlapping input
distribution support. For the future, we plan on exploring different automatic
segmentation strategies, representation learning schema that satisfies the over-
lapping support requirement, combining boosting while respecting the invariance
preference, and ensembles of differently regularized Time Robust Forests.
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Abstract. When evaluating clustering algorithms, it is important to
assess their performance in retrieving clusters of datasets with known
structures. Nonetheless, generating and choosing diverse datasets to com-
pose such test benchmarks is non-trivial. The datasets must present a
large variety of structures and characteristics so that the algorithms can
be challenged and their strengths and weaknesses can be revealed. The
use of generators currently available in the literature relies on trial and
error procedures that can be quite costly and inaccurate. Taking advan-
tage of an Instance Space Analysis of popular clustering benchmarks,
where datasets are projected into a 2-D embedding with linear trends
according to different characteristics, we use a genetic algorithm to pro-
duce new datasets at targeted locations in the instance space. This is a
natural extension of the Instance Space Analysis framework, and as a
result, we are able to produce diverse datasets for composing test bench-
marks for clustering.

Keywords: Meta-learning · Instance space analysis · Clustering

1 Introduction

It is commonplace to observe that the performance of an algorithm depends
critically on the choice of test problem, and this statement is true whether the
algorithm is for clustering, classification, optimization, or many other tasks.
The challenge is to learn how the characteristics of the test problems affect
the performance of algorithms in order to select the most suitable algorithm
for a given test problem instance. The algorithm selection problem presented
by Rice in [14] makes up one of the pioneering frameworks in Meta-learning
(MtL) for automated algorithm selection. Since then, several methodologies for
the meta-analysis of a large variety of problems have emerged. One of them is
Instance Space Analysis (ISA), which has successfully been applied to various
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problems such as optimization [8,16], classification [9], regression [10], forecast-
ing [6], anomaly detection [5] and related topics. ISA allows the construction of
a 2-D embedding of the datasets, organized to highlight linear trends of different
meta-features describing the characteristics of the datasets, as well as directions
of hardness indicated by algorithm performance metrics. By inspecting the pro-
jection of the datasets in this space, it is possible to not only gain insights into
the relationships between dataset characteristics and algorithm performance, but
also to visually assess the diversity and sufficiency of the datasets for rigorous
algorithm testing conclusions.

There are multiple natural challenges associated with clustering, mainly due
to the lack of an expected output (ground truth), and the possible presence of
multiple valid grouping structures within the data. These challenges are also
reflected in the construction of a suitable instance space for clustering problems,
which must consider appropriate datasets, meta-features, algorithms and evalu-
ation measures. The ISA for clustering problems built in [2] considers more than
500 datasets, but it still has gaps and empty regions to be filled by datasets
that could challenge the clustering algorithms differently and expand the cur-
rent knowledge on their capabilities and limitations. While there are synthetic
dataset generators available in the literature, when used alone they may not
be sufficient to fill this gap. Specifically, it is hard to tune these tools to pro-
duce datasets with targeted characteristics that make it possible to evaluate the
performance of different algorithms under controlled or desired conditions.

In this work we present an ISA-based method that employs Genetic Algo-
rithms (GA) in the search for datasets that target particular locations of the
instance space. The GA adopts a synthetic dataset generator from the literature
and guides it towards specific regions of interest in the instance space, such as
gaps in the instance space corresponding to datasets with previously unstudied
combinations of meta-features. The generated datasets provide an opportunity to
evaluate different capabilities of clustering algorithms such that their strengths
and weaknesses can be better understood. In addition, they have distinct charac-
teristics that allow us to push the boundaries of the current analysis of clustering
problems and algorithms. Similar efforts to evolve new test problems have been
demonstrated in machine learning [9], optimization [17], and time series forecast-
ing [6], but each time the idea is applied to a new problem domain, considerable
thought must go into the problem encoding and tailoring the search to create
valid and useful test problems. This approach of using ISA to guide the search
for new and diverse clustering problems has not previously been attempted.

The remainder of this paper is organized as follows: In Sect. 2, we recall
a theoretical summary of ISA. Section 3 describes the preparation of the meta-
dataset and the ISA results for this study. In Sect. 4 we describe the experimental
methodology adopted to generate new clustering datasets at targeted regions of
the instance space. Final considerations are presented in Sect. 5.
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2 Instance Space Analysis

ISA is an MtL methodology that enables visual insights about the strengths
and weaknesses of a portfolio of algorithms for different problem instances.
Figure 1 summarizes the ISA framework [9]. In the center, I contains a subset of
instances of the problem space P for which computational results are available.
In Machine Learning (ML), this subset is usually composed of datasets collected
from benchmark repositories. The feature space F contains multiple measures
used to characterize the properties of the instances in I. They are also referred
as meta-features in the MtL literature. The algorithm space A is composed of a
portfolio of algorithms that can be used to solve the instances in I. The perfor-
mance space Y measures the performance of the algorithms in A, when evaluated
on the solution of the instances in I. Through a computational process, for all
instances in I and all algorithms in A, a meta-dataset containing an ordered
quadruple (I, F,A, Y ) is composed. One can then learn, through an appropriate
supervised learning method, the relationship between the features in F and the
performance Y of the algorithms so that algorithms can be recommended for
new problems with similar characteristics.

Fig. 1. Instance Space Analysis (ISA) framework, building upon Rice’s algorithm selec-
tion framework, highlighted in the center [9].

ISA extends beyond algorithm selection and builds a 2-D projection of the
instances, known as an instance space (IS), where (meta-)features and algo-
rithmic performance values show linear trends to visualize relationships and
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insights. While algorithm recommendation can also be performed in this space,
other important meta-analysis are made possible. One of them is generating
footprints of the algorithms in the IS, which define regions for which each algo-
rithm has a consistently good performance. One can also assess the diversity
and sufficiency of currently available benchmark instances to challenge the algo-
rithms, which is our interest here. The main step for the generation of the IS
is to build the projection model, for which an optimization problem is formu-
lated and solved to achieve dimension reduction with linear trends. For such, we
solve the optimization problem described as follows. According to [9], given a
(meta-)feature matrix F = [f1 f2 · · · fm] ∈ R

m×n and algorithm performance
vector y ∈ R

n (which can also be generalized to a matrix containing multiple
evaluations), where m is the number of meta-features and n is the number of
problem instances, we achieve an ideal projection of the instances if we can find
the matrices Ar ∈ R

2×m, Br ∈ R
m×2 and the vector cr ∈ R

2 which minimize
the approximation error ||F−F̂||2F + ||y� − ŷ�||2F , such that Z = ArF, F̂ = BrZ
and ŷ� = cr�Z.

A Matlab toolkit named MATILDA (acronym for Melbourne Algorithm
Test Instance Library with Data Analytics) implements this procedure. The
MATILDA tool consists of a data pipeline that integrates some steps. In a pre-
processing stage, the metadata is normalized using the Box-Cox and Z transfor-
mations. Next, a feature selection process is performed in order to find a subset of
meta-features which best explains how the properties of the instances affect the
performance of the algorithms. The resulting meta-dataset is then projected to
2-D using the aforementioned optimization model to dimensionality reduction.
Once the location of each dataset/instance is project into the 2-D coordinate sys-
tem defined by Z, the footprints of the algorithms can also be defined as areas
in the IS where an algorithm is expected to perform well, given a threshold of
good performance. These areas are calculated by Delaunay triangulation of the
instances where the algorithm shows a (user-defined) good performance, consid-
ering the removal of any contradictory evidence. MATILDA also trains a series
of Support Vector Machine (SVM) meta-models for algorithm selection, aimed
to predict whether an algorithm will perform well or not for future instances
at any location of the instance space. More details on MATILDA and the ISA
framework can be found at [9,10].

3 Meta-dataset and ISA Results

This section presents how ISA was framed for the analysis of clustering problems
in this work. We used MATILDA for obtaining the IS. All codes used in this
experiment were executed on an Intel Core i7-7500U CPU with 2.70 GHz, 16
GB RAM, Microsoft Windows 10 operating system and can be found at https://
github.com/ml-research-clustering.

https://github.com/ml-research-clustering
https://github.com/ml-research-clustering
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3.1 Clustering Datasets

A total of 553 datasets composed our instance set I. Among them, 336 are
synthetic clustering datasets collected from repositories and previously used as
benchmarks. This subset contains 80 Gaussian datasets of low dimension and
80 ellipsoidal datasets of high dimension [3]. Another 176 synthetic datasets are
from different sources and have different shapes, number of observations (exam-
ples), attributes and clusters. In the selected datasets, the number of examples
ranges from 100 to 5000, the number of attributes ranges from 2 to 100 and
the number of embedded clusters ranges from 1 to 40. Another 217 datasets
were collected from the OpenML repository and used as benchmark for cluster-
ing algorithms in [12]. In these datasets, the number of examples ranges from
100 to 5000, the number of attributes ranges from 2 to 100, and the number of
embedded clusters ranges from 2 to 30. One must notice that these OpenML
datasets are originally representatives of classification problems. Although the
usage of classification datasets in the evaluation of clustering algorithms is largely
employed, some care must be taken in the interpretation of the obtained results
as the problems considered have notable differences, as pointed out in [2].

Figure 2 presents the IS obtained, with instances colored by: (a) type of dataset
among ellipsoidal, Gaussian, multiple shapes and OpenML datasets; (b) number
of examples; (c) number of attributes and (d) number of clusters represented by
ground truth. There is a clear distinction between the different types of datasets.
The ellipsoidal and multiply shaped datasets are spread in different regions. Gaus-
sian datasets occupy a region between them, with some degree of overlap. The real
(OpenML) datasets have a large dispersion towards the upper region of the IS. We
can see from the figure that the number of examples, together with the number
of attributes, seem to be decisive in the distribution of datasets. The number of
examples increases from top to bottom, while the number of attributes increases
from left to right. These variables are implicitly represented by one of the selected
meta-features that deals with the ratio between the number of attributes and the
number of examples, as presented next.

3.2 Meta-features

We used a total of 25 meta-features to describe the clustering datasets. They
were divided into seven categories, according to the main properties they extract
from data: Distribution, Neighborhood, Density, Dimensionality, Network cen-
trality, Distance and Entropy. The measures had been used in [1,2]. Table 1
presents all the meta-features used in this experiment. Distribution-based mea-
sures quantify if the data distribution roughly approximates to a normal dis-
tribution. If this is the case, the dataset might have compact hyper-spherical
clusters. Neighbourhood-based measures quantify the local nearest neighbour
influence in clustering, being a rough indicator of the presence of connected
clusters. Density measures quantify whether there are dense regions of data in
the input space, a surrogate for the presence of dense clusters. Dimensional-
ity measures regard on the dimensions of the dataset concerning the number
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(a) Types (b) # Examples

(c) # Attributes (d) # Clusters

Fig. 2. Characteristics of the datasets projected in the IS, color coded according to (a)
distribution of the datasets by type, (b) number of examples, (c) number of attributes
and (d) number of clusters represented by ground-truth. The characteristics have been
log10-scaled for better visualization.

of examples and input attributes. Some quantify whether the data is sparsely
distributed. Network centrality measures quantify whether there are connected
structures on data. Distance-based measures quantify the relative differences of
distances between the dataset observations. They resemble the neighborhood-
based measures, but while the former considers all distances in the dataset, the
later takes local distance-based information only. Entropy measures quantify
the statistical dependence between random variables and the presence of some
structure on data.

From that initial set, six meta-features were selected by the feature selection
step of MATILDA to be employed in the ISA analysis: avg abs cor, avg nnd,
avg pca, cop entropy, ratio ftr ex and sd dist. Equation 1 presents the projection
matrix that allows the transformation of instances from the 6-D feature space
to the 2-D instance space.
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Table 1. Meta-features classified by the main properties they measure. In the Asymp-
totic column, n stands for the number of data items a dataset has and d corresponds
to its number of input features.

Meta-feature Description Asymptotic

1) Distribution:

Multi norm Multivariate normality O(d · n + n2)

Skewness Multivariate normality skewness O(d · n + n2)

Kurtosis Multivariate normality kurtosis O(d · n + n2)

2) Neighbourhood:

avg nnd Avg. nearest neighbour degree O(d · n2)

contrast Contrast O(n2)

3) Density:

clust coef Clustering coefficient O(d · n2)

net dens Network density O(d · n2)

perc out Percentage of outliers O(n2)

4) Dimensionality:

number ex log10 number of examples O(n)

number ftr log10 number of attributes O(d)

ratio ftr ex Ratio number of attributes to examples O(d + n)

avg abs cor Avg. absolute correlation O(n)

intr dim Intrinsic dimensionality O(n2)

avg pca Avg. number of points per PCA dimension O(d2 · n + d3)

ratio pca Ratio PCA to the original dimension O(d2 · n + d3)

5) Network Centrality:

power cent Bonacich’s power centrality O(n3)

eigen cent Eigenvalue centrality of MST O(n2)

hub score Kleinberg’s hub centrality O(n3)

6) Distance:

mean dist Mean distance O(n2)

var dist Variance of distances O(n2)

sd dist Standard deviation of distances O(n2)

high dist Percentage of points of high distance O(n2)

low dist Percentage of points of low distance O(n2)

7) Entropy:

cop entropy Copula entropy O(n2 + n · logn + n · √
k · n)

knn entropy k-NN method entropy O(n2 + n · √
k · n)

[
Z1

Z2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.360 0.419
−0.022 0.063

0.478 −0.195
0.081 −0.808
0.397 0.055

−0.134 −0.446

⎤
⎥⎥⎥⎥⎥⎥⎦

� ⎡
⎢⎢⎢⎢⎢⎢⎣

ratio ftr ex

avg pca

avg abs cor

avg nnd

sd dist

cop entropy

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)
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(a) Avg. absolute correlation (b) Avg. nearest neighbor degree

(c) Avg. points per PCA dimension (d) Copula entropy

(e) Ratio attributes to examples (f) Standard deviation of distances

Fig. 3. Distribution of selected meta-features values on the projected IS.

We can notice the presence of meta-features from these categories: Dimen-
sionality, Neighbourhood, Distance and Entropy, with a predominance of dimen-
sionality measures. The distribution of the selected features in the IS, each scaled
to [0, 1], is shown in Fig. 3. Some meta-features values decrease from the bot-
tom to the top of the IS (avg nnd, cop entropy), others from the right to the
left of the IS (avg abs cor and sd dist) and avg pca and ratio ftr ex have mixed
behaviors.
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(a) SPC (b) Portfolio

Fig. 4. Footprints highlighting (a) the best algorithm and (b) recommended algorithms
in the portfolio.

3.3 Algorithm Portfolio and Footprints

The Adjusted Rand Index (ARI) was used to evaluate the performance of dif-
ferent clustering algorithms in retrieving the cluster structure of the datasets.
We have chosen eight clustering algorithms of different biases widely used in the
literature to compose the algorithm portfolio: K-Means (KME), Fuzzy C-Means
(FCM), Hierarchical Agglomerative Single Linkage (SLK), Hierarchical Agglom-
erative Complete Linkage (CLK), High Dimensional Gaussian Mixture Model
(GMM), Bagged Clustering (BAG), Spectral Clustering (SPC) and Hierarquical
Density Based Clustering of Applications with Noise (HDB). This experiment
differs from [2] by using a more compact but more varied portfolio of algo-
rithms and by employing an external validation measure as a performance met-
ric. Figure 4 shows footprints in instance space according to a threshold of good
and bad performance, which was set as 0.5 in this work. SPC was the best per-
forming algorithm. Figure 4b presents the recommended algorithms based on the
SVM model predictions for the portfolio. The SPC algorithm was recommended
for most instances of the four groups of datasets, but not all. There are also
recommendations for the HDB and CLK algorithms. One relevant result is that
no algorithm is recommended for the real datasets. This supports the contention
that classification datasets may not be suitable for the evaluation of cluster-
ing algorithms, especially when using performance measures based on external
validation criteria such as ARI.

3.4 Analysis of ISA Results

More analysis is possible by relating algorithmic performance along the IS (as
shown in Fig. 4) to the meta-characteristics of the datasets (plotted in Fig. 2
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and 3). Albeit interesting, our focus in this experiment is on the analysis of the
diversity of the datasets included in the IS. In this case, although the set of
OpenML datasets has occupied a considerable portion of the IS, they are not
really appropriate for evaluating clustering algorithms, as previously discussed.
The synthetic benchmarks, on the other hand, are concentrated in the center of
the IS (with coordinates z1 between −2 and 2.2 and z2 between −2.5 and 1.5).
This already indicates the need for more diverse datasets suitable for clustering.
Specifically, the synthetic benchmarks lack datasets with features corresponding
to a lower average nearest neighbor degree (Fig. 3b), a lower average number of
examples per PCA dimension (Fig. 3c), lower Copula entropy values (Fig. 3d)
and higher ratios of number of attributes to the number of examples (Fig. 3e).
It will be very challenging to try to generate clustering datasets that have these
exact characteristics in order to increase the diversity of the instance space.
Next section will address how new synthetic datasets with these specific meta-
characteristics can be evolved to occupy targeted regions of the instance space
and achieve such diversity in a controllable manner.

4 Generation of Artificial Problem Instances

The generation of clustering datasets at controlled locations of the IS is a natural
next step when ISA has revealed gaps. For instance, an algorithm based on a
mixture of Gaussians was proposed for generating new classification datasets in
the related work [9]. Clustering problems need dedicated solutions, as evidenced
by our ISA results.

4.1 Proposed Method

Our solution uses a Genetic Algorithm (GA) to guide a clustering dataset gener-
ator towards occupying target coordinates of the IS in an ISA-targeted method.
Its stages are shown in Fig. 5 and are described next.

The synthetic dataset generator embedded in our solution is MDCGen (Mul-
tidimensional Dataset Generator for Clustering), developed by [4]. MDCGen is
an open source tool implemented in MATLAB and Python. According to the
authors, MDCGen has some advantageous features when compared to other clus-
tering dataset generators available in the literature [3,7,11,13,15,18], such as the
ability to generate datasets of both low and high dimensionality, using diverse
distributions and shapes for the clusters, controlling cluster overlapping and dif-
ferent clustering properties (e.g., size, number of examples, shape, orientation,
cluster inter-distances), among others.

Initially we import the MATILDA ISA results: coordinates, boundaries,
raw meta-features, preprocessed meta-features and projection matrix. We also
extract the additional dimensionality features from the original datasets: number
of examples, attributes and clusters. We then generate a set of regression models
using k-Nearest Neighbours (k-NN) for supporting our method and narrowing
the search space of the GA. These k-NN models aim to take best advantage of
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Fig. 5. Generation of new clustering datasets in IS.

the ISA results for guiding the GA solutions and making the entire search pro-
cess less computationally intensive. A total of nine k-NN models are considered.
A 10-fold cross-validation procedure was employed for their tuning, where the
k value leading to minimal Root Mean Square Error (RMSE) in each subprob-
lem is chosen. Three of the k-NN models predict the dimensionality features
of a dataset, namely number of examples, number of attributes and number of
clusters, using the coordinates of the datasets in the IS as inputs. The idea is
to narrow the possible values for these features in the GA search. The remain-
ing six models predict the preprocessed values of the six selected meta-features
using raw values as inputs. They were necessary to estimate the preprocessed
meta-features values of the new datasets required by ISA.

Next we define the target IS coordinates of the new dataset we want to pro-
duce, fed to the k-NN models as input, which output the expected dimensions
of the new dataset and define suggestions of starting points for the GA search,
including lower and upper bounds on the search variables. Based on our pre-
vious results, we opted to vary MDCGen parameters related to the number of
examples, attributes, clusters, cluster distribution, absolute correlation between
the variables, cluster compactness and degree of cluster overlap. The choice of
parameters took into consideration dimensionality factors and direct or indirect
relationship to the meta-features selected in the ISA. The initial parameters are
defined as follows: (i) number of examples, attributes and clusters are obtained
from the k-NN predictive models; (ii) distribution is chosen from a list (Gaus-
sian, normal, triangular, gap, logistic, uniform and gamma), starting with the
Gaussian distribution; (iii) absolute correlation between the variables, cluster
compactness and degree of cluster overlap vary in the range (0, 1) and start with
value 0.5. Other parameters included vary over their full range. The number of
outliers and the number of noise variables in MDCGen were nullified.

The GA is then tasked with generating a new dataset approximating the
given target coordinates of the IS, which is finally plotted on the IS. In the GA
implementation we used the R package gramEvol, GeneticAlg.int function,
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which enables the use of integer decision variables and has allowed managing
the search problem more effectively. Each chromosome is encoded as a vector
p ∈ Z+ defining parameters of the MDCGen tool. A gene pi corresponds to one
of the following parameters: number of examples, number of attributes, num-
ber of clusters, cluster distribution, absolute correlation between the variables,
cluster compactness and degree of cluster overlap. Real-valued variables were
coded between 0 and 10 and are divided by 10 to obtain their corresponding real
values, with experiments confirming that higher precision has little impact on
search accuracy. Therefore, each chromosome encodes parameter values of the
MDCGen tool, which can be run for generating a new dataset. A population of
10 chromosomes and a maximum number of 500 iterations were used. The muta-
tion probability was set to 0.125 and the number of top ranking chromosomes
(elitism) was set to 1. Classic mutation and single-point crossover operators were
used.

Let (z1, z2) be a point that represents the coordinates of one of the generated
datasets when projected onto the IS and (zt1, z

t
2) be a target point. The objective

of the GA is to minimize a fitness function defined by f = |z1−zt1|+|z2−zt2|, that
is, at each iteration of the GA the Manhattan distance between the coordinates
of the generated point and the target point is reduced to an acceptable toler-
ance level, set by the user (default of 0.1). There is a natural trade-off between
the computational cost of the GA and the degree of precision achievable in
such approximation, such that stricter tolerance values imply a larger process-
ing time. The steps of the GA fitness function evaluation for each individual are
summarized in Fig. 6.

Fig. 6. Steps of the GA fitness function in each generation.

Given a GA individual, it is first decoded so the MDCGen parameters are
defined and can be run using these input values. Next, the meta-features of the
generated dataset are calculated. k-NN models are used to predict the prepro-
cessed values of such meta-features necessary for ISA. These values are used as
input to the projection equation used by ISA to calculate the coordinates of the
new dataset and the Manhattan distance to the target point is calculated.

4.2 Generated Datasets and Discussion

Figure 7 illustrates the results of applying our method for generating eight new
datasets located at distributed target points (targets shown as crosses, solu-
tions obtained shown as red points). Their characteristics are detailed in Table 2.
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Fig. 7. Examples of new datasets in instance space generated by our method.

Table 2. Characteristics of the new datasets, where i is the number of iterations of GA
required, n is the number of examples, d is the number of attributes, k is the number
of clusters, Corr. is the correlation between variables, Comp. is the compactness factor
and Over. is the degree of overlap.

Target (z1, z2) i n d k Distribution Correlation Compact Overlap

T1 ( 0.00, 0.00) 14 572 18 5 Gap 0.6 0.6 0.7

T2 ( 1.50, 2.00) 124 36 3 2 Gaussian 0.4 0.2 0.5

T3 (−2.00, 1.25) 18 249 34 13 Logistic 0.5 0.5 0.2

T4 (−2.00, −1.25) 5 2110 98 31 Gap 0.5 0.5 0.5

T5 ( 2.00, −2.50) 89 3336 34 2 Triangular 0.6 0.2 0.8

T6 ( 0.00, 1.25) 42 158 18 6 Gap 0.5 0.5 1.0

T7 (−1.00, 1.25) 14 255 19 6 Gap 0.5 0.5 0.3

T8 (−1.00, 2.50) 26 98 40 4 Gap 0.7 0.2 0.3

Interestingly, we are also able to produce clustering datasets in regions occupied
originally by the classification datasets only.

Table 3 presents the ARI results of all clustering algorithms in our portfolio
for the new datasets. The best and worst performances per dataset are high-
lighted in bold and italics, respectively. While on average SPC and SLK remained
as the best and worst performing algorithms, there are some interesting subtleties
in the results. SLK had the largest variation on the average ARI results in the
generated datasets (mean ARI of 0.58 with std of 0.48). It performed poorly
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Table 3. ARI performance of the clustering algorithms on the new generated datasets.
Best and worst ARI results per dataset are highlighted in bold and italics, respectively.

Target KME FCM SLK CLK GMM BAG SPC HDB Mean Std

T1 0.99 0.78 0.72 0.91 0.98 0.99 0.93 0.91 0.90 0.10

T2 0.59 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.94 0.14

T3 0.43 0.11 0.00 0.06 0.22 0.00 0.56 0.11 0.19 0.21

T4 0.85 0.34 0.89 0.99 0.67 0.99 0.96 0.99 0.83 0.23

T5 0.72 0.87 1.00 0.91 0.61 0.74 1.00 1.00 0.86 0.15

T6 0.75 0.74 1.00 1.00 0.54 1.00 1.00 1.00 0.88 0.18

T7 0.76 0.67 0.00 0.54 0.52 0.41 0.95 0.39 0.53 0.28

T8 0.54 1.00 0.02 0.19 0.55 0.53 1.00 0.93 0.60 0.37

Mean 0.70 0.69 0.58 0.70 0.63 0.71 0.93 0.79 – –

Std 0.18 0.31 0.48 0.38 0.25 0.37 0.15 0.34 – –

on datasets T3, T7 and T8, generated in the OpenML region, with ARI results
indicating a total discordance of the clustering assignments to the ground truth
of the data. In contrast, a perfect agreement between the ground truth and
the SLK cluster’s assignments is verified in datasets T2, T5 and T6. While T2
and T5 are targeted at underrepresented regions of the IS that no benchmark
dataset currently occupies, T6 is in a region previously occupied by OpenML
datasets, as other challenging datasets for SLK. In fact, horizontal shifts in the
IS seem to impact more the results of the SLK algorithm, something that can
also be observed in the SLK footprint presented in Fig. 4a. Meta-features such as
avg abs cor (Fig. 3a) and sd dist (Fig. 3f) are more explanatory of the horizontal
placement of the datasets in the IS, with datasets with lower values for these
measures placed in the left of the IS, such as T3, T7 and T8. Dataset T3 was
very challenging for all clustering algorithms (even SPC), with an average ARI
value of 0.19. T7 was also challenging for most of the algorithms (average ARI
value of 0.53), with an exception of SPC. T8 allowed to stress a lot of differences
between the algorithms, whose ARI performances varied more (mean ARI of
0.60 with std of 0.37). Some of the generated datasets therefore provide greater
challenge for some clustering techniques, and highlight better the differences in
competence among them. Meanwhile, we also found that it is possible to gener-
ate new clustering datasets with a similar degree of difficulty when compared to
datasets collected from repositories such as OpenML and datasets extrapolating
the current boundaries of the benchmarks included in our ISA.

5 Final Considerations

In this paper we proposed a methodology for generating novel clustering datasets
with targeted characteristics. The results show that it is possible to generate test
datasets suitable for clustering algorithms and allowing to differentiate subtleties
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in their performance. Furthermore, it is feasible to diversify the datasets located
in other regions of the instance space.
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Abstract. Computation Tree Logic is a temporal logic proposed as a
tool for formal design and verification of concurrent systems in which
execution flows may have many possible branches. A specification of a
concurrent system may thus be constructed using a relational model for
this logic, and the formal verification of the system’s properties may be
carried out through model checking. While CTL has obtained a great
deal of success as a specification tool, there was a lack of systematic
processes for reasoning about the revision and evolution of such specifi-
cations. Recently, some literature has proposed applying Belief Change
techniques to the problem of revising CTL theories, with implications
for revision of formal specifications of systems. This work expands this
idea by proposing a Temporal Preference Logic, a multimodal logic with
which we can reason about Belief Change in CTL. We show general
results regarding the expressivity and decidability of some AGM Belief
Revision operators for CTL.

Keywords: Belief revision · Computational tree logic · Preference
logic

1 Introduction

Computation Tree Logic (CTL) is a temporal logic proposed by Clarke and
Emerson [7] as a tool for formal design and verification of concurrent systems.
CTL is built on an interpretation of multiple futures, where several time-flows
can succeed the same instant of time. CTL is especially useful to specify prop-
erties of systems in which execution flows may have many possible branches.

Belief Change, on the other hand, is the study of how an agent comes to
change their mind after acquiring new information. The most influential app-
roach to Belief Change in the literature is the AGM paradigm [1]. While the
seminal work of AGM focus on Belief Change for Classical Logic, recently, sev-
eral works investigated its applications to a wide range of non-classical logics
of interest in areas such as Artificial Intelligence, Knowledge Representation,
Normative Systems, etc. [9,16,22].

Particularly, Belief Change operations on temporal logics have been studied
before as an approach to the problem of model repair, i.e., the problem of how
to modify a system model in order to satisfy desired properties [12,16,23]. These
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studies aim to find suitable modifications to the system specification (encoded
as a model for temporal logic) that generate admissible models, i.e., representing
the intended design for the system.

Recently, authors such as Girard and Rott [10] and Souza et al. [21] propose
the use of Dynamic Preference Logic (DPL), a dynamic logic concerning changes
in comparative attitudes, to study belief change a la AGM. These works, how-
ever, have limited their analysis to applying of such logic to belief change in a
classical propositional language.

In this work, we investigate the application of Temporal Preference Logic,
a temporal extension of Souza et al.’s [21] Dynamic Preference Logic, to study
Belief Change in Computational Tree Logic. Within this formalism, we establish
the connection between Temporal Preference Logic and AGM Belief Revision [1]
and Booth et al.’s Credibility-limited Revision [4], showing that our logic is a
general framework to reason about prioritized and non-prioritized belief change.
More yet, based on the results about the characterization of finite Kripke models
[6], we can show the decidability of belief change for a class of AGM Belief
Revision operators for CTL.

This work is structured as follows: in Sect. 2, we introduce the fundamental
notions related to AGM Belief Revision Theory that will be used in this work; in
Sect. 3, we present Computation Tree Logic (CTL), a temporal logic for which
we will investigate belief change operations, and the main results about this logic
that we will employ in this work; in Chap. 4, we introduce our Temporal Pref-
erence Logic, an extension of CTL and Preference Logic [10], which we employ
to define and investigate prioritized and non-prioritized belief change operations
for CTL; finally, in our Final Considerations, we present future developments
and possible applications of our results.

2 Preliminaries

Given a logic L “ 〈L,Cn〉, where L is a logical language and Cn : 2L Ñ 2L is a
consequence operator, we define the set of L-theories as Th(L) “ {Γ Ď L | Γ “
Cn(Γ )}.

In AGM’s approach, a belief change operator is any operation ‹ : Th(L)ˆL Ñ
Th(L) that, given a belief set B P Th(L) and some information ϕ, changes B
in some way. AGM investigated three basic belief change operators: expansion,
contraction, and revision.

Belief expansion ` blindly integrates a new piece of information into the
agent’s beliefs. Belief contraction removes a currently believed sentence from
the agent’s set of beliefs with minimal alterations. Finally, belief revision is the
operation of integrating new information into an agent’s beliefs while maintain-
ing consistency.

Among these basic operations, only expansion can be univocally defined,
B ` ϕ “ Cn(B Y {ϕ}). The other two operations are characterized by a set of
postulates, which define a class of suitable change operators representing differ-
ent rational ways of changing the agent’s beliefs.
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Let B Ď L be a belief set L-formulas. We say that an operation ‹ is an AGM
belief revision function on B if for any formulas ϕ,ψ P L, it satisfies the following
postulates:

(R1) B ‹ ϕ “ Cn(B ‹ ϕ)
(R2) ϕ P B ‹ ϕ
(R3) B ‹ ϕ Ď Cn(B Y {ϕ})
(R4) If �ϕ �P B, then B ‹ ϕ “ Cn(B Y {ϕ})
(R5) B ‹ ϕ “ Cn({K}) iff �ϕ �P Cn(∅)
(R6) If Cn(ϕ) “ Cn(ψ) then B ‹ ϕ “ B ‹ ψ
(R7) B ‹ (ϕ ^ ψ) Ď Cn((B ‹ ϕ) Y {ψ})
(R8) If �ψ �P B ‹ ϕ, then Cn((B ‹ ϕ) Y {ψ}) Ď B ‹ (ϕ ^ ψ)

While the AGM approach is independent of the supporting logic’s syntax,
meaning it does not assume an underlying language, it lacks a clear semantic
interpretation for its operations. Grove [11] provided one such interpretation
using possible world semantics. A Grove system of spheres (SOS) is a pair S “
〈W,�〉 where W is the set of models for the logic L and � Ď W ˆW satisfies the
following conditions: (i) � is reflexive (ii) � is connected, (iii) � is transitive,
and (iv) for any S Ď W , if S �“ ∅, then exists x P S minimal in � in regards to
S.

Given a system of spheres S “ 〈W,�〉, Grove defines the set Min�X “
{w P X | � Dw′ P X s.t. w′ � w ^ w �� w′} and shows that for any belief
revision operator ‹ satisfying the AGM postulates (R1) - (R8) and any belief set
B, there is a system of spheres SB “ 〈W,�〉 such that w P Min�W iff w ( B
and [[B ‹ ϕ]] “ Min�[[ϕ]].

Investigating the definability of AGM belief change operators in non-classical
logics, Flouris et al. [9] show that any logic in which for any set B and non-
tautological formula ϕ P Cn(B), the set

ϕ´(B) “ {K ′ Ď K : Cn(K ′ Y {ϕ}) “ Cn(K)}

is not empty, then an AGM belief contraction (and, thus, also a revision) is
definable within that logic.

As CTL satisfies the separation property above, given that it is a Tarskian
and boolean logic, we can conclude that AGM Belief Revision operators are defin-
able in CTL, but no general construction of such operators had been proposed.
Later, studying the definability of AGM belief change in non-compact logics,
such as CTL, Ribeiro et al. [17] show how to construct AGM belief change oper-
ators based on a generalization of AGM’s partial meet operators, which is closely
related to the Grove’s Systems of Spheres.

Recently, it has been proposed in the literature that integrating of belief
change operations within the object language used to represent the agent’s beliefs
may have important expressive consequences, as it allows reasoning about change
and introspection. It also allows exploring established results from Modal Logic
to construct applications of the AGM belief change theory. Work on dynamic
logics of belief and information change has been proposed since at least the
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work of Segerberg, Lindström, and Rabinowicz on DDL [14,19], with important
results regarding the generalization of AGM’s postulates for introspective agents.
More yet, Girard and Rott [10] propose Dynamic Preference Logic (DPL) as a
logic to study and reason about Belief Change for Classical Propositional Logic,
which Souza et al. [21] have demonstrated to be expressive enough to encode
belief change postulates. In doing so, Souza et al. [21] show we can use DPL
as a language to reason about classes of Belief Change operators for Classical
Propositional Logic.

In this work, we explore how a Dynamic Logic of this kind can be employed
to study AGM belief change for CTL.

3 Computational Tree Logic

Computation Tree Logic (CTL) is a branching-time temporal logic proposed by
Clarke and Emerson [7] as a tool for formal design and verification of concurrent
systems. It has been largely studied for its application in systems specification
and model checking [8]. Let us introduce the language of CTL.

Definition 1. Let P be a set of propositional symbols. We define the language
LCTL(P ) by the following grammar (where p P P ):

ϕ ::“ p | �ϕ | ϕ ^ ϕ | EXϕ | EGϕ | E(ϕ U ϕ).

We call a CTL formula any formula ϕ P LCTL.

As usual, we define AFϕ “ �EG�ϕ, AGϕ “ �EF�ϕ, AXϕ “ �EX�ϕ
and A(ϕ U ψ) “ � (E(�ψ U �(ϕ _ ψ)) _ EG�ψ). CTL formulas are inter-
preted by means of transition systems, or Kripke models, in which the accessi-
bility relation is understood as temporal possibility, i.e., as possible progressions
of time. As such, time in CTL is discrete and non-deterministic.

Definition 2. We call a branching time model (or CTL model) over P any
tuple M “ 〈W,R, v〉, where W is a non-empty set of possible worlds, R is a
serial accessibility relation over W and v : P Ñ 2W is a valuation function. We
denote by Mod(CTL(P )) the class of CTL models over P - when P is clear, we
will only say Mod(CTL).

Given a CTL model, a point of evaluation determines the current state of
affairs, or the notion of ‘present’, through which we evaluate the progression of
time. To capture this notion, let us introduce the notion of pointed model.

Definition 3. We call a pointed CTL model over P any tuple M “ 〈M,w〉
where M “ 〈W,R, v〉W is a CTL model and w P W is a possible world.

We will omit the rules of the interpretation of a temporal formula in a CTL
model, as they will be presented in Sect. 4 for Temporal Preference Logic. We
will denote that a world w in a model M satisfies the formula ϕ by M,w ( ϕ,
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as usual. Similarly, if M “ 〈M,w〉 is a pointed CTL model, we say M ( ϕ if
M,w ( ϕ.

Browne et al. [6] define the notion of equivalence up to k-steps between two
pointed CTL models M and M ′ as a k-bissimulation.

Definition 4. [6] Let M “ 〈W,R, v〉 and M ′ “ 〈W ′, R′, v′〉 be CTL models,
and w P W and w′ P W ′ be a possible worlds of M and M ′, respectively. We
define a sequence of equivalence relations E0, E1, · · · , Ek on W ˆW ′ as follows:

– w E0 w′ if @p P P : w P v(p) ô w′ P v′(p)
– w Ek w′ if

• w E0 w′ and
• @w1 P W [w R w1 ñ Dw′

1 P W ′[w′ R′ w′
1 and w1 Ek´1 w′

1]]
• @w′

1 P W ′[w′ R′ w′
1 ñ Dw1 P W [w R w1 and w1 Ek´1 w′

1]]

Further, we define the relation w E w′ iff wEkw′ for all k � 0.
We say the pointed models 〈M,w〉 and 〈M ′, w′〉 are equivalent up to k-steps

if w Ek w′, and that 〈M,w〉 and 〈M ′, w′〉 are equivalent if w E w′

It is easy to see that, since k-step equivalence corresponds to k-bissimulations,
these relations are, in fact, equivalence relations.

Lemma 5. E and En are an equivalence relation, for each n � 0.

We can characterize the k-step equivalence symbolically by means of charac-
teristic formulas obtained through unravelling the model, as studied by Browne
et al. [6].

Lemma 6. [6] Let P be a finite set of propositional symbols, and 〈M,w〉 and
〈M ′, w′〉 be finite pointed CTL models, there is a CTL formula tri(M,w) s.t.
w En w′ iff M ′, w′ ( trn(M,w).

As state equivalence corresponds to bissimulation, it is easy to see that a
state equivalence implies a modal equivalence between two possible worlds.

Lemma 7. [6] Let M and M ′ be two CTL models, and w,w′ be possible worlds
of M and M ′, respectively. If w E w′, then for any ϕ P LCTL, it holds that
M,w ( ϕ iff M ′, w′ ( ϕ.

Surprisingly, however, for any pair of models, Browne et al. [6] show that
there is a maximal number of steps that we need to consult in order to decide
whether two CTL models are equivalent.

Lemma 8. [6] Let M and M ′ be two finite CTL models and w,w′ be possible
worlds of M and M ′, respectively. There is some k P N s.t. w E w′ iff w Ek w′.

We can thus define a characteristic number of a model as the smallest number
for which we can differentiate between all non-modally equivalent worlds of the
model.
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Definition 9. Let M “ 〈W,R, v〉 be a CTL model. We say the characteristic
number of M is the smallest c s.t. for any w,w′ P W , w E w′ iff w Ec w′.

Notice that the characteristic number of a model M can be obtained with
standard machinery of automata theory, as the characteristic number c describes
the greatest size of acyclic paths in M . With these ingredients, we can construct
a characteristic formula for the model, i.e., a CTL formula that encodes all the
information in the model.

In fact, the characteristic formula of a model M completely characterizes its
structure, as any pointed model satisfying it must be modally equivalent to M .

Proposition 10. [6] Let P be a finite set of propositional symbols, and 〈M,w〉
and 〈M ′, w′〉 be finite pointed CTL models. There is a CTL formula C(M,w)
s.t. if M ′, w′ ( C(M,w), then for any ϕ P LCTL(P ) its holds that M,w ( ϕ ô
M ′, w′ ( ϕ.

4 Temporal Preference Logic

We extend the language of CTL to include preference modalities. Preference
modalities come from the work on Preference Logic [10,13,21], a logic to reason
about comparative attitudes. Preferences have a deep connection to a variety of
phenomena in Deontic Logic [22], Logics of Belief [2], and others.

Particularly, authors such as Baltag and Smets [2], Girard and Rott [10] and
Souza et al. [21] employ Preference Logic as a language to reason about Belief
Change, connecting the work of the AGM-inspired literature to the work on
Dynamic Logic, particularly on Dynamic Epistemic Logic. In this work, we aim
to extend Preference Logic with temporal modalities in order to reason about
AGM Belief Change in CTL. Let us introduce the language of our supporting
logic.

Definition 11. Let P be a set of propositional symbols, we define the language
LCTL

� (P ) by the following grammar (where p P P ):

ϕ ::“ p | �ϕ | ϕ ^ ϕ | 〈„〉ϕ | 〈�〉ϕ | 〈ă〉ϕ | EXϕ | EGϕ | E(ϕUϕ)

We will often refer to the language LCTL
� (P ) simply as LCTL

� , by suppos-
ing the set P is fixed. In this language, a formula 〈„〉ϕ can be read as “in a
conceivable state of affairs ϕ holds”. Similarly, 〈�〉ϕ (〈ă〉ϕ) can be read as “in
a state of affairs at least as preferable as (strictly preferable than) the current
one, ϕ holds.” To provide the semantics of this language, we will use a special
kind of multimodal frames, called temporal preference frame. As usual, we define
the dual box modalities [�]ϕ, [ă]ϕ, [„]ϕ as �〈�〉�ϕ, �〈ă〉�ϕ, and �〈„〉�ϕ,
respectively

Definition 12. A temporal preference model is a tuple M “ 〈W,R,�, „, v〉,
where W is a non-empty set of possible worlds, R Ď W ˆW is a serial transition
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relation over possible worlds, � is a reflexive, transitive relation over W with
no infinite descending chains, „ is an equivalence relation on W s.t. �Ď„ and
v : P Ñ 2W is a valuation function. We denote by Mod(LCTL

� (P )) the class of
temporal preference models over P .

The accessibility relation � represents an ordering of the possible worlds
according to the preferences of a given agent - here understood as a relation
of epistemic comparability, i.e. evaluation of plausibility of states of affairs, as
commonly done in Epistemic Logic [2]. As such, given two possible worlds w,w′ P
W , we say that w is at least as plausible as w′ if, and only if, w � w′.

We can, thus, define the relation of satisfaction of a formula in a pointed
model 〈M,w〉, i.e., a temporal preference model M and a possible world w.

Definition 13. Let M “ 〈W,R,�, „, v〉 be a temporal preference model, w P W
be a possible world of M , and ϕ P LCTL

� (P ) a temporal preference formula. We
define the satisfaction relation M,w ( ϕ as follows:

1. M,w ( p iff w P v(p).
2. M,w ( �ϕ iff M,w �( ϕ.
3. M,w ( ϕ1 ^ ϕ2 iff M,w ( ϕ1 and M,w ( ϕ2

4. M,w ( 〈„〉ϕ iff there is some w′ P W s.t. w „ w′ and M,w′ ( ϕ.
5. M,w ( 〈�〉ϕ iff there is some w′ P W s.t. w′ � w and M,w′ ( ϕ.
6. M,w ( 〈ă〉ϕ iff there is some w′ P W s.t. w′ � w, w′ �� w and M,w′ ( ϕ.
7. M,w ( EXϕ iff there is some w′ P W s.t. wRw′ and M,w′ ( ϕ.
8. M,w ( EGϕ iff there is a path π “ 〈w0, w1, w2, · · · 〉 s.t. w0 “ w and M,wi (

ϕ for i � 0.
9. M,w ( E(ϕUψ) iff there is a path π “ 〈w0, w1, w2, · · · 〉 s.t. w0 “ w and there

is some i � 0 s.t. M,wi ( ψ and for any 0 � j ă i, it holds that M,wj ( ϕ.

As usual, we say ϕ is valid in M , denoted M ( ϕ, if for any w P W , M,w ( ϕ
and that ϕ is valid, denoted ( ϕ, if for any temporal preference model M , it
holds that M ( ϕ.

Given a temporal preference model M and a formula ϕ, we use the notation
[[ϕ]]M to denote the set of all the worlds in M satisfying ϕ, or only [[ϕ]] when
the model is clear from the context. We assume in the rest of this work that the
propositional symbol set P is fixed and will omit it in the presentation unless
necessary.

Clearly, temporal preference models are fusion models [3] of preference mod-
els, which have the form M “ 〈W,�, „, v〉 and, and CTL models, of the form
M “ 〈W,R, v〉, as such Temporal Preference Logic can be characterized as the
fusion1 of Preference Logic [21] and CTL [7]. From this, we conclude from basic
results on combining modal logics [3, Chapter 15, Theorem 5] that we can obtain
a weakly-complete axiomatization for the logic from the axiomatizations of base
logics.
1 Notice that both Preference Logic and CTL are normal modal logics and the class of
preference frames and of CTL frames are closed under disjoint unions and isomorphic
copies, thus TPL is a fusion logic of CTL, and Preference Logic [3, Chapter 15,
Theorem 3].
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Theorem 14. Temporal Preference Logic is weakly-complete axiomatized by the
axioms depicted in Fig. 1 along with the substitution and modus ponens rule, the
necessitation rules for the box operators [�], [ă], [„], AF , AG, AU , AX and
EX, as well as the rules below.

$ r Ñ (�q ^ EXr)
$ r Ñ �A(p U q)

$ r Ñ (�q ^ AX(r _ �E(p U q))
$ r Ñ �E(p U q)

Fig. 1. Axiomatization for Temporal Preference Logic

More yet, as satisfiability and model checking are decidable for both CTL
and Preference Logic, they also are for Temporal Preference Logic.

4.1 Belief Change in CTL

Now, we focus our attention on using Temporal Preference Logic to study AGM
revisions for CTL. Notice that, as Ribeiro et al. [17] show, AGM Belief Revi-
sion in CTL can be characterized through Grove-like models or preferences over
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the class of CTL theories. Such models are, however, very similar to temporal
preference models. In fact, Ribeiro et al.’s construction can be translated into
temporal preference models, and, thus, we can apply our Temporal Preference
Logic to reason about AGM belief Change for CTL.

Let us establish the connection between Belief Change and our logic. Given
a temporal preference model M , we can interpret its preference relation � as
some plausibility relation that orders the space of CTL theories (i.e., models).
As Grove [11], we can characterize the result of a revision as the set of minimal
models according to this plausibility relation.

Definition 15. Let M “ 〈W,R,�, „, v〉 be a temporal preference model and
S Ď W , we define the set of minimal worlds in S according to � as

Min�S “ {w P S | � Dw′ P S s.t. w′ � w}
Notice that as the relation � in temporal preference models is well-founded,

i.e., it does not contain infinite descending chains, for any ∅ �“ S Ď W , it holds
that Min�S �“ ∅. We can encode that notion in our language, as previously
done for the propositional case by several authors [5,10,21,22].

Definition 16. Let ϕ,ψ P LCTL
� (P ) be temporal preference formulas, we define

the minimization of ϕ, the formula

μϕ“̇(ϕ ^ �〈ă〉ϕ)

It is easy to see that this formula captures the notion of minimal conceivable
worlds in our language.

Lemma 17. Let M be a temporal preference model and w P W a possible world
of M . Let yet ϕ P LCTL

� (P ) be temporal preference formula.

M,w ( μϕ iff w P Min�[[ϕ]]M

.

We can, thus, represent a counterfactual conditional ϕ ñ ψ in our language
as the notion of satisfying ψ in the most plausible (or typical) ϕ-worlds.

Definition 18. Let ϕ,ψ P LCTL
� (P ) be temporal preference formulas, we define

the belief in ψ conditioned by ϕ, the formula

B(ψ | ϕ)“̇[„](μϕ Ñ ψ)

It is not difficult to see that this formula encodes exactly the notion of revi-
sions as conditionalization in which we are interested - as done in several logical
interpretations of AGM operations. In fact, given Lemma 17, B(ψ | ϕ) can be
interpreted as encoding the notion that ‘in the most typical/preferred ϕ-worlds,
ψ holds’, similar to the semantics of revision as conditionalization observed in
works such as that of Grove [11], Boutilier [5], and Segerberg [19]. Notice that
formulas ϕ and ψ can be any temporal preference formula, meaning that the
logic allows us to reason about beliefs regarding temporal information.
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Lemma 19. Let M be a temporal preference model and w P W a possible world
of M . Let yet ϕ,ψ P LCTL

� (P ) be temporal preference formulas.

M,w ( B(ψ | ϕ) iff Min�[[ϕ]] X [w]„ Ď [[ψ]],

where [w]„ “ {w′ P W : w „ w′}.
Most importantly, our temporal preference logics are flexible enough to rep-

resent any preference over maximal CTL theories, i.e., any partial pre-order over
pointed CTL models.

Proposition 20. Let M Ď Mod(CTL) be a set of pointed CTL models and
ĺĎ M ˆ M be a well-founded preference relation on M, i.e., a well-founded
reflexive and transitive relation on M. There is a temporal preference model
M “ 〈W,R,�, „, v〉 s.t. for any 〈M1, w1〉, 〈M2, w2〉 P M, 〈M1, w1〉 ĺ 〈M2, w2〉
iff there are w,w′ P M s.t. for any temporal formula ϕ P LCTLM,w ( ϕ iff
〈M1, w1〉 ( ϕ and M,w′ ( ϕ iff 〈M2, w2〉 ( ϕ and w � w′.

Proof. Let M “ {〈Mi, wi〉 | i P I} for some index set I and
Mi “ 〈Wi, Ri,�i, „i, vi〉.

Lets define M “ 〈W,R,�, „, v〉, with:

– W “
⊎

iPI

Wi;

– w � w′ if there are i, j P I s.t. w “ wi, w′ “ wj and 〈Mi, wi〉 ĺ 〈Mj , wj〉;
– w „ w′ if there are i, j P I s.t. 〈Mi, wi〉 ĺ 〈Mj , wj〉, and w “ wi and w′ “ wj ,

or w′ “ wi and w “ wj ;
– wRw′ if there is some i P I s.t. w,w′ P Wi and wRiw

′;
– w P v(p) if there is some i P I s.t. w P Wi and wi P vi(p).

Clearly, by construction, � is a well-founded preference, „ is the symmet-
ric closure of � (thus equivalence relation), and R is serial. Clearly, for any
〈Mi, wi〉 P M there is a w P W s.t. M,w ( ϕ iff Mi, wi ( ϕ and � reproduces
ĺ. ��

This indicates that we have all the resources in our logic to reason about AGM
Belief Revision within Temporal Preference Logic, and, indeed, it can be used to
investigate properties of belief change operators for CTL. In our construction,
the relation � in model M represents the qualitative epistemic value, plausibility,
or credence an agent attributes to a state of affairs. As such, we can understand
the most plausible states of affairs, i.e., the minimal ϕ-elements of the relation
�, as representing the most plausible counterfactual scenarios in which ϕ holds.

Corollary 21. Let ‹ be an AGM Belief Revision, for any CTL theory
Γ P Th(CTL), there is temporal preference model MΓ “ 〈W,R,�, „, v〉 s.t. for
any formulas ψ,ϕ P LCTL it holds that

ψ P Γ ‹ ϕ iff MΓ ( B(ψ | ϕ)
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Proof. The corollary follows from Ribeiro’s [17] characterization of AGM revi-
sions for boolean and non-compact logics as a selection of minimal elements
given a preference over maximal theories. ��

Not only do AGM belief change operations induce temporal preference mod-
els, but they are characterized by them, as is the case for the propositional
case [11].

Corollary 22. Let M “ 〈W,R,�, „, v〉 be a temporal preference model. If there
is a world w P W s.t. for any satisfiable formula ϕ P LCTL there is w′ P W s.t.
w „ w′ and M,w′ ( ϕ, then for some satisfiable set of formulas ΓM P Th(CTL)
there is an AGM belief revision function ‹w on ΓM , s.t. for any ϕ,ψ P LCTL, it
holds that

ψ P (ΓM ‹w ϕ) iff M,w ( B(ψ | ϕ)

As such, we can see that Temporal Preference Logic can be used to reason
about AGM-like belief change on the logic CTL. We call temporal preference
models that satisfy the conditions of Corollary 22, i.e., in which there is a world
that can “see” all temporally satisfiable possibilities, an AGM-like preference
model.

For any temporal preference model M , we define the k-step equivalence
between the worlds of M similarly as in Definition 4. Let us also define the
temporal submodels defined by a temporal preference model.

Definition 23. Let M “ 〈W,R,�, „, v〉 be a temporal preference model and
w P W a possible world. The temporal restriction of M relative to w is the CTL
model ç (M,w) “ 〈Ww, Rw, vw〉 s.t.

– Ww “ {w′ P W | wR∗w′} where R∗ is the reflexive transitive closure of R;
– Rw “ R X (Ww ˆ Ww)
– For all p P P , vw(p) “ v(p) X Ww

As for preference models over propositional valuations, which can be repre-
sented by orders over propositional formulas [15,20], some temporal preference
models can be represented by means of partial orders over temporal formulas.
For that to hold, however, we need to impose some restrictions on the interplay
between preference relations and temporal relations.

Definition 24. Let M “ 〈W,R,�, „, v〉 be a temporal preference model and
”“� X �´1 the equivalence relation obtained from �, we say M syntactically
representable if (i) for any w P W , there is a temporal formula ϕw s.t. for any
w′ P W , M,w′ ( ϕw if, and only if, w ” w′, and (ii) for any w,w′ P W if
〈ç (M,w), w〉 E 〈ç (M,w′), w′〉, then w ” w′.

Proposition 25. Let P be a finite set of propositional symbols and let M “
〈W,R,�, „, v〉 be an AGM-like temporal preference model. If M is syntactically
representable and ” has a finite support, then it is decidable whether ψ P Γ ‹w ϕ
for any ϕ,ψ P LCTL and Γ Ď LCTL
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Proof. (Sketch of the proof). From ” having finite support, we conclude that
there are finitely many equivalence classes [w]” in W/”. As such, there is some
finite temporal preference model M ′ “ 〈W ′, R′,�′, „′, v′〉 s.t. for any w P W
there is w′ P W ′ s.t. for any ϕ P LCTL

� (P ), M,w ( ϕ iff M ′, w′ ( ϕ (it suffices
to take W ′ “ W/”). More yet, as M is syntactically representable, it means that
for any ϕ P LCTL, M,w ( [�]ϕ (similarly [ă]ϕ, or [„]ϕ) iff for all w′ P W s.t.
w′ � w (w′ ă w, or w′ „ w) it holds that ϕw′ Ñ ϕ is CTL-valid2.

From that and model checking being decidable in Temporal Preference Logic,
we conclude decidability. ��

Notice that the connection between temporal preference models and AGM
belief revisions is established only for AGM-like temporal preference models.
The reason for this restriction is that AGM belief revisions allow non-trivial
revisions for any formula of the object language. In other words, it is a prioritized
operation. Let us formalize this notion using the concept of the scope of a belief
change operation.

Definition 26. [18] Let ‹ : Th(CTL) ˆ LCTL Ñ Th(CTL) be a belief change
operator. We define the scope of ‹ relative to the set K as the set

Scp‹(K) “ {ϕ P LCTL | ϕ P K ‹ ϕ}
As a prioritized revision, AGM revision has the maximal possible scope.

Lemma 27. [18] If ‹ is an AGM revision, then for any K Ď LCTL, Scp‹(K) “
LCTL.

It is easy to see that for non-AGM-like temporal preference models, a belief
change operation definable as in Corollary 22 has a limited scope. This indicates
that temporal preference models are a general framework for investigating priori-
tized and non-prioritized belief revision. In fact, we will establish the connection
between temporal preference models and Booth et al.’s [4] credibility-limited
revisions.

Definition 28. [18] Let ‹ : Th(CTL)ˆLCTL Ñ Th(CTL) and K P Th(CTL),
we say ‹ is a credibility-limited revision operator on K, if it satisfies the following
postulates:

(CL1) ϕ P K ‹ ϕ or K ‹ ϕ “ K
(CL2) If K ` ϕ �$ K then K ‹ ϕ “ K ` ϕ
(CL3) K ‹ ϕ �$ K
(CL4) If ( ϕ ↔ ψ then K ‹ ϕ “ K ‹ ψ
(CL5) If ϕ P K ‹ ϕ and ϕ ( ψ, then ψ P K ‹ ψ

(CL6) K ‹ (ϕ _ ψ) “
⎧
⎪⎨

⎪⎩

K ‹ ϕ or
K ‹ ψ or
K ‹ ϕ X K ‹ ψ

2 Notice that there is only finitely many that we need to consider, as ” has finite
support.
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To characterize credibility-limited revisions, we must guarantee that the
scope of the operation satisfies the following conditions.

Definition 29. Let X Ď LCTL, we say X satisfies:

– disjunction completeness if for any ϕ _ ψ P X, then ϕ P X or ψ P X
– single-sentence closure if for ϕ P X and ϕ ( ψ, then ψ P X

We can, then, characterize credibility-limited revisions for CTL.

Proposition 30. Let K Ď Th(CTL) be a CTL theory, and ‹ : Th(CTL) ˆ
LCTL Ñ Th(CTL) a belief change operator, the following statements hold:

1. If ‹ is a credibility-limited revision operator on K, then K Ď Scp‹(K) and
Scp‹(K) satisfies single sentence-closure and disjunction completeness;

2. For each X Ď LCTL s.t. any consistent extension K ′ of K is contained in X,
i.e., for any K ′ Ď LCTL s.t. K �P Cn(K ′) and K Ď K ′ it holds that K ′ Ď X,
and X satisfies single-sentence closure and disjunction completeness, there
exists a credibility-limited revision operator s.t. Scp‹(K) “ X

Proof. The proof of item 1 is immediate from Definition 28, with K Ď Scp‹(K)
following from (CL2), single sentence-closure from (CL5) and disjunction com-
pleteness from (CL1), (CL2), and (CL6);

To prove of item 2, we construct the set of K-thories in X as

KX “ {Γ P Th(CTL) | K Ď Γ Ď X}.

Further, we define a preference relation �K on KX , as

Γ �K Γ ′ iff Γ ′ Ď Γ

For any formula ϕ P LCTL, we define the set [[ϕ]]X “ {Γ P KX | ϕ P Γ}.
We construct an operation ‹M : Th(CTL) ˆ LCTL Ñ Th(CTL) s.t.

K ‹ ϕ “
{⋂

Min�K
[[ϕ]]X if [[ϕ]]X �“ ∅

K if [[ϕ]]X “ ∅

The proof that this operator satisfies the (CL1)´(CL6) is similar to that presented
by Booth et al. [4] for the characterization of credibility-limited revision for
Classical Propositional Logic.

To prove that Scp(‹) “ X, it suffices to see that if ϕ �P X, then [[ϕ]]X “ ∅.��
Now, we can define the notion of belief revision operations being induced by

a temporal preference model.

Definition 31. Let M “ 〈W,R,�, „, v〉 be a temporal preference model and
w P W be a possible world. We say a belief change operator ‹M is a revision
induced by M and w if for K “ Belw(M) “ {ϕ P LCTL | @w P Min�[w]„ :
M,w ( ϕ}, it holds that

K ‹M ϕ “ {ψ P LCTL | @w P Min�[[ϕ]] : M,w ( ψ}
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Clearly, the set of valid formulas in any temporal preference model satisfies
single-sentence closure and disjunction.

Lemma 32. Let M “ 〈W,R,�, „, v〉 be a temporal preference model and w P
W . ♦Knoww(M) “ {ϕ P LCTL | Dw′ P [w]„ : M,w′ ( ϕ} satisfies single-
sentence closure and disjunction completeness.

We can, thus, show that temporal preference models induce credibility-
limited revisions.

Corollary 33. Let M “ 〈W,R,�, „, v〉 be a temporal preference model, w P W ,
and ‹M a revision induced by M and w, then ‹M is a credibility-limited operator
on Belw(M) with scope ♦Knoww(M).

5 Conclusions

In this work, we investigated the application of Temporal Preference Logic to
study Belief Change in Computational Tree Logic. We established the connec-
tion between Temporal Preference Logic with prioritized and non-prioritized
Belief Revision through change operations induced by models. We show that all
temporal preference models induce a credibility-limited revision [4] and, when
the model satisfies some structural conditions, such an operation is an AGM
belief revision. More yet, based on the results about the characterization of
finite Kripke models [6], we showed the decidability of belief change for a class
of AGM Belief Revision operators for CTL.

Future work includes the study of iterated belief change operators for CTL,
connecting our logic to the axiomatic characterization of iterated belief change
postulates previously provided by Souza et al. [21]. Also, our results on the
decidability of some AGM belief revisions for CTL indicate connections to the
belief change operations defined by transformations of syntactic representations
of preferences, such as graph transformations studied by Souza and Moreira [20]
for Classical Propositional Logic. From Proposition 25, we can infer that Souza
and Moreira’s method for defining belief change operations can be extended for
CTL, obtaining a class of decidable CTL belief change operations.
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Abstract. Formal frameworks for Epistemology need to have enough
logical structure to enable interesting conclusions regarding epistemic
phenomena and to be expressive enough to model competing positions
in the philosophical and logical literature. While beliefs are commonly
accepted as hyperintensional attitudes, most work on standard epistemic
logic has relied on idealised and intensional agents. This is particularly
true in the area of AGM-inspired Belief Change. In this work, we inves-
tigate hyperintensional belief change operations providing a semantic
framework based on impossible worlds semantics to hyperintensional
variants of belief change operations. In doing so, we provide the basis for
deepening the connection between AGM-inspired Belief Change litera-
ture and current discussions on Formal Epistemology and Metaphysics.

Keywords: Hyperintensional logic · Impossible worlds semantics ·
Belief revision

1 Introduction

Belief Change is the area that studies how doxastic agents change their minds
after acquiring new information. One of the most influential approaches in the
literature, namely the AGM framework [2], studies rational constrains, or postu-
lates, that characterise rational ways of changing beliefs, given a representation
of one’s doxastic state.

Since its seminal work, the AGM-inspired literature has traditionally relied
on a highly idealised notion of belief and representation of an agent’s reasoning
power. For example, AGM admits as a representation of an agent’s belief state a
consequentially-closed set of formulas, requiring thus that an agent believes in all
consequences of their beliefs. While works, such as that of Hansson [20], advocate
for more realistic representations of the agent’s epistemic state, these works still
admit an intentional treatment of belief, namely that equivalent sentences have
equivalent results in changing one’s beliefs and thus that agents are logically
omniscient.

It is well recognised in the literature [41], however, that beliefs and other
mental attitudes are sensitive to hyperintensional distinctions. We call, after
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Cresswell [13], hyperintensional attitudes those which can draw distinctions
between necessarily equivalent contents. For example, while the sentences “3
is a prime number” and “3068 is divisible by 13” have the same intension as
mathematical necessities, they certainly cannot be transparently substituted for
the other in the sentence “Alice believes that 3 is a prime number.”

As discussed by Berto and Hawke [6], Formal Epistemology frameworks
should, at the same time, be sufficiently powerful to derive proofs about a broad
class of doxastic agents and epistemic phenomena but flexible enough to model
different philosophical positions in the field. Aiming to obtain a compromise
between the logical power of standard epistemic logic and the lack of expressive-
ness to encode current positions in philosophical debate [6], some recent work
on hyperintensional belief change has risen in the literature to deal with this
limitation.

Most prominent, Berto [7] proposes a hyperintensional logic of conditional
beliefs and investigates hyperintensional belief revision operations interpreted
as conditional beliefs. On the other hand, Souza [32] and Souza and Wasser-
mann [34,35] investigate hyperintensional belief change operations using tools
similar to that of the AGM framework, based on abstract logics. These authors
propose connections between hyperintensional belief change and belief change in
non-classical logics.

The main drawback of the work of Souza and Wassermann [34,35] is that
hyperintensional belief change is investigated through the framework of abstract
logic. While the use of abstract logic to encode reasoning processes allows a
clear connection between their results and those in AGM-inspired literature, it
obscures their framework’s connections to those proposed for hyperintensional
logics - usually reliant on model-theoretic approaches. Moreso, as we shall pro-
vide evidence in this work, it obscures the connection between different notions
of belief change and thus, we argue, the true nature of rational belief change
encoded in the area.

In this work, we extend Souza and Wassermann’s [35] investigation on hyper-
intensional belief change by proposing a semantic analysis of different hyperinten-
sional operations in the literature and unifying these notions in a single semantic
framework. We employ an impossible worlds semantics, a framework with deep
connections to the study of hyperintensional phenomena [12,22,23,29], to reason
about hyperintensional differences between sentences and show that, depending
on the properties of the logic, both partial meet contractions and AGM contrac-
tions coincide with our proposed notion of selection operator. Further, our results
point to important connections between results in Abstract Model Theory [26]
and the definability of belief change operations for certain logics.

This work is structured as follows: in Sect. 2 we discuss some of the related
literature focusing on hyperintensional phenomena in belief change; in Sect. 3, we
present the basic concepts and notations employed in this work; in Sect. 4, we
study Hyperintensional Belief Contractions, as studied by Souza and Wasser-
mann [34,35], extending their operations to define and characterise a notion
of hyperintensional AGM contraction; Sect. 5 discusses our semantic framework
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and its application to study intensional and hyperintensional belief change opera-
tions. In that section, we provide connections between our semantic (hyperinten-
sional) contraction operations with both Hansson’s and Souza and Wasserman’s
partial meet contractions and AGM’s contractions, showing that, despite earlier
negative results, these notions share a similar underlying structure. Finally, in
Sect. 6, we present our final considerations and future directions of our work.

2 Related Work

Work on hyperintensional phenomena in representations of beliefs and other
mental attitudes has a long standing tradition on epistemic logic at least since
the work of Cresswell [12–14], c.f. also [15,29,38,39].

Regarding hyperintensional phenomena in Belief Change, work has mainly
focused on the representation of explicit doxastic commitments of an agent and
syntactic representations of their belief state [1,20,31,40].

On the other hand, work on belief change for non-classical logics, such as
that of Hansson and Wassermann [21], Flouris [16], Tennant [37], or Girard and
Tanaka [19] give clues of how hyperintensional phenomena can interact with
Belief Change and what restrictions they impose on the results and tools of the
area. Nevertheless, these works do not propose an explicit investigation of the
connection of hyperintensional modelling of belief and their effect on the defin-
ability of belief change operations. Thus they do not provide theoretical and
philosophical connections that allow us to understand their underlying commit-
ments.

Work on genuinely hyperintensional models for belief change, i.e. explicitly
considering hyperintensional differences between formulas both in the agent’s
beliefs and in the input, is far more recent in the literature. To our knowledge,
Berto [7] was the first to propose a hyperintensional notion of belief change,
applying his mereological theory of propositional contents to study conditional
beliefs, understood as belief change in his work. That work was extended by
Özgün and Berto [41], who propose a dynamic logic of hyperintensional belief
change connected to the tradition of Dynamic Epistemic Logic for Formal Epis-
temology. Unlike their work, however, ours investigates how a general notion
of hyperintensional belief change can be defined, based on the AGM approach,
that can be connected to different semantic frameworks for hyperintensional
reasoning.

Similarly, Bozdag [11] proposes a hyperintensional doxastic logic, based on
the HYPE framework [24], in which belief base revision can also be thought
of as a form of conditionalisation. As before, it is not completely clear how we
can compare her proposal with competing notions of belief change in the AGM-
inspired literature since, as observed by Lindström and Rabinowicz [25], Baltag
and Smets [4], or even Souza et al. [33], modal-based semantic approaches to
AGM Belief Change often surpass the expressive power of the original frame-
works and, thus, postulates need to be generalised for these settings.
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Our work follows the line delineated in [32] and [34], proposing a seman-
tic framework with which we can understand, define and study the connection
between different notions of hyperintensional belief change.

3 Preliminaries

In this work, we employ the tools from Abstract Logic and Model Theory to
study classes of belief change operations and their definability in non-classical
logics.

We will call a logic any pair L “ 〈L,Cn〉, where L is a non-empty set, called
the logical language, and Cn : 2L Ñ 2L is a function called a consequence
operator satisfying the following properties1

– inclusion: Γ Ď Cn(Γ ).
– idempotence: Cn(Γ ) “ Cn(Cn(Γ )).
– monotonicity: If Γ Ď Γ ′ then Cn(Γ ) Ď Cn(Γ ′).

Aside from the three basic Tarskian properties above, a consequence relation
may satisfy some important properties present in some logics of interest for
Philosophy and Artificial Intelligence.

– compactness: for any ϕ P Cn(Γ ), there is some finite Γ ′ Ď Γ s.t.
ϕ P Cn(Γ ′).

– distributivity: for any Γ Ď L and any finitely representable2 Γ ′, Γ ′′ Ď L, it
holds that Cn(Γ Y (Cn(Γ ′) X Cn(Γ ′′)) “ Cn(Γ Y Γ ′) X Cn(Γ Y Γ ′′).

– closure under negation: for any Γ Ď L finitely representable, there is
Γ ′ Ď L finitely representable s.t. Cn(Γ Y Γ ′) “ L and Cn(Γ X Γ ′) “ Cn(H).

– booleanicity: Cn is tarskian, distributive and closed under negation.

Given a logic L as above, we call a belief change operation and function
‹ : 2L ˆ L Ñ 2L, which maps pairs of sets of sentences and a sentence, called a
set of beliefs and a piece of input information, to a set of sentences, the resulting
beliefs.

AGM investigate three basic belief change operations: expansions, contrac-
tions and revisions. Belief expansion blindly integrates a new piece of information
into the agent’s beliefs. Belief contraction removes a currently held belief from
the agent’s set of beliefs, with minimal alterations. Finally, belief revision is the
operation of integrating new information into an agent’s beliefs while maintain-
ing consistency.

1 Notice that, differently than Souza [32] or Souza and Wassermann [34,35], we require
our logics to be Tarskian. The reason for this is to make clearer the presentation
of the key aspects of our semantic framework. Our results could be reproduced
without requiring tarskianicity - although with a rather more involved way, since
the relationship between intensions and inferences becomes less well-behaved.

2 We say a set Γ Ď L is finitely representable if there is some finite X Ď L s.t.
Cn(X) “ Cn(Γ ).
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Among these basic operations, only expansion can be univocally defined.
The other two are defined by a set of rational constraints or postulates, usually
referred to as the AGM postulates. These postulates define a class of suitable
change operators representing different rational ways in which an agent can
change their beliefs. Given a closed set of beliefs3, i.e. K Ď L s.t. K “ Cn(K),
we say a belief change operation ˙́ is an AGM contraction on K if for any
ϕ,ψ P L, it satisfies:

(closure) K ˙́ ϕ “ Cn(K ˙́ ϕ)
(success) If ϕ R Cn(H) then ϕ R K ˙́ ϕ
(inclusion) K ˙́ ϕ Ď K
(vacuity) If ϕ R K then K ˙́ ϕ “ K
(recovery) K Ď Cn(K ˙́ ϕ Y {ϕ})
(extensionality) If Cn(ϕ) “ Cn(ψ) then K ˙́ ϕ “ K ˙́ ψ

To characterise their rational contractions, AGM propose the notion of partial
meet belief contraction, an operation that preserves a maximal amount of “safe”
information from the agent’s beliefs, i.e., information that cannot be used to
derive what the agent has ceased to believe. To formalise this notion, Alchourrón
and Makinson [3] propose the notion of remainder set.

Definition 1. Let B Ď L be a set of formulas and ϕ P L be a formula of L, the
remainder set BKLϕ is the set of sets B′ satisfying:

– B′ Ď B
– ϕ R Cn(B′)
– B′ ⊂ B′′ Ď B implies ϕ P Cn(B′′).

When it is clear to which logic L we are referring, we will denote BKLϕ by BKϕ.

A partial meet contraction ˙́ is an operation for which there is a selection
function γ, that characterises this operation. By selection function, we mean
that the function γ satisfies (i) H ‰ γ(BKϕ) Ď BKϕ if BKϕ ‰ H and (ii)
γ(BKϕ) “ {B} otherwise.

Definition 2. We say a belief base change operator ˙́ is a belief base contraction
on a set B Ď L if there is a selection function γ, s.t. for any ϕ

B ˙́ ϕ “ γ(BKϕ).

The authors show that for any boolean and compact logic, an AGM contrac-
tion on a closed set K is a partial meet contraction on K and vice versa. Further,
Hansson and Wassermann [21] show that for any monotonic and compact logic,
an operation ˙́ is a partial meet contraction on a set B of beliefs if and only if
it satisfies the following postulates:

(success) If ϕ R Cn(H), then ϕ R Cn(B ˙́ ϕ)
3 In the following we will often refer to closed sets by the letter K (K′,K′′, etc.),

arbitrary sets of formulas by the letter B (B′,B′′, etc.).
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(inclusion) B ˙́ ϕ Ď B
(uniformity) If for any B′ Ď B it holds that ϕ P Cn(B′) iff ψ P Cn(B′),
then it holds that B ˙́ ϕ “ B ˙́ ψ
(relevance) If ψ P BzB ˙́ ϕ, then there is some B′ Ď B s.t. B ˙́ ϕ Ď B′,
ϕ R Cn(B′), and ϕ P Cn(B′ Y {ψ})

On the other hand, Flouris [16] studied the definability of AGM contraction
operations, i.e. operations satisfying the original AGM postulates, in Tarskian
logics, obtaining sufficient and necessary conditions for such definability. Let us
introduce these notions in order to compare our hyperintensional belief change
operations and AGM contractions.

Definition 3. Let L “ 〈L,Cn〉 be a logic, a set B Ď L is said to be decomposable
in L, if for any ϕ P L, with Cn(H) ⊂ Cn(ϕ) Ď Cn(B), the set

ϕ´(B) “ {B′ Ď B |ϕ R Cn(B′) ^ Cn(B) “ Cn(B′ Y {ϕ})}

is not empty. A logic is said to be decomposable if every B Ď L is decomposable.

Flouris [16] show that decomposability is a necessary and sufficient condition
for the definability of AGM contraction operations.

Proposition 4 (Adapted from [16]). Let L “ 〈L,Cn〉 be a logic, K Ď L be
a closed set of formulas, which is decomposable in L, and ˙́ be a belief change
operation, then ˙́ is an AGM contraction on K iff for any ϕ P L it holds that
(i) K ˙́ ϕ “ Cn(K ′) for some K ′ P ϕ´(K), if Cn(H) ⊂ Cn(ϕ) Ď Cn(K), and
(ii) K ˙́ ϕ “ K, otherwise.

4 Hyperintensional Belief Contractions

The term hyperintensionality describes phenomena in which it is possible to
draw distinctions between necessarily equivalent formulas - or those having the
same intension. As such, hyperintensionality is commonly explained through the
relation between the contents of a sentence and its intension with respect to a
standard semantics. In the remainder of this work, we will represent hyperinten-
sional reasoning by means of the relationship between two consequence operators
over a given language. Let us define this notion formally.

Definition 5. We call a sound hyperintensional logic a tuple L “ 〈L,Cn,C〉,
where L is a logical language and Cn,C : 2L Ñ 2L are logical consequence
operators s.t. for any Γ Ď 2L, it holds that C(Γ ) Ď Cn(Γ ). We say that Cn is
the intensional consequence of L and that C is the hyperintensional consequence
of L.

In the following, we will often refer to a sound hyperintensional logic simply
as a logic unless such terminological abuse may induce confusion. Similarly, we
will often omit the definition of the tuple L “ 〈L,Cn,C〉 and will always refer
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to Cn and C as the consequences of some abstract logic L, unless when neces-
sary to explicit the definition of the logic. We say that a logic L satisfies some
property, e.g. compactness, if Cn does, and that L hyperintensionally satisfies
some property if C does.

We begin our exposition by studying Souza and Wassermann’s [35] notion
of hyperintensional partial meet operations. These authors propose a generali-
sation of Hansson’s notion of partial meet belief contraction to hyperintensional
logics, showing that we can use a more structured foundational logic to con-
struct hyperintensional belief change operations for its sub-logics. To do that,
they propose generalising the notion of remainder set as follows.

Definition 6 [35]. Let L be compact logic, B Ď L be a set of formulas and ϕ P L
a formula of L. The hyperintensional remainder set of B by ϕ is the set:

BKCϕ “ {B′ Ď B|ϕ R C(B′) and DB′′ P BKϕ s.t. B′′ Ď B′}
The hyperintensional remainder set of B by ϕ, relative to C, contains all

parts of B that do not imply ϕ, while maintaining a maximal amount of “safe”
information in B. With this notion, the authors define their hyperintensional
partial meet belief contractions.

Definition 7 [35]. Let L be a compact logic, and B Ď L be a set of formulas.
We say a belief base change operator ˙́ : 2L ˆ L Ñ 2L is a hyperintensional
belief contraction on B iff there is a selection function γ s.t. for any ϕ P L:

B ˙́ ϕ “ γ(BKCϕ).

To characterise this operation Souza and Wassermann [35] propose the fol-
lowing postulates, based on Hasson’s [20] postulates for Belief Base Contraction.

(inclusion) B ˙́ ϕ Ď B
(C-success) If ϕ R C(H), then ϕ R C(B ˙́ ϕ)
(hyperintensional uniformity) If for any B′, B′′ Ď B it holds that
1. ϕ P Cn(B′) iff ψ P Cn(B′)
2. ϕ R Cn(B′) and ϕ P C(B′ Y B′′) implies that ψ P C(B′ Y B′′)
3. ψ R Cn(B′) and ψ P C(B′ Y B′′) implies that ϕ P C(B′ Y B′′)

then B ˙́ ϕ “ B ˙́ ψ
(hyperintensional relevance) If ψ P BzB ˙́ ϕ, there is some B′ Ď B s.t. B ˙́ ϕ Ď
B′, ϕ R C(B′) but ψ R B′ and ϕ P Cn(B′ Y {ψ}). Furthermore, there is some
B′′ Ď B′ s.t. ϕ R Cn(B′′) but ϕ P Cn(B′′ Y {ξ}) for any ξ P BzB′′.

With these postulates, the authors prove the characterisation of hyperinten-
sional partial meet belief contraction for any monotonic hyperintensional conse-
quence C.

Theorem 8 [35]. Let L be a compact logic, and B Ď L be a set of formu-
las. An operator ˙́ is a hyperintensional belief contraction on B iff ˙́ sat-
isfies (inclusion), (C-success), (hyperintensional uniformity) and (hyperinten-
sional relevance).
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In a similar fashion, we can extend Souza and Wassermann’s [35] notion
of hyperintensional contractions for other types of contraction operations, not
based on partial meet contraction. Following the same idea as those authors, we
propose an extension of AGM’s notion of rational contraction to a hyperinten-
sional setting by providing adequate generalisations of AGM’s postulates.

Definition 9. Let L be a logic and B Ď L be a set of formulas. We say a belief
change operator ˙́ : 2L ˆ L Ñ 2L is a hyperintensional AGM contraction if it
satisfies the following postulates.

(hyperintensional closure) B ˙́ ϕ “ C(B ˙́ ϕ)
(inclusion) B ˙́ ϕ Ď B
(C-success) If ϕ R C(H), then ϕ R C(B ˙́ ϕ)
(vacuity) If ϕ R C(B), then B Ď B ˙́ ϕ
(hyperintensional extension) If Cn(ϕ) “ Cn(ψ) and for any B′ Ď B it holds
that ϕ R C(B′) and ϕ P Cn(B′) iff ψ R C(B′) and ψ P Cn(B′), then B ˙́ ϕ “
B ˙́ ψ
(recovery) Cn(B) “ Cn(B ˙́ ϕ Y {ϕ}).

The postulate of (hyperintensional extension), similar to Souza and Wasser-
mann’s (hyperintensional uniformity) with Hansson’s (uniformity) postulate,
extends AGM’s extensionality requiring that the contraction operation coincides
for any two formulas when they behave similarly with respect to the logic Cn,
but also to C in the subsets of the set of beliefs B.

Definition 10. Let B Ď L be a set of logical formulas and ϕ P L a logical
formula. We define the hyperintensional set of complements of B with respect to
ϕ, the set

ϕ´
C(B) “ {B′ Ď B | ϕ R C(B′) and DB′′ P ϕ´(B) : B′′ Ď B′}

Following Flouris’ [16] characterisation of AGM base contractions, we can
fully characterise hyperintensional AGM contractions on decomposable logics.

Theorem 11. Let L be a logic, and K Ď L a hyperintensionally closed set
of formulas, i.e. K “ C(K), with some hyperintensionally closed subset K ′ Ď
K decomposable in L. A belief change operation ˙́ is a hyperintensional AGM
contraction on K iff for any ϕ P L it holds that (i) if ϕ P Cn(K)zCn(H), then
K ˙́ ϕ “ C(K ′) for some K ′ P ϕ´

C(K), (ii) if K P ϕ´
C(K), then K ˙́ ϕ “ K, and

(iii) K ˙́ ϕ “ K, otherwise.

5 A Model of Hyperintensional Belief Change

We turn our attention to the search for a proper semantic characterisation of
hyperintensional belief change operations. As stated before, hyperintensional log-
ics have, traditionally, a deep connection to model-theoretic approaches, as the
crucial question any framework for hyperintensionality must answer is the nature
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of propositional contents and their relation to meaning. Providing a semantic
interpretation of hyperintensional belief change allows us to establish a bridge
between the questions and results of both areas.

Let us first introduce the basic framework and connect it to hyperintensional
logics. In this work, we focus on an impossible world semantics for propositions,
as this is a rich framework with a vast philosophical tradition [12,14,22,23,27],
although their adoption is not without controversy [8].

Definition 12. Let L be a logical language, we call an impossible worlds model
(IWM) on L any tuple M “ 〈W,N, v〉, where

– W is a non-empty set of possible worlds;
– N Ď W is a set of normal worlds;
– v : L Ñ 2W is a valuation function.

Any impossible worlds model M induces intensional and hyperintensional
consequence operators associated with the valuations at the normal and non-
normal worlds of M . We can, thus, construct such operators by examining the
interpretations of formulas and sets of formulas in a given IWM. Let us define
these notions formally.

Definition 13. Let L be a logical language and M “ 〈W,N, v〉 be an IWM on
L. For any ϕ P L and Γ Ď L, we define:

�ϕ�N “ {w P N | w P v(ϕ)}
�Γ �N “

ϕPΓ
�ϕ�N

�ϕ� “ {w P W | w P v(ϕ)}
�Γ � “

ϕPΓ
�ϕ�

Further, let X Ď W be a set of possible worlds, we define:

Th(X) “ {ϕ P L | ∀w P X : w P v(ϕ)}

.

With that, it is easy to construct the logic induced by an impossible worlds
model M .

Definition 14. Let L be a logical language and M “ 〈W,N, v〉 be an IWM on
L. We define the logic induced by M , the hyperintensional logic LM “ 〈L,Cn,C〉
s.t. for any Γ Ď L: Cn(Γ ) “ Th(�Γ �N ) and C(Γ ) “ Th(�Γ �).

More yet, it is easy to see that any sound hyperintensional logic is induced
by some impossible worlds model.

Lemma 15. Let L be a logical language and Cn,C : 2L Ñ 2L be tasrkian
consequence operators. L “ 〈L,Cn,C〉 is a sound hyperintensional logic iff there
is an IWM on L, M “ 〈W,N, v〉 s.t. LM “ L.
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To prove Lemma 15, it suffices to take the set of hyperintensional theories of
L, with N the set of intensional theories of L, as possible worlds and the trivial
valuation v(ϕ) “ {Γ | ϕ P Γ}. It is trivial to show that the logic induced by the
model coincides with L.

As we will use impossible worlds models as a foundational framework to define
our hyperintensional logics, we expand our models to include the elements we
will employ to encode belief change operations.

The study of belief change has a deep connection and cross-contribution with
the study of conditional beliefs, counterfactual conditionals and non-monotonic
reasoning [2,10,17,18,36]. In Conditional Logic [28], we can obtain modal con-
ditional structures to interpret conditional implications of the form ϕ ⇒ ψ by
augmenting a modal structure with a selection function f : L Ñ 2W , which
can be used to define a notion of minimality according to the desired conditional
interpretation, e.g. ‘most typical worlds’ when modelling conditional beliefs. Sim-
ilarly, we will augment our impossible worlds models with a generalisation of such
functions, and eliminating the function’s dependence on the language’s syntax.

Definition 16. Let L be a logical language, we call selection impossible worlds
model (SIWM) on L any tuple M “ 〈W,N, f, v〉, where

– 〈W,N, v〉 is an IWM;
– f : 2W ˆ 2W Ñ 2W is a selection function on possible worlds, i.e. a function

satisfying the following conditions for all X,Y,Z Ď W :
1. X Ď f(X,Y ) Ď X Y Y
2. If Y ‰ H, then f(X,Y ) X Y ‰ H
3. If f(X,Y ) X Z ‰ H and f(X,Z) X Y ‰ H, then f(X,Y ) “ f(X,Z)

For any sound hyperintensional logic L “ 〈L,Cn,C〉, we say M is a SIWM for
L if L is induced by 〈W,N, v〉 - in that case we also say L is a logic induced
by M .

Conditions 1–3 on the selection function f , in Definition 16, are standard
restrictions to ensure the appropriate behaviour of f . Condition 1 is similar to
the postulate of (inclusion), and states that the selection on the set Y , based
on the set X of possible worlds, denoted by f(X,Y ), must contain all X-worlds
and, possibly, some Y worlds, and none more. Condition 2 ensures that if Y
is not empty, some Y -worlds will be selected. Finally, Condition 3 states that
there are Z-worlds among the selected Y -worlds, based on X, and vice-versa,
it must be the case that they coincide. This condition encodes the notion of
‘minimality’ imbued in conditional logics a la Stalnaker [36]. We can, thus, define
our semantic contraction operations based on the interpretation of conditionals
in such models, as usual.

Definition 17. Let ˙́ : 2L ˆ L Ñ 2L a belief change operator on a logic L, and
B Ď L be a set of formulas. We say ˙́ is a normal selection contraction operator
on L iff there is some SIWM M “ 〈W,N, f, v〉 s.t. for any ϕ P L, it holds that

B ˙́ ϕ “ (Th(�B�N Y (Nz�ϕ�))) X B.
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Similarly, we say ˙́ is a non-normal selection contraction operator on B iff
there is some SIWM M “ 〈W,N, f, v〉 s.t. for any ϕ P L, it holds that

B ˙́ ϕ “ (Th(�B� Y (W z�ϕ�))) X B.

To establish the connection between partial meet contractions and selection
contractions, let us see that remainder sets can be defined through our semantics.

Proposition 18. Let L be a logic and M “ 〈W,N, v〉 be an IWM on L s.t. L
is induced by M . Let yet B Ď L be a set of formulas s.t. BKϕ ‰ H and ϕ P L
be a formula of L, then the following hold:

(i) If B′ P BKϕ, then there is some w P Nz�ϕ� s.t. B′ “ Th(�B�N Y {w}) X B.
(ii) If B′ P BKCϕ, then there is some X Ď W z�ϕ� s.t. B′ Ď Th(�B� Y X) X B.

Proof (Sketch of the proof). To prove (i), take w P �B′�N z�B�N , which must exist
if ϕ R Cn(H) (otherwise BKϕ “ H). Then B′ Ď B′′ “ Th(�B�N Y {w}) X B
and ϕ R Cn(B′′). By maximality of B′, then B′ “ B′′.

To prove (ii), take X “ �B′�z�B�, which must not be empty if ϕ R
C(H) (otherwise BKCϕ “ H). Then B′ Ď C(B′) X B “ Th(�B′�) X B “
Th(�B� Y X) X B.

From Proposition 18, it is easy to see that any (hyperintensional) partial
meet contraction on a set B is also a (non-)normal selection contraction on B.

Corollary 19. Let L be compact logic, B Ď 2L be set of formulas, ϕ P L be a
logical formula, and ˙́ be a belief change operator. The following hold:

– if ˙́ is a partial meet contraction on B then it is a normal selection contraction
operator on B.

– if ˙́ is a hyperintensional partial meet contraction on B then there is a non-
normal selection contraction operator ´ on B, s.t. for any ϕ P L, it holds
that B ˙́ ϕ Ď B ´ ϕ.

Notice that Corollary 19 only establishes a one-way connection between par-
tial meet contractions and selection contractions. In fact, we will see that selec-
tion contractions are more general than partial meet and can be used to unify
different competing notions of ‘minimality’ or ‘rationality of choice’ in the area
in a single framework with roots in similar ideas in Conditional Logic and Non-
monotonic reasoning. To show this, let us examine how our hyperintensional
AGM contractions can be interpreted in this framework.

Proposition 20. Let L be a logic and M “ 〈W,N, v〉 be an IWM on L s.t. L
is induced by M . Let yet K Ď L be a set of formulas and ϕ P L be a formula of
L s.t. ϕ P Cn(K)zCn(H) and ϕ´(K) ‰ H, then the following hold:

(i) for any K ′ P ϕ´(K) s.t. Cn(K ′) “ K ′, there is some X Ď Nz�ϕ� s.t.
K ′ “ Th(�K� Y X);

(ii) for any K ′ P ϕ´
C(K) s.t. C(K ′) “ K ′, there is some X Ď W z�ϕ� s.t.

K ′ Ď Th(�K� Y X)
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Proof (Sketch of the proof). To prove (i), take X “ �K ′�N z�K�, which must
be not be empty since ϕ R Cn(K ′). Since K ′ P ϕ´(K), then �K ′�N “ �K�N X
�ϕ rrbracketN , then �K ′�N “ �K�N Y X. As K ′ “ Cn(K ′), it must hold that
K ′ “ Th(�K ′�N ) “ Th(�K�N Y X).

To prove (ii), take X “ �K ′�z�ϕ�, which must be not be empty since ϕ R K ′.
Well, �K ′� “ �K� Y (�K ′�z�K�) ⊇ �K� Y (�K ′�z�ϕ�) “ �K� Y X. Then K ′ Ď
Th(�K� Y X) “ Th(�K ′�).

With that, it is easy to see that any (hyperintensional) AGM contraction on
a closed set K can be obtained through a (non-)normal selection contraction for
K decomposable.

Corollary 21. Let L logic, K Ď L be a set of formulas s.t. L is decomposable
on K. The following hold:

– If the operator ˙́ is an AGM contraction on K iff it is a normal selection
contraction operator on K.

– The operator ˙́ is an hyperintensional AGM contraction on K iff there is a
non-normal selection contraction operator ´ on K s.t. for any ϕ P L it holds
that K ˙́ ϕ Ď K ´ ϕ.

As with Corollary 19, we can see that the connection between hyperinten-
sional contractions and non-normal selection operators is not straightforward,
meaning that non-normal selection operators provide possible upper bounds for
the result of a contraction. The reason for this is that hyperintensional contrac-
tions, as studied by [32,34], are syntactic in nature, while selection operators are
semantic - in the sense that they select hyperintensional theories, not formulas.
Notice that this is a feature of our modelling, as the notion of limited reason-
ing in our approach is already encoded within the hyperintensional consequence
operator of the logic.

It has been noted in the literature that, while in some logics the operations of
AGM contraction and partial meet contraction coincide [2,30], they may differ
in others, even when both are definable [30,35]. In fact, the following example
shows two logics in which not all AGM contractions are partial meet or not all
partial meet contractions are AGM.

Example 22. Consider the logics over the logical language L “ {a, b, c} in
Fig. 1. In Fig. 1a, there is an AGM contraction for K “ {a, b, c}, with K ˙́ b “
{a} which is not partial meet. In Fig. 1b, on the other hand, there is a partial
meet contraction for K, with K ˙́ b “ {c}, which is not AGM. Regardless, these
operations are all normal selection contractions - it suffices to see that these
lattices can be converted into selection models (excluding the H node).

Example 22 shows that our notion of selection contraction is more general
than both AGM contraction and partial meet contraction while still maintaining
cognitive plausibility for encoding a notion of ‘minimality of change’ or ‘ratio-
nality ’, which can be easily connected to previous work on both conditional and
non-monotonic reasoning, and hyperintensional logics.
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a, b, c

b, c
a, c

a

c b

(a)

a, b, c
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a

c b

(b)

∅ ∅

Fig. 1. Logics in which AGM and Partial meet contractions are definable and may not
coincide.

Corollary 23. There is a logic L s.t. there is a (non-)normal selection contrac-
tion which is not a (hyperintensional) partial meet contraction or an (hyperin-
tensional) AGM contraction.

6 Conclusions

In this work, we propose hyperintensional belief contraction operations based on
a generalisation of previous operations in the literature and provide a semantic
framework to reason about these operations. In doing so, we provide the basis
for deepening the connection between AGM-inspired Belief Change literature
and current discussions on Formal Epistemology and Metaphysics [5,6,8,9,12,
22,23,29]. More yet, we show that our belief change operators are more general
than those studies in the literature, be them traditional intensional ones, as
AGM’s and Hansson’s, or hyperintensional ones, as Berto’s [7] or Souza and
Wassermann’s [34,35], while still maintaining cognitive plausibility.

By showing that different notions of minimality arise as the reflection of topo-
logical properties of the model space, encoded in the logical consequences, our
results point to an interesting connection between Belief Change and Abstract
Model Theory [26]. It particularly points to possible general answers to definabil-
ity (and construction) of belief change operations in non-classical and infinitary
logics, based on topological and categorical properties of these model spaces and
of selection functions over them.
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1 Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Rio
Grande do Sul, Brazil

{mboiani,mdorn}@inf.ufrgs.br
2 Graduate Program in Applied Computing, Santa Catarina State University,

Joinville, Santa Catarina, Brazil
rafael.parpinelli@udesc.br

Abstract. In Evolutionary Algorithms, population diversity is a deter-
minant factor for the quality of the final solutions. Due to diverse prob-
lem characteristics, many techniques face difficulties and converge prema-
turely in local optima. The maintenance of diversity allows the algorithm
to explore the search space and efficiently achieve better results. Parallel
models are well-known techniques to maintain population diversity; how-
ever, design choices lead to different characteristics for the optimization
process. For instance, the migration policy on the Island model can con-
trol how fast the algorithm converges. This work proposes a new migra-
tion policy designed for the Biased Random-Key Genetic Algorithm
(BRKGA). Also, the proposal is compared with two traditional strategies
and evaluates its performance in continuous search spaces. The results
show that the proposal can improve the BRKGA optimization capability
with suitable parameters.

Keywords: Genetic algorithms · Parallel metaheuristics · Island
model

1 Introduction

Optimization problems are common in many areas and domains, most of them
concerned with efficiently allocating limited resources to meet desired objectives.
Over the last decades, metaheuristics have been used as an alternative to achieve
good results in a reasonable time. Several techniques have been developed, such
as Particle Swarm Optimization (PSO), Tabu Search (TS), Genetic Algorithm
(GA), Simulated Annealing (SA), and Ant Colony (ACO) [5,8,14,17,20]. How-
ever, such methods often find reasonable solutions in a relatively short execution
time, but optimal solutions can not be guaranteed. GAs are well-known popu-
lation metaheuristics based on Charles Darwin’s theory of evolution by natural
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selection. In a nutshell, the individuals in the population represent potential
solutions to an optimization problem. Then, the population evolves through
recombination operators, seeking convergence for the best results [9,13,22].

Some problems present dynamic landscapes or multiple local optima, and
this can lead the algorithm to be trapped in specific regions along the search
process, resulting in premature convergence. One of the most critical factors
that determine the performance of a GA is population diversity. Undiversified
populations accelerate the diffusion of genetic material from the elite solutions
among the other individuals, resulting in premature convergence. Maintaining
a certain level of diversity allows the population to explore new regions of the
search space and improve the found results. Some strategies have been devel-
oped over the last years to achieve and maintain population diversity [11,24,26].
Gonçalves and Resende [10] proposed a GA version called Biased Random-Key
Genetic Algorithm (BRKGA). On BRKGA, the population is structured into groups,
and genetic operators are applied to use individuals from all groups, proving to
be efficient and reach good levels of diversity. Another commonly used strategy
is the Island Model (IM) on Distributed Genetic Algorithms (DGAs), where indi-
viduals are divided into smaller sub-populations (called demes or islands) [11].
Each subpopulation evolves in isolation and periodically carries out an exchange
of individuals (migration) under specific criteria (migration policy). In this way,
the global population (composed of all demes) has its convergence decelerated,
keeping it diversified. This is mainly due to the migration policy, which con-
trols the frequency of migration, the number of migrated individuals, how these
individuals are selected and replaced, and the subpopulation communication
topology [2,11,23].

This paper investigates the development of a new migration policy based
on the BRKGA’s structured population on IM-DGA. The Fitness-based Migration
Policy (FBMP) designed takes advantage of the population structure to promote
maintenance of diversity through a mechanism that combines groups of individ-
uals to alternate between exploration and exploitation.

An essential aspect of GAs, and most metaheuristics, refers to its parame-
terization. Because such approaches use stochastic components that define their
behavior and guide the search, the ideal parameters are problem-dependent,
so the user must perform a parameter tuning for each problem that wishes to
apply the optimizer [21]. To find the most appropriate set of parameters, we
adopt offline parameter tuning through an iterated racing procedure provided
by the irace package [18].

The paper is organized as follows. Section 2 presents the theoretical back-
ground. Section 3 presents the proposed method. The design of the experiments
is described in Sect. 4, with the results and analysis in Sect. 5. Finally, the con-
clusion and future research directions are shown in Sect. 6.
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2 Background

2.1 Biased Random-Key Genetic Algorithms

A Genetic Algorithm (GA) is a population-based metaheuristic that runs for many
iterations, called generations [12]. Individuals are combined through a crossover
operator during each generation to generate individuals for the next generation.
In the GA context, a solution is represented as an individual, a set of individuals
forms a population, and each solution value is an allele. Each population individ-
ual is evaluated through an objective function (also called the fitness function).
A GA selects well-evaluated individuals to crossover, aiming to improve the pop-
ulation’s quality from one generation to the next. Therefore, pairs of them are
chosen to participate in Recombination and Mutation. According to the Roulette
Selection scheme, each individual has a probability of selection proportional to
their fitness value [9,12,25]. Equation 1 presents the individual selection prob-
ability according to the Roulette Selection scheme where i represents the i-th
individual and NP represents the size of the population.

Probability(i) =
Fitness(i)

∑NP
j=1 Fitness(j)

(1)

Once selected, the pair of individuals (offsprings) are generated from the par-
ents’ matting of genetic material. A cut-off point k is randomly defined between
1 and l − 1, where l is the individual’s number of genes (dimensions). Then, the
first offspring receives genetic material from 1 until k from parent one, and from
k + 1 until l from parent two, the second offspring is generated inversely. Addi-
tionally, under a probability m, these offsprings may be submitted to mutation
process, where a gene is randomly selected and altered. The whole process is
repeated until NP new individuals are generated, forming the new population.
This cycle, called generation, repeats until a stop criterion is met [22].

A common variation consists in promote the best individual (elite) to the
next population, thus ensuring that the best solution found by GA throughout
its execution will always be maintained [6]. For a complete description of Evo-
lutionary Computation and Genetic Algorithms, please refer to [17] and [7].

A Biased Random-Key Genetic Algorithm (BRKGA) is an evolutionary algo-
rithm mainly designed for discrete and global optimization problems [10]. Basi-
cally, each solution is encoded as a vector of random keys, where each random
key is a real number, randomly generated, in the continuous interval [0, 1). A
decoder maps each vector of random keys to a solution of the optimization prob-
lem being solved and computes its cost. This normalization makes it independent
of the application and, when necessary, the decoding operator is applied to the
solution found, bringing it back to the problem domain [4,10].

A particularity of BRKGA is the way used to structure its population, where
individuals are organized according to their fitness value, which aims to preserve
the diversity of the population. After creating and ordering the initial population,
the individuals are divided into two groups: Elite and Non-elite, as illustrated
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in Fig. 1. In the next generation, the Elite is preserved and entirely copied to
the new population (Algorithm1, line 4). Then, Pm mutant (randomly) new
individuals are generated uniformly at random in the interval [0, 1) and aims
to help escape local optima (Algorithm 1, line 5). Lastly, the crossover between
Elite and Non-elite is performed (Algorithm 1, lines 6–11). On crossover, the
BRKGA guarantees that the crossover is performed with individuals from different
groups to explore the population diversity. The first parent is randomly selected
from the Elite group, while the second parent is randomly chosen from the Non-
elite groups (which includes the mutants). Differently from canonical GAs, each
crossover operation results in only one offspring. For each gene, the crossover
operator flips a biased coin to choose which parent passes genetic material to the
child. Generally, the bias tends to favor the Elite parent; however, a parameter
ρe is defined by the algorithm designer to specify the Elite gene inheritance
probability. BRKGA’s authors [10] suggest a value between 50% and 70% to ρe
since parent one is guaranteed a better fitness than parent two.

Most
fit

Least
fit

Initial
population

Elite
Solutions

Non-Elite
Solutions

Elite
Solutions

Crossover
Solutions

Mutation
Solutions

Population 1

X

Copy best
solutions

x

y

z
Randomly

new
individuals

x

w

Fig. 1. BRKGA’s population structure, transition from initial population to first gener-
ation. Adapted from [10].

2.2 Distributed Genetic Algorithms

Distributed Genetic Algorithms (DGAs) are one of the widely known tech-
niques to improve the exploration of the search space and maintain diversity on
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Algorithm 1. BRKGA – A population P with Pe Elite, P̄e Non-Elite, and Pm

Mutant groups.
Require: P, Pe, P̄e, Pm

Ensure: P̄e = P \ Pe

1: Create initial population P
2: while stopping criteria not met do
3: Sort population
4: Copy Pe from population k to k + 1
5: Add Pm mutants individuals to population k + 1
6: while (k + 1)-th population < P do
7: select a random individual from Pe

8: select a random individual from P̄e

9: produce offspring with a probability ρe

10: add new offspring to population k + 1
11: end while
12: end while
13: return fittest individual

GAs [2,11]. The global population’s division into subpopulations gives rise to a
kind of archipelago, with each island evolving independently. This technique has
become known as the Island Model (IM) and is popular among Evolutionary
Algorithms (EAs).

In this model, a procedure called migration may occur periodically to inter-
change information (solutions) between the islands [11,23]. Migrations occur
according to a topology, where nodes in a directed graph represent each island,
and each edge connects one island to another. At specific time points, selected
individuals from each island are sent off to neighboring islands [23]. As a result,
islands trapped on strong local attractors may be affected by successful island
migrants [23]. The IM adds several benefits to the system; it coordinates the
search, possibly converges to different regions of the search space, improves the
usage of the available resources, and adds a powerful maintaining diversity fea-
ture [2,11,23]. Ultimately, it is important to know that many design choices
affect the behavior of a system using the island model. For instance, the emi-
gration policy, the immigrant policy, migration interval or frequency, number of
migrants, migration topology, and if all islands run the same algorithm under
identical conditions or not, homogeneous or heterogeneous, respectively.

Specifically, on the IM-DGA, each island executes a GA that evolves indepen-
dently. Nonetheless, the IM design choices may result in different characteristics
for the optimization process. Regarding the migration topology, the most com-
mon include Ring, Star, and Fully-Connected [1]. For a complete description
about Distributed Evolutionary Algorithms, please refer to [11].

This work uses Ring and Fully-Connected topologies as baseline approaches
to validate and compare the proposal. The best/replace worst fashion is adopted
in the Ring, sending the elite individual to the right neighborhood island.
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Furthermore, the Fully-Connected topology consists of each island broadcast-
ing η elite individuals; we call this policy (ηBest).

3 Proposed Model

This section describes a new migration policy focused on maintaining population
diversity through a mechanism for sharing individuals with similar positions on
fitness ranking in their populations. Like BRKGA, the proposed approach takes
advantage of the fact that the population is structured, thus exploring the exist-
ing diversity and sharing it with other demes in a fully-connected topology. The
proposed migration is based only on fitness values, avoiding the computation
of similarity among individuals, significantly reducing the complexity compared
with policies that use similarity information. The proposal’s main idea is that
the fitness and the structured population provide enough information during
the optimization process, evolving the global population while maintaining the
diversity among demes.

With the individuals ranked according to their adaptability to the problem
under optimization, the population is sliced in equal parts of size ω computed
according to Eq. 2, where NP represents the population size, and ι represents
the number of demes. This means that NP and ι are expected to be multiple.
Then, the computed sliced size that we call window defines the permutation of
individuals. Basically, each deme is formed by individuals from the i-th window
of each deme. For illustration, the first deme receives the first ω individuals
from all demes, the second deme receives the next window of individuals from
all demes, and so on.

ω =
NP

ι
(2)

In the proposed migration policy, the exchange of individuals configures a
fully connected communication. Each population has genetic material avail-
able from all demes, allowing to explore combinations that might otherwise be
unreachable due to local convergence. However, to avoid a significant disparity
after migration, the new population is formed by individuals in the same fitness
range (structured population) in their respective deme but not necessarily having
similar fitness values. This ensures that, although the initial algorithm behavior
is related to the exploitation capacity, it will oscillate between exploitation and
exploration during the optimization process. Figure 2 exemplifies the approach
with three demes, each with six individuals. The λi,j value represents the fitness
difference between the best and the worst individual from a population i in a
migration step j.

Due to the fact that individuals with similar fitness are sorted according to
their adaptability and maintained in the same population - the first group is
formed by the fittest individuals, followed by the second group, whose contain
individuals with average fitness, and finally, the third one compiles the worst-
performing individuals -, we can observe a significant decrease in the values of λ
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Fig. 2. The behavior of the approach over time with NP = 6, K = 3 and W = 2. From
i to i + 1, an exploitation behavior is observed, i.e., similar individuals are gathered in
the same deme (indicated by λ values). Then, a new migration is applied, resulting in
an exploration behavior (from i + 1 to i + 2), i.e., similar individuals are spread over
the demes.

from the migration step i to the step i + 1, which characterizes an exploitation
process. The transition between steps i+ 1 and i+ 2 characterize an exploration
process, where similar individuals of each deme are separated and sent to all
others, resulting in a more diversified new population. It is essential to point out
that Fig. 2 illustrates the migration policy behavior in an advanced-convergence
scenario, where no improvements have been achieved in the last generations.
Thus, when successively applied, the proposed policy results in demes with pop-
ulations sometimes diversified, sometimes with similar individuals. Despite the
stochastic factor of the genetic operators, this migration policy is characterized
mainly by its ability to alternate between exploration and exploitation behavior
according to the convergence level.

4 Design of Experiments

This section presents details regarding the design of experiments: hardware and
software details, statistical tests, parameter setup, problem instances, conver-
gence, and diversity analysis.

Experiments were conducted on a single machine using the same hardware
throughout the complete experimentation set. It consists of a computing node
equipped with 2 Intel Xeon Silver 4216 at 2.1 GHz, 32 cores, and 64 threads.
The development environment is made of Ubuntu 20.04 operating system. The
programming languages are C and Python.
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In this experimentation, we have used the benchmark proposed for the “Spe-
cial Session on Single Objective Real Parameter Numeric Optimization” held
at the IEEE CEC 2017 [3]. This benchmark defines 29 continuous optimization
functions varying from 10 up to 100 dimensions structured in four groups: uni-
modal, simple multimodal, hybrid, and composition. A more detailed description
of the functions and their characteristics can be found in [3].

The test results are evaluated by the Error metric, as used in the CEC 2017
Benchmark [3] presented by Eq. 3, where F ∗

i is the optimal value and Fi is the
obtained result, both relative to the i-th function.

Error(Fi) = Fi − F ∗
i (3)

An analysis methodology proposed by LaTorre, Muelas, and Peña [15] was
adopted for statistical assessment. We report the best, median, worst, mean
and standard deviation of the error for each benchmark on every function. For
brevity purposes, this information is only available in the supplementary mate-
rial1. Furthermore, following the methodology, we have used the Friedman test
(with a degree of confidence of 95%) for multiple comparison to check if there are
significant differences among the considered algorithms [15,16]. If the difference
exists, it is computed the following values for each algorithm:

– Overall ranking: relatively to the Friedman test, it computes the relative
ranking of each algorithm according to its mean performance on each func-
tion and reports the average ranking computed through all the functions. For
instance, given the following mean performance in a benchmark of three func-
tions for algorithms A and B: A = (0.21, 3.45, 1.20), B = (2.25, 1.33, 0.80);
their relative ranking would be: Rank(A) = (1, 2, 2), Rank(B) = (2, 1, 1);
and thus their corresponding average rankings are 1.67 and 1.33, respectively.

– # Best: refers to the number of functions in which each algorithm obtains
the best results compared to other algorithms.

– nWins: refers to the number of other algorithms for which each algorithm is
statistically better minus the number of algorithms for which each algorithm
is statistically worse according to the Wilcoxon Signed Rank Test in a pair-
wise comparison (with a degree of confidence of 95%).

4.1 Parameter Settings

In the experiments, some parameters were fixed and empirically defined. Others
were defined using an automatic algorithm configuration package that varies its
values and tries to determine the most suitable set of values. The algorithms
run 31 times starting from different random seeds with population size (NP ) of
100. The BRKGA parameters are balanced according to the author’s recommen-
dation [10]. The population (P ) incorporates an elite group (Pe) of 10% of the
total population, the crossover solutions comprise 70%, and 20% are reserved

1 Available at https://shorturl.at/cg238.

https://shorturl.at/cg238
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for mutation solutions. The elite allele inheritance probability (ρe) was fixed at
0.70.

To fairly assess the performance of each migration policy, the irace2 auto-
matic algorithm configuration package [18] was applied to the parameters listed
in Table 1. In the table, each parameter is described with its type and value
range.

Table 1. Description and ranges of parameters for automatic parameter tuning with
irace [18].

Parameter Description Type Value range

τ Migration frequency Categorical {32, 64, 128, 256, 512, 1024}
ι Number of islands/demes Categorical {2, 4, 5, 10}
η Number of migrant individuals

on ηBest policy
Integer [1, 10]

We try to find a reasonable threshold between experimentation time and
result quality concerning offline tuning. For this reason, instead of searching for
the most suitable set of parameter values for the 29 functions of the test suite, we
dig for the most appropriate set of parameters for each group of functions (uni-
modal, simple multimodal, hybrid, and composition). The maximum number of
runs (tuning budget) for irace is set according to the number of instances (func-
tions) variations, i.e., a budget of 500 runs per function is available. For instance,
the first group has two functions and a budget of 1000. Table 2 summarizes the
48 experiment results conducted to find the most suitable parameters for each
group of problems varying the migration policy and problem dimensionality.

Lastly, each execution has D · 104 functions evaluations, where D refers to
the problem dimensionality and D = 10, 30, 50, 100.

5 Results and Analysis

Table 3 presents the results obtained by varying the migration policy and apply-
ing the suitable parameters found on the offline tuning with irace. From the
table, it is possible to observe that for problems of up to 50 dimensions, FBMP
proved to be the best choice migration strategy. Furthermore, the values of
#Best and nWins indicate the superiority of the results obtained by the proposed
migration policy. On the other hand, for 100 dimensions, the result obtained by
the FBMP deteriorated. This may indicate some points of attention related to the
proposal. For instance, the demes had not yet converged to local or global attrac-
tors at migration, so the optimization’s progress could be compromised, and the
search stopped abruptly. In addition, there is a possibility that the parameters

2 Available at https://cran.r-project.org/web/packages/irace version 3.4.1.

https://cran.r-project.org/web/packages/irace
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Table 2. Parameters found by irace tuning: migration frequency (τ), number of islands
(ι), and ηBest (η).

Unimodal Functions F1,3

D10 D30 D50 D100

τ ι η τ ι η τ ι η τ ι η

Ring 32 10 – 32 10 – 64 10 – 32 10 –

ηBest 32 10 6 32 10 4 64 10 2 32 10 6

FBMP 64 10 – 32 10 – 32 10 – 128 10 –

Simple Multimodal Functions F4−10

Ring 32 10 – 64 10 – 128 10 – 32 10 –

ηBest 256 10 5 128 10 1 32 10 4 32 10 4

FBMP 256 10 – 64 10 – 64 10 – 128 10 –

Hybrid Functions F11−20

Ring 32 10 – 128 10 – 32 10 – 256 10 –

ηBest 256 10 8 256 4 2 128 10 1 32 10 1

FBMP 512 10 – 128 10 – 256 10 – 64 10 –

Composition Functions F21−30

Ring 32 10 – 32 10 – 256 10 – 32 10 –

ηBest 64 10 4 256 10 1 256 10 2 64 10 10

FBMP 64 10 – 256 10 – 512 10 – 1024 10 –

found by the offline tuning are not ideal, and in this case, a more extended
experimentation period and a higher budget for irace are necessary.

A new experiment was carried out to identify whether the set of parame-
ters found for the FBMP in 100 dimensions is not ideal. Hence, the irace budget
was expanded. The budget was defined by the product between the number of
different parameter combinations, the number of functions in the group, and
the number of executions planned. For instance, for FBMP, there are 24 combi-
nations for the parameters, 2 functions, and 30 runs intended, so the budget
is 24 · 2 · 30 = 1440. Regarding the parameters, irace found a new set that
increased the migration frequency to 256 for the unimodal, hybrid, and compo-
sition function groups. Table 4 presents the results of this experiment. The table
shows improved performance for FBMP. The ranking reduced from 2.34 to 2.08,
the #Best advanced from 7 to 14, and nWins from −11 to −6. It significantly
improved, yet, it was not enough to overcome the Ring policy for D = 100.

From the conducted experiments, it is possible to imply that FBMP is sensitive
to the problem dimensionality and its parameters. Moreover, the budget increase
results prove that there is room to search for suitable parameters that are clearly
still not found. On the other hand, results of up to 50 dimensions show that FBMP
is a promising migration policy with potential application in different scenarios
and experiments.
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Table 3. Average ranking, number of functions for which the algorithm obtains the
best results and number of wins in pair-wise comparisons on the CEC 2017 benchmark.

D Migration policy Ranking #Best nWins

10 FBMP 1.80 13 3

Ring 2.00 11 5

ηBest 2.20 5 −8

30 FBMP 1.62 16 12

Ring 1.81 11 13

ηBest 2.57 2 −25

50 FBMP 1.44 17 18

Ring 2.17 8 2

ηBest 2.39 4 −20

100 Ring 1.55 15 10

ηBest 2.10 7 1

FBMP 2.35 7 −11

Table 4. Offline tuning increased budget results.

D Migration policy Ranking # Best nWins

100 Ring 1.71 9 8

FBMP 2.08 14 −6

ηBest 2.21 6 −2

Convergence and diversity charts were generated to better understand the
effects of the proposed migration policies. It is well known that convergence and
diversity analysis are fundamental tools to inspect the algorithm working pro-
cess. The convergence chart represents the distance from the optimal solution at
each iteration from which it is possible to visualize the algorithm’s convergence.
The population’s diversity is obtained using the momentum of inertia proposed
by Morrison and De Jong [19]. The diversity chart represents how spread the
solutions are in the search space in a given iteration. This makes it possible
to draw whether the algorithm is performing a local or global search at each
iteration.

Figure 3 presents the behavior obtained concerning convergence and diversity
when applying the FBMP during optimization. In the figure, it is possible to
observe the characteristics of the proposed method. Observing the convergence
of Island #1 (Fig. 3a), it is possible to observe that during the optimization
process, the exchange of individuals between islands favors convergence since
Island #1 is composed predominantly of elite individuals; naturally, the BRKGA
dynamic introduces diversity to this island. On the other hand, on Island #10
(last island, Fig. 3c), we observe how the removal of elite individuals has an
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Fig. 3. Example of FBMP’s convergence and diversity for island #1 and island #10.

impact similar to a population reset, allowing the method with high diversity
(Fig. 3d) to restart the search for promising regions of the search space. It is
interesting to highlight that the FBMP’s fully-connected migration allows the
information of new promising regions of the search space to reach all islands,
especially elite islands. According to convergence charts, we can observe the
dynamic of population diversity. When the FBMP is applied, the diversity of Island
#10 undergoes a sudden increase (exploration). Conversely, on Island #1, we can
observe that the constant diversity is interrupted in the migration movement
giving rise to an exploitation behavior. Again, the mechanisms of BRKGA control
back the diversity.

6 Conclusion and Future Works

Metaheuristics have been successfully applied to solve real-world continuous
optimization problems. Over the years, scientists worldwide have been studying
strategies to deal with premature convergence, which compromises metaheuris-
tics accuracy. Specifically, metaheuristics success is strongly related to balancing
exploration and exploitation during the search process. A well-known strategy
to mitigate this balance is using parallel models, such as the Distributed Genetic
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Algorithms (DGAs). On DGAs, multiple solution populations explore the search
space concurrently and coordinate the search for promising regions through peri-
odic communications.

This paper proposes a Fitness-based Migration Policy (FBMP) designed for
the Biased Random-Key Genetic Algorithm (BRKGA) that takes advantage of the
population structure. The proposed method focuses on maintaining population
diversity through a mechanism for sharing individuals with similar positions on
the fitness ranking in their populations. The proposal was evaluated in terms of
optimization accuracy on the CEC’17 single objective real-parameter benchmark
against two well-known migration topologies, Ring and Fully-Connected. The
analysis points out that our migration policy is highly competitive, presenting
better results up to 50 dimensions. Moreover, we observe that the parameters
(frequency and number of islands) substantially affect the methods’ performance.
As such, all the experiments were carried out using an offline tuning. As a result,
we show that FBMP is sensitive to parameters and the problem dimensionality.
Hence, its performance can be improved with a more detailed parameter analysis.

Future works may include analysis and offline tuning for independent prob-
lems. Apply the proposal to real-world optimization problems. Explore methods
to make dynamic or self-adaptive critical algorithm design decisions, such as the
number of islands, the migration frequency, and the BRKGA population and group
sizes (Elite and Mutant).
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Abstract. Chatbots are a powerful tool to design and implement
sophisticated computer systems able to interact with human users
through natural language. Chatbots are considered more friendly to
users than other sources of information, and consequently, they have
been largely applied to various domains. In this work, we propose a
chatbot application aimed at answering questions about COVID-19 vac-
cines. Besides the interesting application domain and the knowledge engi-
neering behind this development, we also introduce a modular chatbot
architecture based on an easy-to-update database and natural language
templates in which new information (for example, new vaccines) can
be added without the need for retraining the chatbot. Furthermore, in
this paper, we provide an empirical evaluation of the proposed chatbot
application.

Keywords: Artificial intelligence · Chatbots · COVID-19 pandemic

1 Introduction

Chatbots are considered artificial intelligence programs (agents) with sophisti-
cated Human-Computer Interaction (HCI) models [3]. They are equipped with
Natural Language Processing (NLP) units, which allow them to communicate
in human language by text or oral speech with human users [10]. Consequently,
considering their capability of imitating human interaction, chatbots have been
applied to various domains, such as education, business and e-commerce, health,
and entertainment [18]. Furthermore, chatbots are considered more friendly to
users than other sources of information, for example, the static content search
in frequently asked questions (FAQs) lists [1]. This is because they offer efficient
assistance when communicating to users, also providing more comfortable inter-
actions through more engaging answers, directly responding to users’ problems,
etc. [4,15].

The rise of the Internet and the view of user-driven content have provided a
venue for quick and broad dissemination of information. Nowadays, the world is
more connected than ever. However, false information also can be disseminated
in a very fast way, and every day is more difficult to prevent misinformation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. C. Xavier-Junior and R. A. Rios (Eds.): BRACIS 2022, LNAI 13653, pp. 458–472, 2022.
https://doi.org/10.1007/978-3-031-21686-2_32
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(false or inaccurate information) [5]. During the COVID-19 pandemic, it was not
different, there was several inaccurate information widespread on the Internet,
mainly about the COVID-19 vaccines1. In this context, we propose a chatbot
application aimed at answering questions about COVID-19 vaccines, which could
be used to prevent (combat) the misinformation phenomenon, considering the
trustworthy sources of information used to build the chatbot database, and the
capability of these technologies to provide information in a very friendly way,
which inspire trust from the users [1].

Further, in our approach, considering that information about COVID-19 vac-
cines is constantly being updated, for example, new vaccines are being developed,
we propose a modular and easy-to-update chatbot extended architecture. The
proposed extensions to the usual chatbot architecture comprise two modular
components: (i) a database containing the information about the COVID-19
vaccines; and (ii) natural language templates the chatbot uses to build answers
to users, using the information from the database. This extended architecture
allows us to update information in the database, for example, adding new vac-
cines, without the need for retraining the proposed chatbot (for some case it
does not require even updating the natural language templates).

This paper is structured as follows. First, in Sect. 2, we describe the back-
ground for this work, introducing chatbot technologies and contextualising the
COVID-19 pandemic. After, in Sect. 3, we introduce the proposed chatbot
extended architecture. Also, we describe how we have identified the most com-
mon questions about COVID-19 vaccines in Subsect. 3.1 and collected the data
set of natural language expressions to train the natural language unit model we
present in Subsect. 3.2. After, in Sect. 4, we describe the process of knowledge
engineering to implement the proposed chatbot application, including the search
for trustworthy sources of information, the modelling of the database and nat-
ural language templates the chatbot uses to build answers for users, and the
proposed dialogue strategies in Subsect. 4.1. After, in Sect. 5, we describe an
empirical evaluation for both: (i) the natural language unit model; (ii) and the
proposed dialogue strategies. After in Sect. 6, we discuss the related work, and
in Sect. 7, we conclude the work by also pointing out future work.

2 Background

2.1 Chatbot Technologies

Chatbot technologies have grown worldwide. They are considered easy to use,
even if users have never used a chatbot before, because they simulate a conver-
sation as they were talking to other humans. Also, chatbots can answer multiple
users instantaneously and they are 24/7 available.

Currently, chatbot technologies are available not only on multinational cor-
poration, thanks to the variety of frameworks to develop such technologies, many

1 https://www.who.int/docs/default-source/coronaviruse/vaccine-misinformation-
toolkit desktop1.pdf.

https://www.who.int/docs/default-source/coronaviruse/vaccine-misinformation-toolkit_desktop1.pdf
https://www.who.int/docs/default-source/coronaviruse/vaccine-misinformation-toolkit_desktop1.pdf
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of them open-source. Also, thanks to the portability with text messages apps,
chatbot technologies are being more explored by small companies, in which they
take advantage of such technologies by interacting with the customer whenever
necessary [17]. Many companies are replacing customer services by chatbots,
because chatbots are faster, cheaper and always friendly. Chatbot technologies
provide benefits not only to e-commerce and client support, they are also pop-
ular technology in other domains, and they will be even more popular in the
future.

There are different chatbot technologies, for example, DialogFlow2, IBM
Watson3, and Rasa4. In this work, we will use Rasa Framework, one of the
most used frameworks to develop chatbots [17]. Rasa has been chosen because
it is open source, allows us to import the chatbot to websites and message apps
such as Telegram and Whatsapp, it allows incorporate natural language models,
for example, those provided by spaCy5, it is highly customisable, and it has a
vast documentation.

2.2 COVID-19 Pandemic

The COVID-19 pandemic became part of the history of humanity for many
factors. It has caused millions of deaths6. Immeasurable global financial losses
also were consequences of the pandemic. Global events like the Olympics and the
2020 Eurocup were delayed due to the pandemic. Indisputably the COVID-19
pandemic changed the world and the way of life around the planet.

To combat the pandemic, vaccines were produced in record time, some of
them exploring new technologies. No matter the reason, (political ideology, reli-
gion, misinformation, bigotry or skepticism), a large group of people on the whole
planet were not convinced about the efficiency of the vaccines, for example. At
the moment people had access to the vaccines, fake news about them started to
spread. Consequently, COVID-19 vaccines became a target of misinformation.

As a tool to combat misinformation about COVID-19 vaccines, we propose a
chatbot aimed at answering questions about the COVID-19 vaccines, using infor-
mation that comes from trustworthy sources. In order to develop a trustworthy
source of information, the chatbot was built with the information provided by
the vaccine manufacturers and surveys published on the most regarded medicine
portals, like the Lancet. Then, the many doubts and questions about the vaccines
were properly answered.

2 https://dialogflow.cloud.google.com/.
3 https://www.ibm.com/br-pt/products/watson-assistant.
4 https://rasa.com/.
5 https://spacy.io/.
6 6.475.346 deaths were caused by COVID-19, according to https://covid19.who.int/

August 2022.

https://dialogflow.cloud.google.com/
https://www.ibm.com/br-pt/products/watson-assistant
https://rasa.com/
https://spacy.io/
https://covid19.who.int/
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3 A Chatbot Extended Architecture

To develop a chatbot aimed at answering questions about the COVID-19 vaccines
domain that could be easily updated according to new information (or even new
vaccines) become available, we proposed a chatbot extended architecture. The
proposed architecture, shown in Fig. 1, besides the usual chatbot components,
includes: (i) an independent module containing the database with information
used to build answers by the chatbot, and (ii) a module with natural language
templates used to present the data from the database.

Xxxxx Xxxxx Xxxxx

Xxxxx Xxxxx Xxxxx

Xxxxx Xxxxx Xxxxx 

Xxxxx Xxxxx Xxxxx

Xxxxx has an efficacy of   Xxxxx"

Independent Module  
containing a flexible and

easy to update Data Base

Natural Language
Templates to present Data

from the
Independent Module

chatbot

user
Text/Voice  

Natural Language 
Communication

"The vaccine 

Fig. 1. Chatbot extended architecture.

To create the database to feed the independent module for the proposed
chatbot architecture, and collect data to train the Natural Language Unit (NLU),
we made available on the Internet an anonymous survey to ask people which
kind of information they would like to know about the COVID-19 vaccines.
In addition to answering that, we asked the respondents to describe different
ways of questioning that particular information they were interested to know
about COVID-19 vaccines. Thus, we were able not only to evaluate the most
common questions people had about COVID-19 vaccines, which we will present
in Sect. 3.1, but also to collect a data set with a variety of natural language
expressions for those questions, which we used to train the NLU module we will
present in Sect. 3.2.

3.1 Most Common Questions About COVID-19 Vaccines

During the period the survey was available, 19 people answered the survey. In the
survey, the respondents were able to include how many questions they wanted,
resulting in a total of 39 questions. From the total of questions, we grouped
the questions according to their main subject, resulting in 9 questions (D1-D9)
shown in Table 1.
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Table 1. Most common questions about COVID-19 vaccines.

Code Number of people Information about vaccines

D1 8 Efficacy (first and second shot)

D2 7 Collateral effects

D3 5 Vaccines available in Brazil

D4 5 Out of scope questions

D5 4 How each vaccine works

D6 3 Interval between doses

D7 3 Efficacy according to age groups

D8 2 Close location to take the vaccine

D9 2 Efficacy against COVID-19 variants

Table 1 shows the most common questions identified through the survey,
including the number of people that asked each question, and a code we will
use later to refer to specific questions. It can be observed, in Table 1, that 5
questions were classified as “out of the scope” for this study. Most of those “out
of scope” questions were related to different subjects than about COVID-19
vaccines. Out of scope questions also played a very important role in the devel-
opment of the chatbot, considering we were able to train the chatbot to identify
and inform the user when they ask out of scope questions.

3.2 NLU Training

When respondents were answering the survey we used to build Table 1, we also
asked them to express five different ways they would use to ask each one of their
questions to a chatbot (or another person). Thus, we were able to build a data
set with about 200 sentences, representing different ways to ask the questions
from Table 1, using natural language.

Using the data set with questions in natural language, we trained the chatbot
NLU to recognise the users’ intents, and whether the user provides specific enti-
ties or not during their questions (according to questions from Table 1, and more
specific interactions we will present later). For example, when asking about the
efficacy of vaccines, without informing a specific vaccine or dose, the chatbot will
recognise that the user has the intent to know about the efficacy of COVID-19
vaccines but the user did not provide any specific details about their question:

- intent: non_immediate_efficacy
example: |

- What is the efficacy of COVID-19 vaccines?
- What efficacy of the vaccines?
- I am wondering about the efficacy of COVID-19 vaccines.
...
- I would like to know more about the efficacy of vaccines.
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Also, the chatbot NLU was trained to recognise more specific intents used
to collect data from the user (and more specific interactions). That information
is used during the chatbot dialogue strategy, as we will present in Sect. 4.1. For
example, when the user asks a question about the efficacy of COVID-19 vaccines
according to its age group, without telling their age during the first interaction,
then the chatbot will ask the user to provide their age, and then the chatbot will
be able to provide the requested information to the user. Those more specific
interactions can occur in different forms. For example, the user can inform their
age to the chatbot using different natural language expressions, such as:

– “19’,
– “I am 19”
– “I am 19 years old”
– “19 years old”
– “nineteen”
– “nineteen year old”

We manually specified examples of natural language expressions for those
specific cases and used them to train the chatbot NLU, enabling the chatbot to
recognise specific entities. Recognising entities results from the process of anno-
tating those entities in the natural language examples used during training, for
example, ‘‘I am [19](age) years old’’ is annotated to recognise the entity
age from that sentence.

4 Knowledge Engineering

After evaluating the most common questions through the survey, we have
searched for trustworthy sources of information to answer those questions (D1-
D9), and built the database and natural language templates shown in Fig. 1. In
total, we used 32 sources of information7, including the webpage of the vaccine
manufacturing companies, recognised public health organisations, and scientific
studies published by recognised institutions (research institutions and universi-
ties) to build a modular and easy-to-update database, as shown in Fig. 1.

In the database built, each line corresponds to one COVID-19 vaccine, and
each column8 corresponds to one piece of information about that particular
vaccine. Thus, when the chatbot agent needs to build an answer to the user about
a particular characteristic of one particular vaccine, it checks that information
by looking at the line which corresponds to that vaccine and the column that
corresponds to the required information. Using natural language templates, as
shown in Fig. 1, after querying the necessary information, the chatbot can build
and provide an answer to the user in natural language.
7 The complete list of sources of information used in this study is available in [13],

including a variety of tables with the information used to answer each one of the
questions from Table 1.

8 Some columns are: number of doses, efficacy by age, efficacy against variants, dose
interval, collateral effects, tecnology used to produce the vacines, etc.
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Immediate Question (Intent + Entities)

User
Answer

Chatbot 

Generic Question (Intent)

Information (Entities)
User

Ask Information

Answer

Chatbot 

Fig. 2. Generic dialogue strategy.

For example, when users ask about the efficacy of the Pfizer vaccine after
the second dose, using the following question: ‘‘What is the efficacy of
Pfizer after the second dose?’’, the chatbot recognise the user intention
as ‘‘immediate efficacy’’ (user intents to know about the efficacy of a pro-
vided vaccine), and the entities [Pfizer](vaccine) and [second dose](dose).
At this moment, the chatbot can look for that information in the database, look-
ing for the line corresponding to the vaccine’s name Pfizer, column efficacy
after the second dose. With that information, the chatbot can use natural
language templates to build and present the answer to the user. In our example,
the chatbot uses the following natural language template:

The vaccine <VACCINE> has an efficacy of <EFFICACY>% after
the second dose.

Instantiating <VACCINE> and <EFFICACY> according to our example, the chat-
bot will provide the following answer to the user:

The vaccine PFizer has an efficacy of 95% after the second dose.

With the proposed (modular) architecture, the database can be easily
updated with new vaccines and new information about the vaccines. When new
vaccines (lines) are added to the database, the chatbot automatically can answer
questions about them. When new information (column) about vaccines is added
to the database, it is necessary to train the NLU to recognise those new intents
of the users (and entities when necessary), as well as to provide natural language
templates the chatbot will use to build and provide that particular information.

4.1 Dialogue Strategies

There are different ways users can ask for information about the COVID-19
vaccines, varying in their forms (the natural language expression used to make
the question) and in their granularity (providing its intent, and entities, directly
or during the dialogue), as we have identified in our survey.



Answering Questions About COVID-19 Vaccines 465

Different forms of expressions are treated by the chatbot NLU, as we
described in Sect. 3.2. However, the granularity, i.e., how the user gives the infor-
mation necessary to the chatbot to understand the answer the user is looking
for, is treated by a dialogue strategy (and chatbot polices) we will describe in
this section.

The decision-making (intelligence) behind how a chatbot responds to users
is modelled towards the so-called stories. Stories provide examples of conversa-
tion scenarios between the chatbot and the user. Training the chatbot with a
variety of stories, allows it to learn how to interact with users in a variety of
situations [1]. They also implement dialogue strategies proposed by the designer
of the chatbot, and different stories can be combined by sophisticated dialogue
polices, for example, polices based on machine learning such as the Transformer
Embedding Dialogue (TED) policy9 [20].

Figure 2 shows two dialogue strategies used to implement the proposed chat-
bot. In Fig. 2, we can observe that there will be dialogues in which users directly
provide, during their first interaction, all information necessary for the chatbot
to answer the user (their intents and entities). In contrast, there will be dia-
logues in which the user will ask generic questions, which allows the chatbot to
understand the user’s intent, but it requires more information to answer the user
properly. Thus, the chatbot will ask those missing information (entities) until it
has all information necessary to answer the user.

Below, we show how this dialogue strategy has been implemented, in which
we developed three different stories used to train the chatbot to answer the
question D2 from Table 1.

- story: Know collateral effect - specific vaccine immediate
steps:
- intent: know_collateral_effects_immediate
- action: vaccinename_form
- active_loop: vaccinename_form
- slot_was_set:

- requested_slot: vaccinename
- activate_loop: null
- action: action_inform_collateral_effects

The first story simulates situations in which the user asks the question, and,
at the same time, provides the name of the vaccine they would like to know the
collateral effects. For example, asking ‘‘Which are the collateral effects
for the Pfizer vaccine?’’ allows the chatbot to understand the user intent
(i.e., user wants to know about collateral effects of vaccines) and extract the
entity necessary to provide that information (i.e., the name of the vaccine).

- story: Know collateral effect - all vaccines
steps:
- intent: know_collateral_effects

9 https://rasa.com/docs/rasa/policies/.

https://rasa.com/docs/rasa/policies/
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- action: utter_one_or_all
- intent: know_all
- action: action_inform_collateral_effects_all

- story: Know collateral effect - specific vaccine
steps:
- intent: know_collateral_effects
- action: utter_one_or_all
- intent: know_specific
- action: vaccinename_form
- active_loop: vaccinename_form
- slot_was_set:

- requested_slot: vaccinename
- activate_loop: null
- action: action_inform_collateral_effects

The second and third stories simulate situations in which the user asks a
generic question, the chatbot can understand the user’s intent (i.e., know about
collateral effects), but it has not been provided either the name of the vaccine or
the information that the user wants to know that information about all vaccines.
For example, telling ‘‘I am wondering about the collateral effects of
the vaccines’’. Then the chatbot asks that missing information and: (i) when
the user informs a specific vaccine, according to the second story, the chatbot
answers with the information about that particular vaccine; or (ii) when the user
selects all vaccines, according to the third story, the chatbot answers with that
information for all vaccines available in its database.

5 Empirical Evaluation

We empirically evaluated the proposed chatbot using the test tools available with
Rasa Framework10. Rasa testing tools provide means to test both the Natural
Language Understanding (NLU) model and the stories (dialogue strategies).

5.1 Evaluating the NLU

The natural language understanding model can be tested separately, using stan-
dard machine learning methodology. Once the chatbot is deployed in the real
world, it will be processing messages that it has not seen in the training data.
To evaluate its behaviour, we can set aside some part of the data set of natural
language expressions for testing.

To evaluate the NLU, we split the data set into train and test sets using 80%
of the data set to train the natural language unit model, and 20% to test it (i.e.,
the standard configuration from the Rasa test tools).

10 https://rasa.com/docs/rasa/testing-your-assistant/.

https://rasa.com/docs/rasa/testing-your-assistant/
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Fig. 3. Confusion matrix for the intention recognition.

Figure 3 shows the intent confusion matrix resulting from tests over the NLU,
in which lines represent the expected classification of intents, and columns rep-
resent the predicted intent during the tests. In Fig. 3, the main diagonal contains
the number of intents correctly predicted by the NLU model.

Further, Rasa test tools provide the intent prediction histogram shown in
Fig. 4, which allows the visualisation of the confidence for all predictions, with
the correct and incorrect predictions being displayed by blue and red bars respec-
tively. Our results show that there were only incorrect predictions with low pre-
diction confidence, that is, the chatbot did not predict an intent correctly when
the algorithm provided confidence in classifying that intent below 0.44 (for one
intent). Also, most of the incorrect predictions had confidence below 0.31.
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Fig. 4. Intent prediction histogram.

With these results11, we validated the NLU model. Also, those low confidence
incorrect predictions did not affect the overall result of resulting dialogues, as
we will show in the next subsection.

5.2 Evaluating the Dialogue Strategies

To evaluate the dialogue strategies implemented through the stories and verify
how the proposed chatbot will act in different conversation scenarios, we wrote
different test stories (12 different stories), which are stories used to test the
chatbot. Tests stories are written in a modified story format, and they allow
us to provide entire conversations to evaluate the chatbot. Test stories provide
certain user input, after they verify if the chatbot behaves as expected, providing
new user input, and so on. Test stories are especially important when introducing
more complicated stories from user conversations, such as those implemented in
this work.

11 Results also include (i) intent evaluation with accuracy of 0.8, f1-score of 0.8, and
precision of 0.82, and (ii) entities evaluation with accuracy of 0.97, f1-score of 0.77,
and precision of 0.74.
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Test stories are very similar to stories used to train the chatbot (e.g., those
presented in Subsect. 4.1), but they include the user’s messages as well, as shown
in the test story below, about the efficacy of vaccines, i.e., D1 from Table 1.

Fig. 5. Action confusion matrix.

- story: efficacy of all vaccines
steps:
- user: |

What is the efficacy of COVID-19 vaccines?
- intent: know_efficacy
- action: utter_one_or_all
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- user: |
I would like to know all!

- intent: know_all
- action: action_inform_efficacy_all

Providing the test stories to the chatbot, Rasa test tools evaluate whether the
chatbot acts or not as specified by the stories used to train the chatbot. Figure 5
shows the action confusion matrix resulting from this evaluation, in which the
lines represent the actions the chatbot should execute, and the columns the
predicted actions (executed by the chatbot) during the tests. In Fig. 5, the main
diagonal represents the actions correctly executed by the chatbot during the
tests. We can observe satisfactory results. Also, it can be observed that default
actions such as action listen (i.e., action used by the chatbot to receive users’
input) are the most frequent actions executed by the chatbot.

6 Related Work

Chatbot technologies have been used in different application domains. For exam-
ple, in [19], the authors proposed a chatbot aimed at providing information about
movies; in [12], the authors describe how chatbots have been used for teaching;
in [16], the authors describe how users engage in the development of chatbots
related to customer service; and in [8,9], the authors proposed a chatbot to
support bed allocation in hospital, using the interface built in [6,7]. In partic-
ular, related to our chatbot application, there are few works applying chatbot
technologies in the COVID-19 domain.

In [2] the authors propose a chatbot aimed at answering general questions
about the COVID-19 domain. Consequently, it has resulted in the increase of
people willing to vaccinate in France, a country with a lot of reluctance about
the vaccines.

In [21], the authors describe a chatbot developed in the USA aimed at answer-
ing questions about the COVID-19 to users. The chatbot proposed by the authors
focuses on telling users about the symptoms caused by the COVID-19 virus. The
authors described that they have satisfactory results in increasing the number
of people intending to take the COVID19 vaccines. Also, they describe that
their study proves that chatbots are a powerful tool for answering questions and
doubts.

In [11], the authors describe a chatbot named Corona-Kun, which was devel-
oped to face the problem of a large number of people hesitating on taking the
COVID19 vaccines in Japan. According to the authors, the chatbot had over 59k
people using it. This chatbot aim at answering questions like: “when the person
could get vaccinated?” or “what are the symptoms of COVID-19 virus?”. The
authors describe to be massive the scope of the chatbot, and that it proved to be
helpful in providing that information to people. Similar to other chatbots men-
tioned, those used in France and USA, Corona-Kun increased the acceptance of
the vaccines and decreased the number of non-vaccinated people.

In [14], the authors proposed a chatbot called Clara. The proposed chatbot
aimed at checking the users’ symptoms, helping them to identify a possible



Answering Questions About COVID-19 Vaccines 471

positive COVID-19 infection. The authors describe that the chatbot proved itself
to be useful for that task.

Our work differs from [2,11,14,21] in its general goal and architecture. In
our approach, we focus on answering questions about COVID-19 vaccines, also
focusing on an easy-to-update database present in the modular chatbot extended
architecture. All those other chatbots were aimed at answering general ques-
tions about the COVID-19 domain. For example, questions about the COVID-
19 symptoms, vaccination calendar, medication, etc. The chatbot proposed in
this paper aim at answering questions about COVID-19 vaccines, in particular,
describing how they work, their side effects, their efficiency ratio, the vaccines
available in Brazil, etc.

7 Conclusion

In this work, we proposed a chatbot aimed at answering questions about COVID-
19 vaccines. To develop the proposed chatbot, we survey the most common
question people have about COVID-19 vaccines, also collecting a data set of
natural language expressions used to train the natural language understanding
model of the chatbot. After understanding the most common questions people
have about the vaccines, we built an easy-to-update database with information
about COVID-19 vaccines extracted from trustworthy sources of information,
such as the webpage of the vaccine manufacturing companies, recognised public
health organisations, and scientific studies published by recognised institutions
(research institutions and universities). Further, we propose a modular chatbot
extended architecture composed of the built database and natural language tem-
plates, in which the chatbot can build and provide answers about the COVID-19
vaccines to users using natural language. The modular approach allows us to
update the chatbot application database (e.g., with new vaccines) without the
need for retraining the chatbot. Furthermore, we propose a dialogue strategy in
which the chatbot can directly answer questions to users when the user provides
all information necessary to the chatbot doing so, or the chatbot asks the miss-
ing information, receives that information, and then provides the answer to the
user.

Finally, we empirically evaluated the implementation of the proposed chat-
bot, demonstrating its efficiency in predicting user intents and acting according
to expected in a large diversity of dialogue situations, covering all questions
identified through the execution of the survey, described in Table 1.
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Abstract. AutoML tackles the problem of automatically configuring
machine learning pipelines to specific data analysis problems. Optimiza-
tion methods are used to explore this space of hyperparameters but lit-
tle is known about this search space. Understanding the characteristics
that make a space difficult to search can help developing better search
methods besides better understaing the parameter and their interactions.
This work uses a technique, named Local Optima Network (LON), which
builds a graph from the fitness landscape of the problem. The fitness
landscape is a way to represent the quality of all possible solutions in
the search space. In particular, we use derivatives of the original LON,
Monotonic LON (MLON) and Compressed MLON (CMLON). These
variants have the advantage of dealing with the neutrality present in
search spaces, i.e., regions of the space with solutions of the same qual-
ity. This paper analyzes the use of MLON and CMLON built from the
fitness landscape of AutoML problems to better understand the search
space of AutoML problems. The results indicate the presence of neutral-
ity in many datasets and that it may have links to the fitness variance
in the search space.

Keywords: AutoML · Local optima networks · Analysis of neutrality

1 Introduction

The use of methods to automate the process of hyperparameter optimization
has been lately an almost mandatory process in machine learning tasks. These
methods are studied under the area of Automated Machine Leaning (AutoML)
[6], which in the past years has turned its attention specially to the area of
Neural Architecture Search (NAS) [9,19].

State-of-the art methods for hyperparameters tuning are based on Bayesian
Optimization, Evolutionary Computation, and Reinforcement Learning tech-
niques [6]. Although many different methods of AutoML following these
approaches have been proposed, we still understand very little about the search
spaces generated by these machine learning hyperparameters and explored by
these algorithms [12]. One way to analyze this space is using techniques of fitness
landscape analysis [16].
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The concept of a fitness landscape was first introduced for characterizing the
distribution of fitness values over the space of genotypes in (natural) evolution,
and was later mapped onto a generic framework for optimization problems [8].
In optimization problems, the fitness landscape is defined by a tuple (S, f,N),
where S is the set of all possible solutions (i.e. the search space), f : S → R is a
function that attributes a real valued performance estimation for each solution
in S, and N(x) is a notion of neighborhood between solutions, usually defined
as a distance metric N(x) = {y ∈ S|d(x, y) ≤ ε} for a sufficiently small ε.

Knowing the fitness landscape of a problem, one can understand its char-
acteristics, including roughness (the frequency of peaks and valleys), modality
(the number of peaks), and neutrality (adjacent regions in the configuration
space where there is little or no fitness variation). Fitness landscape analysis
(FLA) encompasses a set of metrics and methods to extract these features from
the fitness landscape, and it has showed to be very useful for characterizing and
analyzing search spaces.

There are a few studies in the literature that have looked at the landscape
of AutoML problems to generate machine learning pipelines, where a pipeline is
defined by a sequence of tasks including methods for data preprocessing, classi-
fication (or clustering, regression, etc.), and postprocessing. Garciarena et al. [5]
performed an analysis of a subset of the search space explored by an AutoML
system named TPOT, and found many regions of very high fitness but prone to
overfitting. Pimenta et al. [12] used FLA techniques to look at AutoML search
spaces. They measured fitness distance correlation (FDC) [7] and neutrality in a
search space composed of machine learning pipelines for classification, and found
FDC to be a poor metric for analyzing this kind of space. In parallel, other stud-
ies have looked at the loss landscape of neural networks (NN) as architecture
and hyperparameters are changed [9,14].

All the works that perform some type of FLA have common limitations. First,
they focus on extracting mainly local measures from the fitness landscapes, which
might be restrictive and miss the global vision of the space [12,13]. Second, most
metrics are computationally expensive and, per definition, do not focus their
analysis on the most relevant regions of the search space, such as the ones close
to the local optima [9].

In order to deal with fitness landscapes that have a number of solutions
prohibitive to enumerate and to provide a more global view of the search space,
the authors in [11] proposed a new way to analyze and visualize search spaces,
named Local Optima Networks (LONs). LONs represent the search space by
taking into account the basic concepts of network analysis, and allow us to
extract a great number of metrics that can help understand the search space.

A LON is a graph where nodes represent local optima and edges represent
relationships between edges, such as their probability of transition [11,21]. Dif-
ferent ways to assign weights to edges have been previously proposed in the
literature according to the space to be analyzed. For example, basin transition
and escape edges, for example, are used in combinatorial problems while pertur-
bation edges are recommended for continuous problems [1,21].
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A recent paper proposed to use LONs to analyze the search space of AutoML
problems [18]. The authors use the LON proposed in [11]. This original version
of LON has the drawback of not supporting search spaces with neutrality (i.e.,
spaces with regions of points with very similar values of fitness, which generate
plateaus). As the literature has previously discussed that AutoML search spaces
can have high neutrality [12,13], in this paper we propose to use two other
variations of LONs - namely Monotonic Local Optima Network (MLON) and
Compressed Monotonic Local Optima Network (CMLON), capable of dealing
with the aforementioned problems, to analyze the fitness landscape of AutoML
problems. Compared to the original model, MLONs discard edges that con-
nect solutions where the quality of the final node is smaller than the quality
in the initial node. CMLONs, in turn, compress the search space generated by
MLONs by collapsing nodes that of same quality (value of fitness) into a sin-
gle local optima. MLON defines an intermediate representation needed to build
CMLON. Thus, the space characteristics are extracted from the final represen-
tation, i.e.,the CMLON.

The remainder of this paper is organized as follows. Section 2 presents related
work into fitness landscape analysis and AutoML. Section 3 formally defines the
problem and the fitness landscape of the space of solutions we are going to
analyze. Section 4 introduces traditional LON and two of its variants, MLON
and CMLON, and how they can be used to better understand AutoML spaces.
Finally, Sect. 5 presents the experimental results and Sect. 6 draws conclusions
and presents directions of future work.

2 Related Work

One of the few works that analyzes fitness landscapes based on LONs and is
somehow related to ours is [20], where the authors adapt LONs to analyze the
global structure of parameter configuration spaces. They looked at the metrics
extracted from LONs and FDC, and observed large differences when tuning
the same algorithm for different problem instances. For complex scenarios, they
found a large number of sub-optimal funnels, while simpler problems had a single
global funnel. With this same objective, the authors in [3] looked at parameter
spaces for Particle Swarm Intelligence (PSO), and found that PSO’s parameter
landscapes are relatively simple at the macro level but a lot more complex at the
micro level, making parameter tuning more difficult than they initially assumed.

The authors of [19] also used LONs as a tool to perform FLA on neural archi-
tecture research (NAS). They also proposed a set of characteristics to describe
the search space. Some of the features are the overall fitness, ruggedness, car-
dinal of optima, among others. The authors of [17] studied the effect of the
pivoting rule on the sampling configuration process of the search space. They
identified that maximum expansion remains the most efficient technique to reach
good-quality solutions.

The authors of [9] used FLA to analyze the NAS, where the solutions are
Graph Convolutional Networks (GCN). They measure the neutrality of space
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using the method proposed by [15] and conclude that the analysis of the neu-
trality ratio indicates that the space is not neutral and suggest the need to use
more elaborate techniques. The authors of [13] analyzed the AutoML loss fitness
landscape to verify if the scenario is generally unimodal or convex and if most
of the hyperparameters are independent of each other. They also empirically
demonstrate that FDC has limitations in characterizing certain spaces, which
highlights the need for new methods with LON.

3 Problem Definition and Fitness Landscape

The first step to apply FLA to a problem is to define the solution configuration
space (the search space) and its fitness landscape. As previously defined, the
fitness landscape is composed of three main components: the set of possible
solutions (or configuration space)1, the definition of a fitness function and the
definition of a neighborhood, as explained next.

The set of solutions generated aim to solve a generalization of the Com-
bined Algorithm Selection and Hyperparameter optimization (CASH) prob-
lem [4]. In its original definition, given a set A = {A(1), A(2), . . . , A(k)} of
learning algorithms, where each algorithm A(j) has a hyperparameter space
Λ(j) = {λ(1), ..., λ(S)}, defined from the full set of algorithm’s hyper-parameters
Ω, the CASH problem is defined as in Eq. 12:

A∗
λ∗ = argmax

A(j)∈A,λ∈Λ(i)

1
k

k∑

i=1

F
(
A(j)

λ , D(i)
train,D(i)

valid

)
(1)

where F(A(j)
λ ,D(i)

train,D(i)
valid) is the gain achieved when a learning algorithm

A, with hyperparameters Λ, is trained and validated on disjoint training and
validation sets D(i)

train and D(i)
valid, respectively, on each partition 1 ≤ i ≤ k of a

k-fold cross-validation procedure.
A generalization can be made if we replace A by a set of pipelines P =

{P (1), ..., P (V )}, which includes a subset of algorithms from A and their respec-
tive set of hyperparameters Γ (i) = {Λ(1), ..., Λ(S)}, represented by the full set
Ψ, as defined in Eq. 2

P∗
Γ∗ = argmax

P(i)⊆P,Γ(i)⊆Ψ

1
K

·
K∑

j=1

F(P(i)
Γ(i) ,D

(j)
train,D

(j)
valid) (2)

According to this definition, we need to choose the set of algorithms and their
respective hyperparameters that can be present into a pipeline. Depending on
the number of algorithms and hyperparameters defined, the number of solutions
to be generated may be prohibitive to enumerate. We chose to work with a space

1 Solution and configuration are synonyms in fitness landscape terminology.
2 The original definition casts the problem as a minimization one. Here we replace the

loss function by a gain function.
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large enough to be optimized but small enough to be fully enumerated. The main
rationale behind that is to understand how well the LON and metrics extracted
from it characterize the space in terms of local and global optima.

Search Space Definition: The space is defined by a grammar to avoid the
generation of invalid solutions, and allow for preprocessing methods and classi-
fication algorithms and their hyperparameters. Each solution is represented by
a derivation tree extracted from the grammar. The grammar has 38 production
rules3. In terms of preprocessing, it includes algorithms that deal with feature
scaling and dimensionality reduction, such as PCA and Select K-Best. It is also
possible for a pipeline to use no preprocessing algorithms. In terms of classifi-
cation methods, there are five possible options: Logistic Regression, Multilayer
Perceptron, K-Nearest Neighbors (KNN), Random Forest, and Ada Boost. The
number of hyperparameters varies from one classification algorithm to another,
going from two (Ada Boost) to 7 (Random Forest). It can generate up to 69,960
solutions.

In this paper, the definition of neighborhood depends on the concept of muta-
tion and the method adopted was the same used by Pimenta et. al [12], however,
after some experiments, it was possible to observe that the cost of mutating a
pipeline is a bottleneck in the experiments, so the strategy adopted to deal with
this problem was to calculate the PMF of the mutation of pipeline u to generate
v. Mutation occurs through the random selection of a node in the tree, where
the probability of a node being selected is inversely proportional to its distance
from the root of the tree, and generating a subtree from that node. Thus, the
probability is proportional to the product of selecting a given node by the num-
ber of subtrees that can be built from it. This process can be repeated until
reaching the root of the tree, where the probability of generating the pipeline v
is the probability of generating any tree, that is, p = 1/#tree.

The process is illustrated in the Algorithm 1. It calculates the probability of
mutation between any two pipelines. Initially the algorithm looks for nodes with
different values in the trees passed as an argument and returns them, for example,
in Fig. 1 the pipelines differ in the hyperparameters (leaf nodes) represented with
dashed borders. Then, the algorithm identifies the path from the node to the
root common to all nodes identified by the previous function. In the figure, these
nodes are represented by the shaded background color. Then, for each of these
nodes present in the path, the function accumulates the probability considering
the probability of the node being selected (GET PROB SEL) multiplied by the
probability of a subtree of v rooted at the node common to both pipelines is
generated (GET NUM COMB).

Neighborhood: The neighborhood operator N is defined as all pipelines gener-
ated from the mutation operator. A consequence of the neighborhood definition
is that neighboring pipelines are more likely to have the same algorithms, since

3 The complete grammar in BNF is available at https://bit.ly/38F0o3U.

https://bit.ly/38F0o3U
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Algorithm 1. Mutation probability
1: function mutation prob(p1, p2)
2: diffNodes ← FIND DIFF NODES(p1, p2)
3: mutationPath ← COMMON ANCESTOR(diffNodes)
4: prob ← 0
5: for node inmutationPath do
6: probSel ← GET PROB SEL(node)
7: numComb ← GET NUM COMB(node)
8: prob+= probSel · 1/numComb
9: end for

10: return prob
11: end function

the nodes most likely to be selected are the leaf nodes, which represent the hyper-
parameters, although it is still possible that pipelines with completely different
algorithms be neighbors. For example, Fig. 1 shows the process of calculating the
probability of mutation between two pipelines. Observe that the point selected
for mutation is the <ada boost> and, from it, an entire subtree is generated
according to the grammar. Note, however, that if any other parent node, direct
or not, of <ada boost> were selected (the nodes highlighted by the shaded
background color), it would be possible to get the same neighbor if the same
subtree was generated, but the probability of selecting nodes closer to the root
is smaller than that of selecting nodes further away from the root.

<Start>

<preprocessing> <classification>

<dimensionality>

<pca>

PCA <features_dim> <whiten> <svd_solver>

RANDATT(7) False randomized

<ada_boost>

AdaBoost <algorithm_ada> <n_estimators>

SAMME.R 30

(a) Pipeline1

<Start>

<preprocessing> <classification>

<dimensionality>

<pca>

PCA <features_dim> <whiten> <svd_solver>

RANDATT(7) False randomized

<ada_boost>

AdaBoost <algorithm_ada> <n_estimators>

SAMME 10

(b) Pipeline2

Fig. 1. Example of solutions. Both are using PCA as preprocessing algorithm and
AdaBoost as classification algorithm. The hyperparameter can be seen in the leaf nodes.

Fitness: The fitness function adopted was the micro F1. As many datasets have
more than two classes, the One-vs-All method was adopted to deal with these
cases.

4 Local Optimal Networks

Having the fitness landscape, the next step to perform FLA, in our case, is to
build the LON. One way to see a fitness landscape if using a graph G = (V,E),
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where each configuration v of a solution space represents a node in the graph,
i.e., v ∈ V , and there is a directed edge (u, v) if v ∈ N (u) to u, v ∈ V . The
weight wuv of an edge can represent, for example, a distance between the two
nodes, and depends on how the operator N is defined.

In the local optima networks, given the graph G, we need to filter the nodes
so that only the local optima remain. Hence, we can define the LON as LON =
(V ′, E′) where V ′ = {v | v ∈ V and F(v) ≥ F(N (u)) and F : S → R is a
function that maps each solution in the search space to a quality metric, in our
case, the fitness.

As we are working with an enumerable space, we evaluate all solutions and
identify the LO in the LON instead of sampling the space – which is the standard
for larger spaces. Having the LO, we need to understand the concept of basins
of attraction. A basin of attraction has all solutions from the space that are
“attracted” into its direction, i.e., all the solutions that, after a local search
(LS), end up in LOu. Formally:

Basin of attraction LOu := {v ∈ V |LS(v) = LOu} (3)

where LS : S → S performs a local search: given a solution, it returns its LO.
In practice, LS is usually defined as the Hill-Climb (HC) [2,10,11]. The HC can
be implemented in different ways, including the use of First Improvement, Best
Improvement, Worst Improvement, Approximate Worst Improvement and Max-
Expansion. The results in [17] show Max-Expansion as the most effective to find
high quality solutions. Here we use the Best Improvement due to its simplicity
and the use of other strategies is left for future work.

Given the definitions above, observe there is a direct relationship between the
number of LO and the roughness of the search space. According to the literature,
roughness is a characteristic that can make search difficult for different search
methods, specially those that follow a local search approach. As the LON is a
graph, we can then borrow a lot of metrics from the network analysis literature to
characterize the search space of the generalized CASH problem. For example, the
results reported in [18] show that neighborhood size affects the roughness of the
space, as more neighbors generate bigger basins of attraction. However, one of the
main goals of AutoML is to minimize the number of fitness evaluations (which
can be computationally expensive in many problems), which can be achieved by
minimizing the number of neighbors. However, LONs do not provide ways to
analyze neutrality. For this reason, CMLONs – which are networks derived from
LONs – were proposed.

4.1 Basin Transition and Escape Edges

Another characteristic of the search space that is interesting to be studied is
the relationship between basins of attraction, i.e., the ability or probability of a
solutions going from one basin of attraction to another. The relationship between
basins of attraction is represented by weighted directed edges between LO. Here
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these relationships are captured using two different types of edges: (i) basin-
transition and (ii) escape edges.

Given an edge (LOu, LOv) that connects two local optima u and v, basin-
transition edges receive weights given by the sum of the probabilities of a solution
in the basin of attraction of u end up in the basin of attraction of v after a
perturbation (mutation) is applied to the solution. That is,

p(LOu, LOv) =
1

|LOu|
∑

u∈LOu

∑

v∈LOv

p(u → v)

where p(u → v) is the probability of mutation, LOu and LOv are basin of
attractions.

Escape Edges, in turn, define the weight of (LOu, LOv) proportional to the
number of solutions s that are within a distance D of LOu, d(s, LOu) ≤ D, but
that are also within the basin of attraction of LOv.

4.2 Monotonic LON (MLON) and Compressed MLON (CMLON)

Although LON reduces the configuration space looking only at the LOs, in many
problems even the space composed of only LOs still has a high number of nodes
and edges, making it difficult to visualize the problem and not providing means
for analyzing the neutrality of the space. Because of that, the Monotonic LON
(MLON) was proposed. The main difference of the MLON compared to the
original LON is that is does not include edges where the value of fitness from
one LO to the next decreases, i.e., a LO only connects to another with improved
fitness values. Hence, MLONs are more compact than the original LON.

In many cases, even the reduction of the graph from LON to MLON was still
not enough to improve space visualization, which motivated the introduction
of Compressed MLONs. cMLONs compress adjacent nodes that have the same
value of fitness. This type of compression is very effective in networks with high
neutrality, i.e., many solutions with neighbors with the same fitness. Neutral
regions of the network are identified using an adaption of a Breadth First Search
(BFS), which receives a node u and returns all the nodes with the same fitness
and that can be reached from u.

The regions where LOs are compressed for having the same fitness are known
as plateaus [2,10], and the sets of LOs that are in the basins of attraction of
other LOs after edges with decreasing fitness are removed are named funnels
[10].

4.3 Space Metrics

Here we use the same metrics used in the work of [10] to analyze the structure
of a LON, MLON and CMLON. These metrics help to measure the neutrality
of space. The first two metrics are independent from the type of edge used to
build the network. They are: (1) the number of LO (noptima) and (2) the space
modality (nglobal).
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Additionally, for each type of edge being considered in the standard LON
representation, the following metrics are analyzed:

– edgesi: measures the sum of the weights of the edges that leave a solution u
to a solution v, where F(u) < F(v);

– edgesn: measures the total weight of neural edges, i.e., edges between nodes
with same fitness; and

– edgesw: measures the total weight of edges that connect solutions in nodes
u and v, where F(u) > F(v).

Apart from the metrics related to traditional LONs, five other can be
extracted from CMLONs:

– ncoptima: is the number of compressed LO, i.e., the number of LO that are
neighbors of other LO with the same value of fitness and were merged in the
CMLON;

– ncglobal: is a subset of ncoptima that accounts only for the number of global
optima compressed;

– ncedges: calculates the weight between the LONs that were compressed when
building the CMLON from the MLON.

– neutrality: is given by the ratio between the number of compressed LO and
the number of LO in the space;

– lplateau: measures the size of the plateaus – compressed regions of the
CMLON – and identifies the regions with the highest number of LO.

5 Experimental Results

Experiments were performed in 7 classification datasets from the UCI repos-
itory4, listed in Table 1. As the majority of the datasets are multi-class, the
fitness used was the micro-f1 together with the one versus all approach. From
the data in the table, observe that most datasets have more than one global
optimum, making the search spaces multi-modal.

All LONs were generated 30 times to guarantee statistical validity of the
results, and hence all results reported are an average over 30 runs. Note that
although we have the full space enumerated, we simulate the process followed by
the LON technique, which is based on a sample of the space. In this case, three
sizes of neighborhood were tested: 15, 20, and 25.

The first experiment was performed to verify if the size of the basins of attrac-
tion from different executions come from the same distribution. It is important to
check whether small changes in the input graph cause large changes in the LON.
For that, a two-sample Kolmogorov-Smirnov test was applied to each LON built
from a different neighborhood size. The results show that, with 95% confidence,
we cannot reject H0 for more than 92.87% of cases. If we increase the confi-
dence to 99%, we cannot reject H0 in 97.47% of the cases. This is an important

4 https://archive.ics.uci.edu/ml/datasets.php.

https://archive.ics.uci.edu/ml/datasets.php
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Table 1. Characteristics of the datasets.

Dataset Instances Features Classes Optimum #Optimum

Diabetes (DB) 768 8 2 0.8011 1

Ml-prove (MP) 6,118 51 6 0.4478 21

Statlog-segment (ST) 2,310 19 7 0.9696 40

Texture (TX) 5,500 40 11 0.9980 2

Vehicle (VH) 846 18 4 0.7993 1

Wilt (WL) 4,839 5 2 0.9890 1

Wine-quality-red (WN) 1,599 11 6 0.6446 16

Fig. 2. Boxplot of fitness obtained in each of the datasets.

result and indicates that even changing the sampling performed in the configu-
ration space, the structure of the network remains the same, demonstrating the
robustness of the LON over small changes in the structure of the graph.

Turning to the analysis of the LON obtained from the 7 datasets studied
in this paper, Fig. 3a shows the number of LO per dataset. Observe that by
changing the neighborhood size we reduce the number of LOs in all datasets.
However, this reduction is more significant in a few datasets. For example, for
dataset DB, the reduction in the number of LO is of 43.77%, while for dataset
WL we get a reduction of 65.90% when changing the neighborhood size from
15 to 25. This shows that increasing the neighborhood size can bring significant
gains for some datasets. Also note that the drop in the number of LOs when
neighborhood size increases from 15 to 20 is higher than when it goes from 20
to 25, suggesting there might be an ideal trade-off between neighborhood size
and space roughness. Figure 3b shows the size of the basins of attraction, and is
complementary to Fig. 3a. Since the number of configurations is constant, as the
number of LO decreases the concentration of solutions in each basin of attraction
increases. Raising neighborhood size results in a few LO being attached to others,
creating “super” basins of attraction.

Table 2 presents the metrics extracted from the CMLON built using the
basin-transition method. In the table, it is possible to observe that the dataset
with the largest number of compressed local optima (ncoptima) is WL followed
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(a) Number of local optima (b) Size of the basin of attraction

Fig. 3. Characteristics of the LON generated from the fully-enumerated space.

by DB and WN. It is interesting to note that, in Fig. 2, the WL dataset has the
lowest variance (σ2 = 0.00007), meaning that in this dataset there are many
solutions with the same fitness (99.99% of the solutions have their fitness value
duplicated), including the local optima and, consequently, many end up being
compressed in the construction of the CMLON.

Regarding the number of compressed global optima (ncglobal), the metric is
zero in the DB, WH and WL datasets, as these datasets have only one global
optimum. As for the others, it is possible to observe that the dataset with the
largest number of compressed global optima is ST followed by MP and WN.
This result agrees with those presented in Table 1, as these datasets are the ones
with the highest number of global optima. It is interesting to observe that the
global optima in these datasets are formed by pipelines with the same classifier
– only with variations in their hyperparameters. Regarding the preprocessing
algorithms, in the ST dataset there are different global optima with and without
preprocessing, showing that the fitness remains the same even when removing
an entire task. This indicates that under the presence of a certain sets of hyper-
parameters, others do not affect the fitness of the solution.

Also note, from the table, that the total weight of the compressed edges
(ncedges) is proportional to the number of compressed local optima (ncoptima).
The WL dataset has the highest total compressed weight due to the number
of compressed local optima. Now, when the DB dataset is compared to WN, it
is possible to observe that DB has more compressed solutions. However, it is
the WN dataset that has the greatest weight. This indicates that for WN the
solutions compressed have a higher probability of transition between the basins
of attraction than in the DB dataset, as the weight of the edges is greater.

The neutrality rate, represented by the neutrality column in the table, is the
ratio of the number of plateaus to the number of local optima. Although the WL
dataset has the highest number of compressed local optima, this dataset has the
lowest neutrality rate because the number of plateaus is small when compared to
the number of local optima present in the space. Furthermore, in this dataset the
size of the largest plateau is significantly larger than that of the other datasets
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and, as the number of configurations is fixed by the grammar, this implies that
there are fewer plateaus and a lower neutrality rate. The dataset with the highest
neutrality rate is TX, which is the dataset with the highest number of classes (11
in all) and also the dataset with the highest fitness interval, ranging from 0.1603
to 0.9980. The MP dataset also obtains a neutrality rate close to that of TX, but
in this dataset there are 51 features, that is, the highest dimensionality among
all the datasets. In addition, MP is the dataset that has the global optimum with
the lowest fitness among all. With the exception of WL, the other datasets do
not show a very significant difference in the size of the largest plateau present.

The analysis of the edges present in the LON graph using the basin-transition
is presented in the last 3 columns of the table (iedges, nedges and wedges). As the
absolute value does not provide much information, in this work the proportion
of each type of edge in the graph is presented, so the sum of the three always
results in 1. In all cases, it is possible to observe that the weight of the iedges is
greater than that of the others. The WL dataset has the highest proportion of
iedges in relation to the other datasets and is also the dataset with the lowest
proportion of wedges. This shows that there is a greater probability of transition
from a basin of attraction to another with higher fitness.

Table 2. Metrics for CMLONs with basin transition.

Dataset |N | ncoptima ncglobal ncedges neutrality lplateau iedges nedges wedges

DB 15 322.37 0.00 27.49 0.12 33.37 0.61 0.23 0.16

20 236.03 0.00 21.27 0.13 29.33 0.60 0.23 0.17

25 188.13 0.00 17.82 0.14 24.33 0.61 0.23 0.17

MP 15 250.40 7.00 22.70 0.16 38.13 0.69 0.20 0.11

20 175.57 6.90 19.45 0.17 36.53 0.68 0.22 0.10

25 145.93 7.20 17.62 0.18 34.13 0.67 0.23 0.10

ST 15 286.50 14.33 25.26 0.12 34.80 0.62 0.21 0.17

20 211.53 14.40 19.48 0.12 29.00 0.63 0.21 0.17

25 171.30 13.57 16.24 0.13 26.73 0.64 0.20 0.16

TX 15 244.63 0.93 26.03 0.17 29.93 0.61 0.24 0.15

20 168.53 1.07 24.52 0.18 30.40 0.58 0.27 0.15

25 138.53 1.40 24.33 0.18 30.73 0.55 0.30 0.15

VH 15 233.87 0.00 21.58 0.14 22.63 0.57 0.26 0.17

20 172.70 0.00 16.66 0.16 19.20 0.56 0.25 0.18

25 145.37 0.00 13.61 0.16 18.33 0.57 0.24 0.19

WL 15 539.00 0.00 74.64 0.07 215.80 0.71 0.23 0.07

20 448.27 0.00 55.54 0.07 187.60 0.74 0.20 0.06

25 359.30 0.00 41.16 0.08 157.67 0.77 0.18 0.05

WN 15 292.33 4.67 30.52 0.12 33.73 0.60 0.26 0.14

20 219.87 5.60 26.44 0.13 27.43 0.58 0.27 0.15

25 180.77 6.03 24.59 0.14 25.77 0.56 0.27 0.16
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Table 3. Metrics for CMLONs with escape edges (D = 2).

Dataset |N | ncoptima ncglobal ncedges neutrality lplateau iedges nedges wedges

DB 15 290.07 0.00 30.23 0.21 27.33 0.58 0.34 0.08

20 224.70 0.00 24.38 0.20 26.40 0.54 0.39 0.07

25 181.33 0.00 19.57 0.20 21.70 0.52 0.42 0.06

MP 15 207.33 7.50 27.44 0.18 28.57 0.64 0.29 0.07

20 156.80 6.90 23.15 0.20 29.20 0.58 0.36 0.06

25 136.10 7.40 19.99 0.20 30.43 0.54 0.41 0.05

ST 15 262.87 14.83 28.03 0.19 31.60 0.60 0.33 0.07

20 202.70 14.40 21.60 0.18 28.23 0.57 0.36 0.07

25 166.03 13.87 18.02 0.19 26.30 0.56 0.38 0.06

TX 15 218.60 0.93 25.97 0.22 29.73 0.59 0.33 0.08

20 160.73 1.07 24.39 0.23 30.40 0.52 0.41 0.06

25 136.47 1.40 24.36 0.21 30.73 0.47 0.47 0.06

VH 15 220.73 0.00 21.25 0.20 21.50 0.55 0.37 0.08

20 167.73 0.00 16.93 0.21 18.63 0.51 0.41 0.07

25 142.83 0.00 13.75 0.20 17.93 0.50 0.44 0.07

WL 15 449.10 0.00 71.55 0.13 154.10 0.71 0.26 0.03

20 394.53 0.00 52.83 0.13 145.80 0.73 0.25 0.03

25 318.30 0.00 40.30 0.13 117.23 0.75 0.23 0.02

WN 15 273.07 4.93 31.99 0.20 27.70 0.55 0.37 0.08

20 214.73 5.67 26.66 0.20 26.20 0.50 0.43 0.08

25 178.40 6.10 25.07 0.19 25.77 0.45 0.47 0.08

The results obtained from escape-edges are shown in Table 3. It is possible to
verify that, as in the basin-transition, the WL dataset is the one with the largest
number of compressed local optima, followed by DB and WN. It is possible to
observe a reduction in the magnitude of the values and this is due to solutions
that are at a distance D > 2 from the local optimum, not satisfying the escape-
edge condition and, therefore, not causing an increase in the weight of the edge.

The number of compressed global optima is also similar to the one obtained
using the previous method. The same scenario is repeated when analyzing the
number of compressed edges, as the WL dataset is still the one with the highest
total weight followed by the WN and DB datasets. The neutrality rate indicates
that the TX dataset is the largest followed by DB and VH. The WL dataset, in
turn, has the lowest neutrality rate in relation to the others, but in the escape-
edges the difference between this dataset and the others is less significant. As
for the analysis of the largest plateau of the graph, WL still has the largest
region of neutrality among the datasets, but at a lower intensity than in the
basin-transition.

Regarding the edges assigned with the escape-edges, the columns iedges,
nedges, and wedges represent the proportion of edges of each type present in the
graph. It is possible to observe that, in comparison with the basin-transition,
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the number of neutral edges increased while the number of wedges decreased,
i.e., the cut in D ≤ 2 reduced the relation of global optima with others with
lower fitness. The datasets that have the highest proportion of neutral edges are
TX and WN with a neighborhood size equals to 25. Analyzing the proportion
of edge weights, observe that there is a tendency of transition between basins
of attraction with the same fitness (neutral), although there is also a significant
percentage of transitions to basins of attraction with higher fitness.

6 Conclusions and Future Work

This work presents the analysis of the fitness landscape of AutoML problems.
The structure of MLON and CMLON were used to analyze the neutrality of
AutoML search spaces. CMLON proved to be a valid tool for the analysis of
the neutrality of spaces, as it allows the extraction of several metrics that pro-
vide more robust information than those provided by other techniques used in
previous works. However, the neutrality rate can be misleading, as it considers
the number of neutral LOs but does not account for the size of the plateaus.
This can result in considering a space with few plateaus of significant size to be
indicated as a space with little neutrality. One solution would be to consider the
number and magnitude of plateaus when calculating the neutrality rate.

In short, results show that the space has high neutrality, with the datasets
with the largest plateaus being those with low fitness variance, such as WL. The
analyses with the CMLON provided several metrics to estimate the neutrality
of the spaces studied. However, new metrics can still be derived to improve the
analyses made using the CMLON.
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Abstract. Inconsistencies in argumentation theory have been a recur-
rent topic in the literature. The ASPIC+ being one of the most well know
argumentation formalisms is frequently used to deal with inconsistencies.
However, the existing approaches consider a limited version of ASPIC+.
In our work, we managed to deal with inconsistencies in a very general
scenario. To do this, we impose in ASPIC+ some reasonable conditions
to the relations between arguments to adjust how arguments interact
with each other. As consequence, we avoid inconsistent arguments inter-
fere with consistent arguments by neutralizing the inconsistent argument.
Then we show that under simple conditions, ASPIC+ preserves current
results on the satisfaction of fundamental properties of consistency and
logical closure.

Keywords: Argumentation · ASPIC+ · Inconsistencies

1 Introduction

As noticed in [1], inconsistencies can be considered under the mantle of many
points of view: as a consequence of the only correct description of a contradictory
world, as a temporary state of our knowledge, as the outcome of a particular
language which we have chosen to describe the world, as the result of conflicting
observational criteria, as the superposition of world-views, or as the result from
the best theories available at a given moment.

Argumentation is a form of reasoning which is usually referred to as a natural
approach to handling inconsistencies and uncertain information. In argumenta-
tion, a debate between people with opposing opinions can be represented by
a directed graph, in which each argument is a node and the attacks between
arguments are the edges. Such a graph can then be analyzed to determine which
arguments are acceptable according to some general criteria. This approach to
model arguments and their interactions was proposed by Dung in [2]. These
arguments are said to be abstract as they have no internal structure.

Part of what makes Dung’s work interesting is its level of abstraction, since
the argumentation framework can be instantiated by a wide range of logical for-
malisms. Despite the popularity of Dung’s frameworks, their abstract nature is
something that does not gives us an idea of what kind of instantiation satisfies
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intuitive rational properties. Then, as an alternative, the structured argumen-
tation framework ASPIC [3] was developed, which provides an intermediate
level of abstraction. In [4], ASPIC+ framework was presented, which generalizes
ASPIC framework to accommodate a broader range of instantiations.

As observed in [5], in this framework is not a system but a framework for
specifying systems. In ASPIC+, arguments represent inference trees formed by
chaining applications of inference rules to premises. It also permits to compare
arguments through preference relations. In ASPIC+, preference relations play a
major role in the interaction between arguments.

Although ASPIC+ is a prominent approach in structured argumentation, in
[6,7] it is noticed that when mixing certain and uncertain information as for
example strict and defeasible rules, ASPIC+ may lead to unintuitive results
such as inconsistent arguments interfering with the acceptability of consistent
arguments. To deal with such anomalies, in [3], some rationality postulates were
defined. These postulates are intended to guarantee some basic suitability of the
outputs of any argumentation formalism. According to [3], any argumentation
formalism should satisfy these postulates. Another challenge is how to handle
inconsistencies in ASPIC+. Over the years, some proposals have been presented
to handle them [6–8]. However, these proposals only considered restricted ver-
sions of ASPIC+.

In our work, for the first time it is presented an argumentation formalism
based on ASPIC+ robust enough to work with inconsistent arguments, to allow
for the instantiation of preference relations between arguments, and to satisfy
the fundamental rationality postulates of [3]. We achieved this by imposing some
reasonable conditions to neutralize the effect of inconsistent arguments over con-
sistent arguments. As we are working with a very general version of ASPIC+, our
approach is ready to accommodate any logical language with these reasonable
properties.

The rest of the paper is organised as follows: in Sect. 2, ASPIC+ framework
is presented. Section 3 is focused on proving the satisfaction of the rationality
postulates described in [3]. In the next section, we discuss related works. Finally,
we summarize our contributions and themes for future developments.

2 The ASPIC+ Framework

ASPIC+ is a general framework for specifying systems. It defines the notion of
an abstract argumentation system as a structure consisting of a logical language
L with a binary contrary relation, a set of strict and defeasible rules, two types of
premises: firm and plausible, and a partial function. In ASPIC+ no assumptions
are made about how these elements are defined.

Definition 1 (Argumentation System). [5] An argumentation system is a
tuple AS = (L,− ,R, n), in which

– L is a logical language with a unary negation symbol ¬.
– − is a function from L to 2L, such that
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• ϕ is a contrary of ψ if ϕ ∈ ψ, ψ �∈ ϕ;
• ϕ is a contradictory of ψ if ϕ ∈ ψ, ψ ∈ ϕ;

– R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the
form φ1, . . . , φn → φ and φ1, . . . , φn ⇒ φ respectively (in which φ1, . . . , φn, φ
are meta-variables ranging over wff in L), and Rs ∩ Rd = ∅.

– n is a partial function such that n : Rd −→ L.

For any formula φ ∈ L, we say φ ∈ ψ if either φ = ¬ψ or ¬φ = ψ. By
C(φ) =

{
ψ | ψ ∈ φ and φ ∈ ψ

}
we mean the set of all contradictory formulas of

φ. We will refer to a contradictory of φ as −φ (−φ ∈ C(φ)). Note for any φ ∈ L,
φ is a contradictory of ¬φ.

It is also required a knowledge base to provide premises for the arguments.

Definition 2 (Knowledge Base). [5] A knowledge base in an argumentation
system AS = (L,− ,R, n) is a set K ⊆ L consisting of two disjoint subsets Kn

(the axioms) and Kp (the ordinary premises).

Ordinary premises are uncertain knowledge which can be attacked, and
axioms are certain and cannot be attacked. Now we define an argumentation
theory:

Definition 3 (Argumentation Theory). [5] An argumentation theory is a
tuple AT = (AS ,K) where AS is an argumentation system and K is a knowledge
base in AS.

In Definition 4, arguments are defined together with some functions. Infor-
mally, functions Prem, Conc, Sub, Rules, TopRule and DefR return respectively
the set of premises, sub-arguments, defeasible rules, conclusion and top-rule of
an argument. In ASPIC+, arguments are constructed recursively from an argu-
mentation theory by the successive application of construction rules:

Definition 4 (Argument). [5] An argument A on the basis of an argumenta-
tion theory (AS ,K) and an argumentation system (L,− ,R, n) is

1. φ if φ ∈ K with Prem(A) = {φ}, Conc(A) = φ, Sub(A) = {φ}, DefR(A) = ∅,
Rules(A) = ∅, TopRule(A) = undefined.

2. A1, . . . , An → ψ if n ≥ 1 and A1, . . . , An are arguments s.t. there is a
strict rule Conc(A1), . . . , Conc(An) → ψ ∈ Rs; Prem(A) = Prem(A1) ∪
· · · ∪ Prem(An); Conc(A) = ψ; Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1) ∪ · · · ∪ Rules(An) ∪ {Conc(A1), . . . , Conc(An) → ψ};
TopRule(A) = Conc(A1), . . . , Conc(An) → ψ.

3. A1, . . . , An ⇒ ψ if n ≥ 1 and A1, . . . , An are arguments such that there exists
a defeasible rule Conc(A1), . . . , Conc(An) ⇒ ψ ∈ Rd; Prem(A) = Prem(A1) ∪
· · · ∪ Prem(An); Conc(A) = ψ; Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1) ∪ · · · ∪ Rules(An) ∪ {Conc(A1), . . . , Conc(An) ⇒ ψ};
TopRule(A) = Conc(A1), . . . , Conc(An) ⇒ ψ.
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For any argument A we define Premn(A) = Prem(A) ∩ Kn; Premp(A) =
Prem(A) ∩ Kp; DefR(A) = {r ∈ Rd | r ∈ Rules(A)} and StR(A) = {r ∈ Rs |
r ∈ Rules(A)}.
Example 1. Consider the argumentation system AS = (L,− ,R, n), in which

– L = {a, b, f, w,¬a,¬b,¬f,¬w,∼ a,∼ b, ∼ f,∼ w,∼ ¬a,∼ ¬b,∼ ¬f,∼ ¬w}.
The symbols ¬ and ∼ respectively denote strong and weak negation.

– ∀φ ∈ L and ∀ψ ∈ L, φ ∈ ψ iff (a) ψ = ¬φ or φ = ¬ψ; or (b) ψ =∼ φ.
– Rs = {¬f → ¬w; b → a} and Rd = {a ⇒ ¬f ; b,∼ ¬w ⇒ w;¬f ⇒ ¬w}.

Let K be the knowledge base such that Kn = ∅ and Kp = {b,∼ ¬w}. The
arguments defined on the basis of K and AS are A1 = [b], A2 = [∼ ¬w], A3 =
[A1 → a], A4 = [A3 ⇒ ¬f ], A5 = [A1, A2 ⇒ w] and A6 = [A4 ⇒ ¬w].

An argument A is for φ if Conc(A) = φ; it is strict if DefR(A) = ∅; defeasible if
DefR(A) �= ∅; firm if Prem(A) ⊆ Kn; plausible if Prem(A)∩Kp �= ∅. An argument
is fallible if it is defeasible or plausible and infallible otherwise. We write S  φ
if there is a strict argument for φ with all premises taken from S, and S |∼ φ if
there is a defeasible argument for φ with all premises taken from S.

Definition 5 (Inconsistent set of formulas). [8] Let L be a language and
S ⊆ L. We say that S is inconsistent if for some φ, ψ ∈ L, S  φ and S 
ψ such that φ ∈ ψ. Otherwise, it is consistent. We say S ⊆ L is minimally
inconsistent iff S is inconsistent and ∀S′ ⊂ S, S′ is consistent.

With Definition 5, we can define an inconsistent set of arguments.

Definition 6 (Inconsistent set of arguments). [8] An argument A is con-
sistent iff {Conc(A′) | A′ ∈ Sub(A)} is consistent. Otherwise A is inconsis-
tent. For a set S of arguments, we define Concs(S) = {Conc(A) | A ∈ S}.
S = {A1, . . . , An} is consistent if Concs(Sub(A1)) ∪ . . . ∪ Concs(Sub(An)) is
consistent, otherwise S is inconsistent.

Definition 7 (c-consistent arguments). [5] Let A be an argument on the
basis of an argumentation theory (AS ,K) and an AS (L,− ,R, n). The argument
A is c-consistent iff Prem(A) is consistent.

Note that if an argument A is consistent, then A is also c-consistent. However,
if an argument A is c-consistent, it does not mean that A is also consistent.

Example 2. Let A and B be arguments on the basis of an argumentation theory
(AS ,K) and an argumentation system (L,− ,R, n), in which

– L = {a, b, c, f, w,¬w},
– ∀φ ∈ L and ∀ψ ∈ L, (1) φ ∈ ψ iff (a) ψ = ¬φ or φ = ¬ψ; or (b) ψ =∼ φ,
– Rs = {a → f ; b, c → w;w,¬w → ¬f}, and Rd = {f ⇒ ¬w}.
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Let K be the knowledge such that Kn = ∅ and Kp = {a, b, c}. The arguments
defined on the basis of K and AS are A1 = [a], A2 = [b], A3 = [c], A4 = [A1 → f ],
A5 = [A2, A3 → w], A6 = [A4 ⇒ ¬w], and A7 = [A5, A6 → ¬f ].

Observe that A7 is c-consistent, however A5, A6 ∈ Sub(A7). As {Conc(A5),
Conc(A6)} is inconsistent, A7 is an inconsistent argument.

Definition 8. [5] Consider the argumention system (L,− ,R, n). For any S ⊆
L, let the closure of S under strict rules, denoted ClRs

(S), be the smallest set
containing S and the consequent of any strict rule in Rs whose antecedents are
in ClRs

(S). Then, 1) a set S ⊆ L is directly consistent iff � ∃ψ,ϕ ∈ S such that
ψ ∈ ϕ; 2) indirectly consistent iff ClRs

(S) is directly consistent.

In Example 2, we assume S = {Conc(A1), Conc(A2), Conc(A3), Conc(A4),
Conc(A6)}. Note S is directly consistent as ∀φ ∈ S, � ∃ψ ∈ S s.t. ψ ∈ φ. However
S is not indirectly consistent as Conc(A5) ∈ ClRs

(S) and Conc(A5) ∈ Conc(A6).

2.1 Attacks and Defeats

In ASPIC+ arguments are related to each other by attacks:

Definition 9 (Attacks). [5] Consider the arguments A and B. We say A
attacks B iff A undercuts, undermines and rebuts B, in which

– A undercuts B (on B′) iff Conc(A) ∈ n(r) for some B′ ∈ Sub(B) such that
B′’s top rule r is defeasible.

– A undermines B (on φ) iff Conc(A) ∈ φ and φ ∈ Premp(B). In such a case,
A contrary-undermines B iff Conc(A) is a contrary of φ.

– A rebuts B (on B′) iff Conc(A) ∈ φ for some B′ ∈ Sub(B) of the form
B′′

1 , . . . , B′′
n ⇒ φ. In such a case, A contrary-rebuts B iff Conc(A) is a contrary

of φ.

Example 3. Recalling Example 1, we have A5 rebuts A6 and A6 rebuts A5.
Besides, A6 contrary-undermines A2 and A5 on ∼ ¬w. If in addition, one had
the argument A7 = [A4 → ¬w], then A7 (like A6) would rebut A5 on A5;
however, A7 (unlike A6) would not be rebutted by A5.

Definition 10. [5] A (c-)structured argumentation framework ((c-)SAF)
defined by an argumentation theory AT = (AS ,K) is a tuple (A, C,�), in which

– In a SAF (resp. c-SAF), A is the set of all arguments (resp. c-consistent
arguments) constructed from K in AS satisfying Definition 4;

– (X,Y ) ∈ C iff X attacks Y ;
– � is a preference ordering on A.

It is clear a c-SAF is a SAF in which all arguments are required to have
a consistent set of premises. Next, we define the corresponding defeat relation,
which is inspired in the defeat relation already defined in [5]:
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Definition 11 (Defeat). Let A,B ∈ A and A attacks B. If A is consistent and
A undercut, contrary-rebut or contrary-undermine attacks B on B′ ∈ Sub(B)
then A is said to preference-independent attack B on B′; otherwise A is said to
preference-dependent attack B on B′. A defeats B iff for some B′ ∈ Sub(B)
either A preference-independent attacks B on B′ or A preference-dependent
attacks B on B′ and A �≺ B′.

Having defined the defeat relation we proceed to the definition of argumen-
tation framework associated to a (c-)SAF .

Definition 12 (Argumentation frameworks). An abstract argumentation
framework (AF) corresponding to a (c-)SAF = (A, C,�) is a tuple (A,D) such
that D = {(X,Y ) ∈ C | X defeats Y }.
Example 4 (Example 3 continued). Let �= {(A6, A2)} (i.e., A6 ≺ A2) be a
preference ordering on A = {A1, A2, A3, A4, A5, A6}. In the c-SAF (A, C,�)
defined by AT , we have C = {(A6, A2), (A5, A6), (A6, A5)}. As (A6, A2) is a
preference independent attack, we obtain D = C.

Traditional approaches to argumentation semantics ensure conflicts are not
tolerated in the same set, which is said to be conflict-free.

Definition 13 (Conflict-free sets). Let � = (A, C,�) be a (c-)SAF, (A,D)
be the AF corresponding to �, A ∈ A, and S ⊆ A. We define C+(A) =
{B ∈ A | (A,B) ∈ C} and C+(S) = {B ∈ A | (A,B) ∈ C for some A ∈ S}. We
say that S is att-conflict-free (in Δ) iff C+(S)∩S = ∅. We also define D+(A) =
{B ∈ A | (A,B) ∈ D} and D+(S) = {B ∈ A | (A,B) ∈ D for some A ∈ S}. We
say that S is def-conflict-free (in AF) iff D+(S) ∩ S = ∅.

Arguments are evaluated on the basis of the extensions of a Dung framework:

Definition 14 (Semantics). Let � = (A, C,�) be a (c-)SAF and (A,D) be
the AF corresponding to �. We say X ∈ A is acceptable w.r.t. E ⊆ A iff
∀Y ∈ A such that (Y,X) ∈ D : ∃Z ∈ E such that (Z, Y ) ∈ D.

We define fAF (E) = {A ∈ A | A is acceptable w.r.t. E}. Let x ∈ {att, def}.
For a x-conflict-free set E in AF, we say 1) E is an x -admissible extension of
AF iff E ⊆ fAF (E); 2) E is a x -complete extension of AF iff fAF (E) = E; 3)
E is a x -preferred extension of AF iff it is a set inclusion maximal x-complete
extension of AF; 4) E is the x -grounded extension iff it is the set inclusion
minimal x-complete extension of AF; 5) E is a x -semi-stable extension iff it is a
x-complete extension of AF such that there is no x-complete extension E1 of AF
in which E ∪ X+(E) ⊂ E1 ∪ X+(E1) with X+ = C+ if x = att and X+ = D+ if
x = def ; 6) E is an att-stable (resp. def -stable) extension iff E is an att-complete
(resp. a def-complete) extension of AF and ∀Y �∈ E, ∃X ∈ E s.t. (X,Y ) ∈ C
(resp. (X,Y ) ∈ D).

Notice the basic distinction between an att-extension and a def-extension is
that an att-extension is att-conflict-free and def-extension is def-conflict-free.
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Example 5 (Example 4 continued)
Regarding the AF constructed in Example 4, we obtain the following results:

– def-complete extensions: {A1, A3, A4}, {A1, A3, A4, A5}, {A1, A3, A4, A6};
– def-grounded extension: {A1, A3, A4};
– def-preferred extensions: {A1, A3, A4, A5} , {A1, A3, A4, A6};
– def-stable and def-semi-stable extension: {A1, A3, A4, A6}.

As it will be clear latter, def-extensions will coincide with att-extensions.

3 Rationality Postulates

Caminada and Amgoud [3] proposed four postulates to constraint on any exten-
sion of an argumentation framework corresponding to an argumentation theory.
It is shown in [4,5] under which conditions these postulates hold in ASPIC+.

We proceed by constraining our attention to well defined (c-)SAF s:

Definition 15 (Well defined (c-)SAF). Let AT = (AS ,K) be an argumenta-
tion theory, where AS = (L,− ,R, n). We say that AT is

– closed under contraposition iff for all S ⊆ L, s ∈ S and φ ∈ L, if S  φ, then
for each −φ ∈ C(φ) and each −s ∈ C(s), it holds S\{s} ∪ {−φ}  −s.

– closed under transposition iff if φ1, . . . , φn → ψ ∈ Rs, then for i = 1 . . . n, for
any −ψ ∈ C(φ) and any contradictory −φ ∈ C(φ), it holds φ1, . . . , φi−1,−ψ,
φi+1, . . . , φn → −φi ∈ Rs;

– axiom consistent iff ClRs
(Kn) is consistent.

– c-classical iff for any minimal inconsistent S ⊆ L and for any ϕ ∈ S, for
each −ϕ ∈ C(ϕ), it holds that S\{ϕ}  −ϕ

– well-formed if for ϕ,ψ ∈ L, whenever ϕ is a contrary of ψ then ψ �∈ Kn and
ψ is not the consequent of a strict rule.

A (c-)SAF is well defined if it is defined by an AT that is c-classical, axiom
consistent, well-formed and closed under contraposition or transposition.

To prove our results, we resort to the maximal fallible sub-arguments.

Definition 16 (Maximal fallible sub-arguments). [9] For any argument A,
the set M(A) of maximal fallible sub-arguments of A is inductively defined as:

1. If A ∈ Kn, then M(A) = ∅;
2. If A ∈ Kp or A has a defeasible top rule, then M(A) = {A};
3. otherwise, i.e., if A = A1, . . . , An → ϕ, then M(A) = M(A1) ∪ . . . ∪ M(An).

Next we define what is a strict continuation of a set S of arguments:

Definition 17 (Strict continuations). [9] The set of strict continuations of
a set of arguments is the smallest set satisfying the following conditions:
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1. Any argument A is a strict continuation of {A}.
2. If A1, . . . , An and S1, . . . , Sn are such that for each i ∈ {1, . . . , n}, Ai is

a strict continuation of Si and {Bn+1, . . . , Bm} is a (possibly empty) set
of strict-and-firm arguments, and Conc(A1), . . . , Conc(An), Conc(Bn+1, . . . ,
Conc(Bm)) → ϕ is a strict rule in Rs, then A1, . . . , An, Bn+1, . . . , Bm → ϕ
is a strict continuation of S1 ∪ . . . ∪ Sn.

In addition, � should satisfy properties that one might expect to hold of
orderings over arguments composed from fallible, infallible, consistent and incon-
sistent elements. The next definition is an adaptation of [5] to ensure any incon-
sistent argument is strictly less preferred than any consistent argument.

Definition 18 (Reasonable Argument Ordering). An argument ordering
� is reasonable iff

1. (a) ∀A,B, if A is consistent and B is inconsistent, then B ≺ A.
(b) ∀A,B, if B is strict, firm and consistent then B �≺ A;
(c) ∀A,A′, B such that A′ is a strict continuation of {A}, if A �≺ B and A′

is consistent, then A′ �≺ B and if B �≺ A then B �≺ A′;
2. Let {C1, . . . , Cn} be a finite subset of A, and for i = 1 . . . n, let C+\i be some

strict continuation of {C1, . . . , Ci−1, Ci+1, . . . , Cn}. Then it is not the case
that: ∀i (1 ≤ i ≤ n) such that C+\i is consistent, C+\i ≺ Ci.

From now on we will assume � is reasonable. The following lemmas provide
us with some results required to show that our approach satisfies the rationality
postulates of [3]. Due to space restrictions, the simplest proofs of some results
have been omitted. In addition, we highlight that despite Definition 18 is different
from the original (Definition 18 from [5]), the results from [5] are preserved.

Lemma 1. [5] Let � = (A, C,�) be an well defined (c-)SAF, (A,D) the AF
corresponding to �, and A ∈ A.

1. If A is acceptable w.r.t. S ⊆ A, A is acceptable w.r.t. any superset of S.
2. If (A,B) ∈ D, (A,B′) ∈ D for some B′ ∈ Sub(B) and if (A,B′) ∈ D, for

some B′ ∈ Sub(B), (A,B) ∈ D.
3. If A is acceptable w.r.t. S ⊆ A and A′ ∈ Sub(A), A′ is acceptable w.r.t. S.

Lemma 2. [5] Let � = (A, C,�) be a well defined (c-)SAF and (A,D) be
the corresponding AF. For A,B ∈ A, suppose B is consistent, B attacks A
on some A′ ∈ Sub(A), and if A and B are defined as in Definition 7, then
Prem(A) ∪ Prem(B) is consistent. If (B,A) �∈ D then, either:

1. (A′, B) ∈ D, or;
2. For some B′ ∈ M(B), there is a strict continuation A′+

B′ of (M(B)\ {B′}) ∪
M(A′) s.t. (A′+

B′ , B) ∈ D.

Lemma 3. Let � = (A, C,�) be a well defined (c-)SAF defined by the argu-
mentation theory (AS ,K), in which AS = (L,− ,R, n) and K = Kp ∪ Kn. Let
{φ1, . . . , φn, φn+1} ⊆ L be inconsistent, but {φ1, . . . , φn} is consistent. Then
{φ1, . . . , φn}  −φn+1.
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Lemma 4 shows that the set of conclusions of a consistent set of formulas is
also consistent. This result is employed to prove Proposition 3.

Lemma 4. Let � = (A, C,�) be a well defined (c-)SAF defined by the argu-
mentation theory (AS ,K), in which AS = (L,− ,R, n) and K = Kp ∪ Kn. Let
{φ1, . . . , φn, φn+1} ⊆ L be inconsistent, but {φ1, . . . , φn} is consistent. Then
{φ1, . . . , φn,−φn+1} is also consistent.

Lemma 5 is employed to prove Proposition 1.

Lemma 5. Let � = (A, C,�) be a well defined (c-)SAF defined by the argu-
mentation theory (AS ,K), in which AS = (L,− ,R, n) and K = Kp ∪ Kn. Let
B = {B1, . . . , Bm, Bm+1} ⊆ A be an inconsistent set of arguments such that for
each Bi ∈ B, it holds Sub(Bi) ⊆ B, {B1, . . . , Bm} is consistent and for each
Bj ∈ B − {Bm+1}, it is the case Bm+1 �∈ Sub(Bj). Then TopRule(Bm+1) �∈ Rs.

Proof. By absurd, assume TopRule(Bm+1) ∈ Rs. Then, Bm+1 is an argument of
the form B′

1, . . . , B
′
n → Conc(Bm+1) with strict top rule Conc(B′

1), . . . , Conc(B
′
n)

→ Conc(Bm+1). Let Γ = {Conc(B1), . . . , Conc(Bm), Conc(Bm+1)} and Γ ′ =
{Conc(B1), . . . , Conc(Bm)}. First we show Γ is inconsistent and Γ ′ is consistent.

As B is inconsistent, by Definition 6, we have S = Concs(Sub(B1)) ∪ . . . ∪
Concs(Sub(Bm))∪Concs(Sub(Bm+1)) is inconsistent. Given ∀Bi ∈ B, Sub(Bi) ⊆
B, we obtain ∀Bi ∈ B, Concs(Sub(Bi)) ⊆ Γ . Thus, S ⊆ Γ , and so Γ inconsistent.

Given {B1, . . . , Bm} is consistent, by Definition 6, S′ = Concs(Sub(B1)) ∪
. . . ∪ Concs(Sub(Bm)) is consistent. Note that ∀Bi ∈ {B1, . . . , Bm}, Conc(Bi) ∈
Concs(Sub(Bi)). It implies Γ ′ ⊆ S′. As S′ is consistent, Γ ′ is also consistent.

Then by Lemma 3, Γ ′  −Conc(Bm+1). As {Conc(B′
1), . . . , Conc(B

′
n)} ⊂ Γ ′

and Conc(B′
1), . . . , Conc(B′

n)  Conc(Bm+1), Γ ′  Conc(Bm+1). But then by
Definition 5, Γ ′ is inconsistent. It is an absurd as Γ ′ is consistent. ��

The next result is fundamental prove Propositions 3 and 4.

Proposition 1. Let � = (A, C,�) be a well defined (c-)SAF and (A,D) be the
corresponding AF, B ∈ A is an inconsistent argument, and � is reasonable.
There exists a consistent argument B′ s.t. (B′, B) ∈ D and M(B′) ⊆ Sub(B).

Proof. Let S1 = {A ∈ Sub(B) | A is firm and strict}. Note ΓA = Concs(S1) ⊆
ClRs

(Kn). As � is well defined (Definition 15), ClRs
(Kn) is consistent. Thus,

ΓA is consistent and by Definition 6, S1 is consistent. By construction, there
exists S2 ⊆ Sub(B) and B′′ ∈ Sub(B) such that S2 is consistent, S1 ⊆ S2,
S2 ∪{B′′} is inconsistent, ∀Bi ∈ S2 ∪{B′′}, Sub(Bi) ⊆ S2 ∪{B′′}, and ∀Bi ∈ S2,
B′′ �∈ Sub(Bi). Then, by Lemma 5, TopRule(B′′) �∈ Rs. Note that B′′ �∈ Kn,
otherwise S2 would be inconsistent. Thus, TopRule(B′′) ∈ Rd or B′′ ∈ Kp.

Let Γ = Concs(S2)∪Conc(B′′) and Γ ′ = Concs(S2). Given Γ is inconsistent,
Γ ′ is consistent, by Lemma 3, Γ ′  −Conc(B′′). By Lemma 4, Γ ′ ∪{−Conc(B′′)}
is consistent. Then, there exists an argument B′ of the form B′

1, . . . , B
′
n →

−Conc(B′′) s.t. {B′
1, . . . , B

′
n} ⊆ S2 ⊂ Sub(B). As Concs(Sub(B′)) ⊆ Γ ′ ∪

{−Conc(B′′)}, B′ is consistent. There are two possibilities:
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– (B′, B′′) ∈ D. As B′′ ∈ Sub(B), (B′, B) ∈ D. Given TopRule(B′) ∈ Rs,
M(B′) ⊆ Sub(B′

1) ∪ . . . ∪ Sub(B′
n). Also, as {B′

1, . . . , B
′
n} ⊆ Sub(B), we

obtain M(B′) ⊆ Sub(B).
– (B′, B′′) �∈ D. Then, by Lemma 2, for some C ∈ Sub(B′′), either

• (C,B′) ∈ D. It follows ∃B∗ ∈ Sub(B′) s.t. TopRule(B∗) ∈ Rd or B∗ ∈ Kp,
C attacks B′ on B∗ and (C,B∗) ∈ D. As TopRule(B′) ∈ Rs, it must be
that B∗ ∈ Sub(B′

1) ∪ . . . ∪ Sub(B′
n) ⊂ Sub(B). Then, (C,B) ∈ D. Also,

given C ∈ Sub(B′′) and B′′ ∈ Sub(B), Sub(C) ⊆ Sub(B). It implies
M(C) ⊆ Sub(B). In addition, given that B′ is consistent, (C,B′) ∈ D
and � is reasonable, we have that C is consistent.

• ∃D ∈ M(B′) s.t. C+
D is a strict continuation of (M(B′)\{D}) ∪ M(C)

s.t. (C+
D, B′) ∈ D. It implies ∃B∗ ∈ Sub(B′) s.t. TopRule(B∗) ∈ Rd or

B∗ ∈ Kp, C+
D attacks B′ on B∗ and (C+

D, B∗) ∈ D. As TopRule(B′) ∈ Rs,
it must be that B∗ ∈ Sub(B′

1) ∪ . . . ∪ Sub(B′
n) ⊂ Sub(B). Then,

(C+
D, B) ∈ D. Note M(C+

D) = M(B′)\{D} ∪ M(C). Given C ∈ Sub(B′′)
and B′′ ∈ Sub(B), M(C) ⊆ Sub(B). Again, as TopRule(B′) ∈ Rs,
M(B′) ⊆ Sub(B′

1) ∪ . . . ∪ Sub(B′
n) ⊂ Sub(B), M(B′) ⊆ Sub(B). Thus,

M(C+
D) ⊂ Sub(B). In addition, given that B′ is consistent, (C+

D, B′) ∈ D
and � is reasonable, we have that C+

D is consistent. ��

Lemma 6 comes from the fact that if B defeats a strict continuation A of
{A1, . . . , An}, then B defeats A on some Ai ∈ {A1, . . . , An}.

Lemma 6. [5] Let � = (A, C,�) be a well defined (c-)SAF. Let A ∈ A be a
strict continuation of {A1, . . . , An} ⊆ A, and ∀Ai (1 ≤ i ≤ n), Ai is acceptable
w.r.t. E ⊆ A. Then A is acceptable w.r.t. E.

The next lemma is employed to prove Proposition 3.

Lemma 7. [5] Let (A, C,�) be a well defined (c-)SAF and A ∈ A be acceptable
w.r.t. an att-admissible extension E ⊆ A of the corresponding AF (A,D). Then
∀B ∈ E ∪ {A}, neither (A,B) ∈ D nor (B,A) ∈ D.

For the following proposition, recall that by assumption, any c-SAF is well
defined and so satisfies c-classicality (Definition 15).

Proposition 2. [5] Let � = (A, C,�) be a well defined c-SAF. If ∃E ⊆ A s.t.
A1, . . . , An ∈ A are acceptable w.r.t. E, then

⋃n
i=1 Prem(Ai) is consistent.

Proposition 3 shows that if an argument A is acceptable w.r.t. to an att-
admissible extension E , then E ∪ {A} is att-conflict-free.

Proposition 3. Let A ∈ A be acceptable w.r.t. an att-admissible extension E
of an AF (A,D) corresponding to a well defined (c-)SAF � = (A, C,�). Then,
E ′ = E ∪ {A} is att-conflict-free.
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Proof. Firstly, since for any B ∈ E , B is acceptable w.r.t. E , in case � is a
c-SAF , by Proposition 2, Prem(A) ∪ Prem(B) is consistent. By absurd, suppose
E ′ is not att-conflict-free. It is clear E is att-conflict-free as it is an att-admissible
extension. Given A �≺ A, A can not attack itself since we would have (A,A) ∈ D,
contradicting Lemma 7. Hence, we have two possibilities:

– ∃B ∈ E , (B,A) ∈ C. By Lemma 7, (B,A) �∈ D. Observe that Prem(A) ∪
Prem(B) is consistent when � is well defined.

• If B is consistent, by Lemma 2, for some A′ ∈ Sub(A), either
1. (A′, B) ∈ D. Given B is acceptable w.r.t. E , ∃C ∈ E s.t. (C,A′) ∈ D.

Thus, by Lemma 1–2, (C,A) ∈ D, contradicting Lemma 7.
2. ∃B′ ∈ M(B) s.t. A′+

B′ is a strict continuation of (M(B)\ {B′})∪M(A′)
s.t. (A′+

B′ , B) ∈ D. As B is acceptable w.r.t. E , ∃C ∈ E s.t. (C,A′+
B′) ∈

D. By Lemma 1–2, for some Z ∈ Sub(A′+
B′), (C,Z) ∈ D. It follows

(C,Z) ∈ C. As A′+
B′ is a strict continuation of (M(B)\ {B′})∪M(A′),

by Definition 17, Z ∈ Sub(A)∪Sub(B). Hence, by Lemma 1–2, either
(C,B) ∈ D, from which follows (C,B) ∈ C, contradicting E is att-
conflict-free, or (C,A) ∈ D, contradicting Lemma 7.

• If B is inconsistent, by Proposition 1, there exists B′′ s.t. (B′′, B) ∈ D
and M(B′′) ⊆ Sub(B). As B is acceptable w.r.t. E , ∃C ∈ E s.t. (C,B′′) ∈
D. This implies ∃Z ∈ Sub(B′′) s.t. TopRule(Z) ∈ Rd or Z ∈ Kp, C
attacks B′′ on Z and (C,Z) ∈ D. It must be that for some B∗ ∈ M(B′′),
Z ∈ Sub(B∗). Given M(B′′) ⊆ Sub(B), Z ∈ Sub(B). By Lemma 1–2,
(C,B) ∈ D, hence (C,B) ∈ C, contradicting E is att-conflict free.

– ∃B ∈ E , (A,B) ∈ C. The proof is similar to the previous case. ��
Theorems 1, 2, 3, and 4 show ASPIC+ satisfies the postulates of [3]. Theorem

states that for an att-complete extension E , ∀A ∈ E , ∀A′ ∈ Sub(A), A′ ∈ E .

Theorem 1 (Sub-argument closure). [5] Let � = (A, C,�) be a well defined
(c-)SAF and E an att-complete extension of �. Then ∀A ∈ E : if A′ ∈ Sub(A)
then A′ ∈ E.

Proof. According to Lemma 1–3, A′ is acceptable w.r.t. E , and E ∪ {A′} is att-
conflict-free (Proposition 3). As E is an att-complete extension, A′ ∈ E . ��

Theorem 2 states that the conclusions of arguments in an att-complete exten-
sion are closed under strict rules.

Theorem 2 (Closure under strict rules). [5] Let � = (A, C,�) be a well
defined (c-)SAF and E an att-complete extension of �. Then {Conc(A) | A ∈
E} = ClRs

({Conc(A) | A ∈ E}).

Proof. We will show for any strict continuation X of E , X ∈ E . Any such X
is acceptable with relation to E (Lemma 6), and E ∪ {X} is att-conflict-free
(Proposition 3). As E is an att-complete extension, X ∈ E . ��

The following lemma is employed to prove Theorem 3.
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Lemma 8. Let � = (A, C,�) be a well defined (c-)SAF, E an att-admissible
extension of �, and ∃Y ∈ E s.t. Y is defeasible or plausible, and TopRule(Y ) ∈
Rs. Then ∀X ∈ E, it holds Conc(X) �∈ Conc(Y ).

Theorem 3 below, states that the conclusions of all arguments in an att-
admissible extension are mutually consistent.

Theorem 3 (Direct consistency). For a well defined (c-)SAF � = (A, C,�)
and E an att-admissible extension of �, {Conc(A) | A ∈ E} is directly consistent.

Proof. By absurd, suppose A,B ∈ E , and Conc(A) ∈ Conc(B).

– If A is firm and strict, and 1) B is strict and firm. It is an absurd as it
contradicts axiom consistency (Definition 15). 2) B is plausible or defeasible.
By Lemma 8, TopRule(B) �∈ Rs i.e., B ∈ Kp or TopRule(B) ∈ Rd. Thus,
(A,B) ∈ C, which is an absurd as E is att-conflict-free.

– A is plausible or defeasible, and
• B is strict and firm. From Definition 15, Conc(A) and Conc(B) are a

contradictory of each other. By Lemma 8, TopRule(A) �∈ Rs i.e., A ∈ Kp

or TopRule(A) ∈ Rd. Then (B,A) ∈ C, an absurd as E is att-conflict-free.
• B is plausible or defeasible. By Lemma 8, TopRule(B) �∈ Rs i.e., B ∈ Kp

or TopRule(B) ∈ Rd. We have (A,B) ∈ C, contradicting E is att-conflict-
free. Again by Lemma 8, TopRule(B) �∈ Rs. ��

Next, we employ Theorems 2 and 3 to show the closure under strict rules of
conclusions of arguments in an att-complete extension is directly consistent.

Theorem 4 (Indirect consistency). Let � = (A, C,�) be a well defined
(c-)SAF and E an att-complete extension of �. Then ClRs

({Conc(A) | A ∈ E})
is directly consistent.

Proof. It follows from Theorems 2 and 3. ��

3.1 Relation Between Att-conflict-free and Def-conflict-free

Now we will show the rationality postulates of [3] for (c-)SAF s when the notion
of conflict-free is based on the defeat relation. In Proposition 4 we show for a
well defined (c-)SAF (A, C,�), E ⊆ A is an att extension iff E is a def extension.

Proposition 4. Let � = (A, C,�) be a well defined (c-)SAF and (A,D) the
corresponding AF. For T ∈ {admissible, complete, grounded, preferred, stable,
semi-stable}, E is an att-T extension of � iff E is a def-T extension of �.

Proof. We first show that E is att-conflict-free iff E is def-conflict-free.

– If E is att-conflict-free, then E is def-conflict-free.
– If E is def-conflict-free, then E is att-conflict-free: By absurd, suppose B,A ∈ E

such that (B,A) ∈ C and (B,A) �∈ D. Since A,B ∈ fAF (E), if � is a c-SAF in
which A and B are defined as in Definition 7, Prem(A)∪Prem(B) is consistent
(Proposition 2). With relation to B, there are two possibilities:
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• If B is consistent, by Lemma 2, for some A′ ∈ Sub(A), either
1. (A′, B) ∈ D: As B is acceptable w.t.t. E , ∃C ∈ E s.t. (C,A′) ∈ D. By

Lemma 1–2, (C,A) ∈ D, contradicting E is def-conflict-free.
2. ∃B′ ∈ M(B) s.t. A′+

B′ is a strict continuation of (M(B)\ {B′}) ∪
M(A′) s.t. (A′+

B′ , B) ∈ D. Given B is acceptable w.r.t. E , ∃C ∈ E s.t.
(C,A′+

B′) ∈ D. By Lemma 1–2, ∃Z ∈ Sub(A′+
B′), (C,Z) ∈ D. It follows

(C,Z) ∈ C. As A′+
B′ is a strict continuation of (M(B)\ {B′})∪M(A′),

by Definition 17, Z ∈ Sub(A′)∪Sub(B). Hence, by Lemma 1–2, either
(C,B) ∈ D or (C,A) ∈ D, contradicting E is def-conflict-free.

• If B is inconsistent, by Proposition 1, there exists B′′ such that (B′′, B) ⊆
D and M(B′′) ∈ Sub(B). As B is acceptable w.r.t. E , ∃C ∈ E s.t.
(C,A′′) ∈ D. It implies ∃Z ∈ Sub(B′′) s.t. TopRule(Z) ∈ Rd or Z ∈ Kp, C
attacks B′′ on Z and (C,Z) ∈ D. It must be that for some B∗ ∈ M(B′′),
Z ∈ Sub(B∗). Given M(B′′) ⊆ Sub(B), Z ∈ Sub(B). By Lemma 1–2,
(C,B) ∈ D, contradicting E is def-conflict-free.

Let E be att-conflict-free. From Definition 14 and the result above, E is
att-admissible iff E ⊆ fAF (E) iff E is def-admissible. As any att-complete
extension is att-admissible, E is att-complete iff E is def-complete. As any
preferred/grounded/stable/semi-stable extension is also complete, the propo-
sition holds for these extensions. ��
By Proposition 4 we obtain that the postulates of [3] also hold for (c-)SAF s

when conflicts are defined under the defeat relation.

Corollary 1. Let � be a well defined (c-)SAF. Then Theorems 1, 2, 3, and 4
hold for the def-admissible and def-complete semantics of �.

Proof. It follows straightforwardly from Proposition 4. ��

4 Related Work and Discussion

Over the years, diverse proposals have been proposed to handle inconsistencies
in argumentation [6–8,10–16]. In [10], a simplified version of ASPIC+ named
ASPIC− allowing arguments with a strict top rule to be rebutted was intro-
duced. This suffices to avoid inconsistent extensions, but as observed in [11],
in ASPIC− inconsistencies may interfere with the acceptability of consistent
arguments. In [11], the ASPIC− is improved to remedy such a problem. The
resulting approach satisfies the rationality postulates of [3] and also makes it
possible to compare arguments using a preference relation. As downside, it is
limited to total preorderings, while in our work we can employ any reasonable
preordering.

Another approach taken by Arieli in [14–16] considers a sequent-based argu-
mentation framework to accommodate different types of languages, including
paraconsistent logics. However, unlike our work, this approach does not make
it possible to compare arguments with a preference relation. A different rout
taken in [6,7] employs the paraconsistent logic W presented in [17] to deal with
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inconsistencies. Although this approach allows for the instantiation of prefer-
ences relations, it fails to satisfy any of the postulates in [3]. In contrast, our
work is not limited to a single logic and also satisfies the rationality postulates
of [3].

In [8] the authors requires that for each argument, the set of conclusions of
all its sub-arguments are classically consistent. They show this solution satisfies
the rationality postulates of [3] for a restricted version of ASPIC+ without
preferences, but give counterexamples to the consistency postulates for the case
with preferences. In what follows, we compare this approach with our work when
considering preferences.

Example 6. [8] Let Rd = {p ⇒ q} and Kp = {p;¬p ∨ ¬q}. The corresponding
AF includes the arguments in Table 1 with their respective last defeasible links
and preference, which is given by the last link principle [4]. We assume that p
has priority 1, ¬p ∨ ¬q has priority 2 and p ⇒ q has priority 3.

Table 1. Arguments and their preferences

Argument Last Defeasible Link Preference

A1 = [p] p (1)

A2 = [A1 ⇒ q] p ⇒ q (3)

A3 = [¬p ∨ ¬q] ¬p ∨ ¬q (2)

A4 = [A1, A2 → ¬(¬p ∨ ¬q)] p; p ⇒ q (1)

A5 = [A1, A3 → ¬q] p;¬p ∨ ¬q (1)

A6 = [A2, A3 → ¬p] p ⇒ q;¬p ∨ ¬q (2)

As A6 is inconsistent, the solution proposed in [8] is to discard A6 from the
framework. The resulting framework is

A1 A2 A3 A4 A5

whose the only complete extension is E = {A1, A2 , A3, A4, A5}. Observe that E
is inconsistent, since A3, A4 ∈ E and Conc(A4) ∈ Conc(A3). In addition, E is not
closed under strict rules as A2, A3 ∈ E and A6 �∈ E .

In our approach, unlike in [8], the argument A6 will not be eliminated, but
neutralized by attributing to it a preference value lower than any preference
assigned to consistent arguments. Note that A4, A5 and A6 are strict contin-
uations of {A1, A2}, {A1, A3} and {A2, A3} respectively. Also, A4 and A5 are
the only consistent arguments among A4, A5 and A6. According to Definition
18 (item 2), it should be that A4 �≺ A3 or A5 �≺ A2. However, as it can be seen
in Table 1, A4 ≺ A3 and A5 ≺ A2. Thus, we obtain the last link principle is
not a reasonable preference ordering. If we replace in Table 1 the last link prin-
ciple by a reasonable preference ordering, for example, by imposing A4 �≺ A3,
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(A4, A3) ∈ D in the resulting framework, whose only complete extension will
be E ′ = {A1, A2, A4, A5}. As expected, E ′ satisfies the postulates of Sect. 3 (see
Corollary 1). In particular, E ′ is consistent and closed under strict rules.

5 Conclusion and Future Works

Inconsistency may occur for many reasons such as evolving information and
merging information from multiple sources. In the literature, argumentation is
frequently referred to as a natural approach to dealing with inconsistency. In this
work, we impose some conditions on the relations between arguments in ASPIC+

to prevent inconsistent arguments from interfering with consistent arguments.
By guaranteeing that any inconsistent argument is less preferred than any

consistent argument, we have neutralized undesirable consequences of the incon-
sistent arguments. We also showed our proposal satisfies all the rationality pos-
tulates described in [3]. Consequently, our proposal is the first one to present an
argumentation formalism based on ASPIC+ robust enough to work with incon-
sistent arguments, to allow for the instantiation of preference relations between
arguments, and to satisfy the fundamental rationality postulates of [3].

Future developments encompass identifying a preference relation that is rea-
sonable according to our definition of reasonable ordering. Another venture is to
verify under which conditions our approach satisfies the important principles of
Non-interference and Crash-Resistance of [18].

References

1. Carnielli, W., Marcos, J.: A taxonomy of C-systems. In: Paraconsistency, pp. 24–
117. CRC Press (2002)

2. Dung, P.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and N-person games. Artif. Intell. 77(2),
321–357 (1995)

3. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif.
Intell. 171(5–6), 286–310 (2007)

4. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument Comput. 1(2), 93–124 (2010)

5. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artif. Intell. 195, 361–397 (2013)

6. Grooters, D., Prakken, H.: Combining paraconsistent logic with argumentation.
In: COMMA, pp. 301–312 (2014)

7. Grooters, D., Prakken, H.: Two aspects of relevance in structured argumentation:
minimality and paraconsistency. J. Artif. Intell. Res. 56, 197–245 (2016)

8. Wu, Y., Podlaszewski, M.: Implementing crash-resistance and non-interference in
logic-based argumentation. J. Logic Comput. 25(2), 303–333 (2015)

9. Prakken, H.: Rethinking the rationality postulates for argumentation-based infer-
ence. In: COMMA, pp. 419–430 (2016)

10. Caminada, M., Modgil, S., Oren, N.: Preferences and unrestricted rebut. Compu-
tational Models of Argument (2014)



Dealing with Inconsistencies in ASPIC+ 503

11. Heyninck, J., Straßer, C.: Revisiting unrestricted rebut and preferences in struc-
tured argumentation. In: IJCAI, pp. 1088–1092 (2017)

12. Arieli, O.: Conflict-tolerant semantics for argumentation frameworks. In: del Cerro,
L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 28–40.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8 3

13. Arieli, O.: Conflict-free and conflict-tolerant semantics for constrained argumenta-
tion frameworks. J. Appl. Log. 13(4), 582–604 (2015)

14. Arieli, O., Straßer, C.: Sequent-based logical argumentation. Argument Comput.
6(1), 73–99 (2015)

15. Arieli, O., Straßer, C.: Logical argumentation by dynamic proof systems. Theor.
Comput. Sci. 781, 63–91 (2019)

16. Borg, A., Straßer, C., Arieli, O.: A generalized proof-theoretic approach to logical
argumentation based on hypersequents. Stud. Logica 109(1), 167–238 (2021)

17. Rescher, N., Manor, R.: On inference from inconsistent premisses. Theor. Decis.
1(2), 179–217 (1970)

18. Caminada, M., Carnielli, W., Dunne, P.: Semi-stable semantics. J. Log. Comput.
22(5), 1207–1254 (2012)

https://doi.org/10.1007/978-3-642-33353-8_3


A Grammar-based Genetic Programming
Hyper-Heuristic for Corridor Allocation

Problem

Rafael F. R. Correa(B) , Heder S. Bernardino , João M. de Freitas ,
Stênio S. R. F. Soares , Luciana B. Gonçalves , and Lorenza L. O. Moreno

Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil
{rafaelfreesz,heder,joao,ssoares,lbrugiolo,lorenza}@ice.ufjf.br

Abstract. Layout problems are the physical arrangement of facilities
along a given area commonly used in practice. The Corridor Allocation
Problem (CAP) is a class of layout problems in which no overlapping
of rooms is allowed, no empty spaces are allowed between the rooms,
and the two first facilities (one on each side) are placed on zero abscissa.
This combinatorial problem is usually solved using heuristics, but design-
ing and selecting the appropriate parameters is a complex task. Hyper-
Heuristic can be used to alleviate this task by generating heuristics auto-
matically. Thus, we propose a Grammar-based Genetic Programming
Hyper-Heuristic (GGPHH) to generate heuristics for CAP. We investi-
gate (i) the generation of heuristics using a subset of the instances of the
problem and (ii) using a single instance. The results show that the pro-
posed approach generates competitive heuristics, mainly when a subset
of instances are used. Also, we found a single instance that can be used
to generate heuristics that generalize to other cases.

Keywords: Corridor Allocation Problem · Genetic Programming ·
Combinatorial problem

1 Introduction

Layout problems are the physical arrangement of facilities along a given area,
forming a layout [10]. Many applications of these problems can be found in the
literature [3,10], such as the arrangement of rooms in buildings, schools and
hospitals, positioning and ordering of machines in production lines, arrange-
ment of books on shelves, and positioning of semiconductors in circuits printed.
In a practical context, a good layout configuration represents cost reductions,
improvement of work efficiency, and reduction of necessary spaces. Thus, one
may increase the competitiveness of the enterprises that optimizes their layouts.

Considering the layout problems, the Double-Row Facility Layout Problem
(DRFLP) deals with the arrangement of facilities along two rows [11], as shown
in Fig. 1. The cost of a layout is defined as the cost of all arranged facility pairs, in
which the cost of each pair of facilities is given by the product of their distance by
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J. C. Xavier-Junior and R. A. Rios (Eds.): BRACIS 2022, LNAI 13653, pp. 504–519, 2022.
https://doi.org/10.1007/978-3-031-21686-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21686-2_35&domain=pdf
http://orcid.org/0000-0002-3900-2869
http://orcid.org/0000-0003-2012-7802
http://orcid.org/0000-0001-9227-9202
http://orcid.org/0000-0003-3479-442X
http://orcid.org/0000-0001-8947-1607
http://orcid.org/0000-0001-5335-6252
https://doi.org/10.1007/978-3-031-21686-2_35


A GGPHH for Corridor Allocation Problem 505

a coefficient. The understanding of this coefficient depends on the context of the
problem being solved. For instance, it may represent the volume of demand, the
average daily traffic, and the priority in functional dependencies. This problem
contains a single constraint: no overlapping of rooms is allowed.

.... ....

....

di,j

Fig. 1. Illustrative example of an DRFLP problem.

The Corridor Allocation Problem (CAP) is a DRFLP variant and is handled
here. Two constraints are added to this problem [3]: (i) no empty spaces are
allowed between the rooms, and (ii) the two first facilities, one in each side of
the landscape, are placed on zero abscissa. This problem is illustrated in Fig. 2.

.... ....

....

di,j

Fig. 2. Illustrative example of an CAP problem.

The layout problems are NP-Hard [16] and, in this way, the search for the best
solution through the application of exact methods can result in high execution
times, making them hard to be applied in real-world situations [3]. Usually, this
type of problem is solved by obtaining good solutions in a reduced time. For this
purpose, heuristics are commonly used, in which candidate solutions are obtained
by exploring neighborhoods and no guarantee of optimality is provided. On the
other hand, a good solution is found with a small processing time [22].

One can find related work in the literature applying heuristics for the develop-
ment of efficient solutions for CAP. For instance, the use of Genetic Algorithms,
Local Searches, Scatter Search and Path Relinking is reported in [14]. Also, a
Simulated Annealing is proposed to solve CAP problems in [17]. Finally, in [16]
a Variable Neighborhood Search (VNS) is presented.
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The challenge in using heuristics is both in a large number of user-defined
parameters, and the definition of the proper heuristic, as its components may
vary according to the problem being solved. A solution to this problem lies in
automating the development of heuristics through hyper-heuristics [8].

Hyper-heuristics is a search methodology for automating the process of select-
ing or combining low level heuristics to solve hard optimization problems [9]. This
type of technique searches a space of heuristics rather than a space of solutions
directly. Genetic programming (GP) [18] is widely used for program genera-
tion and can be used for this purpose [8,15]. In particular, formal grammar can
limit the structure of generated programs, avoiding the generation of syntacti-
cally invalid solutions and making it efficient in developing solutions to complex
problems [13]. As a result, Grammar-Based Genetic Programming (GGP) [23]
is suitable for the generation of heuristics.

Although CAP has already been explored using meta-heuristics, to the best
of our knowledge the design of heuristics through GP and GGP was not inves-
tigated. The low-level heuristics presented in previous work can be explored
by HHs to improve the solutions of CAP. Thus, we propose here a Grammar-
based Genetic Programming Hyper-heuristic (GGPHH) for designing heuristics
to solve CAP problems. In addition, we define a subset of representative prob-
lems to be used in the generation of the heuristics.

Finally, computational experiments are performed with 89 instances from the
literature [1–3,5,6,21].

2 Problem Description

Layout configuration problems are a family of combinatorial problems. They aim
to improve traffic conditions in a specific environment by assigning geographical
locations to resources or facilities. Machines, for example, may be relocated to
optimize the flow of products on factory floor. The location of departments in a
building or examination rooms in a hospital may have an impact on the overall
traffic of people, products, or patients. The alignment of bays on semiconductors
production is also an interesting application of these problems [24].

Facilities are organized side-by-side along several rows on several variants of
layout configuration problems, such as the Space-Free Multi-Row Facility Layout
Problem (SF-MRFLP) [16], the Single Row Facility Layout Problem (SRFLP)
[19], Double Row Facility Layout Problem (DRFLP) [11] and the Corridor Allo-
cation Problem (CAP) [3]. They differ on the number and alignment of the rows
and on the possibility of including free spaces among the facilities.

The Corridor Allocation Problem (CAP) was proposed by Amaral [3]. It
distributes a set of n non-overlapping facilities (F ) alongside the two sides of a
corridor. Both sides start at the same point (i.e., rows are left-aligned on zero
abscissa) and no spaces are allowed between consecutive facilities. The length
of the corridor facing wall of each facility (li,∀i ∈ F ) and the predicted flow of
people for each pair of facilities (fij ,∀i, j ∈ F, i �= j) are known.
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In a feasible solution, the abscissa of a facility (xi,∀i ∈ F ) is the distance
between its middle point and the corridor starting point. The distance between
two facilities does not consider the corridor width and is the difference of their
respective abscissas (dij = |xi − xj | ,∀i, j ∈ F, i �= j). The CAP aims to minimize
the overall traffic z based on flow and distance between each pair of facilities, as

min
∑

i∈F

∑

j∈F

fij × dij . (1)

A solution to the problem consists of a permutation of facilities distribution
alongside the corridor and it can be represented by a single permutation sequence
and an integer t, that indicates where the second side of the corridor starts.
Therefore, facilities on indexes up to t − 1 are ordered from left to right on one
side of the corridor and the remaining facilities (from index t up to the end of
the sequence) are ordered from left to right on the other side.

3 Methods

The approaches used here are described in the following sections. First, the
genetic programming technique used to generate programs is described. In the
sequence, the components adopted in this work to compose the heuristics are
defined. We considered perturbation and local search strategies.

3.1 Grammar-Based Genetic Programming

Genetic Programming (GP) [18] is a nature-inspired meta-heuristic for the gener-
ation of programs. Each individual in the population represents a solution to the
problem, usually represented by trees. The tree encodes the solution, where the
internal nodes are operations (such as a program, a control, and mathematical
operators) and the leaves are operands (as variables and numeric constants).

The fitness of an individual indicates its performance, based on an objective
function. Its calculation usually evaluates the model over a dataset or executes
a controller for performing a given task.

GP evolves programs similar to other populational meta-heuristics. Initially,
a population is created and evaluated according to an objective function. Indi-
viduals are selected from the population to become parents. The parents are
recombined (crossover) and the offspring is mutated. The new individuals are
evaluated and the current population is updated using the offspring. The selec-
tion, crossover, mutation, evaluation, and replacement steps are repeated while
a stop criterion is not met.

In GP, usually, two individuals are selected, and produce two offspring. With
the tree representation, the crossover is based on selecting a node in both parents,
and then swapping them, creating two new individuals based on their code. The
mutation operates over one individual. In GP, commonly it is an individual
recently created by crossover. One sub-tree is randomly selected, and a new
derivation is created from that node.
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Fig. 3. Examples of the crossover (a) and mutation (b) operators of GGP.

Grammar-based Genetic Programming [23] (GGP) is a GP variant that uses
a grammar to create individuals. Using a formal grammar makes it possible to
constrain the search space and introduce previous knowledge.

A grammar is formed by a set of rules that arrange terminal and nonterminal
symbols. The structure of a GGP individual is a derivation tree, created accord-
ing to the grammar rules. In this case, the internal nodes are nonterminals, and
the leaves are terminals.

The crossover operator of GGP is similar to that of standard GP. However,
the crossover of GGP is guided by a formal grammar. An internal node is ran-
domly selected in the first parent and a node of the same type (representing the
same nonterminal) is randomly chosen in the second parent. The sub-trees of
those nodes are swapped, generating two new individuals. The mutation opera-
tor is also guided by the grammar. A random internal node is selected and the
sub-tree is replaced by another one, derived from the rule of the chosen nonter-
minal. Figure 3 presents illustrative examples of crossover and mutation of GGP.
In (a), the sub-trees swapped between the two parents are those not shaded. In
(b), the shaded area is the sub-tree replaced by a new randomly generated one.



A GGPHH for Corridor Allocation Problem 509

3.2 Perturbation Strategies

Perturbation methods are atomic or block movements that seek to change the
layout, regardless of the cost obtained after its application. This type of move-
ment avoids the solutions becoming trapped in local optima, making it possible
to search in other neighborhoods. The approaches used here are:

– Swap: a pair of facilities of the layout are swapped. It represents a unique
movement with predefined indexes;

– Shake: n pairs of facilities are randomly swapped;
– Shift: based on the representation of the solution on a single vector and an

index t that indicates the beginning of the second side of the corridor, this
movement receives a parameter r, which shifts the cut-off point of the array
to the index t + r. For r > 0, the offset moves the first r facilities located at
the beginning of the second side of the corridor to the end of the first side.
For r < 0, the last r facilities of the first side of the corridor are moved to
the beginning of the second side; and

– Reconstruction: r facilities are randomly selected and removed from the
layout, and these selected facilities are relocated one at a time, each one on
the side with the smallest number of facilities.

3.3 Local Search Approaches

Local search techniques are movements in a layout to find better solutions in the
search space. For each move that improves the total cost, the process is restarted
using the solution obtained.

This set of operations is performed repeatedly until a local optimum is
reached. The approaches used here are:

– Neighbour Swap: this movement swaps every pair of neighbour facilities on
the same side of the layout, restarting the procedure when an improvement
is obtained and finalizing the search when no improvement is reached for all
pairs of neighbour facilities.

– Non-Neighbour Swap: the facilities in positions i and j, with j > (i + 1),
are swapped, and the procedure is restarted when an improvement occurs
and concluded when no improvement is found (as in Neighbour Swap);

– Swap Between Opposite Sides: every pair of facilities placed on different
sides of the layout are swapped, and its restarting and stop criterion is the
same as the previous swap operators;

– Insertion: every facility on one side of the layout is removed and inserted in
every position on the other side, with the same restarting and stop criterion
of the previous approaches;

– Random Variable Neighborhood Descent (RVND): Neighbour Swap,
Non-neighbour Swap, Swap Between Opposite Sides, and Insertion are ran-
domly applied, and RVND is restarted when an improvement is observed
when applying any of these four movement operators; similarly to the other
cases, the search stops when no improvement is observed by using the four
movement operators;
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Algorithm 1. Pseudo-code for Genetic Programming.
1: procedure GP
2: Create initial population pop of heuristics of size PS
3: evaluate(pop)
4: while stop criterion is not met do
5: parents = selection(pop)
6: new_individuals = crossover(parents)
7: new_individuals = mutation(new_individuals)
8: evaluate(new_individuals)
9: replacement(pop, new_individuals)

10: end while
11: end procedure

– Full Permutation: pairs of positions of the layout are randomly selected
and swapped, the procedure is restarted when an improvement is observed
and is concluded when no improvement is reached for all pairs of neighbour
facilities.

4 The Proposed GGPHH

We propose here a Grammar-based Genetic Programming Hyper-Heuristic
(GGPHH) for generating heuristics for CAP. GGPHH evolves heuristics accord-
ing to the GGP search procedure. Thus, heuristics are randomly generated to
compose the initial population, these candidate heuristics are evaluated and,
while a stop criterion is not met, the following steps are performed: candidate
solutions are selected to be recombined, the solutions generated are mutated, the
new individuals are evaluated and the current population is updated using these
new heuristics. Algorithm 1 presents a pseudo-code for the proposed GGPHH.

An important component of GP is the representation of its candidate solu-
tions. Here, we adopted a GGP with a context-free grammar to represent the
candidate heuristics, that are composed by the movements presented in Sects. 3.2
and 3.3. The nonterminal <do> starts the grammar proposed in this work for
generating heuristics for CAP and its production rules are as

<do> ::= <pert> |<ref> | <do> <do>
<pert> ::= shake(<cons>) | swap(<cons>, <cons>)

| shift(<signOp> <cons>) | reconstruction(<cons>)
<ref> ::= nbrSwap() | nonNbrSwap() | oppSidesSwap()

| insertion()| rvnd() | fullPermut();
<signOp> ::= + |−

<cons> ::= 0.00 | 0.05 | ... | 0.95 | 1.00
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The start symbol <do> generates a combination of one or more perturbation
or local search strategies. Each nonterminal <pert> is replaced by a call to a
single perturbation strategy (shake, swap, shift or reconstruction, described in
Sect. 3.2). Similarly, each nonterminal <ref> produces a call to a single local
search (nbrSwap, nonNbrSwap, oppSidesSwap, insertion, rvnd or fullPermut,
detailed in Sect. 3.3). The nonterminal <signOp> allows the production of neg-
ative numbers by introducing positive or negative signs on numerical constants.
The nonterminal <cons> is replaced by one of the real values listed, that repre-
sents a percentage of the size of the problem.

For each individual, the grammar is used to derive a heuristic to the prob-
lem, which is interpreted and executed during the GP algorithm. The fitness of
each individual, based on heuristic testing, allows for the selection of the best
individuals.

Two distinct strategies were used, based on the computation of the fitness of
each individual. The first one focuses on a single problem instance during the
execution of the grammar-derived heuristic. In this case, the fitness f is defined
as the gap between the literature best-known result z∗

pi
and the solution cost zpi

is the overall traffic z (Eq. 1) of the individual heuristic when solving instance
pi as

f1(pi) = (zpi
− z∗

pi
)/z∗

pi
. (2)

The second strategy uses a set of instances (P = {p1, ..., p|P |}) to evaluate
the performance of each individual. The heuristic is executed once per instance
and the fitness is the average of the computed instances gaps, as

f2(P ) =
|P |∑

i=1

f1(pi) / |P |. (3)

The development of two different strategies aims to compare the perfor-
mance of the GP algorithm depending on the use of a single instance or a set
of instances. Since each instance must be executed for each individual of each
generation, the first approach tends to run much faster. Nevertheless, the quality
of the algorithm based on a single instance may vary depending on the chosen
instance and has to be compared to the second approach.

5 Computational Experiments

Computational experiments were performed to generate heuristics for CAP and
to analyze the results obtained by the proposed GGPHH technique consid-
ering its variants. We used the following set of 89 instances from the litera-
ture: Sα, α ∈ {9, 9H, 10, 11} [21]; Amβ, β ∈ {12a, 12b, 13a, 13b, 15} [3]; Nγ.δ,
γ ∈ {25, 30, 40}, 1 ≤ δ ≤ 5 [5]; Sko.ε.ζ, ε ∈ {42, 49, 56} and 1 ≤ ζ ≤ 5
and Sko.64.5 [1]; Pθ ,1 ≤ θ ≤ 6 [2]; ste36.0η, 1 ≤ η ≤ 6, [6]; CAP.ι.κ.λ,
ι = {30, 60, 90}, κ = {30, 40, 50, 60} and 1 ≤ λ ≤ 3 [1]; and finally, AKV.μ.05,
μ ∈ {60, 70} [4]; with n ∈ {9, . . . , 70} the number of facilities. From these prob-
lems, a subset of representative instances was selected to generate the GGPHH
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variants. The following ones were chosen: S9, S10, S11, Am15, N25.01, Sko42.1,
Sko42.2, Sko42.3, Sko42.4, and Sko49.1. Finally, the General variant evolves the
heuristics using all these 10 instances.

The experiments were performed on a PC with an AMD Ryzen 5 2600
3.40GHz CPU, 16.0GB DDR4-1066GHz, and Ubuntu 22.04 LTS. The proposals
were implemented in C++11. The source code of the proposals and the results
are public available1. A supplementary material is also provided.

GP evolved 100 individuals during 100 generations. We defined the other
parameters, as follows: maximum tree depth equals 10, the crossover probability
is 90%, the mutation probability is 10%, and 5% of the best individuals remains
in the population (elitism). It is important to highlight that any generation
of new candidate solutions (in the initial population, or by the crossover and
mutation operators) is performed without violating the maximum tree depth.

5.1 Analysis of the Results

The best and average values of the results obtained by the variants of the pro-
posed GGPHH are presented in Tables 1, 2, 3, and 4. The columns indicate the
instance used to evaluate the candidate solutions. Column General represents the
GGPHH variant that uses a set of 10 instances to evaluate each individual. The
best results are highlighted in boldface and the non-parametric Kruskal-Wallis
was performed to evaluate if the results with the best average results are sta-
tistically better than the other ones. The results statistically similar to the best
ones are marked with a star (∗). In addition, the number of instances/problems
each variant presented the best values are presented in Table 5.

According to these results, the General variant found the best results in most
of the instances (30 of the 89 instances), the Sko42.03 variant in 28 instances
and the Sko49.01 variant in 26 instances. Also, the General variant reached the
best average results in most problems (30 of the 89 instances) and the Sko42.01
variant obtained the best average results in 19 instances. Thus, the General
variant presented the best values in most cases. It is interesting to notice that
the Sko42.01 variant uses a single instance to generate the heuristics but it is
also capable to reach competitive results when compared to the General variant.

Performance Profiles (PPs) [12] are used to analyze the relative performance
of the search techniques when the set of problems is large. With a set S of
solvers si, i ∈ {1, . . . , ns}, and a set P of problems/instances pj , j ∈ {1, . . . , np},
tp,s can be defined as a performance measurement for the method s ∈ S when
solving the problem p ∈ P . The performance ratio rp,s = tp,s

max{tp,s:s∈S} is the
relative performance of the method s ∈ S. The probability that the performance
ratio rp,s of method s is within a factor τ > 0 of the best ratio observed for
every technique in S can be defined as ρs(τ) = 1

np
|{p ∈ P : rp,s ≤ τ}|, where

ρs(τ) denotes the PPs curves. From PPs [7], are identified: (i) the approach that
obtained the best results for most problems (largest ρ(1)), (ii) the most reliable

1 https://github.com/rafaelfreesz/capPG.git.

https://github.com/rafaelfreesz/capPG.git
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Table 1. Best solutions found for the instances with size n ≤ 56.

Instance GGPHH Variant
S9 S10 S11 Am15 N25.01 Sko42.01 Sko42.02 Sko42.03 Sko42.04 Sko49.01 General

S9 1181.5 1181.5 1181.5 1181.5 1181.5 1181.5 1181.5 1181.5 1181.5 1181.5 1181.5
S9H 2294.5 2294.5 2294.5 2329.5 2294.5 2294.5 2294.5 2294.5 2294.5 2294.5 2294.5
S10 1374.5 1374.5 1374.5 1374.5 1374.5 1374.5 1374.5 1374.5 1374.5 1374.5 1374.5
S11 3466.5 3439.5 3439.5 3479.5 3439.5 3439.5 3439.5 3439.5 3439.5 3439.5 3439.5
Am12a 1529.0 1529.0 1529.0 1529.0 1529.0 1529.0 1529.0 1529.0 1529.0 1529.0 1529.0
Am12b 1609.5 1609.5 1609.5 1609.5 1609.5 1609.5 1609.5 1609.5 1609.5 1609.5 1609.5
Am13a 2472.5 2467.5 2467.5 2467.5 2467.5 2467.5 2467.5 2467.5 2467.5 2467.5 2467.5
Am13b 2871.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0 2870.0
Am15 3207.0 3195.0 3195.0 3195.0 3195.0 3195.0 3195.0 3195.0 3195.0 3195.0 3195.0
N25.01 2306.0 2302.0 2302.0 2302.0 2302.0 2302.0 2302.0 2302.0 2302.0 2302.0 2302.0
N25.02 18662.5 18600.5 18600.5 18626.5 18595.5 18601.5 18595.5 18601.5 18601.5 18595.5 18595.5
N25.03 12195.0 12138.0 12136.0 12138.0 12137.0 12133.0 12128.0 12124.0 12139.0 12138.0 12116.0
N25.04 24344.5 24192.5 24214.5 24290.5 24196.5 24216.5 24218.5 24216.5 24218.5 24234.5 24214.5
N25.05 7852.0 7819.0 7819.0 7825.0 7819.0 7819.0 7827.0 7819.0 7819.0 7819.0 7819.0
N30.01 4127.0 4115.0 4115.0 4115.0 4115.0 4115.0 4115.0 4115.0 4115.0 4115.0 4115.0
N30.02 10829.5 10790.5 10789.5 10784.5 10784.5 10791.5 10789.5 10793.5 10785.5 10785.5 10781.5
N30.03 22725.0 22706.0 22706.0 22711.0 22706.0 22706.0 22713.0 22706.0 22706.0 22708.0 22702.0
N30.04 28558.5 28401.5 28417.5 28404.5 28401.5 28401.5 28404.5 28401.5 28401.5 28404.5 28411.5
N30.05 57752.0 57480.0 57471.0 57456.0 57453.0 57436.0 57481.0 57424.0 57447.0 57434.0 57437.0
P1 30422.5 30316.5 30290.5 30318.5 30310.5 30303.5 30309.5 30290.5 30295.5 30316.5 30312.5
P2 34135.0 34012.0 33991.0 34015.0 33997.0 33980.0 34018.0 33976.0 33986.0 33979.0 33985.0
P3 35131.5 35099.5 35081.5 35093.5 35080.5 35073.5 35098.5 35062.5 35074.5 35081.5 35068.5
P4 34812.5 34667.5 34677.5 34701.5 34670.5 34675.5 34675.5 34668.5 34679.5 34680.5 34675.5
P5 30880.0 30812.0 30791.0 30826.0 30814.0 30806.0 30801.0 30830.0 30803.0 30786.0 30787.0
P6 34506.5 34437.5 34437.5 34447.5 34424.5 34441.5 34447.5 34441.5 34437.5 34424.5 34438.5
ste36.01 5182.0 4966.0 4966.0 5486.0 5003.0 5014.0 5003.0 4966.0 4966.0 5003.0 4966.0
ste36.02 90682.0 88382.0 88431.0 89270.0 88382.0 88977.0 89041.0 88819.0 89152.0 88939.0 88466.0
ste36.03 51777.5 50824.5 50727.5 51362.5 50686.5 50529.5 50426.5 50688.5 50616.5 50703.5 50713.5
ste36.04 49093.5 46884.5 47306.5 48059.5 47224.5 47156.5 47007.5 47193.5 46940.5 47102.5 46992.5
ste36.05 46537.5 45183.5 45030.5 45398.5 44710.5 44964.5 44804.5 44688.5 44619.5 44565.5 44974.5
N40.01 53943.5 53746.5 53769.5 53858.5 53755.5 53748.5 53743.5 53745.5 53753.5 53764.5 53740.5
N40.02 49082.0 48932.0 48942.0 48973.0 48924.0 48954.0 48942.0 48924.0 48908.0 48923.0 48925.0
N40.03 39357.5 39282.5 39260.5 39270.5 39280.5 39264.5 39275.5 39266.5 39261.5 39265.5 39263.5
N40.04 38485.0 38381.0 38380.0 38381.0 38361.0 38355.0 38380.0 38379.0 38384.0 38377.0 38383.0
N40.05 51688.0 51529.0 51511.0 51544.0 51505.0 51532.0 51532.0 51505.0 51515.0 51518.0 51544.0
Sko42.01 12760.0 12731.0 12731.0 12741.0 12731.0 12731.0 12731.0 12731.0 12731.0 12731.0 12731.0
Sko42.02 108359.5 108055.5 108050.5 108083.5 108082.5 108059.5 108049.5 108053.5 108069.5 108043.5 108071.5
Sko42.03 86921.5 86667.5 86677.5 86744.5 86676.5 86683.5 86700.5 86672.5 86678.5 86704.5 86684.5
Sko42.04 69111.0 68785.0 68842.0 68808.0 68780.0 68771.0 68767.0 68753.0 68795.0 68811.0 68771.0
Sko42.05 124313.5 124111.5 124064.5 124105.5 124088.5 124118.5 124055.5 124095.5 124098.5 124123.5 124075.5
Sko49.01 20506.0 20478.0 20482.0 20478.0 20478.0 20478.0 20482.0 20478.0 20482.0 20470.0 20470.0
Sko49.02 208910.0 208159.0 208241.0 208450.0 208217.0 208176.0 208179.0 208242.0 208192.0 208157.0 208160.0
Sko49.03 162517.0 162430.0 162332.0 162631.0 162299.0 162349.0 162238.0 162389.0 162405.0 162273.0 162344.0
Sko49.04 118556.5 118345.5 118315.5 118370.5 118324.5 118376.5 118298.5 118337.5 118319.5 118306.5 118307.5
Sko49.05 333418.0 332879.0 332941.0 332946.0 333038.0 332943.0 333016.0 332953.0 332936.0 333020.0 333033.0
Sko56.01 32031.0 31983.0 31983.0 31984.0 31983.0 31977.0 31986.0 31985.0 31982.0 31984.0 31983.0
Sko56.02 248791.0 248334.0 248311.0 248628.0 248329.0 248310.0 248309.0 248286.0 248301.0 248285.0 248279.0
Sko56.03 85472.0 85215.0 85223.0 85318.0 85212.0 85242.0 85227.0 85221.0 85214.0 85210.0 85218.0
Sko56.04 157052.0 156770.0 156701.0 156804.0 156730.0 156707.0 156746.0 156812.0 156782.0 156684.0 156758.0
Sko56.05 296678.5 296283.5 296347.5 296428.5 296304.5 296350.5 296280.5 296298.5 296267.5 296316.5 296270.5
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approach (smallest τ such that ρ(τ) = 1), and (iii) the best overall performance
(largest area under the PPs curves).

PPs are presented in Fig. 4, where one can observe that the General variant
obtained the best average results in most of the problems (30 of the 89 instances)
and reached the largest area under the PPs curves. Also, this variant is the
second most reliable one, with ρ(1.006787) = 1. On the other hand, the variant
that uses Sko42.01 obtained the second largest area under the PPs curves and
is the second one that found the best average results in most of the problems
(19 instances). However, this variant reached ρ(τ) = 1 only when τ = 1.010377.
Sko42.03 is the second one that found the best results in most of the problems
(28 instances) and obtained the third largest area under the PPs curves. It is
also the most reliable one, reaching ρ(1.005836) = 1 with the smallest τ .

Table 2. Best solutions obtained for the instances with size n ≥ 60.

Instance GGPHH Variant
S9 S10 S11 Am15 N25.01 Sko42.01 Sko42.02 Sko42.03 Sko42.04 Sko49.01 General

AKV.60.05 161497.0 159805.0 159806.0 160093.0 159777.0 159771.0 159823.0 159789.0 159766.0 159761.0 159763.0
CAP.30.30.1 205190.0 204308.0 204277.0 205459.0 204346.0 204293.0 204308.0 204306.0 204245.0 204451.0 204287.0
CAP.30.30.2 194606.5 193619.5 193469.5 193457.5 193466.5 193543.5 193460.5 193492.5 193430.5 193433.5 193407.5
CAP.30.30.3 162627.5 161735.5 161702.5 161744.5 161724.5 161705.5 161600.5 161779.5 161717.5 161634.5 161793.5
CAP.30.40.1 135977.5 135409.5 135221.5 135319.5 135330.5 135338.5 135291.5 135345.5 135312.5 135390.5 135294.5
CAP.30.40.2 160655.0 159261.0 159359.0 159388.0 159299.0 159368.0 159338.0 159331.0 159331.0 159357.0 159324.0
CAP.30.40.3 160339.5 159331.5 159188.5 159402.5 159149.5 159172.5 159116.5 159093.5 159406.5 159143.5 159103.5
CAP.30.50.1 111618.5 110816.5 110715.5 110983.5 110617.5 110898.5 110768.5 110840.5 110758.5 110732.5 110736.5
CAP.30.50.2 115951.0 115533.0 115503.0 115775.0 115507.0 115439.0 115486.0 115448.0 115489.0 115480.0 115513.0
CAP.30.50.3 115412.0 114455.0 114340.0 114749.0 114375.0 114401.0 114424.0 114365.0 114401.0 114406.0 114337.0
CAP.30.60.1 108788.0 108153.0 108203.0 108123.0 108241.0 108192.0 108214.0 108194.0 108168.0 108221.0 108184.0
CAP.30.60.2 110739.5 110124.5 110079.5 110512.5 110115.5 110036.5 110088.5 110094.5 110099.5 110091.5 110049.5
CAP.30.60.3 92510.0 92009.0 91920.0 92259.0 91967.0 91978.0 91891.0 91801.0 91996.0 91845.0 91882.0
CAP.60.30.1 446198.5 445655.5 445448.5 446109.5 445580.5 445440.5 445493.5 445687.5 445548.5 445609.5 445473.5
CAP.60.30.2 409318.5 408056.5 408005.5 408426.5 408020.5 408011.5 407953.5 408073.5 408034.5 408018.5 408051.5
CAP.60.30.3 417897.5 417045.5 417027.5 417067.5 417117.5 417054.5 417070.5 417059.5 417037.5 417068.5 417003.5
CAP.60.40.1 313945.0 313416.0 313381.0 313435.0 313472.0 313399.0 313432.0 313392.0 313384.0 313403.0 313371.0
CAP.60.40.2 321370.5 320875.5 320827.5 320785.5 320953.5 320815.5 320818.5 320832.5 320811.5 320829.5 320807.5
CAP.60.40.3 363827.5 363216.5 363173.5 363218.5 363088.5 363169.5 363219.5 363255.5 363288.5 363335.5 363137.5
CAP.60.50.1 274006.0 273587.0 273542.0 273576.0 273566.0 273548.0 273532.0 273575.0 273527.0 273518.0 273527.0
CAP.60.50.2 270218.5 269908.5 269838.5 269834.5 269886.5 269817.5 269782.5 269860.5 269821.5 269842.5 269917.5
CAP.60.50.3 295968.0 295569.0 295567.0 295568.0 295569.0 295536.0 295507.0 295501.0 295516.0 295567.0 295552.0
CAP.60.60.1 228230.0 227981.0 227979.0 228133.0 227973.0 227953.0 227978.0 228012.0 227980.0 227992.0 227945.0
CAP.60.60.2 247057.0 246712.0 246625.0 246978.0 246629.0 246659.0 246651.0 246707.0 246646.0 246655.0 246628.0
CAP.60.60.3 206959.5 206609.5 206603.5 206923.5 206593.5 206576.5 206604.5 206591.5 206624.5 206589.5 206635.5
CAP.90.30.1 629500.0 628957.0 628965.0 629079.0 629026.0 629059.0 628994.0 629075.0 628983.0 628958.0 628934.0
CAP.90.30.2 561801.5 561306.5 561269.5 561483.5 561275.5 561287.5 561245.5 561335.5 561306.5 561217.5 561212.5
CAP.90.30.3 588096.5 587861.5 587856.5 587908.5 587869.5 587841.5 587854.5 587849.5 587878.5 587838.5 587852.5
CAP.90.40.1 474373.0 474130.0 474096.0 474135.0 474138.0 474127.0 474066.0 474153.0 474098.0 474083.0 474088.0
CAP.90.40.2 480865.0 480011.0 480006.0 480469.0 480135.0 480034.0 480015.0 480243.0 480051.0 480044.0 480022.0
CAP.90.40.3 513048.0 512492.0 512483.0 512555.0 512523.0 512480.0 512529.0 512475.0 512493.0 512510.0 512509.0
CAP.90.50.1 480630.0 479820.0 479705.0 479835.0 479787.0 479780.0 479778.0 479780.0 479749.0 479742.0 479768.0
CAP.90.50.2 445505.0 445201.0 445151.0 445304.0 445128.0 445163.0 445099.0 445183.0 445140.0 445094.0 445105.0
CAP.90.50.3 495349.5 495153.5 495084.5 495245.5 495109.5 495097.5 495094.5 495138.5 495078.5 495122.5 495054.5
CAP.90.60.1 385720.5 385449.5 385450.5 385469.5 385467.5 385445.5 385455.5 385441.5 385445.5 385454.5 385456.5
CAP.90.60.2 344880.0 344788.0 344804.0 344817.0 344840.0 344837.0 344802.0 344811.0 344812.0 344808.0 344784.0
CAP.90.60.3 411582.0 411322.0 411268.0 411462.0 411323.0 411259.0 411273.0 411283.0 411280.0 411267.0 411284.0
Sko64.05 251144.5 250950.5 250923.5 250913.5 251014.5 250913.5 250942.5 250904.5 250912.5 250905.5 250924.5
AKV.70.05 2120309.5 2110546.5 2111485.5 2117174.5 2110405.5 2111787.5 2111356.5 2110367.5 2110894.5 2111087.5 2110528.5
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5.2 Analysis of the Best Heuristic Created

One of the main advantages of GP techniques is its symbolic solutions. Here, we
present in Fig. 5 the best heuristic generated by GGPHH, which was obtained
using the General variant. This solution contains a pattern in the four blocks of
instructions clustered in lines 4–7. Each of these lines starts with a perturbation
and follows with one or more local searches. These steps can be observed in well-
known search techniques, such as Iterated Local Search (ILS) [22]. On the other
hand, there is a predominance of using permutations by reconstructions of the
solutions (lines 4–6) and these instructions are common in Iterated Greedy (IG),
as IG performs deconstruction and reconstruction operations on some elements
of the solution until a stopping criterion is reached [20].

Table 3. Average solutions obtained for the instances of size n ≤ 56.

Instance GGPHH Variant
S9 S10 S11 Am15 N25.01 Sko42.01 Sko42.02 Sko42.03 Sko42.04 Sko49.01 General

S9 1190.13 1181.50* 1181.50* 1181.50* 1181.50* 1181.50* 1181.50* 1181.50* 1181.50* 1181.50* 1181.50*
S9H 2298.70 2295.00∗ 2295.00∗ 2329.50 2295.10 2294.60* 2295.20 2294.80∗ 2295.00∗ 2294.60* 2294.60*
S10 1386.47 1374.50* 1374.77∗ 1378.07 1374.63∗ 1375.53 1374.50* 1374.63∗ 1374.50* 1374.50* 1374.90∗
S11 3524.67 3451.87∗ 3448.30∗ 3489.03 3453.70∗ 3445.33∗ 3449.27∗ 3447.10∗ 3450.73∗ 3448.87∗ 3445.27*
Am12a 1531.57∗ 1531.90∗ 1533.20∗ 1532.90∗ 1531.73∗ 1534.00 1533.50∗ 1533.73∗ 1533.57∗ 1533.03∗ 1531.30*
Am12b 1661.87 1612.10* 1619.97 1617.53∗ 1612.27∗ 1620.03 1622.13 1616.47∗ 1618.77∗ 1627.13 1614.87∗
Am13a 2485.83 2467.70∗ 2467.80∗ 2469.50 2467.70∗ 2467.93∗ 2467.90∗ 2467.67* 2467.70∗ 2467.70∗ 2468.00∗
Am13b 2904.93 2870.50∗ 2870.83∗ 2878.77 2871.87∗ 2871.17∗ 2872.00∗ 2870.60∗ 2871.50∗ 2872.53∗ 2870.47*
Am15 3243.53 3201.83∗ 3205.57 3205.13∗ 3206.70 3204.00∗ 3205.50∗ 3204.67 3207.70 3208.33 3199.90*
N25.01 2317.60 2308.20 2305.97 2310.47 2306.63 2302.83* 2306.67 2305.87 2306.13 2307.37 2303.60∗
N25.02 18801.27 18647.67∗ 18651.27∗ 18659.97 18635.77* 18643.53∗ 18652.47∗ 18652.47 18650.87∗ 18651.33∗ 18639.47∗
N25.03 12300.70 12169.10 12167.47 12187.67 12167.80∗ 12164.77∗ 12167.37 12166.23 12165.47 12163.50∗ 12157.57*
N25.04 24471.57 24273.43∗ 24306.13 24319.33 24276.60∗ 24294.50 24300.60 24306.73 24299.83 24308.23 24272.43*
N25.05 7909.60 7834.87* 7844.70 7847.67 7836.73∗ 7843.87 7845.87 7842.03 7838.23∗ 7839.33∗ 7835.67∗
N30.01 4162.20 4115.87∗ 4116.83∗ 4117.73 4116.70 4116.03∗ 4116.07∗ 4116.33∗ 4116.03∗ 4117.27 4115.80*
N30.02 10901.33 10805.13∗ 10813.33 10800.33* 10803.97 10809.03 10812.63 10812.27 10808.60 10809.63 10805.07∗
N30.03 22883.53 22723.70∗ 22728.53∗ 22745.40 22725.93∗ 22723.20∗ 22733.50 22729.40∗ 22722.90* 22725.03∗ 22723.73∗
N30.04 28814.80 28459.87 28456.27 28503.73 28456.57∗ 28439.90* 28454.43∗ 28460.57 28442.90∗ 28454.03 28447.10∗
N30.05 58078.23 57627.63∗ 57652.83 57605.00∗ 57619.00∗ 57591.70∗ 57623.73∗ 57659.13 57588.90* 57635.30∗ 57596.13∗
P1 30519.27 30383.37 30360.17∗ 30406.27 30374.67 30368.07∗ 30356.07* 30367.67∗ 30363.10∗ 30368.33∗ 30359.87∗
P2 34282.67 34073.17 34061.27∗ 34137.43 34069.27 34042.73* 34064.97∗ 34057.47∗ 34043.60∗ 34054.50∗ 34048.27∗
P3 35415.90 35161.70 35146.23∗ 35344.20 35149.57∗ 35139.50* 35165.17∗ 35157.50 35175.87∗ 35142.40∗ 35143.53∗
P4 34980.63 34734.17 34738.00 34791.20 34745.93 34719.37* 34752.67 34757.73 34754.97 34736.83∗ 34725.67∗
P5 30976.63 30873.00 30866.87∗ 30883.47 30874.07 30857.23∗ 30864.03∗ 30860.00∗ 30862.00∗ 30863.73∗ 30856.60*
P6 34620.77 34478.93∗ 34486.27 34504.47 34468.60* 34471.43∗ 34485.47 34474.97∗ 34477.73∗ 34473.23∗ 34470.27∗
ste36.01 5324.90 5133.00 5137.33 5541.00 5106.33∗ 5140.83 5160.03 5088.03* 5151.23 5156.90 5122.57∗
ste36.02 96169.23 91018.17 90937.17 93826.20 90430.40∗ 90878.30 90557.47∗ 90201.60* 90697.57 90759.97 90303.13∗
ste36.03 53853.77 51531.33∗ 51525.97 53319.37 51470.70∗ 51576.93 51640.00 51301.17* 51519.07 51578.70 51392.97∗
ste36.04 50855.73 48409.63∗ 48561.90∗ 49995.83 48237.17∗ 48414.50∗ 48912.67 48488.63∗ 48253.97∗ 48537.57∗ 48207.30*
ste36.05 48249.23 46096.47 45943.40 47473.53 46090.00 45888.20 45847.37 45501.90* 45749.93∗ 45883.80 45694.90∗
N40.01 54296.17 53845.97∗ 53851.80∗ 54633.50 53838.60∗ 53820.07* 53861.43 53864.00 53862.80 53831.77∗ 53828.20∗
N40.02 49377.07 49002.27 49006.07 49049.17 48986.70∗ 48980.43* 48994.43 49008.40 48984.83∗ 48984.40∗ 48990.40∗
N40.03 39534.33 39304.60 39304.00 39293.77* 39319.93 39307.77 39302.53∗ 39298.00∗ 39306.17 39301.80∗ 39301.50∗
N40.04 38698.77 38429.20∗ 38420.10∗ 38478.90 38413.77* 38427.57∗ 38427.77∗ 38442.00 38424.57∗ 38419.93∗ 38419.33∗
N40.05 51948.33 51595.80 51589.50∗ 51969.03 51578.93∗ 51569.97* 51584.83∗ 51589.93∗ 51574.07∗ 51576.40∗ 51576.50∗
Sko42.01 12859.70 12744.13 12747.87 12760.17 12744.30 12734.63* 12747.20 12745.00 12742.77 12746.17 12742.40

Sko42.02 108600.90 108168.43∗ 108158.10∗ 108221.67 108189.77 108156.20∗ 108175.20∗ 108180.50 108141.43* 108160.07∗ 108158.73∗
Sko42.03 87285.23 86870.80 86836.77∗ 86938.43 86848.17 86836.50∗ 86847.43 86820.17∗ 86835.23∗ 86840.40∗ 86794.50*
Sko42.04 69315.93 68900.20 68926.73 69046.47 68887.17∗ 68883.43∗ 68888.47∗ 68919.23 68905.10 68890.60∗ 68876.23*
Sko42.05 125046.60 124250.27∗ 124235.20∗ 124584.53 124227.60∗ 124236.40∗ 124198.43* 124225.63∗ 124232.80∗ 124215.40∗ 124225.87∗
Sko49.01 20550.17 20495.20∗ 20498.37 20506.90 20496.07∗ 20489.60* 20498.20 20492.67∗ 20499.50 20495.77 20489.97∗
Sko49.02 209659.57 208544.57∗ 208472.70∗ 209527.33 208504.77∗ 208439.67* 208506.77∗ 208584.77∗ 208461.73∗ 208468.00∗ 208486.17∗
Sko49.03 163539.87 162603.40 162549.63 163403.00 162480.70* 162489.23∗ 162586.87∗ 162604.47 162622.30 162505.20∗ 162528.53∗
Sko49.04 118882.17 118503.17 118475.20∗ 118649.03 118458.60∗ 118521.20 118478.20∗ 118468.63∗ 118466.17∗ 118465.57∗ 118441.57*
Sko49.05 334706.50 333302.10∗ 333389.50 333324.07 333316.27 333156.23* 333312.23 333272.33 333241.77∗ 333344.33 333263.97∗
Sko56.01 32163.27 32010.47 32024.03 32010.40 32022.33 31998.90* 32021.00 32010.50 32022.27 32012.57 32008.10

Sko56.02 249867.20 248603.10 248506.20∗ 250451.13 248562.97∗ 248474.87∗ 248481.67∗ 248605.73 248495.03∗ 248537.57 248448.23*
Sko56.03 85670.10 85380.07 85368.07 85574.73 85309.50* 85355.93 85355.10 85418.57 85339.60∗ 85356.00 85321.63∗
Sko56.04 157604.40 156911.97 156878.77∗ 157053.57 156908.43 156858.03∗ 156915.37 156960.87 156897.97 156851.63* 156861.17∗
Sko56.05 298502.87 296615.67 296527.70 297572.67 296431.53∗ 296473.30∗ 296454.97∗ 296657.07 296449.63∗ 296518.37∗ 296425.97*
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Table 4. Average solutions found for the instances of size n ≥ 60.

Instance GGPHH Variant
S9 S10 S11 Am15 N25.01 Sko42.01 Sko42.02 Sko42.03 Sko42.04 Sko49.01 General

AKV.60.05 162939.60 159999.80 160179.10 160744.27 159921.13* 160074.70 160130.03 160135.83 160140.57 160029.47∗ 160091.30

CAP.30.30.1 207162.30 205051.17 204863.30 206542.60 204999.87 204576.83* 204929.57 205068.97 204911.30 204986.37 204772.20∗
CAP.30.30.2 195460.10 194030.90 193900.43 194614.80 194079.47 193823.63∗ 193859.70∗ 193881.43∗ 193886.37∗ 193933.73 193768.87*
CAP.30.30.3 164022.00 162506.00 162422.77∗ 162512.93 162544.47 162372.73∗ 162210.20* 162469.47∗ 162332.20∗ 162309.70∗ 162277.60∗
CAP.30.40.1 136956.50 135785.37 135588.13∗ 135722.00 135732.60 135527.10* 135666.40 135720.37 135738.73 135658.30 135650.23

CAP.30.40.2 161618.30 160002.03 159843.53 160161.80 159844.93 159807.57 159739.83 159893.33 159622.87∗ 159589.13∗ 159567.23*
CAP.30.40.3 161196.80 159935.70∗ 159793.93∗ 160322.70 159988.40 159765.03* 159939.07∗ 159904.97∗ 159940.80∗ 159971.83∗ 159799.60∗
CAP.30.50.1 112343.10 111329.53 111118.73∗ 111800.37 111182.33∗ 111228.87 111134.13∗ 111366.83 111080.13∗ 111092.13∗ 111079.37*
CAP.30.50.2 117288.60 115826.73 115683.77∗ 116616.03 115860.43 115623.83* 115682.00∗ 115761.67 115673.97∗ 115683.40∗ 115643.17∗
CAP.30.50.3 116124.80 114814.17 114676.70∗ 115722.90 114727.87∗ 114680.40∗ 114689.40∗ 114756.63∗ 114675.53∗ 114682.27∗ 114672.93*
CAP.30.60.1 109472.33 108382.90 108351.07∗ 108435.33 108377.83 108412.33 108354.10∗ 108405.63 108315.27∗ 108372.67 108309.13*
CAP.30.60.2 111516.47 110608.17 110444.03 111374.73 110485.23 110307.13∗ 110399.27 110550.90 110407.03 110425.87 110273.40*
CAP.30.60.3 93209.17 92382.60 92328.00 92753.77 92402.47 92228.00∗ 92343.53 92306.43∗ 92311.37∗ 92269.00∗ 92199.77*
CAP.60.30.1 447474.50 446211.87 445945.07∗ 447057.63 446015.43∗ 446034.50 445871.57* 446342.50 445994.97∗ 445975.77∗ 445940.83∗
CAP.60.30.2 410759.47 409007.93 408500.33∗ 409964.13 408577.53∗ 408628.83∗ 408370.97* 408921.50 408527.10∗ 408506.60∗ 408382.00∗
CAP.60.30.3 419055.23 417273.73 417223.90∗ 418315.77 417328.53 417215.10∗ 417234.13∗ 417344.80 417222.70∗ 417203.77∗ 417200.13*
CAP.60.40.1 314557.63 313692.57 313570.93* 313627.20∗ 313823.30 313678.73∗ 313628.70∗ 313605.03∗ 313633.20 313602.87∗ 313670.33∗
CAP.60.40.2 321860.13 321150.20 320995.47∗ 321221.27 321154.00 321051.93 321007.07∗ 321221.20 321036.00∗ 320981.47* 321031.00∗
CAP.60.40.3 365073.17 363750.37 363517.97* 364387.33 363707.83 363655.43∗ 363555.27∗ 363941.17 363518.80∗ 363554.10∗ 363554.57∗
CAP.60.50.1 274682.83 273846.50 273701.50* 274255.80 274008.53 273718.43∗ 273738.23∗ 273853.00 273713.07∗ 273774.33∗ 273713.20∗
CAP.60.50.2 271264.37 270321.37 270143.80∗ 270296.60 270344.13 270150.67∗ 270091.00* 270331.30 270131.23∗ 270202.87∗ 270145.33∗
CAP.60.50.3 296749.93 295740.97∗ 295701.00∗ 295927.17 295765.20 295697.17∗ 295699.43∗ 295751.20∗ 295710.10∗ 295713.87∗ 295680.60*
CAP.60.60.1 228867.57 228139.63 228123.20 228277.07 228095.60∗ 228103.77∗ 228121.30 228207.07 228130.87 228123.67 228078.37*
CAP.60.60.2 248104.40 247097.93 246938.20∗ 247630.23 246971.50 247027.80 246912.50∗ 247280.03 246937.77 246908.63∗ 246820.03*
CAP.60.60.3 207583.23 206804.07∗ 206768.13* 207379.73 206826.23∗ 206783.97∗ 206798.10∗ 206833.33∗ 206890.50 206830.93∗ 206825.80∗
CAP.90.30.1 630429.30 629220.70∗ 629185.90∗ 629529.83 629251.43 629247.03 629195.00∗ 629286.20 629177.57∗ 629177.90∗ 629142.10*
CAP.90.30.2 563100.30 561650.43 561466.03* 562536.37 561665.93 561586.67∗ 561530.80∗ 561810.50 561514.87∗ 561524.87∗ 561498.57∗
CAP.90.30.3 589359.93 588073.87 587966.33∗ 588880.40 588055.00 588138.83 587953.70* 588138.67 587958.67∗ 587979.33∗ 587996.00

CAP.90.40.1 475573.90 474496.43 474320.97∗ 474865.40 474556.80 474293.53∗ 474289.77* 474716.03 474321.40∗ 474373.03∗ 474304.17∗
CAP.90.40.2 481478.90 480485.27∗ 480518.70∗ 481098.93 480627.67 480522.00∗ 480462.67∗ 480717.33 480502.43∗ 480453.37* 480465.67∗
CAP.90.40.3 514154.07 512995.20∗ 512756.47* 513583.37 512970.87 513009.33∗ 512811.40∗ 513156.07 512853.23∗ 512798.73∗ 512767.67∗
CAP.90.50.1 481386.33 480068.30 479966.07∗ 480797.57 480012.37 479994.97∗ 479991.73∗ 480114.27 480036.60∗ 479954.70* 480016.97∗
CAP.90.50.2 446432.77 445620.50 445491.23 446184.73 445475.40∗ 445510.17 445466.13∗ 445652.47 445383.63* 445480.70∗ 445463.17∗
CAP.90.50.3 496209.43 495570.03 495402.27* 495964.43 495464.40∗ 495516.73∗ 495458.13∗ 495556.37∗ 495510.97∗ 495521.30∗ 495442.97∗
CAP.90.60.1 386222.77 385601.97 385551.83∗ 386057.43 385597.70 385537.30∗ 385552.27∗ 385609.93∗ 385550.27∗ 385562.90∗ 385537.07*
CAP.90.60.2 345175.43 344852.13* 344868.20∗ 344857.67∗ 344935.03 344872.20 344868.93∗ 344853.77∗ 344867.93 344874.80 344875.77

CAP.90.60.3 412100.47 411474.10∗ 411438.80∗ 411667.37 411469.53 411470.83 411424.70∗ 411504.10 411420.43∗ 411414.43* 411434.80∗
Sko64.05 251745.90 251088.13 251095.43 251080.70 251291.40 251021.83∗ 251053.60 251145.13 251036.50∗ 251037.53∗ 250997.17*
AKV.70.05 2124248.43 2112045.67 2114540.07 2119937.77 2111324.63* 2117322.53 2114944.67 2112827.83 2114852.27 2115584.83 2115388.40

For comparison purposes, the results obtained by the General variant are
compared to those of [16], which presents the best costs in the literature. Tables
containing these results are available in the supplementary material, where one
can observe gaps smaller than 1.0% for all the instances tested here, except for
ste36.02, ste36.03, and ste36.05. The average gap for all instances is 0.09% and,
thus, the results found by the proposal are similar to the best ones from the
literature.

Table 5. Number of instances each variant reached the best values, where #Best
represents the counting for the best case, #Avg. is the counting for the average values,
and #Stat.Test. is the number of instances each technique found the best average
values or its solutions are statistically similar to the best ones.

Score GGPHH Variant
S9 S10 S11 Am15 N25.01 Sko42.01 Sko42.02 Sko42.03 Sko42.04 Sko49.01 General

#Best 5 22 20 11 20 21 21 28 18 26 30
#Avg 0 5 8 3 8 19 10 6 6 8 30
#Stat.Test 1 34 54 9 42 66 57 39 61 63 82
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Fig. 4. PPs using the average results as performance measurement. The normal-
ized areas under the PPs curves are 1.0000, 0.9951, 0.9949, 0.9949, 0.9946, 0.9930,
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Fig. 5. Best heuristic generated by GGPHH.

6 Concluding Remarks and Future Works

The proposed GGPHH was able to produce efficient heuristics to CAP. Two
strategies were tested: one using a single instance during the GP evaluation and
another one training each individual on a set of instances.

We observed that the General GGPHH variant, that evolved using informa-
tion of ten instances, performed better than the other ones. The generated heuris-
tic reached the highest amount of cost averages when used with all instances of
the problem. Based on this information, we can conclude that the exploration
of the problem under the perspective of its different characteristics allows the
development of more robust heuristics.

On the other hand, one of the variants with a single instance also obtained
good results. In particular, we observed that using instances Sko42.01 and
Sko42.03 during the evolution allows for the creation of good heuristics.



518 R. F. R. Correa et al.

For future work, the application of processing time to compose the indi-
vidual’s fitness is considered relevant in a multi-objective version of the hyper-
heuristic proposed here. It is also pertinent to use new heuristics to compose the
grammar, diversifying and enriching the generation of individuals with a variety
of larger operations, in order to reach a greater range of neighborhoods.
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Abstract. In Bipolar Argumentation Frameworks (BAFs), arguments cannot
only attack, but support other arguments. In this paper, we generalise the funda-
mental semantics for BAFs to deal with Weighted Bipolar Argumentation Frame-
works (WBAFs), in which real numbers are assigned as weights to arguments.
A distinguishing aspect of our approach is that our semantics are determined in
terms of two measures: one is employed to assess the degree of acceptability of
an argument, and the other, its degree of rejection. Then, as opposed to previ-
ous proposals, we have more expressive semantics that naturally generalise their
corresponding semantics for BAFs and are defined for each WBAF.

Keywords: Argumentation · Semantics · Bipolarity

1 Introduction

Computational argumentation provides reasoning models by which arguments are con-
structed, compared and evaluated. Over the last decades, argumentation has become a
prominent Artificial Intelligence research area. It has been employed in a wide range
of problems and applications such as reasoning with inconsistent information [1], rea-
soning with defeasible information [2], decision making [3], classification [4] compu-
tational persuasion [5], recommender systems [6] and review aggregation [7].

Most of these computational models of arguments are settled on the seminal Dung’s
work [8] on Abstract Argumentation Frameworks (AAFs), which ignore the content of
the arguments and focuses solely on their relationships. Indeed, Abstract Argumentation
Frameworks can be understood as a directed graph whose nodes are arguments and
edges are the attack relation between arguments. Despite their success, AAFs are not
immune to criticisms. A contentious issue refers to their alleged limited expressivity as
they lack features which are common in almost every form of argumentation found in
practice [9]. Indeed, in AAFs, the only interaction between atomic arguments is given
by the attack relation.

As consequence, several extended versions of Dung’s framework have been pro-
posed [10–19]. One of them is the Bipolar Argumentation Framework [11,12,19], in
which besides attacking, an argument can support another argument. However, intro-
ducing the notion of support between arguments within abstract frameworks has been
controversial and counter-intuitive results have been obtained. Recently, in [19], the
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authors proposed some semantics for BAFs that treat attacks and supports symmetri-
cally and directly lead to natural generalisations of the corresponding semantics for
AAFs.

In [14–18], BAFs have been generalised to Weighted (or Gradual) Bipolar Argu-
mentation Frameworks (WBAFs) that assign real numbers as weights to arguments. As
noticed in [17], these initial weights may be interpreted as representing the acceptability
of an argument on its own, that is without considering the effects of supports or attacks
by other arguments.

In AAFs, deciding which arguments to accept based only on the attack relation has
been extensively studied in [8], where some semantics have been proposed. In con-
tradistinction, in the gradual setting [17], the so-called acceptability semantics define
two separate functions for specifying the acceptability of an argument: an aggregation
and an influence function. The first aggregates the influence from other arguments in
the framework based on the relations held between them, and the second combines the
aggregated result with the weight of an argument (representing its initial strength from
pre-conceptions) to determine the influence of its neighbours on its acceptability. The
challenge is to find acceptability semantics defined for most or even all argumentation
frameworks.

It is clear there are many possible acceptability semantics (see [17] for an extensive
list), but not all of them are defined for all argumentation frameworks. Besides, among
the semantics studied, none of them generalises the semantics proposed in [19] for
BAFs. In fact, none of them generalises most of the semantics proposed for AAFs. This
is a very disappointing result asWBAFs are generalisations of BAFs and AAFs; then one
would expect the acceptability semantics forWBAFs would coincide with the semantics
for BAFs (resp. AAFs) when restricted to the BAF (resp. AAF) setting.

In order to solve this problem, we propose a couple of new acceptability semantics
for WBAFs. Besides being defined for every WBAF, they have been tailored to gener-
alise the semantics proposed in [19] for BAFs as well as the semantics for AAFs. A
distinguishing aspect of our approach is that we resort not only to the degree of accept-
ability of an argument, but also to its degree of rejection and employ both measures to
characterise the acceptability semantics forWBAFs. As result, we have more expressive
semantics that naturally generalise their corresponding semantics for BAFs and AAFs
and are more flexible to be adapted to different scenarios.

The outline of the paper is as follows. We introduce in Sect. 2 the basic notions
related to BAFs and AAF as well as their main semantics. In Sect. 3, we recall the
notion of Weighted Argumentation Frameworks and present the main contribution of
this work: a family of new semantics that generalise the semantics for BAFs found in
[19] as well as those semantics for AAFs. Next, we focus on proving properties of the
proposed semantics; in particular, we prove they are generalisations of semantics for
BAFs and AAFs. Related works are discussed in Sect. 5. Finally, Sect. 6 closes our work
with a conclusion and an account on future works.

2 Preliminaries

We proceed by presenting the fundamental notions of Abstract Argumentation Frame-
works and Bipolar Argumentation Frameworks.
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2.1 Abstract Argumentation Frameworks (AAFs)

Abstract Argumentation Frameworks were introduced in [8] and can be understood
simply as graph where the nodes are arguments and the edges are attacks. To simplify
things, we will restrict ourselves to finite argumentation frameworks.

Definition 1 (AAF). [8] An Abstract Argumentation Framework (AAF) is a pair
(A ,Att), in which A is a finite set of arguments and Att ⊆ A ×A .

Given an AAF, we are mainly interested in computing its semantics, which can be
given in terms of labellings:

Definition 2 (Labellings). [20] A labelling is a function L : A → {in,out,undec}
that assigns to each argument in A a label. We say an argument A is accepted if
L (A) = in, A is rejected if L (A) = out and A is undecided if L (A) = undec. We
also define in(L ) = {A ∈ A | L (A) = in}, out(L ) = {A ∈ A | L (A) = out} and
undec(L ) = {A ∈ A | L (A) = undec}.

Now we can define the main semantics for AAFs:

Definition 3 (Semantics for AAFs). [20] Let A = (A ,Att) be an AAF. A labelling
L :A → {in,out,undec} is a complete labelling of A iff for each A ∈ A it holds

– L (A) = in iffL (B) = out for every B ∈ Att(A).
– L (A) = out iffL (B) = in for some B ∈ Att(A).

We say a complete labelling L of A is

Grounded if in(L ) is minimal (w. r. t. ⊆) among the complete labellings of A .
Preferred if in(L ) is maximal (w. r. t. ⊆) among the complete labellings of A .
Semi-stable if undec(L ) is minimal (w. r. t. ⊆) among the complete labellings of A .
Stable if undec(L ) = /0.

It is clear complete labellings have a pivotal role in defining semantics for AAFs.
As it will be shown in the sequel, complete labellings are also fundamental for Bipolar
Argumentation Frameworks.

2.2 Bipolar Argumentation Frameworks (BAFs)

Many works (see [12,19,21,22]) motivated the convenience of considering not only
attack relations, but also support relations in argumentation frameworks.

Definition 4 (BAF). [12] A Bipolar Argumentation Framework (BAF) is a tuple
(A ,Att, Sup), in which A is a finite set of arguments, Att ⊆ A ×A is the attack
relation and Sup ⊆ A ×A is the support relation. For an argument A ∈ A , we define
Sup(A) = {B ∈ A | (B,A) ∈ Sup}.

In this paper, we will take into account the semantics introduced in [19] for BAFs;
they are settled on the notions of attackers’ domination and supporters’ domination:
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Definition 5 (Attackers’ Domination). [19] Let B = (A ,Att,Sup) be a BAF and L
a labelling. We say the attackers of A ∈ A dominate its supporters according to L if

|{B ∈ Att(A) | L (B) = in}| > |{B ∈ Sup(A) | L (B) �= out}|
Definition 6 (Supporters’ Domination). [19] LetB= (A ,Att,Sup) be a BAF andL
a labelling. We say the supporters of A ∈ A dominate its attackers according to L if

|{B ∈ Sup(A) | L (B) = in}| > |{B ∈ Att(A) | L (B) �= out}|
With these definitions in mind, a generalisation of those semantics for AAFs to BAFs

can be presented as follows:

Definition 7 (Semantics for BAFs). [19] LetB= (A ,Att,Sup) be a BAF. A labelling
L :A → {in,out,undec} is a bi-complete labelling of B if for any A ∈ A ,

– L (A) = in if and only ifL (B) = out for all B∈ Att(A) or A’s supporters dominate
its attackers.

– L (A) = out if and only if A’s attackers dominate its supporters.

We say a bi-complete labelling L of B is

Bi-Grounded if in(L ) is minimal (w. r. t. ⊆) among the bi-complete labellings of B.
Bi-Preferred if in(L ) is maximal (w. r. t. ⊆) among the bi-complete labellings of B.
Bi-Semi-stable if undec(L ) is minimal (w. r. t. ⊆) among the bi-complete labellings

of B.
Bi-Stable if undec(L ) = /0.

Besides being generalisations, these semantics for BAFs are strictly more expres-
sive than their corresponding semantics for AAFs [19]. Now we can move to the next
section, where we will give a step further and define semantics for Weighted Bipolar
Argumentation Frameworks.

3 Semantics for Weighted Bipolar Argumentation Frameworks

Next, we present one of the main contributions of this paper: a generalisation of those
semantics for BAFs to Weighted Bipolar Argumentation Frameworks (WBAFs). The
general idea is to extend the notions of attackers’ domination and supporters’ domina-
tion to deal with weighted arguments. We start by recallingWBAFs:

Definition 8 (WBAF). [17] A Weighted Bipolar Argumentation Framework (WBAF)
(over D) is a triple 〈A ,G,W 〉, in which

– A is an n−dimensional (n ∈ N
+) vector of arguments such that all components of

A are pairwise distinct.
– G =

{
Gi j

}
is a square matrix of order n with Gi j ∈ {−1,0,1}, in which Gi j = −1

means argument A j attacks Ai; Gi j = 1 means argument A j supports Ai; and Gi j = 0
if neither of these;
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– W ∈ D
n is a vector of the initial weights of the arguments in A .

– D is a set with a minimum (denoted by ⊥) and a maximum (denoted by 	).

In this work, we restrict our attention to arguments whose weights are in D= [0,1].

Example 1. Let 〈A ,G,W 〉 be aWBAF defined over [0,1], in which

A =

⎡

⎣
A1

A2

A3

⎤

⎦ G=

⎡

⎣
0 0 0
0 0 0

−1 1 0

⎤

⎦ W =

⎡

⎣
0.8
0.4
1.0

⎤

⎦

It can be represented graphically as bellow, where the continuous edge is an attack, the
dashed edge is a support and the weights are next to the corresponding argument:

A1

A2

A3

0.8

0.4

1.0

In the sequel, we disclose our definition of semantics (in general) for WBAFs. A
distinguishing aspect of our proposal is that we resort not only to the degree of accept-
ability of an argument, but also to its degree of rejection and employ both measures to
characterise the acceptability semantics forWBAFs.

Definition 9 (WBAF Semantics). An acceptability semantics is a function S transform-
ing any WBAF Q = 〈A ,G,W 〉 over D into a set (possibly empty) DegSQ of vectors in
(D×D)n, in which n is the number of arguments in A , i.e., the output of S is

DegSQ = {[(σ1,π1), . . . ,(σn,πn)] | [(σ1,π1), . . . ,(σn,πn)] ∈ S(Q)} .
Besides, for any argument ai ∈ A ,

(DegSQ)i = {(σi,πi) | [(σ1,π1), . . . ,(σn,πn)] ∈ S(Q)}
is the set of pairs (σi,πi) assigned to ai by the semantics S. Intuitively, σi is intended to
assess the degree of acceptability of ai (how much it is in) and π its degree of rejection
(how much it is out).

We will propose a function as a semantics to generalise the bi-complete semantics
toWBAFs. Before, however, present the notion of valuation:

Definition 10 (WBAF Valuations). Let Q= 〈A ,G,W 〉 be a WBAF overD= [0,1] with
A = [a1, . . . ,an]. A valuation d = [(σ1,π1), . . . , (σn,πn)] of Q is a vector in (D×D)n

such that for each i ∈ {1, . . . ,n}, σi+πi ≤ 1.

Given a WBAF 〈A ,G,W 〉, we will refer to the i-th row of G as Gi = [Gi1, . . . ,Gin]
and we will refer to the i-th component of the valuation d as di = (σi,πi). The next two
definitions are natural generalisations of the notions of attackers’ domination (Defini-
tion 5) and supporters’ domination (Definition 6) toWBAF.
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Definition 11 (Degree of Attackers’ Domination). Let Q = 〈A ,G,W 〉 be a WBAF
over [0,1] and d = [(σ1,π1), . . . ,(σn,πn)) a valuation of Q. Let also Gi = [Gi1, . . . ,Gin].
We define

DAtt(Gi,d) =min

{

max

{

0, ∑
Gi j=−1

σ j − ∑
Gi j=1

(1−π j)

}

,1

}

to denote the degree of domination of the attackers of an argument ai in comparison
with its supporters according to d.

Definition 12 (Degree of Supporters’ Domination). Let Q = 〈A ,G,W 〉 be a WBAF
over [0,1] and d = [(σ1,π1), . . . ,(σn,πn)) a valuation of Q. Let also Gi = [Gi1, . . . ,Gin].
We define

DSup(Gi,d) =min

{

max

{

0, ∑
Gi j=1

σ j − ∑
Gi j=−1

(1−π j)

}

,1

}

to denote the degree of domination of the supporters of an argument ai in comparison
with its attackers according to d.

In order to define the Weighted Bi-complete Semantics, we resort to two separate
functions: an aggregation and an influence function. The first aggregates the influence
from other arguments in the framework based on the relations held between them, and
the second combines the aggregated result with the initial weight of an argument to
determine the influence of its neighbours on its acceptability/rejection.

Definition 13 (Aggregation Function). Let D= [0,1]. We define the aggregation func-
tion α : {−1,0,1}n × (D×D)n → [−1,1] as follows:

α(g,d) = DSup(g,d)+ γ(g,d)−1,

in which d = [(σ1,π1),(σ2,π2), . . . ,(σn,πn)] and γ(g,d) = min
{

π j | g j = −1
}
. We

assume min{} = 1.

Definition 14 (Influence Function). Let D = [0,1]. We define the influence function
ι : [−1,1]×D → D as

ι(x,w) =

⎧
⎪⎪⎨

⎪⎪⎩

w+ x
1+ x

if x ≥ 0

w(1+ x)
1− x

if x ≤ 0

The Weighted Bi-complete semantics can be defined as follows:

Definition 15 (Weighted Bi-complete). Let Q = 〈A ,G,W 〉 be a WBAF over [0,1],
in which W = [W1, . . . ,Wn]. We say d = [(σ1,π1),(σ2,π2), . . . ,(σn,πn)] is a weighted
bi-complete valuation of Q if for each row Gi in G,

σi = ι(α(Gi,d),Wi) and πi = DAtt(Gi,d)



526 R. Cordeiro and J. Alcântara

We define

DegcomQ = {d | d is a weighted bi-complete valuation of Q} .
as the set of weighted bi-complete valuations of Q.

Now we have to define � and �u orderings to characterise the remaining semantics:

Definition 16 (� and �u). Let Q= 〈A ,G,W 〉 a WBAF over [0,1] and d′ = [(σ ′
1,π ′

1),
. . . ,(σ ′

n,π ′
n)] and d′′ = [(σ ′′

1 ,π ′′
1 ), . . . ,(σ ′′

n ,π ′′
n )] be valuations of Q. We define

– d′ � d′′ iff for each i ∈ {1, . . . ,n}, it holds σ ′
i ≤ σ ′′

i and π ′
i ≤ π ′′

i
– d′ �u d′′ iff for each i ∈ {1, . . . ,n}, it holds σ ′

i +π ′
i ≤ σ ′′

i +π ′′
i .

Then the weighted bi-grounded, weighted bi-preferred, weighted bi-semi-stable and
weighted bi-stable semantics can be defined as natural generalisations of the corre-
sponding semantics for BAFs:

Definition 17 (Refinements of Weighted Bi-Complete Valuations). Let Q =
〈A ,G,W 〉 be a WBAF over [0,1] and d = [(σ1,π1),(σ2,π2), . . . ,(σn,πn)] be a weighted
bi-complete valuation of Q. We say d is a

– Weighted Bi-Grounded valuation of Q iff d is �-minimal among the weighted bi-
complete valuations of Q.

– Weighted Bi-Preferred valuation of Q iff d is �-maximal among the weighted bi-
complete valuations of Q.

– Weighted Bi-Semi-Stable valuation of Q iff d is �u-maximal among the weighted
bi-complete valuations of Q.

– Weighted Bi-Stable valuation of Q iff d is a weighted bi-complete valuation of Q
such that for each i ∈ {1, . . . ,n}, σi+πi = 1.

Consider the following example:

Example 2. Let Q be the WBAF over [0,1] depicted below:

A1 A2 A3

A4 A5

A6

1 1

0.8

0.9 1

0.7

As the reader can check, the weighted bi-complete valuations of Q are

– V1 = [(1,0),(0,1),(0.8,0),(0.9,0),(0.54,0),(0.7,0)]
– V2 = [(0,1),(1,0),(0,1),(0,1),(0,0.7),(0.7,0)]
– V3 = [(0,0),(0,0),(0,0),(0,0),(0,0),(0.7,0)]

and the remaining semantics are

– Weighted bi-grounded: {V3}
– Weighted bi-preferred: {V1,V2}
– Weighted bi-semi-stable: {V2}
– Weighted bi-stable: /0
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4 Results

In this section, we will prove some properties of our proposal. In particular, we will
show the semantics we defined for WBAFs are generalisations of the corresponding
semantics for BAF. We will also show they are defined for every WBAF (the unique
exception is the weighted bi-stable). Next, we guarantee that it is not the case that both
DSup(g,d) �= 0 and DAtt(g,d) �= 0:

Theorem 1. Let 〈A ,G,W 〉 a WBAF over [0,1] and d a valuation of Q. If DSup(g,d) �=
0, then DAtt(g,d) = 0.

Proof. Assume DSup(g,d)> 0. Note that

∀i(σi ≤ 1−πi) =⇒ ∑
g j=−1

σ j ≤ ∑
g j=−1

(1−π j) =⇒ − ∑
g j=−1

(1−π j) ≤ − ∑
g j=−1

σ j

Thus, from 0< DSup(g,d) it follows that

0< ∑
g j=1

σ j − ∑
g j=−1

(1−π j) ≤ ∑
g j=1

(1−π j)− ∑
g j=−1

σ j = −
(

∑
g j=−1

σ j − ∑
g j=1

(1−π j)

)

Then,

∑
g j=−1

σ j − ∑
g j=1

(1−π j)< 0=⇒ DAtt(g,d) = 0

��
Now we will show the bi-complete semantics for BAF coincides with the weighted

bi-complete semantics for the corresponding WBAF:

Definition 18 (Corresponding WBAF). Let B = (A ,Att,Sup) be a BAF. The corre-
sponding WBAF is QB = 〈AB,G,W 〉, in which

– AB = [A1, . . . ,An] is a vector with all the arguments in A = {A1, . . . ,An}.

– Gi j =

⎧
⎨

⎩

−1 if (Aj,Ai) ∈ Att
1 if (Aj,Ai) ∈ Sup
0 otherwise

– W = [1, . . . ,1]
︸ ︷︷ ︸

n

Theorem 2. Let B= (A ,Att,Sup) be a BAF and QB = 〈AB,G,W 〉 be the correspond-
ing WBAF. For a labelling L of B, let dL = [(σ1,π1), . . . ,(σn,πn)] be a valuation of
QB such that for each argument Ai ∈ A ,

– L (Ai) = in iff σi = 1 and πi = 0;
– L (Ai) = out iff σi = 0 and πi = 1;
– L (Ai) = undec iff σi = 0 and πi = 0.

It holds
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– L is a bi-complete labelling of B iff dL is a weighted bi-complete valuation of QB.
– L is a bi-grounded labelling of B iff dL is a weighted bi-grounded valuation of QB.
– L is a bi-preferred labelling of B iff dL is a weighted bi-preferred valuation of QB.
– L is a bi-semi-stable labelling of B iff dL is a weighted bi-semi-stable valuation of
QB.

– L is a bi-stable labelling of B iff dL is a weighted bi-stable valuation of QB.

Proof. Note that σi,πi ∈ {0,1} andWi = 1 for every i ∈ {1, . . . ,n}.
(=⇒) AssumeL is a bi-complete labelling of Q.

σi = 1∧πi = 0 ⇐⇒ L (Ai) = in

⇐⇒ |{B ∈ Sup(Ai) | L (B) = in}| > |{B ∈ Att(Ai) | L (B) �= out}|
∨∀B ∈ Att(Ai)(L (B) = out)
⇐⇒ DSup(Gi,dL )+ γ(Gi,dL ) ≥ 1

⇐⇒ ι(DSup(Gi,dL )+ γ(Gi,dL )−1,Wi) = 1∧DAtt(Gi,dL ) = 0

σi = 0∧πi = 1 ⇐⇒ L (Ai) = out

⇐⇒ |{B ∈ Att(Ai) | L (B) = in}| > |{B ∈ Sup(Ai) | L (B) �= out}|
⇐⇒ DSup(Gi,dL ) = γ(Gi,dL ) = 0∧DAtt(Gi,dL ) = 1

⇐⇒ ι(DSup(Gi,dL )+ γ(Gi,dL )−1,Wi) = 0∧DAtt(Gi,dL ) = 1

σi = 0∧πi = 0 ⇐⇒ L (Ai) = undec

⇐⇒ L (Ai) �= in∧L (Ai) �= out

⇐⇒ ι(DSup(Gi,dL )+ γ(Gi,dL )−1,Wi) = 0∧DAtt(Gi,dL ) = 0

Since (dL )i = (ι(α(Gi,dL ),Wi),DAtt(Gi,dL )) for every i, dL is a weighted bi-
complete labelling.

(⇐=) Assume dL is a weighted bi-complete valuation of Q, i.e., for every i ∈
{1, . . . ,n}, (dL )i = (ι(α(Gi,dL ),Wi),DAtt(Gi,dL )).

L (Ai) = in ⇐⇒ σi = 1∧πi = 0

⇐⇒ ι(DSup(Gi,dL )+ γ(Gi,dL )−1,Wi) = 1∧DAtt(Gi,dL ) = 0

⇐⇒ DSup(Gi,dL )+ γ(Gi,dL ) ≥ 1

⇐⇒ |{B ∈ Sup(Ai) | L (B) = in}| > |{B ∈ Att(Ai) | L (B) �= out}|
∨∀B ∈ Att(Ai)(L (B) = out)

L (Ai) = out ⇐⇒ σi = 0∧πi = 1

⇐⇒ ι(DSup(Gi,dL )+ γ(Gi,dL )−1,Wi) = 0∧DAtt(Gi,dL ) = 1

⇐⇒ DSup(Gi,dL ) = γ(Gi,dL ) = 0∧DAtt(Gi,dL ) = 1

⇐⇒ |{B ∈ Att(Ai) | L (B) = in}| > |{B ∈ Sup(Ai) | L (B) �= out}|
Thus,L is a bi-complete labelling of Q. As the other semantics are defined in terms of
(weighted) bi-complete, the remaining results follow straightforwardly. ��
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As in the BAF setting, the valuations in the bi-complete semantics can be defined
onWBAFs in terms of the fixpoints of the Γ operator as defined below.

Definition 19 (Γ Operator). Let Q = 〈A ,G,W 〉 be a WBAF over [0,1] and d =
[(σ1,π1), . . . ,(σn,πn)] a valuation of Q. We define

ΓQ(g,d) = [ΩQ(g1,d), . . . ,ΩQ(gn,d)],

in which
ΩQ(gi,d) = (ι(α(gi,d)),DAtt(gi,d)).

We will prove the monotonicity of Γ operator and employ this result to guarantee
the weighted bi-grounded valuation is uniquely defined for every WBAF:

Theorem 3 (Monotonicity of Γ ). Let Q = 〈A ,G,W 〉 a WBAF over [0,1] and d′ =
[(σ ′

1,π ′
1), . . . ,(σ ′

n,π ′
n)] and d′′ = [(σ ′′

1 ,π ′′
1 ), . . . ,(σ ′′

n ,π ′′
n )] be valuations of Q. If d

′ � d′′,
then ΓQ(g,d′) � ΓQ(g,d′′).

Proof. Let d′ = (σ ′,π ′) and d′′ = (σ ′′,π ′′). Assume d′ � d′′.

DSup(Gi,d
′) = ∑

Gi j=1

σ ′
j − ∑

Gi j=−1

(1−π ′
j) ≤ ∑

Gi j=1

σ ′′
j − ∑

Gi j=−1

(1−π ′′
j ) = DSup(Gi,d

′′)

DAtt(Gi,d
′) = ∑

Gi j=−1

σ ′
j − ∑

Gi j=1

(1−π ′
j) ≤ ∑

Gi j=−1

σ ′′
j − ∑

Gi j=1

(1−π ′′
j ) = DAtt(Gi,d

′′)

γ(Gi,d
′) =min{π ′

j | Gi j = −1} ≤ min{π ′′
j | Gi j = −1} = γ(Gi,d

′′)

Thus

α(Gi,d
′) = DSup(Gi,d

′)+ γ(Gi,d
′)−1 ≤ DSup(Gi,d

′′)+ γ(Gi,d
′′)−1= α(Gi,d

′′)

As s ≤ s′ → ι(s,w) ≤ ι(s′,w), it holds ι(α(Gi,d′),Wi) ≤ ι(α(Gi,d′′),Wi). Hence,
for all i ∈ {1, · · · , |A |},

ι(α(Gi,d
′),Wi) ≤ ι(α(Gi,d

′′),Wi) and DAtt(Gi,d
′) ≤ DAtt(Gi,d

′′),

i.e., ΓQ(G,d′) � ΓQ(G,d′′). ��
We can resort to the well known Knaster-Tarski theorem [23] to show the least fix-

point of Γ is guaranteed to exist, corresponding to the weighted bi-grounded valuation:

Theorem 4. Every WBAF Q = 〈A ,G,W 〉 has a unique weighted bi-grounded valua-
tion.

Proof. From Theorem 3, we know ΓQ is monotonic w.r.t. �. Then, according to the
Knaster-Tarski Theorem [23], a least (w.r.t. �) fixpoint of ΓQ operator is guaranteed to
exist. By definition, it corresponds to the unique weighted bi-grounded valuation of Q.
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As the bi-complete labelling is also uniquely defined for each BAF, Theorem 4
assures this unicity is preserved when moving to WBAF. Besides, as every WBAF
has a unique weighted bi-grounded valuation and weighted bi-grounded valuations are
weighted bi-complete valuations, we obtain the following result:

Corollary 1. Each WBAF has at least one weighted bi-complete valuation, weighted
bi-preferred valuation and weighted bi-semi-stable valuation.

Proof. It follows from Theorem 4 and from Definition 17.

Nonetheless, as we can notice in Example 2, we cannot say the same for weighted
bi-stable valuations, i.e., they are not defined for everyWBAF. This is an expected result
as bi-stable labellings are not defined for every BAF (see [19]).

5 Related Work

We have introduced several semantics that are defined for everyWBAF and are not only
natural extensions of the corresponding semantics for BAF, but also preserve some of
their properties. Now we will compare our approach with other semantics forWBAFs.

The continuous approach to the acceptability of arguments in the bipolar setting has
been extensively studied in [24]. Many semantics in the literature for WBAFs are not
defined for all graphs. This is the case with the semantics Euler-based [25], direct aggre-
gation, positive direct aggregation, sigmoid direct aggregation and quadratic energy
[18]. Other semantics are defined for all graphs, such as those in Tables 1 and 2: max
Euler-based, damped max-based and sigmoid damped max-based, but they neither gen-
eralise the bi-complete semantics nor the complete semantics.

Table 1. Overview of convergent semantics’ aggregation function.

Semantics α’s range α
Max Euler-based {−1,0,1}n ×R

n → R α(g,d) = top(g,d)d

Damped max-based {−1,0,1}n ×R
n → R α(g,d) = top(g,d)d

Sigmoid damped max-based {−1,0,1}n × (−1,1)n → R α(g,d) = top(g,σ−1(d))σ−1(d)

where

top(g,d) j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g j

if dk < d j for 1 ≤ k < j, sgn(gk) = sgn(g j)
and dk ≤ d j for j < k ≤ n, sgn(gk) = sgn(g j)
and d j ≥ 0

0 otherwise

and sgn(g j) is the sign function and outputs the sign of g j. Furthermore, σ :R→ (−1,1)
is continuous and strictly increasing (for concreteness, let σ(x) = tanh(x)).

The next result shows these three main semantics forWBAFs are not generalisations
of any semantics for BAF and AAF which are not uniquely defined:
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Table 2. Overview of convergent semantics’ influence function.

Semantics ι’s range ι

Max Euler-based R× [0,1) → [w2,1] ι(s,w) = 1− 1−w2

1+w · es
Damped max-based R×R → R ι(s,w) =

s
δ
+w with δ > 2

Sigmoid damped max-based R× (−1,1) → (−1,1) ι(s,w) = σ
( s

δ
+σ−1(w)

)
with δ > 2

Proposition 1. The damped max-based semantics, sigmoid damped max-based seman-
tics and Euler max-based semantics do not generalise the complete semantics, bi-
complete semantics, preferred, bi-preferred, semi-stable, bi-semi-stable, stable and bi-
stable semantics.

Proof. The result is immediate as the damped max-based semantics, sigmoid damped
max-based semantics and Euler max-based semantics are uniquely defined for every
WBAFs, but the other semantics are not uniquely defined for every AAF (or BAF). ��

One would ask if Euler max-based, damped max-based and sigmoid damped max-
based semantics generalise a uniquely defined semantics as the bi-grounded. In the
sequel, we show it is not the case for any top-based semantics as the Euler max-based
and Damped max-based semantics:

Proposition 2. Any top-based semantics (with α(g,d) = top(g,d)d) and ι(0,w) = w
does not generalise the bi-grounded semantics.

Proof. Let S = (α, ι) be a semantics with α(g,d) = top(g,d)d and ι(0,w) = w. Let

G =

⎡

⎣
0 0 0
0 0 0

−1 1 0

⎤

⎦ be an argumentation matrix of a WBAF Q. Consider all weights to be

w ≥ 0.
Let d = S(Q) be the valuation of Q according to S. Then, d1 = d2 = ι(0,w) = w,

since arguments A1 and A2 are neither attacked nor supported.
Note that α(G3,d) = top(G3,d)d = −w+w = 0, because the strongest attacker

and strongest supporter of A3 have the same acceptability w. Thus, d3 = ι(0,w) = w
and d1 = d2 = d3. However, in the unique bi-grounded labelling of Q, A1 and A2 are in,
but A3 is undec. Therefore they do not have the same acceptability, and as consequence,
S does not generalise the bi-grounded semantics. ��

After showing that the Euler max-based and the Damped max-based semantics do
not generalise the bi-grounded semantics, it is time to prove a similar result for any
σ -top-based semantics as it is the case of the sigmoid damped max-based semantics:

Proposition 3. Any σ -top-based semantics (with α(g,d) = top(g,σ−1(d))σ−1(d)),
ι(0,w) = w and σ(0) = 0, does not generalise the bi-grounded semantics.
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Proof. Let S = (α, ι) be a semantics with α(g,d) = top(g,σ−1(d))σ−1(d) and

ι(0,w) =w. Let G=

⎡

⎣
0 0 0
0 0 0

−1 1 0

⎤

⎦ be an argumentation matrix of aWBAF Q. Consider all

weights to be w ≥ 0.
Let d = S(Q) be the valuation of Q according to S. Then, d1 = d2 = ι(σ−1(0),w) =

ι(0,w) = w, since arguments A1 and A2 are neither attacked nor supported.
Note that α(G3,d) = top(G3,σ−1(d))σ−1(d) = −σ−1(w)+σ−1(w) = 0, because

the strongest attacker and strongest supporter of A3 have the same acceptability σ−1(w).
Thus, d3 = ι(0,w) =w and d1 = d2 = d3. However, in the unique bi-grounded labelling
of Q, A1 and A2 are in, but A3 is undec. Therefore they do not have the same accept-
ability, and as consequence, S does not generalise the bi-grounded semantics. ��

Hence, unlike our approach (see Theorem 2), Euler max-based, damped max-based
and sigmoid damped max-based semantics do not generalise any of the semantics pro-
posed to BAFs in [19]. They also do not generalise the semantics complete, preferred,
semi-stable and stable for AAFs. A question naturally arises: do they have some rela-
tion with the semantics for AAFs? The next proposition provides a positive answer for
damped max-based semantics by relating it with one of the complete labellings:

Proposition 4. Let d be a valuation in the damped max-based semantics and L a
labelling such that for every argument Ai in an attack-only WBAF when all arguments’

weights are w> 0 and δ > 1, it holds 1)L (Ai)= in iff di >w
δ

δ +1
; 2)L (Ai)= undec

iff di = w
δ

δ +1
; 3) L (Ai) = out iff di < w

δ
δ +1

. Then L is a complete labelling.

Proof.

∀ j(Gi j = −1 → L (Aj) = out) ⇐⇒ ∀ j(Gi j = −1 → d j < w
δ

δ +1
)

⇐⇒ α(Gi,d) = top(Gi,d)d > −w
δ

δ +1

⇐⇒ di = ι(α(Gi,d),w)> ι
(

−w
δ

δ +1
,w

)
= w

δ
δ +1

⇐⇒ L (Ai) = in

∃ j(Gi j = −1∧L (Aj) = in) ⇐⇒ ∃ j(Gi j = −1∧d j > w
δ

δ +1
)

⇐⇒ α(Gi,d) = top(Gi,d)d < −w
δ

δ +1

⇐⇒ di = ι(α(Gi,d),w)< ι
(

−w
δ

δ +1
,w

)
= w

δ
δ +1

⇐⇒ L (Ai) = out

L (Ai) = undec ⇐⇒ di = w
δ

δ +1
follows from the last two statements.
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6 Conclusion and Future Works

Many works [14–18] have argued about the significance of extending Bipolar Argu-
mentation Frameworks (BAFs) [19] by weighting arguments. The resulting frameworks
are called Weighted Bipolar Argumentation Frameworks (WBAFs). Notwithstanding,
although WBAFs are extensions of BAFs, the semantics proposed to WBAFs are not
generalisations of the semantics proposed to BAFs. In this work, we have solved this
problem by defining the weighted bi-complete, weighted bi-preferred, weighted bi-
grounded, weighted bi-semi-stable and weighted bi-stable semantics forWBAFs, which
are respectively generalisations of the bi-complete, bi-preferred, bi-grounded, bi-semi-
stable and bi-stable semantics for BAFs. As these semantics for BAFs are generalisa-
tions of the corresponding semantics for Abstract Argumentation Frameworks (AAFs)
[8], our semantics also encompass them. Many semantics in the literature for WBAFs
are not defined for all graphs. Another improvement our proposal provides to these
computational models of arguments is that except for the weighted bi-stable semantics,
these new semantics are defined for every WBAF.

Future developments include investigating computational complexity issues on the
proposed semantics and analysing which properties are satisfied by them and which
are impossible to be satisfied among those pointed in [17] as structured, essential and
optional properties for WBAFs semantics. Another important line of research is to
examine the consequence of introducing weights not only to the arguments, but also
to the attack and support relations.
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Abstract. Multiple Criteria Decision Making (MCDA) methods have
been increasingly applied to improve recommendations when multiple
criteria are considered in Recommender Systems (RSs). This study
presents the preliminary results of a systematic literature review, follow-
ing Kitchenham’s guidelines, regarding the application of MCDA meth-
ods in RSs over the last two decades. Based on our findings, MCDA
methods can be applied in two RS phases: the preference elicitation and
the recommendation phases. In the former, RSs usually have a strong
interaction with the user, which results in more personalized recommen-
dations, ensuring higher user satisfaction and contributing to address the
cold-start challenge in RSs. Regarding the recommendation phase, while
most RSs are based on ranking approaches, there is a trend to apply
sorting methods in order to avoid an additional step involving a filtering
application that selects a subset of alternatives. Future research could
focus on applying preference learning combined with MCDA methods
for exploring improvements in prediction and recommendation phases,
and also in quality and processing time.

Keywords: Multiple criteria decision making · Literature review ·
Preference learning

1 Introduction

While the majority of existing Recommender Systems (RSs) depend only on
one single criterion numerical rating as input information, there has been an
increasing interest over the last two decades in taking into consideration a rating
based on multiple criteria, since the user’s preferences might cover more than
one perspective [2,3]. Thus, the recommendation process can be approached
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as a Multi-criteria Decision Aiding (MCDA) problem [35,53], in which MCDA
methods are used as part of the recommendation algorithm.

In MCDA, alternatives are evaluated by the decision-maker (DM) accord-
ing to several criteria, usually conflicting to each other, with the goal of either
ranking the alternatives (ranking problematic) or sorting them into predefined
and ordered categories (sorting problematic) [63]. RSs based on multiple crite-
ria have been pointed out as one of the promising research areas in RSs [3].
Since then, many studies have considered merging MCDA and RSs. Towards
this direction, Manouselis and Costopoulou [53] proposed a review in order to
analyze and classify MCDA-based RSs. As this study was published 2007, there
is an opportunity for an up-to-date review.

Given this context, the overall objective of this paper is to identify the MCDA
methods that have been used in RSs and the advantages and disadvantages of
employing these methods. To that end, we have performed a systematic literature
review.

The rest of the paper is structured as it follows. In Sect. 2 and 3, we give
an overview of RSs and MCDA methods. In Sect. 4, we present the adopted
methodology for conducting the literature review. The results are presented in
Sect. 5, and the limitations of the study and future improvements are presented
in Sect. 5. We conclude our study in Sect. 6.

2 Recommender Systems

RSs are expert systems able to suggest items that a user may be interested in.
More specifically, the basic idea of RSs is to utilize user feedback about or the
act of a user buying or browsing an item, watching a movie, listing to a song, to
infer customer interests [5].

RSs can be divided into four main types: collaborative, content-based, utility-
based, and hybrid filtering RSs [4]. Collaborative filtering recommender systems
(CFRSs) aim to identify users’ preferences, considering the ratings given by
them to the items they have already interacted with. Then, the closest users are
identified based on similar preferences, and predictions regarding new items are
made based on these estimated proximities. In content-based RSs the descriptive
attributes of items are used to make recommendations. Utility-based RSs provide
recommendations based on the computation of the utility of each item for the
user. Finally, hybrid systems combine the strengths of various types of RSs in
order to create more robust techniques [14].

While the majority of existing RSs depend only on one single criterion rat-
ing as input information, there has been an increasing interest in taking into
consideration a rating based on multiple criteria, since the users’ preferences
usually cover more than one point of view [2,3]. For instance, in the context
of restaurant recommendation, instead of giving a single rating representing
their opinion about the restaurant, the user rates different characteristics of the
restaurant such as price, place and quality of the food. Under this perspective,
the recommendation process can be addressed as MCDA problem [2,35,53].



Review of the Use of MCDA in Recommender Systems 537

3 Multiple Criteria Decision Aiding

Multiple Criteria Decision Aiding (MCDA) is a research field in Operational
Research that encompasses the development and application of methods with
the aim of supporting decision processes. MCDA methods are characterized by
considering multiple criteria, usually conflicting to each other, and taking into
consideration the preferences of the involved persons [63].

MCDA methods can be classified–among other possible classifications–into:
scoring, distance-based, pairwise comparison-based, utility-based and outrank-
ing methods. Scoring methods, such as Simple Additive Weighting (SAW) [28]
and Complex Proportional Assessment (COPRAS) [79], find a score for each
alternative by applying basic arithmetic; then, this score can be used to rank or
sort the alternatives. Distance-based methods, like Technique for Order of Pref-
erence by Similarity to Ideal Solution (TOPSIS) and Multi-criteria Optimization
and Compromise Solution (VIKOR), rank the alternatives based on the distance
to both the optimal and the worst existing solutions [57].

Pairwise comparison-based methods compare each pair of alternatives to pro-
vide a final score. Examples of these methods are AHP (Analytic Hierarchy Pro-
cess) [65] and ANP (Analytic Network Process) [66]. Outranking methods, such
as PROMETHEE (The Preference Ranking Organization METHod for Enrich-
ment of Evaluations) [12,13] and ELECTRE (ÉLimination Et Choix Traduisant
La RÉalité) [33,62], are also based on pairwise comparisons, but they are mainly
characterized by establishing a degree of dominance between alternatives and
consider these degrees to find the final ranking. Utility-based methods use the
degree of satisfaction expected by each alternative to form the scores as in UTA
(UTilité Additive) [21], Choquet integral [18], SMART (Simple Multi-attribute
Rating Technique) and its variation SMARTER (SMART Exploiting Ranks)
[25]. A detailed description of these and other MCDA methods can be found in
[19].

The methods descried above are suitable for ranking problems, but they also
have their variations for sorting: AHPSort [44], TOPSIS Sort [67], ELECTRE-
TRI [64,78], FlowSort [55] and UTADIS (UTilités Additives DIScriminantes)
[21]. A complete list of MCDA sorting methods and a detailed review of their
characteristics are presented in [8].

4 Methodology

Our study followed the principles of a systematic literature review proposed
in [46], which is a well-defined approach to identify, evaluate and interpret all
relevant studies regarding a particular research question, topic area or phe-
nomenon of interest. Following Kitchenham’s guidelines, a research protocol
must be defined and must contain the generic steps listed as follows:

1. Step 1: Definition of research questions that the review is intended to answer,
an that will guide the study.



538 R. Pelissari et al.

2. Step 2: Definition of the search strategy, including the databases and the
search terms used to identify and select papers.

3. Step 3: Definition of the study selection criteria, determining criteria for
excluding a study from the review.

4. Step 4: Definition of how to categorize the studies, which information shall
be extracted from the studies, and how this information will be synthesized
and analyzed.

The protocol definition can be seen as the first phase of the literature review,
which is followed by two more phases, the review conduction and the review
report.

4.1 Phase 1: Protocol Definition

The first step of the protocol definition starts with the selection of research
questions that will guide the study. This review examines the following seve sets
of research questions:

RQ1. How frequently have MCDA methods been implemented in the use or
research of RSs over the last 20 years? What are the trends in terms of
publication venues?

RQ2. What are the MCDA methods employed in RSs? And which are employed
most?

RQ3. What purpose do the MCDA methods serve in RSs?
RQ4. What are the types and main characteristics of RSs where MCDA methods

are employed?
RQ5. What are the evaluation metrics employed in the selected studies?
RQ6. What are the contributions of MCDA methods to RSs regarding some of

their challenges such as cold-start, data sparsity, scalability, and privacy?
RQ7. What are the trends and gaps in the use or research of MCDA methods

in RSs?

We focused our search on Scopus, since it is the largest curated, peer-reviewed
abstract and indexing database available to academia. The list of keywords used
in our search is: (“recommender system” OR “recommendation system” OR
“recommender systems” OR “recommendation systems”) AND (“multicriteria
decision making” OR “multiple criteria decision making” OR “multi-criteria
decision making” OR “multicriteria decision analysis” OR “multiple criteria
decision analysis” OR “multi-criteria decision analysis” OR “multicriteria deci-
sion aiding” OR “multiple criteria decision aiding” OR “multi-criteria decision
aiding” OR promethee OR electre OR ahp OR vikor OR topsis OR anp OR
uta OR utadis OR maut OR dematel OR “multi-attribute utility” OR “multi-
attribute utility”).

We were only interested in the publications of the last twenty years describing
either an application or a theoretical development, once an MCDA method has
been used as a core or at least as an important part of the system. Based on
that, we defined the following exclusion criteria:
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EC1. Papers published later than 2002.
EC2. Papers written in languages other than English.
EC3. Non-primary studies., e.g., surveys of literature.
EC4. Papers whose document type is other than “Article”, e.g., conference

papers, book chapters, conference reviews, etc.
EC5. Papers whose abstract does not provide enough information in order to

verify whether the paper is related to the review goal.
EC6. Papers that do not describe or consider an RS approach.
EC7. Papers that do not describe or consider an MCDA method.
EC8. Papers that do not apply MCDA methods as a core or at least as an

important part of the system, e.g., application of MCDA methods for tool
selection.

As the last step of the protocol definition, we defined that the papers shall be
categorized by the year of publication, source of the paper, the MCDA method
applied and the type of RS considered. Moreover, from each paper, the following
information shall be extracted: main contribution of applying MCDA to RSs,
whether and which evaluation metrics were employed in the system evaluation,
and whether the paper considered matters related to cold-start, data sparsity,
scalability, and privacy.

4.2 Phase 2: Review Conduction

On March 17, 2022, we queried the digital library Scopus using the search terms
presented in Sect. 4.1, and our search returned 313 papers.

The exclusion criteria from EC1 to EC4 were automatically applied using
search resources from the Scopus database itself, reducing the number of studies
from 313 to 135. Abstracts of the remaining papers were read, and the exclusion
criteria from EC5 to EC8 were manually applied. In the end, 96 studies were
retained. The 96 selected papers were then read in full. Throughout the reading
process, papers that met at least one of the exclusion criteria EC6 to EC8, and
that were not identified in the previous step, were excluded. From these, 49
studies were finally selected.

5 Results

In this section, we present the main results of our literature review based on the
defined research questions.
RQ1. How frequently have MCDA methods been implemented in the use or
research of RSs over the last 20 years? What are the trends in terms of pub-
lication venues?

Figure 1 shows the number of studies applying MCDA methods to RSs over
the last two decades. We can see continuing growth over time in the number of
published papers, with a clear increase from 2018 on. About 60% (29 papers) of
the total number of selected papers have been published in the last 4 years.
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Fig. 1. Number of publications of studies regarding MCDA in RSs over the years.

Regarding the journal of publication, the papers have been published in 47
different journals, indicating that there are not specific journals concentrating
on the topic discussed here. The journal with the most published papers is IEEE
Access, with 4 papers, followed by Expert Systems with Applications, Applied
Artificial Intelligence, Electronic Commerce Research and Applications, with 2
papers each.
RQ2. What are the MCDA methods employed in RSs? And which are employed
most?

Based on the MCDA types of methods defined in Sect. 2, we verified that all
types of MCDA methods have been employed in the RS context. Table 1 shows
the number of papers that applied each method and their references. As a paper
may have applied more than one method, the total number of papers presented
in Table 1 is greater than the number of selected papers. The main observation
is that AHP and TOPSIS are by far the most popular applied MCDA methods
with 34% and 22% of the studies, respectively.
RQ3. What purpose do the MCDA methods serve in RSs?

Generally speaking, MCDA methods have been applied to RSs in order to
consider multiple criteria and to take the preferences of the user into considera-
tion, thus providing more personalized and accurate recommendations. However,
depending on the applied method, other reasons were identified, as presented
below.

The AHP method is applied mainly to estimate the users’ preferences regard-
ing the criteria weights. AHP allows the preferences to be elicited through pair-
wise comparisons, which requires less cognitive effort from the user, but, at the
same time, results in a longer user-interaction time with the system. In [36], the
AHP method was applied for preference elicitation in a group decision making
problem–a type of decision problem when multiple DMs/users are involved. AHP
was shown to effectively reduce the complexity of the group decision problem
and make the DM roles clearer.
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Table 1. MCDA methods employed in the RS context.

Type of MCDA method MCMA method Number of
papers

References

Pairwise comparison AHP 17 [7,16,17,17,24,36,
41,42,50,56,58,58,
61,73,74,76,77]

Distance-based TOPSIS 11 [6,10,11,22,27,31,
36,49,60,69,75]

Outranking PROMETHEE 5 [9,15,68,68,70]

Utility-based MAUT/UTA 5 [1,23,47,52,54]

Outranking ELECTRE 4 [37,38,45,72]

Utility-based Choquet integral 3 [29,38,39]

Scoring WSM 3 [41,43,71]

Utility-based SMARTER 1 [40]

Scoring Dominance intensity 1 [51]

Other Consensus method 1 [48]

Distance-based VIKOR 1 [34]

A few studies also applied AHP to the recommendation phase, to rank the
items [7,42]. A sorting version of AHP, the AHPSort method, was applied as
a first step of the recommendation phase, filtering out items which were not
appropriate to the current user characteristics [77]; then, the recommendation
was made based on the remaining items by applying an optimization model.

Another reason for applying AHP is for the purpose of organizing the criteria
hierarchically. When the decision problem is based on a large set of features, it
is difficult to solve the problem using a single step where all criteria are taken
into account simultaneously. Therefore, organizing the criteria hierarchically is
a better way to model the problem.

While most of the papers which applied AHP are for preference elicitation,
most of the papers applied TOPSIS for making the recommendation. In [6], the
authors apply TOPSIS to substitute prediction methods used in conventional
content-based RSs, and the results pointed to a more accurate system than
baseline content-based methods. Two variations of the TOPSIS, GDSS-TOPSIS
and Dynamic Weight TOPSIS, have also been applied to RSs. The former is
a variation of TOPSIS for group decision-making [22]. The Dynamic Weight
TOPSIS method is a variation for decisions in which the evaluations of criteria
change over time. Therefore, it is a suitable tool to be applied to tourism RSs
given the important seasonal component of tourism [10].

Combinations of the already cited methods were also employed in RSs, for
instance, AHP and TOPSIS [36], and AHP and TOPSIS integrated to the Fuzzy
Sets theory [26,27,31,36,59,60].
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Outranking methods have been also used in RSs. ELECTRE was applied for
the purpose of supporting user classification in CFRSs [37], using the indiffer-
ence relation of ELECTRE to identify discrimination or similarity between any
two users. In [72] (see also [20]), ELECTRE-TRI-B-H, a sorting method based
on ELECTRE, was applied in order to directly assign items to a set of defined
categories, avoiding the need of an additional phase when a ranking method is
applied. These categories indicate the degree of fulfillment of the user’s expec-
tations and directly lead to the best alternatives to recommend. The other well-
known MCDA outranking method, PROMETHEE, was applied to RSs mainly to
rank and make the recommendation [9,15,68,70]). In [68], the Fuzzy Sets theory
was combined with PROMETHEE to conduct sentiment orientation analysis.

Utility-based methods have also been highly used in RSs. The framework
proposed in [47] aims at modeling user’s preferences together with the CF tech-
nique in order to identify the most preferred unknown items for every user and
consists of four phases: data acquisition, multi-criteria user modeling, clustering
and recommendation. In the data acquisition phase, users are asked to evaluate
items on the different criteria and to rank all items in order of preference. In the
second phase, the ratings based on multiple criteria are processed in order to
obtain a weight vector for each user, which represents their preferences regarding
the different criteria. Criteria weight vectors are then used, in the third phase,
to identify clusters of users with similar preferences by applying the k-means
cluster algorithm. In the last phase, items are recommended by implementing
the CF philosophy inside each user cluster, defining the user’s neighborhood.
One can note that the second phase requires the application of a multi-criteria
method in order to learn preferences; in this case, the UTA method was applied.
Similar ideas using utility-based methods are proposed in [1,23,52,54].

The study proposed in [43] discusses the properties of CFRSs and shows
that the weighted sum model (WSM) meets them and, therefore, is suitable for
applications in these systems. WSM is also applied in [41,71]. Another scor-
ing method, the Choquet integral, is applied in RSs with the aim of modeling
interacting criteria [29,38,39].
RQ4. What are the types and main characteristics of RSs where MCDA methods
are employed?

Most RSs using MCDA methods are customer-oriented and characterized
for a highly direct interaction with the user. Regarding the type of RSs, results
point to a significant number of CF RSs (12 papers), hybrid RSs (9 papers)
and content-based RSs (2 papers). These numbers are based on the classifica-
tion given by the authors of the selected papers. Many papers, however, did not
clearly define the type of RS adopted. However, most of these cases can be con-
sidered hybrid since more than one method usually used in RSs were combined.

RQ5. What are the evaluation metrics employed in the selected studies?
Evaluation metrics typically employed in RSs are used in about 60% of the

selected studies (30 papers). In Table 2, we present the papers and the combina-
tion of metrics adopted by them.
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Table 2. Performance metrics used in the selected papers. RMSE - Root-mean-square
deviation; nDCG - normalized Discounted Cumulative Gain; MRR - Mean Reciprocal
Rank.

Combination of the used metrics References

Precision (or precision-in-top-N), recall, F1-measure,
Accuracy

[6,10,23,24,39,
47,48,50,52,73]

Accuracy [27,30,38,45,59,
68,69,75]

Rank consistency test and accuracy [22]

Precision, novelty and diversity [15]

Precision-in-top-N [37]

nDCG, MRR, MAP [34]

Effectiveness [36]

Content and system satisfaction, realiability (Cronbach’s
alpha), convergent and discriminant validity

[17]

Accuracy (MAE), coverage and response-time [54]

Accuracy (Spearman-rank-correlation), scalability and
usability (survey - Cronbach’s alpha coefficient)

[17]

Accuracy, interesting and satisfaction [71]

Accuracy, useful and usability (effectiveness, efficiency,
satisfaction)

[58]

Accuracy, response-time and user perceptions (satisfaction,
usefulness, and trustworthiness)

[40]

Accuracy (MEA, Spearman-rank-correlation),
response-time and precision

[9]

RQ6. What are the contributions of MCDA methods to RSs regarding some of
their challenges such as cold-start, data sparsity, scalability, and privacy?

Scalability and privacy have not been addressed in any of the papers. More
than that, scalability proved to be a problem in the analyzed RSs since many of
them require high interaction with the user, which may lead to slowness.

On the other hand, MCDA can contribute to the cold-start and sparsity
problems. Indeed, these problems can be addressed by applying utility-based
methods, since preferences (utilities) of new users are learned from previous users
[40,47]. Frameworks in which the users are invited to input their preferences are
also able to deal with the cold-start problem [22,42].
RQ7. What are the trends and gaps in the use or research of MCDA methods in
RSs?

The vast majority of MCDA methods employed in RSs are for ranking. How-
ever, producing a ranking of alternatives can be seen as a disadvantage since,
in most cases, a second stage of filtering is required to finally select a subset of
recommended items. In order to avoid the need of this additional phase, it seems
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to be more appropriate to use sorting methods that directly assign alternatives
to a set of defined categories. This approach is also indicated as more scalable
for large sets of alternatives and/or users. Another trend in the use of MCDA
methods in RSs regards the modeling of hierarchical criteria. Despite that, few
methods have been explored for this purpose so far. Exploring how MCDA meth-
ods can be used to address some of the RS challenges, such as cold-start, data
sparsity, scalability, and privacy, is also an open question, which naturally open
up possibilities for future studies.

As already discussed, although applying MCDA methods to RSs may improve
personalizing the system when taking user preferences into consideration, these
methods also leads to problems regarding system response time. Moreover, those
systems usually ask for the user their preferences and do not take advantage
of information already available in historical data. In order to improve those
aspects, the application of preference learning combining to MCDA in RSs comes
up as an interesting possibility of future research. Indeed, the research field
called “preference learning”, which can be considered a sub-field of the machine
learning research area, concerns with the acquisition of preference models from
data–it involves learning from observations that reveal information about the
preferences of an individual or a class of individuals, and building models that
generalize beyond such training data [32]. A RSs based on preference learning
and MCDA would allow at the same time to learn preferences from historical
data and to use preferences established by the user, offering a large and promising
scope to be explored. Bringing together contributions involving these two areas to
RSs presents itself as a good solution for recommendations in high personalized
learning environments. It is important to note that, although the topic preference
learning has already being explored in RSs, throughout this literature review we
could see that the integration of preference learning and MCDA applied to RSs
is still an unexplored topic in the literature.

6 Conclusions

In this paper, we have conducted a systematic literature review of the application
of MCDA methods to RSs. Typically, a small sample size affects the generaliz-
ability of the research results. In order to overcome this problem, we intend to
include more studies identified through a snowballing approach and take into
account all the main conferences on software engineering. We also intend to
extend this study in order to better discuss open issues and opportunities for
future work. To do so, we want to build a novel taxonomy on multi-criteria
RSs, including RSs based on MCDA methods, analyze strengths and weakness
associated to each category of the taxonomy, and point to immediate future
works to be developed, which could later help the research community to obtain
importance advances in this research area.
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multiple criteria decision analysis methods with a new taxonomy-based decision
support system. Eur. J. Oper. Res. 302(2), 633–651 (2022)

20. Del Vasto-Terrientes, L., Valls, A., Zielniewicz, P., Borràs, J.: Erratum to: A hier-
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Abstract. Identifying instances in a learning task that are difficult to
predict is important to avoid critical errors at deployment time. Addi-
tionally, providing explanations for good or bad predictions of a model
can be useful to understand its behavior and to plan how to improve
it (e.g., by data augmentation in specific areas of instances). In this
paper, we propose a method to provide explanations for a model’s pre-
dictive performance based on the induction of meta-rules. Each meta-
rule identifies a local region in the instance space, called Local Perfor-
mance Region (LPR). The meta-rules are induced using a reduced num-
ber of attributes, in such a way that each LPR can be inspected by,
e.g., plotting a pairwise attribute plot. Additionally, given a group of
instances to explain (or eventually an individual instance), we propose
a greedy-search algorithm that finds the subset of non-redundant LPRs
that maximally covers the instances. By explaining the (in)correctness
of model predictions, LPRs constitute a novel use of meta-learning and
a novel application in explainable AI. Experiments show the usefulness
of LPRs while explaining inaccurate class predictions of Random Forest
in a benchmark dataset, demonstrating a special case of LPRs, called
Local Hard Regions (LHRs).

Keywords: Meta-learning · Explainability · Rule learning

1 Introduction

Predicting the performance of Machine Learning (ML) algorithms is an impor-
tant task to support algorithm selection and to understand the limits of each
algorithm of interest. This task has been treated by meta-learning [2] as another
supervised learning task. In this approach, a set of training meta-examples is
produced from experiments performed to evaluate a set of algorithms on a set of
learning problems of interest. A meta-learner is then built to predict algorithm
performance for new problems. In this paper, we are focused on the instance-level
meta-learning approach [3,6,14], which is specific to predict algorithm perfor-
mance for instances in a single learning problem of interest. So, before using a
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candidate model to predict an input instance, the meta-learner could be used to
foresee if the model is actually adequate for that instance. Additionally, such an
approach can be used to perform dynamic algorithm selection [5].

Previous work on meta-learning has focused on optimizing the predictive
performance of meta-models, while neglecting explainability, which should be an
important issue in meta-learning. In fact, a primary objective of meta-learning is
actually to understand algorithm performance. However previous works are lim-
ited for example to learn meta-models that are directly interpretable, e.g., deci-
sion trees. The same challenges that motivated the topic of explainable ML [12]
are also applied to meta-learning, and thus, further investigations are necessary
to propose procedures for explaining meta-models. Hence, important practical
questions such as when an algorithm fails could be answered more properly.

This paper proposes a new approach to explain learning performance by
extracting meta-rules for a learned model in a dataset. Each meta-rule defines a
Local Performance Region (LPR) in terms of subsets of instances and features for
which a learned model has remarkable poor predictive performance (Local Hard
Region – LHR) or strong predictive performance (Local Easy Region – LER).
By producing meta-rules with one or two attributes, LPRs can be inspected in
visual plots. As a second contribution, we proposed a greedy-search procedure
to find the subset of LPRs which covers the maximal number of instances given
by the user. Depending on the dataset complexity, the number of LPRs can be
high but it is possible that different users aims at each time to explain specific
groups of instances or even a single one. Thus, filtering non-redundant LPRs can
be beneficial for satisfying each user’s demand.

Current state-of-the-art explainers, such as LIME [16], act at the instance
level and focus on which features were important for the class prediction given
by the model. However this explanation is produced without taking into account
the accuracy/error of the model’s prediction. This is an important distinction
between these explainers and our approach, which actually aims to explain per-
formance, instead of individual predictions. This means that LPRs and LIME
(or similar explainers) are complementary and can be used together for a full
picture of the explained model’s predictions.

Experiments were performed in the Statlog (Heart) classification dataset,
in which 14 LHRs were identified for the Random Forest (RF) algorithm. Each
LHR indicates a specific area in the instance space where RF produced relatively
poor class probabilities. Each LHR could be explained by one or two attributes
in the dataset, which could be inspected individually in the experiments. By
adopting the maximal coverage search procedure, we identified 3 non-redundant
LHRs which explained more than 80% of the RF’s errors. In the experiments,
we discussed how the LHRs can be used to explain the RF’s performance for
groups of hard instances or even for individual instances.

This paper is organized as follows. Section 2 presents the related work on
meta-learning, followed by Sect. 3 in which we describe the proposed solutions.
Section 4 in turn presents the performed experiments. Finally Sect. 5 concludes
the paper with final considerations and future work.
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2 Meta-Learning

Meta-learning predicts algorithm performance in a supervised way, usually
applied to select algorithms at the dataset level [2]. In this case, a meta-learner
is built from a set of meta-examples, in which each meta-example is related
to a dataset and stores: (1) the characteristics describing the dataset, called
meta-features (e.g., the number of attributes and examples, correlation between
attributes, class entropy,...); (2) the candidate algorithm with best empirical per-
formance for that dataset, usually estimated by cross-validation. A meta-learner
model learned from a set of such meta-examples is a classifier that predicts the
best algorithm for new datasets based on their meta-features. Alternatively, the
meta-target stored in the meta-example can be the empirical performance esti-
mation of a single algorithm. In this case, the meta-learner is a regression model
which predicts the algorithm performance for new datasets.

In the instance-learning approach, meta-models are adopted to perform algo-
rithm selection for each instance in a task of interest [3]. Thus, each meta-
example is related to a single instance in a dataset. The meta-features in turn
can be the original features of the instance or other features related to the mod-
els, like model confidence degree. The meta-target usually indicates the best
algorithm to predict that instance. Alternatively, the meta-target can be a loss
measure specific for an algorithm (e.g., 1|0 loss, absolute error,...). In this case,
the meta-learner predicts the loss measure for each instance given as input.

Instance-level meta-learning has been adopted to perform dynamic selec-
tion of models in literature [5], where a meta-learner is used to select a can-
didate algorithm for each instance to classify [6,9,11,14,14]. Although related,
our objectives are different (and complementary). Instead of identifying areas of
competence for a query instance to classify, we aim to find all the local areas in
instance space where a given model presented poor performance. Obviously such
information can be used in dynamic classifier selection, for instance by discarding
a model if the instance belongs to a known hard area for that model.

Finally, the current work is related to previous work dedicated to measure
instance hardness [17]. Such previous work ranges from measuring the perfor-
mance of a single model or a pool of models for each instance [15,17], instance
hardness based on item response theory [4,10,13] and the use of data complex-
ity measures [1]. The main focus of the previous work is to detect individual
instances or groups of instances that are difficult to predict. Our work shares
the objective of detecting hard areas in the instance space. However our pro-
posed methods provide mechanisms to explain the instance hardness for a given
model, which is not deeply investigated in literature.

3 Finding Local Performance Regions in Instance Space

In this paper, we propose an original method to explain algorithm performance
for instance-level meta-learners. The main objective is to identify regions in
the instance space that explain model performance. Hence the general question
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Fig. 1. Local Hard Region (LHR) in the Iris dataset.

addressed in the paper is to know when a learned model fails or succeeds in its
prediction. For this, we propose a method to detect Local Performance Regions
(LPRs) and their special cases Local Hard Regions (LHRs) and Local Easy
Regions (LERs). These local regions are subsets of instances in a dataset, defined
by rules involving a reduced number of attributes (e.g., one or two), in such a
way that model performance can be inspected in one or two dimensional scatter
plots with the chosen attributes.

As a motivating example, consider the Iris dataset, which has four attributes
and three classes. We train a Random Forest (RF) model and we aim to explain
when it fails in its predictions. We start by assuming a bad prediction when
the correct class probability predicted by RF is lower than 0.9 (or error greater
than 0.1). This is obviously a strict criterion for defining that a model had a bad
performance but notice that the Iris dataset is a very simple classification task.
By using such criterion, we observed 10 hard examples, where 4 instances belong
to the Virginica class and 6 belong to the Versicolor class. Figure 1 presents a
possible LHR (the red frame) for inspecting the hard examples, using the Petal
Length and the Petal Width attributes. This LHR covers 14% of the Iris dataset,
with average RF error of 0.12. Additionally it covers 9 out of 10 hard examples,
i.e., a single 2-D plot could explain 90% of the poor predictions of the RF model.

In this paper, we propose a method to find LPRs by learning discriminating
meta-rules to explain the model performance (see Algorithm 1). Additionally,
as several LPRs can be found for a single dataset and model of interest, we
proposed a greedy-search method to select a reduced subset of LPRs to explain
a group of instances given by the user. This is done by searching for the subset of
LPRs that maximizes the total relevance for the given examples (see Algorithm
2). This algorithm can be eventually used to explain the (in)correctness for a
single instance, by selecting a single LPR for that instance.
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3.1 Definitions

Our work is focused on learning tasks for which we aim to derive explanations
for the performance of a learned model. A task can be defined in terms of a set
of predictor attributes {ai}mi=1, where each attribute ai has a domain Ai. Let
M be a learned model and let D be a test dataset to collect the predictions
and evaluate M. For each instance d ∈ D, we collect the model’s performance
according to a chosen function: L(M, d).

An LPR in our work is defined by a meta-rule r that considers in its head a
pair of attributes ai and aj and predicts the performance of model M:

r : per = e when ai ∈ Ar
i & aj ∈ Ar

j ,

where Ar
i ⊆ Ai and Ar

j ⊆ Aj are subsets of each attribute domain. We adopted
two attributes in the LPRs for two reasons: (1) to provide simple explanations;
and (2) to inspect the meta-rule in an LPR plot of two dimensions. Notice that
a meta-rule with one antecedent is a special case of LPR in which Ar

i = Ai.
The model performance e returned by the meta-rule can be estimated as

average L(M, d) for the instances where the meta-rule’s conditions apply:

e(M, r,D) =
1
nr

∑

d∈Dr

L(M, d), (1)

where Dr ∈ D is the subset of instances covered by r and nr = |Dr|. The
meta-rule coverage is the proportion of examples covered by the meta-rule:

Cov(r,D) =
nr

n
, (2)

where n = |D|.

3.2 Finding LPRs

Algorithm 1 shows the steps to find LPRs. The performance function L(M, d)
can be chosen to measure model incorrectness, i.e., lower values are better, in
which case Algorithm 1 outputs LHRs. Alternatively, if the user wishes to obtain
LERs, L(M, d) can be chosen to measure model correctness, such that the higher
its values, the better. As an example, the LHR presented in Fig. 1 for the Iris
problem is defined by the meta-rule:

r : per = 0.12 when Petal Length ∈ [4.5; 6.3] & Petal Width ∈ [1.4; 1.8].

A number of nr = 21 instances are covered by this meta-rule and hence
coverage Cov(r,Diris) = 21/270. The average incorrectness returned by training
the RF model for these 21 instances is 0.12 (i.e. e(M, r,Diris) = 0.12), with the
chosen performance function being L(M, d) = 1 − p(y|d), where p(y|d) is the
probability given by M to the correct class y of instance d.



Explaining Learning Performance with Local Performance Regions 555

As mentioned above each LPR is related to a pair of attributes in the dataset.
Given a pair of attributes ai and aj , a meta-dataset Dij is produced where those
attributes are used as predictors and the performance L(M, d) of model M for
every instance in the dataset is used as the target attribute. A rule learning
algorithm is applied on Dij to derive a set of candidate meta-rules to predict
the model performance based on ai and aj .

For LHRs, each candidate meta-rule is returned when the corresponding
model incorrectness is greater than a pre-defined threshold (thrE), that is if
e(M, rk,D) > thrE. In this case, the meta-rule actually distinguishes a bad
performance region. We highlight that several LHRs can be found for a single
attribute pair, depending on the value of thrE. The lower the value of this
parameter, the higher the number of LHRs found by the algorithm. Obviously,
thrE has to be set according to the application domain, based on the model error
that is tolerated. Naturally, the opposite happens for LERs, where a candidate
meta-rule is returned when the corresponding model correctness is greater than
the pre-defined threshold. Thus, as mentioned above, one must choose a suitable
performance function in each case.

For LHRs, for example, the performance function L(M, d) can be chosen as
any instance-wise error metric, such as a binary error function (1 if prediction was
wrong, 0 otherwise), proper scoring rules (Brier score, log-loss, . . . ), or the com-
plement of the probability predicted for the actual class of the instance, which
we employ in our experiments in Sect. 4. Whichever metric is chosen, L(M, d)
needs to be calculated on a dataset with available ground truth. However, our
approach also allows for a trained meta-learner, which can be used to estimate
L̂(M, d) for new instances, meaning LPRs can be found to explain when the
meta-learner thinks that M will predict poorly or not.

3.3 Finding Maximally Relevant LPRs

In this section we describe the method proposed to select a reduced subset R ⊆
RuleSet to explain the set of examples Du provided by the user. For example,
Du could be the set of all instances in D for which the model M returned
errors greater than the threshold thrE, i.e. L(M, d) > thrE. Alternatively the
user could inform specific groups of instances to explain (e.g., all instances that
are female and the model returned bad predictions). The proposed method is
relevant when there are correlated predictor attributes in a dataset, in such a
way that meta-rules extracted by the method proposed in previous section can
be redundant.

The proposed method is closely related to [7], which proposed a greedy-search
method to find 2-D plots of features to visualize outliers in a dataset. Our work
adapted this idea to find subsets of LPRs that cover the instances provided by
the user. The objective function TotalRel(R,Du) is based on a function that
measures the relevance of R for each instance d ∈ Du. The function considers
the most relevant LPR that covers the example d:

Rel(M, d, R) = max
r∈R

e(M, rk,D) × Cov(r, d), (3)
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Algorithm 1: Find Local Performance Regions.
Input: Model M; n × m test dataset D, in which n is the number of instances

and m is the number of attributes; threshold thrE for predicted model
performance; and loss function L(M, d).

/* Test model M on D to collect the performances per (a n × 1
vector). */

1 per ← (L(M,d) | d ∈ D)
/* Initialize the set of meta-rules with empty set. */

2 RuleSet ← {}
3 for each attribute pair (ai, aj) do

/* Produce a meta-dataset from (ai, aj) and per. */

4 Dij ← Dataset built using the attributes ai and aj as predictors and model
performance per as the target attribute
/* Extract meta-rules. */

5 RuleSetij ← Rules extracted by applying a rule learning algorithm on Dij .
/* Select the meta-rules based on threshold thrE. */

6 for rule rk in RuleSetij do
7 if e(M, rk, D) > thrE then
8 RuleSet ← RuleSet

⋃
rk

Output: RuleSet

where Cov(r, d) = 1 if the rule r covers the example d and it is 0, otherwise. The
relevance function is useful to distinguish among several LPRs that compete to
cover the example d. For example, the most relevant LHR for a hard instance is
the one that has the highest predicted error. Finally the objective function for
a subset R is defined as the total relevance:

TotalRel(R,Dhard) =
∑

d∈Du

Rel(M, d, R) (4)

Algorithm 2 is a greedy-search algorithm that starts with an empty set of
selected meta-rules and iteratively includes a candidate meta-rule that obtains
the marginal total relevance for the user examples (see lines 6 and 7). A meta-rule
is added at each iteration until a number b of meta-rules is selected.

3.4 Explaining LPRs Using Meta-Features

Algorithm 1 finds meta-rules defined using the features available in the dataset.
As a complementary analysis, one could add an additional explanation layer
to describe each LPR in terms of meta-features extracted from the data in the
LPR. For example, instances in the minority class can be more frequent in a given
LPR. If the model is biased to respond well for the majority class, the predictive
model performance will be low for that region. Also, a classification task can be
linear for certain regions of instances while more complex for other instances. In
such analysis, the instances’ features cause (high or low) data complexity, which
in turn can explain the model performance in a different perspective.
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Algorithm 2: Find the Meta-Rule Subset to Maximize the Total Relevance
for User Examples
Input: RuleSet, set of meta-rules extracted by Algorithm 1; budget b, number

of meta-rules to select; dataset Du, set of user examples to cover.
/* Initialization */

1 candR ← RuleSet /* Subset of candidate meta-rules to select */

2 selectR ← {} /* Subset of selected meta-rules */

3 totalRel = 0 /* Total relevance for the user examples */

/* Select b meta-rules, by maximizing marginal relevance for the

user examples at each iteration */

4 while size(selectR) < b do
/* Compute the marginal relevance score of each candidate

meta-rule */

5 for each rk ∈ candR do
6 auxR ← selectR

⋃
rk

7 margRel[rk] ← TotalRel(auxR, Du) − totalRel

/* Find the meta-rule in candidate set with maximal marginal

relevance score */

8 r∗ ← argmaxrk∈candRmargRel[rk]
/* Update the selected and candidate meta-rule sets */

9 selectR ← selectR
⋃

r∗

10 candR ← candR \ r∗

/* Update the total relevance of the selected meta-rule set */

11 totalRel = totalRel + margRel[r∗]

Output: selectR

Different candidate meta-features are available in literature to analyze data
complexity at the instance level, including metrics of feature relevance, linearity-
based measures, class balancing measures, neighborhood-based measures, among
others [1,17]. In the end-user perspective, meta-rules defined using the original
features can be easier to interpret. In the data analyst perspective, identifying
relevant meta-features in a LPR can be useful to understand model performance
also considering the eventual biases the model has and the consequences to deal
with the instances belonging to specific regions in the instance space.

4 Experiments

In this section we present an experiment to produce explanations for RF applied
to the Statlog(Heart) dataset. This dataset is a binary classification task, con-
taining 270 instances and 13 predictor attributes. In the experiments, we per-
formed 10-fold cross-validation to collect the prediction errors returned by RF.
For each instance d we computed the error obtained by RF:

L(M, d) = 1 − p(y|d), (5)
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where y is the true class label of instance d and p(y|d) is the predicted class
probability returned by RF. In the experiment, we adopted the randomForest
package in R, with default parameters.

The errors obtained by RF in the Heart dataset had an average value of
0.27. The distribution is skewed and the RF errors tend to be low. About 60%
of errors were lower than average. More extreme errors (e.g., greater than 0.8)
were observed for 2.9% of the instances.

4.1 Finding LHRs: Algorithm 1

For finding the LHRs (Algorithm 1), we adopted the rpart package in R for rule
induction. Initially a decision tree is induced using Dij . Then the rpart.rules
function is used to extract the meta-rules from the induced decision tree. All
parameters of rpart were defined as the default values, apart from the minbucket
parameter, which controls the coverage of instances in each terminal node. In our
experiments, minbucket was set to 5% of the instances, in such a way that each
returned LHR has a minimum level of representativeness in the dataset (i.e.,
Cov(r,D) > 0.05). This is to avoid very small LHRs that pinpoint single very
hard instances. When few instances are present in a LHR, the rules can have a
lower reliability. In future work, we aim to address this challenge by adopting
data augmentation procedures to fill in the instance space with more instances,
and potentially extracting more reliable LHRs.

Finally, in order to select the LHRs we adopted thrE = 0.3, which is about
10% greater than the average error. Table 1 shows the meta-rules returned by
Algorithm 1. A total number of 14 meta-rules were induced. Notice that some
extracted rules have only one variable in their condition statements as less rel-
evant attributes were discarded by the rule learning algorithm. The predicted
errors associated to these meta-rules ranged from 0.31 to 0.38, while the cov-
erage values ranged from 14% to 39%. Rules are ordered by predicted error.
Figure 2(a) shows the hardest LHR (Meta-rule #1, err = 0.38). Figure 2(b)
presents the distribution of errors for the examples associated to this meta-rule,
which, as expected, tend to be higher.

4.2 Filtering Meta-Rules: Algorithm 2

In this section, we discuss the results obtained by Algorithm 2 to maximize the
coverage of hard examples. In this experiment, we defined a budget of 7 rules
to select. The set of examples Du was composed by all instances for which RF
returned an error greater than 0.3 (i.e., the same threshold thrE adopted in
Algorithm 1). A total number of 98 instances were considered as hard examples
in this set.

The 7 selected meta-rules were sufficient to explain most hard examples in
Du (coverage higher than 0.90). Table 2 presents the top three meta-rules filtered
by Algorithm 2, which covered more than 80% of the hard examples. Meta-rule
#12 (Fig. 3) covers alone 16% of the given examples. The rule’s conditions bring



Explaining Learning Performance with Local Performance Regions 559

Fig. 2. LHR for Meta-rule #1 and histogram of errors. Color represents the RF error,
ranging from 0 (dark blue) to 0.6 (dark red). (Color figure online)

contradictory signals about the risk of heart disease, which make the LHR chal-
lenging for RF to provide good predictions. In order to understand this conflict,
we first discuss the roles of each attribute to predict the disease class. First, in
the Heart dataset the patient’s pressure is alone an indicator that suggests a
higher risk of heart disease. In turn, the attribute electrocardiographic has three
distinct values (left-ventr-hyperthophy, normal and wave-abnormal), but only
the value left-ventr-hyperthophy is clearly related to a high risk of heart dis-
ease. Hence, the pressure condition in Meta-rule #12 indicates a higher chance
of disease, while the condition on electrocardiographic indicates a lower risk of
disease. These conflicting signals cause high errors for the RF algorithm in both
classes. The average RF error in this LHR was 0.32 for instances in the absence
class and 0.33 for instances in the presence class.

Meta-rule #11 defines an LHR with medium-to-high values of cholesterol,
with a prevalence of the presence class (56%) over the absence class (44%). The
class entropy in this LHR causes a difficulty for the RF algorithm, with higher
errors in this case for the absence class. Finally, Meta-rule #4 is similar to Rule
#12 in the sense that it also brings conflicting conditions. The value ‘upsloping’
of the slope attribute is also an indicator of lower risk of disease, while high
pressure is an indicator of higher risk. The class imbalance inside LHR #4 is
higher than the other LHRs, with a prevalence of the absence class (75%). In
this case, average RF error was higher for the presence class (0.38).

4.3 Explaining Single Instances

Algorithm 2 can be adopted to choose an LPR to explain a single instance. This
is done by setting Du as the instance of interest. In this case, Algorithm 2 will
return the most relevant LPR that covers that instance. In order to illustrate,
we choose an instance for which RF returned a very high error. Specifically, we
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Table 1. Meta-rules identified by Algorithm 1

N. Meta-rule Cov.

#1 per = 0.38 when cholesterol is 253 to 305 & chest is not asymptomatic 14%

#2 per = 0.38 when heartRate ≥134 & cholesterol is 253 to 301 20%

#3 per = 0.37 when cholesterol is 253 to 305 & oldpeak <0.95 18%

#4 per = 0.36 when pressure is 116 to 135 & slope is upsloping 21%

#5 per = 0.36 when heartRate ≥162 & oldpeak <0.05 18%

#6 per = 0.36 when pressure is 130 to 135 15%

#7 per = 0.35 when heartRate is 134 to 150 17%

#8 per = 0.35 when heartRate ≥162 & chest is asymptom. or atyp-angina 18%

#9 per = 0.34 when pressure is 116 to 135 & oldpeak <1.45 30%

#10 per = 0.34 when pressure ≥116 & cholestoral is 253 to 305 28%

#11 per = 0.34 when cholesterol is 253 to 305 32%

#12 per = 0.33 when pressure ≥116 & electrocardio is normal or waveabn 39%

#13 per = 0.31 when heartRate ≥162 34%

#14 per = 0.31 when pressure ≥116 & cholesterol <225 24%

Table 2. Meta-rules filtered by Algorithm 2

Selected
meta-rule

Marginal
incrimination

Marginal
coverage

Absence
(%)

Presence
(%)

Avg. error of
absence class

Avg. error of
presence class

#12 0.16 0.49 61% 39% 0.32 0.33

#11 0.09 0.25 44% 56% 0.35 0.32

#4 0.03 0.07 75% 25% 0.34 0.38

Fig. 3. LHR for the Rule #12 and histograms of errors per class.

inspect the RF performance for an old man (77-years old), who has high pressure
(125) and high cholesterol (304). This patient has heart disease (presence class),
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Fig. 4. LHR for the Rule #11 and histograms of errors per class.

Fig. 5. LHR for the Rule #4 and histograms of errors per class.

which could be expected by considering these indicators in isolation. The error
returned for RF for this patient was 0.73, which is actually a very high error.
Algorithm 2 returned for this patient the Meta-rule #3 in Table 1. Again, this
meta-rule has conflicting conditions associated to the risk of heart disease. The
oldpeak attribute measures the heart stress during exercise, and low values indi-
cate low risk of disease. In fact, in the Heart dataset, when oldpeak < 0.95, 106
instances belong to the absence class and 39 belong to the presence class, which
corresponds to a low probability of 0.27 for the disease. On the other hand, when
oldpeak ≥0.95, 44 instances belong to the absence class, while 81 belong to the
presence class, i.e., probability of disease is 0.64.
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By considering the cholesterol between 253 and 305, there are 38 instances in
the absence class and 47 instances in the presence class, i.e., probability of disease
is 0.55. Otherwise, 112 instances belong to the absence class and 73 instances in
the presence class, i.e., probability of disease is 0.64. High cholesterol suggests
high risk of disease. Although the patient of interest has characteristics that
suggest a high risk of disease, he also has an exam result (oldpeak attribute)
that suggests the opposite (oldpeak is equal to zero for this patient). These
conflicting indicators make this patient a hard instance to be predicted by RF.

4.4 Baselines

Finally we evaluate two natural baselines that could be adopted to find LPRs:

– Baseline 1: a single decision tree is learned using all attributes and the rules
which matched the threshold thrE are returned. This baseline tends to pro-
duce more complex rules as no limit is defined in the number of attributes
in each rule. Some rules for instance may not produce an LPR that can be
plotted in 2D space;

– Baseline 2: a single decision tree is learned using all attributes but limiting
the maximal depth to 2, in such a way that the derived rules have at most 2
attributes. As our proposed method, this baseline produces simple rules.

The same threshold value thrE = 0.3 is adopted in these baselines.
Figure 6(a) presents the decision tree induced in Baseline 1. Two meta-rules
can be extracted from this decision tree by considering the thresholds, cover-
ing about 65% of hard examples. This baseline could extract a hard area with
model error of 0.38, which is interesting for our purposes. However the returned
meta-rules are more complex as they use three attributes.

Fig. 6. Decision tree induced by (a) Baseline 1 and (b) Baseline 2. Each node contains
the model error prediction and the coverage of examples in percentage.
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Figure 6(b) presents the decision tree induced in Baseline 2, which is similar to
Baseline 1, but limiting the depth. A single meta-rule is returned in this decision
tree, covering 75% of the hard examples. The proposed method to find LHRs
provided alternative explanations that covered the remaining hard examples.
Additionally the proposed method could find harder hard areas (e.g., Meta-
Rule #1 in Table 1, which had a model error of 0.38). The proposed method
is more flexible than the baselines since it finds LPRs in a pairwise way over
the attributes. As a consequence, it can find more diverse explanations for the
instances provided by the user.

5 Conclusion

In this paper we proposed an original method to find local areas in the instance
space that explain model performance. The proposed method is based on learn-
ing meta-rules to predict model performance. By using a reduced number of
attributes, graphical explanations for the model errors are provided in the form
of LPR plots. Experiments were performed in a benchmark dataset to explain
the bad predictions of random forest. The proposed method could return a vari-
ety of meta-rules to explain the bad RF predictions. Additionally, the proposed
greedy-search algorithm could select a reduced number of non-redundant meta-
rules to cover most of the hard instances.

As future work, we intend to investigate other rule learning algorithms or
subgroup discovery methods, to identify LPRs. Additionally experiments will
be performed in more benchmarks and algorithms, extracting LHRs, as well as
LERs. The proposed methods can be investigated as a component of a dynamic
algorithm selection procedure. Also, it can be combined with data augmentation
procedures in order to improve robustness of the model to the hardest instances
identified in a problem of interest. Finally, the proposed methods can be applied
to explain meta-models that predict instance hardness measures. In this case,
the proposed methods could not only identify LHRs specific to a single model,
but instance regions in a learning task that are intrinsically hard to predict.

Although we presented our proof of concept by finding LHRs for RF in a
classification task, Algorithm 1 can easily be used to find LHRs and LERs for
regression tasks, as long as a suitable performance function is chosen. Addi-
tionally, LERs can be used to explain feature importance, by checking which
attributes appear more frequently in the meta-rules. Finally, it is possible to use
our method with meta-rules defined by more than two features and still visual-
ize the resulting higher-dimensional LPRs, using graphical tools such as parallel
coordinates [8]. We intend to investigate all of these possibilities as future works.
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T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp.
637–652. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7 39
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Abstract. Reports of errors committed in public contexts by facial recognition
systems based on machine learning techniques have multiplied. Still, these sys-
tems have been increasingly used by the Brazilian public administration. Con-
sequently, the following key problem is established: how can errors committed
by facial recognition systems be prevented or mitigated when these systems are
used for the elaboration and implementation of public policies? Guided by the
understanding that algorithmic transparency is key to preventing and mitigating
these errors, we empirically analysed whether, or not, the Brazilian General Data
Protection Law (Lei Geral de Proteção de Dados Pessoais – LGPD, in the Por-
tuguese acronym) has been used to promote this kind of transparency in situations
in which facial recognition systems are employed. We circumscribed our study
to the public transportation sector of 30 large Brazilian municipalities. To gather
information, we sent a questionnaire to the municipal public agencies responsible
for the public transportation system with questions about how the LGPD works in
this public policy area. We used the Access to Information Law to do that. Upon
legal analyses, we built an algorithmic transparency scale and found that, in the
sector studied, the level of transparency is “Very Low” in most municipalities.
This research finding indicates that the risk of lack of control over errors made by
facial recognition systems is high. It suggests that the Brazilian public adminis-
tration does not know how to use the systems in question ethically, and that this
lack of knowledge may apply to other Artificial Intelligence systems.

Keywords: Ethics · Algorithmic transparency · Public policy

1 Introduction

Artificial Intelligence (AI) can be defined as “a machine-based system that can, for a
given set of human-defined objectives, make predictions, recommendations, or decisions
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influencing real or virtual environments. AI systems are designed to operate with varying
levels of autonomy” (OECD 2019)1. This technology has different applications. One of
them is facial recognition (FR) systems that use pattern recognition algorithms, often
implemented with machine learning techniques. This subset of AI has attracted the
attention of different stakeholders, especially because of the errors it makes when used
in public contexts. In his mapping of such errors, Silva (2020) an HP computer in
an electronics store. The MediaSmart face motion tracking feature could identify the
white woman’s face, but not the Black man’s face”. The author also reminds us that,
six years later, in 2015, the automatic tagging feature of the Google Photos app tagged
Black people as “gorillas”. Three years later, cases like these were observed in Face++
and Microsoft’s technologies, which associated negative emotions with Black people,
reinforcing the social stigma that they are angry by nature; and in Google Vision, which
mistook black hair for wigs.

Despite being old and resilient, errors such as those described above have not pre-
vented FR systems from being increasingly used by the Brazilian public sector. Accord-
ing to the think-and-do tank Igarapé Institute (2019), the number of cases in which FR
technologies are used to operationalize public policies jumped from one, in 2011, to 47,
in 2019. The institution also noted that these uses are widespread among 30 munici-
palities and 16 states, and are concentrated in four public policy areas: transportation,
security, border control, and education. A use so expressive as this demands attention
as the mistakes made by FR technologies during the elaboration and implementation of
State actions can make it a reproducer of social wounds, such as racism and misogyny.
After all, stereotypes unfavourable to Blacks, for example, are reinforced every time a
Black student is mistakenly taken as a possible fraudster of a free student pass to which
he/she is legally entitled to, or when a young Black man, equally mistakenly, is confused
by technology, leading the police to approach him (Brandão et al. 2022). The use of AI
systems with such consequences might be considered unethical or, in Floridi et al.’s
(2020) terms, contrary to the idea of “Artificial Intelligence for Social Good”, according
to which the design, development, and employment of AI systems should “(i) prevent,
mitigate, or solve problems adversely affecting human life and/or the wellbeing of the
natural world, and/or (ii) enable socially preferable and/or environmentally sustainable
development”. The work of Shearer et al. (2020), in turn, allows us to say that, if the use
of FR systems by governments increases social problems, it is irresponsible and thus
unethical.

The prevention and mitigation of errors such as those mapped by Silva (2020) and
the ethical risks linked to them depend, at least in part, on the existence of information
that makes it clear to citizens that algorithm-based technologies are in use and how
they inform public decision-making so that citizens can demand answers and justifica-
tions about the use and operation of these technologies (Ada Lovelace Institute 2021).

1 There are different definitions for the term “Artificial Intelligence”, which were mapped by
Russell and Norvig (2016) and Sweeney (2003). As we will see throughout this section, few
works have investigated the use of AI and its applications by the Brazilian public sector. In
this article, we cannot analyse each of them. We only mention that, in all of them, the AI
systems analysed seem to adhere to the OECD (Organization for Economic Co-operation and
Development) definition. For this reason, we also adopted this definition.
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Following the UK’s Central Digital and Data Office, we use the term “algorithmic trans-
parency” to refer to this body of information. Guided by this concept, we ask: what is
the level of algorithmic transparency in the use of FR systems by the Brazilian public
administration? To build initial answers to this question, we analysed, specifically, the
use of FR technologies in the municipal public transportation sector to combat fraud in
discounts and gratuities assured by law to specific audiences, such as students and the
elderly.

Two reasons justify the specificity of our analytical focus. The first is that the use of
FR systems for the aforementioned purpose is numerous. Among the 47 cases identified
by the Igarapé Institute (2019), 21 “are focused on fighting fraud in public transportation
gratuities, especially in intercity transportation”. The information gathered by Brandão
andOliveira (2021) reinforces this finding2. The authors focused only on the 17Brazilian
municipalities with at least one million inhabitants and searched occurrences of the term
“facial recognition” in editions of electronic Official Diaries published between January
2010 and December 2020. In ten localities, they identified official uses of FR systems
that were no longer happening, in progress or under discussion. In nine of them, the use
of this technology was associated with the fight against fraud in discounts and gratuities
in public transportation; in four, with objectives related to public safety; in two, with the
operationalization of health and education policies; and in one, with actions in the area
of social assistance.

Despite being significant, the use of FR technologies in municipal public transporta-
tion is not analysed enough, and this is precisely the second reason why we have chosen
this public policy area for study. The literature on the use of AI applications, in general,
and FR systems, in particular, by the Brazilian public sector is insipient. Besides that, it
has given greater attention to public safety (Nunes 2019; Francisco et al. 2020; Nunes
et al. 2022). Even studies that analyse different public policy areas – such as Coelho and
Burg (2020) and Reis et al. (2021) – end up devoting greater attention to it.

Certainly, analyses of the public safety area are crucial to understanding how algo-
rithmic transparency can be improved in the public sector. However, the lessons learned
in this public policy area are not easily transferable to other sectors, for two reasons.
Firstly, the type of FR systems used varies from one public policy sector to another. In
the case of public transport, the technology used is the type “one-to-one”. It means it
seeks to authenticate the identity of specific persons – in general, in closed spaces. In
public safety, in turn, the use of systems that try to identify individuals in large groups of
people is not unusual. In the second place, the functioning of the numerous public policy
areas and their stakeholders are different. For these reasons, there is an urgent need for
the elaboration of sectoral case studies on the challenges of algorithmic transparency in
the use of FR systems.

To partially fill this gap, we analysed the role of the Brazilian General Data Protec-
tion Law (Lei Geral de Proteção de Dados Pessoais – LGPD, in the Portuguese acronym)
in promoting algorithmic transparency in the public transportation system. We circum-
scribed our study to the 30 Brazilian municipalities that meet at least one of two criteria:

2 The Igarapé Institute (2019) does not make explicit in which states and municipalities FR
systems have been used in the public transportation system. The survey carried out by Brandão
and Oliveira (2021) partially fills this gap.
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having at least one million inhabitants and/or being a state capital. We conducted this
study to test two hypotheses:

H1: The level of algorithmic transparency in the municipal public transportation
system is low.

H2: Two of the most important mechanisms within the LGPD to promote algorith-
mic transparency – obtaining free and informed consent and preparing personal
data protection impact reports – are frequently neglected in the municipal public
transportation system.

The remainder of this article proceeds as follows. In Sect. 2, we discuss the rea-
sons why the LGPD can be understood as a mechanism for promoting algorithmic
transparency and the reasons that underpin our hypotheses. In Sect. 3, we present the
methodology used to gather information regarding the LGPD in the sector studied. In
Sect. 4, we present the pieces of information gathered by us and evaluate whether, or not,
each of them promotes algorithmic transparency. As we will see, this evaluation strategy
allowed us to create a scale of algorithmic transparency. In the Sect. 5, we discuss the
reasons why the pieces of information gathered partially confirm our hypotheses. In the
Sect. 6, we conclude the article, pointing out research paths revealed by our study.

2 The LGPD as an Algorithmic Transparency Instrument

Like most countries, Brazil does not have a specific legal regulation that disciplines the
use of AI applications. However, the country has the LGPD. Instituted in 2018, Law No.
13,709 “provides for the processing of personal data, including in digital media, by a
natural person or legal entity of public or private law, to protect the fundamental rights of
freedom and privacy and the free development of the personality of the natural person”.

The expression “processing of personal data” refers to any operation performed with
personal data, such as the collection, storage, and diffusion of this kind of information.
The term “personal data”, in turn, refers to pieces of information related to natural
persons, that is, to individuals. Some types of personal data are considered sensitive.
This group includes information “on racial or ethnic origin, religious belief, political
opinion, membership in a union or religious, philosophical or political organization,
data concerning health or sex life, genetic or biometric data, when linked to a natural
person” (Article 5, Item II).

As we can see, the LGPD establishes guidelines to be observed by public and private
entities interested in collecting and using individuals’ data and information3, which
makes it strategic to most of the discussions about AI. The centrality of this law can
be illustrated with two hypothetical examples. If a team of developers is interested
in creating image recognition technologies that can identify or authenticate images of
cats, they do not need to pay attention to the LGPD. However, if they are interested
in developing systems that can identify or authenticate human faces, they should do

3 Despite its name, the purpose of the LGPD is to protect the personal data subject, and not the
personal data itself.
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so, keeping in mind that images of this nature represent biometric information and are
therefore sensitive data.

In general, the LGPD states that personal data can only be processed after the data
subject has agreed to this. The consent must be given in a free and informed way and
must be related to a specific purpose. In some cases, as in the use of personal data for
the operationalization of public policies, the processing of personal data may take place
without the prior specific consent of the data subject. However, even in these cases,
some premises must be complied with, such as that found in Paragraph 2 of Article 11,
which imposes on public agencies and entities the obligation to publicize the waiver of
consent. In addition, according to Item I of Article 23, the public sector must make it
clear, preferably using its official websites, whenever it processes personal data.

While obtaining consent is not mandatory for the public sector, it can be useful in
promoting algorithmic transparency in the context of public policies for two reasons.
Firstly, public agencies are not prohibited from collecting citizens’ consent for specific
purposes if they want to do so. In the second place, even when it decides to exercise its
legal right not to collect individual consent, the public sectormust publicize this decision,
which indirectly communicates that it is using technologies whose operation depends
on the use of sensitive personal data. For these reasons, the mechanism in question
has the potential to increase the visibility of the use of AI systems, thus increasing the
chances of citizens demanding answers and justifications about the use and operation
of these technologies. Since the collection of consent can inform “users about the data
processing and theworking of the systemupfront” and it can describe “how theAI system
reaches decisions in general”, it can be called a “prospective transparency” mechanism,
in Felzmann et al.’s (2019) terms.

Another mechanism of the LGPD critical to the promotion of algorithmic trans-
parency is the legal authorisation it gives to the National Data Protection Authority
(AgênciaNacional de Proteção deDados –ANPD, in the Portuguese acronym) to request
controllers4 of personal (sensitive) data to prepare personal data protection impact reports
(Relatórios de Impacto à Proteção de Dados Pessoais – RIPDPs, in the Portuguese
acronym). These reports must comprise documents that contain “the description of the
personal data processing processes that may generate risks to civil liberties and funda-
mental rights, as well as measures, safeguards and risk mitigation mechanisms” (Article
5, ItemXVII). TheANPDmay require public and private entities to prepare these reports
at any time and whenever it deems them relevant. That is, when using AI technologies
that rely on sensitive personal data, the public sector is not obliged to produce RIPDPs,
even though – in our assessment – it should do so. After all, in its RIPDPs, the public
sector can make it clear how it intends to prevent or mitigate errors commonly made
by FR technologies, like the ones presented in the introductory section of this article,
whenever it contracts or develops this technology. As can be seen, the elaboration of
RIPDPs can also be considered a “prospective transparency” mechanism, but it can be
understood as a “retrospective transparency” tool aswell, as it can be useful for providing
post hoc explanations and rationales of AI systems’ outputs (Felzmann et al. 2019).

4 A controller of personal data is any “natural or legal person […]who is responsible for decisions
concerning the processing of personal data” (Article 5, Item VI).
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The fact that consent collection and the elaboration of RIPDPs are desirable but
not mandatory makes us believe that the Brazilian public administration, especially
at the municipal level, has not mobilized these mechanisms to increase algorithmic
transparency in the context of public policies. We highlight the potential difficulty of
municipalities because, in most cases, they have less budget and personnel structure to
deal with Information and Communications Technology (ICT) agendas, when compared
to the Union and the states (NIC.BR 2020).

3 Methods

Between August and October 2021, we requested information from 30 municipalities
about the use of FR systems in the public transportation system to prevent frauds in dis-
counts and gratuities guaranteed by law to specific audiences. The information requests
were addressed to the public transportation offices of all state capitals and all municipal-
ities with at least onemillion inhabitants and were anchored in the Access to Information
Law (Lei de Acesso à Informação – LAI, in the Portuguese acronym). In general terms,
this legislation gives any citizen the right to request information from the State about
its activities. For the purposes of this paper, we just highlight that this request can be
made through different channels, such as in person, by telephone, and through electronic
platforms. In our research, we used the latter channel – both to request and to receive
the requested information.

Our questionnaire comprised around 40 questions and was based on guides for the
responsible use of AI in the public sector, such as the works of Reisman et al. (2018)
and Leslie (2019). The questions were divided into six blocks: (i) general information
about the use of FR systems, such as the starting date of use; (ii) general characteristics
of the FR system used; (iii) measures adopted prior to the employment of the system,
such as offering training to public agents to use it; (iv) measures adopted to make the
use of FR aligned with the purposes of LGPD; (v) how the information generated by
the FR system is supervised by humans; (vi) number of frauds identified by the system
and how the holder of public transportation benefits is communicated when she/he has
allegedly committed fraud. In this paper, we only address the questions and answers
pertaining to block IV5. In the next section, we present them in conjunction with the
answers provided by the municipalities and analyse whether, or not, the different pieces
of information we could gather are neutral, favourable, or contrary to the promotion
of algorithmic transparency. As we will see, our evaluation culminated in the creation
of a scale of algorithmic transparency divided into five intervals: “Very Low”, “Low”,
“Medium”, “High”, and “Very High”.

Before moving on, a clarification is needed. Some public policy areas are operated
directly by the public administration. This is the case with public safety. In other areas,
such as municipal public transport, the Public Power is the Granting Power as it grants
companies the legal right to provide public services. For this reason, we could have

5 The survey described in this section gave rise to two other papers: Brandão (2022) and Brandão
et al. (2022). In three of them, the description of the data collection procedure is similar.
However, this is the only work in which LGPD data are presented in a systematic way and
analysed in depth.
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addressed our request for information to the companies that provide transportation ser-
vices. We preferred to approach the municipal bodies responsible for the transportation
sector as we understand these bodies integrate the Granting Authority and therefore
must be aware of the operations of the concessionary companies, including the technical
aspects of their operations. Our understanding is based on Article 30, Item V, of the
Federal Constitution, and on Laws No. 8,987/1995 and 11,079/2004.

4 Results

By December 2021, four municipalities completely ignored our request for informa-
tion (Belém, Florianópolis, Macapá, and Natal). In six municipalities, technical prob-
lems linked to the electronic platforms through which LAI is operationalized made it
impossible to obtain answers (Cuiabá, São Gonçalo, Fortaleza, Recife, São Luís, and
Teresina).

The other 20 municipalities responded fully or partially to the questionnaire. Out of
them, four stated they do not use the technology in question (Aracaju, Belo Horizonte,
Boa Vista, Vitória), one indicated that it was implementing it (Curitiba), and another
one did not make it clear whether, or not, it uses FR systems in the public transportation
system (Goiânia). The other 14 municipalities use FR tools to avoid fraud in discounts
and gratuities: Brasília, Campinas, Campo Grande, Guarulhos, João Pessoa, Maceió,
Manaus, Palmas, Porto Alegre, Porto Velho, Rio Branco, Rio de Janeiro, Salvador, and
São Paulo. Among these 14 municipalities6, eight did not submit any answer about the
LGPD or submitted very incomplete answers to questions regarding this law.

The Municipal Superintendence of Transport and Traffic of Maceió offered a single
answer to all the questions presented, which did not include any reference to the protec-
tion of personal data. The Municipal Secretariat of Traffic, Mobility, and Transport of
Porto Velho, on the other hand, answered most of the questions. It did not provide any
information, however, on the working of the LGPD. The Secretariat of Transparency
and Internal Control of Palmas pointed out that questions regarding the protection of
personal data could be submitted to the Agency for Regulation, Control, and Inspection
of Public Services of the municipality. Finally, the city hall of Campo Grande, the Exec-
utive Superintendence of UrbanMobility of João Pessoa, the Institute of UrbanMobility
of Manaus, the Municipal Superintendence of Transportation and Traffic of Rio Branco,
and the Municipal Secretariat of Mobility of Salvador signalled that answers regard-
ing questions of this nature would be up to the companies responsible for operating
the municipal public transportation system. In some of these cases, we filed an appeal
claiming that, as the Granting Authority, the municipality should be aware of this type
of information. The measure had no effect.

Among the other six cases, the Secretary of State for Transport and Mobility of
the Federal District, the Secretary of Transport and Urban Mobility of Guarulhos, and
the Public Transport and Circulation Company of Porto Alegre directly answered our

6 In Campinas, João Pessoa, and Rio Branco, the use of FR systems in public transportation was
suspended at times during the Covid-19 pandemic, as the use of masks negatively interfered
with the functioning of the technology.
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questions. In the cases of Rio de Janeiro and São Paulo, the local secretariats for mobil-
ity contacted the companies involved in the operation of the transportation system and
demanded them to provide us with answers. In the former, Riopar Participações S/A
(successor by incorporation of Riocard Administradora de Cartões e Benefícios S/A)
was responsible for doing that, whereas in the latter it was the São Paulo Transportes
S/A (SPTrans). Finally, in Campinas, the Municipal Development Company of Camp-
inas (EMDEC) alleged, initially, that answers regarding the protection of personal data
should be provided by the Association of Urban Transportation Companies of Camp-
inas (TRANSURC). After we contested their position, the agency provided the requested
information.

Belowwepresent the pieces of information collected from these sixmunicipalities. In
addition, we evaluate the answers received in order to create an algorithmic transparency
score, shown in Table 1. To this end,we assigned points to each of them:we assigned (+1)
to answers that refer to elements and conducts that promote algorithmic transparency;
(−1) to answers that contain elements and conducts that hinder algorithmic transparency;
and (0) to neutral measures and conducts.

Aswill see in the next section (“Discussion”), our scoremust be read as a preliminary
indicator of the preparation of the investigated municipalities for the use of FR systems
in a transparent way, and not as a definitive legal analysis of the level of transparency
of each one of them, since we did not analyse a series of information relevant to the
promotion of algorithmic transparency, such as the contracts between the municipality
and the companies that operate public transportation services and the communication
policies of these companies and of the transportation departments.

QUESTION 1: Have measures been taken to bring the transportation service
into compliance with the LGPD? – All six municipalities answered “yes”. However,
only some of themdetailed themeasures taken. To these,we assigned the score (+1), even
in cases where the description of the measures was generic. We adopted this conduct
because we understand that every action to adapt to the LGPD favours algorithmic
transparency, even if some actions are more effective than others. To the municipalities
that did not detail their answers, we assigned (0), and would have scored negatively
municipalities that had not reported any measure at all.

QUESTION 2: Were RIPDPs produced? – Only Guarulhos and Rio de Janeiro
answered “yes”.We attributed (+1) to them. Campinas and São Paulo, on the other hand,
answered “no”. Therefore, they scored (−1). Brasilia and Porto Alegre pointed out that
they are developing this kind of measure – an answer that we considered neutral.

QUESTION 3: Who is in charge of data processing? – While Brasília, Rio de
Janeiro, and São Paulo presented a specific name, Porto Alegre pointed to the name
of an interim person in charge. We have assigned (+1) to the answers of these four
municipalities. Campinas answered “To be defined”, so it does not have a person in
charge. For this reason, it scored (−1). Finally, Guarulhos answered only “An employee
ofGuarupass”.Guarupass is the company responsible for issuing all public transportation
tickets in the municipality. In our evaluation, the municipality’s answer indicates that
there is someone that is in charge of data processing, but his/her identity is not easy to
be accessed. Therefore, we assigned (0) for Guarulhos’ response.
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QUESTION 4: What are the security measures adopted for privacy and data
protection? – Some of the respondents specified the measures adopted:

Brasilia – Restriction, control, and registration of access to the systems of the
Undersecretariat for Information Technology.

Campinas – Implementation of Kaspersky and Firewall antiviruses and employee
training and qualification.

Guarulhos – Human verification performed by Guarupass’ employees in cases of
blocking due to improper use of the discount/gratuity cards.

Porto Alegre – Suggested direct contact with the Association of Passenger Transport
Carriers, responsible for the FR system.

Rio de Janeiro – The municipality stated that “access to biometric data collected
from users is restricted to a specific group of people. In addition, the images captured
by the biometric facial identification system are purged from the system after 30 days,
keeping for compliance with legal determinations […] only those that configured the
improper use of the gratuity benefits”.

São Paulo – SPTrans said it does not share personal data with other companies and
that it has monitoring and surveillance procedures over its systems and databases.

We understand that security measures for personal data protection are different from
information security measures. For this reason, we assigned (+1) only to Rio de Janeiro,
and (0) to Brasilia, Campinas, and São Paulo, where information security measures
were highlighted.We also assigned (0) to Guarulhos, because we understand that human
intervention is not, by essence, favourable or contrary to data or information security.
Finally, we assigned (−1) only for Porto Alegre, which did not answer the question.

QUESTION 5: Is there a collection of consent from service users for the use
of their biometric data in facial recognition systems, in the terms of the LGPD? If
“yes”, by what technical and legal means does the collection of consent occur? -
Most municipalities provided detailed answers:

Brasilia – Did not offer any response.
Campinas – Answered affirmatively, mentioning Article 11, Item II, Letters “a”, “b”

and “d”, in addition to the municipality’s Decree No. 19,316/2016.
Guarulhos – Does not perform consent collection. It pointed out that consent is

waived under the terms of Article 11, Letter “g”, of LGPD, but it informs the data
subject about the need for the collection and its purpose (prevention of fraud linked to
gratuity cards).

Porto Alegre – Pointed out that the waiver of consent is supported by Article 11,
item II, Letter “b”. However, in some situations, the user must fill out a consent form by
electronic means. The municipality did not specify what these situations are.

Rio de Janeiro – Does not collect consent. Mentioning Article 11, Item II, Letter “g”,
of the LGPD, the municipality answered that the prevailing legal understanding does
not oblige the performance of this operation.

São Paulo – Indicated that only the images of beneficiaries – such as students and
the elderly – are collected and that, in the benefit request term, they are informed about
the need for biometric data collection.

Considering that the collection of consent is not mandatory, Rio de Janeiro scored
(0). Only in Campinas this operation is actively and deliberately carried out, which made
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us assign (+1) to the municipality. We also assigned this score to Porto Alegre and São
Paulo because on some occasions consent is obtained in these two cities, and also to
Guarulhos, where the data subject is informed about the necessity and purpose of the
collection of his/her biometric data. As for Brasilia, we granted (−1) due to the lack of
response.

QUESTION 6: What are the available mechanisms for the user to exercise the
rights of: i) access to the personal data used, ii) revocation of consent? – While
it can be argued that consent is not mandatory for the use of biometric data in the
public transportation system, the right of access is a common condition regardless of the
legal basis used by the municipalities. For this reason, we assigned (−1) only to Porto
Alegre, which informed us that the mechanisms in question are under construction. The
other municipalities scored (+1) for having presented mentions – albeit generic, in some
cases – of channels such as e-mail, telephone, and ombudsmen.

QUESTION 7: Is user data shared with third parties? If “yes”, which ones?
– We received the following answers:

Brasilia – The answer presented was contradictory and confusing. The Secretariat
of Transportation and Mobility sent four different documents, each one with a differ-
ent date: 08/23/2021, 08/25/2021, 08/26/2021, and 08/27/2021. In the documents dated
08/23/2021 and 08/27/2021, the public entity gave the following answer: “No, according
to Article 3, of Ordinance No 15, of 04/30/18, the biometric records […] will be used
by operators exclusively for the implementation of the Facial Biometric Compatibility
Verification, and the data cession to third parties is forbidden, as well as its commercial-
ization, in any way, without the consent of the Granting Authority”. In the document
dated 08/26/2021, the answer was: “Yes, they are shared”. And finally, in the document
of 08/25/2021, the agency presented the following note: “Bus operators and BRBmobil-
ity (which deals with the operation of the ticketing system). Police and control bodies
have access to the data”.

Campinas – The sharing is donewith theGranting Public Power, by virtue of a public
contract.

Guarulhos – The data is shared with the Public Power. Besides, it is shared with
companies that use transport vouchers. Without giving more details, the municipality
mentioned that there is also sharingwhen there is a request tomeet a specific and justified
purpose, observing the anonymization of the data when possible.

Porto Alegre – The FR system is under the responsibility of the Association of
Passenger Transport Companies, and the data collected are shared with the Public Com-
pany for Transportation and Circulation, responsible for regulating and supervising the
activities related to traffic and transport in the city.

Rio de Janeiro – The granting of gratuities involves secretariats from different
areas, such as the Secretariats of Education and Health. The data collected by Riopar
Participações S/A is shared with employees designated by these secretariats.

São Paulo – Answered that it does not share, pointing out that “only in the case of a
judicial request may there be sharing with the requesting authority”.

We assigned (−1) only to Brasilia, because the confusion in its answers made them
inconclusive. As for São Paulo, we assigned (+1), because, in general, there is no sharing
of personal data – except in cases where there is a judicial request. To the other four



Artificial Intelligence, Algorithmic Transparency and Public Policies 575

municipalities, we assigned (0) because we understand that data sharing, in itself, has no
impact on transparency, as long as the competencies and responsibilities are correctly
attributed in the data processing chains. Sincewe did not have access tomore information
about these chains,we chose to classify as neutral the information provided byCampinas,
Guarulhos, Porto Alegre, and Rio de Janeiro.

Table 1. Score of algorithmic transparency.

Brasília Campinas Guarulhos Porto Alegre Rio de Janeiro São Paulo

Question 1 1 0 1 1 0 1

Question 2 0 −1 1 0 1 −1

Question 3 1 −1 0 1 1 1

Question 4 0 0 0 −1 1 0

Question 5 −1 1 1 1 0 1

Question 6 1 1 1 −1 1 1

Question 7 −1 0 0 0 0 1

Total 1 0 4 1 4 4

Due to the way we built our score, it may vary from (−7) to (+7). Based on this
variation, we built Table 2, which comprises an algorithmic transparency scale. We
distributed the 30 municipalities studied along it. As we have seen, in most cases we
reserved (−1) for the lack of response. By this logic, a score (−7) should be assigned to
the 18 municipalities in which we did not get any information on the functioning of the
LGPD. They are: Belém, Florianópolis, Macapá, and Natal (they completely ignored
our request for information); Cuiabá, São Gonçalo, Fortaleza, Recife, São Luís, and
Teresina (their electronic platforms devoted to the LAI presented technical problems that
prevented us from obtaining information); and Campo Grande, João Pessoa, Maceió,
Manaus, Palmas, Porto Velho, Rio Branco, and Salvador (they did not provide any
information about the LGPD or provided too incomplete information about this law).
For the reasons registered at the beginning of this section, our score could not be applied
to sixmunicipalities: Aracajú, Belo Horizonte, BoaVista, Vitória, Curitiba, andGoiânia.

Table 2. Algorithmic transparency scale – Quantitative.

Scores (−7) (−6)
(−5)

(−4) (−3)
(−2)

(−1) (0) (1) (2) (3) (4) (5) (6) (7) Does not
apply

Level Very low Low Medium High Very high

Municipalities 18 0 3 3 0 6
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5 Discussion

Among the 30 municipalities investigated, the level of algorithmic transparency is “Very
Low” in 18 of them (60% of the total). This information seems to confirm our first
hypothesis (“The level of algorithmic transparency in themunicipal public transportation
system is low”), thus revealing a scenario in which the risk of lack of control over the
prevention and mitigation of errors commonly made by FR systems is high.

In our second hypothesis, obtaining informed consent and elaborating RIPDPs are
presented as independent variables capable of explaining, at least partially, the level
of algorithmic transparency (dependent variable). However, in the 18 cases above, we
did not get any information about these variables, and in the six cases in which FR
systems are not used or are being implemented, this analysis could not be applied. In
other words, we had only six cases (Brasilia, Campinas, Guarulhos, Porto Alegre, Rio de
Janeiro, and São Paulo) inwhichwe could statistically test the relationship between these
variables. Because it is a low N, we would not obtain statistically relevant results. For
this reason, it does not seem possible to confirm or refute our second hypothesis. Even
so, the answers of the municipalities allow qualitative evaluations about the obtaining
of free and informed consent and the elaboration of RIPDPs.

Regarding the first of these two mechanisms, it is worth mentioning that the answers
received seem to indicate that the fact that obtaining consent is notmandatory discourages
the adoption of this mechanism. Only Campinas resorts to it voluntarily, while three
municipalities (Guarulhos, PortoAlegre, andRio de Janeiro) presented interpretations of
the LGPD to justify the reasons why they do not collect or do not need to collect citizens’
consent to process their biometric data. We did not investigate whether, or not, there is
publicization of the consent waiver in these three municipalities. If not, algorithmic
transparency is threatened, especially in Rio de Janeiro, given that in Porto Alegre
consent is obtained in some cases, and that in Guarulhos data subjects are informed
about the purpose of the collection of their biometric data.

Concerning the elaboration of RIPDPs, it should be noted that this mechanism is
used in two municipalities (Guarulhos and Rio de Janeiro) and is in the process of being
adopted in other two (Brasília and Porto Alegre). This is not an entirely discouraging
scenario, especiallywhenweconsider that there are considerable uncertainties associated
with this instrument. Firstly, its potential to reduce risks, such as those caused by FR
system errors, is not yet known. For the time being, the bet is on its ability to do so,
but there is as yet no empirical evidence to provide any certainty about this. In addition,
there is no consensus – either in Brazil or in other countries – about which risks should
be considered high and/or unacceptable, and what is the most appropriate methodology
to define them. Finally, it is not yet known how strict the ANPD will be regarding the
request of RIPDPs.

Finally, our survey has identified eight cases (Campinas, Campo Grande, Guarulhos,
João Pessoa, Manaus, Porto Alegre, Rio Branco, and Salvador) in which public agencies
are not able to provide any information on how concessionary companies deal with the
LGPD or seem to face some level of difficulty to do so. It suggests that coordination
problems among essential actors for the construction and operation of algorithmic trans-
parency may have been ongoing in the municipal public transportation system, which
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indicates that future studies must investigate whether, or not, concession contracts can
be a hindrance to the promotion of algorithmic transparency.

As can be seen, our research findings are useful for enriching the discussions on gen-
eral legal requirements related to algorithmic transparency. However, even in this realm,
our contribution is limited, as important legal elements were not included in our analy-
sis. We have not studied, for instance, the communication policies of the concessionary
companies and of the transportation departments on the use of FR systems. Besides
that, our approach to “transparency” presents it as the mere disclosure of information,
which is not sufficient for making individuals understand how AI systems work and
how their personal data are used in the functioning of this technology. In other words,
disclosing information is not enough tomake citizens able to challenge algorithmic tech-
nologies (Ananny and Crawford 2018). Nevertheless, this is a necessary step towards
that direction – and that is why it is important to analyse the legal requirements related
to algorithmic transparency, as we did above.

6 Conclusion

Based on information about the operation of LGPD in municipal public transportation,
we constructed a preliminary algorithmic transparency score and scale regarding the
use of FR systems. Despite the limitations of our initiative, it was able to point out
that, in general, the level of algorithmic transparency is low in the sector studied, which
increases the chances that mistakes made by FR technologies are not challenged by
citizens or other stakeholders. In addition, our analysis identified how municipalities
position themselves in relation to each other regarding algorithmic transparency, which
gives rise to the following question: how have Guarulhos, São Paulo, and Rio de Janeiro
managed to prepare themselves to use the LGPD in a reasonably successful way in
promoting algorithmic transparency? Among different explanatory variables that can be
analysed, we will devote attention in future studies to one in particular: the institutional
capacity of municipalities, measured upon different information, such as the municipal
budget dedicated to areas related to ICTs and the existence, or not, of planning and
management tools in departments of these areas. Research of this kind is still rare. One
of the few exceptions is the index of government readiness for the responsible use of AI
prepared by Shearer et al. (2020). Even so, the authors work with indicators that could
hardly be used to study the Brazilian municipal reality.

If the variable in question proves to be relevant, municipalities with higher institu-
tional capabilities should present higher levels of algorithmic transparency, which leads
us to an initial and speculative questioning: if São Paulo and Rio de Janeiro – which are
among the richest municipalities in Brazil – were not able to achieve higher scores in
our algorithmic transparency score, what will be the reality of the poorer municipalities?
In addition, we need to investigate whether the low levels of algorithmic transparency
observed by us in the municipal public transportation sector are present in other public
policy areas and when other AI applications are used. Answers to such questions are
essential to understanding how the Brazilian public administration can and should pre-
pare itself to use AI systems – such as FR systems – to successfully prevent, mitigate
and solve social problems.
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Abstract. Resource allocation to execute business processes is increas-
ingly crucial for organizations. As the cost of executing process tasks
relies on several dynamic factors, optimizing resource allocation can be
addressed as a sequential decision process. Process mining can aid this
optimization with the use of data from the event log, which records
historical data related to the corresponding business process executions.
Probabilistic approaches are relevant to solve process mining issues, espe-
cially when applied to the usually unstructured and noisy real-world
business processes. We present an approach in which the problem of
resource allocation in a business process is modeled as a Markovian deci-
sion process and batch reinforcement learning algorithm is applied to get
a resource allocation policy that minimizes the cycle time. With batch
reinforcement learning algorithms, the knowledge underlying the event
log data is used both during policy learning procedures and to model the
environment. Resource allocation is performed considering the task to
be executed and the resources’ current workload. The results with both
Fitted Q-Iteration and Neural Fitted Q-Iteration batch reinforcement
learning algorithms demonstrate that this approach enables a resource
allocation more adherent to the business interests. Per the evaluation we
performed on data of a real-world business process, if our approach had
been used, up to 37.2% of the time spent to execute all the tasks could
have been avoided compared to what is represented in the historical data
at the event log.

Keywords: Reinforcement learning · Process mining · Resource
allocation · Business processes

1 Introduction

Allocating resources to execute business processes is an essential task which has
proven benefits if done properly [14], especially when it comes to human resources
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[26]. Determining the proper decisions to supply effective resource allocation,
considering the main goal of the business process, is not a trivial task. There
are several aspects to consider when designing the problem to be solved and
when evaluating its results, such as resource costs, workload, capacity, idleness,
relations, and expertise. In addition, we need to understand how these aspects
relate to business main interest and how each decision made affects the others
[10]. Accordingly, the resource allocation optimization in this context should be
addressed as a sequential decision process, as the execution cost of a given task
is not only related to a single decision point [10].

Resource allocation can be enabled by the knowledge revealed from the event
logs’ analysis provided by process mining [7]. Process mining has enabled satis-
factory results for low noise, structured business processes [21], rare characteris-
tics in real-world business processes. In this regard, probabilistic models hold an
inspiring promise for business processes context and process mining [21] due to
the high level of flexibility offered. Probabilistic models better designate issues
related to complexity resulting from noise and business process structuredness
and allow to consider sequences and temporal order of events [11].

Markovian decision processes are applied to model sequential decision prob-
lems [10]. There are a number of algorithms to find optimal policies for this
kind of decision process, e.g., dynamic programming. However, defining whether
transition probabilities are sufficiently reliable to the resource allocation con-
text is not trivial due to the interactivity involved in a specific work item being
assigned to a specific resource at a given time [24]. Reinforcement learning helps
to overcome issues related to these algorithms by supplying a straightforward
learning framework based on interactions in the environment [10].

Huang et al. [10], Firouzian, Zahedi and Hassanpour [7], and Liu et al. [16]
addressed resource allocation optimization in business process with Q-learning
algorithm and presented results showing this technique leads to effective resource
allocation. This paper addresses the optimization of resource allocation for a
real-world business process supported by reinforcement learning based on pro-
cess mining concepts. The business process is modeled as a Markovian decision
process and two batch reinforcement learning algorithms are used – Fitted Q-
Iteration (FQI) [6] and Neural Fitted Q-Iteration (NFQ) [19] – to get a resource
allocation policy capable of minimizing the business process cycle time, which
refers to the mean duration of its cases. By applying batch reinforcement learning
algorithms, we are using the event log as a source of historical data for learning
the resource allocation policy. This highlights the contribution of the approach
discussed herein. As to the best of our knowledge, previous works used event
logs only for problem modeling, not to provide inputs for policy learning.

This paper is structured as follows: Sect. 2 introduces basic concepts of pro-
cess mining, Markovian decision processes, and batch reinforcement learning.
Section 3 discusses related work. Section 4 details the real-world business process
explored, particularly how resource allocation for this process was modeled as a
Markovian decision process to apply the batch reinforcement learning. Section 5
reports experiments results and analyses. Finally, Sect. 6 concludes the paper.
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2 Preliminaries

This section presents the basic concepts used in this paper.

2.1 Business Process Management and Process Mining

According to Weske [23], a business process corresponds to a set of tasks (or
activities), which are performed in coordination in an organizational and tech-
nical environment, and together achieve a business goal. A business process can
be subject to analysis, improvement, and enactment through the lens of the
business process management and its lifecycle.

An effective management of business process guarantees consistent results
and allows value aggregation to the organization and its clients [5]. Traditionally,
business processes are enacted manually, guided by the knowledge of company
staff, and aided by organizational regulations and procedures. However, more
benefits can be obtained if automation is adopted to coordinate the business
processes’ tasks and if process mining is employed to support lifecycle tasks
with factual and historical data about process executions, registered in an event
log. Event logs are sequential files in which events related to business process
tasks executions are registered.

The goal of the business process mining is to enhance the business process
comprehension through knowledge extraction from event logs [1]. According to
van der Aalst [1], an event e ∈ E , where E is the event universe, corresponds
to the execution of a task τ ∈ T , where T is the set of tasks that occur in
a given business process. Events are commonly associated with non-mandatory
attributes (e.g., task, timestamp, resources, cost, and transaction type). Transac-
tion type refers to the task’s life-cycle associated with the event. Possible values
for such an attribute are “start”, “complete”, “abort” and “suspend”. The values
“start” and “complete” are crucial in the modeling discussed in this paper.

A case c ∈ C, where C is the case universe, comprises a sequence of events ec.
A case refers to a process instance which is an actual execution of the process.
All cases must have a mandatory attribute called trace, denoted by σ. A trace is
a finite sequence of events σ ∈ E∗ and 1 ≤ i < j ≤ |σ| : σ(i) �= σ(j). An event log
L is a set of cases L ⊂ C and for any c1, c2 ∈ L, if c1 �= c2 then δ(ec1)∩δ(ec2) = ∅,
where δ is an operator for converting a sequence to a multiset. A classifier is a
function mapping the attributes of an event onto a label or value. In this paper,
we adopt e.[attribute notation] to show a classifier function. Thus, e.τ shows the
task name associated with the event e.

Playing a central and strategic role for organizations, process mining uses
the event logs data to: (a) discover process models (discovery), (b) replay and
analyze data from the process models or related to them (conformance), and
(c) find information that enables process improvements (enhancement) [1,9,17].
In this paper, we are especially interested in enabling process improvements in
resource allocation optimization.
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2.2 Markovian Decision Process and Batch Reinforcement Learning

Markovian decision process is applied in different contexts to model sequential
decision-making problems [18]. A Markovian decision process is defined by a
tuple <S,A, P,C>, where:

– S is the set of possible states of the environment;
– A is the set of possible actions;
– P :S×A×S→[0, 1] is a state transition function that defines a probability dis-

tribution over the states to each pair (s, a) – P (s′|s, a) is the probability of
ending in state s′ given that the system starts in state s and takes action a;
and

– C:S×A→R
+ is the real value immediate cost function and C(s, a) is the

expected immediate cost for taking action a in state s.

To use the data registered in the event log as examples of the process behavior
under analysis, the Fitted Q-Iteration batch reinforcement learning algorithm
was applied [6]. This algorithm is part the off-policy with approximation class of
reinforcement algorithms [15,22]. The set F built in the algorithm is based on
the tasks execution history H registered on the event log data L, as described in
Sect. 4. In this algorithm, the Q̂ function estimation is refined at each learning
iteration using supervised learning and the inputs F and Q̂, both calculated in
the earlier iteration. Experiments were also conducted using the algorithm Neural
Fitted Q-Iteration [19], which uses artificial neural networks – more specifically
the Resilient Propagation (RPROP) algorithm [20] – as the regression strategy
for the Q̂ estimation.

3 Related Work

Resource allocation has been widely studied in job-shop scheduling, a classic
problem in operation management area [3]. A job-shop model is a decision-
making process which allocates limited resources over time to perform a set
of jobs to be processed on a set of machines [25]. Reinforcement learning has
been applied in job-shop scheduling [2,25]. Zhang and Dietterich [25] applied
temporal difference algorithm TD(λ) and conducted an evaluation on problems
from NASA space shuttle payload processing task. The results show efficiency
in constructing high-performance scheduling. Aydin and Ozteme [2] applied Q-
learning algorithm to deal with dynamic scheduling - when the scheduler does not
have detailed information about the jobs. The results show better performance
than other approaches based on dispatching rules.

In business process contexts, the dynamic nature of a business process
execution need to be considered when allocating resources: (i) the execution
path is determined at the runtime and different processes may have different
paths within particular execution scenarios; (ii) resource behaviors affect the
resource allocation, since resources’ preferences, capability, and availability, are
also dynamic [10]. Huang et al. [10] present a mechanism to model resource
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allocation as a Markovian decision process and proposed to solve it with a Rein-
forcement Learning Based Resource Allocation Mechanism (RLRAM). RLRAM
aims to minimize long-term cost, measured by cycle time, i.e. time to execute all
tasks of a process case. The experiments were conducted for a synthetic and for a
real-world business process related to a radiology examination. The results show
the proposed approach may indeed improve the current state of business process
management and outperform well-known heuristics and hand-coded strategies.

Liu et al. [16] presented an approach applying process mining by the use of
an event log information to model the business process as Markovian decision
process. The effect of social relation among the resources was also considered.
The analyzed business process was the one described in the event log of the BPI
Challenge 2012, the same selected for this paper. The Q-Learning algorithm was
applied and the results show improvement on the minimization of the business
process’ cycle time. Yaghoubi and Zahedi [24], and Firouzian, Zahedi and Has-
sanpour [7] presented approaches similar to this with the addition of considering
task similarities and workload balance. Experimental results on the same busi-
ness context show the proposed method leads to the reduction in cycle time,
compared to some other well-known algorithms.

Koschmider et al. [13] proposed an organizational model that considers
resources’ competences, skills and knowledge to assign roles to process activ-
ities based on this model and hidden Markov model. The event log is pointed to
be used to obtain the hidden Markov model transition matrix by counting the
frequency of direct role transition during execution. A toy example of application
of the proposed approach show its effectiveness.

To the best of our knowledge, there is no approach using real-world event log
data to directly support the reinforcement learning algorithm in policy learn-
ing steps, or directly build an actual real-world based evaluation environment.
Therefore, we propose to use this data both during policy learning procedures
and to model the environment within batch reinforcement learning. In addition,
we describe a realistic environment for testing the approach in which we are able
to compare the policy-based decisions to the historical decisions.

4 Problem Definition

This section presents the real-world business process under analysis, the respec-
tive event log and preprocessing procedures adopted, the Markovian decision
process modeling that defines the resource allocation optimization problem, the
details about the reinforcement learning application, and how the optimization
results were evaluated through a simulation procedure.

4.1 Real-World Business Process Context

To evaluate how the application of reinforcement learning algorithms can help
in the resource allocation optimization problem in a real-world business process,
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the event log presented in the BPI Challenge 20121 [4] was used. This event
log has 262,200 events in 13,087 cases and corresponds to a process of a Dutch
finance institution on loan requisitions opened by its clients. An excerpt of the
event log and the business process model discovered by applying Apromore2

process mining tool in the event log is presented in Fig. 1.

(a) Excerpt of the event log

(b) Process model

Fig. 1. (a) Excerpt of the event log presented in the BPI Challenge 2012; (b) Pro-
cess model discovered by applying Apromore tool on the event log provided in BPI
Challenge 2012. Rectangles represent tasks, arcs represent transitions between two
sequential tasks in a case, colors and textures represent frequency of each task and
transition in the event log, and circles represent the beginning and the end of the
process instances. (Color figure online)

Available Information. Each line in L corresponds to an event e described
by the following attributes:
1 www.win.tue.nl/bpi/2012/challenge.
2 https://apromore.org/.

www.win.tue.nl/bpi/2012/challenge
https://apromore.org/
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– e.τ : task τ ∈ TL executed, where TL is the set of tasks that occur in the event
log L;

– e.ψ: human resource ψ ∈ ΨL that executed the task e.τ , where ΨL is the set
of resources that exists in the event log L;

– e.lc: the lifecycle stage in {START,COMPLETE}, which identifies if the event
is registering, respectively, the start or the end of a task execution;

– e.ts: the timestamp the event occurred;
– e.c: the case c to which the event is related, where c ∈ CL and CL is the set

of cases in L;

To use only pertinent, stable, and reliable data considering the designed
application context, a subset L′ ⊂ L was selected, such that:

– the events had been executed by a human resource: e.ψ �= NULL ∀ e ∈ L′;
– the events had been executed by an experienced resource, i.e., a resource that

presents occupation larger than the average occupation. Formally, a resource
ψi is experienced if |{e|e ∈ EL and e.ψ = ψi}| > |EL|/|ΨL| .

We assume all cases registered in the event log are complete, i.e., they cor-
respond to complete processes instances and all tasks performed are properly
registered in the event log.

4.2 Data Preprocessing

This section details the steps taken to adapt the data described in Sect. 4.1 to
a format that allows the application of FQI and NFQ in the problem addressed
in this paper. The goal is to get a resource allocation policy that minimizes the
cycle time in the business process. The data preprocessing steps are summarized
as followed:

– the current resources’ workload is defined for each event e in L′, since it affects
the task’s execution performance;

– the execution history H is built by disregarding the information about life-
cycle, thus considering only one event to represent an activity execution;

– the history H is split in: (i) one segment to be used by the learning procedures,
conducted through the application of FQI and NFQ (cf. Sect. 4.4); and (ii)
the other segment to be used for evaluation conducted through a simulation
procedure (cf. Sect. 4.5).

Because of factors such as preference, competence and cooperation among
resources, the task’s execution performance may be affected by the workload of
the resource executing it. The raised hypothesis in this scenario is the greater
the workload of the resource ψ during the execution of the task τ , the longer
will take for ψ to conclude the execution [10]. Thus, the resources’ workload
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set was included as an event attribute e.wl = (WLf (ψ, e.ts) ∀ ψ ∈ Ψ), where
WLf (ψ, e.ts) is a function that determines the ψ workload at moment e.ts:

WLf (ψ, e.ts) =

⎧
⎨

⎩

FREE, |ψ.wl| = 0
LOW, |ψ.wl| �= 0, |ψ.wl| ≤ avg wl
HIGH, |ψ.wl| > avg wl

(1)

where |ψ.wl| is the number of tasks being executed by ψ at e.ts and avg wl =∑
ψ∈Ψ |ψ.wl|

|Ψ | . e.wl(ψ) denotes the workload of ψ.

The execution history H was defined from the identification of the pairs of
start (e1) and end (e2) events of each task execution in L:

– e2.lc = COMPLETE, e1.lc = START;
– e2.τ = e1.τ, e2.c = e1.c;
– �e ∈ L, such that e.ts < e2.ts, e.c = e1.c, e.τ = e1.τ and e.lc = COMPLETE.

To each task execution h ∈ H and its corresponding identified pair of start
(e1) and end (e2) events in L′, the duration h.d was defined as: h.d = e2.ts−e1.ts.
Besides h.d, h is described by:

– h.τ = e1.τ = e2.τ , composing the set of tasks TH in H;
– h.ψ = e1.ψ = e2.ψ, composing the set of resources ΨH in H;
– h.c = e1.c = e2.c, composing the set of cases CH in H;
– h.wl = e1.wl, composing the set of resources workload lists WLH in H;
– h.ts = e1.ts.

The final quantity of h ∈ H elements in H is 12, 100. As for business process
cases i ∈ I, we have 3, 480. 30 resources ψ ∈ Ψ were selected and 6 different
kinds of tasks τ ∈ T are registered in the H. Regarding the lists of workloads
wl ∈ WL, 4, 783 different lists were obtained.

In order to apply H for learning (i.e. application of the reinforcement learning
algorithms FQI and NFQ) and also for evaluating the resulting policy, H was
split in a training set Htr ⊆ H and a test set Hte ⊆ H. This split is based on
the timestamp attribute and the two subsets are defined as: h.ts < T ∀ h ∈ Htr

and h.ts ≥ T ∀ h ∈ Hte, where T is the timestamp corresponding to the upper
quartile (Q3) of the distribution of timestamps of task executions (h.ts) in H.

Resulting from this split, the quantity of task executions in each subset is:
|Htr| = 9, 086 and |Hte| = 3, 014. The split was made based only on the times-
tamp, thus some cases c ∈ C have part of their executions in the training subset
Htr and another part in the test subset Hte.

4.3 Definition of the Markovian Decision Process

Regarding mapping the decision process of resource allocation into a Markovian
decision process, the set of states S, the set of actions A and the cost function
C were defined:
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– Let S be the set of states, S ⊆ TH × WLH . For instance, a particular state
s = (τ, wl), where τ is a task and wl is the list of resources’ workloads at the
moment that execution of the task τ started. Thus, an execution h ∈ H can be
mapped to a specific state at a certain time point, such that τ = h.τ, wl = h.w.

– Let A be the set of actions, A ⊆ ΨH , such that a = ψ ∀ a ∈ A, ψ ∈ ΨH .
– Let C be the cost function, C(s, a) = d, where s = (τ, wl), a = ψ and d is the

execution duration of τ by ψ. Thus, an execution h ∈ H can be mapped to a
specific state s = (τ = h.τ, wl = h.wl), a specific a = ψ = h.ψ and a specific
cost C = h.d.

4.4 Application of Reinforcement Learning Algorithms

The cost function for CHtr
minimizes total cycle time of items in:

Htr: min
∑

c∈CHtr

∑
h∈Htr|h.c=c h.d.

FQI and NFQ algorithms were applied using Htr as input to estimate Q̂. To
initialize the values of Q̂, the greater value of the distribution of the costs h.d in
Htr was used (243.19 s) and the value adopted for the discount factor γ was 0.9.
The stop condition determined for the reinforcement learning algorithms was to
reach ten hours of execution or Δ =

∑
s∈S,a∈A ||Q̂N (s, a) − Q̂N−1(s, a)|| < θ,

where θ is the first quantile of h.d distribution in Htr, θ = 63.
To apply a regression strategy, the pairs of state-action (s, a) must be con-

verted to a vector. This representation was built in two steps: applying the
concept of one hot encoding to the task τ of state S composition to get a binary
matrix in which the features (columns) are the different values in T and the
cells are marked with 1 if the corresponding column represents the task τ or 0,
otherwise; applying a similar idea to the workload wl of the state S composi-
tion, resulting in a matrix which features identify the resource ψ and each cell
is valued with the resources’ workload in the event converted to the scale 0, 1, 2
in which 0 = FREE, 1 = LOW and 2 = HIGH.

Figure 2 presents an illustration of the vectorization for two states, s1 and
s2. For s1, the task is “Fixing incoming lead” and the workload for the resources
“10910” and “11003” are LOW and HIGH, respectively, and FREE for the other
resource present at the illustration. For the second state s2, the task is “Filling
in information for the application” and the workload for the resource “11003” is
LOW and FREE for the other resources visible in the illustration.

Fig. 2. Illustration of the vector representation used as input for regression, which
estimate Q̂
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All experiments were conducted in Python, using Google Colaboratory3 plat-
form4. To apply FQI, the regression strategies adopted were Linear Regression
and Random Forest and for applying NFQ, the neural network strategies Mul-
tilayer Perceptron (MLP) and RPROP. For Linear Regression, Random Forest
and MLP, we used the implementations available on ScikitLearn library. For
RPROP, we used the implementation of Neupy library5. The parameters values
applied that were different from those indicated by the used libraries’ implemen-
tations of the regression strategies are listed in column “Parameters” of Table 1.

4.5 Simulation of Policy Application

For each estimation of Q̂ got from the iterations of the reinforcement learning
algorithm, using a certain regression strategy and a certain combination of its
parameters, a resource allocation policy π was defined. To evaluate the obtained
policies, we developed a simulation. The simulation consists of applying the
policy over Hte whenever the state s corresponding to h can be found in the
policy, i.e., the policy is applied when possible; the original resource assignment
and task duration are considered otherwise. For this simulation, we considered:

– The resources’ workload when simulation starts is the same as in Htr end.
– The workload h.wl associated with each task execution h during the simula-

tion may be different of the original workloads in Hte, as it depends on the
assignments to resources; the simulation aim is to assign task executions to
resources according to the policy.

– The sequence of executions is not changed by the task’s execution perfor-
mance.

– When the state s can be found in the policy, we have a policy indication a
(resource ψ) to the task execution h; applying this action may affect the dura-

tion h.d, estimated by: h.d =
∑|H′|

i=1 h′
i.d

|H ′| , where H ′ = {h′|h′ ∈ Htr, h
′
i.τ =

h.τ, h′
i.ψ = h.ψ, h′

i.wl(ψ) = h.wl(ψ)}.
– The change in h.d may affect only the start moment of the upcoming execu-

tions in h.c.

5 Results and Discussions

This section is dedicated to present and discuss the results of all the 13 com-
binations of batch reinforcement learning algorithms, regression strategies to
estimate the Q̂ function and regression strategies’ parameters tested, as listed
3 Colaboratory virtual machine with CPU Intel Xeon processor, 2.30 GHz of frequency,

two cores, RAM 12GB and 25 GB of HD.
4 Developed code available at: https://github.com/pm-usp/RL-resource-allocation.
5 More information about the implementations of Linear Regression, Random Forest,

MLP and RPROP used are available at: https://bit.ly/3imZQRx, https://bit.ly/
3hJqMMi, https://bit.ly/3xNfGvh and https://bit.ly/36Gr6VR.

https://github.com/pm-usp/RL-resource-allocation
https://bit.ly/3imZQRx
https://bit.ly/3hJqMMi
https://bit.ly/3hJqMMi
https://bit.ly/3xNfGvh
https://bit.ly/36Gr6VR
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in Table 1. The graph in Fig. 3 shows that the reinforcement learning algorithms
achieved training stability and convergence for all combinations since Δ con-
verged towards the defined threshold θ (cf. Sect. 4.4). The results presented in
Table 1 give us confidence to analyze the policy behavior on Hte.

Table 1. Algorithms of reinforcement learning, parameters of the regression strategies
and results got from the simulation over Hte. Parameters: values applied to regression
strategy parameters when they differ from the default of the implementation used; N:
number of iterations of the algorithm; Runtime: algorithm runtime; π: rate of events
in Hte for which the simulator found a corresponding state in the policy; Opt.: rate of
task executions in Hte for which the application of the policy π decreases cycle time
comparing to the original; Time reduction: estimation in minutes of the optimization
achieved per case. LR = Linear Regression and RF = Random Forest.

Algorithm and model Parameters N Runtime π Opt. Time reduction

FQI-LR - 30 07m 29 s 0.501 0.143 14.658

FQI-RF trees = 10 11 03m 02 s 0.403 0.138 4.556

FQI-RF trees = 20 15 03m 56 s 0.422 0.143 2.376

FQI-RF trees = 100 14 04m 57 s 0.421 0.145 8.161

NFQ-MLP layers= (10,10), func.= relu 22 07m 50 s 0.508 0.164 12.947

NFQ-MLP layers= (50,50), func.= relu 26 14m 12 s 0.455 0.145 12.597

NFQ-MLP layers= (100), func. = relu 24 31m 26 s 0.445 0.151 9.829

NFQ-MLP layers= (50,50), func.= sigmoid 5 03m 12 s 0.317 0.119 −10.342

NFQ-MLP layers= (100), func. = sigmoid 7 04m 13 s 0.321 0.127 −4.016

NFQ-RPROP layers= (50,50), func.= relu 13 04m 54 s 0.478 0.144 9.147

NFQ-RPROP layers= (100), func. = sigmoid 12 03m 46 s 0.520 0.152 14.598

NFQ-RPROP layers=(500,500), func. = sigmoid 12 04m 05 s 0.524 0.153 15.562

The last three columns of Table 1 concern the results obtained from the
application of the simulator over Hte. The values in column π applied show a
lower performance for MLP with sigmoid activation function. The difficulty faced
by the resulting policy in these cases reflects negatively on the final optimization,
as seen in cycle time reduction. Regarding the percentages of tasks optimized
by the application of the policy (cf. column Optimized), there is regularity for
all combinations of algorithms and regression strategies.

In general, 11% to 16% of tasks were executed more efficiently when the
resource is allocated by the policy as opposed to the original allocation presented
in Hte. In addition, as showed in column Cycle time reduction, some combina-
tions of reinforcement learning algorithm, regression strategy and parametriza-
tion stand out for achieving higher cycle time reduction, from 14 to 15 minutes:
FQI with Linear Regression and NFQ with RPROP (with sigmoid activation
function). Finally, we state the cycle time reduction obtained is certainly associ-
ated with the success in the policy’s application, since the greatest optimization
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Fig. 3. Δ values over reinforcement learning iterations

gains occur from policies which have high π applied rate, i.e. high correspon-
dence between states available in the policy and states in the simulation.

An analysis based on the total time of executions’ duration also reveals the
usefulness of applying the policy for effective allocation of resources in the busi-
ness process registered in L. For the executions in Hte, the original time taken
to perform all tasks is 24.46 days. With application of the policy, a reduction of
up to 9.1 (37%) days was registered. Considering all the performed experiments,
the mean reduction was 4.25 days, with a standard deviation of 4.55.

For further analysis related to resources’ workload, one of the resulting poli-
cies was selected. By the Occam’s Razor principle, the policy resulting from the
application of FQI with Linear Regression was selected since it is the most sim-
ple combination in terms of algorithms’ complexity while it is among the top
tree results considering the cycle time reduction presented in Table 1. Regard-
ing the workload impact in decision-making, the experiments showed the policy
application increased the workload associated with some resources.

Figures 4(a), 4(b) and 4(c) show the workload distribution among the
resources considering Htr, Hte and the result of the simulation over Hte, respec-
tively. The distributions reveal seven and 13 people did not perform more than
one task at a time on Htr and on Hte, respectively. As for the simulation appli-
cation, only three people did not perform more than one task at a time. On
the other hand, in both Htr and Hte, only one person was overloaded with con-
current tasks, surpassing a 0.5 rate. After applying the policy, two people who
had a high workload started to work with maximum workload, implying they
remained in this condition for the entire working period covered in Hte.

Although the policy application increased the workload of the resources, the
reduction in tasks’ duration noticed by the cycle time reduction reflected in the
total resources’ working time. Originally, the total working time in Hte ranged
from 15 m 32 s to 2 d 13 h. After policy application, the range is 12 m 12 s to 19 h
19 s.
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(a) Htr

(b) Hte

(c) Hte after simulator

Fig. 4. Workload distribution among resources in (a) training and (b) test subsets of
H and in (c) the test subset after applying the simulator.

As for the relation between workload level and task executions’ duration,
Fig. 5 shows the workloads HIGH in Htr diverge from our premise “the greater
the resource’s workload, the greater the time needed for the resource to complete
the task”. Meanwhile, the cycle time resulting from the simulation minimizes the
hypothetical harmful effects of a work backlog.

The results confirm the hypothesis of Justin and Wickens [12] and posted by
Liu et al. [16]: the workload of the human will affect the human’s ability, namely
Yerkes-Dodson Law of Arousal, which shows that a worker will take less time to
execute a task if he/she is under some work pressure. However, if the pressure
is too high, the worker’s performance may degrade.” Given that, we state the
policy is effective to allocate the right resource for the right task.
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Fig. 5. Duration by workload: the resources performance by workload in each subset
of H and in the simulation

6 Conclusions

In this paper, we presented an approach for resource allocation optimization
in business process context. The contribution brought by our approach is the
application of batch reinforcement learning algorithms and process mining prin-
ciples to allow information about past process executions to be used in learn-
ing a policy capable of indicating how to effectively use resources. Experiments
with real-world business process were conducted, and the results attested the
suitability and efficiency of the approach. The downside of the policy is that
it does not evenly distribute the workload among the resources and does not
consider restrictions related to resource limitations, particularities of tasks or
organization’s rules and regulations. However, as recently pointed out by Folino
and Pontieri [8], reinforcement learning offers a solid basis for exploiting feed-
backs coming from business environments, to continuously learning in a context-
awareness condition. Given this and the results discussed in this paper, future
works should consider extend resource allocation optimization with reinforce-
ment learning strategies to embrace context, legal and ethical requirements to
make the policy fairer and more realistic.
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Abstract. With the ever-increasing digitalization of data, processes,
and services, people rely more than ever on computerized systems. These
systems are practical and efficient, so people and institutions have come
to depend on them substantially. However, computerized systems are not
perfect, they can have cybersecurity vulnerabilities that allow hackers to
attack these systems. Since those systems have so many responsibilities,
they can also cause serious consequences when invaded by malicious peo-
ple. Considering the huge volume of newly discovered vulnerabilities, it
is impossible to create and apply security patches for all of them in a
timely manner. Hence we need to prioritize security patches. The state
of the art for vulnerability prioritization is the CVSS, an incomplete
system, which has no scientific evidence and considers only the sever-
ity of a vulnerability, without taking into consideration its probability of
exploitation, greatly hampering its efficiency. In this paper we propose V-
REx, an open-source software that uses multiple neural networks tuned
by a modified genetic algorithm to predict the exploitation probability
of a vulnerability and therefore helping to prioritize them. Our experi-
ments unveil that V-REx was more efficient than CVSS in prioritizing
the vulnerabilities published in year of 2019.

Keywords: Vulnerability prioritization · Exploitability assessment ·
Neural networks · Neural architecture search · Genetic algorithm

1 Introduction

Cybersecurity vulnerabilities keep being discovered every day, in fact, hundreds
of them are discovered monthly [10]. By exploiting vulnerabilities, hackers can
get access to private data, shutdown systems (Denial of Service), hijack and
erase data, discredit a person or a institution, cause financial loss, apply scams,
among other consequences. Nowadays, multiple essential services, companies,
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people and governments rely on digital services, increasing the harm that peo-
ple with bad intentions can cause. Creating and applying patches that can fix
a vulnerability, and therefore prevent attacks, is very expensive. When creating
a patch, several specialized programmers must identify and fix the vulnerabil-
ity. Applying an update patch for a software or library can also be disruptive,
specially on big networks. Applying a patch may cause systems to go down or
get unstable, workstations may become unavailable, and incompatibilities may
occur, making it necessary for other software or hardware to be updated, causing
files to be incompatible or making it impossible to update in the short term.

The identification date of a vulnerability is when someone discovers that a
flaw exists and then reports the discovery to the developers or to the affected
security company. The details of the vulnerability are kept secret, being known
only to a few security professionals until the vulnerability is published. Exploits
are published on average 23 days after Common Vulnerabilities and Exposures
(CVE) publication. This time is even shorter if the vulnerability can be exploited
remotely [20], since hackers strive harder due to higher returns. Because of that,
it is crucial to precisely assign a repair priority to vulnerabilities, helping to
apply a fix timely. Due to the risks of attacks, the costs of applying patches,
the urgency of developing a fix and the huge amount of new vulnerabilities, an
effective way of prioritizing which vulnerabilities should receive a patch first is
needed. There are not enough resources to patch every single vulnerability [8].

To classify vulnerabilities, we depend on the Common Vulnerability Scoring
System (CVSS) [3], which is the state of the art. CVSS classifies vulnerability
according to its severity, without considering the odds of exploitation [9], the
vulnerability lifecycle [13], the software popularity and without taking into con-
sideration inter-dependant vulnerabilities. CVSS lacks of transparent documen-
tation, it is computed using a biased and subjective method that does not have
scientific evidence [2,26], relying on incomplete data and subjective opinions of
experts [9]. A CVSS based strategy (CVSS+) consists of patching every vulnera-
bility above a certain severity threshold. Nevertheless, mitigating a vulnerability
above a severity score is not better than mitigating them randomly [8].

In 2021, on Brazil, hackers managed to take down the ConecteSUS system,
a health platform for Brazilian citizens and health professionals [1]. This system
had a significant role on the combat of the COVID-19 pandemics for provid-
ing vaccination certificates, which were a mandatory requirement for traveling,
working on office, accessing places and other activities. Unfortunately, due to
the attack this system went down for more than 12 days. Another example is
the case of WannaCry, a virus designed for the EternalBlue vulnerability. Wan-
naCry affected the entire world, even hospitals, causing an estimated damage of
4 billion dollars across the world [14]. The EternalBlue vulnerability was already
known two years before the attack [24], and therefore could be avoided if we had
an efficient vulnerability prioritization system.

This work presents and discusses the Vulnerabilities’ Risk of Exploitation
System (V-Rex), an open-source software whose the goal is to prioritize software
vulnerabilities patching by predicting the odds of exploitation of a vulnerabil-
ity, i.e. Exploitability Assessment, using only public domain data from multiple
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sources ranging from 1999 to 2020. Our approach uses genetically tuned inter-
connected neural networks, and was able to overcome CVSS based strategies. V-
REx and its raw database are available under the MIT license through https://
github.com/thiagofigcosta/V-REx-v2.

2 Related Work

On [2] the authors use a union of public and private vulnerability datasets, aim-
ing to predict the presence of an exploit. They extracted textual features from
the datasets to feed a linguistic processing neural network (fastText). The out-
put of this network alongside with other non-textual features went through a
LightGBM Classifier to compute the final result. The approach of processing
different types of features on multiple machine learning models, is similar to our
interconnected neural networks. A grid search with 10-fold cross-validation was
done to determine hyperparameters of their model. To determine our hyperpa-
rameters, we opted for a Genetic Algorithm, which has a better optimization
performance, specially when the search space increases [17].

The Exploit Prediction Scoring System (EPSS)1 was created by [9] to predict
the odds of a vulnerability to have an exploit. They achieve this goal by using a
logistic regression on data from private cybersecurity companies. They executed
a manual feature selection and an Elastic Net regularization on the data. Our
proposal uses Neural Networks to predict the presence of an exploit instead of
the logistic regression, which is limited to linear problems. Public data besides
allowing the reproducibility of the experiments, also avoid the bias that comes
within private data [2], that, in addition, is very sensitive and hard to obtain.
Their cross-validation method was the rolling forecasting origin technique [7],
which consists of a rolling windows on the train dataset with a validation fold
on the end of the window. This technique preserves the chronological aspect of
the data, thus avoiding the drift phenomenon [2].

The authors of [8] used private data from more than 100,000 corporate net-
works alongside with public domain data to predict the existence of an exploit
using machine learning. They used tags extracted from the textual description
of vulnerabilities together with other non-textual features to classify the vul-
nerabilities through gradient boosted trees, generated with Extreme Gradient
Boosting. Due to the sparseness of some features, they performed 5-fold stratified
cross-validation, repeated 5 times, to limit possible over-fitting in the training,
in contrast with our approach which is the rolling forecasting origin technique.
V-REx uses 319 multi-word expressions as inputs for the machine learning model
in comparison with the 191 tags used by [8], this higher dimensionality makes
the model harder to train, but it may encode more information on the problem.

Instead of predicting the likelihood of an exploit, the authors of [6] catego-
rized vulnerabilities using Deep Neural Networks. Their goal was slightly differ-
ent from the present work, however, their means to achieve it are quite similar.
They used the Term Frequency - Inverse Document Frequency (TF-IDF) [22]
1 See: https://www.kennaresearch.com/tools/epss-calculator/.
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to extract meaningful words from vulnerabilities’ descriptions an then use this
data for the classification. Our strength in comparison to their work is to use
multi-word expressions instead of single words. Using the Rapid Automatic Key-
word Extraction (RAKE) algorithm [23] with the Smart Stop World List [4] it
is possible to extract meaningful expressions from the vulnerability description,
and then compute the TF-IDF for those multi-word expressions.

3 Data

We crawled data ranging from 1999 to 2020, inclusively, from seven public
data sources of cybersecurity vulnerabilities: (i) Common Vulnerabilities and
Exposures (CVE) database from MITRE2 (ii) Common Weakness Enumera-
tions (CWE) database from MITRE3 (iii) National Vulnerability Database from
United States (NVD)4 (iv) Exploit database5 (v) Common Attack Pattern Enu-
meration and Classification (CAPEC) database from MITRE6 (vi) Open Vul-
nerability and Assessment Language (OVAL) database7 and (vii) CVE Details
database8 Using data from all those multiple sources is important, since there
is no complete and homogeneous vulnerabilities and exploits dataset [19]. By
combining multiple sources, we can achieve a more robust dataset. The vulner-
ability prioritization problem is very hard due to lack of ground truth and more
accurate data [12], since we can only trust on the positive labels, because we
might not know of the existence of exploits for negative labels yet.

As mentioned before, we extracted multi-word expressions from the textual
features. Then we performed a lemmatization of the text and filtered manually
meaningless expressions. The use of multi-word expressions is very important
for expressions such as “Buffer Overflow”, since they do not have the same
meaning and importance when analyzed word-by-word. A number ranging from
0 to 1, was assigned to each of those expressions. This number was obtained
from the TF-IDF formula

(
wi,j = tfi,j ∗ log

(
N
dfi

))
, where for an expression i

in a document j we have tf as the number of occurrences of an expression,
df as the number of documents containing the expression and N as the total
amount of documents [6]. We also extracted numeric features, date intervals,
vendors’ data, CVSS scores and the amount of CVE references. All the features
were normalized using the MinMax normalization. Features with null values, low
variance and sparse values were removed from the dataset.

The dataset ended up with 878 features and a label, which represents the
presence of an exploit, which can be extrapolated to the likelihood of the exis-
tence of an exploit for that particular vulnerability. The features were grouped
2 See: https://cve.mitre.org/.
3 See: https://cwe.mitre.org/index.html.
4 See: https://nvd.nist.gov/.
5 See: https://www.exploit-db.com/.
6 See: http://capec.mitre.org/.
7 See: https://oval.cisecurity.org/repository/search.
8 See: https://www.cvedetails.com/.
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into five groups: (i) CVSS/ENUM features; (ii) Description (text) features; (iii)
Reference features; (iv) Vendor features; and, (v) Other features. The amount
of features in each group is respectively 43, 319, 88, 393 and 35.

4 Enhanced Genetic Algorithm

The hyperparameters have enormous influence on the results of a Neural Net-
work. Its search is not a trivial problem [25]. Therefore, the algorithm used to opti-
mize them has a direct influence on the results. We proposed changes to the Stan-
dard Genetic Algorithm (SGA) to improve the search. This modified algorithm
was named as Enhanced Genetic Algorithm (EGA). One of the differences from
the SGA is the use of mitochondrial DNA (mtDNA). The advantage of using the
mtDNA is to increase the diversity, preventing the algorithm converge to a local
minima. This idea was inspired by [25]. On the first generation, each individual
receives a random mtDNA, which is an UUID. Then, before making the crossover
between two individuals, their mtDNA is compared. If their mtDNA are the same,
it means that they are related to each other, and therefore the reproduction cannot
occur. Else, as in nature, the children inherit the mtDNA only from the genetic
material of the mother. If the mtDNA is not reset at some point, all individuals
would be related to each other and no more crossover would occur. To avoid this,
the mtDNA is reset when the odds of two randomly selected individuals not be
relatives is below the mtDNA Reset Threshold.

To avoid genetic drift as in [15], we also adopted an age structure in the
genetic algorithm, maintaining diversity. A given individual of some generation
will only leave the population when they die, instead of giving place to their
descendants after the crossover. During the crossover process a random number
r between zero and one is generated for each gene. Through this number the
gene of the child is defined as a weighted average between the values of the
parents’ genes, where the weights are r and 1 − r. Another advantage of this
technique happens when tuning neural networks, since an individual can have
its weights trained and reutilized over several generations. This can help finding
optimum points in cases where the network’s hyperparameters are good, but
were not trained sufficiently yet. Differently from the work of [15] we include
in the DNA a maximum age gene, that as all the other genes goes through the
process of mutation and crossover, causing the death age of individuals to be
different among them and somewhat related to their parents. At each generation,
the age of the individual increases, and when it becomes equal to the individual’s
maximum age, it dies and is removed from the population.

We also added a gene to control the number of children that a couple of
individuals can have. The amount of children that a couple will have depends
on the quantity coded in their DNA. The value extracted from the parents’
DNA depends on a random portioning that decides how much of the gene to
take from each of the parents. The final amount of progeny is then defined by
the combination of the parents’ DNA multiplied by a population limit variable
which reduces the amount of progeny to be generated as the population size
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approaches a limit, following a Logistic Population Growth curve. When the limit
is still exceeded the worst individuals are removed from the population. Another
technique that has been used to increase diversity and escape local minima is
to make the random number generator have a small chance of generating larger
numbers than usual, causing the mutation process to rarely make an individual’s
genes to go very far from its current location on the search space.

In [11] the authors developed a technique to optimize hyperparameters, which
is similar to genetic algorithms, the population-based training. On this technique
when a neural network has a low performance it does a process of exploit, in
which it copies parameters and weights of another network, and then an explore
process that is similar to mutation, where it differs from the copied individual
randomly. Based on these concepts the EGA adapted these methods so that the
worst individuals at the end of each generation have a random chance, called
recycling rate, to copy the best elite individuals and then mutate them. A great
advantage of this method is that the exploitation process happens before the
death of the individual, avoiding it to exist in the population for a long time if
it has a low performance.

After so many modifications to increase diversity, two methods of reducing
diversity were also implemented to maintain a balance. The first method is to
keep alive, even after the maximum age has been reached, a tiny part of the elite
of the population, so that there will always be good individuals to be exploited
by the worse ones. The second feature, was the creation of the Hall Of Fame,
a structure that eternalizes a specific amount of the best individuals among all
generations. At the end of each generation the Hall of Fame is updated with
a copy of the best individuals, so that it is always possible to recover the best
ones. It is important to point out that the individuals in the Hall of Fame do
not suffer any kind of modification, their only purpose is to be a record of a
configuration that had good results.

4.1 Optimizing the Enhanced Genetic Algorithm

The proposed EGA has more parameters to tune than the SGA. Since the EGA
is a new algorithm, there is no reference values to use. Therefore we built a
search space Π for the EGA parameters based on the well-known SGA param-
eters. Then, we used the SGA to find a good parameter set p, by creating a
population of 100 individuals for 50 generations, with a mutation rate of 0.2
and a crossover rate of 0.6. Each of the SGA individuals represents two EGA
experiments, one optimizing the EggHolder function (EHf), given by Eq. 1, and
the other optimizing the Easom function (EAf), given by Eq. 2. Both functions
are good benchmarks for optimization since they are hard to find the global min-
ima and they have several local minima. They also have a fast computation time
which is important since this population of populations can rapidly increases the
execution time. The goal is to tune Eq. 3 with a fitness weighted utility function
u : Π → R given by Eq. 4, where RPD (Result Percentage Distance) is given
by the ratio between the optimized value and the known global minima, and
SPD (Speed Percentage Distance) is given by the inverse of the ratio between
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maximum amount of generations and the difference of the maximum amount of
generations and the generation that found the best value.

EHf = −(x2 + 47) sin
(√∣∣∣x2 +

x1

2
+ 47

∣∣∣
)

− x1 sin
(√

|x1 − (x2 + 47)|
)

xi ∈ [−512, 512] ∀i = 1, 2
(1)

EAf = − cos x1 cos x2 exp (−(x1 − π)2 − (x2 − π)2)
xi ∈ [−100, 100] ∀i = 1, 2

(2)

max u(p) s.t. : p ∈ Π (3)

u(p) = −5 · RPDEHf (p) + SPDEHf (p) + 5 · RPDEAf (p) + SPDEAf (p)
12

(4)
The EGA population start size was set to 200 and the maximum generations

to 80, the search space for other the parameters can be found on Table 1 as well
as the their regions, i.e. search boundaries, and the optimized values. The fitness
of the optimized parameter set was 99 out of 100, indicating that the EGA
managed to get close to the global minima in most cases. The next experiments
using the EGA will be carried on using the optimized parameters.

Table 1. Search space and optimized results for EGA parameters

Parameter Region Optimized parameter

mtDNA reset threshold [1, 50] 35.897

Max age [2, 10] 5

Max children [2, 6] 4

Mutation rate [0.05, 0.35] 0.200

Recycle rate [0.05, 0.35] 0.332

Crossover rate [0.5, 0.9] 0.829

Elite individuals ratio [0.01, 0.2] 0.111

Individuals to recycle ratio [0.01, 0.2] 0.190

5 Neural Network Base Models

We proposed three base Neural Network models to classify the vulnerabilities: (i)
Standard Neural Networks (SNN); (ii) Enhanced Neural Networks (ENN); and
(iii) Interconnected Enhanced Neural Networks (IENN). The SNN is basically
a regular Neural Network with dense layers, between each dense layer there is
also a dropout layer. There are always 878 input neurons on the SNN, one for
each feature, and a single output neuron for the label. Since this problem was
modulated as a binary classification, the loss function for every neural network
is the Binary Cross-entropy, and the activation function of the last layer is the
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Sigmoid function. When the activation of the output neuron of a network sur-
passes a threshold of 0.5, a vulnerability is considered to have an exploit. The
activation value can be interpreted as the probability of existence of an exploit
for the given vulnerability. This odds can be sorted descending to become a
patch priority list. Stop and Checkpoint callbacks were implemented in order
to stop the training after a given amount of Patience Epochs without improve-
ments on the validation loss, after stopping the training, the network weights of
the best model so far are restored. Besides the loss value, the network can also
provide training F1-Score, Recall, Precision or Accuracy measurements. There
is no shuffle on the dataset, in order to preserve the chronological aspects of the
data. To avoid overfitting we clip the gradient values to 1, and we also imple-
mented the leaky ReLU activation function instead of the traditional ReLU. All
the other aspects of the Neural network are given by the hyperparameters, such
as the batch size, the learning rate, the optimizer, the amount of training epochs,
the patience epochs, the layer sizes, the use of bias, the dropout values, and the
activation functions of the non-output layers.

On the dataset, only 13.59% of the entries have an exploit available. Due
to this reason the dataset is highly unbalanced. To overcome this, we proposed
the ENNs, which are a fork of the SNNs, but with one difference on the loss
function. When a vulnerability does not have an exploit, only 30% of the loss
value is applied during the backpropagation. When the label is positive, i.e.
there is an exploit, 100% of the loss is used. This approach makes the model
to learn more when the dataset entry have an exploit, in comparison when it
does not. With this change we expect to increase the recall, since the priority
is to detect vulnerabilities that have an exploit, but it is acceptable to classify
some vulnerabilities that do not have an exploit as having one. In turn, IENNs
are a fork of ENNs, but instead of having a single neural network, they have
six. There is one neural network for each of the five groups of features, the
group definitions can be found on Sect. 3. The outputs of those networks are
the inputs of the sixth network, the Concatenation network, which has a single
output neuron to classify the vulnerability as having or not an exploit. The
IENNs have the following advantages: (i) allow to increase the amount of layers
without increasing the model complexity excessively, since neurons from different
networks are not connected; (ii) each network can grow independently, since
each network input might have different needs; and, (iii) the dimensionality
of each input group can be reduced or increased independently before joining
the processed features into the Concatenation network. The Appendix Fig. 1
highlights an example of IENN model architecture. There, the inputs and outputs
represents the shape that each layer receives or produces, and the question mark
represents “any amount” as the size of fed entries is not fixed.

5.1 Neural Architecture Search

The Neural Architecture Search (NAS) is the process of using some algorithm
to search for a neural network architecture, we opted to do it using Genetic
Algorithms since they can improve the results of a Neural Network, such as on
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[16]. During a NAS, neural networks and genetic algorithms are combined by
considering each genetic individual as a neural network, and its output function
as some metric of the neural model. To do this, a certain number of neural net-
work training epochs must occur in each generation of the genetic algorithm.
Each network/individual has its own weights that are persisted across genera-
tions, that is, even if the network configuration is different, it starts out already
pre-trained [11]. During the crossover process the weights from the mother are
passed to her children. To make possible the reuse of the weights in networks with
different numbers of neurons and layers, the weights are always stored with the
highest dimension for the given search space, but only the relevant weights are
applied. The hyperparameters are encoded in the DNA. The DNA is a float array
that represent each hyperparameter. The hyperparameters are then inserted in
a known order in the DNA. As there are unique hyperparameters per layer, such
as the size of a layer, they are repeated for the maximum possible amount of
layers, where each one is associated with a layer in an ordered way. After every
iteration the values are truncated according to their minimums and maximums.
Besides its DNA, an individual is also composed of its neural network weights.

6 Testing the Enhanced Genetic Algorithm

The EGA was proposed and its parameters were tuned. Now, we need compare its
performance with the SGA, to decide which will be used on further experiments.
The Sect. 6.1 is dedicated to compare both algorithms using the benchmark
functions aforementioned, whereas the Sect. 6.2 focus on the experiments that
compare both performances on the actual NAS problem.

6.1 On Optimization Benchmark Functions

Four types of optimizations were tested: (i) for EAf Eq. 2 with a mutation rate
of 0.1; (ii) for EAf Eq. 2 with a mutation rate of 0.2; (iii) for EHf Eq. 1 with
a mutation rate of 0.1; and (iv) for EHf Eq. 1 with a mutation rate of 0.2.
The other EGA parameters can be found on Table 1, the population start size
was 100. Since the EGA population size varies during the execution, the SGA
population size, which is fixed, was set to be the average of the population sizes
of each EGA generation. The SGA crossover rate was set to be the same as EGA,
0.829. Each of the optimizations were done 300 times, and the average of the
results can be found on Table 2. The results show that the EGA is worse when
considering runtime, which is obvious considering that it has more computations
to do during its generations. In general, the EGA had better results for the EHf,
both in the result and on the amount of generations to converge. On the other
hand, the SGA had better results for the EAf. This results could indicate that
both have similar performances, however, by analyzing the percentage distance
from the actual global minima (−1 for EAf and −959.6407 for EHf) we can
see that EGA got closer to the global minima of EAf, than the SGA got from
the global minima of EHf. This indicates that the EGA had a slightly better
performance, with the trade off of having a higher runtime.
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Table 2. EGA versus SGA on benchmark functions

Measurement SGA-0.1 SGA-0.2 EGA-0.1 EGA-0.2

EAf minima −0.999999997 −0.9999999881 −0.9999212342 −0.9995891618

EHf minima −948.5131826 −950.4962868 −955.8765385 −957.4322888

EAf best gen. 20.23 22.68 48.63 24.43

EHf best gen. 42.40 37.85 34.49 27.1

Gen. runtime (ms) 432.36 438.88 652.02 654.39

6.2 On Neural Architecture Search

The EGA has proven to be a bit better than the SGA on the benchmark func-
tions, now we need to test its performance on a real application, NAS. Since the
runtime of training a new network for each individual and for each generation
is much higher than the cost of the benchmark function, this experiment was
ran only once. The NAS was done on a small search space that contains the
hyperparameters for a SNN, they can be found on Table 3. The Neural Network
was trained using the Rolling Forecasting Origin Technique, with the F1-Score
as the maximization goal, using an unbalanced vulnerabilities train data from
2018 and 2019. The SGA was configured to run for 50 generations, with a popu-
lation of 100 individuals, a mutation rate of 0.2 and a crossover rate of 0.7. The
EGA parameters can be found on Table 1. The results revealed a cross-validation
F1-Score of 0.9403 and 0.9271 for EGA and SGA respectively. This result rein-
forces a minor superiority of EGA. Thus, the EGA will be used on all following
experiments. On further work, the optimization of the EGA parameters using a
more complex function instead of the fast selected benchmark functions could
improve the results.

Table 3. Search space for SNN hyperparameters

Parameter Region

Batch size [0, 128]

Learning rate [0.0001, 0.1]

Optimizer {SGD, Adam, RMSProp}
Epochs [30, 70]

Patience epochs [20, 30]

Amount layers [1, 5]

Per layer hyperparameters

Layer size [1, 200]

Bias {False, True}
Activation {ReLU, Softmax, Sigmoid, Tanh}
Dropout [0, 0.3]
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7 Experiments and Results

With an optimization algorithm defined and properly optimized, we could run
two experiments to assess the proposed Neural Network models. The strategy
based on our model consists of applying a patch for every CVE with a predicted
exploit. One of the experiments use data from 2016 and 2017 and the other was
done with data from 2018 and 2019. The search spaces can be found on Table 4.
The measurement used on this experiment was the validation Recall. The results
shown on Table 5 reveal that, as expected, the recall increases when using the
ENN instead of the SNN, the recall also increases when using the IENN model.
The “physical” separation of feature groups on IENN make easier for the neural
network to select relevant features and to train hidden neurons with meaningful
abstractions on the input networks. The hyperparameter set of the IENN model
can be found on Table 6.

Table 4. Neural networks base model search space

Parameter SNN & ENN region IENN region

Batch size [0, 128]

Learning rate [0.0001, 0.1]

Optimizer {SGD, Adam, RMSProp}
Epochs [100, 600]

Patience epochs [20, 60]

Amount layers [1, 10] [1,5], [1,5], [2,13], [2,10], [1,5],
[1,5]

Loss functiona - {Mean Squared Error,
Categorical Cross Entropy}

Per layer hyperparameters

Layer size [1, 1000] [1,50], [1,60], [1,400],

[1,120], [1,420], [1,100]

Bias {False, True}
Activation {ReLU, Softmax, Sigmoid, Tanh}
Dropout [0, 0.3]
a Only for the five input neural networks.

Table 5. Neural network base models results

Measurement SNN ENN IENN

2017 & 2018

Recall 0.88731 0.90289 0.92365

Best gen. 13 50 26

2018 & 2019

Recall 0.92543 0.93615 0.94750

Best gen. 4 11 43
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Table 6. IENN hyperparameter set

Parameter Region

Batch size 128

Learning rate 0.0607, 0.0614, 0.0080, 0.0822, 0.0537, 0.0598

Optimizer Adam on the concatenation, SGD on the others

Epochs 103

Patience epochs 60

Amount layers 1, 2, 2, 2, 1, 1

Loss function Categorical Cross Entropy on all input networks

Per layer hyperparameters

Layer size 43, (25, 1), (1, 181), (96, 55), 262, 1

Bias False, (True, False), (False, False), (True, True), False, True

Activation ReLU on all layers of the input networks

Dropout 0, (0.026, 0.136), (0, 0.275), (0.214, 0.269), 0, 0

Even with its flaws, CVSS is still the state of the art on vulnerability clas-
sification. We compared the V-REx IENN performance with CVSS based reme-
diation strategies. For this experiment we used data ranging from 2015 to 2018
to train the models and data from 2019 to test. We trained three IENN models:
(i) IENN - balanced, with the training dataset balanced, i.e. the same amount
of positive and negative labels; (ii) IENN - unbalanced, without balancing the
dataset; and (iii) IENN - unbalanced - 2018 only, training only with 2018 unbal-
anced data. The results available on Table 7 shows that both V-REx implemen-
tations with an unbalanced dataset outperformed every CVSS based strategy. It
is also noticeable that the F1-Score dropped significantly when comparing with
the results of Sect. 6.2, this is due to the unbalanced characteristic of the prob-
lem, there are few positive samples on the validation fold of the rolling window,
causing the score to be higher when compared with a test dataset.

Table 7. Comparison between IENN and CVSS+ strategies

Model Precision Recall F1-score

IENN - balanced 0.058 0.779 0.108

IENN - unbalanced 0.386 0.383 0.384

IENN - unbalanced - 2018 only 0.391 0.519 0.446

CVSS 10+ 0.095 0.149 0.116

CVSS 9+ 0.085 0.25 0.127

CVSS 8+ 0.082 0.489 0.14

CVSS 7+ 0.062 0.627 0.113

CVSS 6+ 0.054 0.641 0.1

CVSS 5+ 0.049 0.79 0.092

CVSS 4+ 0.043 0.967 0.082



608 T. Figueiredo Costa and M. Tymburibá

8 Conclusion and Further Work

In this work, we presented V-REx, an open-source classification system that
uses public data to predict the odds of a known vulnerability to be exploited.
Three base Neural Network models were developed and tested. The IENN model
achieved the best result among the others, in every case scenario. We also pro-
posed a EGA to genetically tune the Neural Network models. The EGA proved
to have a slightly better performance than the SGA, both on benchmark func-
tions and on a NAS. We lack of a complete risk analysis that considers not only
the severity, as CVSS does, but also considers the probability of exploitation,
besides having a clear methodology and being reliable [26]. V-REx contributes
to this goal by predicting the exploitation probability, and being able to per-
form better than CVSS based strategies on prioritizing vulnerabilities. Which
is a very relevant task, since poor system administration, i.e. patching risky
vulnerabilities in a timely manner, leads to the occurrence of attacks [13].

Even with promising results, there is a lot of space for improvements. For
instance, natural language processing could be done better by using Convolu-
tional Neural Networks (CNN) instead of using multi-word expressions to encode
textual features. CNNs can process the descriptions directly as in [5,18]. It is
also possible to use CNN at the character-level as in [21] which, according to
the authors, performs better than CNN in word-level. Our NAS is done by opti-
mizing a single measurement, an improvement for that is to use multi-objective
functions, for example, instead of optimizing the recall only, we could use a com-
bination of recall, accuracy, loss and runtime. The classification threshold could
be variable as in [8], instead of a fixed value. We could also use two classes to
encode the presence of an exploit as in [2], turning the problem into a multi-class
classification instead of binary classification.
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19. Marconato, G.V., Kaâniche, M., Nicomette, V.: A vulnerability life cycle-based
security modeling and evaluation approach. Comput. J. 56(4) (2013)
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Abstract. Viticulture is the cultivation and harvesting of grapes for use
in the production of juices, wines and other derivatives, with great socioe-
conomic importance. Grafting techniques have been applied to increase
productivity and quality in the sector, but the process of finding compat-
ible cultivars is slow and costly. Although Machine Learning (ML) meth-
ods have already been applied in several applications in agriculture, their
use to support grafting processes is still very scarce. This work investi-
gates ML-based recommender systems to address the problem of scion
and rootstock compatibility in grafting processes in viticulture. In the
experiments, collaborative filtering algorithms and kernel-based meth-
ods were evaluated on a dataset of 251 rated interactions, reaching a
F1-score of approximately 96% for the best model. The results indicated
advantages of kernel-based models over standard collaborative filtering
models, as well as demonstrated the feasibility of a decision support tool
to guide the choice of the best cultivars for grafting.

Keywords: Scion and rootstock compatibility · Grafting ·
Agroinformatics · Recommendation system · Decision support tool ·
Supervised learning · Machine learning · Intelligent systems · Artificial
intelligence

1 Introduction

The vine (Vitis spp.) occupies a prominent place among the most important
agricultural species in the world, as it is a versatile perennial fruit tree, with
high added value to its products and great socioeconomic importance [1–3]. The
grape is considered to be the oldest known domesticated fruit [1]. Despite being
cultivated and shaped by man since antiquity, the usage of grafting techniques
is considered relatively recent in the viticulture, considering its extensive culti-
vation history [2,3].

Grafting is a simple technology that adds several advantages, through the
association of the scion and the rootstock cultivars [2,3,5]. Among these advan-
tages, one can mention: the capacity of the rootstock to transmit its vigor to the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. C. Xavier-Junior and R. A. Rios (Eds.): BRACIS 2022, LNAI 13653, pp. 611–625, 2022.
https://doi.org/10.1007/978-3-031-21686-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21686-2_42&domain=pdf
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grafted scion cultivars; resistance to pests, diseases and adverse abiotic condi-
tions; the influence on early production and plant size; increased productivity;
improved grape quality; and adaptation to different types of soils [5,6].

The choice of vine rootstocks for grafting purposes should be done carefully,
being a slow and costly process. This choice requires a specific research for a
given region, due to the importance of environmental aspects on the combination
responses between the scion and the rootstock. Besides, establishing a vineyard is
a long-term investment [5,7], thus, the response of such combinations can take
many years to be fully understood. Hence, the development of computational
methods to accelerate such process is of high relevance.

Based on the above motivation, this work proposes to model the scion-
rootstock compatibility problem as a recommendation task, which can be dealt
with Recommender Systems (RS). In literature, RS has already been applied for
different purposes to increase efficiency in agriculture, e.g., in decision making
to choose cultivars, disease detection, crop forecast, fertilizer recommendation,
among other applications [8,9]. However, the investigation of RS or any other
Machine Learning (ML) technique in the context of grafting is still new.

In the proposed solution, we investigated and compared the results of Collab-
orative Filtering (CF) algorithms and kernel methods in the task of identifying
compatible pairs of rootstocks and scions. In the CF context, scions were con-
sidered as users of a classic RS model, while rootstocks were treated as items
for recommendation. The scions-rootstocks compatibility matrix, used as input
for both CF and kernel methods, stores the degrees of compatibility between
scions and rootstocks, based on interactions already known and extracted from
the literature. This 2-dimensional matrix was constructed from the interactions
between 40 species of vines (scions) and 31 species of other plants used as root-
stocks. In all, degrees of compatibility were collected from the literature for 251
pairs of scions and rootstocks, thus forming a sparse matrix with only about
20% of the possible interactions between the identified cultivars.

In the experiments carried out, 6 models based on standard CF algorithms
(k-NN, SVD and SlopeOne) and 3 kernel-based methods (Linear, Gaussian and
Polynomial) were trained and tested. The metrics applied to evaluate the results
of RS model were root mean squared error (RMSE), precision, recall, F1 score
and area under the ROC curve (AUC). The analysis of these results suggests that
kernel-based methods are potentially better than standard CF methods as they
can take advantage on available scions/rootstocks features. It also demonstrates
the feasibility of a decision support tool, such as a RS, to help grafting specialists
make better choices regarding which rootstock to use for a given crop.

The main article contributions can thus be summarized as follows:

1. First, we dealt with the problem of choosing suitable rootstocks for vine scions
as a recommendation task;

2. Second, the performance of CF algorithms and kernel methods were evaluated
for pairs of rootstocks and scions with known compatibility;

3. Finally, we demonstrated the viability of using RS in the grafting process.
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The rest of the article is organized as follows: Sect. 2 presents the most com-
mon uses of RS in agriculture; Sect. 3 describes the problem itself and how it
was approached in the present work; Sect. 4 explains the data, the methods and
the experimental methodology; Sects. 5 and 6 present the results, evaluates its
applicability and proposes future works.

2 Recommender Systems in Agriculture

The literature on the use of RS covers applications for a wide variety of problems.
In this section, we will introduce the most common areas where RS has been
used in agriculture.

RS has been widely used by researchers, notably in India, to support the
choice of the best crop for a region, based on its geographic and/or climatic
conditions [10,11]. For example, in [12], the authors propose a RS that uses
Pearson’s correlation to identify the top-n regions most similar to those of a given
user. Then, the crops that should best develop for the user specific conditions are
recommended, based on the highest yielding crops in the top-n similar regions in
a specific season. In [13], an ensemble-based recommendation system, which uses
the majority vote technique, was proposed. This RS compares the results of the
decision tree, CHAID, k-nearest neighbors (k-NN) and Naive Bayes algorithms
to recommend the best crop to be explored in a region, according to the soil
characteristics of rural properties.

Another common application is to use RS to choose the most suitable fertil-
izers, pesticides and other chemical agents to intervene in a specific case. In [14],
the authors built an ontology that models the interactions between crops, pests
and pesticides, and developed a recommendation system in order to facilitate the
identification of pests and the choice of the most appropriate treatment. In [9],
the authors developed a system capable of generating location-specific fertilizer
recommendations for selected crops by analyzing the national soil database from
Bangladesh. This system requires farmer field location, soil and land type, crop
type and variety information to generate instant crop-specific fertilizer recom-
mendations.

Other applications include the use of RS to support the choice of the most
appropriate time to start planting or harvesting crops in general. In [15], a system
that uses support vector regression was proposed to provide useful recommen-
dations for farmers. This RS uses data about weather conditions and how it
affects the crops to predict the best cultivation and harvesting times. In [16],
the authors measured the effectiveness of a system that used a ML algorithm
to predict the harvesting times of the rice crop. This study indicates that the
system’s recommendations are close enough to those ones made by experienced
farmer and experts.

There are many other relevant works that apply RS in completely different
contexts. For example, in [17], a RS based on collaborative filtering was used to
recommend the best government programs available to farmers in India. This
system requires farmer profile information and program admission characteristics
to compute the best matches.
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Even though there are many works applying RS in agriculture, to the best of
our knowledge, there are no published studies demonstrating the application of
this ML technique to the specific problem of scion and rootstock compatibility
in grafting processes.

3 Proposed Solution

As mentioned in the previous sections, the cultivation of vines for the production
of juices, wines and other derivatives (i.e., viticulture) has great relevance for
culture, industry and the economy in almost every continent. Grafting is a very
common practice in this type of culture, however, selecting the cultivars that will
be used in the process is not an easy task. In general, this is done empirically
and the result of experimentation is slow and costly. Therefore, the development
of tools capable of guiding the choice of cultivars with a greater chance of com-
patibility can be a valuable resource for researchers and entrepreneurs in the
area.

This work presents a RS approach based on CF and kernel methods to specif-
ically address the problem of choosing compatible pairs of scions and rootstocks
for grafting processes in viticulture. Figure 1 presents an overview of the work
developed and each step is detailed below:

Fig. 1. Overview of the proposed approach.
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1. Data gathering: Collect data from books, scientific articles and specialized
websites about the degree of affinity between cultivars in grafting processes
in viticulture;

2. Interactions and features matrices: Split the data into 3 different matri-
ces: one to store the interactions between scion and rootstock cultivars and
their degrees of compatibility; and another two to store the characteristics of
the scions and rootstock cultivars;

3. Pre-processing: Perform the transformations and feature engineering nec-
essary to adjust the structure of the matrices and the format of the data in
order to use them to train and test the models.

4. Models training and testing: Train different classifier models based on
collaborative filtering and kernel methods, using different hyperparameter
configurations and resampling techniques.

5. Comparison and analysis: Based on the metrics calculated in the tests,
compare the results obtained by each model and algorithm class as a whole.

The solution proposed in this article is an application of CF and kernel
methods in a RS approach on an original problem. To the best of our knowledge,
there are no previous works in the literature that used RS or other ML technique
to address the problem of scion-rootstock compatibility, whether in viticulture
or any other crop that uses grafting.

4 Experiments

In this section, we present the experiments performed to evaluate different RS
techniques in a case study of viticulture grafting.

4.1 Dataset

The data used in this experiment were collected from the literature and represent
degrees of compatibility between scion-rootstock pairs [29]. This information was
split in 3 matrices to better represent the collected data: interaction matrix, scion
features matrix and rootstock features matrix.

The interaction matrix I is a sparse matrix |S| × |R|, where S represents
the scions set and R represents the rootstocks set. Each element aij of matrix
I, being {aij ∈ N|1 ≤ aij ≤ 5}, indicates the degree of compatibility of the
i-th scion with the j-th rootstock and can receive values from 1 to 5, in ascend-
ing order of compatibility. The degree of compatibility may also be unknown
for many pairs of scions and rootstocks. These missing interactions will be can-
didates for recommendation. Table 1 gives a sample of the original interaction
matrix, showing some degrees of compatibility and some missing values (in gray)
between scions and rootstocks. In the interaction matrix, degrees of compatibil-
ity greater than 4 indicates good or excellent compatibility, values equals to 3
indicates weak compatibility, values equals to 1 and 2 indicates absolute incom-
patibility.
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Table 1. Sample of the original matrix of collected data. Grayed cells represent
unknown or unevaluated interactions.

Rootstocks

1103P 110R 420A 5BB SO4

BORDO 5 4

ISABEL 5

MERLOT 5 5 5 5

SYRAH 5 4 3 4

Scions

TANNAT 5 5 5

The scion features matrix S has dimension |S| × |F |, where S represents the
scions set and F represents the features set of the scion cultivars. The rootstock
features matrix R has dimension |R|×|F |, where R represents the rootstocks set
and F represents the features set, which can be used to describe both scion and
rootstocks. In these two matrices, the element eij recorded at the intersection
between S ×F or R ×F , represent the value of the j-th feature of the i-th scion
or rootstock and it can be ordinal, numerical or categorical, depending on the
type of the corresponding feature.

The features set is composed of 6 plant characteristics, common to scions
and rootstocks, and 7 specific characteristics, according to the purpose of the
cultivar in the grafting process. These features relate to morphological, genetic,
immunological and life cycle aspects of the cultivars, such as: species, vigor,
nematode resistance, acidity, etc. The complete list of features is available in a
public electronic appendix1.

Table 2 presents some statistics calculated from the interaction matrix I. In
all, 251◦ of compatibility were collected from the literature for 40 scions and 31
rootstocks. That is, only about 20% of the 1.240 possible interactions are known.
The hypothesis that emerges is that, among the 80% of unexplored interactions,
there could be others scion-rootstock pairs with high degree of compatibility.

The degree of compatibility histogram (see Fig. 2) indicates a high level of
imbalance among the known interactions. In fact, 220 out of 251 interactions
(87,5%) assume the values 4 and 5, being 144 interactions equal to 5 and 76
equals to 4. In turn, 31 interactions are equals to 1, 2 or 3. The mean degree of
compatibility, ≈4, 34, directly reflects the imbalance of degree distribution. Also,
the standard deviation of ≈1 allows us to conclude that most of the data lies
close to the higher degrees. As in this dataset the degree of compatibility only
vary between 1 and 5, there are no outliers to worry about.

The interactions between cultivars can also be represented as an undirected
bipartite graph G of type G = (S,R,E), where S and R are sets of vertices,
each si ∈ S represents a scion and each rj ∈ R represents a rootstock. E is
a set of edges indicating a know interaction between the elements of S and R,
thus E → {(si, rj)|aij is not missing}. This graph representation allows us to
calculate the connectivity degrees shown in Table 2, indicating the number of

1 https://github.com/thiagobrs/grafting-recommender.

https://github.com/thiagobrs/grafting-recommender
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Fig. 2. Degrees of compatibility (ratings) distribution histogram.

known interactions that each node has. The average degree is ≈ 7 interactions
per vertex, with a minimum of 1 and a maximum of 23 connections (see Fig. 3).
An edge density of 0.101 confirms the fact that a low number of interactions
(edges) are known and the average clustering coefficient of zero shows that this
graph has no clusters.

A graph visualization is presented in Fig. 4, filtered to show only the edges
related to good or excellent interactions. The figure suggests the existence of
elements with greater predisposition for interactions. Both scions and rootstocks
with higher connectivity degree seems to easily form positive connections not
only between them, but also with the low degree vertices from the other group.
The number of edges between the low degree vertices of both groups is visibly
smaller (edges between the bottom and the left side of Fig. 4).

Fig. 3. Node degree distribution for the rootstock-scions interaction graph.

4.2 Methods

In this section, we present the RS methods adopted in our work for recommend-
ing scion-rootstock interactions. CF is considered to be the most popular and
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Table 2. Descriptive dataset statistics.

Statistics Values

Number of scions 40

Number of rootstocks 31

Known interactions 251

Missing interactions 989

Interactions with high degrees of compatibility (≥4) 220

Interactions with low degrees of compatibility (<4) 31

Mean degree of compatibility 4.338645

Standard deviation of degrees of compatibility 0.988363

Average connectivity degree of graph nodes 7.07

Scions max. connectivity degree 22

Scions avg. connectivity degree 6.27

Rootstocks max. connectivity degree 23

Rootstocks avg. connectivity degree 8.1

Edge density of the graph 0.101

Average clustering coefficient of the graph 0.0

widely implemented technique in RS. Basically, it consists in predicting the pref-
erences of a user based on the preferences of other users or similarity between
items [18]. Drawing a parallel, in our context the rootstocks would be items that
the system should recommend to the scion “users” and the degrees of compati-
bility would be the ratings of each interaction. Two main kinds of CF algorithms
can be adopted:

1. User-based collaborative filtering: makes recommendations based on the
preferences of other users with similar preferences or profiles. For the scion-
rootstock example, it means to learn the pattern of rootstock preference of
each scion, and recommend new rootstocks based on the preferences of other
scions that demonstrated similar rootstock affinities;

2. Item-based collaborative filtering: makes recommendations based on the
similarity between items the user has demonstrated affinity for and other
unknown items. For the scion-rootstock example, it means to learn the sim-
ilarity between the rootstocks and, given that a scion has good interactions
with rootstock X, the RS recommends other rootstocks that are similar to X.

In this work, we adopted the implementations of 3 CF algorithms available
in the SurpriseLib2 library for Python. These algorithms hyperparameters were
optimized through the execution of a cross-validated grid-search method, using
RMSE and Fraction of Concordant Pairs as evaluation criteria to select the best

2 http://surpriselib.com/.

http://surpriselib.com/
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Fig. 4. Bipartite graph representation: high-low connectivity subsets. Scions vertices
with high degree (>6) are positioned on the right. Rootstocks vertices with high con-
nectivity degree are positioned on the top.

combination of hyperparameters. Below, we present the collaborative filtering
algorithms used and their selected hyperparameters:

– k-NN: basic implementation of the k-nearest neighbors algorithm. List of
hyperparameters:

• Maximum number of neighbors: 9;
• Minimum number of neighbors: 1;
• Similarity function: Cosine similarity [20];
• User based similarity;
• Minimum number of common items: 1.

– SVD: an algorithm based on matrix factorization. List of hyperparameters:
• Number of iterations: 40;
• Learning rate: 0.01;
• Regularization term for all parameters: 0.03;
• Whether to use baselines (or biases): True.

– SlopeOne: direct implementation of the proposed algorithm in [19], there
are no hyperparameters to configure.

Kernel methods are a class of algorithms that uses kernel functions to map
the input data into a high-dimensional space, in which data is linearly separa-
ble. This mapping allows simpler models to learn from the new feature space,
occasionally increasing the performance of the models [21,22]. In this work, we
used the implementation of 3 kernel methods available in the RLScore3 package
for Python to calculate kernel matrices from the interactions data and from the
scion and rootstock features data. The following are the kernel methods used
and a brief description of each, based on the work published in [28]:

3 http://staff.cs.utu.fi/∼aatapa/software/RLScore/index.html.

http://staff.cs.utu.fi/~aatapa/software/RLScore/index.html
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– Linear kernel: is the simplest kernel function, given by the inner product
of the entries (x1, x2) plus an optional constant c (bias).

k(x1, x2) = xT
1 x2 + c (1)

Value used for the hyperparameter: c = 1.
– Gaussian kernel: is a radial basis kernel function, classified as stationary,

as it depends exclusively on the vector that separates the two examples.

k(x1, x2) = exp

(
−‖x1 − x2‖2

θ

)
(2)

Value used for the hyperparameter: θ = 1.
– Polynomial kernel: is a non-stationary kernel function, more suitable for

problems where all training data are normalized. The adjustable parameters
are the slope α, the constant term c, and the polynomial degree d.

k(x1, x2) = (αxT
1 x2 + c)d (3)

Value used for the hyperparameters: α = 1, c = 0 e d = 2.

4.3 Experimental Methodology

In our work, we treated the recommendation problem as a binary classifica-
tion problem, i.e., we distinguished between compatible and incompatible scion-
rootstock pairs. Hence, we binarized the degrees of compatibility stored in the
interaction matrix: value 0 was assigned for bad interactions (i.e., ratings 1, 2
and 3) and value 1 was assigned for good interactions (i.e., ratings 4 and 5).

Two resampling methods were used to train and test the CF models: k-
fold cross validation (CV) and leave-one-out (LOO). The k-fold cross-validation
consists in randomly partition the original sample into k equal sized subsamples,
also called folds. The CV process is repeated k times, each time a different fold
is used as validation data and the others are used as training data. Then, the
average of all k results for any chosen metric are used as an estimation [23]. LOO
is a particular case of CV where k is equal to the size of the original sample. In
this paper, the k value for the cross validation method was set to 5 while the
k value for the leave one out, by definition, had to be 251 (number of labeled
examples, see Table 2).

For models based on kernel methods, it was necessary to carry out a fea-
ture engineering step on the scion and rootstock feature matrices before models
training and testing. First, we adopted the following strategy to deal with the
missing values problem: for categorical data, the mode value of the correspond-
ing feature was used; and for numerical data, the mean value was used. Then,
we encoded the categorical data using the one-hot-encoding strategy. Lastly, we
normalized the numerical data using L2 normalization.

The training and testing steps for kernel-based models were performed
through a specific function, also available in the RLScore package, called CGKro-
nRLS. This function is an iterative Kronecker RLS training algorithm specially
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designed to work with pairwise incomplete data, like ours, and is based on the
work published in [24].

To evaluate the models, the following metrics were averaged over 10 inde-
pendent executions of CV, LOO and CGKronRLS routines:

– RMSE: although the main task is to give correct classifications of good and
bad interactions between scions and rootstocks, the RMSE metric was used
to assess the accuracy of the models around values 0 and 1;

– Precision and recall: precision and recall are performance metrics for eval-
uating classifiers. Precision shows how good the classifier is at not labeling a
sample that is negative as positive, while recall shows how good the classifier
is at finding all the positive samples [25];

– F1 score: also known as balanced F-score or F-measure, is the harmonic
mean between precision and recall, the closest to 1 indicates a better balance
between precision and recall [25];

– Area under the ROC curve (AUC-ROC) score: computes the relation
between the classifier’s specificity and sensitivity at different decision thresh-
olds. The closer to 1 the AUC-ROC score is, the better the performance of
the model at distinguishing between the positive and negative classes [26].

5 Results

Table 3 presents the results of each model for the metrics mentioned in Sect. 4.3.
The best overall results for each metric are highlighted in bold and yellow.
Regarding RMSE, the model with the best result was the one trained with Poly-
nomial Kernel (RMSE = 0.315074). Regarding the classification performance,

Table 3. Metric results for each model in the test set.

CF based models

KNN SVD SlopeOne

CV LOO CV LOO CV LOO

RMSE 0.342427 0.324082 0.327919 0.322533 0.346852 0.329052

Precision 0.914859 0.945553 0.931515 0.931670 0.954545 0.954198

Recall 0.786363 0.710454 0.636818 0.780909 0.544090 0.568181

F1-score 0.845758 0.811315 0.756479 0.849653 0.693109 0.712250

AUC-ROC score 0.629300 0.698027 0.701468 0.726308 0.716509 0.727639

Kernel based models

Linear Kernel Gaussian Kernel Polynomial Kernel

RMSE 0.329891 0.318331 0.315074

Precision 0.933333 0.938462 0.935484

Recall 0.903226 0.983871 0.935484

F1-score 0.918033 0.960630 0.935484

AUC-ROC score 0.729391 0.769713 0.745520
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SlopeOne-LOO model had the best result for precision, but very low recall. The
kernel method trained with Gaussian kernel had the best results for recall, f1-
score and AUC-ROC score and a competitive value of precision. Additionally,
RMSE score was approximately the same as the one obtained by the Polynomial
Kernel model (0, 318331).

As, on average, the results of models belonging to the same category (CF
or kernel-based) were very similar, we selected the best model of each category
and performed a deeper investigation of performance differences. The Gaussian
Kernel model was chosen among the kernel-based methods, due to the results
discussed above. In turn, the SVD-LOO model was considered the best model
within the class of CF algorithms, by considering the overall results available in
Table 3.

Figure 5 presents the scatter diagrams for SVD-LOO and Gaussian Kernel
models classifications over the test set. The classifiers output is given in terms
of approximations or probabilities in the continuous space in relation to target
classes 0 (bad interactions) and 1 (good interactions). Therefore, a threshold
was calculated using ROC curve and Youden’s J statistic, as described in [27], to
establish the boundary between the predicted classes. Thus, predictions situated
below the threshold line belong to class 0 and predictions above the threshold
line belong to class 1.

It is possible to visualize through Fig. 5 how different the Gaussian Kernel
and the SVD-LOO classifiers performed in the task of identifying examples of the
positive class. The same pattern was observed for the other kernel and CF-based
models. The recall metric expresses this difference in numbers (see Table 3), as
kernel-based models had higher recall scores. Looking at the issue from another
perspective, CF-based models committed false negatives (FN) at a rate between
40–50%, while kernel-based models between 3–10%.

Figure 6 shows the ROC curve of the SVD-LOO and Gaussian Kernel models,
through which it is possible to visualize the relationship between the true posi-
tive rate (TPR) and the false positive rate (FPR) obtained by these classifiers.
Once again, the pattern was similar for the other CF and kernel-based models.

Fig. 5. Scatter diagrams between predicted and actual values.
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Contrary to what the isolated analysis of the AUC-ROC score metric suggests
(see Table 3), which showed a relatively low difference for the AUC-ROC scores,
the graphical analysis of the ROC curve indicates that the tradeoff between TPR
and FPR is more costly for the CF-based models, since a small increase in TPR
implies a large increase in FPR.

Fig. 6. ROC curves.

Therefore, the results obtained indicate an advantage for the models that
used the SVD algorithm, among the CF-based models, in a context where the
features of the inputs were not used. Additionally, among the models based on
kernel methods, which took advantage of the features of the inputs, the one that
used the Gaussian Kernel offered the best response. One hypothesis that the
results may suggest is that models based on kernel methods with input features
were better than those based on CF. However, as the resampling methods used
were different for the two classes of algorithms, it was not possible to state this
with complete certainty.

It was not part of the scope of this work to evaluate the effect of data imbal-
ance on the results of the models, mainly because imbalance is an expected
characteristic in datasets for this problem domain. Therefore, as a rule, it would
be desirable for the predictive engine of a rootstock RS to be able to perform
well even if the data imbalance was large and there were few labeled examples
available.

6 Conclusion

In the present work, we used a RS approach to analyze the performance of
CF algorithms and kernel-based methods to address the problem of identifying
compatible pairs of scions and rootstocks in viticulture. This approach has been
little explored until then, probably unprecedented, in this domain.

The results obtained in the experiments conducted, considering exclusively
the available data and the chosen methods, suggest that, in a context where input
features are unavailable, CF-based classifiers using SVD algorithms are a better
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choice. However, if input resources are available, Gaussian kernel-based classifiers
are preferable. Furthermore, the F1-score of 96% for the Gaussian Kernel model
and 85% for the SVD-LOO model are good indicators that they could be tested
as a decision support tool for researchers in the field of viticulture.

Obviously, other approaches could have been applied, for example, modelling
the problem as a regression problem, in which the objective would be to predict
the degrees of compatibility, or to address the problem in terms of graph theory,
i.e., a link prediction problem, in which one could try to predict the missing
edges and their strength. Nonetheless, our main objective in this work was not
to exhaust the possibilities and find the best possible solution to the problem, but
to demonstrate the feasibility of an alternative path through machine learning
and offer a comparison between two well-known techniques.

Future work could also add to the current dataset, evaluations of interac-
tions between scions and rootstocks in other crops, as well as the characteristics
of the respective cultivars. Ultimately, this would allow, in theory, to build a
general-purpose classifier that could be used to recommend compatible scion
and rootstock pairs in any type of crop. Even more so if, in addition to learn-
ing from the characteristics of the cultivars, the classifier models also learned
from the context, for example, through environmental information capable of
interfering with the success of grafting, such as climate, soil and relief.

RS methods are powerful and versatile techniques. We tried through this
work to explore it in a different context, still lacking references in the literature,
and we chose a problem, of undeniable economic and social relevance, to offer a
method based on machine learning for planning agricultural grafting processes.
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Abstract. Cross-validation (CV) is a widely used technique in machine
learning pipelines. However, some of its drawbacks have been recognized
in the last decades. In particular, CV may generate folds unrepresen-
tative of the whole dataset, which led some works to propose methods
that attempt to produce more distribution-balanced folds. In this work,
we propose an adaption of a cluster-based technique for cross-validation
based on mini-batch k-means that is more computationally efficient. Fur-
thermore, we compare our adaptation with other splitting strategies pre-
viously not compared and also analyze whether class imbalance may
influence the quality of the estimators. Our results indicate that the
more elaborate CV strategies show potential gains when a small number
of folds is used, but stratified cross-validation is preferable for 10-fold CV
or in imbalanced scenarios. Finally, our adaptation of the cluster-based
splitter reduces its computational cost while retaining similar perfor-
mance.

Keywords: Model evaluation · Cross-validation · Class imbalance

1 Introduction

Splitting a dataset into various subsets for training and validation is a funda-
mental part of machine learning and is present in multiple tasks, such as model
evaluation, model comparison, and hyperparameter tuning. Some traditional
methods to split datasets into training and test sets are holdout, bootstrap, and
cross-validation (CV).

Although cross-validation is arguably the most popular partitioning method,
it has some relevant drawbacks that have been studied in the last decades. Given
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its stochastic nature, CV may lead to poor estimates because of a partition-
induced dataset shift [14], that is, some of the generated folds are not represen-
tative of the data. One generally handles this by using repeated cross-validation,
However, since applying cross-validation is already computationally expensive,
repeating it multiple times may be prohibitive.

The aforementioned issues are related to the randomized steps of CV. There-
fore, a few methods have been proposed that attempt to improve the estimates
of cross-validation by introducing a more deterministic process of generating
folds. In one of the first works on the topic, Diamantidis et al. [9] introduced
a clustering-based technique that relied on k-means (here referred to as CBD-
SCV). However, k-means can be expensive when used as a splitting strategy for
CV. At a similar time, Zeng et al. [24] proposed distribution-balanced stratified
cross-validation (DBSCV), which was later adapted by Moreno-Torres et al. [14],
introducing the distribution optimally balanced stratified cross-validation (DOB-
SCV). Although DBSCV and DOBSCV have been compared before, there has
been no direct comparison between them and the cluster-based methods.

In our work, we propose the use of mini-batch k-means as a way of reduc-
ing the computational cost of CBDSCV. Furthermore, we provide a compari-
son between CBDSCV, DOBSCV, and DBSCV, besides the traditional cross-
validation techniques, on 20 datasets of various sizes, class imbalance levels, num-
ber of features, and number of classes. Our experiments aim to assess whether
any cross-validation splitting strategy tends to outperform the others in terms
of bias, variance, or computational cost.

The rest of the paper is structured as follows. In Sect. 2 we present the the-
oretical background of our work, followed by a description of our experiments
in Sect. 3. Next, in Sect. 4, we present and discuss our results for balanced and
imbalanced datasets. Section 5 revises other papers that presented efforts towards
proposing cross-validation splitting strategies and were not directly compared
in our experiments. Finally, Sect. 6 presents our conclusions and directions for
future works.

2 k-fold Cross-validation Partitioning Methods

The traditional k-fold cross-validation (CV) [10] consists in dividing the given
dataset into k folds. Each fold is then used once as the validation set, while
the remaining k − 1 folds are used for training. Finally, the average performance
obtained for each fold is the performance estimate of the k-fold CV. In general, k
is set as 5 or 10, which makes it much more computationally tractable than leave-
one-out cross-validation (LOOCV), besides showing less variance than LOOCV
estimates. Furthermore, it is less biased than the holdout method, since it is able
to use more instances for training than the holdout. K-fold cross-validation can
also be used in a stratified fashion (k-fold SCV) to guarantee that the proportion
of instances of each class is the same for all folds.

However, the instances assigned to each fold by traditional k-fold CV and
SCV are selected randomly, which can cause some folds not to be good represen-
tatives of the whole dataset [14]. For instance, it is not guaranteed that all the
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regions in the input space will be appropriately represented over all folds. This
phenomenon may impact performance estimates and thus has been considered
in various works (see Sect. 5 for references), leading to new splitting strategies
based on the features of the data and not only on their class labels. The methods
we have considered in this work are reviewed in the following sections, and we
also describe the adaptation we developed.

2.1 Distribution-Balanced Stratified Cross-validation

Following Moreno-Torres et al. [14], the distribution-balanced stratified cross-
validation (DBSCV) [24] attempts to generate folds representative of the full
dataset by assigning neighboring instances to different folds. Specifically, DBSCV
randomly selects an instance and assigns it to a fold; it then jumps to the nearest
instance of the same class and assigns it to the next fold. These steps are repeated
until all instances of that class have been assigned to a fold. The same process is
applied to the other classes so that the folds have approximately the same number
of instances per class. Assuming a balanced distribution of the instances, building
pairwise distance matrices for each class has complexity O(C(NC )2) = O(N

2

C ),
where N and C are the numbers of instances and classes. The search-and-hop
step has complexity O(C N

C
N
C ), so that the final complexity of the algorithm is

O(N
2

C ).

2.2 Distribution Optimally Balanced Stratified Cross-validation

The distribution optimally balanced stratified cross-validation (DOBSCV) is a
modification of DBSCV. It also starts on a random instance of the datasets,
but instead of hopping to the closest one of the same class, DOBSCV finds the
(k-1) nearest neighbors of the current instance belonging to the same class and
assigns each of them to a different fold. This process is repeated independently
for each class, similarly to DBSCV, until all instances have been assigned to
a fold. Our implementation of DOBSCV also uses a pairwise distance matrix
for each class. Assuming balanced classes, building the matrices has complexity
O(N

2

C ) and searching the k-NN for the selected instances in each class can be
done in O(C N

kC
kN
C ), resulting in an overall asymptotic complexity of O(N

2

C ).

2.3 Clustering-Based Approaches

Diamantidis et al. [9] introduced unsupervised stratification for cross-validation,
based on dataset clustering. Although they have also explored hierarchical clus-
tering, their main proposed algorithm is using k-means to cluster the dataset into
M clusters. The instances inside each cluster are then sorted by their distances
to the cluster center in ascending order. Finally, they assign adjacent instances
to different folds, i.e., they make a pass over the sorted list of instances assign-
ing each to a different fold. Note that the number of folds K, clusters M , and
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classes C need not be equal. We refer to this method as cluster-based strati-
fied cross-validation (CBDSCV). The unsupervised stratification process, how-
ever, does not guarantee that the classes are stratified in the usual sense, i.e.,
the method does not necessarily generates folds with the same proportion of
instances per class as the original dataset. K-Means has an average complex-
ity of O(MNT ), where T is the number of iterations, and sorting each cluster
can be done in O(MN log N). Therefore, CBDSCV has a complexity given by
O(MN(T + log N)).

Mini-Batch CBDSCV. The running time of the CBDSCV algorithm is gener-
ally dominated by k-means. Therefore, we propose the use of mini-batch k-means
[21] as a way of reducing the cost of performing CBDSCV. Mini-batch k-means
is an adaptation of k-means with two major differences. First, at each iteration,
it selects only a batch of samples instead of the whole dataset. These samples
are then assigned to the nearest centroid. Then, instead of computing the new
centroid as the mean of all instances assigned to a cluster, it iterates over the
instances of the cluster, updating the centroid at each instance using a learn-
ing rate η inversely proportional to the number of times this centroid has been
updated previously. Mini-batch k-means converges faster than k-means while
producing results that are only slightly worse [2,21]. In the following sections,
we will refer to our adaptation of CBDSCV as CBDSCV Mini.

3 Experiments

The experiments performed here were designed to evaluate whether there is
a cross-validation splitting strategy which generally outperforms the others in
terms of bias, variance, or computational cost. Moreover, we also wish to study
whether the imbalance of the datasets may influence the quality of the splitters
estimations. Since the estimations they produce may depend on the dataset,
classifier, and also on the metric being estimated, we experimented with 20
different datasets (from PMLB [16]) and 4 different classifiers. The datasets
were selected so that two groups would be apparent, one with balanced and the
other with imbalanced datasets. The complete list is shown in Table 1.

Note that we use the same class imbalance measure I ∈ [0, 1] as in [16],
defined by I = K

K−1

∑K
i=1

(
ni

N − 1
K

)2, where K is the number of classes, ni is
the number of instances in class i, and N is the dataset size. Imbalance is 0 when
the classes are equally distributed and approaches 1 when almost all instances
belong to the same class. When analyzing balanced datasets, we evaluated the
splitters in terms of their accuracy estimations, as this is the most common and
traditional metric. However, when handling imbalanced datasets, we used the
F1 score since accuracy is inappropriate in these cases. We used the average
between the F1 scores computed for each class, i.e., the macro average.

We chose learning algorithms that presented different biases and variance
levels. Specifically, we experimented using Logistic Regression (LR), Decision
Trees (DT), Support Vector Machines (SVC), and Random Forests (RF). We
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Table 1. List of datasets used in the experiments. Datasets with Imbalance higher
than 0.20 were considered imbalanced.

Dataset Examples Attributes Classes Imbalance Clusters

allrep 3772 29 4 0.91 7

analcatdata cyyoung8092 97 10 2 0.26 3

analcatdata dmft 797 4 6 0.00 5

analcatdata germangss 400 5 4 0.00 4

analcatdata happiness 60 3 3 0.00 4

analcatdata japansolvent 52 9 2 0.00 3

appendicitis 106 7 2 0.36 6

backache 180 32 2 0.52 5

car 1728 6 4 0.39 6

chess 3196 36 2 0.00 4

colic 368 22 2 0.07 5

dna 3186 180 3 0.08 1

flare 1066 10 2 0.43 5

hepatitis 155 19 2 0.34 5

movement libras 360 90 15 0.00 5

new thyroid 215 5 3 0.30 6

page blocks 5473 10 5 0.76 4

postoperative patient data 88 8 2 0.21 4

vote 435 16 2 0.05 2

vowel 990 13 11 0.00 4

have used only the RBF kernel with SVC since linear decision functions could
be represented by Logistic Regression. To avoid overfitting when handling class-
imbalanced datasets, weights associated with the instances of each class during
training were set to be inversely proportional to the class frequencies in the
training set. Prior to the experiments, we tuned each classifier to each dataset
using the entire data and grid search. The performance of each hyperparameter
set was evaluated using 5-fold cross-validation and the hyperparameters which
showed the highest F1 score were chosen. These selected hyperparameters for a
classifier-dataset pair were fixed for the experiments so that the classifiers were
always trained with the same hyperparameters independently of the splitting
strategy being analyzed. With this approach, we aim to capture performance
differences caused by variation in the splitting strategy rather than by variation
in the hyperparameters values.

Finally, we compared three splitting strategies, CBDSCV, DBSCV, and
DOBSCV, against traditional k-fold cross-validation and stratified k-fold cross-
validation. We also included our adaptation of CBDSCV, which uses mini-batch
k-means for faster computation of the clusters, using batches of size 100. There-
fore, six different cross-validation splitting strategies were compared in terms
of their bias and variance, as well as computational cost. Our implementations
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of the splitting strategies, the selected hyperparameters, and the code used in
experiments are available online1.

3.1 Estimating the Bias and the Variance

The cross-validation methods considered here attempt to estimate the test per-
formance of the learning algorithms fitted to the datasets. The bias of a cross-
validation method is defined as the difference between the expected estimate
and the (true) test performance [11]. Since we are working with real datasets, it
is unfeasible to obtain the test performance. However, we can compute estima-
tions for it using repeated holdout a large number of times, similarly to [3,11].
Specifically, we estimated the true performance for each dataset and classifier by
repeating a stratified holdout 100 times, using 90% of the dataset for training,
and getting the mean value. We chose a small test set in order to reduce the bias
caused by using smaller training sets, while we expect that the high number of
repetitions will attenuate the variance of the holdout.

The expected estimate of each cross-validation technique was computed for
each dataset by resampling 90% of the dataset without repetition 20 times and
applying the cross-validation technique to obtain the estimates of the true perfor-
mance. The average value of the 20 estimates was used as the expected estimate
of the cross-validation method. That is, let CVi be the performance estimate of
running k-fold cross-validation on a given dataset and learning algorithm, with
a chosen splitting strategy, then we approximated the expected cross-validation
estimate as

CV =
1
20

20∑

i=1

CV i. (1)

Finally, we computed the bias using bCV = CV − P̂ , where P̂ is the estimation
of the true performance that was computed using 100-times repeated stratified
holdout, as described above.

The other important quantity that determines the quality of an estimator is
its variance. We computed the variance of the cross-validation estimates using

s2CV =
1

20 − 1

20∑

i=1

(CVi − CV )2. (2)

In this paper, however, we will work with the standard deviation (std) s, since
we believe it is more easily readable. Note that an estimator with high variance
may give poor results even if it has a low bias since one may not have the luck
to obtain one of the estimates closer to the true value.

We evaluated the bias and variance of the six different dataset partitioning
strategies over 20 different datasets and four classifiers. For each k-fold cross-
validation strategy, we experimented with 2, 5, and 10 folds. Finally, we used
accuracy and F1 as the performance metrics.
1 https://github.com/froestiago/K-Fold-Partitioning-Methods/tree/bracis22.

https://github.com/froestiago/K-Fold-Partitioning-Methods/tree/bracis22


632 T. Fontanari et al.

3.2 Defining the Number of Clusters

The cluster-based method requires a number of clusters to be given as input.
Ideally, we would compute the number of clusters right before each splitting
is performed. However, this would be too computationally expensive, since the
number of experiments performed is already large. Therefore, we have chosen to
estimate the number of clusters for each dataset prior to the main experiments,
and use this number (rounded to the nearest integer) for all cluster-based splitter
methods. We have followed the same strategy as Diamantidis et al. [9] to estimate
the number of clusters, which was based on repeatedly applying hierarchical
clustering to small samples of the datasets and using a threshold on the similarity
between clusters being merged to determine the number of clusters. The resulting
number of clusters for each dataset is shown in Table 1.

4 Results and Discussion

The experiments performed as described in the previous section result in 80
different samples of bias and variance for each k-fold splitter, where k = 2,
5, and 10. Each of the 80 samples corresponds to a dataset-classifier pair. In
the next sections, we describe the results grouped by balanced and imbalanced
datasets in terms of class labels, resulting in 40 dataset-classifier pairs for each
group. We focus mainly on the results with 2 and 10 folds, but the Figures for
the 5-folds case are available in our git page (See footnote 1).

4.1 Balanced Datasets

The bias and standard deviations of each 10-fold cross-validation splitting strat-
egy for all datasets and classifiers are summarized in Fig. 1. All the methods
showed a general tendency to very low bias and similar standard deviations,
indicating that there is no solution that consistently performs better than all
others.

Note, however, that this does not imply that the accuracy (or F1) estimates
produced by each partitioning strategy is not different. The p-values for the
Friedman tests [7] comparing the estimates of the splitters are shown in Table 2.
In particular, the p-value for the estimates considered here is 0.0279, suggesting
that the bias estimates differ depending on the splitting strategy. However, there
is no significant difference in terms of the standard deviations. Table 3 shows the
number of times each method performed the best. For 10 folds, accuracy, and
balanced datasets, stratified 10-fold CV had the most wins for both bias and
std.

Reducing the number of folds increases the bias (in absolute terms) and the
standard deviations, as shown in Fig. 2. However, the methods still have similar
performance overall. We note, however, that DOBSCV and CBDSCV had an
increase in the number of times they had the best results, while stratified CV
showed worse results compared with its performance in the 10-folds scenario,
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(a) (b)

Fig. 1. (a) Bias and (b) standard deviation of each splitter method across all balanced
datasets and classifiers. Each splitter runs 10-folds.

particularly with respect to the standard deviation of the estimates. This is
an indication that the DOBSCV and CBDSCV can be useful when a reduced
number of folds is desired so that the computational cost resulting from training
various models can be reduced.

(a) (b)

Fig. 2. (a) Bias and (b) standard deviation of each splitter method across all balanced
datasets and classifiers. Each splitter runs 2-folds.

4.2 Imbalanced Datasets

The bias and standard deviations for 10-folds and imbalanced datasets are shown
in Fig. 3. Since accuracy is not appropriate for studying imbalanced datasets,
the bias and std were calculated for the f1-score estimations. Stratified 10-folds
showed the best results for both bias and standard deviation. Tables 2 shows that
the difference between the splitters is significant in the imbalanced cases, and
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Table 2. p-values for the Friedman tests comparing whether the estimates produced
by the splitters for each dataset-classifier pair differs. Smaller values mean that the
hypothesis that the splitters produce similar estimates for the datasets and classifiers
is unlikely. Values below 0.05 are in bold form.

Metric Splits Balance p-value

bias std

acc. 2 Balanced 0.11841 0.13278

Imbalanced 0.45917 0.07770

5 Balanced 0.58700 0.01481

Imbalanced 0.09520 0.10409

10 Balanced 0.02790 0.45271

Imbalanced 0.72980 0.07762

f1 2 Balanced 0.01858 0.24038

Imbalanced 0.10906 0.20719

5 Balanced 0.00462 0.00055

Imbalanced <0.00001 0.00158

10 Balanced <0.00001 0.03294

Imbalanced <0.00001 0.00069

Table 3. Number of times each method had the best result in terms of bias or standard
deviations, for various metrics, numbers of folds and dataset imbalance. The words
balanced and imbalanced are abbreviated to bal. and imb., respectively.

CBDSCV CBDSCV Mini DBSCV DOBSCV KFold SKFold

acc 2 bal. bias 2 9 3 12 3 11

std 7 9 4 12 3 5

5 bal. bias 6 5 7 7 7 8

std 8 8 8 5 2 9

10 bal. bias 4 6 7 7 5 11

std 5 6 6 10 1 12

f1 2 bal. bias 0 8 4 13 5 10

std 8 8 5 11 3 5

imb. bias 6 5 9 9 5 6

std 3 7 9 8 2 11

5 bal. bias 6 5 2 5 7 15

std 11 8 5 5 1 10

imb. bias 6 6 5 1 7 15

std 6 6 8 3 3 14

10 bal. bias 2 4 4 5 4 21

std 5 8 5 9 2 11

imb. bias 4 4 2 1 5 24

std 8 7 1 5 3 16
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Table 3 shows that indeed stratified 10-fold presents the less biased and most
consistent estimates for most datasets and classifiers. It is interesting to note
that DBSCV and DOBSCV deal with class stratification by performing their
splitting strategies per class. The fact that their performance was worse than
stratified cross-validation suggests that there may be more appropriate ways to
develop stratified versions of DBSCV and DOBSCV. The CBDSCV techniques,
however, do not handle class imbalance directly.

(a) (b)

Fig. 3. (a) bias and (b) standard deviation of each splitter method across all imbalanced
datasets and classifiers. Each splitter runs 10-folds for each splitter and the metric
observed is the f1 score.

When one reduces the number of folds to 2, both the bias (absolute value)
and the std of the estimates increase. More interestingly, the advantage that
the stratified cross-validation had almost disappeared. This pattern is similar to
the one observed for the balanced datasets. Table 3 shows that the number of
times the SCV performs best indeed reduces when compared to the 10-folds case
(Fig. 4).

4.3 Running Times

We also compared the running times of each splitting strategy. The running time
of a k-fold splitting strategy for a dataset was obtained by averaging the run-
ning times of the splitting process over all the 20 runs and the 4 classifiers. We
noticed that the running times obtained for 2, 5, and 10 folds were very similar,
and therefore we consider only the 10-folds case in the following discussions.
Figure 5 shows the running times of each splitter method for the 20 datasets
considered. One can see that the classical strategies, KFold and StratifiedK-
Fold, have negligible running times when compared to the others. Furthermore,
we note that DBSCV and DOBSCV have higher variability depending on the
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(a) (b)

Fig. 4. (a) bias and (b) standard deviation of each splitter method across all imbalanced
datasets and classifiers. Each splitter runs 2-folds for each splitter and the metric
observed is the f1 score.

Fig. 5. Average running times in seconds across all the 20 datasets. The running times
correspond to the use of 10 folds.

dataset, reaching the highest running times of all methods. In comparison, CBD-
SCV and CBDSCV Mini have closer run times for all datasets.

Ignoring KFold and StratifiedKFold, however, DOBSCV was actually the
fastest method in 14 out of 20 datasets, while CBDSCV Mini was the quickest
in the other six. Specifically, it was fastest in ‘analcatdata germangss’, ‘move-
ment libras’, ‘analcatdata dmft’, ‘appendicitis’, ‘page blocks’, and ‘postopera-
tive patient data’, which are the datasets with more instances. This is expected
if one considers the algorithmic complexity of each method: DOBSCV scales
quadratically with the number of samples.



Cross-validation Strategies for Balanced and Imbalanced Datasets 637

4.4 Cluster-Based Splitters

When comparing only the cluster-based approaches, CBDSCV and CBD-
SCV Mini, we observed that the running times on the minibatch version were
smaller for all datasets, as expected. Specifically, it ran on average 2.4 times faster
than CBDSCV. Furthermore, we have detected no significant change between
estimations given by CBDSCV and CBDSCV Mini. Table 4 shows the number
of times each method performed better than the other, for all datasets and clas-
sifiers, and the p-value computed using the Wilcoxon test.

Table 4. Number of times each cluster-based method had the best result in terms
of bias and variance. Only the cluster-based methods are considered here. The last
columns shows the p-value for the two-sided Wilcoxon signed-rank test.

CBDSCV CBDSCV Mini p-value

Accuracy 2 bias 32 48 0.07208

std 39 41 0.94265

5 bias 43 37 0.88180

std 40 40 0.91216

10 bias 44 36 0.18399

std 35 45 0.36078

f1 2 bias 35 45 0.04396

std 38 42 0.64348

5 bias 43 37 0.79371

std 43 37 0.91596

10 bias 33 47 0.12133

std 38 42 0.61814

5 Related Work

Besides more recent theoretical works on traditional cross-validation estimates
[4,20,22], various works have proposed cross-validation splitting strategies for
different scenarios which are not directly related to our cases. Motl et al. [15]
developed a technique based on linear programming for performing label-based
stratification when the instances have more than one label at the same time, i.e.,
multi-label datasets. Specific methods have also been developed for data drift sit-
uations, where some instances become obsolete over time [13], or for the specific
case of dataset shift in credit card validation [19]. Cross-validation over graphs
[8,12] has also seen some recent works, as well as methods for reducing cross-
validation computational cost in deep learning [6]. Cross-validation adaptations
have been developed in order to handle duplicate data in medical records [1],
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for calibration models in chemistry, [23] and for infrared and mass-spectroscopy
images [17,18]. All the methods cited above, however, are developed for different
specific scenarios, whereas the methods explored here aim at tabular data and
single-label datasets. Closer to the methods explored in this work are the pro-
posals by Budka et al. [3] and Cervellera et al. [5]. In both works, the methods
attempt to partition a dataset by generating samples whose distributions are
as similar as possible to the distribution of the original data. We were not able
to include them in this work due to lack of compatibility with the framework
we had developed for our cross-validation methods comparison. Nevertheless, we
will be including them in future works we are developing in this area of research.
We note also that these two approaches have not been compared with each other
yet.

6 Conclusion and Future Work

In this work, we proposed an adaptation of a cluster-based technique for splitting
a dataset for cross-validation. We also compared various CV strategies using
different classifiers for balanced and imbalanced datasets. We found that no
method consistently outperforms all others in terms of bias or standard deviation
when estimating accuracy using 10 folds and balanced datasets. In these cases,
traditional stratified cross-validation remains a good choice. When the number of
folds is reduced to 2, however, stratified cross-validation may produce accuracy
estimates with higher variance than DOBSCV and the cluster-based techniques.

When considering F1 score estimates, traditional stratified cross-validation
produced the best results in terms of bias and variance for most datasets and
classifiers when used with 5 and 10 folds, for both balanced and imbalanced
datasets. When the number of folds is reduced, however, F1 scores in balanced
datasets may be better estimated by other methods such as DOBSCV and the
cluster-based splitter. For imbalanced datasets, SCV remained the most frequent
winner. In particular, traditional SCV was most significantly better when F1
score and imbalanced datasets were present. This suggests that better class-
based stratification adaptations can be developed for DBSCV and DOBSCV.
The development of a supervised version of CBDSCV is also an interesting topic
for further work. Finally, we found no significant change in the quality of the
estimations produced by CBDSCV and CBDSCV Mini, whereas the mini-batch
version is significantly less expensive in terms of computational cost.

We have not studied dataset characteristics such as the presence of subcon-
cepts in the input space, as this kind of information is not easily extracted from
a dataset. Those characteristics, however, may be relevant in determining which
performance estimator should be used and may provide deeper insight into the
use cases of each method. Similarly, we haven’t analyzed deeper whether some
splitting strategies may work better for each classifier or for datasets with differ-
ent sample sizes. Finally, in future works, we intend to expand our experimental
comparison and explore other approaches proposed in the literature [3,5].
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Abstract. Voting behavior analysis involves understanding factors influ-
encing an election to identify possible trends, new features, and extrapo-
lations. A growing body of research has joined efforts to automate this
process from high-dimensional spatial data. Although some studies have
investigated machine learning methods, the capability of this artificial
intelligence subarea has not been fully explored due to the challenges
posed by the spatial autocorrelation structure prevalent in the data. This
paper advances the current literature by proposing a geographic context-
based stacking learning approach for predicting election outcomes from
census data. Our proposal models data in spatial contexts of different
dimensions and operates on them at two levels. First, it captures local
patterns extracted from spatial contexts. Then, at the meta-level, it glob-
ally captures information from the K contexts nearest to a region we want
to predict. We introduce a spatial cross-validation-driven experimental
setup to assess and compare the stacking approach with state-of-the-art
methods fairly. This validation mechanism aims to diminish spatial depen-
dence’s influence and avoid overoptimistic results. We estimated a consid-
erable multi-criteria performance of our proposal concerning baseline and
reference models taking data from the second round of the 2018 Brazilian
presidential elections into account. The stacking approach presented the
best overall performance, being able to generalize better than the com-
pared ones. It also provided intelligible and coherent predictions in chal-
lenging regions, emphasizing its interpretability. These results evidence
the potential use of our proposal to support social research.

Keywords: Ensemble learning · Metalearning · Preferential voting ·
Spatial dependence · Voting behavior

1 Introduction

Elections are non-trivial processes essential to any representative democracy,
which can provide the best expression of public opinion and party involvement. A
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post-election data analysis allows us to describe voting behavior and the aspects
that guide it [4]. Understanding voting behavior is vital to identifying trends
and factors influencing election results [6,10].

Researchers consider that the electoral processes are associated with the pop-
ulation characteristics regarding the locations where they occur. Thus, an elec-
toral process comprises aspects that indicate local patterns related to spatial
autocorrelation and local relationships across space [13]. In this perspective,
people from the same region tend to present similar voting behavior, while those
from distinct areas may have different vote distributions.

Considering how people are geographically contextualized and the data’s spa-
tial characteristics can enrich our understanding of electoral processes. We have
witnessed an increasing number of interdisciplinary studies aimed at predictive
modeling election features from thousands of explanatory spatial features [7,12].
However, the high dimensionality and spatial autocorrelation structure inherent
in such data limit the ability of conventional learning models to capture the
relationships between spatial features completely.

Many econometric and machine learning methods, which can deal with the
curse of dimensionality, totally ignore the geography present in electoral data,
such as spatial boundaries, clustering effects, and distance measures [1,3]. Con-
sequently, they treat data separated into regions as independent and identically
distributed. In the opposite direction, recent studies have suggested using spec-
tral and spatial filtering Graph Convolutional Neural Network (GCNN) method-
ologies to enrich election data modeling [7]. Such methods seem to adequately
fit the problem at hand, given the intrinsic graph structure of electoral data.

This work advances the literature on voting behavior analysis by proposing
a geographic context-based stacking learning approach to describe election out-
comes from thousands of census features. Our proposal models data in spatial
contexts of different dimensions and operates on them at two levels: (i) at the
base level, it captures local patterns extracted from spatial contexts; (ii) at the
meta-level, it globally captures information from the K contexts nearest to a
region we want to predict. Furthermore, we introduce a spatial cross-validation-
driven experimental setup to assess and compare the stacking approach with
state-of-the-art methods fairly. This validation mechanism can generate robust
assessments by diminishing the spatial dependence’s influence and consequently
avoiding overoptimistic results [11,12].

We estimated a considerable multi-criteria performance of our proposal con-
cerning two baselines and the state-of-the-art Hierarchical GCNN method tak-
ing data from the second round of the 2018 Brazilian presidential elections into
account. The stacking approach exhibited the best overall performance, being able
to generalize better than the compared ones. It also led to intelligible and coherent
predictions in challenging regions, highlighting its interpretability. These results
demonstrate the potential use of our proposal to support social research.

The rest of this paper is organized as follows: Sect. 2 introduces the back-
ground and related work. Section 3 describes our geographic context-based stack-
ing learning approach. Section 4 reports the case study involving data from the
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second round of the 2018 Brazilian presidential election. Finally, Sect. 5 concludes
the study and highlights future work.

2 Background and Current Trends

This section defines the mathematical notation that models election voting
behavior considering the spatial characteristics of the data. It also discusses
related work covering the most recent advances in the literature.

2.1 Problem Definition and Research Challenges

We can formulate the problem in question as follows. First, let us specify a set of
lattice-type spatial objects O, where each object oi is a polygon that delimits a
region in the spatial domain (e.g., neighborhoods, districts and cities). Note that
the spatial intersection between any distinct objects oi and oj ∈ O is the empty
set (∅). Now, let us assume a spatial dataset D = {X,Y } that characterizes each
of the n objects in O. The target feature, Y ∈ R, reflects the vote shares (vote
percentage) for each spatial object in O from a given candidate or party. The
explanatory features, X ∈ R

m, where m > 0 is the number of characteristics,
describes the spatial objects from O in another election-related domain. Let us
also consider a set of spatial contexts C with boundaries that segment D in the
geographic space, where C can be defined based on preexisting boundaries (e.g.,
states and macro-regions). The objective is to generate a model F (D,C) that
learns local relationship patterns from the spatial contexts present in D.

Modeling local relationships between explanatory features and the target
feature (vote shares) is not a trivial task. These relationships may vary across
spatial contexts, meaning that a relevant characteristic that can describe the
vote shares from one context may not be useful to another [13]. Furthermore, in
a conventional machine learning approach, local relationships are disregarded in
favor of those that describe the vote shares globally [12,13].

Another challenge in modeling voting behavior relates to using Spatial Cross-
Validation (SCV) as a sampling technique. While it is the most suitable proce-
dure for assessing machine learning models built from spatial data, it generates
unseen correlated distributions in the test set. This scenario happens because
spatial boundaries determine the folds, and a removing buffer region is defined as
a strategy to diminish the spatial dependence between the test and training sets
[11,12]. Consequently, the test set distribution is not observed in the training
set, and there are only correlated distributions.

Studies on applying machine learning methods for analyzing voting behav-
ior are maturing through scientific debate. Section 2.2 briefly summarizes some
related work in this field, emphasizing the challenges they brought.

2.2 Related Work

The vast literature on voting behavior varies from standard econometric tech-
niques [3] to regression analysis [13] and machine learning models [1,7]. Econo-
metrics and regression analysis studies usually focus on national-level estimators
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using surveys and economic features to understand election results. Although
these methods are well established [3], applying them to thousands of features
in several locations is challenging. Conversely, machine learning models can deal
with the curse of dimensionality more naturally. However, most works employs
social media data and sentiment analysis to understand voting behavior. Their
results are commonly explored on a national scale, and spatial aspects are not
considered [1].

Recently, researchers recommended using a hierarchical GCNN-based app-
roach that can be considered state-of-the-art in voting behavior analysis via
machine learning [7]. The authors combined the inherited hierarchical charac-
teristic of the census and election data with the GCNN capability to learn local
patterns and generate a model capable of predicting the vote shares from the
2016 Australia congress election with low error rates.

In contrast to existing analytical models, here we design a descriptive app-
roach that considers thousands of socio-economic explanatory features and the
involved spatial characteristic to analyze locally and comprehensively election
outcomes across multiple locations.

3 Proposed Approach

We have identified two main challenges linked to the problem formalized in
Sect. 2.1: (i) capturing local patterns that are occluded when globally modeling
the data; and (ii) building a model that can generalize over different spatial con-
texts. This paper addresses these challenges by proposing a geographic context-
based stacking approach to model local relationships at the ensemble level and
globally capture information from contexts employing a meta-regressor.

When applied to regression tasks, the conventional stacking approach builds
an ensemble using the entire training set to fit each base regressor. We typically
choose regression algorithms from different paradigms to introduce diversity,
generating a heterogeneous ensemble [2]. The predictions of each base regressor
on a validation set give rise to an attribute-value table, which is employed to
train a meta-regressor. The meta-regressor, in turn, learns how to ponder the
base regressors’ predictions to issue final predictions.

Our approach differs from traditional ones in the following aspects. First,
we define the ensemble by the K nearest spatial contexts to the test set region.
Such a strategy is based on the first law of geography, which states that “every-
thing is related to everything else, but near things are more related than distant
things” [14]. Second, we use spatial context to build the base regression models
so that each model can capture local patterns related to the contexts. Lastly, the
ensemble is homogeneous, meaning we adopt the same base regressor method.
However, the diversity comes from the spatial contexts that present different
dimensions (#instances × #features), following the idea that a different set of
features may describe each context.

Figure 1 outlines the steps of our approach. In Step 1, we group the training
data in agreement with a pre-defined set of spatial contexts and select the K
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Fig. 1. Proposed approach.

ones nearest to the test set, considering geographic proximity; the number of
instances in each spatial context can vary. In Step 2, we run a feature selection
method for each spatial context data, generating K spatial context with different
dimensions. In Step 3, we build an ensemble where each base regressor is fitted to
a spatial context. In Step 4, we use the base regressors that make up the ensemble
to predict the entire training set, creating an attribute-value table. In Step 5,
we employ the data table to train a meta-regressor that will seek to ponder the
local knowledge learned by the base regressors to maximize the generalization
potential. Finally, in Step 6, the meta-regressor uses the predictions from the
base regressors on the test set to provide final predictions.

As can be seen, our approach operates on two levels. The first level learns
local patterns from geographically contextualized data samples, i.e., regions con-
taining mutually exclusive instances described by an optimal feature subset. In
a complementary way, the second level extracts global knowledge of the local
patterns to predict a region of interest.

4 Case Study

In 2018, Brazilians went to the polls to vote for their president. The final result
was 55.13% for the Social Liberal Party (Jair Bolsonaro) and 44.87% for the
Worker’s Party (Fernando Haddad). This election, however, was marked by a
highly polarized environment and flooded by distrust in the voting system [4].
Understanding outcomes in this context is essential to discuss the external fac-
tors influencing voting decisions and identify the geographic and socio-economic
extensions of the processes that undermine democratic foundations.
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4.1 Brazilian Election Data

The dataset analyzed here expresses the second round of the 2018 Brazilian pres-
idential election and portrays 5565 Brazilian municipalities. It has 3999 explana-
tory features that represents the 2010 census and one target feature, which is
the vote share received by the winning party.

The census data was sourced from the Brazilian Institute of Geography and
Statistics (IBGE ). The data is available to the public via anonymized aggre-
gated features that describe population groups delimited by geospatial areas,
e.g. municipalities, which correspond to the aggregation level used in this study.
To avoid erroneous results, we standardized all the features according to the
city’s population size or the number of domiciles.

We sourced the election data from the Superior Electoral Court (TSE ), which
provides vote count results regarding each voting machine called “boletim da
urna”. We aggregated the vote counts at a city level and calculated the vote
shares as the percentual of valid votes for the winning party.

4.2 Machine Learning Approaches and Algorithms

Standard econometric methods are not comparable with our approach. They
often focus on regression analysis and employ data at higher aggregation to
provide national-level predictions [3]. The Hierarchical GCNN model [7], in
turn, can be used as a representative of state-of-the-art applied machine learning
research. We adopted this method parameterized according to the best results
in [7], named variation 2. Furthermore, we considered city-level data as the
prediction layer and state-level data to create the second aggregation layer.

We also defined two baselines, Global and Local Mean, to be compared
with our proposal, addressed from now on as Local Meta. Global is the
conventional approach that selects features and fits models favoring global rela-
tionships. Local Mean is an ensemble of contextual models that employs the
average as a fusion function to compose the final predictions. These baselines can
help us understand in which situations Local Meta performs best and explain
how the stacking strategy increases performance and improves generalization.

We investigated two configurations involving the number of spatial con-
texts (K) for Local Mean and Local Meta. The first uses all the contexts
in the training set (K = C), while the second employs the seven closest con-
texts (K = 7) to the prediction area. Note that 7 is the mean of each context’s
neighbors. This configuration, in particular, aims to answer whether filtering
contexts based on the prediction area proximity can enhance results.

Concerning the base regressors, we considered nine belonging to different
machine learning paradigms. Table 1 lists these algorithms and their parameters.
As the meta-regressor for Local Meta, we chose Ordinary Least Squares (OLS)
since it is a simple and parameterless model. We adopted the Correlation-based
Feature Selection (CFS) method to reduce the attribute space. CFS aims to find
a minimal optimal subset of features that are highly correlated with the target
and not very redundant with each other.
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Table 1. Base regressors and their parameters. The acronyms not yet defined are: k -
Nearest Neighbors (kNN), Least Absolute Shrinkage and Selection Operator (LASSO),
Decision Tree (DT), Gradient Boosting DT (GBDT), Multiyear Perceptron (MLP), and
Support Vector Regression (SVR).

Base regressor Parameter Value

kNN Number of nearest neighbors (k) 3

OLS — —

LASSO Regularization strength (α) 1

Ridge Regularization strength (α) 1

ElasticNet Constant that multiplies the penalty terms (α) 1

Mixing parameter (l1 ratio) 0.5

DT Split criterion Gini

GBDT Number of boosted trees to fit (n estimators) 100

Learning rate (ε) 0.1

MLP Hidden layers (h) 1

Hidden layer size (n) M/2

Learning rate (ε) 0.001

SVR Kernel RBF

Gaussian’s width of the radial basis kernel function (σ) 1/(M ∗ X.var())

Regularization parameter (C) 1

Finally, we defined the spatial contexts for the ensemble approaches as the 26
Brazilian states save the Federal District, which has only one city. This decision
comprises the understanding that, at a higher level, stakeholders such as political
scientists and journalists are more interested in analyzing the election results
considering known spatial boundaries like states.

4.3 Evaluation Measures

We assessed the approaches described in Sect. 4.2 using four individual per-
formance measures: Mean Squared Error (MSE), Mean Error Standard Devia-
tion (MESD), SPearman correlation (SP), and SPearman correlation Standard
Deviation (SPSD). MSE expresses the approaches’ performance in predicting
the correct vote-share scale, while MESD reflects their stability regarding MSE.
MSE does not indicate whether the order of the achieved predictions matches
those in the ground truth. That is, if city A received more votes than city B,
MSE does not tell us whether the approaches were able to capture this order.
Thus, we employed SP to assess the order of the predictions yielded by the
approaches. Finally, SPSD provides information on how SP is distributed over
the folds.

We also applied a Multi-Criteria Performance Measure (MCPM) [9] to com-
bine the four metrics mentioned above and thus guide the choice of adequate
approaches. MCPM reflects the sum of the total area of an irregular polygon
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whose vertices comprise individual performance indexes. In this work, lower total
area values indicate better predictive performances. Unlike the MSE and Stan-
dard Deviation measures, in which resulting values must be minimized, SP (ρ)
must be maximized. Hence, we applied the SP complement: 1 − ρ.

To understand the predictive power of our proposal, we employed the SHapley
Additive exPlanation (SHAP) Values technique to analyze the results in the
best and worst fold scenarios [8]. SHAP Values is a unified measure of feature
importance widely used to comprehend predictions made by models. We believe
that examining it within the scope of our application is indispensable, as it can
reveal biased models and avoid misinterpretations. Especially for our approach,
SHAP Values can be employed in the meta and base regressors to explain the
most important spatial contexts to predict a given fold and the most relevant
features of that context.

4.4 Experimental Setup

Figure 2 illustrates our experimental setup, which considers the space’s role in
evaluating models designed to predict election outcomes. As depicted in this
figure, we used the dataset prepared in agreement with Sect. 4.1 (Step 1) to assess
the approaches parameterized according to Sect. 4.2 (Step 2). We applied an
SCV technique, which da Silva et al. [12] explicitly proposed for the application
in question, to estimate the performance of the models (Step 3). We reported
these results via the evaluation metrics described in Sect. 4.3 (Step 4). This
experimental protocol assesses the investigated approaches more rigorously, as
it avoids overoptimistic results by reducing the spatial dependence between test
and training sets. While our multi-criteria analysis compares these models taking
into account two important characteristics – the scale and the order of the vote
shares –, our interpretability analysis is necessary to understand the patterns
found and uncover biased models.

①
2018 Brazilian
election data

SHAP Values1) MSE

2) MESD

3) SP

4) SPSD

MCPM
1

3

24

④
Result assessment

SCV
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Fig. 2. Experimental setup.

The main difference between the SCV adopted in this work and the standard
cross-validation lies in the fold definition so that in the former, the folds are
determined based on preexisting geographic boundaries. Here, each spatial fold
follows the geographic boundaries of the 26 Brazilian states, also employed as
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spatial contexts to build contextual base models in the ensemble approaches.
Unlike the traditional cross-validation, in the SCV, the folds may have different
distributions and sizes, creating a more challenging scenario for the approaches.

This study did not use folds 12 (Acre) and 13 (Rondonia) to calculate MSE
and MSDE values because they present ambiguous distributions [5]; i.e., they
describe a population with similar socio-economic characteristics to the north-
eastern but with vote shares similar to the southern states. This fact requires the
approaches to learn the opposite of what they observed in the training set. Sce-
narios like these are challenging and exhibit incredibly high error rates, impacting
empirical assessments, specifically the choice of the best regressor to compose
Global. We decided to keep the analysis of SP and SPSD on such folds con-
sidering that the raised issue is linked to scale and not to order.

Finally, we implemented the experimental setup of Fig. 2 employing the
Python programming language combined with the following libraries: Pandas,
GeoPandas, SciPy, PySAL, and Scikit-learn. Our code and supplementary mate-
rial are available on the GitHub platform1.

4.5 Results and Discussion

As we can see from the averaged values of the individual performance metrics
(Table 2), Local Meta K = 7 achieved the best MSE and MESD results,
Local Mean K = C presented the highest SP values, and Local Mean K =
7 stood out in terms of SPSD. We obtained all these results using MLP as
a base regressor. However, there was no consensus regarding the best model
configuration – approach and base regressor combination – concerning all the
metrics. To identify the most promising model, we evaluated the configurations
under three perspectives: (i) the MCPM to determine the best overall model;
(ii) the performance per fold to identify the best context-level configuration;
(iii) the model interpretability to understand the best configuration results.

Table 2. Overall results of the approaches considering each base regressor and the
following metrics: MSE, MESD, SP, and SPSD. Green cells symbolize the best results.

Global Local Mean K = All Local Mean K = 7 Local Meta K = All Local Mean K = 7

Base
regressors M

SE

M
E
SD

SP SP
SD

M
SE

M
E
SD

SP SP
SD

M
SE

M
E
SD

SP SP
SD

M
SE

M
E
SD

SP SP
SD

M
SE

M
E
SD

SP SP
SD

kNN 239.68 267.93 0.46 0.16 272.04 187.92 0.58 0.15 303.78 216.51 0.50 0.17 179.50 157.93 0.56 0.17 173.60 162.65 0.51 0.17

OLS 121.81 134.17 0.59 0.15 271.08 197.79 0.60 0.19 219.96 170.12 0.59 0.13 224.67 195.01 0.55 0.20 125.81 141.26 0.57 0.13

LASSO 965.26 465.45 0.02 0.50 949.42 457.43 0.38 0.24 949.24 456.68 0.26 0.24 876.07 405.93 0.35 0.25 837.60 427.85 0.27 0.25

Ridge 304.48 194.94 0.58 0.16 355.77 214.79 0.64 0.12 428.35 247.88 0.62 0.13 124.69 129.78 0.57 0.16 132.77 128.39 0.61 0.14

ElasticNet 964.61 465.43 0.23 0.29 961.42 463.94 0.48 0.27 961.99 464.01 0.36 0.35 299.24 216.62 0.50 0.21 528.13 317.23 0.43 0.34

DT 269.36 355.57 0.32 0.22 223.96 178.53 0.52 0.17 287.03 232.21 0.41 0.19 213.99 189.83 0.48 0.19 230.87 201.68 0.43 0.19

GBDT 171.56 159.91 0.51 0.17 196.32 153.97 0.61 0.16 249.46 186.00 0.56 0.17 159.09 149.73 0.54 0.18 142.39 140.13 0.56 0.18

MLP 133.87 138.18 0.61 0.14 240.22 170.30 0.64 0.13 311.43 207.35 0.62 0.12 127.01 132.60 0.57 0.17 111.22 127.19 0.59 0.14

SVR 243.97 206.58 0.55 0.18 398.58 238.68 0.62 0.14 447.63 261.98 0.59 0.15 168.97 149.09 0.52 0.23 164.13 146.32 0.55 0.18

1 https://github.com/tpinhoda/Spatial Context Stacking Approach.

https://github.com/tpinhoda/Spatial_Context_Stacking_Approach
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Multi-criteria Performance. Figure 3 shows, for each approach configuration,
the MCPM values ranked in descending order of importance. Local Meta K =
7 presented a more consistent behavior occupying the first and second positions
for most configurations, with its lowest position being the third employing DT.
On the other hand, the Global and Local Meta K = C approaches exhibited
high variance across the multi-criteria ranks, indicating a sensibility to the choice
of the base regressor. Furthermore, the ensemble approaches that adopted the
average-based voting strategy (Local Mean K = C and Local Mean K = 7)
yielded the poorest MCPM values, occupying the fourth and fifth positions for
most configurations.

Ordinal
ranking
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0.0887

0.1205

0.1183
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0.6148

0.9194

0.5436 0.0702

0.1183

0.1229
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0.1585
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0.0627
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0.0834
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0.1094

0.1196

0.1432

0.1745

0.0893 Global

Local Mean K = C

Local Mean K = 7

Local Meta  K = C

Local Meta  K = 7

ApproachkNN OLS LASSO Ridge ElasticNet DT GBDT MLP SVR

Fig. 3. MCPM values ranked in descending order of importance for each approach
regarding different base regressors.

To compare our proposal and the baseline approaches with the state-of-the-
art model, we selected their best configurations in terms of base regressors and
arranged their results in Table 3. Local Meta K = 7 achieved the best perfor-
mances in four out of five metrics, including MCPM, and presented the second-
best SP result. Hierarchical GCNN, in turn, presented the worst performance
across all the metrics. We must emphasize that the method had parameter values
following the best results reported in [7], which considered the 2019 Australian
election and the traditional cross-validation. Therefore, the present work did
not apply a fine-tuning step for Hierarchical GCNN since it is not a step
performed in our experimental protocol.

Table 3. Most promising approaches based on overall configuration performances.
Green cells denote the best results.

Approach Base regressor MSE MESD SP SPSD MCPM

Global MLP 133.87114 138.17511 0.5907 0.1531 0.0681

Local Mean K = C GBDT 196.31742 153.97060 0.6090 0.1560 0.0832

Local Mean K = 7 OLS 219.95581 170.12371 0.5850 0.1298 0.0887

Local Meta K = C Ridge 124.69428 129.78054 0.5701 0.1646 0.0702

Local Meta K = 7 MLP 111.22174 127.19046 0.5911 0.1355 0.0573

Hierarchical GCNN GCNN 229.11080 209.11220 0.4917 0.1822 0.1279
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In summary, our approach proved to be more stable against base regressors
from different paradigms than the baselines. Additionally, Local Meta K = 7
configured with MLP culminated in the best overall results compared to the best
configurations of the other approaches.

Performance per Fold. Figure 4 displays the fold-level results of the best-
instantiated approaches indicated in Table 3. The performances are reported
according to MSE, MESD, and SP. We disregard the SPSD metric here since we
cannot produce its values per fold.

Concerning MSE (Fig. 4(a)) and MESD (Fig. 4(b)), Local Meta K = 7
behaved stably over the folds, followed by Global. Local Meta K = 7 also
achieved the best results on most folds, performing exceptionally well in the
northeastern states (samples 21 to 29), where it exhibited the best or second
best MSE and MESD. Folds 17, 31 and 50, for which Local Meta K = 7
was ranked lower regarding MSE, demonstrated close values. Thus, there was
no discrepant difference between the investigated approaches. We observed the
same in folds 16, 17, and 30 concerning MESD.

In terms of SP (Fig. 4(c)), the Global approach obtained better results
than the two variations of our proposal in most folds. However, it was closely
followed by Local Meta K = 7, specifically in the northeastern states (samples
21 to 29). This fact is reinforced by both approaches’ relatively close average
performances (Global: 0.61; Local Meta K = 7: 0.59).

As we can see, the per-fold analysis of the three individual performance mea-
sures corroborates the one guided by MCPM, indicating that the two variations
of our approach perform better than the other baseline models. Our proposal
exhibited better MSE and MESD results than the other approaches. However,
despite presenting lower SP values when compared with Global, the two vari-
ations of our proposal showed close results in most folds and performed better
in some folds from the Southeast and Northeast.

Model Interpretability. Aiming to understand the predictions assigned by the
best approach configuration (Local Meta K = 7 with MLP), we considered
the SHAP Values technique to produce an in-depth interpretability analysis.
We sought to understand the most important context and the most important
relevant features from this context in the best (sample 23 or Maranhão) and
worst (sample 16 or Amapá) folds regarding MSE. Figures 5 and 6 comprise
four plots. The first is the actual vote share distribution, while the second is
the predicted distribution. The third concerns the feature importance given by
the meta-regressor for each spatial context when predicting the fold. The fourth
and last plot presents the top-five most relevant features according to the base
regressor fitted to the most important context. Besides, Tables 4 and 5 list the
top-five most important features of Figs. 5 and 6, respectively.

Concerning the best-case scenario (Fig. 5), our approach predicted vote shares
slightly above the actual values, observed by the number of dark regions in the
prediction map in relation to the ground-truth map. The meta-regressor chose



652 T. P. da Silva et al.

(a) MSE per fold

(b) MESD per fold

(c) SP per fold

Fig. 4. Metrics per fold coming from the approaches whose configurations were con-
sidered the best by MCPM.

the geographic context 15 (Amazonas) as the most important, and the most
relevant feature from context 15 was PessoaRenda V045. The selection of Ama-
zonas as the most important context to predict the vote shares in Maranhão is
coherent since both states present similar vote shares and related socio-economic
characteristics. We should note that the first and third most relevant features
from context 15 describe the women with income per capita less than half of the
minimum wage (Table 4). This result is in line with research that points to the
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Map Distributions Shap Values

Fig. 5. Vote share distribution and SHAP Values for the best-case scenario (fold 23)
in terms of Local Meta K = 7 with MLP. The plots cover, from left to right, the
following information: (a.1) actual vote share distribution, (a.2) predicted vote share
distribution, (b.1) feature importance given by the meta-regressor for each spatial
context, and (b.2) top-five most relevant features according to the base regressor fitted
to the most important context (sample 15). The feature names are presented in the
same order as in Table 4.

relationship between low-income women and lower votes for the winning party
in the 2018 Brazilian presidential election [6,10]. The remaining characteristics
still need to be carefully analyzed to verify if they are proxies for other known
related features such as poverty (Domicilio02 V057 and Domicilio02 V052)
or a local relationship (Entorno05 V977).

Table 4. Top-five features from the most important context in the best-case sce-
nario (fold 23).

Feature Description

PessoaRenda V045 Women over ten years with a nominal monthly income of up
to half minimum wage

Domicilio02 V057 Men living in permanent private households with water
supply from a well or spring on the property

ResplRenda V055 Total nominal monthly income of responsible women with a
nominal monthly income of up to 1/2 minimum wage

Domicilio02 V052 Men residing in rented permanent private homes

Entorno05 V977 Asian residents in permanent private homes with street
lighting

In the worst-case scenario (Fig. 6), our approach predicted much higher vote
shares than the ground truth, especially in the northern region. The meta-
regressor chose context 24 (Rio Grande do Norte) as the most important, and
the most relevant feature from context 24 was Entorno04 V490 followed close by
Domicilio02 V040. The selection of Rio Grande do Norte as the most impor-
tant context to predict the vote shares in Amapá was not a good decision,
given the high error rates. Its features were insufficient to provide a good per-
formance and cannot deliver insights into Amapá’s voting results. We can see
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from Table 5 that most of the top-five relevant features describe particularities
related to rural regions of context 24. These proprieties may not be observed in
fold 16 or present a different relationship with the target, causing the approach
performance to deteriorate.

Map Distributions Shap Values

Fig. 6. Vote share distribution and SHAP Values for the worst-case scenario (fold 16)
in terms of Local Meta K = 7 with MLP. The plots cover, from left to right, the
following information: (a.1) actual vote share distribution, (a.2) predicted vote share
distribution, (b.1) feature importance given by the meta-regressor for each spatial
context, and (b.2) top-five most relevant features according to the base regressor fitted
to the most important context (sample 24). The feature names are presented in the
same order as in Table 5.

Despite the challenge in modeling local relationships from socio-economic
and election data, the in-depth assessment of SHAP Values indicated that our
proposal is intelligible and, at best, predictions are based on coherent features
that can aid in understanding electoral outcomes.

Table 5. Top-five features from the most important context in the worst-case sce-
nario (fold 16).

Feature Description

Entorno03 V490 Number of residents in private households without permanent
public lighting with a well or spring on the property

Domicilio02 V040 Residents in permanent private households with electricity
from other sources

Domicilio01 V026 Permanent private homes with two bathrooms for the
exclusive use of residents

Domicilio01 V162 Permanent private dwellings, such as village houses or
condominiums, without a bathroom for the exclusive use of
residents

Entorno04 V730 Residents without nominal monthly household income per
capita in permanent private households without sidewalks



Stacking Learning for Election Prediction from Socio-economic Data 655

5 Conclusion

This work proposed a geographic context-based stacking learning approach to
predict election outcomes using socio-economic features. Our model is built in
levels and dynamically selects contexts according to a data sample we want to
predict. This modeling allows the generation of more realistic descriptive models
whose relationships enable a more accurate understanding of voting behavior.
We also introduced a spatial cross-validation-driven experimental setup to fairly
assess and compare geographically contextualized approaches. Despite the chal-
lenging nature of the problem, by considering the second round of the 2018
Brazilian presidential election, our proposal experimentally showed promising
results, including intelligible and coherent predictions in the best-case scenario
and stable performance over the remaining folds compared with the reference
models.

However, there is still room for further improvement. Our approach does not
deal with ambiguous distributions, an aspect that often appears in modeling
voting behavior. Furthermore, this paper was restricted to analyzing a single
dataset, and studies with other election databases may be beneficial. Sophisti-
cated machine learning methods such as Graph Neural Networks should also be
better evaluated as they have shown satisfactory results for spatial data.
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