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Preface

People rely on a skill commonly referred to as theory of mind (ToM) to infer the mental
states, e.g. beliefs, of others. It is widely believed that ToM inference is a key element to
the alchemy that humans employ when they make predictions about other agents. Crit-
ically, ToM inferences, as well as the associated models and predictions, can become
extremely complex when made in team settings. This is particularly true when a human
must form n-level beliefs about other agents and their interactions. Extensive research
posits that high-performing teams naturally align key aspects of their individual models,
including social models based on ToM, to create shared mental models of their environ-
ment, equipment, strategies, and, of course, the relevant agents. Thus, ToMand the ability
to create shared mental models are key elements of human social intelligence. Together,
these two skills may form the basis for human collaboration at all scales, whether the
setting is a playing field or a military mission. It follows that artificial intelligence-based
machineswould benefit from the ability tomodel humanToMand sharedmentalmodels.

Artificial intelligence (AI) technologies have made little progress in understanding
the most important component of the environments in which they operate: humans. This
lack of understanding stymies efforts to create safe, efficient, and productive human-
machine teams. This volume curates state-of-the-art, peer-reviewed research from com-
puter science, cognitive science, and social science examining the development of arti-
ficial intelligence systems capable of theory of mind, exhibiting social intelligence, and
using these skills in human-machine teams—i.e. artificial social intelligence (ASI).
TOM for Teams 2021 received 22 submissions. Each submission received a minimum
of three reviews in a single-blind peer reviewprocess. In the end, 11 paperswere accepted
for publication withminor revisions (50%) and 9 accepted withmajor revisions (40.9%);
in total, 14 papers completed the review process and were included in this volume. The
2021 edition of this conference was held as an virtual event.

Section I: Theory of Mind

Theory of mind (ToM) is a term used to reference the ability to infer the mental states,
that is, beliefs, desires, emotions, etc., of others and then use those inferences for other
cognitive purposes. Modern efforts to understand the phenomenon are commonly traced
back to seminal work in the social lives of primates [3] (which is where the term theory of
mind took hold) and how situational features influence social perception [2]. That does
not mean the idea is a modern invention. The idea that others have distinct minds that we
can perceive and use as information is littered throughout philosophy: Descartes tried
to establish a mind-body distinction for this purpose during the Renaissance, Plato used
the horses and chariot analogy in the Phaedrus to describe conflicting internal drives and
how they influence people, and the ancient Buddhist philosopher Vasubandhu described
the basic factors of experience and behavior in an effort to uncover the internal states of
others.
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The first section of this volume presents foundational surveys that provide impor-
tant background on computational ToM. Modern theories about ToM are reviewed in
the chapter Operationalizing Theories of Theory of Mind: A Survey, which discusses
competing theories, their implementation in computational agents, and what computer
scientists and psychologists can collectively learn from doing so. The chapter Knowl-
edge of Self and Other Within a Broader Commonsense Setting digs deeper with a look
at the knowledge representations and reasoning abilities that an agent in a team needs in
order for it to have ToM. The last chapter in this section, Constructivist Approaches for
Computational Emotions: A Systematic Survey, introduces readers to three approaches
to modeling emotions, a core element of ToM, and their representation in the affective
computing literature.

Section II: Methodological Advances

As important as clarifying what is being studied is establishing best practices for how
it is studied. Studying how people interact with intelligent machines has a rich, storied
history. One of the earliest and most famous examples paired people with a natural
language processing program, ELIZA, which ran a script that simulated a Rogerian
psychotherapist (it simply parroted what people said) [4]. Not only did people believe
that the program was intelligent, they anthropomorphized it. Joseph Weizenbaum, the
author of the program, reflecting on it in the introduction to his book said [5]:

I was startled to see how quickly and how very deeply people conversing with
[ELIZA] became emotionally involved with the computer and how unequivocally
they anthropomorphized it.

It seemed to him that people were forming an emotional relationship with the
machine, treating it as if it had a mind and understood their plight—i.e. they assumed it
was an ASI.

In the half century since Weizenbaum created ELIZA and Premack and Woodruff
popularized the termToM, vast amounts of effort has gone into developing artificial intel-
ligence and improving our understanding of social cognition. Section II opens up with
Social Cognition Paradigms ex Machinas, which surveys experimental methods from
psychology and cognitive science and translates them for AI-settings. This survey is fol-
lowed by four chapters, each introducing a state-of-the-art technology for studying and
developing ASI. Evaluating Artificial Social Intelligence in an Urban Search and Res-
cue Task Environment introduces a simulated USAR testbed, data from teams of human
participants performing search and rescue tasks, and evaluation of ASIs performing post
hoc interpretation of the data. The next chapter, Modular Procedural Generation for
Voxel Maps, introduces a new technology developed to drastically simplify the creation
of virtual environments, such as the one in the preceding chapter, while ensuring that the
environment is readily processed by artificial intelligence. An important question when
developing new methods and approaches to studying any teaming task, but particularly
human-machine ones, is what role does task complexity play? Task Complexity and Per-
formance in Individuals and GroupsWithout Communication asks this question and pro-
vides relevant, guiding insights to the ASI research community. The section closes with
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Development of Emergent Leadership Measurement: Implications for Human-Machine
Teams, which tackles one of the biggest challenges inASI development: digesting natural
language and using it to identify emergent roles in human-machine teams.

Section III: Translating and Modeling Human Theory of Mind
for ASI

This section presents work addressing the meat of the topic: endowing ASI with human-
like social intelligence. This is no small task, if for no other reason because there is
considerable disagreement in the cognitive science community about what exactly is
ToM [1]. A perusal of the first two sections underscores this reality.

Each chapter in this section tackles a different aspect of AI representing the thoughts
and beliefs of human agents. The section opens with Should Agents Have Two Systems to
Track Beliefs and Belief-Like States?, which posits a new take on how to achieve human-
like ToM without relying on a complex, dual-system model (one system being efficient
but inflexible, the other cumbersome and flexible). The next chapter, Sequential Theory
of Mind Modeling in Team Search and Rescue Tasks, introduces a state-of-the-art com-
putational model for ASI that is capable of inferring ToM states from natural language.
One of the biggest challenges faced by ASI researchers is staying true to the cognitive
models of ToM while using the best technology available: Integrating Machine Learn-
ing and Cognitive Modeling of Decision Making demonstrates that a hybrid approach to
modeling ToM, which implements both cognitive models and machine learning models,
is not only feasible, but capable and efficient. The section wraps up with Overgenerality
from Inference in Perspective-Taking, which establishes important perspective taking
boundaries for computational ToM.

Section IV: Tools for Improving ASI

This volume closes with two chapters introducing state-of-the-art approaches to achiev-
ing human-level skills that are essential to ToM capabilities. Using Features at Multiple
Temporal and Spatial Resolutions to Predict Human Behavior in Real Time shows that
integrating a low-resolution approach to data interpretation along with the typical high-
resolution approach can produce significant prediction accuracy (i.e., better ToM). The
closing chapter, Route Optimization in Service of a Search and Rescue Artificial Social
Intelligence Agent, presents a state-of-the-art learning pipeline designed to aid ASI in
understanding its environment. Specifically, it empowers the ASI to assess the quality
of routes that a person may follow in an environment which the ASI can later use in
reasoning about the person’s beliefs about the task and environment.

Closing Remarks

The mental representations that we maintain of what is happening in the minds of
others is a core aspect of human cognition. As set out in the opening chapter of this
volume, the scientific community has yet to fully describe this very human experience
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or replicate it in machines. Doing so is, arguably, one of the tallest hurdles along the
path to artificial general intelligence. The authors represented in this volume also hold a
strong conviction that ASI is a critical element to helping humans more fully accept and
integrate computational agents into teams as well as their lives more generally. The work
presented herein represents our collective efforts to better understand ToM, develop AI
with ToM capabilities (ASI), and study how to integrate such systems into human teams.

Acknowledgements Part of the effort depicted is sponsored by the Defense Advanced
Research Projects Agency (DARPA) under contract number W911NF2010011, and that
the content of the information does not necessarily reflect the position or the policy of
the US Government or the Defense Advanced Research Projects Agency, and no official
endorsements should be inferred.
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Operationalizing Theories of Theory
of Mind: A Survey
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3 Northeastern University Khoury College of Computer Sciences, Boston, USA
s.marsella@northeastern.edu

Abstract. Human social interaction hinges on the ability to interpret
and predict the actions of others. The most valuable explanatory variable
of these actions, more important than environmental or social factors, is
the one that we do not have direct access to: the mind. This lack of access
leaves us to impute the mental states—beliefs, desires, emotions, inten-
tions, etc.—of others before we can explain their behaviors. Studying
our ability to do so, our Theory of Mind, has long been the province of
psychologists and philosophers. Computational scientists are increasingly
joining this research space as they strive to imbue artificial intelligences
with human-like characteristics. We provide a high-level review of The-
ory of Mind research across several domains, with the goal of mapping
between theory and recursive agent models. We illustrate this mapping
using a specific recursive agent architecture, PsychSim, and discuss how
it addresses many of the open issues in Theory of Mind research by
enforcing a set of minimal requirements.

Keywords: Artificial social intelligence · Theory of mind ·
Human-machine teams

1 Introduction

Our goal is to communicate to you a set of propositional attitudes (cognitive
states such as beliefs or desires) related to developing an artificial intelligence
helper agent (AI helper). Philosophers and psychologists have long posited that
such communication requires knowing the mental states of both the listener and
oneself. As convenient as it would be, we do not have direct access to your mental
states nor our own. This means that if our goal is to communicate our position

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Gurney and G. Sukthankar (Eds.): AAAI-FSS 2021, LNCS 13775, pp. 3–20, 2022.
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effectively (it is) we must impute these states. The capacity to do so is commonly
known as Theory of Mind (ToM; [63]).1

Imagine that we were slightly more intrepid authors who thought it would
be easier to enlist an AI helper to author our manuscript. The fundamental
communication problem, that of understanding the mental states of its readers
and the author team, would persist for the AI helper. Moreover, we believe that
it is reasonable to assume that access to its own mental states would make the
AI helper better at its task (because then it could consider how its beliefs about
you or us might factor into its work). When the helper explains a technical term,
for example, it may want to assess the accuracy of its belief of your degree of
belief that it has accurately depicted the term. In other words, the AI helper
needs a ToM.

We are academics and as such it behooves us to share our opinions. It is
only natural then that we would not just turn the AI helper loose and accept
whatever it produced. We undoubtedly would find ways to insert ourselves into
its process, to team with it as a sort of human-AI collective intelligence [33], in
hopes of producing a high quality paper that reflects our positions. The success of
our human-AI team largely hinges on trust [6,35,81,82]. For the human members
of our team, trust is grounded in our assessment of the AI’s abilities—critically,
its level of intelligence [22]. Again, we believe that a robust theory of mind, in
this instance for its human teammates, will facilitate the AI’s success. Herein
we review a subset of the vast literature on human social cognition, specifically
focusing on ToM, and discuss implementation of myriad theories and models
in such an AI helper using PsychSim, a recursive agent architecture. Critically,
the PsychSim implementation enforces a set of minimal requirements that we
believe reveals the strengths and weaknesses of different ToM theories.

2 PsychSim

This basic description of a PsychSim agent and its machinery will serve as a
framework for comparing ToM theories. PsychSim is a social simulation plat-
form with the capacity to implement psychologically valid theories of human
behavior [66]. It uses a recursive architecture, meaning that it applies the same
rules repeatedly to generate outputs [24]. Each agent in a PsychSim simulation
possesses a fully specified decision-theoretic model, i.e. model of choices based
on a utility framework, of itself and the other agents in its environment. Most
importantly, the platform readily facilitates modeling beliefs, including those
related to ToM [53]. A PsychSim-based AI helper thus has a model of itself,
for each of its teammates, and potentially for the team holistically which it can
use to simulate different scenarios and base recommendations on, just like our
hypothetical paper mill agent.
1 This name is somewhat fraught due to its implication that the development of an

explicit theory is part of the underlying cognitive process. Adding to the confusion,
cognitive and computational scientists often refer to how researchers have a theory of
mind about how the mind works [59]. We adopt it, nevertheless, due to its universal
recognition.
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The minimal requirements for creating an AI helper with ToM using a recur-
sive agent architecture, such as PsychSim, are:

(i) A framework for inferring beliefs, from observations, about others.
(ii) A means of translating these beliefs into predictions about behaviors.
(iii) A way of handling higher order reasoning (you believe that he believes that

she believes...).

Partially observable Markov decision processes (POMDPs) are the backbone of
PsychSim and fill each of these requirements. The POMDP framework posits
that an agent assumes system variables, such as other agents, follow stochastic
processes (MDPs) which it cannot fully observe. MDPs are characterized by a
set of states, actions, probabilities of given actions for each state, and rewards
associated with arriving in particular states. The task of an agent in an environ-
ment modeled by an MDP is simply observing the current state and potential
rewards of each available action then selecting the best option given the data.
States are not directly observable in the partially observable generalization of
MDPs, so the agent must gather outcome information. The agent maintains
models of itself and the other agents that it updates based on this information
to overcome the observability obstacle. Similar to the use of recursive models in
interactive POMDPs (I-POMDPs) [23], these models take the form of probabil-
ity distributions for its observations given the state of the system and models of
the stochastic processes followed by the agents in the system. The POMDPs of
an agent generally rely on utility-based functions to model behavior.

3 Theories About Theory of Mind

Humans gather, process, and create information about the actions of other
agents in their environment—a set of information processing behaviors collec-
tively called social cognition [15]. Like most domains of human cognition, that
is where the consensus on social cognition ends and debate begins. In the case
of ToM, which is widely considered a subdomain of social cognition, there are
at least three theoretical explanations of human ToM: theory, simulation theory,
and more recently, arguments for social cognition without ToM. Recursive agent
models, including PsychSim, share many features with all of these explanations.

A set of minimal requirements for ToM reasoning will help illustrate the
strengths and weaknesses of each theoretical position as well as clarify the
approaches that recursive agent models take. It is our argument that the three
requirements of developing a recursive agent architecture that we enumerated
above can also serve as coarse but critical requirements for ToM theories.

3.1 Theory-Theory

Modern inquiry into how humans think about and represent the mental states
of others is frequently traced back to Heider and Simmel’s [37] famous geo-
metric shapes experiment. The basic paradigm involves participants watching
interacting geometric shapes and reporting what they saw. In a classic scene,
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three shapes move around the screen. One shape quickly moves towards another
shape while a third shape later moves in between them. This ground breaking
experiment revealed that participants, almost universally, ascribed agency to
the shapes. For example, participants said that the above scenario depicted an
aggressor, victim, and third party who intervened to stop the aggression (Fig. 1).

Fig. 1. The three minimal requirements of implementing ToM reasoning in a PsychSim
agent and our subjective assessment of where major ToM theories fall in the space of
these requirements. We argue that these requirements are also applicable to actual
ToM reasoning and can serve as a means of evaluating theories and models.

Although Heider faltered in arguing that such abilities result from direct
access to our own internal mental states [36], his work with Simmel precipi-
tated the first recognizable version of theory-theory from the philosopher Wil-
fred Sellars [73]. Sellars took the position that we develop, via experiences and
enculturation, a naive theory to explain the mental states of our peers. In other
words, we function as lay scientists developing and testing tacit theories about
our social world based on input from the people around us, social observations,
and even rudimentary experimentation. This position would eventually come to
be known as theory-theory and finds most of its empirical support in adaptions
of Wimmer and Perner’s false belief task [83].2

2 The false belief task has proven extremely productive for the scientific community.
Review of experimental methods is not in the scope of this paper, however it is
worth noting that the false belief task and the empirical designs that followed in its
footsteps likely have numerous flaws [5,38,67,80].
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The conceptual account of theory-theory maps relatively cleanly to a Psy-
chSim agent. As will become clear, PsychSim offers a formalization of ToM
requirements i and ii where theory-theorists do not. Using the lay scientist anal-
ogy, the PsychSim agent’s research methods, or the ways in which it formalizes
and answers hypotheses, are POMDPs. A PsychSim agent typically assumes that
other agents in its environment are using POMDPs for their decision-making as
well. Each time a PsychSim agent makes an observation, it updates it beliefs
about how the agents and environment work. In the case of agents, it assumes
that they are trying to maximize their utility. This renders the accuracy of its
model, which determines its ability to predict how another agent will respond to
a stimulus, contingent on its prior experiences. Importantly, any interpretation
it makes of a person’s behavior is thus circumscribed to be goal-driven via the
maximization of some utility function. Even if the observed behavior is gener-
ated by an arbitrary stochastic process, the PsychSim agent will form posterior
beliefs over a candidate set of POMDPs based on how well their corresponding
behaviors would match the observed behavior.

Child-Scientists. The child-scientist theory for ToM development is arguably
the truest to Sellars’ original vision and the most common among theory-theorist.
Like many scientific perspectives, it started as an analogy to better understand
how humans might develop the ability to represent others’ minds. Its most ardent
supporters, however, take it beyond the analogical insights and argue that phi-
losophy of science’s theory development processes are actual blueprints for how
cognition transpires [27,30,44,62]. Theories are viewed as systems that assign
specific representations to inputs, similar to how the visual system assigns rep-
resentations to input. These systems are not rigid, particularly in early devel-
opment. Just like a young child refines her interpretation of visual input from
a single representation for fuzzy, four-legged creatures (dog) to a multitude of
representations (cat, horse, sheep, etc.), she refines her representations for the
various processes that underpin the behavior of agents in her social world.

Proponents of the child-scientist view generally subscribe to one of two expla-
nations for the brain’s ToM mechanism: a general purpose (domain-general) or
modular (domain-specific) learning mechanism. The child-scientist perspective
adopts the former, i.e. there is a generalized psychological structure that sup-
ports learning across domains. This general purpose learning mechanism is sup-
ported by a suite of reflexes, or cognitive capabilities, that are present from
birth [29]. Together, the learning mechanism and reflexes exploit sensorimotor
interactions with the environment to form theories, or models, of how the world
works. These theories empower a child to not only understand her environment,
but also solve increasingly complex prediction problems, including those that
are classically social. The Bayesian flavor of all this is no fluke. Formalizations
of domain-general mechanisms frequently take Bayesian forms [18,28,52].

Theory theorists can readily handle our requirement iii. A lay ToM scientist
trying to workout higher-order beliefs simply needs to establish a hypothesis, test
it, and update accordingly. The testing can even happen in situ by imagining
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various outcomes given a set of beliefs. Items i and ii present bigger challenges.
The child-scientist approach is to assume that ToM is handled by a learning
mechanism used in other types of learning, like the statistical learning mechanism
proposed for vision and audition [43]. There is reasonable evidence that suggests
domain-general mechanisms support ToM reasoning. For example, when a person
is under cognitive load their performance in social reasoning tasks may decrease
[54]. This is, of course, only correlational and not causal.

The PsychSim agent uses maximum expected utility as its domain-
independent theory of reasoning, one that also acts as a constraint on its theory
of others. Within that constraint, it is free to choose an arbitrary set of (possibly
recursive) POMDPs as its model of those others. Like a developing human, it
is possible to specify a PsychSim agent that starts with a small set of simple
(e.g., short horizon, few goals) POMDPs. These are analogous to the child’s the-
ories for how the world works. Experience allows it to continually expand that
set when none of its current candidates satisfactorily explain its experiences in
social interaction.

Modular Theory. Cognitive modularity suggests that the brain has a fixed
architecture. One perspective argues that this structure limits the flow and pro-
cessing of information. The edges of modules, or regions, in the brain function as
filters that can be uni- or bi-directional. That is, some of the information inside
the module may not be available outside or vice versa [16]. Although theorists
conceptualize the modules as rigid units, they generally offer a bit of hand wav-
ing when pressed on the actual degree of modularity [16,71]. The alternative
view of modularity is knowledge-centric, meaning that rather than the brain
having distinct modules for processing information, they store it. This allows for
flexible skill and belief systems to process across these core systems of object
representation [77]. Modular explanations for ToM generally adopt the former
position and posit a distinct functional system in the brain which comes online
during childhood development [47,48,50,71].

Alan Leslie’s Theory of Mind Mechanism/Selection Processing is arguably
the dominant modular explanation [46,47,49,72]. Leslie and colleagues argue
that ToM is innate and that there is a unique mechanism which yields rep-
resentations solely for related reasoning. This mechanism, much like puberty,
is genetically present (innate) and activated by environmental factors. They do
not, however, argue that this mechanism is responsible for all ToM abilities—just
that it has a specific innate basis and a function unique to ToM reasoning. The
mechanism part of the theory stipulates that the ToM module automatically
processes perceptual information about behaviors and computes what mental
states may have produced them. Because this process is algorithmic and spon-
taneous, it is prone to errors, be they from biased learning or learned heuristics.
This necessitates a supplemental, executive system that overrides the module’s
salient outputs when they are unwanted. In the case of a false belief task, the
mechanism yields a true belief about the state of the world (the actual location
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of the hidden object). The selection processing overrides this belief to yield an
accurate ToM for the target (who has a false belief about the object location).

Modular theorists attempt a more direct approach to meeting requirements
ii and iii than their child-scientists counterparts, but stop short of pointing to an
actual module in the brain that handles inference (i) or prediction (ii). The ToM
module handles belief inference and the translation of these beliefs into predic-
tions, both of which can be exported to other regions of the brain for various
purposes. Unlike vision or audition researchers, however, modular theorists offer
inconclusive evidence for where in the brain the module exists and about the
algorithmic way in which perceptual information about behaviors is processed
[70].

Most recursive agent models are modular, in an information processing sense,
by default. PsychSim encapsulate the models of different agents and at differ-
ent recursive depths so that information cannot flow between the models except
along edges in the corresponding influence diagram. This means that a unique
model exists for processing information about each agent and these models out-
put information that flows between them to account for their interactions. Fur-
thermore, while both the agent’s decision-making and its ToM models of others
use the same decision-theoretic algorithms, there are typically computational
shortcuts taken in the ToM models that are not used for the agent’s own more
thorough reasoning. For example, PsychSim ToM POMDPs are usually more
abstract than the actual POMDPs used for behavior generation. This abstrac-
tion can be achieved by removing variables from the POMDP that have limited
or no influence on the modeling agent’s utility [64]. Removing these variables,
however, does introduce uncertainty. PsychSim usually handles this by imple-
menting a softmax, instead of strict maximization function, which is more for-
giving of any errors that may result of the uncertainty. The resulting POMDP
is smaller (and thus faster) than the original.

3.2 Simulation Theory

In its simplest form, simulation theory says that we understand and predict
the mental states of others by trying to simulate them within ourselves [31].
This yields a very straightforward means of achieving ToM: repurposing the
psychological machinery used for our own cognition to gain insight into the
cognition of others. Doing so implies a two part process: first, generate imaginary
mental states that correspond to the target’s mental states, and second, feed
those mental states into the appropriate mechanism(s) to generate an output.
The simulator is thus capable of producing feasible explanations of behavior
whenever they make decisions in a manner roughly similar to the target [25].
Simulation theorists argue that this yields a much more efficient ToM than any
proposed by theory-theorists.

Theory-theory is constrained by high-level reasoning: the need to actively
think about the cognitive state of another person to test and validate a naive
theory about their every behavior is likely intractable for humans. Because of
this, theory-theory is a poor candidate for explaining the seemingly automatic
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human capacity for detecting subtle social cues. If we had to stop to ponder on
the expression of emotions, like a slight twitch in the face that is indicative of
anger, we would frequently find ourselves in grave danger. Simulation theorist
argue, however, that it is very capable of explaining low-level phenomena, like
automatic detection of a fear response in another person. It is plausible that
mirror neurons are the basis for this capability [19], but the evidence for mirror
neurons in humans is largely inferred rather than observed. Invasive procedures
are necessary to observe mirror neurons, which is why the vast majority of studies
reporting on them appear in the animal literature [69], save a single notable
example in humans [58].

It is very plausible that ToM involves two (or more) distinct systems, pos-
sibly both theory-theory and simulation theory processes [1,12,25,39,51,56,61].
Goldman [25], for example, suggests that theorizing might play an important,
even dominant, role in “high-level mind reading,” which he defines as imagina-
tive simulation that is conscious, actively controlled imputation of others’ men-
tal states. This supplements unconscious, simulation-based mind reading that
handles simple mental states (e.g. detecting emotional states such as fear from
facial expressions). Heyes and Frith [39] adopt the terms implicit and explicit
to describe neurocognitively inherited and enculturated skills respectively. The
implicit mechanisms are present from birth and play a vital role in formulating
accurate expectations about the behavior of agents. Further, they accept that
the outputs of an implicit system may inform the explicit system by preprocess-
ing observed behavior in a way that facilitates categorization. They make clear,
however, that they do not believe this to be sufficient for the sort of complex
ToM observed in mature humans.

Whereas theory-theory explanations are vague about the mechanism that
handles inferences, requirement i, simulation theory is much more direct: the
mechanisms that we use for our own behavior are repurposed for ToM. Predic-
tions about behavior then become a simple task of running the belief outputs
through the same system that determines our behavior. This account implies
that we can, in a sense, re-enter the machinery we use for our own cognition.
Before the discovery of mirror neurons this was pure speculation, and to a large
extent it still is given the lack of human evidence related to mirror neurons.

Unlike a human, there is a clear way for a PsychSim agent to re-enter the
machinery that it uses to understand its social world. PsychSim agents explicitly
use their POMDP models of others to generate expectations of their behavior. In
particular, they apply their own POMDP solution algorithms to the variables,
graph structures, and parameters they (possibly incorrectly) ascribe to others’
POMDPs. An agent will use this capability to simulate the outcomes of each
of its alternate actions, evaluating those outcomes against their utility function,
and choosing the behavior that maximizes that expectation. It will also use this
simulation capability to evaluate alternate explanations of observed behaviors
in terms of their likelihood, which in turn causes its update its belief in those
explanations.
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3.3 First-Person ToM and Introspection

Both theory-theory and simulation theory posit that first-person ToM plays an
important role in our social capabilities [25,26]. There is division, however, over
whether we have direct access to our internal states to make use of during first-
person ToM reasoning. Gopnik [26] argues that even though people may believe
their first-person knowledge is derived from experience, it actually comes from
the same theory of mind system that explains the behaviors of other agents.
This is because, as she argues, we lack direct access to the psychological process
underlying out own behavior. Goldman [25], on the other hand, claims that we do
have direct access to the psychological processes behind our behaviors. Moreover,
it is his position that first-person theory of mind development precedes and is
necessary for third-person abilities. An alternative simulation account is that
ToM always has a “target” agent and the simulation is the same whether it is
first or third person, implying that there is no direct access to internal mental
states [32].

PsychSim is equipped to do all the above. First, it has two mechanisms for an
agent to reason about its own behavior: via direct access to its “true” POMDP,
or via a perceived POMDP. The latter may deviate from the former, just as
its POMDP models of others can deviate from their true models. It is agnostic,
however, about the timing of when a first-person ToM comes online. In theory, it
could be inhibited or prioritized, but PsychSim implementations generally have
everything happen simultaneously.

3.4 Social Cognition Without ToM

There are numerous, defensible explanations of how humans anticipate and
respond to other agents that do not involve any of the classic ToM processes.
Game Theory supplies many examples and one of the most recognizable: the
tit-for-tat strategy [2,68]. An agent who uses this strategy in a social interaction
first cooperates and then in every subsequent interaction simply replicates the
behavior of the other agent(s). The tit-for-tat model of behavior easily explains
complex human behavior, such as reciprocal altruism [9,79], without appealing
to complex ToM processes. Economic theorists have posited rich social behav-
iors, including cooperation, emerge from learned and automated rules, i.e. social
norm heuristics [8,13]. Such heuristics may circumvent the need for deliberate
self constraint—which would need to emerge from ToM reasoning—when an
agent faces no risks from taking advantage of another agent [21,57].

Other behaviors are executed according to what psychologist call scripts [7]
and artificial intelligence researchers call frames [55]. A script (frame) includes
a set of elements, descriptions of what those elements can do, outcomes given
combinations of the various elements, and is composed of scenes. Walking into
a corner market, picking up a package of candy, and paying for it at the register
can all happen without explicit ToM when a script is in place. You do not have
to reason about the attendant wanting money from you in exchange for your
snack—the script dictates all the necessary behaviors for the social interaction.
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While POMDPs are the core part of PsychSim’s base architecture, there are
occasions where it has been convenient to bypass decision-theoretic reasoning
altogether and directly encode an agent’s policy. The form of this policy is a
piecewise-linear decision tree. It can capture behaviors that are reminiscent of
ToM, but do not require the complete machinery. Although these sort of policies
are closer in spirit to frames, they are conceptually the same thing as a script
and can be implemented in recursive agents when warranted [65].

4 Modeling Theory of Mind

A complete model of ToM reasoning will have a framework for inferring beliefs
about others, a way to translate those beliefs into predictions, and the capac-
ity to handle higher order reasoning. Researchers have formalized the proposed
theoretical structures of ToM in a diversity of ways. Many models are grounded
in paradigms with rich histories in computational research including reinforce-
ment learning (RL), partially observable Markov decision processes (POMDPs),
utility maximization, and Bayesian inference. Additionally, modelers take both-
model based and model-free approaches [17,20,40]. Model-based approaches are
prospective, meaning that they assume a goal and active cognition, often referred
to as system II thinking [41]. Model-free approaches, on the other hand, are ret-
rospective and capable of capturing habitual cognition, i.e. Kahneman’s system
I thinking. Each modeling approach comes packaged with a suite of benefits and
laundry list of short comings that effect its ability to capture the nuances of
ToM reasoning. Moreover, there are costs and benefits when implementing the
myriad models in an AI helper. The shortlist of exemplars included here is far
from exhaustive, but we believe each merits consideration when designing AI
helpers for human-machine teams.

4.1 Bayesian Inference

Bayesian approaches to ToM often conceptualize the observing agent as form-
ing a hypothesis about the target’s behavior. This hypothesis is evaluated given
observable data and under the constraints of an underlying theory of behavior
in a very theory-theory fashion [3,4,28,78]. This allows for ToM to be cast as an
inverse planning and inference task. When a person observes another’s actions,
she answers the ToM problem (implicitly) by assuming that the other person
made the decision based on data, that likely includes beliefs, and according to
some model of how to act in the world which approximates rationality. Next
she attempts to invert this model of how to act by applying Bayesian inference:
integrate the likelihood of her observations with a prior over mental states. The
output becomes her ToM for the other’s behavior. In one computational exam-
ple of this, a target agent’s plans and inferences are formalized as POMDPs
that capture propositional attitudes (e.g. desires and beliefs) via utility func-
tions and probability distributions respectively [4]. The target is assumed to be
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approximately rational, i.e. the target is utility maximizing. Inverting the tar-
get’s forward model using Bayesian inference yields the observer’s ToM model
of the target.

Bayesian models of ToM not only offer a handy way of operationalizing an
opaque set of cognitive processes, they also facilitate other important capabilities
for adaptive agents. For example, if an observer has reason to believe that a
target is knowledgeable, then she can adapt the Bayesian process used for ToM
reasoning to learn how to act or refine her beliefs [74]. Or, if an observer is
observing a group of targets, rather than attempting to compute a ToM for
each target, she can adopt a model that represents the “average” member of the
group and rely on it to make inferences and predictions about how the individuals
within the group may act [42]. Importantly, the same Bayesian machinery used to
model basic social cognitive processes can be used in modeling affective cognition
[14,60].

POMDPs are one of the most common means of capturing the prior-
observation-update-posterior belief pipeline of reasoning depicted by Bayesian
ToM theories. One of the earliest examples of a Bayesian theory of mind also
used a POMDP-based architecture [75]. And, as we have explictly noted, this is
what PsychSim implements for its agent models.

4.2 Game Theory and Economics

Economists use game theory to model how economic agents think about and
respond to the mental states of others [11]. For a given model, the “game” is
captured by a mathematical description of the strategies and associated payoffs
available to each agent. Games often have multiple stages during which agents
choose actions to execute from a limited set, can be competitive or coopera-
tive, and range in length from a single shot to (theoretically) infinite number of
rounds. Every agent is assumed to hold beliefs, which are captured as probability
distributions, about the available actions, progress of the game, and even beliefs
of other agents. Importantly, games are structured such that predictions about
a player’s behavior can be derived without any observations.

In game-theoretic approaches to modeling ToM, each agent generally has a
policy over strategies that dictate how it will behave given a set of conditions—
including inferences of other agents’ policies and observed behaviors. This policy
is subject to a state-dependent value that the agent is attempting to optimize
for in a particular game setting. Each agent has a level of sophistication that
describes the degree to which it considers the depth of other agents’ models of
it [11,84].

Rousseau’s stag hunt problem is a classic example of a social dilemma easily
captured by game theory. Two hunters must independently decide whether to
hunt a stag or hare. Hunting a stag successfully requires input form both hunters
and results in each hunter garnering a greater reward (more meat). Hunting a
hare can be accomplished without coordination, but also has a lower payoff.
There is a risk to choosing to hunt a stag in that if the other hunter pursues
hare, you will go hungry. This simplified game has two strategies (hunting a hare
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or stag) and the value function hinges on the amount of meat from each strategy.
Each hunter has a model of the other hunter’s likelihood of selecting stag that
includes the other’s beliefs about herself. The concept of sophistication captures
how many recursions an agent considers in her model. In line with Herbert
Simon’s famous work on the bounds of human rationality, people generally do
not go much beyond two-step logic [10,76].

Game theoretic models can capture a number of interesting social behaviors,
but they fall short of explaining the rich set of mental gymnastics that comprises
social cognition. That does not mean that these models are out of place in
recursive agent architectures. Situations arise when the decision-theoretic models
are overly cumbersome and a simple heuristic, like tit-for-tat, is warranted. In
practice, these are implemented as explicit policies [65].

4.3 Reinforcement Learning

The basic concept of model-based RL is to combine a world model and reward
function to produce a policy. The world model is a learned, simplified model of
an agent’s environment and used to make predictions about future states of the
world. Reward functions can take many forms, but frequently a cost minimization
or benefit maximization function of the world model’s accuracy is implemented.
In essence, these are models of what an agent “ought” to do. If a food item tastes
good (bad), it ought (not) to eat it and (or) be rewarded with the good (bad)
flavor. The policy is the sequence of actions that an agent uses in pursuit of
a goal and generated, or learned, from the repeated combination of the world
model and reward function. If we assume that a mind functions via model-based
RL, then predicting mental states from observable behavior can take the same
form as inverse RL.

IRL involves an observer agent that tries to learn a target’s utility function
given repeated decision observations. In its simplest form, this requires a state
space, an action space, and transition function which are modeled as a Markov
decision process. Although powerful, this is computationally expensive—vast
numbers of labeled training examples are required in order to infer a reward
function from a policy (set of observed states and actions) and transition func-
tion, which is frequently a researcher degree of freedom [45]. A human infant
with an IRL-based ToM would need hundreds of thousands of labeled training
examples a day [40].

5 Discussion

Evaluating, especially comparing, theory about and modeling approaches to ToM
reasoning is challenging. We believe that this challenge arises because theorists
and modelers approach ToM without a unifying set of requirements for ToM
reasoning. This leads to the value of their unique perspectives being lost to the
variance in their interpretation of the problem. As we have illustrated, such a
set of requirements is indispensable when comparing different approaches and
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perspectives. Theories that only focus on how humans handle higher order rea-
soning, for example, are hard to compare to those that are primarily concerned
with a framework for inferring beliefs. Developing and deploying artificial agent
systems, such as PsychSim, forces not only acknowledging the need to take a
stance on the minimal requirements of ToM reasoning, but implementing and
validating them as well.

Theory-theory approaches that do not specify a belief inference framework
or its origin are incomplete. Without a framework, it is not possible to falsify a
theory because simple adjustments to the mechanism that produces inputs, i.e.
beliefs, that support ToM reasoning alter the theory’s accuracy. This is particu-
larly important for accounts that claim ToM is acquired rather than innate. ToM
input-output data are scarce. This leaves researchers in the position of being able
to select from a vast array of candidate functions the one that best fits the data
and their theory. Validating their selection from the legions of alternatives is not
possible, however, given the data paucity. Thus their claim becomes this is the
acquired function because it fits the data and our model.

If ToM is innate, then the fundamental difference between the theory and
simulation perspective is simply the inference mechanism. All that the theory-
theorists are saying is that we do not know the mechanism, however it is not that
mechanism. This again leaves them in a position to select whatever mechanism
works with the data and their theory. Meanwhile, the simulation account of a
repurposed mechanism leads to a paradox. If it is the same mechanism that
we use for our own behavior, it must be one which can be re-entered or that
supports recursion. This is necessary for the third item in our list, higher order
reasoning, but not necessarily for behavior. This suggests that the mechanism
was not repurposed, but designed/evolved with the capability for ToM.

A theory without a belief translation mechanism is also hard to falsify. This is
because, like not having a belief inference framework, all it takes is a convenient
function to make your theory valid. And again, the lack of data makes it chal-
lenging, if not impossible, to validate whether a given functional form is correct.
This makes it impossible to validate the entire pipeline. A model that lacks the
first or second item and only specifies a way of handling higher order reasoning,
like many perspectives in the theory-theory camp do, lacks the needed structure
to test its validity.

Explanations for social cognition without the higher order reasoning that typ-
ifies ToM face the challenge of exploding complexity and generalization. Scripts
and frames can account for social interactions and do not need higher order
reasoning, but scripting every class of social interaction would quickly become
intractable for humans as the number agents and levels of reasoning increase.

All of these challenges to existing modeling and theoretical approaches to
ToM reasoning point to the need for a more holistic account. Recursive agent
models, like PsychSim, force researchers into taking a position on each require-
ment. PsychSim assumes that ToM reasoning follows a POMDP framework.
The same framework is repurposed for learning about the environment, mak-
ing predictions about behaviors, and higher order reasoning. Game Theory and
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reinforcement learning offer framework alternatives, but we believe each has a
fundamental flaw. If an agent implemented a pure reinforcement learning app-
roach, like direct policy search, it would need a way to down select to a good
set of candidate policies from the vast set of possible policies. This adds a new
requirement for ToM reasoning and it is possibly intractable as each new variable
for consideration increases the complexity of the policy selection task. A purely
game-theoretic approach would mean specifying the details for each game that an
agent may enter and knowing when to use each unique game, i.e. belief inference
framework. Again, the complexity of a system based entirely on this approach
quickly grows intractable.

Lastly, PsychSim is more than just an approach to modeling ToM. Because
it is modular, adding additional capabilities becomes trivial, which renders it a
general mechanism for artificial cognition and makes it a good candidate for a
unifying modeling tool [34]. This is already demonstrated in the literature. The
PsychSim approach, for example, can implicitly generate the appraisals found in
appraisal theories of emotion [75]. Also, its decision theoretic approach to ToM
constrained mental models of others into exhibiting preference ordering [66].

6 Conclusion

There are numerous theories and modeling approaches that attempt to capture
the essence of human theory of mind. The development of an agent capable
of a similar level of ToM reasoning reveals where each theory and approach
may falter. The requirements of creating such an agent, we believe, are also
minimal requirements for actual ToM reasoning. Combining these requirements
with lessons learned from attempts to explain and model ToM holds the potential
of producing a more complete, viable theory.
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Abstract. We examine some formal-reasoning aspects of Theory of Mind (ToM)
from the perspective of an agent teaming with others, in a broad (active logic)
setting that includes a commonsense-reasoning context. Our emphasis is on how
to represent time-evolving inferences by an agent about what it and other agents do
or don’t know. Specifically, what sorts of knowledge representation and reasoning
are needed for an agent in a team to capture ToM in a formal time-evolving
commonsense-reasoning setting, especially with regard to introspection, presence
of direct contradictions, inference about another’s knowledge or lack (e.g., on their
asking a question, and on being told an answer), and quotation mechanisms for
representing beliefs about beliefs.
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1 Introduction

Theory of Mind (ToM) refers to an agent’s ability to ascribe evolving knowledge (and
lack of knowledge) to itself and others [12, 16]. Thus, it is the ability to represent and
reason about minds (one’s own and that of others), and in particular to distinguish what
knowledge/belief at a given time is in any given mind, from what is not in that mind
(but may be in another mind) [2]. As such, ToM is related to so-called meta-reasoning
(about self and other).

Much recentworkonToMfocusesmore specifically on: (i) distinctions of perspective
between agents, i.e., between the content of one’s own mind and that of another – often
assessed in terms of whether one can attribute a belief to another that one does not belief
oneself (“false-belief”); and (ii) developmental stages in children. For AI purposes,
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however, there may be little consequence in distinguishing among aspects of ToM. In
this paper, we will view all these as aspects of an underlying ability to represent and
reason about the content of one’s ownmind (or knowledge base –KB) and that of another
as they vary over time as a result of reasoning and observation. We will use “belief” and
“knowledge” interchangeably in what follows.

Surprisingly, even very simple team interactions seem to require a substantial amount
of knowledge, not only about the environment and tasks but also about the changing
knowledge within oneself and others as agents interact with their environment and per-
form tasks. Even informing based on reasoning (e.g., that hearing the utterance will add
a new belief to the hearer’s KB) involves knowledge and inference about the hearer’s
KB. Similarly, the knowledge that one (self) has encountered contradictory information
involves reasoning about the contents of one’s own KB.

Here,we explore knowledge of self and other that applies to robotic agents interacting
in real time either with humans or with other robotic agents. Potential axioms will be
illustrated using our own time-sensitive reasoning formalism of active logic. We begin
with an informal example, then quickly review related work, observe some needed
adjustments for interacting agents, and then sketch a formal approach and some technical
issues involving quotation. Our outlook is to employ highly general axioms as much as
possible, rather than ones geared to a single narrow application.

2 Informal Example

Many actions tacitly involve knowledge. An agent that does not know it has performed
an action may blindly perform it again (under the misimpression that it has not been
performed). Actions have consequences. Smart agents should know this about any given
action that might be taken, and expect the consequences, including about how the action
would alter one’s knowledge. Some actions are even done to gain knowledge; e.g.,
opening a tool-cabinet may result in A’s KB having the information as to whether a
particular flashlight is inside. A goal to open the cabinet can be adopted for the very
purpose of gaining this knowledge.

Consider one agent A (a robot) being asked by another agent B (a human), “Is the
flashlight in the tool-cabinet?”—a mere “yes,” “no,” or “I don’t know” by A seems
enough of a reply. However, the reasoning that goes into the response-generation – if
based on general principles that can apply broadly across domains – will depend on a
considerable amount of knowledge that A has, including knowing:

• that it is being addressed and asked a yes-no question
• that the questioner B desires to be informed of a reliable answer
• whether it knows about the flashlight
• that if it does not know, then it might easily find out by opening the cabinet
• what to expect while undertaking actions like opening the cabinet
• that an action has been initiated, is being performed, has been completed successfully,
or has failed

• that it would know the answer to the original question if it sees the flashlight in the
toolbox
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• that if the flashlight is not immediately visible upon opening the cabinet, one may
have to move items that occlude the vision

• that if it (now) knows the answer, it can tell it to B
• that B will have the information that A has given it
• that then B will no longer desire/need to be informed

The (incomplete) list above illustrates that there is a great deal of hidden knowledge
behind commonsense behaviors and this knowledge is needed for reasoning about own-
knowledge and own-action for active engagementwith the environment, for even simple-
seeming team behaviors.

3 Related Work

A key starting point for us is related theories [4] for expressing and reasoning with
knowledge about others, events, and communication. The other theories that we exam-
ined do not specify how the agent’s own knowledge evolves over time; instead, they
show how the agent’s knowledge base evolves from an external viewer’s perspective. In
short, each is an external logic that specifies how the agent should reason rather than an
internal logic that an agent uses directly for its own reasoning [11].

Davis [3] incorporates a situation-based, possible-worlds theory of knowledge and
a branching time structure with an interval-based theory for multi-agent actions. Davis
[3] and Davis and Morgenstern [5] handle time using a sort for clock-times and a time
structure that incorporates every feasible action and possible consequences as a separate
branch, but the time model does not single out a timeline or branch as a history that will
actually happen. Thus, from a real-time agent’s perspective, time is at stand-still during
the agent’s reasoning. The agent believes the logical closure of its knowledge in each
situation without consideration of the time taken to derive the closure in an implemented
real-time agent. Thus, in Davis’ theory, though actions occur in time, reasoning occurs
outside the time structure.

Davis uses ameta-theorem to prove the consistency of the presented theory. For agent
implementations working with evolving time and knowledge, inconsistencies are bound
to happen; therefore, the question arises as to whether consistency is even possible.
Rather, the ability to note and reason about the inevitable inconsistencies becomes very
relevant for real-time agents. Additionally,Davis’ theory deals onlywith informative acts
with the implicit assumption that the hearer has knowledge of when the speaker initiated
the communication, and the speaker has knowledge about when the hearer has received
the communication. Such knowledge may not be available for a real-time agent’s theory.

Jiao [8] uses a “transpositional thinking” principle for an agent to reason about the
knowledge of others based on their behaviors and to predict their behavior based on
its acquired knowledge about others. Inconsistencies between expected and observed
behaviors are used to amend the understanding about others. This then becomes the new
foundation for agents to reason about future behavior of others. But this theory is also
presented as an external logic to describe how the reasoning of teaming agents should
proceed.



24 D. P. Josyula et al.

Another theory for reasoning about knowledge by matching agents’ expectations to
their observations is presented by van Ditmarsch, et al. [17]. They describe a semantics-
driven propositional dynamic epistemic logic for specifying observations and protocols.
Epistemic expectation models obtained from epistemic protocols describe the agents’
expectedobservations,which in turn influence their reasoning about their ownknowledge
and other agents’ epistemic attitudes. As in prior references, this is an external approach.

The recent book byGordon andHobbs [7] presents an evenmore ambitious undertak-
ing than Davis. They attempt a full-blown formalization of “commonsense psychology”,
largely as a massive representation of theory of mind. This external theory again con-
trasts with a theory internal to an agent about how people think (and how machines can
represent such).

The above approaches do not address real-time issues associated with internal and
changing beliefs, inconsistencies, and imperfect knowledge within an evolving time
setting in an implemented system. Rather, they describe an external representation for
an agent’s knowledge that allows symbolic reasoning in an omniscient setting.

4 Active Logic

Unlike a number of representative formal treatments [3, 7, 8, 14, 17]which are essentially
external logics, active logic [1, 9, 10] is an “internal” logic that an agent uses for onboard
reasoning. It has a clock rule that allows keeping track of the evolving time as reasoning
proceeds. The clock rule infers now(t+1) at time t+1 from knowing now(t) at time t.
Reasoning proceeds in recorded time-steps. Only sentences that are entailed by applying
the inference rules once to the sentences present at a given step, are added to the KB in
the next step. Any derivation takes time, and therefore, there is no issue of omniscience.
Observations can come in at any step and be incorporated into the ongoing reasoning in
the next time step.

If an agent’s KB has the belief/knowledge ϕ at time t, then at t+ 1, it can infer that it
believes/knows ϕ, denoted as K(self, ϕ, t) by introspecting for ϕ (i.e., pos_int(ϕ)). This
is “positive introspection”. Similarly, there is a negative introspection rule for inferring
what it doesn’t know. Introspecting for ϕ at time t, when ϕ is not present in the KB, (i.e.
neg_int(ϕ)) leads to ~K(self, ϕ, t) being asserted in the KB.

As reasoning proceeds, a direct contradiction at time t between P and ~P is noted
at time t as contra(P, ~P, t) and both P and ~P are distrusted and retracted using the
contradiction detection rule. Contradiction-handling axioms can allow assessing and
reinstating one of the contradictandswhen the agent has adequate knowledge to conclude
that for a given case.

Active logic provides the possibility to incorporate new observations, new con-
straints, new goals, and changes in reward structure into the reasoning process. Like
online planning methods [6, 15, 18], active logic provides for planning and acting to
occur together in an interleaved manner rather than all the planning happening before
acting. The key benefit of active logic is its ability to account for the passage of time
through every step of the planning and execution, which allows it to interject these pro-
cesses as deadlines pass, goals change, or dangerous observations occur. Active logic’s
ability to track and access its history allows it to use the knowledge of when specific
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observations, beliefs revisions, or inconsistencies occurred in the past in the ongoing
reasoning.

5 Toward a Formal Approach

Our preliminary work has involved the following fifteen commonsense inferences to
endow individual agents with the capacity to reason in real time about changing beliefs,
observations, and actions of both themselves and other agents. These are to be understood
as defaults which can be overridden for abnormal cases. Note that these rules are not
task-specific, and in principle could apply to a wide range of scenarios and tasks. In an
active logic-based agent, these rules are internal to an agent’s own knowledge base.

1. If an event (typically agent-caused) occurs and I do not know that I caused it, then
it is not my action (hence another agent’s action) that caused it; i.e., I did not cause
it.

2. If another agent asks me for ϕ, then I know that the other agent doesn’t have ϕ.
3. If ϕ is in my KB, then I can infer that I know ϕ. This is the positive introspection

rule (via a pos_int predicate) that states that an agent knows what it knows.
4. If ϕ is not in my KB, then I can infer that I do not know ϕ. This uses the neg-

ative introspection rule (via a neg_int predicate) that states that an agent doesn’t
know/believe a given item at a given time.

5. If I know that another agent doesn’t know/have ϕ and I do know/have ϕ, then I can
provide ϕ to the other agent.

6. If I don’t have ϕ and I know that doing α will provide me ϕ, initiate action α when
I want ϕ to hold.

7. If I initiate an action α at time t, then do(α, t) is recorded in my KB. An agent knows
which actions it initiated.

8. If I know that action α has consequence γ, then I expect the consequence γ to hold
when α is completed.

a. If I inform another agent of ϕ, then I record in my KB that the other agent will
have ϕ in its KB.

b. If I ask another agent a question Ϙ , then I record in my KB that the other agent
will attempt to provide me an answer φ.

9. From do(α, t), I infer doing(α) and record it in the KB until the action is observed
to terminate (successfully or not). An agent knows which actions it is doing

10. If my action α terminates at t, then I assert done(α, t) in the KB. An agent knows
which actions it completed.

11. If I expect the consequence γ to hold when α is completed, and γ does hold once I
have done(α, t) in my KB, then assert succeeded(α).

12. If I expect the consequence γ to hold when α is completed, but γ does not hold
once I have done(α, t) in my KB, then assert failed(α).

13. If another agent asks me a question Ϙand I can’t find an answer φ for Ϙin a
reasonable amount of time, respond to the agent “I don’t know” with a tell action.
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14. If I hear ϕ from another agent, then I know that the other agent knows ϕ holds and
I record ϕ holds in my KB.

15. If there is a contradiction between my not knowing ϕ earlier and knowing ϕ now,
reinstate that I know ϕ.

6 Formalism Using Quotation

Although we began with high-level natural language rules, we also must handle the
formal issue of representing these in active logic and making inferences using them.
Many of the above defaults are meant to represent not only beliefs of an active logic
agent pertaining to other agents’ beliefs, but also to quantify over the beliefs of others. For
example, a formalized rule 14must quantify over all beliefs that may be substituted forϕ.
We also have used formulas nested inside other formulas, such as for various arguments
to meta-predicates (e.g., the contra predicate, indicating the presence of contradiction,
and the neg_int predicate, for negative introspection on an agent’s lack of a belief). To
enable this kind of formula nesting, active logic has been extended to incorporate a
syntactic theory of belief. The active logic mechanism for this syntactic theory uses a
special kind of quotation term to represent a quoted formula, allowing it to nest inside
of other terms in the language. Quotation terms are thus a novel sort of term that we
employ, which is distinct from a constant term. Quotations may be unified with and
substituted for variables and do not take active logic beyond a first-order system.

As an example, a ground instance of rule 5 above might be the following (1) for
agent A’s belief regarding agent B:

(1)

However, the basic mechanism of a quotation term is not sufficient for reasoning
with nested beliefs with generality. Consider a version of rule 8a above: If I tell “P(x)”
to agent B, then B will know “P(x)”. Here the x is intended as a variable, so the quotes
should not apply to x itself, but rather to whatever x is replaced by in an individual
inference such as: I told “P(c)” to B, so now B knows “P(c)”.We address this next, but
a bit more tailored to our working example.

If agent A were to represent a belief such as “If I tell an object’s location to agent B,
then B will know this object’s location,” a formula such as the following (2) would not
accomplish this effectively:

(2)

The variablesObject and Location are intended to quantify over possible objects and
locations, and so the quotes should not apply to them directly, but instead to whatever
constants (such as flashlight and cabinet) might replace them in individual inferences.
To allow a type of variable that may substitute into the context of quotation terms, we
use the syntactic device of quasi-quotation (which was originally introduced by Quine
[13]) for such quantifying into quotation.
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Our intended meaning of the quoted formula would make use of quasi-quotation
(indicated with the backtick character ‘), to unquote these variables as shown below (3):

(3)

With the formula modified to utilize these unquotes, if the quantifiers of Object and
Location were written explicitly, they would now have scope over the whole formula.
Agent A would thus hold the desired belief, which is now general enough to quantify
over the sets of locations about which it may inform agent B.1

Our preliminary work revealing the high-level inferences has been the subject of
ongoing research on reasoning, using quotation and quasi-quotation, in the software
artifacts implementing active logic inference. We anticipate that this progress is well-
suited to apply active logic to ToM.

7 Agent Reasoning for the Informal Example

Making use of the commonsensical general knowledge for inference discussed earlier,
A’s reasoning might proceed along the following lines (where numbers refer to items
1–15 in Sect. 5):

• On detecting an utterance, infer using 1 above, that the heard utterance is not my own
and is that of B.

• Infer that B is unaware of whether the flashlight is in the cabinet, using 2.
• If I know that the flashlight is in the cabinet, infer that I know something that I can
provide B using 3 and 5.

• If I don’t know if the flashlight is in the cabinet, and I know that I can search for it
there, I can initiate searching the cabinet action using 4 and 6.

• I record that I initiated an action to search the cabinet for a flashlight using 7.
• I record that I expect to know if the flashlight is in the cabinet when the search action
is completed using 8.

• I record the fact that the search is progressing using 9.
• I note the completion of search using 10.
• I infer that my action succeeded when an action is done and the expectation is met
using 11.

• I infer that my action failed when an action is done but the expectation is not met
using 12

• If I find the flashlight in the cabinet, I infer that I can convey “Yes” to B using 5.
• If I do not find the flashlight in the cabinet, I infer that I can convey “No” to B using
5.

1 We note that the memory requirements for quotation terms are of the same computational
complexity as for formulas in a first-order language without quotation, as any formula using
quotation may be converted into a first-order formula with size of the same order, by replacing
quotation marks with a unary function “quote”, quasi-quotation marks with a function “quasi-
quote”, quoted predicate symbols with function symbols of the same name, and quoted logical
operators with binary or unary function symbols naming the operators.
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• If I cannot find the answer to B’s query in a reasonable time, I respond to B “I don’t
know” using 13.

• Once an inference/decision is made to inform B, I initiate a tell action to respond with
an answer and infer that it has been initiated using 7.

• As I execute the tell action, I infer the action is being done using 9 and expect B to
then have the information using 8a.

• I note the contradiction between not knowing whether the flashlight is in the cabinet
initially, and now knowing that it is there. I also distrust both formulas in the same
time step using the contradiction detection rule. At the next time step, I reinstate that I
know that there is a flashlight using 15. Similarly, I resolve the contradiction between
B’s not knowing and now knowing.

In our discussion so far, A has been considered as a robot and B as a human. Similar
reasoning canhappen evenwhenbothAandBare robotic agents.WhenB is an artificially
intelligent agent, the reasoning in agent B may proceed along the following lines:

• I do not know if the flashlight is in the cabinet.
• I initiate an action to ask A if the flashlight is in the cabinet using 6.
• I record that I initiated the ask action using 7 and expect a response from A using 8b.
• While I ask, I record that I am asking using 9.
• Once I ask, I record that I asked using 10.
• If I get a response “Yes”, I record in my KB that A knows the flashlight is in the
cabinet, and that the flashlight is in fact there, using 14.

8 Conclusion

We have outlined a knowledge-rich, time-sensitive, and contradiction-tolerant approach
to internal ToM-like reasoning in a team setting,where quasi-quotation is needed to allow
representation of nested beliefs. Ongoing work is expected to lead to effective compu-
tational mechanisms that can be applied within robotic and other automated systems,
whether in robot-robot or robot-human teams.
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Abstract. Computational emotion, is naturally predicated on an oper-
ating theory of emotion. This paper seeks to explore the prevalence of
three different approaches in the literature, namely basic emotion, dimen-
sional emotion, and constructed emotion. Basic emotion maintains that
there exists a discrete set of primitive emotions evolved as responses to
certain stimuli; dimensional emotion sees different emotions as systemat-
ically related by two or more dimensions (typically valence and arousal);
and constructed emotion describes emotional experience as a function of
the brain’s general predictive faculties applied to learned social concepts of
different emotions. In order to see how these approaches are represented in
affective computing literature, we conduct a systematic survey spanning
the IEEE, ACM, ScienceDirect, and Engineering Village databases. Out
of 204 selected papers, 151 apply basic emotion theory, 48 apply dimen-
sional emotion, and 5 apply constructed emotion. We find promising rep-
resentation of the constructed emotion theory in the affective computing
literature and conclude that it provides a theoretical basis worth pursuing
for affective engagement human computer interaction (HCI) applications.

Keywords: Constructed emotion · Affective computing · Systematic
survey

1 Introduction

The very idea of affective computing, that is, the capacity for computers to per-
ceive or express emotion, took off in Picard’s seminal 1995 paper titled Affective
Computing [43]. In it, she saw the technology of the time and imagined it would
soon be capable of reckoning with human emotion in a robust way, imbuing it
all with importance with an observation from the field of psychology: emotion
is fundamental to the decision-making of all kinds, minor and major, frivolous
and life-changing; it undergirds our values and impacts, literally, how we see the
world; and at last, it is essential to communication. The idea is, if a computer
could develop a sort of empathy, an awareness of the moods of its users, it could
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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become a more helpful tool for a great number of applications. Suppose learn-
ing software could detect the interest or frustration of a student and modify a
lesson to suit that. Or consider a computer as a tool for those whose jobs are to
play with emotion: computer-aided composing, visual art, clip selection. Even
entertainment that can swell and recede and shift with its’ viewers participation
and emotion, or, perhaps, simply giving synthesized speech its proper tonality
to convey subtle meaning. You can even find applications in health and safety
– suppose a system could determine if a driver was angry and prone to aggres-
sive driving or if a driver was inattentive and liable to cause an accident. These
are all examples where computational emotion models can help human-machine
interactions in various ways.

Applications of affective computing are so numerous by virtue that emotion
is an undercurrent that influences nearly everything in our lives. The practice
of affective computing is inherently multidisciplinary, drawing from psychology,
neurology, mathematics, computer science, sociology, and linguistics [6] and so
can be challenging – but potentially enriching – pursuit. Evidently, many see that
potential. In the decades following Picard’s paper, we see affective computing
applied in as many ways she foresaw and more. We see papers pursuing emotion
recognition in faces, speech, and gestures [28,38,58], or in brain scans, heart
rates, or skin conductance [3,33,39], emotionality and other subjective attribute
detection in music, movies, and visual art [40,54]. There are strides being made in
artificial affective agents [34,60,61], and in sentiment analysis of forums, blogs,
and social media posts [20,41,63]. The field is lush with a variety of diverse
applications and holds promise in expanding the range of computers’ usefulness
and perhaps someday fundamentally changing the way we interact with them.

As affective computing grows in popularity and as machine learning has
become ascendant, the ultimate aim of creating silicon systems that can effectively
grasp at and reckon with human emotion seems ever more attainable. Amidst this
promise and excitement, however, we argue that it is important to step back and
examine the theoretical foundations of our very idea of emotion: how we think
about these things informs how we develop affective systems, what we expect from
them, how we conceptualize them, and ultimately, how we use them.

The predominant theory of emotion that largely guides current affective com-
puting, basic emotion, holds that there are fundamental emotional experiences
that a computer (or an observer) can correctly and objectively detect in a person.
The underdog theory of constructed emotion, however, posits that emotion is
inherently subjective, impossible to accurately detect in a person’s face, behav-
ior, or neural activity. It may seem, then, like the very concept of computational
emotion prediction is wholly incompatible with this theory. Yet, we seek to find
applications that reimagine the roles of these predictive systems in affective
application design, creating programs that enhance a user’s ability to examine
the personal feelings only they are truly equipped to determine. As the main
contribution, this paper puts forth the idea that affective computing informed
by the constructed theory of emotion holds promise in creating systems that a
user feels emotionally empowered by, rather than unsettlingly analyzed by, with
a systematic survey of the theories.
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2 Computational Models of Emotion

Before we discuss the survey methodology and results about various computa-
tional emotion models, it would be good to examine these theories more in-depth
and grasp at the general form of affective computing papers that apply each of
them. As reflected in the results above, both basic emotion and dimensional
emotion share the lion’s portion of guiding thought in the field. Affective com-
puting has historically accommodated both of these competing approaches and
continues to do so. Picard’s paper over two decades ago mentions this capacity
to pursue useful affective research in either vein of theory [43], and the signifi-
cant presence of both basic and dimensional emotion papers to this day offers
testament to this fact. Planting the seeds of constructed emotion in this fertile
field very well may yield new, interesting, and applicable research.

2.1 Basic Emotion

The theory of basic emotion has enjoyed prevalence in the literature, intro-
ductory psychology courses, and the public’s general science consciousness. Its
premise is intuitive and offers a digestible origin story to the sometimes primal-
feeling emotions that color our lives in alternately beautiful, tragic, and fright-
ening hues. One of its fundamental premises, universally understood emotion, is
also a pleasing and hopeful conclusion to arrive at – it’s something exciting to
communicate. In affective computing, its taxonomy of discrete emotions is also
pleasantly well-suited for classification models of all stripes.

Summary. Most popular as Ekman’s theory of basic emotion, this approach
maintains the existence of six emotions with distinct causal neurology and unique
physical expression, developed in response to frequently-encountered situations
in our evolutionary history [15]. Namely, the six emotions are anger, disgust, fear,
surprise, happiness, sadness, and surprise. The classification of “basic” requires
that these responses exhibit aforementioned causal circuits and, ideally, exist in
other species as well; among other requirements, these rules differentiate these
six from the myriad non-basic emotions that can be considered various modula-
tions or alternations of these basic components. Given an evolutionary basis, this
theory also goes hand-in-hand with the concept of universal emotion, i.e., that
particular facial configurations and situations can be reliably and consistently
classified as evoking one of these six emotions, especially across highly differ-
ing cultures. This theory evidently informs affective computing approaches that
aim to classify “emotion signals” into corresponding discrete categories, often a
subset of the above six emotions. A clear example would be a facial emotion clas-
sification model trained on emotion-labeled face images that considers success
as an objective detection of emotion as it adheres to these labels (Fig. 1).

Example. Image based Static Facial Expression Recognition with Multiple Deep
Network Learning is a paper published in 2015 by Yu and Zhang [58] for the Emo-
tion Recognition in the Wild Challenge of that same year. They propose a model
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Fig. 1. An illustration of a sample basic emotion approach applied to a facial expression
recognition task. A face being examined with a camera attached to an FER model,
with outputs showing confidence levels for a variety of emotion classes. The label with
the highest confidence is taken as the answer.

to perform an emotion categorization task on the Static Facial Expression in the
Wild (SFEW) dataset, placing movie frames of human faces into seven categories,
namely Angry, Disgust, Fear, Happy, Neutral, Sad, and Surprise. This model is
first built on a robust, multi-level facial detection system, with the largest detected
area across all levels being used as input for prediction. The highest level is a joint
cascade detection and alignment detector, as it is reasonably robust to image per-
turbations and offers better face localization, the second level a deep CNN detec-
tor that offers more robustness in the case of occluded or sharply angled faces, and
the last a mixture of trees detector. The prediction model itself is formed by five
convolutional layers with three stochastic pooling layers interspersed between to
reduce overfitting, three final densely connected layers, and a softmax layer fol-
lowed with negative log-likelihood loss. For robustness, the paper also generates
randomly perturbed images as a part of the input. It considers both the original
and perturbed images in prediction and outputs the average voting response of
all forms of the image. To further improve performance, multiple differently ini-
tialized copies of the model are ensembled, with learned ensemble weights using
either optimal ensembled log-likelihood loss or optimal ensembled hinge loss. The
network pre-trains on the FER dataset and is fine-tuned on the SFEW training
set to the tune of 61.29% accuracy on the challenge’s SFEW test set. This signfi-
cantly surpasses the challenge baseline accuracy of 39.13% and so proves to be an
effective basic emotion classification model that improves on its predecessors via
a variety of smart changes.

2.2 Dimensional Emotion

A dimensional representation of emotion aims largely to address perceived short-
comings in a discrete basic emotion approach, primarily issues of applicability to
actual emotion experience due to a lack of nuance [24]. Proponents believe that
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breaking emotion down into two (or more) dimensions provides such nuance and
creates room to render systematic relationships between emotions in the space.
Papers applying dimensional theory are free to predict continuous values for var-
ious emotion dimensions and leave that as is or may use those values to place a
reading within discrete emotion regions in the emotional dimension space [43].

Summary. A dimensional emotion approach relies on Russell’s circumplex
model of affect [47], which is based on the hypothesis that emotions may be repre-
sented by particular combinations of various dimensions. Russell’s model focuses
particularly on the dimensions of valence and arousal (or activity). For example,
a state assessed as highly negative (i.e., low valence) with low arousal might be
classed as a depressive state; a state assessed as more or less neutral (i.e., moder-
ate valence) with high arousal might be classed as a state of surprise. These states
are not entirely independent as in basic emotion, instead of exhibiting systematic
relationships to one another – in comparing, say, fear (negative, high arousal) and
contentment (positive, lower arousal), they can be considered opposites. Option-
ally, a dimensional model in this vein may include additional dimensions such as
dominance (a Pleasure-Arousal-Dominance (PAD) model), expectation, or inten-
sity depending on desired complexity and nuance (Fig. 2).

Fig. 2. An illustration of a sample dimensional emotion approach applied to an FER
task. A face being examined with a camera attached to an FER model, with outputs
showing meters that display valence and arousal levels. This is connected to a terminal
“reading” these results and inferring an emotion label.

Example. Continuous Prediction of Spontaneous Affect from Multiple Cues and
Modalities in Valence-Arousal Space is a 2011 paper written by Nicolaou, et al.
that “presents the first approach in the literature towards automatic, dimensional
and continuous affect prediction in terms of arousal and valence based on facial
expressions, shoulder gesture, and audio cues” [38]. The model operates on the
Sensitive Artificial Listener Database (SAL-DB), which contains spontaneously-
elicited emotion data in the form of audio/video samples with continuous human-
generated annotations. Based on these annotations, the data has been normalized
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to account for positive emotion bias in the dataset and segmented into roughly
equal quantities of positive and negative emotion clips. The authors designed fea-
tures for this data in three separate modalities: for audio, Mel-frequency cepstral
(MFC) coefficients over time, and prosody features like energy and pitch; for the
face, a mapping of 20 facial feature points represented by video frame-based vec-
tors of the 2D coordinates of these points; and for the shoulders, there are similar
sets of points, two on each shoulder and one on a stable central point. Comparing
the performance of SVMs for regression and Bidirectional LSTMs (BLSTMs), the
authors find better affect prediction performance from the BLSTMs on all input
modalities (audio, video) and for all emotion dimensions (valence, arousal), sug-
gesting the importance of the proper representation of temporal data in continu-
ous prediction. Also comparing feature fusion (feature concatenation as input into
a single model), model-level fusion (fusion of individual predictions of a particular
emotion dimension from facial expression cues and audio cues into another LSTM
for final prediction of the same dimension), and output-associative fusion (the
combination of both valence/arousal predictions for all cues into another model to
yield a single prediction for valence or arousal), they find the best performance out
of output-associative fusion. This output-associative fusion appropriately repre-
sents observed systematic relationships between valence and arousal values, i.e.,
the model changes its final arousal prediction based on its prior valence predic-
tions. Improved performance, in this case, suggests the importance of representing
this relationship in effective dimensional emotion prediction. Overall, the paper
finds promise in the temporal representation of affect via LSTMs and in the rep-
resentation of these systematic relationships between valence and arousal.

2.3 Constructed Emotion

Constructed emotion, compared to basic emotion and dimensional emotion rep-
resents something of a paradigm shift. It aims to bring emotion theory up-to-date
with modern neurology research, dispelling outdated ideas of’regions’ of emotions
and fully dissolving the arbitrary philosophical barrier between “thought” and
“emotion” [9]. Emotion becomes a complex but almost romantic process of social
construction, with sophisticated neural predictive processes opening up poten-
tially infinite varieties of affective experience. It remains a minority theory, espe-
cially in affective computing where it has scarcely penetrated, but it has its grow-
ing, enthusiastic supporters [7–9,19].

Summary. In simplest terms, the theory of constructed emotion holds that emo-
tion is in the eye of the beholder and in the heart of the feeler. Emotion is held to be
an experience created within and between human beings through complex predic-
tive processes, and so is something sheerly subjective. The theory suggests, then,
that it is impossible to objectively detect emotion as a predictable, well-formed
response to certain stimuli.

This approach refutes the idea of basic emotions with distinct mechanisms or
expressive “fingerprints,” instead maintaining that emotions, in the confluence of
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context, verbal emotion conceptualization, interoception, social agreement, and
personal history, are constructed by the brain into a unique experience. These
influences feed into the brain’s default mode of prediction, where input is con-
stantly presaged (and corrected, if it varies from what’s predicted), and appropri-
ate responses occur based on these predictions. This general mechanism may be
taken as the evolutionary development of a highly efficient, highly flexible response
system to an infinite variety of situations. Like experiences of emotion, perceptions
of others’ emotional displays are based upon prediction and thus are not infallible
and rely extensively on context. In another sense, emotions do not exist objectively
to be reliably “detected,” rather, they are powerful instances of human-created
social reality. In this vein of logic, the constructivist approach calls emotion uni-
versality into doubt, often citing flaws in the methodology of universality research.

Example. Mirror Ritual: An Affective Interface for Emotional Self-Reflection,
a 2020 paper written by Rajcic and McCormack [46], describes work done
on an affective interface that integrates existing emotion perception and text
generation technologies to create emotionally meaningful experiences for users.
The system takes on the external appearance of a smart mirror with a con-
cealed camera and a reflective display. A user looks at the mirror, and the
system uses OpenCV’s Haar cascade classifier to detect their face. The affec-
tive mirror then performs real-time facial emotion detection based on a CNN
trained on the FER-2013 dataset and generates an emotional seed-word based on
perceived emotion and intensity. A mild grimace and furrowed brow, for example,
might generate the seed-word “irritated,” and a beaming grin might generate the
seed-word “ecstatic.” After the seed-word is generated, it is then fed into a fine-
tuned GPT-2-345M text generation model from OpenAI to generate brief, user-
engaging poetry based on their perceived emotion. This text generation model

Fig. 3. An illustration of a sample constructivist approach that uses a FER model. A
face being examined with a camera attached to a FER model, with outputs showing
valence and arousal levels. These levels are used to generate an appropriate emotion
seed word for another model that will generate affective content for the subject. The
subject reflects on this content and arrives at their own assessment of their emotion.
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is trained on a variety of sources, including postmodern poetry, in order to yield
poetry that’s accessible but still open to interpretation in order to best facilitate
a sort of affective relationship between the mirror and a user. User assessment of
the mirror described moments of uncanny appropriateness and great relevance to
personal events, though on occasion, users reported a dip in their affective engage-
ment when poems did not seem relevant (Fig. 3).

This affective mirror paper describes an imperfect but still quite promising
HCI application that successfully integrates Barrett’s theory of constructed emo-
tion with existing AI and affective computing technologies, like FER and text gen-
eration. Importantly, it reconciles the apparent conflict between the constructed
emotion theory and the prescriptive nature of most emotion assessment systems.
Simply put, Rajcic and McCormack relegate the emotion perception and subse-
quent poetry generation to a position of non-authority in the overall design of the
mirror. Ultimately, the mirror’s capabilities are tools for humans to make sense of
their own emotions and relationships – the agency and interpretive work is given
to the users. The emotion prediction aspect refrains from acting as an authorita-
tive, correct recognition of human emotions as is common in other applications like
surveillance. Given a poem instead, a user is free to reject or accept its implica-
tions. The tool combines constructed emotion with affective computing in a truly
inspiring way.

3 Systematic Survey

The aim of a systematic survey is to provide a reproducible, rigorous, and account-
able process for creating questions and finding answers in related literature. The
purpose of these questions may be to inquire about the effectiveness of relevant
technologies, to provide a valuable introductory summary to the surveyed field,
or to suggest an area worthy of additional research. To achieve reproducibility
and accountability, a systematic survey publishes its database search queries and

Fig. 4. An illustration of the sequence of paper gathering and selection. After search
string generation and database querying, a series of selections reduces the number of
papers to an amount tractable for manual analysis.
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maintains consistent and documented criteria by which papers are deemed perti-
nent or impertinent. Following these overarching steps of search and then selec-
tion, finally qualitative and/or quantitative analysis in service of the survey’s pur-
pose is performed on the remaining papers (Fig. 4).

To substantiate our claims on the status quo of affective computing and
the promise of constructivist-inspired program design, we have conducted a sys-
tematic survey of the field and found a crucial representation of constructivist
approaches in recent papers. The primary impetus for conducting this survey is
to get a grasp on the field of affective computing as a whole, especially as it applies
emotion theory to various applications. This is a crucial part of our research that’s
been conducted so far because our aim is to reconsider existing practices and offer
a constructivist-based approach that has the potential to create novel experiences
of affective engagement in Human-Computer Interaction (HCI).

3.1 Description

The following section includes a breakdown of our key systematic literature review
steps as they appear in Silva and Neiva’s guide to the practice [50]. Grouping
minor and similar tasks for the sake of organization, these include: formulating
the research question(s); generating, testing, and refining search strings, conduct-
ing the searches and storing data, and finally parsing through the data to select
and then analyze relevant papers. In each of these, we will briefly introduce the
task, discuss methods, and offer an evaluation on the process and results.

3.2 Methodology

Problem Formulation. In some ways, the questions we posit reflect the sus-
picions we have about the topic. Our paper primarily seeks to examine the effi-
cacy of existing emotion inference methods, ponder the potential effectiveness of
constructivist methods, and question whether emotion inference technologies will
provide lasting value in in-the-wild settings. These topics and rationale for asking
them will be discussed in greater detail below. Some of them arise in part due to
conclusions drawn in Barrett’s How Emotions Are Made [9].

Our first overarching question: How effective are existing emotion inference
methods based on basic emotion theory, and how well will they generalize to real-
world, in-the-wild applications? Though, say, facial expression classification may
be growing increasingly robust, it is reasonable to question whether or not these
discrete classification models will be able to classify less well-formed facial input
well. In addition, generalizability gets called into question if models are trained on
acted, stereotypical expressions of emotion– these are clear signals, but in actual
scenarios, you are unlikely to find these perfect matches. When systems like these
are integrated into aspects of HCI (robot or apps), will the user find the classifica-
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tion of their feelings into six firm categories robust or reductive? If overly reduc-
tive, an application integrating such technology may seem either toy-like or at
worst presumptive, and in either case, will fail to be useful. This question plays
the role of acting as a primary impetus for our research. It represents one of the
key questions that we are overall seeking to prove or disprove.

The above question presumes some level of widespread adoption of basic
emotion-based inference techniques, however, and so we are also responsible for
confirming this presumption. We therefore have a few more key questions on our
plate. What does the field of affective computing look like? Are approaches either
explicitly or implicitly based on basic emotion theory very prevalent, to begin with?
Are there other, more widespread approaches that we should instead ask questions
of? What are typical applications for these affective computing technologies? Seek-
ing an answer to these questions acts as a key grounding element that ensures
we have an accurate and less-skewed perspective of the field. If basic emotion
approaches turn out to be relatively uncommon, or applications largely shy away
from actually predicting emotions, then perhaps there is less of a need for our ques-
tion to be asked in the first place. Perhaps others have had the same hypothesis
and arrived at the same conclusion already. Essentially, this question helps ensure
that our research is relevant, representative, and fair.

Our second big question: Would a constructivist (or some other) approach be
more effective than the dominating approaches? Would this approach capture more
nuance in an emotion prediction system? Of course, we must also examine whether
or not a system guided by the constructivist approach would be better to begin
with–regardless of our hypotheses, we can’t in good faith assume so. This question
essentially asks us to justify the inclinations we may have towards the approach
and asks us to provide a basis for arguing for the pursuit of constructivist-based
affective computing. If we can find no compelling reasons or promises, then there
would be no point in encouraging computing research based on this approach.

At last, we must ask: What does affective computing informed by a construc-
tivist approach even look like? This is a key question for two reasons: (a) we may
lack examples because systems following the constructivist approach are relatively
few; and (b), Barrett’s theory posits ideas that may fundamentally conflict with
the idea of computational emotion prediction. In simplest terms, the theory of
constructed emotion holds that emotion is in the eye of the beholder and in the
heart of the feeler. Emotion is held to be an experience created within and
between human beings through complex predictive processes, and so is
something sheerly subjective. The theory suggests, then, that it is impossible to
objectively detect emotion as a predictable, well-formed response to certain stim-
uli. Barring completely abandoning the premise of affective emotion prediction,
then, how do we reconcile the practice to this theory? Could a predictive agent act
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like another subjective observer of others’ emotions, with biases based on train-
ing data instead of human experience? There seems to be an added complexity
to designing a constructivist-based emotion perceiver or seems to require some
re-conceptualization. These questions serve to explore what practical implemen-
tation might look like, as well as to consider how a “paradigm shift” might be
necessary to attain the benefits of a constructivist-based approach.

SearchMethodology. With the above questions in mind, the next task is to cre-
ate the search string that will be used to query various published-paper databases,
and we focused on the computer science literature.

The first step is to consider our research questions and create a preliminary
search string that may lead us to papers that can answer these questions. We then
take this string and query three databases, recommended by Silva and Neiva’s
guide [50] for their prevalence in computer science and overall comprehensiveness:
IEEE Explore [26], ACM Library [1], and Elsevier ScienceDirect [16]. Examining
the quality, quantity, and relevance of results each round, the string is iteratively
revised to yield a set of more promising results. With each revision, we also take
care to ensure that the string is properly adapted to the syntax of each database
we query, so it retains the same search semantics. For reference, the aim was to
retrieve approximately 3,000 to 5,000 papers on the topic of various approaches
(basic emotion, constructivist, dimensional) in the field of affective computing.
In particular, we wanted to ensure that any constructivist approaches are repre-
sented and so take additional care to modify our search accordingly.

Between each iteration of the string was a process of experimenting with syn-
tax, search parameters, and sample searches to get ideas of how different key-
words were represented in the databases. For example, searches of just “affect”
and “affect NOT affective” were compared to get an idea of how many papers
might be captured by the homonym verb “affect” but not be related to emotion.
This assumes that a paper containing “affect” but not “affective” is less likely to be
about emotion and more likely to include the word as an incidental verb. Respec-
tively, “affect” alone returned 57k results in the IEEE database, and “affect NOT
affective” returned 56k, suggesting that the majority of papers included by the
term “affect” was probably not related to emotion or affective computing. This
informed the change from querying for “affect” to “affective.” Similarly, searches
of the names representing various emotion theories (i.e., Ekman for basic emo-
tion, Barrett for constructed emotion) returned very few results and so informed
additional changes. We arrive at the following string and have used it to conduct
our search: (“affective” OR emotion OR mood) AND (prediction OR inference)
AND (“basic emotion” OR “theory of constructed emotion” OR constructivist OR
Plutchik).

With the search strings finalized and the searches complete, we must proceed
with passing eyes over our results to begin collecting information and start answer-
ing the questions we posed in earlier steps of the survey process. This proves to
be an intensive process that examines papers in rounds with increasing levels of
detail. This and other ancillary tasks are as follows.



Constructivist Approaches for Computational Emotions 41

Table 1. Papers by Category. Theoretical papers are those that discuss applying a given
theory of emotion to affective computing. Implementation papers refer to those that
explicitly or implicitly use a theory of emotion in the creation of an affective computing
application. Datasets/Other refer to training data created for model prediction in a par-
ticular vein of emotion theory. Irrelevant papers and those whose theory is not apparent
have been omitted for clarity.

Category Number of papers

Basic Emotion –

Theoretical 38

Implementation 106

Datasets/Other 6

Subtotal 150

Dimensional Emotion –

Theoretical 18

Implementation 30

Datasets/Other 1

Subtotal 49

Constructed Emotion –

Theoretical 1

Implementation 2

Datasets/Other 2

Subtotal 5

Total 204

The first step to this larger task was exporting all of the 5500+ results from
our databases–often requiring page-by-page exporting–and saving them to a local
archive. A reference management software [29] was used extensively for this pur-
pose, as we were able to easily import paper metadata and abstracts in the bibtex
format into it. Once imported, then began the task of broadly classifying all of
the papers as irrelevant or relevant. If relevant, a paper was also organized by the
apparent theory of emotion the paper’s method ascribes to, based on the title and
abstract, and whether a paper appears to be implementation-based or theoretical.
If a paper was decidedly relevant but didn’t ascribe to either basic or constructed
emotion theory, it was placed in the Relevant/Other category. When classified, a
paper was marked as’skimmed’ to indicate completion and facilitate useful group-
ing and sorting functionality in JabRef. Table 1 summarizes this step.

To narrow down 5500+ papers manually tractable, some heuristics were
applied to classify papers as irrelevant. If a paper is: a) older than 2004, b) not
in English, c) lacking title or abstract, d) is an inaccessible book, or e) published
in a most likely irrelevant journal, it is classified as out-of-scope for this survey.
Note that we post-processed the resulting list to include some key papers pub-
lished before 2004. To illustrate the last criterion, an article published in Poultry
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Science or Poetics, for example, is most likely not relevant to our survey. These
heuristics a) and e) mostly culled results in pure psychology or neurobiology, as
well as other miscellany venues. Roughly four thousand results were culled from
our pool of 5,583 via these heuristics.

After irrelevant papers were sorted away and relevant papers coarsely classi-
fied into emotion theory groups, the relevant papers were passed over once more to
gather additional useful information. To gauge the relative popularity and impor-
tance of a paper in its field, we used citation counts. To accomplish this, paper
titles were used as queries into Google Scholar, and the citation count was gath-
ered into our JabRef archive as additional metadata.

Beyond coarse classifications, the second pass over relevant results involved
scanning titles and abstracts once more, with an eye on two particular aspects,
namely, the affective computing method used and its application, if one is appar-
ent (e.g., for gauging student interest in a virtual classroom setting). These two
aspects were concatenated and appended as additional metadata to relevant
results, in the form of the string, e.g., “artificial affective agents for human-robot
interaction,” for example. The purpose of this step was to get an idea of where
and how affective computing is frequently applied and what technologies are fre-
quently pursued.

Search Results. Final searches also included results from Engineering Village
[17], rounding out results with an additional 42 papers and completing the list
of databases that were recommended by Silva and Neiva [50] and were accessible
through our institutional resources. The final tally of results are as follows: 4,846
papers from ScienceDirect, 92 from IEEE, 604 from ACM Library, and 42 from
Engineering Village, for a total of 5,584 papers. Trimming the irrelevant papers
using the method explained in the preivous section, we ended up with 204 papers
as shown in Table 1 and Table 2.

As a qualitative overview, a couple of applications saw considerable represen-
tation in this survey, particularly facial emotion recognition (FER) and textual
emotion recognition (TER), the latter primarily for sentiment analysis applica-
tions. Interestingly, a non-negligible amount of papers discussed the application
of affect modeling for the sake of artificial affective agents, like game AI or human-
robot interaction. Another common application was multimedia sentiment anal-
ysis, mostly of videos and images, but occasionally of music, as shown in Table 2.

Outcomes. General classifications of papers into emotion theory groups fol-
lowed most of the original hypotheses. A significant portion of the relevant papers
fell under the basic emotion category (151 of 204 papers, nearly three quarters).
However, a significant amount fell under the “Other” category. A good amount
of these fell under a dimensional emotion approach, which assessed emotions
based on several dimensions – typically, but not always, these were of valence
(positive/negative) and arousal (high energy/low energy). Despite not explic-
itly addressing dimensional approaches in our search string, this is a surpris-
ing turnout that suggests that dimensional approaches are another popular con-
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Table 2. Papers by Application. A breakdown of collected papers by applied field.
Papers in the “other” category frequently discuss theory of applying a given emotion
theory to affective computing, as well as includes miscellaneous singleton applications.

Category Number of papers

Facial expression recognition 64

Textual emotion recognition 56

Speech-based emotion recognition 27

Biometric emotion recognition 22

Multimedia emotion classification 22

Multimodal emotion recognition 14

Other 8

Total 204

tender. The majority of the “Other”-categorized papers fell under “unspecified
other,” however, mostly because many papers made no implicit or explicit men-
tion of their approach for their emotion models. Many of them had ambiguous or
brief abstracts and titles that made categorization difficult from this short pass-
over and so have been dropped from the results to preserve a list of papers with
definitely known emotion theories. A closer reading of these papers yield mostly
basic emotion and dimensional emotion categorizations, and constructivist papers
represented only a little over 2 percent of all relevant papers.

Yet, finding even a few papers that fall under this non-prescriptivist con-
structed emotion heading is an important result that suggests interest in a
constructivist-informed approach to affective computing, especially in HCI. Below
we will summarize this particularly relevant paper as well as prominent and illus-
trative examples applying the other theories of emotion for future references.
Table 3 shows representative samples from the resulting survey database.

4 Discussion

After surveying the affective computing literature and examining a few notable
papers in-depth, we now revisit a few of our initial questions and draw conclusions.

Broadly, what does the field of affective computing look like in terms
of the theory of emotion? As initially expected, there seems to be a very signif-
icant representation of basic emotion theory at work in the field, informing many
papers on a variety of tasks, particularly emotion classification. Dimensional emo-
tion represents a significant second theory alive in the literature with a moderate
showing in the survey, though it is important to consider that the final query string
did not explicitly search for dimensional approaches. Having so many dimensional
papers turn up without”dimensional” literally within the search string may sug-
gest that dimensional papers represent a much greater portion than represented in
this survey. Another look, next time not focusing primarily basic emotion vs. con-
structed emotion may yield an answer to this open question and provide a more
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Table 3.A subset list of collected papers grouped by emotion theory category and sorted
by year published. The acronym EP refers to emotion prediction. BASIC refers to Basic
Emotion, DIM. refers to Dimensional Emotion, and CON. refers to Constructed Emo-
tion. For detailed discussions on the definitions of these, please refer to the main text.

Citation Author Year Category Mode and Methodology

[14] Domı́nguez-Jiménez et al. 2020 BASIC physiological signals EP; comparison of multiple methods

[2] Ahmad et al. 2020 BASIC text; English to Hindi emotion embedding transfer learning,
CNN/BLSTM

[54] Yadav and Vishwakarma 2020 BASIC movie trailer EP via ILDNet

[25] Hameed et al. 2019 BASIC respiration-based EP; FFT analysis

[18] Feng 2019 BASIC text; sentiment analysis of social media[...]

[12] Chatterjee et al. 2019 BASIC text; sentiment analysis using deep learning

[48] Sajjad et al. 2019 BASIC FER; Oriented FAST and Rotated BRIEF features supporting an SVM

[36] Löffler et al. 2018 BASIC affective agent; multimodal expression

[59] Zeng et al. 2018 BASIC FER; high-dimensional facial appearance features as input to DSAE

[5] Arnau-González et al. 2017 BASIC EEG EP; EEG feature combination

[65] Zhou et al. 2015 BASIC FER; emotion distribution learning

[58] Yu and Zhang 2015 BASIC FER; ensemble face detection, CNN

[30] Khezri et al. 2015 BASIC multimodal physiological signals, SVM/KNN

[57] Yu and Wang 2015 BASIC text; Twitter sentiment analysis

[40] Orellana-Rodriguez et al. 2015 BASIC multimedia affect contextualization

[61] Zhang et al. 2015 BASIC FER for AAAs, robust facial point detection

[34] Lin et al. 2015 BASIC AAAs for composite emotion study

[37] Majumder et al. 2014 BASIC FER using KSOM

[33] Kukolja et al. 2014 BASIC physio. EP method comparison

[60] Zhang et al. 2013 BASIC FER and topic analysis for affective agent

[44] Purver and Battersby 2012 BASIC text; automatic labelling for EP models

[27] Ilbeygi and Shah-Hosseini 2012 BASIC FER using fuzzy inference

[13] Chen et al. 2012 BASIC SER; multilevel models w/ SVMs

[52] Wu et al. 2011 BASIC SER using modulation spectral features

[31] Kim et al. 2010 BASIC text; comparison of unsupervised ER models

[28] Iliev et al. 2010 BASIC SER; glottal features on OPF model

[45] Quan and Ren 2009 BASIC text; creation of Chinese emotion corpus

[21] Gill et al. 2008 BASIC text; sentiment analysis via LIWC and LSA

[4] Alm et al. 2005 BASIC text; sentiment analysis via SNoW ML

[22] Goldman and Sripada 2005 BASIC FER via simulationist models

[35] Liu et al. 2003 BASIC text; ’common sense’ affect detection

[11] Calder et al. 2001 BASIC FER; PCA for facial features

[42] Pantic and Rothkrantz 2000 BASIC FER; facial action-based EP

[49] Scheirer et al. 1999 BASIC wearable FER for expression detection

[51] Wang et al. 2020 DIM text; sentiment analysis, regional CNN-LSTM

[64] Zhou et al. 2020 DIM FER via bilinear CNN

[53] Xiaohua et al. 2019 DIM FER; two-level attention with Bi-RNN

[62] Zhang et al. 2018 DIM multimodal smartphone-based EP

[3] Al Zoubi et al. 2018 DIM EEG-based EP via liquid state machine

[55] Yin et al. 2017 DIM multimodal physio. EP with SAE ensembles

[20] Giatsoglou et al. 2017 DIM text; sentiment analysis comparison

[63] Zhao et al. 2016 DIM user-unique image EP

[32] Koelstra and Patras 2013 DIM FER and EEG fusion for affect tagging

[39] Nogueira et al. 2013 DIM DIM. regression to BASIC physio EP

[24] Gunes and Schuller 2013 DIM DIM. vs. BASIC comparison survey

[56] Yoon and Chung 2013 DIM EEG w/ ML classifier

[41] Ortigosa-Hernández et al. 2012 DIM text; sentiment analysis w/ semi-supervised models

[10] Cai and Lin 2011 DIM EP for driving safety analysis

[38] Nicolau et al. 2011 DIM multimodal EP using BLSTMS

[23] Grimm et al. 2007 DIM SER emotion primitive analysis

[46] Rajcic and McCormack 2020 CON FER for affective poem generation
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accurate view of the affective computing field. As for constructed emotion, this
survey found that this theory has not quite taken a significant foothold in the lit-
erature yet, though the presence of the promising Mirror Ritual paper [46] may
be a sign of breakthrough and future growth of the theory in the literature.

What does a constructed emotion approach look like in affective com-
puting? Mirror Ritual [46] provides one possible answer to this question. We see
that this paper doesn’t necessarily reject the existing methods of basic emotion
classification and dimensional emotion prediction, but rather it leverages them
to achieve a slightly different goal than the others. Instead of aiming to directly
classify a user as experiencing a particular emotion (or as in some combination
of valence and arousal), the idea is to use whatever credence existing prediction
methods have to incorporate some form of generated art with the emotion the
model perceives. The model may or very well may not be correct, but its direct
assessment of the user is downplayed in favor of providing a tool for emotional
reflection. This way, a given user retains agency and self-definition of their own
internal state, choosing to integrate an emotionally relevant generated poem into
their own understanding of their feelings or reject an irrelevant one. In this formu-
lation, more accurate emotion prediction would be helpful, but if the capacity for
a computer to perceive emotion is fundamentally limited by stipulations posed by
constructed emotion theory, that is still okay. The ultimate goal is to create some-
thing evocative and emotionally salient for users, in some ways more in the wheel-
house of art than anything else. Furthering of constructivism in affective comput-
ing may very well resemble pursuits of AI art creation. This assessment provides
some valuable insight into our next question.

Would a constructed emotion approach be more effective than
approaches based on other theories? Given the above assessment, this ques-
tion may very well have been a flawed one to ask. Ultimately, the methods are not
necessarily competing, to begin with, as their goals are fundamentally different.
It doesn’t do much good to try and compare how accurately a basic-emotion pre-
dictive model classifies faces into emotion categories and how well a constructed-
emotion approach creates opportunities for valuable emotional reflection. One
may ask “Which will ultimately prove more useful to society and helpful to human
emotion modeling?”, but it stands outside of the scope of this survey.
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5 Conclusion

This survey has systematically examined over 200 papers in the field of affective
computing, and in doing so, has arrived at the following conclusions: (a) Basic
emotion classification and analysis tasks are presently the most popular, repre-
senting a majority of papers. (b) Facial, speech, and text-based emotion recogni-
tion tasks, regardless of emotion theory, are the most popular tasks in the field. (c)
Constructed emotion in affective computing does not compete with emotion pre-
diction methods of other stripes but instead utilizes them to achieve an entirely
different goal. (d) Constructed emotion approaches represent a tiny minority of
papers, but sample papers nonetheless represent potential for a new class of ’affec-
tive engagement’ HCI applications. Future directions include further exploration
into the potential of constructivist-based affective computing applications, the
creation of a constructed emotion HCI device prototype, and the pursuit of gen-
erative art models inspired by users’ emotions, as in the Mirror Ritual paper [46].
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Abstract. In this paper, we discuss the creative design of task
paradigms invented to study the social and theory-of-mind skills utilized
by humans and animals as well as the potential applications of these
paradigms in artificial intelligence research. We first present a detailed
review of 21 tasks from the cognitive literature. Next, we provide a
description of our process for translating these tasks into AI-suitable
environments, along with a detailed example using the competitive feed-
ing task paradigm. Finally, we discuss how a battery of these tasks would
be useful for building, training, and evaluating future artificial models of
social intelligence.

Keywords: Theory of mind · Reinforcement learning · Comparative
cognition · Developmental psychology

1 Introduction

In the late 1980s ecologist James Gould performed a series of experiments to
better understand honeybees’ navigational abilities [1], but these experiments
also ended up posing fascinating questions about bees’ social reasoning abilities.
In the first experiment, Gould captured several foraging bees and carried them
to a boat with flowers in the middle of a lake. These foragers then returned to
their hive and indicated the flowers’ location by dancing, but failed to inspire
any recruits to fly in that direction. Later, foragers were shown a new location
of flowers, in the same boat but now moved close to the opposite shoreline. This
time, their recruitment was successful.

Why did the bee recruits decide to “believe” the foragers the second time, but
not the first? While this example has a lot to do with mental maps, navigation,
and memory, it also involves bees reasoning about the beliefs of other bees in
relation to their own in a pretty sophisticated way.

“But wait!” the skeptical reader exclaims. “What if this wasn’t about beliefs,
but something more basic? What if the foragers simply smelled like lakewater,
or gave off some other basic cue, and recruits merely avoided following that
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smell/cue?” This very question was asked by experimenters, and they conducted
a followup experiment in which the entire hive was transported to a field with
flower stations at analogous relative positions.1

Now, while foragers enjoyed good food at both field sites and danced roughly
equally for both, recruits (presumably who had “not yet been out to note that the
lake has mysteriously dried up overnight” [2], p.100) still preferred the shoreline-
analogous location.

This example illustrates two important points motivating our work. First:
social and theory-of-mind (ToM) abilities (i.e., reasoning about the mental states
of the self and others [3]) are essential for intelligence in a wide variety of contexts
faced by a wide variety of species.

Second: studying these abilities requires extremely careful task designs. It can
be easy to design tasks that look like ToM tasks but that can be solved using
simple perceptual cues. The comparative cognition (nonhuman animal) literature
is rife with debates about ToM tasks and what they purportedly measure versus
what they actually measure e.g. [4,5].

In artificial intelligence (AI), social and ToM skills are receiving increasing
attention due to their essential role in settings involving cooperation and com-
petition, including in multi-agent settings as well as for human-machine teams.
And, while AI research has begun to pull inspiration from the rich literature on
biological social cognition, we propose that there is much to be learned on both
sides by bridging research across cognitive and computational approaches.

In particular, AI research is often driven forward by having concrete challenge
tasks in a specific domain (e.g., chess, Go, ImageNet ILSVRC). We observe that,
in the current AI literature, social and ToM tasks are often studied in isolation,
with different AI systems built to tackle one or a small set of related tasks, like
the ToMNet system [6]. On the other hand, collections of tasks in other areas
of AI have served to catalyze interesting lines of ensuing research, like ALE [7]
and the Animal-AI Testbed [8] for various single-agent scenarios, or Arena [9]
and MARLÖ [10] for multi-agent scenarios.

In this paper, we present our initial steps towards creating a new ToM-
Testbed for AI research, inspired by the human and animal ToM literature. We
envision the ToM-Testbed as containing a large suite of ToM tasks implemented
in a uniform gridworld environment like those commonly used in multi-agent
research. While our ToM-Testbed is still under construction, the contributions
of this paper include:

• A detailed review of 21 tasks (with multiple variants per task) from the human
and non-human animal ToM literature that are candidates for inclusion in
our ToM-Testbed.

1 How gullible are bees to this kind of house-swap? As the paper amusingly notes,
“Bees readily accept a new site as the home locale if the most prominent landmarks
are roughly equivalent, and substitutions of grass for water and vice versa are not
the most outrageous exchanges bees will tolerate” [2, p. 100].
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• A description of our process of translating tasks designed for humans and
animals to gridworld environments, with a detailed example using the com-
petitive feeding task.

• A discussion of specific ways in which the ToM-Testbed could be leveraged
in computational experiments to study ToM abilities, learning, transfer, and
more.

Our eventual goal is to be able to answer questions about ToM tasks and
models that were previously inaccessible. For example, which tasks are readily
solvable by off-the-shelf machine learning models? Does success at one set of
tasks by an artificially intelligent model seem to imply success at another? If
so, do models’ performances replicate findings in human childhood development
and the rest of the animal kingdom?

2 Background: Populations of Interest

Before diving into our review of specific tasks, we first present a high-level
overview of where significant pockets of research on social and ToM reason-
ing are to be found: 1) typical child development; 2) atypical development (e.g.,
autism); 3) non-human animals; and 4) artificial agents.

2.1 Typical Child Development

Tasks involving ToM have been vital for understanding child development. In
1983, [11] designed what became known as the Sally Anne task, a test of the
ability to attribute false beliefs to other people, that can be given to children.
Although false belief (FB) tests are popular and useful predictors of multiple
aspects of social skills’ development, other aspects of social cognition are exam-
ined independently. In Beaudoin’s et al. review of developmental ToM measures,
skills are divided into seven categories, each referring to the inference of and rea-
soning about others’ emotions, desires, intentions, percepts, knowledge, beliefs,
and non-literal communication [12].

Numerous theories about the ontogenetic development of ToM have been pro-
posed. Nativist theories maintain that children’s learning is largely independent
of environment, that evolution essentially hardwires social skills into their brains
[13]. ‘Theory theory’ focuses on the idea of a ‘conceptual revolution’ in which
children learn to formulate scientific theories [14]. Simulation theory is a view
that highlights the importance of pretend play in children, under the assumption
that the capacity for pretence is the mechanism that allows for ToM [15]. The
executive function hypothesis overlaps with simulation theory, and focuses on
the importance of ToM as a component of flexible planning and goal-directed
behavior [16–18].

ToM tests for human children frequently involve storytelling. Many types
of measurement are used, such as verbal question answering, making choices of
pictures or objects, making actions within a setting, or eye-tracking.
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2.2 Atypical Child Development

ToM is also a cornerstone of studying various trajectories of atypical child devel-
opment. For example, ToM has long been shown to develop and present in atyp-
ical ways in autism. Many (though not all) children on the autism spectrum
show difficulties in false belief tasks [19] and other areas of ToM [20], though the
sources and full effects of these differences are still not well understood.

As another example, deaf children who are born to hearing parents have been
observed to show ToM deficits similar to those shown by children with autism,
but similar deficits were not seen in deaf children born to deaf parents, who
presumably had the benefits of rich parent-based language exposure from early
infancy [21].

Research on ToM in atypical development can not only provide clues as to
ingredients and dependencies that support ToM in typical development, but also
can highlight how intelligent agents can develop compensatory strategies in the
absence of some of these ingredients or dependencies.

Much of this research has also yielded debates about specific ToM tasks, their
design, and what they measure.

2.3 Non-human Animals

There is longstanding and vigorous debate about the higher-level social and
ToM reasoning capabilities of nonhuman animals, usually studied as a function
of different species. Even nonhuman primates like chimpanzees show only limited
ToM abilities relative to what even young typically developing human children
can do. Even so, the gulfs in social and ToM abilities among different nonhuman
animal species are vast, with nonhuman primates and a handful of other species
(corvids, i.e., jays and crows, dolphins, domesticated dogs, etc.) showing quite
sophisticated abilities relative to other animal species.

In animals, ToM tasks are even more specific and difficult to interpret than
they are in humans. As such, their design is generally incredibly strict, with
researchers inventing increasingly ingenious controls to avoid null and alternate
hypotheses [5], like the Clever Hans effect.2 Furthermore, at times, animals pro-
duce puzzling results in which they succeed at one puzzle but fail at something
that seems (to us) to be much simpler.

Animals’ tests are restricted in form, as we cannot verbally explain rules,
stories, etc. to the subjects. Only certain kinds of responses can be measured for
the same reasons.

2.4 Artificial Agents

Recently, social skills have been the focus of much attention by AI researchers, so
some of the ideas from human and animal tests have been adapted for machine
use.
2 Clever Hans was a horse who was seemingly able to solve difficult problems of arith-

metic, but later found to be reliant upon his trainer’s involuntary body language
cues.
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Rabinowitz et al. developed ToMNet, a supervised learning system designed
to predict the actions, beliefs, preferences, and percepts of agents moving around
a gridworld environment [6]. In their study of ToMNet’s abilities, they design
computational variants of the Sally Anne test, a paradigm designed to test for
false-belief attribution in humans and animals [11].

Hernandez-leal et al. provide a thorough review of research in the field of
multi-agent deep reinforcement learning [22], including a discussion of algorithms
that perform some version of theory-of-mind reasoning in the context of adver-
sarial games.

From a slightly different angle, the work described in this paper is heavily
inspired by the Animal AI Testbed [8], which is a suite of first-person naviga-
tion challenges implemented in a three-dimensional environment modeled after
studies of animal intelligence, and in which many of the tasks have specifically
been deployed with animals in other research. Although it does not currently
include tests of social reasoning, its repertoire of 900 sub-tasks are all variants
of one of 12 animal cognition paradigms or 16 classes of environment used to
teach fundamental skills like basic exploration.

3 Review of ToM Tasks

We have conducted a detailed review of numerous widely-used ToM tasks from
the cognitive literature, mostly drawing from studies of non-human animals
(though several of these tasks have been used in human studies as well).

We present this review as a resource for AI researchers to get a sense of the
kinds of tasks used in the cognitive literature and to understand which of these
tasks are more or less difficult for our various animal brethren. These tasks are
also highly informative from the perspective of task designs, i.e., in identifying
when and how tasks might be solved using alternative (e.g., non-ToM) methods,
and how task variants can be combined to pinpoint the extent to which an
individual intelligent agent truly demonstrates certain capabilities.

We present an overview of studies we reviewed in Table 1, and we also present
narrative descriptions of all tasks in the Appendix. We have classified these tasks
into the kinds of ToM reasoning they entail: preferences, perception, intent,
knowledge, beliefs, deception, and other.

4 Translating Real-World Tasks into AI Tasks

We first describe some desiderata that we are using to guide our selection of real-
world (referring here to tasks designed for humans and animals) ToM tasks and
our implementation of them for AI frameworks. Then, we describe the process
of implementation for one example task.
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4.1 Desiderata

Just as there are almost always alternate explanations for observed animal
behaviors, performing well at a given example of these tasks does not neces-
sarily indicate success at any specific skill. We do not expect to be able to build
a system for testing models with outputs as convenient as “has ToM” or even
“can infer preferences of another agent”. Like the paradigms’ use for studying
animals, any particular test is subject to interpretation and criticism. For this
reason, our aim in translating these problems is to do so with a purely task-based
perspective.

That said, a task for an artificially intelligent agent should be as informative
and meaningful as possible. For each task variant, our goal is to create an artifi-
cial environment as close as possible to the original design. In human and animal
tests, intelligent controls are implemented to help ensure the results report on
their intended subject. By providing multiple variations of each task, with every
reasonable control and dependent variable available, we hope to provide the most
perspectives into models’ reasoning processes as possible. In fact, the computa-
tional nature of the tasks and models offers novel methods of observation that are
infeasible in the real world. Agents’ belief states may be quantified objectively
[6], their perceptions reported with perfect accuracy, and their ontological train-
ing process can be understood deeply, a stark contrast with any test performed
on humans and (especially) animals.

Due to tasks’ dependence on precursor knowledge, we attempt to retain com-
monalities between them when sensible. Tasks should involve the simplest per-
cepts and controls possible so that a completely näıve model does not need to
overcome too many unrelated learning hurdles to succeed. In Table 2, we hypoth-
esize commonalities of selected skills that may be necessary for the completion
of various tasks.

One of the benefits of using a visual task environment is the possibility of
these tests (in their reimagined formulation) being run in human or animal stud-
ies for comparison. The ability to run these same benchmarks with human sub-
jects of similar populations to previous studies will provide insight into both the
adequacy of our specific implementations as well as additional data reproducing
findings on the real-world versions of these tasks.
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Table 1. Social Cognition Paradigms. pret, ctrl, and test refer to the numbers of
individually defined pretraining, control, and test conditions. We consider measured
exposure to most task elements to be training, but certain elements assumed to be
understood (such as familiarization with the Likert scale) are not included. In several
cases, pretraining involves the prior tasks in the experiment,these do not count as
additional training tasks. Likewise, if a training task is used as a control condition, we
only count it once as a pretraining task.

Task Variant Species n pret ctrl test

Preference

Yummy-yucky [23] 14, 18month-old children 159 2 1 1

Multiple desires [24] Successive 5, 8 year-old children 20, 15 0 0 2

Simultaneous Children of various ages 75 0 0 4

Study 3 5, 7 year-old children 25, 25 0 0 2

Perception

Picture identification [25] Picture task 2–3;6 year-old children 16, 9 2 2 4

Appearance-reality [26] Testing Children of various ages >16 0 3 5

Teaching 3 year-olds 16 0 0 1

Intent

Two-action [27] Japanese quail 12 1 1 2

Distinguishing Int. [28] 2 and 3 year-old children 8, 8 1 0 2

Chimpanzees, orangutans 5, 5 1 0 2

Rational imitation [29] Head-touching 14-month-old children 36 0 0 2

[30] Preverbal infants 27 0 1 2

Accidental Trans. [31] Experiment 1 3–8-year-old children 162 0 2 2

Experiment 2 3–8-year-old children 46 0 2 1

Knowledge

Competitive Feeding [32] Did Chimpanzees 9 0 1 2

Who Chimpanzees 8 0 1 1

Which Chimpanzees 9 0 1 2

Knower-Guesser [33] Begging Wolves and Dogs 60 1 1 4

Bucket training Wolves and Dogs 8, 12 0 0 2

Goggles [34] Gaze following Chimpanzees 25 1 1 2

Competitive Chimpanzees 19 1 1 3

See-know task [35] Experiment 1 3, 4 year-olds 16, 16 0 2 2

Experiment 2 3 year-olds 12 0 4 4

Belief

Sally Anne [11] Standard Children of various ages 36 0 2 2

Exploration Kindergarten children 92 0 2 3

[19] Standard Human children 61 0 3 1

[36] Experiment 1 Great apes 43 1 0 2

Experiment 2 Great apes 44 1 0 2

[37] FB 1 2 year-old children 20 2 1 1

FB 2 2 year-old children 20 2 1 1

Ignorance vs. FB [38] Experiment 1 3, 4 and 5 year-old children 20, 20, 20 0 2 2

Experiment 2 3, 4 and 5 year-old children 24 24 24 0 2 2

Experiment 3 3;6 year-old children 22 0 2 2

Experiment 4 3 and 4 year-old children 18 18 0 2 1

Experiment 5 3–4 year olds 36 0 0 2

Experiment 6 4, 5 and 6 year-olds 12 12 12 0 2 3

Inhibitory FB [39] Negative desire 4 year-olds 16 0 3 2

Opp. behavior 4 year-olds 16 0 3 2

(continued)
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Table 1. (continued)

Task Variant Species n pret ctrl test

Deception

Penny hiding [40] 2–7 year-old children 106 1 0 1

Box-locking sabotage [41] One box Human children 87 1 1 4

Two boxes Human children 88 1 1 4

Back/forth forage [42] Chimpanzees 12 2 1 2

Unseen competitors [43] Ravens 10 0 2 1

Other

Mirror self-recog. [44] Mirror exposure Chimpanzees 4 1 0 1

Marking Chimpanzees, monkeys 4 4 1 1 1

Role-reversal [45] Chimpanzees 4 1 0 2

Table 2. Hypothetical commonalities between selected tasks. While Memory refers to
a requirement for the subject to have memory, DesiresA, SeesA, and FBA refer to the
subject’s inference of (i.e. attribution of) desires, vision, and false beliefs (FBs) in other
agents present in the task’s setting.

Task Memory DesiresA SeesA FBA

YummyYucky x

Two-action x x

Knower-guesser x x

Sally Anne x x x x

Finally, the testbed should be able to run quickly and in parallel for optimal
reinforcement learning training. The battery of tasks on the testbed should be
extensible, to accommodate the frequent development of new tasks by compar-
ative and developmental psychologists. The system should be open source to
enable rapid advances in social capabilities of AI.

4.2 Passive Observers and Active Participants

While some tasks involve observing and then answering questions, plenty require
an agent’s participation in the given setting. This requirement is not surprising,
given that many social skills exhibit themselves through cooperation and com-
petition with peers. The distinction between observational and interaction-based
tasks is not always clear, and many tests may be imagined in either light.

Our selection of a two-dimensional environment allows for multiple kinds of
input types (e.g. egocentric and allocentric worldviews, three-channel and ‘rich’
image formats), and should be amenable to both supervised and reinforcement-
learning models. To maintain consistency across task implementations, we ensure
that a human subject should be able to participate in all tasks with similar
inputs and controls. Although certain tasks make use of objects in different
ways, generally objects’ representations are retained across tasks (e.g. ‘food’ is
a green circle).
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4.3 Precursor Knowledge

All of the experiments for humans and animals require a wealth of precursor
‘common sense’ knowledge, such as object detection, memory, navigation, etc.

Many of these experiments are intended to be performed on a subject lack-
ing certain prior experience, but exactly what experience they can be allowed
to have is not clear. In Rabinowitz’ et al. implementation of Sally Anne, they
account for agents having novel goal preferences by training a multitude of agents
with random preferential permutations [6]. That way, ToMNet’s training involves
repeatedly learning other agents’ preferences from recent memory (ontogeneti-
cally). But can we expect the same of novel objects, like translucent glass? In
our task-based approach, we may generally approach these sorts of problems
by providing a multitude of training variants, e.g. a training set that includes
translucent glass and one that does not.

4.4 Implementation

Due to its ease of use, runtime speed, and imagistic representations, we opt
to adapt MarlGrid [46], a multi-agent fork of MiniGrid [47], an open-source
implementation of a gridworld for reinforcement learning in a setting that is
compatible with the popular OpenAI Gym [48].

4.5 Task Selection

For our initial set of tasks to consider for implementation, we select those with the
most apparent translations to gridworld environments. This set includes several
tasks that use verbal or image-based storytelling, as many of these stories can
be expressed with observable events.

As mentioned in Sect. 1, [12] divides ToM tasks into seven categories: emo-
tions, desires, intentions, percepts, knowledge, beliefs, and mentalistic under-
standing of non-literal communication. Although emotional understanding is a
valuable aspect of social intelligence, we opt to omit it from our tasks due to
the bounty of existing work in the field of affective computing and the difficulty
of translating the complexity of emotions to simplified systems. Likewise, non-
literal communication is a complex concept that cannot be easily translated to
toy environments due to its dependence on natural language understanding, so
we omit that category as well.

4.6 Detailed Example: Competitive Feeding

The competitive feeding paradigm is a test for specific ToM skills, like attribution
of seeing and knowing, to conspecifics in social hierarchies.

The competitive feeding paradigm requires two animals, one of whom—the
subject—is subordinate to the other in an existing social hierarchy. The two ani-
mals are kept on opposite sides of a central enclosure, separated from the enclo-
sure by barriers (a top-down view of this task is shown in Fig. 1). A researcher
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Fig. 1. General setups for experiments CF1 and CF2. Individual test conditions and
probe trials differ only in the sequence of changes to the environment, including the
ordering of doors opening, the opacity of the dominant’s door, and the food’s con-
ditional re-positioning. During the simulated ‘baiting’, the food object (green circle)
moves to overlap one of the green squares, where it is no longer visible to either agent.
Agents and doors are depicted as red triangles and yellow-barred boxes, respectively.
This specific setup differs slightly from [32] in that the subordinate cannot see the food
after this stage, and must remember its location. (Color figure online)

first places food on the subordinate’s side of one barrier (baiting), and later
moves it to the subordinate’s side of another barrier. Finally, both animals are
released, with the subordinate having a slight head start. Two conditions are
varied: whether the dominant’s door is open or closed during the first baiting, as
well as during the second baiting; and whether the subject can see the dominant
during the baiting.

This test attempts to distinguish ToM in animals by showing that the subject
attempts to get more food when it can see the dominant, and knows the dominant
does not know the location of food; i.e. whether the dominant’s door is closed
during the second baiting event. In other words, the subject must generate a
ToM of the dominant agent to accurately predict whether the dominant will
attempt to reach food at its first location or its second.

In [32], three experiments are performed, each with its own set of testing
conditions. During tests, the dominant’s door opens only once the subordinate
touches the floor of the central cage, or after thirty seconds, giving the subordi-
nate a head start towards the food. Probe trials are randomly interspersed, in
which food is placed in the open and both animals are released simultaneously.
The purpose of these probe trials is to make sure the subordinate animal does
not gain confidence in its ability to reach food before its competitor.

4.6.1 Experiment CF1a-d
The goal of experiment 1 is to test for the attribution of sight, or the answer
to the question “did she see it hidden or moved?”. Four testing variants are
used, with names referring to the dominant’s condition: Uninformed, in which
the subordinate has vision of the dominant, but the dominant is unable to see
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the baiting; Control uninformed (competitor informed), in which both subjects
may see one another and the dominant observes the baiting; Misinformed, in
which subjects see one another as food is placed, but then the dominant’s door
is closed and the food is moved to a new location; and Control misinformed
(competitor informed), in which food is moved as in Misinformed but in view of
the dominant.

4.6.2 Experiment CF2a-c
Experiment 2 requires the subject to distinguish who saw it hidden, of multiple
potential competitors. Two dominant competitors are placed in cages opposing
the subject, but only one witnesses the baiting. The two test conditions are each
simply releasing one of each of the competitors: the one who witnessed or the
one who did not witness the baiting. It is made apparent to the subject which
competitor will be released before it is released.

4.6.3 Experiment CF3a-d
Experiment 3 uses multiple food objects to study whether the subject can under-
stand which piece is seen hidden by a competitor. Now, there are three food
locations, and two pieces of food are placed during the baiting. The same four
conditions as experiment 1 are used, except the dominant always sees the first
baiting, but only conditionally witnesses the second baiting or the movement of
one piece of food.

4.6.4 Experiment CF4a-i
[4] argue the competitive feeding paradigm does not distinguish theory of mind
from non-mentalist problem solving. In this version, there are n (e.g., 5) lanes,
each with a food bucket with hidden contents. After initial exposures, nine sep-
arate conditions are presented randomly to the subjects, eliminating the possi-
bility of solution via a single, simple strategy.

4.6.5 Further Details
The subject should be pretrained until familiar with several concepts, including
that food is hidden under similarly-colored tiles; that competitors have simi-
lar perceptions, actions, and goal-driven intentions (they will always attempt to
take the food if they see it); and that doors have three distinct states that some-
times change spontaneously: open, closed (opaque), and closed (transparent).
Precursors CF0, then, are designed to integrate all three of these concepts in
randomly generated settings.

5 Discussion: Challenges and Promise

Despite its theoretical and demonstrated usefulness in both the natural world
and in artificial settings, the cognitive requirements—fulfilling both necessity
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and sufficiency—of ToM are not well understood. These abilities are rare in
the natural world, so logic dictates they must be either very difficult to create
or are only useful in niche circumstances. By implementing a cognitive model
that demonstrates these abilities, and by testing that model in a variety of
environments, we may learn what is necessary and sufficient for the model’s
success, and which environmental conditions encourage agents to train and make
use of such a model, even at significant cost to the agent.

We hypothesize that ToM’s presence alongside other advanced cognitive abil-
ities in the human repertoire is no coincidence; many of the abilities we consider
uniquely human (e.g. compositionality, etc.) have roots in the same core men-
tal constructs. Given the recent success of [6] at training an agent to correctly
answer questions regarding other agents’ false beliefs, we believe a similar imple-
mentation will provide an excellent starting point for further development.

While developmental psychology has produced evidence of somewhat-regular
sequential orderings, or stages, in which skills often emerge [49], the understand-
ing of skills’ intrinsic dependencies in the field of artificial intelligence is fairly
underdeveloped. Transfer and curriculum learning are already massive fields of
study, but—perhaps due to AI’s relatively more easily accessible nature—these
studies tend to aim to capture the admittedly more alluring concept of skills
themselves rather than rote task performance.

One potential direction for our ToM-Testbed will be to organize tasks accord-
ing to a ladder or graph of dependencies, based on findings from the human and
animal literature. Then, we can examine these dependencies in the context of
transfer learning and curriculum learning. For instance, to what extent does
training on precursor tasks result in more efficient or more robust higher-level
ToM abilities?

6 Conclusion

In this work we addressed the immense potential in leveraging the diverse tasks
invented by biologists and psychologists to study ToM in animals for AI research.
The development of these tasks initially required careful planning to overcome
the many alternate intelligent and unintelligent explanations of animal behavior.
We examine 21 tasks from the cognitive literature, including many more sub-
tasks, for their eligibility in a battery of tests for the training and evaluation
of artificial agents. We present a brief description of the setup and goal of each
task examined, found in the Appendix. After discussing the desirable properties
of a ToM-Testbed, we examine the process of translating one task, competitive
feeding, to a simplified multi-agent gridworld environment. Finally, we discuss
how the endeavor of understanding ToM skills may present a challenging frontier,
but also the promise of helping us—and our bots—better understand each other.
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Appendix A ToM Task Descriptions

Preferences

Yummy-yucky. The Yummy-yucky task is designed to tell whether a subject
is able to attribute preferences to an experimenter [23]. First, the subject’s pref-
erences are established by allowing them time with two bowls of different foods.
An experimenter tries one food and then the other, and makes expressions of
either disgust or happiness. The experimenter requests food from the subject by
placing their palm halfway between the bowls.

Multiple desires[24] test for children’s ability to attribute multiple desires
to another being. In these tests, children are told a story, and are then asked
to answer specific questions, either verbally or by choosing a picture of what
might happen next. Three variants are tested: successive desires, simultaneous
and contradictory desires, and scenarios involving false beliefs.

Perception

Picture Identification. The picture identification task is a simple task of
perspective-taking ability [25]. A subject is shown a flat occluder with a pic-
ture on both sides. The occluder is rotated so that one side faces the subject,
and one faces the experimenter. The subject is then asked questions such as
what it is able to see, what the experimenter is able to see, and whether the
experimenter can see the picture on the subject’s side of the occluder.

Appearance-Reality. The appearance-reality task is a general framework for
distinguishing whether a subject has the ability to understand that objects’
appearances and true natures sometimes differ [26]. For example, a red car held
behind a green pane of glass might appear black. Experimenters question sub-
jects about their perceptual experience and reality (e.g. “What color is the car
really?”) under different circumstances, such as when the car is only partially
occluded by the green pane.

Intent

Two-action. The two-action test is a general framework for differentiating imi-
tation and emulation in animals [27]. Experimenters demonstrate one of two
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methods by which a subject may achieve a reward. The subject’s behaviors are
then recorded and compared with control subjects’ behaviors without demon-
stration.

Distinguishing Intentions from Accidents. In this task, subjects choose
one box out of three based on a mark placed by the experimenter. In each trial,
two boxes out of the three are marked, one intentionally and one (by way of
observed performance) accidentally. Subjects are rewarded for choosing the box
which the experimenter marked intentionally [28].

Rational Imitation. The rational imitation task is similar to the two-action
test, but in this variant the demonstrator is sometimes shown to have a reason
for performing a task in an inconvenient way, e.g. using their head to flip a light
switch because their hands are occupied [29,30]. Now we may compare whether
a subject truly understands the demonstrator’s goal-oriented behavior, as the
subject might reason that they are able to use their hands to complete a task
rather than directly imitating the demonstrator.

Accidental/Moral Transgression. In this task, a subject is presented with
a story involving either an accidental or a moral transgression [31]. An acciden-
tal transgression would be a mistake made by a character due to their lack of
understanding, i.e. a false belief. For example, a character might throw a bag in
the trash without knowing it contains another character’s prized possession. A
moral transgression would have the same outcome in the story but is performed
intentionally by the character. The subject is asked numerous questions about
the scenario similar to those in the Sally–Anne task, but including additional
questions about whether characters should be punished and why.

Knowledge

Competitive Feeding. The competitive feeding paradigm requires two ani-
mals, one of whom (the subject) is considered subordinate to the other in their
social hierarchy [32]. The two animals are kept on opposite sides of an enclosure
with two barriers. A researcher first places food on the subordinate’s side of one
barrier, and later moves it to the subordinate’s side of another barrier. Finally,
both animals are released, with the subordinate having a slight head start.

Knower-Guesser. The knower-guesser paradigm is a commonly used method
for determining whether animals can attribute concepts such as ‘seeing’ and
‘knowing’ [33]. It also allows a nonverbal subject to directly participate in an
interspecific exercise rather than simply observing. Two human experimenters,
the Knower and the Guesser, are presented to an animal subject. The Guesser
leaves the room (or has their gaze somehow occluded), while the Knower places
food in some location that is not visible to the subject. The Guesser returns,
and then both Knower and Guesser point to places where they think the food
is located. The subject may then search one container for food and keep it as a
reward.
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Goggles. Because a subject of a knower-guesser test might employ a number
of non-mentalistic strategies, in the goggles/visor test the difference between
knower and guesser may only be correctly inferred by generalizing from first-
person experience with an occluding object [34]. In this variant, the subject
spends some time with an object that appears opaque from a distance, like gog-
gles or a wire screen. This object may be either opaque or translucent. Then,
a test like knower-guesser is performed, with the experimenter’s vision being
occluded by the object. In the test, the object is always opaque, so the experi-
menter is truly blind and the subject has no chance of seeing their eyes.

See-Know. This task is similar to the Knower-Guesser task, with the exception
that the evaluation is verbal in nature [35]. In one version of the task, the subject
is either the Knower or the Guesser, while the other role is played by a puppet.
The Knower then observes the process of hiding a toy in a box and the subject is
quizzed on whether they or the puppet know the color of the toy in the box. In
the other variant, there are two puppets which play both roles, and the subject
is asked to attribute knowledge about their knowledge and percept to either of
them.

Beliefs

Sally Anne. The Sally Anne test, also referred to as the standard FB test or
the change-of-location FB test, is a commonly used test for the attribution of
false beliefs [11]. The prototypical Sally Anne test, first used in 1985 by [19],
involves the use of puppets to tell a short story. Sally places her toy in one
location, and then leaves the room. Next, unbeknownst to Sally, Anne moves the
toy to a new location. Finally, Sally returns to look for her toy. Several control
questions establish that the subject understands the basic story elements such as
the characters’ names and the toy’s location. The subject is then asked: “Where
will Sally look for her toy?”

Ignorance and False Belief. While false belief tasks require some form of
advanced understanding of somebody else’s mental state, understanding igno-
rance of certain knowledge in others is likely an easier task. The tasks for testing
ignorance in others follow a similar pattern as False Belief tests, with the modi-
fication that the subject is directly asked if the other participant is aware of the
location of the manipulated object [38].

Inhibitory FB. The inhibitory false-belief test is intended to explain successful
performance at the Sally Anne test [39]. In addition to having true or false
beliefs, characters might have positive or negative desires. In the negative desire
condition, the Sally character wants to look in a container where the hidden
object is not located. In the Opposite behavior condition, Sally is introduced as
an odd person who always does things she does not want.
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Deception

Penny-Hiding. The penny-hiding game is a simple test of deception [40]. Dur-
ing training, an experimenter repeatedly allows the subject to guess which of
their closed hands hides a penny. Rather than leave the results to chance, in
some number of trials both hands contain a penny, and in other trials neither
does. For the test, the roles are reversed: the subject is asked to hide a penny in
one of their hands, and the interviewer guesses which. The subject’s hands are
visible during the hiding, so they may only hide the penny’s location by repeat-
edly passing it between their hands or imitating the same action. Subjects are
graded by the experimenter based on their apparent use of deceptive strategies.

Box-Locking. The box-locking test examines subjects’ abilities in settings that
allow for sabotage and verbal deception [41]. First, puppets are introduced to the
subject along with rewards for ‘success’: the friendly seal shares what it finds,
but the thieving wolf takes everything for itself. In both settings, a reward is
hidden in a box, and the subject is tasked with making sure the seal is able to
find the reward, but the wolf is not. In the sabotage setting, the child is able to
use a key to lock the box, physically preventing a puppet character from opening
it. In the deception setting, the child is asked by the puppet character whether
the box is locked, and the child may lie to prevent it from attempting to open
the box. A minor variation involves the use of two boxes, so the child may lock
either one, or may lie about the location of the reward.

Back-and-Forth Foraging. This task studies whether subjects are able to
ascribe their own reward preferences to competitors [42]. Two rewards are hidden
under boards on a platform, as viewed by the subject. One of the boards has a
hole below it so that that board is flat after the reward is put under it, while
the other one is slanted. The platform is then presented first to the competitor,
who has to choose one of the reward items. Then, the platform is presented to
the subject, who has to decide which reward to pick. In a control condition, the
subjects do not display strong preference towards either reward in the absence of
the competitor. The social condition tests whether the subject determines that
the competitor would go for the reward under the slanted board and choose the
other.

Caching Food from Unseen Competitors. While changes in food caching
behavior of scrubjays in the presence of competitors has been well-documented,
most experiments allow the subject direct access to the conspecific’s gaze. This
task seeks to test whether ravens can use the fact that unseen competitors have
visual access to their food-caching behavior and alter their behavior based on
that [43]. The subject is put in a room and audio recordings of other scrub-
jays are played from behind a closed window which has a peephole in it. The
subjects are made aware to the presence of the peephole by the experimenter.
The task tests whether the subjects infer the presence of competitors in the
adjacent room by the sound and alter their behavior based on the assumption
that the competitor can see them through the peephole.
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Other

Mirror Self-recognition. Mirror self-recognition tests are generally tests for
bodily self-awareness [44]. A subject is given exposure time with mirrors, with
increasing proximity. In some observational variants, experimenters observe the
subject and rate its behaviors as social (e.g. trying to communicate with the
mirrored self), versus self-directed (e.g. using the mirror to help clean its own
teeth). Often researchers will paint a marking on a subject’s body in a loca-
tion that would otherwise be undetectable to them, such as their forehead. The
subject may then touch the mark after being exposed to it via the mirror.

Role-Reversal. The role-reversal test is similar to the penny-hiding test, but
in a cooperative scenario instead of competitive [45]. Using the same apparatus
as for the knower-guesser test, a subject is trained to take on one of two roles:
the informant, or the operator. The other role is performed by an experimenter.
The informant is able to see where food is hidden, and may communicate that
information to the operator. The operator then pulls a lever and shares the food
with their partner. Success is determined by the operator’s correct choice of food
location. After subjects learn their roles successfully, they are given the alternate
role and tested for their ability to complete the new task without training.
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30. Gergely, G., Bekkering, H., Király, I.: Rational imitation in preverbal infants.
Nature 415(6873), 755–755 (2002)

http://arxiv.org/abs/1901.08129
https://doi.org/10.1007/978-1-4899-1286-2_10
https://doi.org/10.1007/s10458-019-09421-1


Social Cognition Paradigms ex Machinas 71

31. Killen, M., Mulvey, K.L., Richardson, C., Jampol, N., Woodward, A.: The acci-
dental transgressor: morally-relevant theory of mind. Cognition 119(2), 197–215
(2011)

32. Hare, B., Call, J., Tomasello, M.: Do chimpanzees know what conspecifics know?
Anim. Behav. 61(1), 139–151 (2001)

33. Udell, M.A., Dorey, N.R., Wynne, C.D.: Can your dog read your mind? under-
standing the causes of canine perspective taking. Learn. Behav. 39(4), 289–302
(2011)

34. Karg, K., Schmelz, M., Call, J., Tomasello, M.: The goggles experiment: can chim-
panzees use self-experience to infer what a competitor can see? Anim. Behav. 105,
211–221 (2015)

35. Pillow, B.H.: Early understanding of perception as a source of knowledge. J. Exp.
Child Psychol. 47(1), 116–129 (1989)

36. Krupenye, C., Kano, F., Hirata, S., Call, J., Tomasello, M.: Great apes anticipate
that other individuals will act according to false beliefs. Science 354(6308), 110–
114 (2016)

37. Southgate, V., Senju, A., Csibra, G.: Action anticipation through attribution of
false belief by 2-year-olds. Psychol. Sci. 18(7), 587–592 (2007)

38. Hogrefe, G.-J., Wimmer, H., Perner, J.: Ignorance versus false belief: a develop-
mental lag in attribution of epistemic states. Child Dev. 57, 567–582 (1986)

39. Leslie, A.M., Polizzi, P.: Inhibitory processing in the false belief task: two conjec-
tures. Dev. Sci. 1(2), 247–253 (1998)

40. Gratch, G.: Response alternation in children: a developmental study of orientations
to uncertainty. Vita Humana 7, 49–60 (1964)

41. Sodian, B., Frith, U.: Deception and sabotage in autistic, retarded and normal
children. J. Child Psychol. Psychiatry 33(3), 591–605 (1992)

42. Schmelz, M., Call, J., Tomasello, M.: Chimpanzees know that others make infer-
ences. Proc. Natl. Acad. Sci. 108(7), 3077–3079 (2011)

43. Bugnyar, T., Reber, S.A., Buckner, C.: Ravens attribute visual access to unseen
competitors. Nat. Commun. 7(1), 1–6 (2016)

44. Gallup, G.G.: Chimpanzees: self-recognition. Science 167(3914), 86–87 (1970)
45. Povinelli, D.J., Nelson, K.E., Boysen, S.T.: Comprehension of role reversal in chim-

panzees: evidence of empathy? Anim. Behav. 43(4), 633–640 (1992)
46. Ndousse, K.K., Eck, D., Levine, S., Jaques, N.: Emergent social learning via multi-

agent reinforcement learning. In: International Conference on Machine Learning,
pp. 7991–8004. PMLR (2021)

47. Chevalier-Boisvert, M., Willems, L., Pal, S.: Minimalistic gridworld environment
for openai gym. GitHub (2018)

48. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)

49. Piaget, J.: Piaget’s theory. In: Inhelder, B., Chipman, H.H., Zwingmann, C. (eds.)
Piaget and His School, Springer Study Edition, pp. 11–23. Springer, Heidelberg
(1976)

http://arxiv.org/abs/1606.01540


Evaluating Artificial Social Intelligence
in an Urban Search and Rescue Task

Environment

Jared Freeman1(B) , Lixiao Huang2 , Matt Wood1 , and Stephen J. Cauffman2

1 Aptima, Inc., Woburn, MA 01801, USA
jaredtfreeman@gmail.com, wood82@gmail.com

2 Arizona State University, Phoenix, AZ 85004, USA
{lixiao.huang,scauffma}@asu.edu

Abstract. Human team members show a remarkable ability to infer the state of
their partners and anticipate their needs and actions. Prior research demonstrates
that an artificial system can make some predictions accurately concerning artifi-
cial agents. This study investigated whether an artificial system could generate a
robust Theory of Mind of human teammates. An urban search and rescue (USAR)
task environment was developed to elicit human teamwork and evaluate infer-
ence and prediction about team members by software agents and humans. The
task varied team members’ roles and skills, types of task synchronization and
interdependence, task risk and reward, completeness of mission planning, and
information asymmetry. The task was implemented in Minecraft™ and applied in
a study of 64 teams, each with three remotely distributed members. An evaluation
of six Artificial Social Intelligences (ASI) and several human observers addressed
the accuracy with which each predicted team performance, inferred experimen-
tally manipulated knowledge of team members, and predicted member actions.
All agents performed above chance; humans slightly outperformed ASI agents
on some tasks and significantly outperformed ASI agents on others; no one ASI
agent reliably outperformed the others; and the accuracy of ASI agents and human
observers improved rapidly though modestly during the brief trials.

Keywords: Artificial Intelligence · Social science · Theory of Mind

1 Introduction1

Teams succeed through coordinated actions by members who differ in their capabilities
and roles. Teams achieve this coordination using domain-specific, oftenmission-specific,
compositions of training, talk, technology, and Theory of Mind (ToM) [1, 11]. The first
three techniques help teammembersmanage the scope of the fourth, ToM,which enables
teammembers to infer the capabilities and goals of teammates, predict their actions, and
coordinate or compensate to improve teamwork.
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Training—by which we mean education, planning, rehearsal, and repeated mis-
sion execution—demonstrably develops members’ ability to predict the responses of
colleagues to challenges, coordinate actions, and improve performance [10, 14]. Such
preparation is essential over all missions but typically inadequate for any given mission
because training cannot perfectly anticipate a specific mission (nor should it if it is to
ensure generalizability of learning across potential variants of the mission).

To compensate for the inadequacy of training, teams communicate in real time using
spoken language (e.g., military air control communications protocols) and symbolic
language (e.g., the marking conventions used by search and rescue teams). These com-
munication protocols range from the formal to the informal. They convey among team
members much of what any member knows, needs, or intends at the moment. How-
ever, communications are often inaccurate, incomplete, untimely, or unavailable (e.g.,
in military operations).

Technologies designed to improve team coordination can compensate for the
inevitable inadequacies of training and talk. MacMillan et al. [9] describe applications
of multi-objective optimization, simulation, and empirical research to design teams that
are better sized and synchronized, and thus outperform standard teams in empirical and
computational studies. The rich literatures of operations research and robotics describe
techniques formakingplansmore efficient, robust, or resilient, andplanningmore rapidly
[c.f., 7]. Real-time social network analysis and related techniques have been used to help
military commanders assess and improve teamwork in their organizations in near real
time [2]. In many military operations, sophisticated technologies represent the state of a
mission on displays and recommend or enact responses to threats, thus automating what
would otherwise require human coordination (c.f., Aegis doctrine for automatically exe-
cuting tactical actions defined by policy). Such technologies are, however, not available
in all domains at all times, nor competent or trusted by their users in all situations.

Through training, talk, and technology, team members scope, develop, and maintain
mental models of their teammates, or Theory of Mind (ToM). They use these models
when training, talk, and technology are insufficient to coordinate with team members.
More specifically, ToM enables team members to infer the cognitive and affective state
of teammates, their goals, and their needs; to predict teammates’ actions; and to develop
guidance and actions that coordinate work. Such inference is ineluctable, difficult, and
errorful.

Recent research explores whether we can develop a Machine Theory of Mind
(MToM) to offload from humans some of the burden of developing, validating, main-
taining, and applying ToM of teammates. Rabinowitz et al. [12] demonstrated that meta-
learning could be used by an artificial system tomake accurate inferences and predictions
concerning artificial agents. Suchwork, if extended tomodelmultiple human teammem-
bers, might be called Artificial Social Intelligence (ASI) or Machine Theory of Teams
(MToT). ASI could potentially generate advice that improves teams in the most difficult
of circumstances, those in which team members are highly varied in their capabilities
and capacity, task synchronization is complex, there is risk of failure at high stakes,
preparation and information are incomplete, communication is encumbered, and thus
the necessity and difficulty of building ToM is high.
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Research to develop ASI requires collaboration between computer scientists and
social scientists. DARPA sponsors this research in a program called Artificial Social
Intelligence for Successful Teams (ASIST). ASIST engages six teams in the develop-
ment of ASI; six teams in social science research intended to improve ASI inference,
prediction, and intervention; and one team (our own) that is focused on experimental
design, testbed development, and evaluation. Below, we briefly describe the design of
the most recent study to advance ASIST [6] and the initial findings from evaluation of
the accuracy2 of MToM applied to human teams.

2 Method

2.1 Experiment Design and Task Environment

Development and evaluation of ASI require a team task that systematically demands and
complicates the generation of ToM. The domain of Urban Search and Rescue (USAR)
instantiates many of the attributes of such a team task (enumerated above and in Table 1).

Table 1. Comparison of teamwork features in USAR and a Minecraft USAR simulation.

Team attributes USAR features Minecraft ASIST task features

Skills & roles USAR requires heterogeneous
teams (different roles); individual
and team tasks

Three team members and three
possible roles; individual and team
tasks

Task synchronization Temporal constraints with
asynchronous, sequential, and
simultaneous tasks

15 min missions to rescue victims
in tasks requiring asynchronous,
sequential, and simultaneous
teamwork

Risk Hazards, unexpected events for
workers

Hidden freeze plate in rooms

Reward Some victims more severe, triage
necessary

Critical victims vs. regular victims
(high vs. low reward)

Preparation Planning is important Planning session was manipulated

Information Incomplete information on victim
and blockage location

Maps are incomplete

Communication Verbal comms & searched areas
marked to communicate with team

Audio & marker blocks for
comms (Divergent marker keys
create conflicting mental models)

2 We are agnostic to the genesis of ToM in humans, whether it be an innate capability to apply
theory (the “theory theory” account of Gopnik, 1992) or mental simulation (Gordon, 1986) to
infer and predict. Training, talking, and technology, discussed above, are data sources for both
mechanisms, whether building theory from empirical data, or specifying input conditions and
operating rules for simulation. The genesis of human ToMmay be an inspiration for the design
of MToM, but it is not a constraint assessment of accuracy, which is our current focus.
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A USAR task environment was built using Minecraft, which provides a lightweight
method to simulate the task constraints that a typical USAR team might encounter [3,
8]. A study was designed in which teams of three were tasked with finding and rescuing
victims of two types, regular and critical, in 15-min missions. Each team member could
choose from three roles (a searcher—finding and relocating victims, a medic—treat
victims, and an engineer—removing rubble). Task costs and rewards varied: regular
victims could be rescued by a single medic in 7.5 seconds for 10 points each; critical
victims required three team members to join together to “wake” the victim from a coma,
after which amedic could rescue the victim in 15 seconds for 50 points each. A few threat
rooms had hidden freeze plates that could immobilize any team member who enters the
room and require rescue by a medic teammate. Each of 64 teams of remotely distributed
members executed two different missions in the same virtual building but with different
victim and rubble layouts. Mission order was counterbalanced between teams.

To control the degree to which the team shared a model of roles, goals, and strategy
at the start of missions, we manipulated the opportunity to plan together. 32 teams in a
planning condition were given three minutes to develop a plan for approaching the task
before the second trial. 32 teams in a control condition performed math problems for
three minutes instead.

To control the distribution of starting knowledge over team members, we provided
maps that displayed one building section to all members, a unique section to each mem-
ber, andhid sections fromallmembers (seeFig. 1). Themaps accurately showed locations
of fallen rubble and victims.

Fig. 1. An example map depicts building structure and, in two white areas, victims and rubble.
Maps for two other players reveal victims and rubble in the left bottom and central bottom, and
in the central top and bottom top.
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To control the agreement of knowledge between team members, we provided con-
flicting definitions (or legends) for three marker blocks carried by all members to lay
as signals to others; the colors of marker blocks designate the ownership (e.g., partic-
ipant “Red” lays red marker blocks), but the symbols (1, 2, and 3) on marker blocks
are the same between team members. Two members received a legend in which the
marker block labelled 1 meant “no victim here”, marker block 2 meant “regular victim
here”. One member received the same marker blocks, but the definitions were reversed
in the legend (see Fig. 2). All members received a marker block 3 defined as “critical
victim here”. This conflict in marker block meaning enabled us to apply a variant of the
“Sally-Anne” test of Theory of Mind, in which the ASI must infer whether one member
will enter a room given potentially false beliefs about the meaning of another’s marker
block [12, 13]. Maps and marker block legends were displayed during each trial, to help
participants form and execute search and rescue strategies (see Fig. 3).

Fig. 2. A marker block legend with “reversed” meaning. (Color figure online)

In sum,we created a between-within groupmixed experimental design. The between-
group factor was planning (with or without) before the second trial. The within-group
factor was two missions of equivalent difficulty in terms of victim and rubble layout.
At the individual level, we also manipulated the three versions of information maps for
different known regions, and two versions of marker block legends. Individual tasks and
interdependent tasks were designed to allow us to study and ASI to model individual
taskwork, two-member coordination (in response to threat rooms), three-member coor-
dination (to rescue critical victims), as well as individual and team navigation and rescue
strategies.
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Fig. 3. Participant interface displays the information map (top left), marker block legend (bottom
left), and Minecraft (right).

2.2 Participants

201 participants (67 teams) were recruited from Reddit, Discord, and a University list-
serv with the requirement of playing Minecraft, living in the United States, speaking
English, and having a normal color vision. Three teams’ data were omitted due to flaws
in displaying the information map and marker blocks). The remaining 64 teams (192
participants) consisted of 141 males, 49 females, and 2 individuals who declared other
gender identities or preferred not to respond. The mean age of participants was 22.04
(SD= 5.22, ranging from 18 to 49). Themost common ethnicities were white/Caucasian
(54.2%; 104), Asian (25.8%; 49), and Hispanic or Latino (13%; 25). All participants
had at least a high school level education.

2.3 Procedure

The remotely conducted two-session experiment lasted for 3.5 h. In Session 1 (one hour),
participants checked in to install the required software (e.g., Minecraft, Forge mods, and
Zoom™) correctly and then finished pre-dispositional surveys. In Session 2 (which ran
two and a half hours), three qualified participants were required to join as a team to go
through a voice-over training video, a hands-on practice of required individual actions
and team interactions in the Minecraft™ world, an independent action-based Minecraft
competency test, and then two formal missions. Participants filled out survey sections
after each step in Session 2. Consent forms were attained at the beginning.
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2.4 Data, Metrics, and Measures

The study used 469 survey items to elicit or quantify 22 constructs spanning demograph-
ics, individual differences (e.g., personality, spatial ability, game experience), accuracy of
Theory of Mind, and teamwork process and climate. The testbed message bus registered
all experimental metadata (e.g., the specific assignment of marker block legends and
maps to participants, and identifiers of trials and teams) and all events in the Minecraft
world (e.g., moving, using tools, and rescuing a victim), their timestamps, locations,
and the entities involved. In addition, the study captured experimenters’ Bird’s-eye view
videos of trials (see Fig. 4); Zoom™ videos, audio, and transcriptions; as well as various
abstractions of the data (e.g., field of view, semantic translation of location, speech act
classes).

Fig. 4. Bird’s-eye view displays Zoom speakers’ identity and participants’ game views (top) and
the mission space (bottom).

ASI agents generatedmeasurements relevant to fourmetrics of accuracy (seeTable 2)
using various combinations of the data above.Humanobservers generatedmeasurements
on the four metrics from Bird’s-eye view videos that presented participants’ locations
on the building map, their first-person views, and their voice communication. Both ASI
agents and human observers’ performance was evaluated over 24 trials (18.75% of 128
experimental trials) that were held out for use in testing ASI (thus not available for
training ASI).
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Table 2. Metrics for ASI agents and human observers.

Metric ID: function ASI agent & human
observer infer/predict

Measure

M1: Prediction of effects of
future interventions

Team score (3x per trial at
fixed times)

Normalized RMSE, or RMSE
divided by the mean of all
team scores for each trial
1–NRMSE presented here to
match the direction of other
measures

M3: Inference of member
mental model/knowledge

Given map information (3x) Mean accuracy. Guessing
computed as the conditional
probability of correctly
guessing the first then second
of three map options in each
trial, or 1/3 × 1/2 = 1/6

M6: Inference of member
mental model/knowledge

Given marker block
meanings (3x)

Mean accuracy. Guessing
computed as conditional
probability of correctly
guessing the first then second
options. Value is 1/3 since one
of two labels is twice as
frequent

M7: Prediction of action given
member beliefs (Sally-Anne)

Room entry in response to
another participant’s marker
block (many per trial)

Mean accuracy. Guessing
computed based on random
selection of ‘did enter’ or ‘did
not enter’ room for each
occurrence

3 Artificial Social Intelligence

Six program performers were tasked with designing and building ASI created distinctly
different agents to process the data from this experiment into inferences and predictions.

The University of Arizona team, led by Adarsh Pyarelal, used dynamic Bayes net-
works (DBNs) to model individual and team activity states and mental states (ToM),
using in-game participant behavior, natural language processing, and speech analysis.

The SIFT team, led by Chris Geib, employed MC Tree Search over learnable action
grammars to generate multiple candidate explanations for observed behavior. Explana-
tions included explicit ascriptions of ToM beliefs for each agent. The system then used
weighted model counting over the explanations to probabilistically infer the most likely
mental states and asymmetric beliefs between team members.
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The team from University of Southern California, led by David Pynadath, applied
recursive POMDPs as candidate participant models with ToM, constructed by combin-
ing a RDDL specification of the domain with perturbations along domain-independent
dimensions. The ASI agent performed Bayesian inference to update beliefs over these
candidate models based on observed team and individual behavior.

The team from DOLL/MIT, led by Paul Robertson, generated narratives from sto-
ries that represent, for each team member, a story of the team. The Narrative provided
a rationale for the past and predictions for the future. This ASI agent also used mecha-
nisms for inverse planning, probabilistic ToM, probabilistic conditional preference, story
understanding (Genesis), and learned player capability, such as speed.

The team from Carnegie Mellon, led by Katia Sycara, implemented a modular neu-
ral network Theory of Mind (ToM) model that infers an individual’s beliefs, goals and
intentions from observations and environmental context; introspection resolves devia-
tions between predicted and observed behaviors. Combined ToM models of teammates
provided reasoning over shared mental models, team processes and produce appropriate
individual and team interventions.

The team from Charles River Analytics, led by Bryan Loyall, created a Cognitive
Inverter that uses probabilistic programming to recognize goals, behaviors, and mental
states from open world observations. A Strategic Coach will select the most effective
interventions, based on principles from interactive narrative research.

4 Findings

Anevaluation compared inferences andpredictions by sixASI agents to a humanbaseline
of three observers for M1, M3, and M6, as well as that of two observers for M7, and to a
guessing baseline that assumes a random draw from a known distribution for the possible
response options. As summarized in Fig. 5, the human baseline was higher (better) than
the performance of all ASI agents on eachmetric, andwhen computed both as an average
rank (human baseline rank= 1.0, average ASI agent rank= 4.2) and in terms of average
performance over median value on each measure (human baseline= 0.12, ASI agents=
-0.01). No one ASI agent consistently outperformed the others. The variation between
agents is likely due to differences in approach. Variation between humans andASI agents
may be due both to differences in their respective inference and prediction methods, and
variations in the data that fed those methods. ASI agents consumed testbed message bus
data; humans used mainly video and audio. These data sources differ in representation
of information and in the information they represent. Humans and ASI agents performed
better than guessing in nearly all cases; average performance over guessing was similar
between the human baseline (0.47) and ASI agents (0.35) but varied somewhat bymetric
(see Fig. 6).
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Fig. 5. Accuracy of human observers (triangle) and artificial agents (circles) on four tests of social
intelligence.

Fig. 6. Accuracy of human observers (yellow) and average of artificial agents (blue) on four tests
of social intelligence. Error bars where provided represent ± 1SE.

For those measures on which agents performed most similarly to each other (M1 and
M6), agent accuracy tended to improve over time within each trial (see Figs. 7 and 8).
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Fig. 7. Accuracy predicting final score (M1) thrice per trial, measured as 1-NRMSE. Guessing
would result in a score of zero on this measure.

Fig. 8. Percent accuracy for inferring marker block semantics (M6), an indicator of false beliefs.

The results collectively suggest that these ASI agents were able to reliably predict
team score (M1) and actions of individual members (M7), infer divergent beliefs (M3),
and infer false beliefs (M6). However, the ability of these ASI agents to infer false beliefs
(M6) and predict future actions related to false beliefs (M7) lags further behind human
capabilities than their ability to predict future performance (M1) and infer divergent
beliefs (M3).
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ASI agents were also able to take advantage of information within the trial as it
progressed. This suggests that these ASI agents learned something about the structure
of the task and team coordination that enabled them to assess performance (M1) and
false beliefs (M6) more accurately as the trial progressed. In the case of performance
scores, ASI may have been able to take advantage of decreasing variance in scores as
the trial progressed and the diminishing likelihood of accruing more points by rescuing
victims. In the case ofM6, ASI agents had additional opportunities to observe participant
behavior related to marker block placement and movement given others’ placement, and
therefore allowed ASI agents the opportunity to update prior beliefs on the likely marker
block assignment for each participant. Agents did not reliably increase the accuracy of
their inferences concerning divergent map information (M3). Analyses by other program
researchers indicate that participants often did not use the information provided bymaps.
Thus, participant planning, navigation, and communication may have held few of the
cues that ASI presumably needed to infer that distribution.

5 Conclusions

This study developed a rich search and rescue simulation that elicits human taskwork and
teamwork. ASI agents successfully used data from this environment to make inferences
and predictions that often approached the accuracy of those made by human observers,
though ASI and humans used somewhat different data sources (e.g., ASI used message
bus traffic and humans used video). The qualitative rationales of the human observers,
now under study, may provide insights to refine the design of ASI agents. The rich data
provide many opportunities to analyze the relationships between the survey-based vari-
ables and action-based variables to further develop reliable and generalizable Machine
Theory of Mind (MToM) in the urban search and rescue task environment.

The generalizability of these findings will be tested in planned research. In a 2022
experiment, we will introduce significant perturbations in the task, such as deprivation
of communications or changes in task structure or rewards. In research after that, we
plan to change the task domain. We predict that ASI will generalize if they develop and
maintain an accurate MToT, that is if they are focused not on individual USAR tasks,
but on teamwork skills such as leadership, backup behavior, and communication.

Future research will also develop ASI agents that advise teams by leveraging the
inferential and predictive abilities enabled by a MToT. That research will evaluate the
effects of ASI interventions on team performance, team process, and team member
perceptions of the utility and trustworthiness of the ASI designed to aid them.
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Abstract. Task environments developed in Minecraft are becoming
increasingly popular for artificial intelligence (AI) research. However,
most of these are currently constructed manually, thus failing to take
advantage of procedural content generation (PCG), a capability unique
to virtual task environments. In this paper, we present mcg, an open-
source library to facilitate implementing PCG algorithms for voxel-based
environments such as Minecraft. The library is designed with human-
machine teaming research in mind, and thus takes a ‘top-down’ approach
to generation, simultaneously generating low and high level machine-
readable representations that are suitable for empirical research. These
can be consumed by downstream AI applications that consider human
spatial cognition. The benefits of this approach include rapid, scalable,
and efficient development of virtual environments, the ability to control
the statistics of the environment at a semantic level, and the ability to
generate novel environments in response to player actions in real time.

Keywords: Artificial social intelligence · Procedural content
generation

1 Introduction

Minecraft [3] has recently emerged as an attractive platform for artificial intel-
ligence (AI) research [7,8,10,13,15,16,19,23] owing to its popularity, ease of
instrumentation and modification, and its ability to support complex tasks
in an open-world environment [31]. A voxel-based game environment such as
Minecraft’s is well-suited for designing controlled AI experiments, as it enables
researchers to access and manipulate precise details of the environment without
having to deal with complications such as curvature or deformable objects.
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However, most Minecraft environments currently used in AI research [9,10,
17] are constructed manually, thus failing to fully take advantage of a unique
possibility afforded by a virtual environment - namely, the ability to generate
environments procedurally.

In this paper, we present mcg, a library for procedurally generating voxel
environments for AI research. The library is part of the ToMCAT project [7],
which is developing a suite of modular, open-source AI technologies to support
human-machine teaming and a Minecraft-based testbed to evaluate them. The
design of mcg addresses a number of requirements for AI research that are not
sufficiently addressed by existing approaches.

The rest of the paper is organized as follows. In Sect. 2, we discuss why pro-
cedural content generation (PCG) is particularly important in the context of
controlled experimental research. In Sect. 3, we describe our approach in rela-
tion to other existing work on PCG for AI research in Minecraft. In Sect. 4, we
describe how mcg integrates higher-level semantics into the PCG workflow to
support human-machine teaming research. In Sect. 5, we present the core classes
implemented in mcg, and in Sect. 6, we describe existing and potential integra-
tions with downstream AI applications. In Sect. 7, we present a tutorial that
illustrates the usage of the library. Finally, we conclude in Sect. 8 by summariz-
ing progress, noting limitations, and describing our plans for future work.

2 PCG for AI Research

There are a number of reasons to favor procedural content generation over man-
ual environment creation in a research context. We discuss the key ones in this
section.

2.1 Parametric Generation

When designing an environment for human and artificial agents to perform tasks
in, it is desirable to have fine-grained control over certain features of the envi-
ronment, as they can have significant effects on task performance. For example,
in a recent simulated urban search and rescue (USAR) experiment [17], a direct
correlation was observed between the size of the number of rooms in the build-
ing and the participants’ performance on the task. Similarly, other factors that
influence their performance include the number of victims, their distribution in
the building, and the presence and locations of obstacles that inhibit navigation.

Depending on the objectives of the experiment, some of these features will be
control variables and others will be independent variables. In the case of features
that serve as control variables, it is likely that the values of these variables are
settled upon through a process of iterative experimental design. For example,
designers of a synthetic USAR task environment (e.g., [9,17]) will likely need
to try a few different values for the number of rooms, the number of victims,
the number of blockages, etc. in order to arrive at a configuration that satisfies
the experimental requirements. Note that while we use a running example of a
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USAR task in this paper, the approach we are proposing is general enough to be
applicable to any task environment that requires navigation and human spatial
reasoning.

A top-down procedural generation approach allows for rapid iteration over
these different configurations, resulting in an accelerated experimental design
process. As an example, we can go from a gridworld environment with four cells
to one with 400 cells simply by changing a single parameter (see Fig. 1).

(a) 2 × 2 gridworld (b) 20 × 20 gridworld

Fig. 1. Gridworlds. Two examples of gridworlds generated using mcg. The size of the
gridworld (i.e., the number of rooms) is controlled by a single parameter that is passed
as an argument to the generator executable.

Similarly, randomizing the environment is important for certain types of
experiments. Indeed, this can be viewed as a special case of parametric gen-
eration, with the random seed serving as the parameter to be varied. In Fig. 2,
we show four possible dungeon layouts obtained by varying the size and random
seed parameters passed to a dungeon world generator implemented using mcg.

2.2 Controlling the Statistics of Generated Scenes

In experiments where environments matter, they should not be limited to what
designers intuitively create. For example, simply saying “maybe this complex
needs a cul-de-sac” to investigate how that would affect participants’ frustration
levels in USAR scenarios does not lead to careful science. Instead, one should
create a hypothesis such as ‘being forced to turn around leads to frustration’,
and be able to generate various scenes with and without this attribute that are
otherwise similar. For example, one might use various world pairs that differ
in whether or not there is a passageway. Variation is needed to help establish
that differing results are likely due to the manipulation targeted at testing the
hypothesis rather than some other attribute of a world created haphazardly
because the researcher thought adding a cul-de-sac was an interesting idea.
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(a) 4 × 4 grid, random seed = 0 (b) 8 × 8 grid, random seed = 0

(c) 4 × 4 grid, random seed = 1 (d) 8 × 8 grid, random seed = 1

Fig. 2. Parametric Dungeon Generation. Dungeons generated with different grid
sizes (4 × 4 and 8 × 8) and random seeds (0 and 1), using a simplified variant of
the constraint-based algorithm described in [20]. We define an N × N grid, and then
randomly select a number of grid cells to place dungeon rooms on. There are two types
of rooms that can be ‘spawned’ on a grid cell. The stone brick rooms (grey) contain
diamond blocks as treasures for the player to gather, and ‘wither skeletons’ as monsters
for the player to battle. The ‘nether’ brick rooms (brown) contain gold block treasures
and ‘blaze’ monsters, and are more difficult to navigate, as they have randomly placed
patches of lava that the player can fall into if they are not careful. The stone brick rooms
also contain randomly placed spiderwebs on the walls for aesthetic purposes. Finally,
we connect the rooms with stone brick corridors. Notably, we take a modular approach
to generation - each type of room is defined using a class that inherits from the AABB

class described in Sect. 5.1 - the treasures and monsters are placed when the room is
instantiated, rather than after all the rooms have been placed and interconnected. This
gives us a lot of flexibility. For example, the class that corresponds to the stone brick
rooms could be instantiated for some of the cells in the gridworld environment in Fig. 1
(thus setting up an interesting surprise for players who may not have been expecting
to battle skeletons in a USAR scenario!). (Color figure online)

Put differently, features proposed for exploring hypotheses should appear in
different contexts with well defined probabilities to guard against confounding
effects between the presence of the feature and its possibly unique or statistically
biased context. While this could be arranged manually, doing so is tedious and
harder to get right. On the other hand, specifying the environments procedurally
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forces researchers to be more clear about the logic of their experiment, makes
development easier as modifications can be studied rapidly, and better supports
extensions, scaling, and repeatability.

2.3 Changing the World in Response to Player Action

The ToMCAT project is mandated to support a large range of behavioral psy-
chology studies into team performance. It is easy to construct scenarios where
we will need to change the Minecraft environment as a function of what the
human players are doing, their affective state, brain activity (using EEG or
fNIRS equipment), and where they are in the virtual environment. As such, it
is not predictable where, and hence precisely what the needed modification will
be. For example, suppose we are interested in how robust a team’s performance
is to unexpected events such as a room collapse when the team members cannot
see each other. To do this, we would need to programmatically collapse a room
in the task environment according to a defined stochastic process, but only when
they are out of view of each other. Notably, the room that needs to collapse is
not known in advance. While we could have a single room collapse model man-
ually specified for each room, the awkwardness of this approach amplifies with
each additional changeable feature. For example, a second room collapse entails
being ready for any two rooms to change in any order.

Currently, mcg supports this kind of programmatic change in a scalable man-
ner, since the high-level representation it outputs provides semantic ‘hooks’ that
a Minecraft mod can leverage to preserve the desired collapse models across task
environments with different numbers of rooms, varied room layouts, and scenar-
ios in which different numbers of rooms will need to be collapsed. While the
existing executables built using mcg write files to disk, it is conceivable that the
library could be used to provide a ‘PCG as a service’ program that can generate
complex environment specifications on the fly.

2.4 Task Environments as Code

Initially, the task environments for the ToMCAT project were built manually,
rather than procedurally. As the experimental design evolved, it became quickly
apparent that we would need to keep track of the different versions of the task
environment, so that (i) it would be easy to revert back to an older version if
necessary, and (ii) the version could be added to the provenance for a given
experimental trial.

While source code management (SCM) systems (e.g., git [2]) excel at version
management, they are designed for text files rather than binary files such as
the ones corresponding to the manually-constructed Minecraft environments.
Managing binary files (especially ones that are liable to change frequently, as is
the case with an iterative experimental design process) with SCM systems results
in the source code repository getting bloated, hindering developer productivity
and collaboration.
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For these reasons above, we decided to maintain versions of the binary save
files on a public server that developers could access. However, we soon realized
that this approach had its own share of problems, the most troublesome of which
was the fact that every change to the environment required manually uploading
the updated binary files to our server, making it easy for the environment to get
out of sync with the source code of the ToMCAT Minecraft mod.

Switching to procedurally generated environments addresses all of these
issues - taking an ‘environment as code’ approach allows us to effectively lever-
age SCM systems to manage environment versions, making tasks like reverting
back to a previous version or comparing versions much easier than with man-
ually constructed environments. In addition, we no longer have to worry about
manually synchronizing the task environment and the code that interacts with
it - the SCM system takes care of this for us.

3 Decoupled PCG for Rapid Iteration

There exists prior work on procedural generation to support AI experiments
in Minecraft. Notably, Project Malmo [19] provides a declarative XML-based
API to specify ‘missions’, including the parametric generation and placement of
individual blocks, entities, and simple structures such as spheres and cuboids.
In addition, it supports implementing custom procedural generation algorithms
as Java classes in the Malmo mod and exposing them via the XML API.

However, the procedural generation capabilities in Project Malmo are tightly
coupled with Minecraft itself - to view the results of a procedural generation algo-
rithm implemented in a Malmo class, one would need to recompile the Malmo
mod and relaunch Minecraft with it loaded. This process is fairly slow and does
not fit well into a workflow that involves the need for rapid iteration through
environments. Ideally, there should be a way to visualize the outputs of proce-
dural generation without having to launch the full game.

In contrast, our library is decoupled from Minecraft - it outputs declarative
specifications of an environment that can be consumed by other downstream
applications, including a Minecraft mod that can translate the specification into
in-game entities, blocks, and structures. The data structures and algorithms in
our library are general enough that they could be used for any other voxel-based
environment - the only things that would need to be modified are the labels for
the block and entity types.

4 Connection to Human Spatial Cognition

One of the primary motivations for developing mcg was to explicitly inject high-
level semantic information (labels of relevant locations and structures, layout and
topology, etc.) into the generation process. The Malmo API and the Minecraft
Forge event bus give us access to low-level information about the positions of
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the player and individual blocks in the environment. However, humans tend
to reason about their environment at a high level of abstraction using spatial
reference systems [30]. For example, a human carrying out tasks in a Minecraft
environment will tend to think about rooms and the spatial relations between
them rather than the individual blocks that the structures are comprised of.

Furthermore, humans rely on high-level spatial representations of their envi-
ronment for navigation [12]. These representations have been hypothesized to
take the form of Euclidean maps [24] or graph-like representations [32], though
there is evidence that both representations may be simultaneously maintained
and used in different contexts [25].

One way to incorporate high-level semantics is by manually specifying loca-
tion boundaries, labels, and hierarchies after an environment is built. However,
this method is prone to human error and bottlenecked by the time it takes for
humans to annotate regions and identify area boundaries in a pre-built map.
This method will certainly not scale to large or stochastically generated maps.
In contrast, the mcg library takes a ‘top-down’ approach, producing the following
machine-readable representations simultaneously, in lockstep with each other.

– High-Level Representation (HLR): Also known as a ‘semantic map’,
this is a JSON file that contains information about the labels and locations
of areas, their connections with each other, and their hierarchical relation-
ships, as well as the Entity and Object instances in the environment. This
representation supports linking explicitly to human spatial cognition, as the
locations and their spatial relations to each other form a machine-readable
representation of a global spatial reference system [30].

– Low-Level Representation (LLR): This is a JSON file that contains
low-level information about all the blocks and entities in the environment.
Among other uses, this representation can be consumed by a Minecraft mod
to generate an environment procedurally, but with the actual PCG algorithms
offloaded to the mcg library.

These specifications can then be used by other programs, some examples of
which we describe in greater detail in Sect. 6.

5 Approach

The mcg library provides a set of core components that can be extended and
composed to design rich voxel-based task environments. In this section, we briefly
describe these components1 and the design philosophy behind them, followed by
a tutorial on how to use the library.

1 The full documentation for the C++ API can be found at https://ml4ai.github.io/
tomcat/cpp api/index.html.

https://ml4ai.github.io/tomcat/cpp_api/index.html
https://ml4ai.github.io/tomcat/cpp_api/index.html
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5.1 Core Classes

Pos. This class represents a point in the 3D integer lattice
(
Z
3
)

[22] - or in other
words, a vector in a 3D Euclidean space with its Cartesian components restricted
to integer values, reflecting the voxelated nature of the Minecraft environment.

AABB. An axis-aligned bounding box (AABB) is an elementary cuboidal struc-
ture that can be efficiently represented using a pair of 3D coordinates that corre-
spond to vertices on opposite ends of one of its space diagonals. The AABB class
instantiates an empty cuboidal space that effectively serves as a blank canvas to
implement PCG algorithms in. For example, one could implement Perlin noise
generation [26,29] to add water blocks within an AABB made of grass to create a
water body, or constrained growth algorithms [14,21]. AABBs of different types
can be defined using mcg by subclassing the AABB class, and can be manipulated,
nested, and combined to produce complex structures (see Fig. 3).

Block. This class represents a single Minecraft block with a given material and
position. It allows for fine-grained placement of individual blocks in the game
environment - for example, the diamond and gold treasure blocks in Fig. 2.

Entity. This class represents an entity that is to be placed in the task envi-
ronment, The constructor for this class takes two required arguments - the type
and position (a Pos object2) of the entity, and a set of optional arguments cor-
responding to the different equipment types that a Minecraft entity can have.
We use this class to generate and place the wither skeletons and blazes in the
dungeons in Fig. 2.

World. This class represents the overall environment, and contains the lists of
the AABBs, Blocks, Entitys, Objects and Connections in it as class attributes.

Object. An object represents a Block with some additional semantics. An
instance of this class contains information about an id, type, and Block associ-
ated with the Object. It is particularly useful in cases where a block holds some
semantic meaning, like the victim blocks in [17].

Connection. The Connection class represents a spatial connection between
AABBs. It is meant to encompass a variety of structures that can fall under the
semantic label of ‘connection’ - it can be used to represent both ‘point-like’ con-
nections (e.g., a door between rooms) and ‘extended’ connections (e.g., a corridor
that connects two locations). Some care must be taken with Connection objects.
Unlike entities and objects in an AABB that will be automatically moved to the
appropriate locations when an AABB undergoes spatial translation, Connection
objects will not be so reliably updated. However, since Connection objects can
be stored in AABB objects and World objects, a potential workaround for this
would be to instantiate connections dynamically when AABBs are moved around.

2 While Minecraft allows for the components of the Cartesian coordinates of Entity

objects to be double-precision floating point numbers, we restrict them to be integers
in mcg for simplicity.
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Fig. 3. Axis Aligned Bounding Boxes (AABBs). We use AABBs as the semantic
building blocks of mcg. They can be combined and nested into larger AABBs to form
complex structures that are addressable as semantically meaningful components. In
this figure, we show an example of a location hierarchy formed by nesting AABBs.
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6 Applications

The machine-readable high-level and low-level representations that are simulta-
neously produced by mcg can be consumed by a number of downstream appli-
cations. We divide them into two broad categories: agents and non-agents.

As mentioned earlier, mcg is being developed as part of the ToMCAT project
[7], which is in turn part of DARPA’s Artificial Social Intelligence for Success-
ful Teams (ASIST) program [11]. The testbed developed for the program [9]
publishes real-time measurements of each participant’s state, environment, and
actions in Minecraft to an MQTT message bus [4], along with data from other
sources such as physiological sensors and pre and post-task questionnaires.

The term ‘agent’ is a fairly overloaded one. However, in this paper, we use the
term to refer to programs that the various ASIST performer teams are developing
that subscribe to topics on the message bus, process it in a streaming manner,
and publish their outputs back to the message bus, where they can potentially
be used by other, downstream agents.

In contrast, we use the term ‘non-agents’ to mean software components that
are not primarily designed to process streams of information. The potential
applications and their relation to the high and low level representations are
shown in Fig. 4.

Fig. 4. Applications. In this figure, we show the existing and potential integrations of
mcg. The agents (the PyGL-FoV and location monitor agents, natural language dialog
systems, plan recognition and planning systems) can potentially exchange data with
each other, but we do not show those connections in order to focus on how the HLR
and LLR are used by the agents.
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6.1 Non-agents

mcgen. The mcgen program is being developed for ToMCAT experiments, and is
representative of generator executables that can be built using mcg. The envi-
ronments shown in Fig. 1, Fig. 2, and Fig. 5 are all generated using mcgen.

mcgviz. mcgviz is a Python script included with mcg, that takes the HLR and
LLR output by mcg to produce visualizations of the environment. Using the
HLR, it can construct either a graph structure (e.g. Fig. 5a) or a ‘blueprint’
style visualization showing a top-down view of the AABBs in the generated
environment (see Fig. 5b). It can also combine the LLR and HLR to provide a
more detailed map with individual colored patches corresponding to the different
types of blocks in the environment.

Fig. 5. Three different views of the same ZombieWorld environment. To construct
this environment, we define an enclosing boundary AABB to which we add two main
components, a ZombieWorldGroup and a ZombieWorldPit. The ZombieWorldGroup

is a building with two rooms, internal doors and a zombie and villager, while the
ZombieWorldPit is a pool of lava or water, depending on how it is initialized. We place
these structures in a 3 × 3 grid such that when it is time to place a ZombieWorldPit,
we randomly choose whether to fill it lava or water or skip placing the pit entirely. We
also add two internal walls within the enclosing boundary.

ToMCAT Mod. The ToMCAT mod is a Minecraft mod that builds upon the
Malmo Mod [19] with additional functionality for human-machine teaming
research. Currently, the LLR produced by mcg is consumed by the ToMCAT
mod to construct the in-game environment (see Fig. 5c).

6.2 Agents

LocationMonitor. The LocationMonitor agent developed by IHMC [1] for the
ASIST program uses a ‘semantic map’ - that is, the HLR output by mcg - to
construct an internal representation of named locations (e.g. rooms, hallways)
with their boundaries and connections to other named locations. Using this inter-
nal representation, it monitors the player’s position (in Cartesian coordinates)
and publishes a message to the message bus whenever a player goes from one
named location to another.
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PyGL-FoV. PyGL-FoV [5] is an agent that uses observations of the Cartesian
coordinates of the player, the pitch and yaw of the gaze vector of their Minecraft
avatar, and a low-level representation of the environment to compute whether
certain blocks of interest are visible on the player’s screen at any given time.

Dialog Systems. There is growing interest in using Minecraft as an environment
to develop dialog-enabled artficial agents [7,13,18]. Dialog systems such as the
ToMCAT DialogAgent3 rely on a taxonomy of concepts to ground natural lan-
guage extractions to. In order to ground to specific locations that are referred to
by participants (especially if they have been provided a blueprint with the loca-
tion labels beforehand), the taxonomy will need to incorporate location names
- the HLR produced by mcg can be used to automate the construction of the
spatial portion of the taxonomy.

Planning and Plan Recognition Systems. The HLR produced by mcg contains
information about named locations and their connections to each other - it can
be used to automatically construct portions of planning problem specifications
related to spatial information. For example, the connectivity information in the
HLR can be used to automatically generate a number of predicates such as
connected(L1, L2) (i.e., AABBs L1 and L2 are connected), and the hierarchical
relations in the HLR can be used to construct predicates such as contains(L1,
L2) (i.e. the AABB named L1 contains the AABB named L2), etc.

Probabilistic Modeling Systems. Probabilistic models of participants performing
tasks in Minecraft (e.g., [27]) can also make use of the HLR produced by mcg to
construct initial concise internal representations of the task environment.

In general, developing AI agents with machine social intelligence will require
some kind of explicit high-level environment representation to reason about the
beliefs, desires, and intentions of their human partners. mcg treats this high-level
representation as a first-class citizen in its generation framework.

7 Tutorial

In this tutorial, we showcase some of mcg’s capabilities and demonstrate how to
use the classes described in Sect. 5. The goal of this tutorial is to create a house
with two rooms and a zombie in a purely programmatic manner.

7.1 World Setup

We start by creating an empty world. In a file named mcg tutorial.cpp, we
add the following:

3 https://github.com/clulab/tomcat-text.

https://github.com/clulab/tomcat-text
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#include "mcg/World.h"
using namespace std;

class TutorialWorld : public World {
public:

TutorialWorld () {};
~TutorialWorld (){};

};

// Create the world and write the JSON output to file.
int main(int argc , char* argv []) {

TutorialWorld world;
world.writeToFile("semantic_map.json", "low_level_map.json");
return EXIT_SUCCESS;

}

This minimal program will produce two files, semantic map.json and
low level map.json that correspond to the HLR and LLR respectively. The
LLR is used by the WorldBuilder class in the ToMCAT Minecraft mod to con-
struct the environment. At this point, the generated world will be empty4.

7.2 Creating a Room

We now add a single room to this world. To do so, we define a class Room that
extends AABB, and whose constructor takes a string identifier and a Pos object
representing the top left corner of the room5.

...
#include "mcg/AABB.h"

class Room : public AABB {
public:

Room(string id , Pos& topLeft) : AABB(id) {}
~Room(){};

};
...

Note that we invoke the superclass constructor, which sets all instances of
Room to have a material type of blank and the coordinates of the top left and
bottom right corner set to (0, 0, 0). To turn this blank Room into an actual room,
modify the constructor as shown below.

...
Room(string id , Pos& topLeft) : AABB(id) {

// Set the base material to be ’log’
this ->setMaterial("log");

// Define the object’s boundaries
Pos bottomRight(topLeft);
bottomRight.shift(5, 4, 5);
this ->setTopLeft(topLeft);
this ->setBottomRight(bottomRight);

}
...

4 To actually view the generated environment in Minecraft, you can use the script
tools/run mcg tutorial that is included in the repository.

5 By the ‘top left’ corner of an AABB, we mean the corner with the lowest values of
the X, Y and Z coordinates.
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This gives us a room made of logs with a 6×6 block base and a height of five
blocks. Finally, modify the TutorialWorld constructor to place a Room instance
at (1, 3, 1)6. The constructor should now look as follows:

...
TutorialWorld () {

Pos topLeft(1, 3, 1);
auto room1 = make_unique <Room >("room_1", topLeft);
this ->addAABB(move(room1));

};
...

7.3 Adding Details

We now add some details to this room - namely, a floor, roof, windows, and a
zombie (see Fig. 6a) - by adding the following to the Room constructor.

...
// The floor should be made of planks
this ->generateBox("planks", 1, 1, 0, 4, 1, 1);

// Add windows made of glass
this ->generateBox("glass", 0, 5, 1, 1, 1, 1);
this ->generateBox("glass", 5, 0, 1, 1, 1, 1);
this ->generateBox("glass", 1, 1, 1, 1, 0, 5);

// Add a roof (will be made of logs)
this ->hasRoof = true;

// Add a zombie
mt19937_64 gen; // Random number generator engine
Pos randomPos = this ->getRandomPos(gen , 1, 1, 1, 2, 1, 1);
auto zombie = make_unique <Entity >("zombie", randomPos);
this ->addEntity(move(zombie));
...

Note that the coordinates passed to the generateBox method are relative to
the AABB itself, so we do not need to respecify them when placing a second room.

7.4 Multiple Rooms

Finally, we combine two Room instances to create a house. To do so, we create a
second Room instance and add both rooms to an enclosing AABB. This is done by
adding the following code to the TutorialWorld constructor:

...
Pos topLeft(1, 3, 1);
auto room1 = make_unique <Room >("room_1", topLeft);
auto room2 = make_unique <Room >("room_2", topLeft);
room2 ->shiftX (5);

auto house = make_unique <AABB >("house");
house ->addAABB(move(room1));
house ->addAABB(move(room2));
this ->addAABB(move(house));
...

6 We set the y-coordinate equal to 3 to match the level of the ground in the Minecraft
world.



Modular Procedural Generation for Voxel Maps 99

Fig. 6. The TutorialWorld house - partial and completed versions.

Figure 6b shows the completed TutorialWorld with a house that has two
rooms. The code for this tutorial along with instructions on how to compile and
run it can be found in the libs/mcg/examples/mcg tutorial folder7.

8 Conclusion

In this paper, we laid out the motivations for incorporating procedural content
generation into human-machine teaming experiments, and presented our open-
source C++ library, mcg, which integrates low-level content generation with
high-level semantics in order to support human-machine teaming research. The
library provides a set of core components that can be extended and composed to
construct detailed voxel maps while simultaneously generating machine-readable
representations of the environment that can be used by downstream programs.

8.1 Limitations

Aesthetic Concerns. It is worth noting that generating a structure with non-
rectilinear geometry - for example, something like the Sydney Opera House [6] -
will be more difficult to do procedurally than manually. In general, if aesthetic
appeal is a significant concern (like it is in the GDMC settlement generation
competition [28]), an AABB-based procedural generation approach is likely not
an ideal one. However, in the context of controlled human-machine teaming
experiments, we expect that the fine-grained control, reproducibility, and scala-
bility afforded by mcg will outweigh the aesthetic benefits of manual environment
generation.

Programming Overhead. Another potential concern with a procedural generation
approach to Minecraft task environment creation is that it is easier to train
people to manually modify Minecraft environments than to write programs to
7 All folder names are given relative to the root of the version of the ToMCAT repos-

itory corresponding to the 2021 IEEE CoG tag.
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generate the environments procedurally. This is not an insignificant concern,
especially when considering that human-machine teaming experiments are often
designed in collaboration with researchers who are not used to writing C++
programs. However, our stance is that the benefits of using a PCG approach
(and the downsides of manual environment creation) are significant enough to
warrant investing in procedural generation.

8.2 Future Work

We intend to continue to develop mcg as a part of the ToMCAT project, and hope
to pilot it with human subjects in our experiments in the near future. Along with
making it easier to use and better documented, we will also implement additional
AABB-based algorithms to enable researchers to create rich, yet controlled voxel-
based virtual task environments for human-machine teaming research.
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Abstract. While groups where members communicate with each other
may perform better than groups without communication, there are mul-
tiple scenarios where communication between group members is not pos-
sible. Our work analyses the impact of task complexity on individuals
and groups of different sizes while solving a goal-seeking navigation task
without communication. Our major goal is to determine the effect of task
complexity on performance and whether agents in a group are able to
coordinate to perform the task effectively despite the lack of communica-
tion. We developed a cognitive model of each individual agent that per-
forms the task. We compare the performance of this agent with individual
human performance, who worked on the same task. We observe that the
cognitive agent is able to replicate the general behavioral trends observed
in humans. Using this cognitive model, we generate groups of different
sizes where individual agents work in the same goal-seeking task inde-
pendently and without communication. First, we observe that increasing
task complexity by design does not necessarily lead to worse performance
in individuals and groups. We also observe that larger groups perform
better than smaller groups and individuals alone. However, individual
agents within a group perform worse than an agent working on the task
alone. This effect is not the result of agents within a group covering less
ground in the task compared to individuals alone. Rather, it is an effect
resulting from the overlap of the agents within a group. Importantly,
agents learn to reduce their overlap and improve their performance with-
out explicit communication. These results can inform the design of AI
agents in human-machine teams.

Keywords: Cognitive model · Instance-based learning theory · Group
size · Task complexity

1 Introduction

While many people prefer working alone, some tasks are either too large or
complicated to be taken on alone. Having a team of people is often crucial for
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success. However, a group is usually only effective if members in the group can
work together towards their shared objectives. Communication is often seen as a
vital tool for coordination between members of groups. Indeed, past studies have
shown that groups where members can communicate with each other do better
than those groups where such communication channels do not exist [15,21,25].

It is evident that communication is useful, and even though our tools for
communication are better than they have ever been, there can be situations
where members of a group cannot communicate with each other. Such situations
can arise when people do not want to communicate to avoid being spotted (for
example, a group of Navy SEALS raiding a building) or when people simply do
not have access to communication systems (for example, a group of explorers
split up in a network of underground caves). Thus, our work focuses on studying
groups where members cannot communicate with each other. For this study, we
use a search and rescue task in a simulated scenario called the Minimap [20],
which is explained in detail in the following section.

There are multiple algorithms that focus on optimally solving search and
rescue tasks [3,14]. However, an important goal in human-machine teaming is
to create systems that can work well with humans and not just perform tasks
optimally [2]. For this, it is important to understand how humans behave. While
Reinforcement Learning (RL) [8,26] has been shown to capture some trends in
human behaviour [13,24] and is widely used, it is focused on finding optimal
solutions and not on understanding how humans make decisions [4]. Thus, we
focus on using cognitive models to predict how a group of humans will behave
on the Minimap.

To do this, we analyse data from simulations run with Instance-Based Learn-
ing Agents (IBL Agents), built based on Instance-Based Learning Theory (IBLT)
[12]. IBL models have been shown to model the human decision making process
accurately, and they are useful tools to understand and predict human behaviour
[5–7,10,11]. Our goal is to create IBL models of teams that do not communi-
cate and use them to understand the advantages of working in a group and its
impact on individual members in the group. In particular, we focus on how the
complexity of the task plays a role in the performance of individuals and groups
of different sizes.

We produce data for individual IBL agents performing the task, and for indi-
viduals and groups of sizes 3 and 6, where each group of agents performs the
Minimap task in three different scenarios which vary in their degree of difficulty.
In scenarios where agents cannot share information with each other, it becomes
important for them to infer each others intentions based on each others actions.
Theory of Mind refers to the ability of humans to understand and infer the
beliefs, desires and intentions of others [22]. Since IBL agents have already been
shown to develop a theory of mind in the past [18], here we analyse the per-
formance of human participants with individual agents, and the performance of
agents within groups to determine how agents learn to coordinate and become
more effective in solving the task without communication.
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Fig. 1. The three levels of the Minimap task. The light grey cells represent empty
cells a participant can walk over. The dark grey cells are walls and the victims are
represented by green and yellow cells. The obstacles have been encircled in red. (Color
figure online)

2 The Minimap Task

Gridworld tasks are often used in the study of AI as they provide a simple envi-
ronment for agents to perform multiple tasks in a wide range of applications like
navigation or search and rescue tasks. The simplicity of these tasks also makes
them suitable for studies on various aspects of human behaviour and decision
making [18,19,23]. While the simplicity of these tasks makes experiments easier
to conduct and makes data collection easier, it is also important to understand
if the behaviour we observe here scales up to more complex richer domains.
Thus, building on past work that has created IBL models on gridworld tasks
[17–19], our focus here is on scaling up this work, using a more complex richer
environment, that we call the Minimap [20].

The Minimap is a 50× 100 grid which represents one floor of a building with
multiple rooms which have caught fire. Potential victims are spread across the
building and their injuries have different degrees of severity with some needing
more urgent care than others. The goal of a participant is to rescue as many
victims as possible in a stipulated time frame. Each cell on the Minimap can
contain a wall, a victim or can be empty. During one run of the game, participants
start from a predefined position and move around the empty slots on the grid
in an attempt to find victims. The participants at any time have four possible
actions - moving up, down, left, or right to the corresponding neighbouring cell.

Figure 1 presents the representations of the three search and rescue scenarios
in the Minimap used in this study. Each scenario has two kinds of victims - the
more severely injured yellow victims and the less severely injured green victims.
All three scenarios have 24 green and 10 yellow victims. A participant walks
around the empty cells (light grey) to search for these victims, but cannot walk
through the walls which are represented by the dark grey cells in Fig. 1. The
scenarios differ in the placement of victims and the number of obstacles on the
map. These obstacles (encircled in red in Fig. 1) are walls which are placed in
the middle of a path. These obstacles restrict a participant from taking the path
they block, thereby forcing participants to search for longer paths to get around
the obstacle. Thus, when there are more obstacles, the structural complexity
of the task increases. Since each scenario has a different number of obstacles,
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they have been assigned 3 levels of complexity - low (2 obstacles), medium (4
obstacles) and high (6 obstacles).

3 IBL Models

IBL models are theoretically grounded cognitive models used to model human
decisions from experience based on IBL theory [5–7,10,11].

A key component of an IBL agent is its memory, where an agent stores
its experiences. An agent gains experience in two ways: 1) Experiences can be
pre-populated i.e., these are experiences the agent had before the task started.
These are used to simulate prior knowledge that an agent has about the task.
2) Experiences can be experienced in real time i.e., the agent experiences new
situations which add to its bank of knowledge while performing a particular task.

An experience in the memory is represented as an instance. An instance has
three main parts: the situation, decision and utility. The situation is typically
a set of attributes used to represent the current state of the environment. The
attributes used to define the situation are typically observable features of the
environment. The decision is the action the agent took when it was faced with
the situation and the utility is the reward it received for taking that decision.

When an agent performing a task needs to make a decision, it looks for
instances in its memory which are similar to the current situation and computes
an activation function on each of them. The activation function represents how
readily available an instance is in the memory [1]. While each attribute can have
a different importance, our work here is based on the idea that every attribute
that represents the situation is equally important. Thus, the following simplified
version of the activation Ai is used for an instance i:

Ai = ln

⎛
⎝ ∑

t′∈{1,...,t−1}
(t − t′)−d

⎞
⎠ + σ ln

(
1 − γi

γi

)
(1)

where d is the decay and σ is the noise parameter. t′ corresponds to every time
step where the situation matched the current situation the agent is faced with
and t is the current time step (this is used to capture the idea that it is harder to
retrieve instances as they get older). The second part of the equation represents
the noise and γi is a random number sampled from a uniform distribution U(0, 1).

Based on this activation function, the agent computes the expected utility
for every possible action in the current situation. To do this, the agent uses
a mechanism called Blending which combines the utility associated with all
instances corresponding to situation s and action a. For this, it first calculates
the retrieval probability of an instance as:

pi =
eAi/τ

|l|∑
i=1

eAi/τ

(2)
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where l is the set of all instances with situation s where action a was taken. τ is
the temperature defined as σ

√
2. If the utility associated with the action a for

instance i is ui, then the blended value is computed as:

V (s, a) =
|l|∑

i=1

piui (3)

The final action taken by the agent is the one with the highest blended value
in the given situation.

3.1 IBL Agent for the Minimap Task

An IBL agent Ak makes decisions based on past experiences which are stored
in memory in the form of triplets of the situation (s), the decision (d) and the
utility (u). While our work builds upon the work of Nguyen and Gonzalez on the
gridworld task [18,19], the representation of an instance in memory was updated
in order to deal with the additional complexities of the Minimap task.

The situation s represents the state of the agent in the environment and has
two parts - 1) the location of the agent in the grid (the x-y coordinates) and
2) a bit vector to represent the victims rescued by Ak in the current episode.
Each bit represents a victim and is set to 1 if the victim has been rescued in the
current episode and 0 if it has not been rescued. The length of the bit vector is
equal to the number of goals discovered by Ak across episodes i.e., a bit is added
every time a victim is discovered by Ak. Thus, at the start of every episode, all
the bits are set to 0 and are set to 1 as and when the corresponding victim is
rescued by Ak.

In every situation, the agent needs to choose an action. For the Minimap task
the agent has four possible actions - moving up, down, left or right. To make a
decision in situation s at time t, the agent Ak computes the blended value of
every possible action (Eq. 3) and picks the action with the highest utility. Thus,
for every agent Ak, in every episode, we can define a trajectory Ti = {(st, dt)}T

t=0.
Each step in Ti is a part of Ak’s experience on the task. However, to be stored

as an instance it needs an associated utility. Since rewards are available only upon
rescuing a victim, steps in Ti are stored with a default utility temporarily. Once
a victim is rescued by Ak, the utility of all the instances corresponding to the
steps in Ti which led to the victim are updated with the reward associated with
rescuing the victim.

3.2 IBL Models for Group Behaviour

IBL has also been used to model the behaviour of groups of humans [9,16,17].
These studies have been performed on both static and dynamic environments
but are performed often in simple choice tasks. This work expands on the past
studies of IBL models for groups by testing the impact of group size and task
complexity in the Minimap, a task with a large state space.
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A group is modelled as multiple IBL Agents performing the task simultane-
ously without communicating with each other. While the environment is static
for a single agent, performing the task with multiple agents makes the environ-
ment dynamic for each agent involved. For example, a victim Vj found by agent
Ak in one episode can be rescued by agent Ak′ in a subsequent episode before
agent Ak reaches Vj . Thus, for agent Ak the environment is dynamic making
the task harder for agents in a group.

4 Experiment

We manipulated two factors to understand their impact on the performance of
groups - the size of the group and the complexity of the task. The size of the
group varied between 1, 3, and 6 agents; the task has three levels of complexity -
low, medium, and high. Thus, in total we ran nine scenarios - one for each group
size on every level of task complexity.

Each scenario was run for 50 identical trials and all the results presented
here have been averaged over these 50 trials. In each trial, the group of agents
ran for 50 episodes. Each agent started the first episode with no instances in
its memory. As an agent moved around the map, it kept adding instances to its
memory which were carried forward across episodes. Thus, an agent started with
no prior knowledge and learnt how to perform the task over the 50 episodes it
ran.

Each episode was set up in the same way and had at most 2500 steps for
each agent. An episode ended if the group rescued every victim or the limit of
2500 steps was reached. A victim could be rescued at most once in each episode.
Once a victim was rescued, it “dissappeared” from the map until the start of the
next episode. Rescuing a green victim gave the agent 0.25 points (rgreen) while
rescuing a yellow victim gave the agent 0.75 points (ryellow) since the yellow
victims have more serious injuries. If an agent tried to walk over a wall, it would
stay in the same cell and receive a penalty of −0.05 points.

Agents performing the task were not aware of each others positions or actions
at any time during an episode. However, if multiple agents tried to move to the
same cell, one of them was chosen uniformly randomly and allowed to move
while the others received a penalty of −0.01 points. The simulations were run
on a machine with a 3.4 GHz Intel(R) Core(TM) i7-4770 processor.

For every group, we measured the following parameters to analyse their
behaviour:

– Performance: The performance (P ) of an agent Ak is measured by the total
reward collected for rescuing victims across N episodes i.e., if rn is the reward
collected by Ak in the nth episode, then P is defined as:

P =

N∑
n=1

rn

N∑
n=1

(Ngreen × rgreen + Nyellow × ryellow)
(4)
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The performance of a group is measured as the sum of the performances of
every individual in the group.

– Coverage: The coverage is used to measure the ability of a group to explore
the map in an episode. If Lk is the set of locations on the map visited by
agent Ak and Lmap is the set of all locations that an agent can visit, then the
coverage of a group of size M is defined as:

Coverage =
|

M⋃
k=1

Lk|

|Lmap|
(5)

– Overlap: The overlap measures in every episode the amount of common area
explored by an agent Ak and the other agents in its group. It is defined as

Overlap =

|Lk ∩ (
⋃

k′ �=k

Lk′)|

|Lk| (6)

– Discovery Time: This metric helps us understand how easy it is for a group
to find victims. If V is the set of all victims rescued across all episodes, then
the discovery time for a victim v ∈ V is the first episode where the victim
was rescued by any agent in the group. For a group of agents, the discovery
time measured is the average discovery time of each of the rescued victims
and ranges between 1 and 50.

5 Results

To understand the impact of group size and task complexity on the behaviour of
groups, we start by looking at the performance of individual agents in relation
to the performance of human participants in a data set in which individuals aim
to do the Minimap task in an interactive experimental tool.

We compare the performance of independent IBL agents to human partici-
pants performing the Minimap task alone. This helps us establish whether the
trends noted in the performance of individual IBL agents on the Minimap task
are similar to those of human participants. This would support the expectation
that predictions made in groups of IBL models may be observed in groups of
humans as well.

5.1 Humans and Individual IBL Agents

An experiment with an interactive version of the Minimap was conducted with
human participants by Nguyen and Gonzalez and the data set has been made
available publicly1.

The data was collected from 297 participants performing the Minimap task
under six different conditions. Out of these six conditions, three matched the
1 https://osf.io/5gmsc/?view only=b7b13bcae1da448e8c3a5d58ad976e34.

https://osf.io/5gmsc/?view_only=b7b13bcae1da448e8c3a5d58ad976e34
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Fig. 2. Performance of humans and agents on the Minimap task

situation of the Minimap task for the IBL agents in each of the three levels of
complexity as described earlier. This resulted in a dataset of 149 participants
distributed roughly equally between the three levels of structural complexity.
Although not exactly equivalent to the task done by the IBL agents, human
participants can be roughly compared to individual IBL agents as shown in
Fig. 2.

Figure 2a shows the average performance of the human participants and
Fig. 2b shows the performance of IBL agents performing the task independently.
For each level of complexity, 50 IBL agents were used to estimate performance.
It is important to observe that the IBL agents were not fit to human data.
The results presented here are pure predictions, based on the IBL theory. The
IBL agents reflect how different complexity levels impact the performance of
individual agents.

Figure 2 shows that humans as well as IBL agents perform worse on the
medium structural complexity task compared to the other two levels of complex-
ity. This contradicts the intuitive expected linear relation between complexity
level and performance, suggesting that the design of task complexity that relies
only on structural characteristics (i.e., the number of obstacles), does not neces-
sarily result in a more complex task in terms of performance and decisions that
humans or agents make.

To understand these trends better, we look at how human participants and
IBL agents perform across episodes (Figs. 3a and 3b) and the coverage of human
participants and IBL agents (Figs. 3c and 3d). It is clear that human participants
outperform independent IBL agents. This is largely due to the fact that human
participants are able to explore a larger portion of the grid. Additionally, we see
that the complexity of the task has negligible impact on the ability of human
participants to explore the map and similar trends can be seen for independent
IBL agents.

The data from human participants was available only for individual par-
ticipants and not for groups. The similarity in trends for individual human
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Fig. 3. Performance and coverage of human participants and a single IBL agent across
episodes on the Minimap task

participants and independent IBL agents is encouraging. In the following sec-
tions, we focus on the performance of a group of IBL agents that do not com-
municate with each other and on the behaviour of individual agents within each
group. The predictions of groups of IBL agents can be used as predictions about
the possible behaviour of similarly structured groups of human participants.

5.2 Group Performance

Figure 4 shows the average performance with structural complexity for groups
of 3 and 6 agents across three levels of structural complexity. Again, we observe
that groups perform worse on the medium structural complexity compared to
the other two levels of complexity, regardless of the group size. There appears to
be a small advantage in larger groups, where the performance is slightly better
in the groups of 6 agents compared to groups of 3 agents. Additionally, the
difference in performance between the medium and high complexity tasks also
appears to be larger in groups of larger size. To better understand these trends,
we look at how the performance and coverage of groups changes across episodes.
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Fig. 4. Relation between performance and task complexity for groups of size 3 and 6

Performance Across Episodes. Fig. 5 shows the variation in performance
across episodes for groups of sizes 3 and 6, and for individual agents for all three
levels of structural complexity. The x-axis represents the episode number and
the y-axis represents the reward the group collected in the corresponding episode
i.e., rn from Eq. 4.

Figure 5a shows the reward collected over time for groups of three agents.
Here again, the group is initially performing worse on the medium structural
complexity task. However, as time passes, the agents learn to find victims on the
medium structural complexity task. Thus, their performance starts picking up
and comes close to the performance on the high structural complexity task. In
groups, because there are more agents the effects seen with one agent are more
pronounced i.e., the difference between performance on the medium structural
complexity task and the other complexity levels is significantly higher. This effect
is even more pronounced for larger groups as seen in Figure 5b. This indicates
that it is not the number of obstacles that truly impact performance but rather
how hard it is to find victims.

In line with these ideas, we computed the average time taken to find each
victim in the different Minimap scenarios. We noted that on average, a victim was
rescued for the first time around the 20th episode by groups solving the medium
structural complexity task in contrast to the low and high structural complexity
task where victims were rescued for the first time around the 10th episode. The
average discovery time for victims stayed the same regardless of the size of the
group. This independence of discovery time from group size coupled with the
fact that the dip in performance on the medium complexity task was noted in
human participants and independent IBL agents makes it likely that groups of
humans will take longer to find victims on the medium structural complexity
Minimap task compared to the low and high structural complexity task. This
again, suggests that the structural complexity alone does not determine how
complex the task can be for a group of agents.
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Fig. 5. Trends of reward collected per episode for groups of size 3 and 6

Fig. 6. The area covered by a group over time for groups of size 3 and 6

Coverage. On the Minimap task, the more ground a group can cover, the more
likely the members of the group are to find victims. Intuitively, a larger group
should be able to cover more ground, thereby allowing the group to rescue more
victims.

Figure 6 shows the change in coverage over time for groups of size 3 and 6.
The x-axis represents the episode number and the y-axis represents the coverage
of a group in an episode as defined in Eq. 5. As time passes, the groups are
able to cover more ground in each episode. Additionally, larger groups cover
more ground than smaller ones, which indicates that larger groups will perform
better.
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Fig. 7. Performance of different agents in groups of size 3 and 6 for three levels of
structural complexity. (Color figure online)

Fig. 8. The area covered by every member of a group over time for groups of size 3
and 6

5.3 Individual Performance Within Groups

While it is clear that larger groups perform better because they are able to cover
more ground, it is also important to understand how individual agents in the
group perform. Does the performance of a group increase because each agent
performs better? Or does the performance of each agent stay the same and it is
just more agents that allow groups to perform better? We answer these questions
in this section.

Figure 7 shows the performance of individual agents in groups of 3 and 6
compared to when individual agents perform the task alone. For each plot, the
x-axis represents the episode number and the y-axis represents the reward per
episode i.e., rn as used in Eq. 4. Each curve represents a single agent and the
group size is indicated by the color.

The major observation is that individuals within a group perform worse than
individuals that work in the task alone, regardless of the complexity of the task.
Furthermore, the larger the group is, the worse the individual performance within
a group is. To explain this effect, we look at how individuals within a group cover
the task space (i.e., coverage) and how much they overlap with each other while
doing the task.
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Fig. 9. The overlap for every member of a group over time for groups of size 3 and 6

Coverage. While Fig. 6 revealed that larger groups cover more ground, Fig. 8
shows the coverage of each agent in a group and the coverage of independent IBL
agents. While it is clear that each agent in a group covers less ground than an
agent working alone, the difference in coverage is minor. This makes it clear that
working in a group does not significantly hamper an individual agents’ ability
to explore the map. However, this advantage is only effective if the agents are
able to split up over different parts of the map effectively.

If individual agents are unable to split up effectively, larger groups may not
be effective since some agents in these larger groups will just be repeating the
work done by other agents. Splitting up may be easier for groups where agents
can communicate (since they can plan out strategies to pick different areas)
compared to groups like the ones studied here. Thus, we look at how effectively
agents in groups are able to split up by looking at the overlap in coverage by
agents in groups.

Overlap. Figure 9 shows the overlap in every episode for every agent in a group
of size 3 or 6 for all three levels of structural complexity. The x-axis indicates
the episode number and the y-axis indicates the overlap measured in the corre-
sponding episode as defined in Eq. 6.

While the overlap is understandably higher for agents in larger groups, it
reduces over time regardless of task complexity. This indicates that the agents
learn to find specific areas of the map and focus on them without getting in
the way of their teammates - even without explicitly communicating with each
other. The overlap for every agent decreases over time, but never goes down to
0 indicating that there is always some overlap between all members of a group.
These trends explain how groups are able to cover a larger area over time and
why the performance of an individual in a group stays below the performance
of an agent acting alone.

Thus, each agent working in a group performs worse than an agent working
alone, but groups as a whole still perform better than individuals and larger
groups perform better than smaller ones.
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6 Conclusion

Working in groups is crucial and is something humans do often. To design AI
that is able to work along with humans in groups, it is important to design
models that emulate the way humans work in groups. Towards this end, we have
worked on predicting the behaviour of humans in groups where members cannot
communicate with each other. Particularly, we investigate how these groups of
different sizes are impacted by task complexity. We created individual agents
based on a cognitive theory of decisions from experience [12].

We saw that the trends for the performance of a single IBL agent are similar
to those seen for human participants working on the task alone. We find that
human participants as well as individual agents perform worse in the task of
medium structural complexity than in the task of high structural complexity.
This same effect is also observed on the average group performance regardless
of the size of the group. This provides a lesson regarding how to design tasks
of various complexities: defining complexity of a task based only on structural
factors may not be enough to determine how complex a task will be in practice.
We note that the reason the medium complexity map is harder, even though it
has less obstacles than the high complexity map, is because it is harder to reach
victims in this map.

In addition, we found that larger groups perform better, but the individual
agents within a group perform worse than an agent attempting the same task
alone. Moreover, the larger the group is, the worse individual agents within
a group will perform. This effect does not seem to be due to the area that
individual agents within a group cover compared to individual agents working
alone. Rather, it seems that this is due to the overlap among agents. The overlap
is greater in larger groups, but all agents within each group learn to improve their
performance across episodes by reducing the amount of overlap between them -
even without explicitly communicating.

Overall, we expect that these results will also hold for groups of human
participants that do not communicate with each other and are important to
consider while designing new AI for human-machine teams.
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Abstract. Emergent leadership refers to the dynamic by which, when there is no
appointed leader in a group, one or more members assume leadership behaviors.
Understanding emergent leadership in task-oriented human-machine teams is crit-
ical to optimize the role and input of machine agents.We find, however, a dearth of
measures of emergent leadership to guide the development ofmachine agents.Here
we describe the initial development of peer-report and natural language process-
ing (NLP) -derived measurement techniques for indexing emergent leadership in
a team context, rooted in the leaderplex model (Denison et al. 1995; Quinn 1984);
we take a behavioral approach to indexing emergent leadership which emphasizes
the diverse functions of leaders in the team context.We describe initial evidence of
validity, areas of further exploration, and implications for human-machine teams.
Overall, we find good concordance between peer-report measures of leadership
behaviors and peer-report identification of emergent leaders, as well as with initial
NLP behavioral marker extractions. Our mixed-method approach presents a first
step in developing language-derived computational methods to enhance machine
agent artificial social intelligence and theory of mind, ultimately improving their
effectiveness in human-machine teams.

Keywords: Emergent leadership · Human-machine teams · Artificial social
intelligence

1 Emergent Leadership in Teams

1.1 The Functions of Leadership

From the standpoint of team effectiveness, leadership is important for orchestrating
behavior towards a common goal (e.g., Hoyt andBlascovich 2003). Althoughmany task-
oriented teams have a predefined leadership structure or status hierarchy (e.g., command
units, business units), many teams are formed to carry out tasks with no appointed
leadership and no clear status hierarchy. Such teams are often comprised by individuals
with complementary functions working towards a common goal. In such self-managed
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teams, overall team effectiveness and task effectiveness depend on individual members
assuming responsibility for the quality of their own contributions to both process and
outcome, and sometimes also entail members adopting leadership functions (Carte and
Becker 2006; Carte et al. 2006; O’Connell et al. 2002).

Emergent leadership is the dynamic by which one or more group members assume
leadership behaviors in the absence of a formal leader (Carte et al. 2006). Emergent
leadership is recognized as an emergent team characteristic in virtual teams (i.e., in
which members interact virtually rather than in person) as well as traditional teams
(Carte et al. 2006; Hoch and Dulebon 2017; Yoo and Alavi 2004).

Leadership is comprised of multiple roles and activities that support team members
in producing quality contributions and working effectively with other team members
towards a common goal. We apply the leaderplex framework (Denison et al. 1995;
Quinn 1984; see Table 1) which categorizes eight such functions. This framework has
been widely applied in leadership research, and has been used to demonstrate that these
behaviors emerge organically within self-managed teams, including within a virtual
environment (Cart et al. 2006; Carte and Becker 2006).

Table 1. Leadership behaviors as outlined by the Leaderplex model

Dimension Description

Innovator Envisions, encourages, and facilitates change

Broker Acquires resources and maintains units’ external legitimacy through
development, scanning, and maintenance of a network of external contacts

Producer Seeks closure, and motivates those behaviors that will result in completion of the
group’s task

Director Engages in goal setting and role clarification, sets objectives, and establishes
clear expectations

Coordinator Maintains structure, does the scheduling, coordinating, and problem solving, and
sees that rules and standards are set

Monitor Collects and distributes information, checks on performance, and provides a
sense of continuity and stability

Facilitator Encourages the expression of opinions, seeks consensus, and negotiates
compromise

Mentor Listens actively, is fair, supports legitimate requests, and attempts to facilitate
development of individuals

Team members may exhibit a constellation of these behaviors as they work towards
a collective shared goal. Therefore, self-managed teams may develop a variety of lead-
ership structures. In some teams, a single member may take on all or most of these
functions and emerge as a clear solitary leader. In others, two or more members of the
team may assume leadership behaviors, such that a pattern of shared or distributed lead-
ership emerges, which can also be highly effective for team performance (Carson et al.
2007; Day et al. 2004). Conversely, these behaviors may also be largely absent, with
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no clear emergent leadership. Here, we develop measures of emergent leadership which
can encompass all variations in structure.

1.2 Implications of Emergent Leadership for Human-Machine Teams

Human-machine teams consist of integrated task- or goal-oriented units composed of
both humans and machines, wherein “machines” may span automated (unintelligent)
systems to the most advanced artificial intelligence. Previous research and applications
have demonstrated that human-machine teams can be highly effective – even more so
than either in isolation – but their effectiveness as a unit depends on careful integration of
complementary roles and tasks, team structure, and team-building (Walliser et al. 2019);
leadership is critical in all of these respects. In particular, when it comes to developing
intelligent agents capable of effectively assimilating in human teams, an understanding
of team processes and dynamics like leadership is critical to a machine theory of mind
and artificial social intelligence.

The importance of leadership in facilitating team effectiveness has been detailed for
many decades (e.g., Cohen and Bailey 1997; Kozlowski et al. 1996; Zaccaro et al. 2001),
including in self-managed and virtual teams (Yoo andAlavi 2004; Carte et al. 2006; Carte
and Becker 2006; Hoch and Dulebon 2017). From this perspective alone, understand-
ing leadership structures and behaviors is critical for machine agents in successfully
integrating into human teams.

At the most basic level, in order to be effective in human-machine teams, machine
agents must possess some knowledge of human leadership, including the behaviors that
constitute leadership and the functions of those behaviors, as well as the leadership
structure of the team. A more advanced utilization would entail a machine agent assum-
ing leadership roles or behaviors to improve team effectiveness. This would require
recognition of the leadership structure and types of behaviors that relate to successful
outcomes.

Using the same capabilities, a machine agent could help teams improve their effec-
tiveness by alerting teams when there is suboptimal leadership and/or advising teams
to identify leaders, change their leadership structure, or engage in certain leadership
behaviors. Finally, given the influence of leaders on team processes, an agent capable of
recognizing emergent leaders could target emergent leaders for advice or interventions,
as a conduit to improving group outcomes.

1.3 Measuring Emergent Leadership

Currently, we find that most measurement of emergent leadership concerns pre-existing
teams and ismeasuredoutside of task-performance; there is a lackof validated integration
with real-time activities, particularly for teams in completely virtual settings. The few
studies that have assessed behavioral markers of emergent leadership (e.g., Carlson et al.
2017) are not well grounded in conceptual models and are thus difficult to validate or
generalize.

To meet this need, we employ a multimethod approach to develop a behavioral peer-
report measure of emergent leadership for validating additional behavioral markers.
Herein, we describe the initial instrument development and psychometric evaluation
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and provide an initial baseline to capturing team language markers via natural language
processing (NLP).

2 Methodology

2.1 Participants

Participants were 201 adults aged 18–49 (M = 22.06, SD = 5.17; 85% between 18–
24), recruited from a university student and community sample located in the southwest
United States. The sample was majority male (74%) and most were current college stu-
dents (58%). Participants were diverse in race/ethnicity, with 53%White/Caucasian, 3%
Black African American, 13%Hispanic/Latino, 27%Asian, and 2%Middle Eastern. All
participants were English speakers, either native (78%) or at least working proficiency,
and were screened for familiarity playing computer games. Participants were grouped
in 67 team units, with three members per group. Group members had no contact prior
to training.

2.2 Procedures

Participants participated in a virtual gamification experiment in a Minecraft environ-
ment simulating an urban search and rescue (USAR) task. Participants engaged in two
sessions, both conducted virtually. The first session (one hour) consisted of program
installation and survey completion. The second session (two and a half hours) consisted
of introduction to the task, training, and two 15-min USAR missions.

In each of these missions, teams navigated a collapsed building in the Minecraft
environment, and worked together to find and rescue victims that varied in point value.
The participants could choose from one of three roles: a medical specialist (medic), a
search specialist (searcher), or a heavy equipment specialist (engineer); roles could be
changed during the mission.

Teams were randomly assigned to take part in a three-minute planning session with
their team members prior to the mission (team planning) or were only allotted time
to plan individually (no team planning). Teams were instructed that their goal was to
maximize their score by saving victims. This research is part of a multistage research
pro-gram funded by DARPA.

2.3 Measures

Emergent Leadership: Peer Report. Respondents provided input on the degree to
which their teammates engaged in eight different leadership behaviors adapted from
the functions defined by the leaderplex model (Denison et al. 1995; Quinn 1984, see
Table 2); an initial qualitative coding of verbal transcripts from pilot testing served to
corroborate the relevance of these dimensions and behavioral representations. These
items are answered on a 7-point scale of frequency.

Responses from team members were aggregated across respondents (mean rating)
to index the degree to which each participant exhibited each leadership behavior. A
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Table 2. Emergent leadership behavioral peer-report items

Item Leaderplex dimension

Suggested new ideas or strategies Innovator

Kept other team members focused or on task Monitor/Director

Helped coordinate the actions of team members Coordinator/Director

Talked about the group’s progress during the mission Monitor

Asked other players to share information during the mission Facilitator/Monitor

Initiated conversations about the plan or strategy Director/Producer

Helped the team come to an agreement about what to do next Producer/Facilitator

Helped other team members figure out what to do or where to go Mentor

composite for emergent leadership behavior was created by averaging across the eight
leadership behavior items.

In addition, respondentswere asked to identify the degree towhich each teammember
was a leader during the mission. This item was answered on an 11-point scale in which
0 denotes not a leader at all and 10 denotes always a leader, and also aggregated across
respondents (mean rating) to index the degree to which each participant was viewed as
a leader by their teammates.

Emergent Leadership: NLP Behavioral Markers. NLP was used to derive potential
behavioralmarkers of leadership, including the number of times each participant initiates
communicate with their team members, the number of times each participant has the
last word in a conversation with teammates, and the number of times each participant
took responsibility. Both the initiation of communication and the last word metrics were
extracted from team transcripts across all team sessions.

Participant responsibility was captured with Odin, a computational NLP processor
that leverages lexical dependencies, parts-of-speech, and abstractions to detect relevant
language (Valenzuela-Escarcega et al. 2015). In this case, language focused on taking
responsibility was captured through a series of tokenized word relationships that suggest
the participant was taking responsibility.

Additional Self-report Measures. Participants also completed self-report measures of
sociable dominance (see Kalma et al. 1993), five-factor personality (Gosling et al. 2003),
collective efficacy (measure adapted from ameasure previously developed and validated
in another government research program), team satisfaction, team viability, and team
potency.

Additional Behavioral Measures. Measures of explicit coordination, the three dimen-
sions of plan quality (clarifying roles, clarifying information to be traded, and clarifying
sequencing and timing; Stout et al. 1999), compensatory helping, transactive memory,
and motivating and confidence building behaviors were derived from qualitative coding
of verbatim transcripts of the missions using multiple raters. Team performance was
measured as the team’s final score on each of the two missions.
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In addition, the following behavioral markers were de-rived via NLP (Odin): the
number of times each participant spoke about other specific players, spoke about the
actions of team members, or spoke about the roles of team members; the number of
times each participant agreedwith the utterance of another teammember; and the number
of times each participant spoke about plans, either deliberate (general pre-planning) or
contingent (plan based on a condition). For furtherOdin rule explanations, seeAppendix.

3 Results

3.1 Peer-Report Emergent Leadership

Overall, evaluation of item statistics demonstrated that all eight behavioral items of the
peer-report measure of emergent leadership were statistically good items. All items dis-
played reasonable levels of variance, with means and medians close to scale midpoints,
all possible response options used, and no evidence of problematic skew or kurtosis
(Table 3).

Table 3. Scale and item level descriptive statistics

Item M SD Median Skew Kurtosis Min. Max.

Overall leadership rating 6.05 1.62 6.00 −0.53 0.38 1.00 9.50

Emergent leadership behavioral
composite

4.27 1.03 4.25 −0.17 −0.06 1.19 6.94

Suggested new ideas 4.00 1.28 4.00 −0.24 −0.39 1.00 7.00

Kept team focused 4.17 1.32 4.00 −0.07 −0.34 1.00 7.00

Coordinated other team
members

4.63 1.13 4.50 −0.36 0.15 1.00 7.00

Monitored team progress 3.85 1.36 4.00 −0.01 −0.41 1.00 7.00

Prompted info sharing 4.29 1.27 4.50 −0.09 −0.40 1.50 7.00

Initiated conversation about plan 4.08 1.28 4.00 −0.29 −0.29 1.00 7.00

Facilitated team agreement 4.37 1.21 4.50 −0.33 −0.24 1.00 7.00

Helped team members 4.79 1.17 5.00 −0.38 0.23 1.00 7.00

Note. Overall leadership scale possible range 1–10, all other 1–7.

Inter-item correlations were all strong, significant, and positive, but not high enough
to indicate redundancies (all r = .48–.74, p < .001; Table 4).
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Table 4. Inter-item correlations

Item Ideas Focus Coordinated Monitor Share Plan Agree

Kept team focused .74

Coordinated other team
members

.64 .67

Monitored team progress .62 .59 .54

Prompted info sharing .63 .66 .62 .62

Initiated conversation
about plan

.73 .64 .66 .62 .64

Facilitated team
agreement

.66 .64 .59 .59 .69 .73

Helped team members .59 .64 .71 .48 .56 .62 .65

Note. All p < .001. Ideas = suggests new ideas or strategies.

Together, the eight behavioral items demonstrated strong internal consistency (Cron-
bach’s alpha= .931), with strong item-to-total correlations, and no items were identified
for deletion to improve the scale (Table 5).

Table 5. Item-total statistic and alpha-if-deleted

Item Scale mean if
items deleted

Scale
variance if
item deleted

Corrected
item-total
correlation

Squared
multiple
correlation

Alpha if item
deleted

Suggests new
ideas

30.18 51.59 .80 .68 .919

Kept team
focused

30.01 51.19 .80 .66 .919

Coordinated
other team
members

29.55 54.08 .76 .62 .922

Monitored
team progress

30.32 52.46 .70 .51 .927

Prompted info
sharing

29.89 52.62 .75 .57 .923

Initiated
conversation
about plan

30.10 51.58 .81 .68 .919

Facilitated
team
agreement

29.81 52.87 .77 .63 .921

(continued)
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Table 5. (continued)

Item Scale mean if
items deleted

Scale
variance if
item deleted

Corrected
item-total
correlation

Squared
multiple
correlation

Alpha if item
deleted

Helped team
members

29.39 54.16 .73 .60 .925

Note. Cronbach’s alpha = .931.

Exploratory and confirmatory factor analyses indicated that the best solution was
a one factor solution, such that the eight indicator items together represent the latent
construct of emergent leadership; this model displayed good fit overall (χ2(20)= 56.64,
p < .001, RMSEA = .097, CFI = .967, TLI = .953, SRMR = .029). All items loaded
strongly and consistently on the latent factor (Table 6).

Table 6. Confirmatory factor analysis

Item Factor
loading

Intercept Residual
variance

R2

Suggests new ideas .84 3.14 .30 .71

Kept team focused .83 3.14 .31 .70

Coordinated other team members .79 4.07 .37 .63

Monitored team progress .73 2.83 .47 .53

Prompted info sharing .77 3.37 .40 .60

Initiated conversation about plan .84 3.22 .30 .70

Facilitated team agreement .81 3.64 .35 .65

Helped team members .77 4.10 .41 .59

Note. χ2(20) = 56.64, p < .001, RMSEA = .097, CFI = .967, TLI = .953, SRMR = .029.
Standardized estimates presented.

Item response theory (IRT) evaluations also corroborated that all items have relatively
good response properties and clearly distinguish people of different levels of emergent
leadership and provide good amount of information at high, low, and average levels (with
variation across items), based on item characteristic curves (ICCs) and item information
functions (IIFs).
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Goodness of fit statistics support the integrity of the items (e.g., all Chi square p
> .100, all RMSEA < .04); standardized infit and outfit indicate that all items show
reasonable predictability, and six of the eight are highly productive for measurement
(Linacre 2002). The test information function also indicates that the scale (all eight
items together) provides good information at all levels, but distinguishes best at lower
levels (see Tables 7 and 8).

Table 7. Item response theory analysis parameters

Item parameters a b1 b2 b3 b4 b5 b6

Suggests new ideas 2.10 −1.88 −1.00 −0.22 0.72 1.59 3.53

Kept team focused 1.98 −2.14 −1.22 −0.27 0.33 1.33 2.41

Coordinated other team members 1.71 −2.26 −2.04 −1.05 0.09 1.01 2.80

Monitored team progress 1.07 −1.57 −1.22 −0.05 0.77 1.67 3.21

Prompted info sharing 1.39 −1.99 −1.55 −0.60 0.44 1.31 2.86

Initiated conversation about plan 1.71 −1.62 −1.34 −0.37 0.50 1.89 3.08

Facilitated team agreement 1.65 −2.32 −1.23 −0.90 0.39 1.28 2.98

Helped team members 1.46 −2.44 −2.45 −1.08 −0.15 1.07 2.29

Table 8. Item response theory analysis fit statistics

Item fit statistics χ2 RMSEA Z-Infit Z-outfit

Suggests new ideas 22.65 <0.01 −1.68 −1.76

Kept team focused 22.26 <0.01 −1.67 −.174

Coordinated other team members 33.30 0.02 −1.13 −1.31

Monitored team progress 45.87 0.02 −0.65 −0.76

Prompted info sharing 27.67 <0.01 −0.85 −0.97

Initiated conversation about plan 30.44 0.01 −1.45 −1.47

Facilitated team agreement 39.28 0.03 −1.31 −1.51

Helped team members 32.80 0.03 −1.15 −0.94

Note. Infit and outfit presented in standardized format (z-scores). For all χ2 p > .100.

The overall peer report of leadership was strongly positively correlated with all
behavioral indicators, all r = .50–.70, all p < .001, and the composite of emergent
leadership behaviors, r = .73, p < .001 (Table 9).
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Table 9. Correlation of emergent leadership behaviors with leadership ratings

Item fit statistics Overall leadership ratings

Composite .73

Suggests new ideas .68

Kept team focused .60

Coordinated other team members .66

Monitored team progress .50

Prompted info sharing .52

Initiated conversation about plan .70

Facilitated team agreement .55

Helped team members .58

Note. All p < .001.

In further support, participants who were recognized as leaders according to team
members’ ratings on overall leadership during the mission (i.e., rated above the median)
displayed higher levels of all eight leadership behaviors (Table 10).

Table 10. Emergent leaders: mean difference on emergent leadership behaviors

Item
parameters

t df SE 95%CI
lower

95%CI
upper

Mean
difference

Below median Above
median

Suggests
new ideas

−7.30 198 0.16 −1.64 −1.02 −1.33 3.38 4.71

Kept team
focused

−7.99 198 0.17 −1.55 −0.89 −1.22 3.61 4.83

Coordinated
other team
members

−5.38 198 0.14 −1.39 −0.84 −1.12 4.12 5.23

Monitored
team
progress

−6.55 180 0.18 −1.34 −0.62 −0.98 3.40 4.38

Prompted
info sharing

−9.17 198 0.16 −1.40 −0.75 −1.07 3.80 4.87

Initiated
conversation
about plan

−5.63 198 0.15 −1.70 −1.10 −1.40 3.44 4.84

(continued)
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Table 10. (continued)

Item
parameters

t df SE 95%CI
lower

95%CI
upper

Mean
difference

Below median Above
median

Facilitated
team
agreement

−6.00 198 0.16 −1.22 −0.59 −0.90 3.95 4.86

Helped team
members

−7.30 198 0.15 −1.21 −0.61 −0.91 4.37 5.28

Note. All p< .001. Belowmedian and above median refer to the median split on overall leadership
ratings.

None of the leadership items were significantly correlated with the Five Factor per-
sonality traits (agreeableness, extroversion, conscientiousness, emotional stability, open-
ness to experience), nor did these personality traits differentiate those rated as leaders
by their peers.

Sociable dominancewas not significantly correlatedwith overall ratings of leadership
or the composite of emergent leadership behaviors, however there were several signif-
icant item-level correlations. Leadership ratings and several behaviors were negatively
correlated with aggressive or domineering attitudes (Table 11).

Table 11. Emergent leadership and key sociable dominance traits

Item
parameters

I find it important
to get my way

I find it important
to get my way
even if this causes
a row

I quickly feel
aggressive with
people

I’d rather be
disliked (for being
unkind) than that
people look down
on me (for not
achieving my
aims)

Overall
leadership
ratings

−.22 −.22 −.17

Behavioral
composite

−.20 −.24 −.16 −.20

Suggests new
ideas

−.22 −.21 −.20

Kept team
focused

−.14

Coordinated
other team
members

−.22 −.23 −.14 −.18

(continued)
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Table 11. (continued)

Item
parameters

I find it important
to get my way

I find it important
to get my way
even if this causes
a row

I quickly feel
aggressive with
people

I’d rather be
disliked (for being
unkind) than that
people look down
on me (for not
achieving my
aims)

Monitored
team progress

−.16 −.15

Prompted
info sharing

−.18 −.15 −.14

Initiated
conversation
about plan

−.26 −.26 −.19 −.24

Facilitated
team
agreement

−.15 −.18 −.20

Helped team
members

−.20 −.15

Note. Only significant (p < .05) correlations presented.

Similarly, those who were distinguished as emergent leaders, when indexed as those
who scored above median on the composite of emergent leadership behavior, scored
significantly lower on these traits (Table 12).

Table 12. Emergent leaders: mean difference on key sociable dominance traits

Item parameters t df SE 95%CI
lower

95%CI
upper

Mean diff Below median Above
median

I find it important
to get my way

2.63 196 0.14 0.09 0.64 0.37 2.04 1.67

I’d rather be
disliked (for being
unkind) than that
people look down
on me (for not
achieving my
aims)

2.22 196 0.15 0.04 0.64 0.34 2.02 1.68

Note. All p < .05. Only significant (p < .05) differences presented. Below median and above
median refer to the median split on overall leadership ratings.
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Leadership ratings, overall leadership behaviors (composite), and several leadership
behaviors were also significantly correlated with competency in the mechanics of the
task, specifically walking speed (Table 13). Emergent leaders (above the median on
composite scale) displayed significantly faster walking speed (M = 0.45 vs.M = 0.49),
t(190) = 2.19, p = .030.

Table 13. Emergent leadership and walking speed

Item fit statistics Walking speed

Overall leadership ratings −.26

Behavioral composite −.24

Suggests new ideas −.19

Kept team focused −.16

Coordinated other team members −.20

Monitored team progress −.15

Prompted info sharing

Initiated conversation about plan −.29

Facilitated team agreement −.22

Helped team members −.22

Note. All p < .05. Only significant correlations presented.

Emergent leaders, as defined by those who scored above the median on the compos-
ite scale of emergent leadership displayed more explicit coordination, more compen-
satory helping, more motivating and confidence building behaviors, more role clarify-
ing behaviors, and more timing and sequencing clarification behaviors during the trial.
Emergent leaders were also characterized by speaking more about other specific team
members, teammembers’ actions, and teammember roles, and engaging in higher levels
of planning, particularly deliberate planning (see Tables 14, 15, 16 and 17).

Table 14. Emergent leadership and real-time task behaviors

Item
parameters

Explicit
coord.

Clarify
roles

Clarify
info

Clarify
timing

Helping Transactive
memory

Motivating
confidence
building

Behavioral
composite

.24 .17 .20 .18 .17

Suggests new
ideas

.18 .17 .18

(continued)
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Table 14. (continued)

Item
parameters

Explicit
coord.

Clarify
roles

Clarify
info

Clarify
timing

Helping Transactive
memory

Motivating
confidence
building

Kept team
focused

.18

Coordinated
other team
members

Monitored
team progress

.25 .21 .21

Prompted
info sharing

.21 .21

Initiated
conversation
about plan

.29 .23 .28 .16 .18

Facilitated
team
agreement

.19 .17

Helped team
members

.18

Note. All p < .05. Only significant correlations presented.

Table 15. Emergent leaders and real-time task behaviors

Item parameters t df SE 95%CI
lower

95%CI
upper

Mean
diff

Below
median

Above
median

Explicit
Coordination

−3.29 132 4.55 −23.96 −5.96 −
14.96

37.95 52.90

Clarifying
Roles

−2.55 124 0.67 −3.04 −0.38 −1.71 3.05 4.76

Clarifying
Timing

−3.05 90 0.59 −2.95 −0.62 −1.79 1.25 3.04

Compensatory
Helping

−2.66 112 0.27 −1.25 −0.18 −0.72 0.87 1.58

Motivating &
Confidence
Building

−2.25 134 0.56 − 2.38 −0.16 −1.27 1.74 3.01

Note. All p < .05. Only significant (p < .05) differences presented. Below median and above
median refer to the median split on overall leadership ratings.
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Table 16. Emergent leadership and real-time communication behaviors

Item
parameters

Talk
about
people

Talk
about
actions

Talk
about
roles

Giving
approval

Talk
about
plans

Talk
deliberate
plan

Talk
contingent
plan

Behavioral
composite

.32 .33 .23 .21 .38

Suggests new
ideas

.34 .35 .22 .26 .37 .18

Kept team
focused

.27 .27 .18 .33

Coordinated
other team
members

.18 .19 .24

Monitored
team progress

.30 .29 .27 .23 .30

Prompted info
sharing

.28 .29 .25 .19 .31 .24 .17

Initiated
conversation
about plan

.31 .32 .21 .35

Facilitated
team
agreement

.19 .21 .26

Helped team
members

.16 .16 .22

Note. All p < .05. Only significant correlations presented.

Table 17. Emergent leaders and real-time communication behaviors

Item
parameters

t df SE 95%CI
lower

95%CI
upper

Mean diff Below
median

Above
median

Talking
about
people

−4.23 126 29.46 −187.18 −68.03 −127.61 276.10 403.70

Talking
about
actions

−4.48 155 21.87 −141.15 −54.74 −97.95 194.89 292.84

Talking
about roles

−2.78 123 1.07 −5.10 −0.85 −3.00 6.46 9.43

(continued)
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Table 17. (continued)

Item
parameters

t df SE 95%CI
lower

95%CI
upper

Mean diff Below
median

Above
median

Giving
approval

−2.53 155 2.78 −12.50 −1.54 −8.02 22.06 29.08

Talking
about plans

−5.00 117 9.70 −67.73 −29.30 −48.52 77.01 125.53

Talking
about
deliberate
plan

−2.40 155 0.42 −1.82 −0.17 −0.99 1.28 2.27

Note. All p < .05. Only significant (p < .05) differences presented. Below median and above
median refer to the median split on overall leadership ratings.

At the team level (team-level scores aggregated as teammean), overall leadership, the
composite of emergent leadership behaviors, and all eight emergent leadership behav-
iors were significantly positively correlated with positive attitudes about the team, but
displayed different patterns of associations with specific measures (collective efficacy,
team satisfaction, team viability, and team potency; see Table 18).

Table 18. Emergent leadership and team outcomes

Item
parameters

Collective
efficacy
T1

Collective
efficacy
T2

Team
sat.
T1

Team
sat.
T2

Team
viability
T1

Team
viability
T2

Team
potency
T1

Team
potency
T2

Overall
leadership
ratings

.36 .28 .26

Behavioral
composite

.52 .36 .26 .47 .26

Suggests
new ideas

.35 .48 .28 .29 .34

Kept team
focused

.35 .30

Coordinated
other team
members

.40 .28 .40 .29 .52 .32

Monitored
team
progress

.42 .40

(continued)



134 E. Maese et al.

Table 18. (continued)

Item
parameters

Collective
efficacy
T1

Collective
efficacy
T2

Team
sat.
T1

Team
sat.
T2

Team
viability
T1

Team
viability
T2

Team
potency
T1

Team
potency
T2

Prompted
info sharing

.50 .37 .44

Initiated
conversation
about plan

.26 .45 .34 .29 .39

Facilitated
team
agreement

.44 .34 .34

Helped team
members

.27 .32 .28 .33 .37 .33

Note. All p < .05. Only significant correlations presented. Team Sat. = Team satisfaction.

Teams with more coordination leadership behaviors displayed better team perfor-
mance as indicated by their final scores on Mission 1, r = .33, p = .006, as did teams
with more information sharing leadership behaviors, r = .24, p = .049, and teams with
more planning leadership behaviors, r = .24, p = .047.

Leadership structure varied substantially across teams, with shared leadership being
most common.When identifying the presence of emergent leaders as participants scored
above the median on the emergent leadership behavior composite, 25% of teams had no
emergent leaders, 20% of teams had a sole emergent leader, and 55% of teams had two
(30 teams) or three (7 teams) leaders.

Teams with leadership (sole or shared) reported higher levels of collective efficacy,
team satisfaction, and team potency following the first trial, compared to teams with no
emergent leaders (Table 19).

Table 19. Leadership presence and team outcomes

Item
parameters

t df SE 95%CI
lower

95%CI
upper

Mean diff Mean: no lead Mean: yes
lead

Collective
efficacy T1

−2.16 65 0.21 −0.88 −0.03 −0.46 3.65 4.11

Team
satisfaction
T1

−3.20 65 0.16 −0.81 −0.19 −0.50 2.82 3.32

(continued)
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Table 19. (continued)

Item
parameters

t df SE 95%CI
lower

95%CI
upper

Mean diff Mean: no lead Mean: yes
lead

Team
potency T1

−2.46 65 0.25 −1.12 −0.16 −0.62 5.10 5.72

Note. All p < .05. Only significant (p < .05) differences presented. No lead = no emergent
leader; yes leader= emergent leader (either single or shared) present. Presence of emergent leader
determined by number of team members rated above the median on the composite peer-report
behavioral measure of emergent leadership.

Overall, teams with shared leadership reported the most positive attitudes towards
their team on these same measures, but teams with single leaders reported higher levels
of real-time task behaviors (Tables 20, 21 and 22).

Table 20. Leadership presence and team outcomes

Item
parameters

F df SSIII MS EM no leader EM single leader EM shared
leader

Collective
efficacy T1

3.48 2 3.90 1.95 3.65* 3.85 4.21*

Error 64 35.91 0.56

Team
satisfaction
T1

5.62 2 3.50 1.75 2.82* 3.19 3.37*

Error 64 19.92 0.31

Note. All p < .05. Only significant (p < .05) differences presented. SSIII = sums of squares
type III, MS = mean square, EM = estimated marginal mean. * denotes significant subgroup
difference.

Table 21. Leadership presence and real-time task behaviors

Item
Parameters

T df SE 95%CI
lower

95%CI
upper

Mean diff Mean: no lead Mean:
yes lead

Compensatory
helping

−3.05 50 0.21 −1.08 −0.22 −0.65 0.71 1.36

Talk about
actions

−2.14 53 31.34 −129.77 −4.07 −66.92 190.89 257.81

(continued)
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Table 21. (continued)

Item
Parameters

T df SE 95%CI
lower

95%CI
upper

Mean diff Mean: no lead Mean:
yes lead

Talk about
Plans

−2.65 53 13.03 −60.60 −8.35 −34.47 73.62 108.10

Note. All p < .05. Only significant (p < .05) differences presented. No lead = no emergent
leader; yes leader= emergent leader (either single or shared) present. Presence of emergent leader
determined by number of team members rated above the median on the composite peer-report
behavioral measure of emergent leadership.

Table 22. Leadership structure and real-time task behaviors

Item
parameters

F df SSIII MS EM no
leader

EM single
leader

EM shared
leader

Compensatory
helping

6.19 2 10.22 5.11 0.71* 1.97* 1.13**

Error 52 42.93 0.83

Talking about
actions

3.43 2 71798.86 35899.43 190.89* 296.70* 243.06

Error 52 544789.60 10476.72

Talk about
contingent
plans

5.48 2 61.41 30.71 2.00* 4.70* 2.09*

Error 52 291.25 5.60

Talk about
plans

4.45 2 16219.52 8109.76 73.62* 122.74* 102.54*

Error 52 94857.47 1824.18

Note. All p < .05. Only significant (p < .05) differences presented. SSIII = sums of squares
type III, MS = mean square, EM = estimated marginal mean. * denotes significant subgroup
difference.

3.2 Behavioral Markers of Emergent Leadership

At the individual level, the initial NLP behavioral markers were significantly and pos-
itively correlated with overall leadership ratings, overall leadership behaviors (compo-
site), and the eight peer-reported leadership behaviors, rs = .16–.30, all p < .05
(Table 23).
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Table 23. Emergent leadership behavior markers and peer-report leadership behaviors

Item parameters Initiate conversations Last word in conversation Taking
responsibility

Overall leadership
ratings

.27 .23

Behavioral composite .30 .31

Suggests new ideas .27 .23

Kept team focused .27 .23

Coordinated other team
members

.16 .16

Monitored team
progress

.31 .31 .16

Prompted info sharing .24 .25 .16

Initiated conversation
about plan

.30 .33

Facilitated team
agreement

.19 .24

Helped team members .18 .24

Note. All p < .05. Only significant correlations presented.

Those who emerged as leaders (above the median on composite of emergent
leadership behaviors) demonstrated significantly higher levels on behavioral markers
(Table 24).

Table 24. Emergent leaders: mean differences on behavioral markers

Item
parameters

t df SE 95%CI
lower

95%CI
upper

Mean diff Below
median

Above
median

Initiate
conversations

−3.99 174 2.82 −16.79 −68.03 −11.23 32.78 44.01

Last word in
conversations

−4.45 174 8.50 −54.51 −54.74 −37.76 113.92 151.69

Taking
responsibility

−2.25 174 0.50 −2.11 −0.85 −1.24 2.35 3.47

Note. All p < .05. Only significant (p < .05) differences presented. Below = below median on
composite behavioral measure of emergent leadership; above = above the median.

The behavioral markers of emergent leadership were positively associated with
extraversion (e.g., initiating conversations, having the last word, and taking respon-
sibility), rs = .18–.29, all p < .05. In addition, having the last word was negatively
associated with conscientiousness, r = −.16, p = .039 (Table 25).
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Table 25. Emergent leadership behavioral markers and five factor personality traits

Item parameters Initiate
conversations

Last word in
conversation

Taking
responsibility

Extraversion .27 .18 .24

Agreeableness

Conscientiousness .16

Emotional stability

Openness

Note. All p < .05. Only significant correlations presented.

The behavioral markers of emergent leadership were also positively correlated with
features of gregariousness, rs= .16–.24, all p< .05, and leadership, rs= .16–.23, all p<

.05, and negatively correlated with domineering, rs = −.16–-.17, all p < .05. Attitudes
on the measure of sociable dominance (Table 26).

Table 26. Emergent leadership behavioral markers and sociable dominance traits

Item parameters Initiate conversations Last word in conversation Taking
responsibility

At school I found it easy to
talk in front of the class

.21

I am not shy with strangers .18 .20

I can lie without anybody
noticing it

.17

I find it important to get my
way

−.16

Note. All p < .05. Only significant correlations presented.

NLP behavioral markers of emergent leadership were also significantly positively
correlated with real-time task behaviors of explicit coordination, compensatory help-
ing, transactive memory, motivating and confidence building, clarifying roles, clarifying
information to share, and clarifying timing and sequencing. Those who were higher on
the behavioral markers of leadership also spokemore about teammembers, their actions,
and their roles, as well as about plans (Tables 27, 28).

At the team level, teams higher on these leadership markers also displayed higher
levels of important task behaviors. Teams that displayed more leadership according to
these markers reported higher levels of team viability after the first mission, r = .26, p
= .047.
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Table 27. Emergent leadership behavioral markers and real-time task behaviors

Item parameters Initiate
conversations

Last word in conversation Taking
responsibility

Explicit coordination .76 .93 .37

Clarifying roles .41 .59 .23

Clarifying information .34 .40

Clarifying timing and
sequencing

.33 .47 .17

Transactive memory .29 .43

Motivating and confidence
building

.43 .48 .24

Compensatory helping .23 .41 .36

Note. All p < .05. Only significant correlations presented.

Table 28. Emergent leadership behavioral markers and real-time communication behaviors

Item parameters Initiate
conversations

Last word in conversation Taking
responsibility

Talking about people .83 .69 .61

Talking about roles .56 .47 .48

Talking about actions .76 .67 .67

Giving approval .73 .64 .52

Talking about plans .67 .62 .65

Talking about contingent plans .35 .39 .40

Talking about deliberate plans .33 .26 .59

Note. All p < .05. Only significant correlation presented.

4 Discussion

4.1 Key Findings and Implications

Overall, the item and scale-level analyses support the psychometric integrity of the peer-
report emergent leadership scale. Correlations to perceptions of leadership, behavior-al
differentiation of leaders, and associations with team processes, outcomes, and attitudes
further support the validity of this measure.

Initial behavioral markers of emergent leadership show concordance with peer report
measures of emergent leadership as well as important real-time task behaviors, indicat-
ing the utility of even simple NLP extractions for developing behavioral measures of
emergent leadership. Leaders could also be differentiated on a number of additional
NLP-extracted behavioral/speech markers.
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Despite previous research regarding personality traits and emergent leadership
(e.g., extraversion, Bono and Judge 2004; Hoch and Dulebon 2017; conscientiousness,
Cogliser et al. 2012), and sociable dominance (Kalma et al. 1993), only very limited
support was found for the relevance of these traits in the current study. Overall, leaders
appeared to be individuals who were more gregarious and less aggressive and domineer-
ing in their attitudes towards leadership (i.e., sociable, Kalma et al. 1993); it is unclear
if this is context-specific.

Leadership structure of teams did in fact show evidence of being relevant to team
processes and attitudes towards the team. As expected teams with leadership displayed
higher levels of several important team processes andmore positive team attitudes; teams
with shared leadership seemed to fair the best according to these measures.

Together, findings support that at both the individual level and team level, emergent
leadership is in fact relevant to real-time task- and team-oriented behaviors, as well as
task- and team-related outcomes, independent of method of assessment (peer-report or
behavioral).

4.2 Future Directions

The research presented here represents a first step in exploring the available data from
this experiment. As part of this ongoing research, we are still continuing to evaluate
our measure of emergent leadership behaviors and NLP behavioral markers, as well as
their relationships to additional team processes, real-time behaviors during the mission,
shared mental models, and team outcomes.

Several efforts to add additional behavioral markers of emergent leadership using
NLP are currently underway. Some current extractions include the number of times
participants say the next to last word followed by team-mate approval, the number of
times each participant responds to communications initiated by others (as indication of
network centrality) and the number of times participant takes responsibility (e.g. I can
do that, I’ll take care of it, let me). Other extractions are also being discussed, with
the understanding that these will ultimately be used to inform computational NLP for
machine agents. In the future, additional qualitative coding of the emergent leadership
behaviors may help to identify additional targets for extraction.

Given our relatively sparse findings in this area, one particular focus in future research
should be identifying the characteristics that predict who may assume leadership roles
within teams; this will be helpful to machine agents integrating with teams, such as in
making recommendations for members to take on leadership roles within teams.

Finally, the current findings will be used to make preliminary recommendations for
building analytic agents and designing potential interventions that machine agents can
engage in to help improve team effectiveness. These agents and interventions will need
to be evaluated and refined based on further experimentation in this task environment,
and ultimately generalized to other settings.

Ultimately, insofar as optimizing team performance is a fundamental purpose of inte-
grating machine agents into human-machine teams, optimizing task behaviors is instru-
mental to their purpose. Our work towards developing the concept of emergent lead-
ership into operationalizable measures and inputs presents important progress towards
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supporting the theory of mind, artificial social intelligence, and general knowledge base
necessary for agents in this capacity.

Appendix

Vars: "org/clulab/quickstart/grammars/ASIST/vars.yml"
rules:
- name: "Entity"
label: Entity
priority: 1
type: token
pattern: |
[entity="PERSON"]
|
[tag=/^N|PR*/ & !tag=/^V/]

- name: "Action"
label: Action
priority: 2
pattern: |
trigger = [tag=/^V/]
agent: Entity? = /${agents}/
theme: Entity? = /${objects}/

- name: "Medic"
label: Roles
priority: 1
type: token
pattern: |
/(?i)medic/
|
[lemma=/medic|medical/]

- name: "Hammer"
label: Roles
priority: 1
type: token
pattern: |
/(!?)hammer/

- name: "Specialist"
label: Roles
priority: 1
type: token
pattern: |
/(!?)specialist/

- name: "Search"
label: Roles
priority: 1
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type: token
pattern: |
/(!?)search/

- name: "Obstacle"
label: stuck
priority: 1
type: token
pattern: |
[lemma=/immobilize|frozen|stuck/]
|
[lemma=can] [lemma=not] [lemma=move]
- name: "Approval"

label: Approval
priority: 2
example: Sure, Bob!
pattern: |
trigger = [lemma=/yes|ok|okay|sure|alright|good|excellent|great|terrific|copy/]
|
/(?i)Sounds/ /good/
|
/(?i)I/ /agree/
agent: Entity? = /${agents}/
- name: "Responsibility"

label: Responsibility
priority: 2
type: token
example: I can do that.
pattern: |
[lemma=/(?i)I\’ll/]
|
/(?i)Can/ /do/
|
/(?i)Take/ /care/
|
/(?i)Let/ /me/
|
/(?i)I/ /will/
# Planning Rules #

#############################
- name: "ConditionalIF"
label: ContingentPlan
priority: 3
pattern: |
trigger = [lemma=if]
condition: Action = <mark
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solution: Action = <mark <advcl_if
- name: "PlanTrig"
label: Planning
priority: 1
type: token
pattern: |
/(?i)should|need/
|
[lemma=/plan|goal|bring|come|gather|get|be/]

- name: "DeliberateFut"
label: DeliberatePlan
priority: 3
pattern: |
trigger = (?<= [tag=VBP & lemma=be]) [tag=VBG]
# the first thing in the parantheses is a look behind so it’s going to look at

everything that came before.
# both inside the square brackets are constraints applied to a single token. A

token comes before that is the tag restraints
# and the verb "to be"
# the second is capturing the gerund "am going"
|
(?<= [tag=MD & lemma=will]) [tag=VB]
# to make this useful we need to know who is doing the planning.
agent: Entity = >/${agents}/
# agent is the name of the argument while Entity is the type.
# the pattern is right hand side of the colon and is applied to the sentence.
# from the trigger, follow an outgoing agent and it would need to be in previously

found entity.
theme: Param? = >/${objects}/

- name: "HelpRequests"
label: coordination
example: Can someone help me?
pattern: |
trigger = /(?i)could|would|can/
actor: Entity = <aux >/${agents}/
# person doing the helping (someone)
request: Action = <aux
# not about linear order, we are traversing against an incoming aux to land on

the end of the aux (from can to help)
recipient: Entity? = <aux dobj
# now, we’re traversing against an incoming aux to land on the dobj (from help

to me).
# - name: "Response"
# label: coordination
# example: I can help you.
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# type: token
# pattern: |
# /(?i)could|would|can/ [tag=/PRP|N*/]
- name: "Unless"
label: coordination
type: token
pattern: |
/(?i)unless/ [tag=/PRP|N*/]
# My Rule #

# 5. Taking responsibility: Number of times participant takes responsibility #
# (keywords: I can do that, Iâe™ll take care of it, let me). #
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Abstract. Adult humans are typically capable of impressive, often
recursive, reasoning about the mental states of others, but recent evi-
dence has suggested that said reasoning, called Theory of Mind reasoning
(ToM), is not easy or automatic. This has lead to the theory that human
ToM reasoning requires two systems. One system, efficient but inflex-
ible, enables rapid judgements by operating without explicit modeling
of beliefs, while a separate, effortful system, enables richer predictions
over more complex belief encodings. We argue that computational ToM
requires a similar distinction. However, we propose a different model: a
single process, but with effortful re-representation leading to two phases
of ToM reasoning. Efficient reasoning, in our view, occurs over repre-
sentations that include actions, but not necessarily explicit belief states.
Effortful reasoning, then, involves re-representation of these initial encod-
ings in order to handle errors, resolve real-world conflicts, and fully
account for others’ belief states. We present an implemented compu-
tational model, based in memory retrieval and structural alignment, and
discuss possible implications for computational agents in human-machine
teams.

1 Introduction

While the precise trajectory of human theory of mind (ToM) development contin-
ues to be debated [14,19,27,28] it has been well established that young children
often fail to take into account the mental states of others when predicting their
actions. However, typically developing adults (and older children) are generally
considered to be proficient ToM reasoners.

Yet, there is substantial evidence that adults do not always effectively utilize
ToM, either—at least not automatically. For example, during diadic conversa-
tion, adult participants have been found to consider visual referents that their
partner could not be aware of [12]. In a further exploration, participants were
asked to give a “director” an object from a table. The names of the objects on
the table were polysemous (e.g., a roll of tape and a cassette tape), but, prior
to the direction, the participant themselves hid one of the possible referents in a
bag, leaving only one visible to the director. Even so, the participants sometimes
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gave the director the occluded object. This was the case even when they were
told the director had a false belief about the contents of the bag that excluded
the actual contents as a referent [13].

There is also evidence that ToM reasoning requires cognitive effort. Adults
are generally slower to answer questions about another person’s false beliefs
than about reality, but that this processing difference disappears when the par-
ticipants were instructed to track beliefs explicitly [2]. Furthermore, there is
evidence that working memory impairment degrades ToM reasoning, suggesting
that humans are “reflexively mind blind”, only explaining behavior with regard
to mental states when cognitive resources allow [15].

Such findings have led to the proposal that adult humans have two systems
for theory of mind. The first ToM system—efficient but inflexible—enables real
time goal recognition but does not explicitly encode mental states. The second
system does encode mental states and enables full ToM reasoning, but requires
cognitive effort. They suggest that the first system is shared by young children
and potentially non-human animals as well, while the latter develops with mat-
uration, thus explaining developmental findings [1].

We propose that this distinction is also beneficial when implementing ToM
for machines that work with human teammates, allowing agents to conserve
resources and respond in real time while reserving effortful ToM for error cor-
rection or particularly important interactions.

However, unlike previous accounts, we suggest that the difference between
the two systems is purely representational. That is, a single ToM process is
sufficient for both efficient and effortful ToM reasoning, with re-representation
accounting for the effort in the latter. We present an existing computational
model of ToM, the Analogical Theory of Mind [23], which, we argue, can be
used for both types of reasoning, given appropriate representations. We finish
by discussing implications of this model to human-machine teaming.

2 Automatic and Effortful ToM in Agents

There is a wide variety of ToM-style tasks that computational agents working
with human teammates may need to perform. These vary from interpreting the
goals behind the person’s actions [4] to understanding the preferences or beliefs
that underlie those actions [29] and adapting the agent’s own actions in response
[9]. Some of these tasks can be completed via automatic processes exclusively,
while others require effortful reasoning to do well.

Consider the following example. Our agent sees its teammate, Sam, walking
toward the kitchen. It might predict that Sam is getting a coffee. For this infer-
ence, an example of goal recognition, the sequence of actions performed by Sam
is likely sufficient [17].

However, suppose the agent notices that Sam is not carrying a cup and knows
there are none in the kitchen. The agent may conclude that Sam erroneously
believes the kitchen has spare cups, or perhaps that Sam is going for another
reason. This is no longer pure goal recognition. The agent must now reconcile
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its observation with Sam’s possible belief states. As in humans, belief state ToM
reasoning is more difficult and requires richer representations. Whether the agent
engages in this effortful action depends on its own goals and resources; maybe a
colleague going to the kitchen is not worth further thought.

There are real world use cases where goal recognition, without explicit con-
sideration of belief states, is sufficient for computational agents. For example, a
goal recognition algorithm that predicts adversary goals from behavioral obser-
vations has been used to model air combat scenarios [3]. Other goal recognition
domains range from non-player character gameplay in video games [7] to cook-
ing [25], among others. Often, the step from recognizing a goal to taking action
with a human teammate is straightforward and does not require access to men-
tal states. In such situations rich representations and effortful reasoning may be
wasted effort.

Other tasks, however, do require deeper representations that encode addi-
tional actions, belief states, knowledge states, preferences, or all of the above.
For example, the proposed “Watch-And-Help” social reasoning task, in which an
agent helps a human teammate complete a task in the home (e.g., set the table,
put away groceries, etc.) requires reasoning about a human partner’s beliefs.
While goal recognition is part of this task (i.e., it is necessary for the agent to
recognize which task the human is completing), the agent must also consider
the human’s beliefs about the environment and the intermediate steps they may
take to complete the task. That is, the agent must not only recognize that its
teammate wants to set the table, but also consider the fact that they may not
know where the forks are located or that dinner has already been moved from
the refrigerator to the oven for reheating.

It may not be immediately clear at the onset of a task whether pure goal
recognition will be sufficient, or if more effortful representations will be required
[20]. In fact, we posit that most real-world tasks for agents, as for humans, will
fall somewhere in the middle, requiring automatic representations at the onset
and effortful adjustments throughout the interaction. Thus, the ability to easily
switch between these representations will be necessary for successful human-
machine teaming.

3 Analogical Theory of Mind (AToM) Model

We propose that the Analogical Theory of Mind (AToM) model of ToM reasoning
and development can perform both automatic and effortful ToM reasoning using
a single iterative process of memory retrieval, analogical inference, and effortful
re-representation. We describe that model and the types of representations used
here.

3.1 Analogical Theory of Mind

Analogical Theory of Mind [23] is a computational cognitive model of human
ToM reasoning and development that has also been used for ToM reasoning in
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computational agents [21,22]. Importantly, different representations have been
used for each of these tasks. For example, [23] encoded stories using explicit
representations of belief states to model how children learn ToM from hearing
stories about others’ true and false beliefs. On the other hand, [24] modeled
how children gain ToM from learning a complex grammatical structure; while
the nested structure of representations played an important role in that model,
belief states were not encoded at all.

Representations also varied when the model was used in agents’ reasoning
about others. [21] used nested qualitative representations of agents’ movement
to predict whether they were cooperating with each other, while [22] used flat
representations of actions in a more typical goal recognition task. In both cases,
AToM performed comparably to state-of-the-art solutions1.

The AToM algorithm did not differ as representations changed. This was
enabled by the implemented processes that underlie AToM’s reasoning, analog-
ical retrieval [6] and structural alignment [5].

In particular, AToM relies on a learned or pre-populated memory bank of
cases, called a case library. In the example of the agent reasoning about Sam
walking to the kitchen, the case library would likely include memories of other
interactions it has had with humans (hopefully, but not necessarily, including
observations of other kitchen trips). In AToM, a representation of the ongo-
ing scenario is used to retrieve a memory. The retrieved memory is aligned to
the scenario using structural alignment, and candidate inferences are generated.
Candidate inferences suggest facts that may be true in the scenario, although
they are not guaranteed to be accurate or consistent. Thus, a memory of Jackie
going to the kitchen for coffee may lead to the candidate inference that Sam is
getting coffee, too.

Retrieval and alignment follow the principles of Structure-mapping Theory
[8]. At a high level, these prioritize retrieval of memories that share higher order
structure with the scenario being reasoned about. They also enforce hard restric-
tions on alignment (e.g., that each item in the memory can align to at most one
item in the scenario) and suggest soft constraints (e.g., prefer aligning identical
predicates to each other).

Consider the example in Fig. 1. The agent is comparing the ongoing sce-
nario (Sam going to the kitchen) to two memories. In one, a teammate, Jackie,
believes there to be cups in the kitchen and is surprised that there are none.
This could be represented with the nested belief proposition (believes Jackie
(locationOf cup kitchen)) and her state of surprise, (surprised Jackie),
but no action. The other contains the fact that Alex walked to the kitchen
(walks Alex kitchen), but no representation of a belief.

If the agent represents Sam going to the kitchen with both (walks Sam
kitchen) and (believes Sam (locationOf cup kitchen)) facts, the first
memory will align better based on the shared nested belief structure and should

1 Cooperation prediction was compared against [26]’s [26] Bayesian model, while goal
recognition was compared against PANDA-Rec [10] and Elixir-MCTS [11].
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Fig. 1. Analogical alignment and inference

be retrieved. On the basis of the alignment, it can be inferred that Sam will also
be surprised.

Different permutations of these facts in memories and scenario representa-
tions will lead to different retrievals, and therefore different reasoning outcomes.
Note, too, that, while in this toy examples, representations of the scenario and
retrieved memories are exactly the same, such exact matching is not required.

3.2 Automatic Encoding and Effortful Re-Representation for AToM

As discussed above, there is evidence that full ToM reasoning is not automatic
and in fact requires substantial cognitive effort [1,13,15]. AToM provides a mech-
anism by which ToM inference occurs, namely analogical retrieval of and map-
ping from episodic memories. Here we propose that this process underlies both
automatic and effortful ToM reasoning, the latter being the result of an iterative
sequence of retrieval and re-representation.

When observing a potential ToM reasoning scenario (e.g., Sam going to the
kitchen), the agent initially encodes its observation using sparse representations
that do not include belief and knowledge states. It then retrieves an analogical
experience from memory and infers a potential goal. As in [23], this inference
may be incompatible with the real world which triggers a search for explanation
via further analogical retrieval.

In our proposed model, the incompatible inference leads to re-representation
of the scenario given the false expectations generated by the alignment. This
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Fig. 2. ToM through successive analogical retreival and re-representation

process of inference evaluation, re-representation, and retrieval requires addi-
tional cognitive effort and is subject to executive control.

As an example, consider Fig. 2. Our agent observes their teammate Sam
going to the kitchen. This prompts a search for explanation using the agent’s
initial encoding of the situation. The agent recalls that teammates often go to
the kitchen and drink coffee. By aligning Sam to prior teammates, the agent can
infer that Sam is likewise getting coffee.

However, in the retrieved memory the teammate needs to bring a cup in order
to drink coffee. Sam does not have a cup, triggering what, in analogy literature,
is called an alignable difference [16]. This difference is re-represented into the
scenario and the agent again searches for explanation. The agent now retrieves
a memory that another teammate was surprised to find the kitchen did not have
extra cups. So perhaps, by analogy, Sam is also expecting there to be cups in
the kitchen.

Now primed with Sam’s inferred beliefs, the agent can continue to elaborate.
Maybe this belief is inconsistent with reality (i.e., Sam knows there are no cups)
or maybe the agent remembers that Sam does not like coffee. The agent can
continue to re-reprsent and re-retrieve explanations until satisfied.

In [23] the retrieved memories were encoded from a first person perspective
(e.g., “I once got coffee”). In the automatic representations in [22], on the other
hand, representations were allocentric (e.g., “My teammate once got coffee”). We
note here that, due to analogical alignment, ToM reasoning can arise from both
egocentric and allocentric memories. The ToM target could align to oneself or
one’s mental model of another agent. Interestingly, this suggests that individual
encoding biases as well as alignability between the self and the target may play
a significant role in ToM prediction. If the target is easily aligned to the self,
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an agent may be more likely to ascribe its own motivations and beliefs to the
target. However if viewed as different, the agent would be more likely to apply
its perceived mental model of a more similar analog or even fail to model ToM
entirely. Exploring this distinction is one future direction for our modeling work.

4 Implications for Human-Machine Teams

Human agents certainly have the ability to engage in rich ToM modeling, but
there is ample evidence that such modeling is both costly and often unnecessary.
We believe this lesson can be applied to the ToM reasoning of computational
agents collaborating with humans. ToM reasoning need not be complete, and
initial reasoning may not even need to explicitly take into account teammates’
mental states. Instead, we propose that ToM reasoning ought to progress from
efficient reasoning over initial representations to effortful re-representation and
reasoning only when there is both need and available cognitive resources.

We suggest that the AToM model provides a single process that naturally
allows for this kind of progression in the form of re-representation and retrieval.

Furthermore, as a cognitive model, AToM could provide insight into how
and why humans apply or fail to apply their own ToM reasoning to their com-
putational teammates. As we discuss above, the AToM model suggests that the
ability to apply ToM and the kinds of judgements made may depend on how
alignable the ToM target is to oneself and ones representations of others. If cor-
rect, then human teammates may not ascribe a computational agent the same
kinds of beliefs and knowledge that they would ascribe themselves (or even other
humans) in the same situation. However, they may be more willing to do so if
the agent adopts a familiar profile.

Finally, to date, AToM has relied on manually constructed episodic memo-
ries or domain-specific training data. This may be possible for online reasoning
in some domains, and an agent may be able to accumulate memories through
interaction. However, we are also interested in examining how large generative
neural models may be used to simulate episodic memory. As an example, [18]
collected a large corpus of semi-structured natural language causal explanations
which they used to train neural models for causal prediction. Such models may
be able to generate plausible beliefs and causal chains as a stand-in for real-life
experiences.

5 Conclusion

We have proposed that ToM reasoning for computational agents in human-
machine teams should not be one-shot. Rather, following evidence that humans
have both a fast automatic and slower effortful system for ToM reasoning, we
argue that computational agents should be able to modify initial judgements for
more nuanced reasoning. We posit that this distinction can be achieved through
automatic initial encodings and effortful re-representation using a single reason-
ing process. In particular, the Analogical Theory of Mind (AToM) model can be
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used for this type ToM reasoning. In future work, we plan to empirically test
these claims.
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Abstract. The ability to make inferences about other’s mental states
is referred to as having a Theory of Mind (ToM). Such ability is funda-
mental for human social activities such as empathy, teamwork, and com-
munication. As intelligent agents being involved in diverse human-agent
teams, they are also expected to be socially intelligent to become effective
teammates. In this paper, we propose a computational ToM model which
observes team behaviors and infer their mental states in a simulated
search and rescue task. The model structure consists of a transformer-
based language module and an RNN-based sequential mental state mod-
ule in order to capture both team communication and behaviors for
the ToM inference. To provide a feasible baseline for our ToM model,
we present the same inference task to human observers recruited from
Amazon MTurk. Results show that our proposed computational model
achieves a comparable performance with human observers in the ToM
inference task.

Keywords: Theory of mind · Cognitive modeling · Neural networks ·
Natural language processing

The famous Sally-Anne test has been widely used in developmental psychology
to test if children are able to distinguish their own mental states and others. This
ability to make inferences about another’s mental state is referred to as having a
Theory of Mind (ToM). While reasoning about false beliefs is the capability most
commonly associated with ToM, other inferences such as preference orderings [1],
or affect and empathy [4] have also been linked with ToM along with other
explanatory concepts involving mental states such as desires and intentions [6]
which have been referred to inclusively as Folk Psychology [19].

In this paper, we propose a sequential Theory of Mind model that rea-
sons about human dynamic beliefs in 3-people urban-search-and-rescue (USAR)
teams. The USAR rescuer teams have to navigate through an environment and
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clear obstacles to locate and triage victims. Multimodal observations, includ-
ing both team communications and individual actions, are used to infer hidden
beliefs of rescuers regarding the meaning of different markers. A team commu-
nication module is implemented based on a pre-trained language model to iden-
tify marker-related utterances in rescuers’ verbal communication. Then those
detected timestamps are used as potential transition points of human beliefs
about marker meanings. The dynamic belief module is based on recurrent neural
networks and capable of mapping observable action sequences to belief sequences.
The overall framework of marker ToM inference model is shown in Fig. 1. Each
component of the framework is explained in subsequent sections of this paper.

1 Human ToM Inference

The Belief-Desire-Intention model [6], holds that agents form intentions to act in
order to bring about desired states, with beliefs describing the allowable states
and transitions. Because these mental entities of one human are not known to
other humans, an observer must infer them on the basis of very little evidence.
Humans do this readily [20] albeit often in error [5,18].

In this paper, we introduce a computational inference model capable of
employing ToM reasoning. Because ToM is defined through its role in folk psy-
chology and human commonsense reasoning, the appropriate baseline for guid-
ing development and evaluating a computational ToM model would be a human
observer. However, the human observer’s accuracy in ToM inference is not nec-
essarily expected to be high. Despite mastery of ToM reasoning in everyday life,
people often fail to employ it, in taking directions [18], for example, or fail in
reasoning about content of others’ minds due to biases toward their own per-
spectives and knowledge [5]. Nonetheless, it would still be useful to assign the
same ToM inference tasks to human observers to provide a performance baseline
for our proposed model.

2 Computational ToM Models

Several authors have proposed a computational framework to model human goal
inference as a Bayesian inverse planning process, i.e. the Bayesian Theory of
Mind (BToM) framework [3]. BToM models have enjoyed success in explaining
human ToM inference in goals, desires [15], and (false) beliefs [2]. However, most
of the Bayesian-based methods are applied in simple environments with small
state space (e.g. grid world) and yet to be tested with real human data in complex
task scenarios. Computational ToM models based on neural networks have been
shown to successfully reason about both machine agents internals [17] and human
mental states [11,12,16]. In this paper, we continue to explore the possibilities
of incorporating ToM models with state-of-the-art deep learning techniques.

In the literature, little attention has been paid to modeling human mental
states in team settings. When multiple humans form teams, the complexity of
their joint mental model increases tremendously. Team members have to inten-
sively communicate about task information to maintain a shared situational
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awareness. Thus humans in a team have even more dynamic desires, beliefs, and
intentions that change over time when compared with humans operating in iso-
lation [8]. In this paper, we take a first step in this direction by investigating
human beliefs in 3-person urban-search-and-rescue (USAR) teams.

3 Decision Points

In our work, we analyze three types of human data: verbal communications
between team rescuers, rescuer actions, and action prediction, that were col-
lected from human observers to assess our ToM model. ToM inferences involve
at least two entities; one team player presumed to have mental states which
may on occasion lead to observable actions or communications and an observer
who attributes mental states and transitions between them to be the cause of
observed actions by the first party. Because human observers are well practiced
at making such inferences and making them on the basis of incomplete evidence,
human inferences are likely to vary in confidence and accuracy with the ambigu-
ity of observations. The accuracy of our proposed model should vary in a similar
way with ambiguity in observations, which makes the comparisons with human
‘experts’ a good test of inference capabilities.

Because a ToM model is expected to evolve over time but only reveals itself
intermittently through observed actions, it needs to be maintained and updated
in order to converge to a more accurate model. To choose the decision points
for making these updates, it is necessary to consider whether an action is taken
or not when an opportunity occurs, for example encountering a door marked by
others that could be entered. Those trigger events and consequential behaviors
are recorded and fed into a recurrent neural network (RNN) to infer rescuer’s
beliefs. The other kind of decision points are when team members explicitly
communicate about their mental state, for example reporting change of marker
meanings. Based on our observation from human teams, we assume that all team
belief transitions happened when related communication occurred between team
members and use a transformer-based language model to process the commu-
nication content. These decision points provide stopping points during a USAR
mission, where our ToM computational model can be updated, and inference
tasks can be posed to the model and human observers.

4 Simulated Search and Rescue Task

4.1 Task Scenario

[10] describe a Minecraft environment designed to reproduce the uncertainties
and hazards of a collapsed building for use in the study of urban search and
rescue teams. Using data shared with us by Arizona State University from this
task and environment, we built our ToM inference model and collected action
predictions at decision points made by Mechanical Turk workers. The search and
rescue map developed for this task is shown in Fig. 2. The scenario portrays a
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Fig. 1. Overall framework for sequential ToM inference.

structurally damaged office building after an unspecified incident. It contains 54
rooms and multiple connecting corridors. The building layout and connectivity
may be changed by perturbations such as rubble. The 3-person team needs to
search the building and rescue as many victims as possible within 15 min. Their
performance is measured by points earned from saving victims. There are 55
injured victims inside the building. Out of the 55 injured, five are critical victims
with severe injures and others are regular victims. Critical victims are worth
more points but can not be rescued until all team members are present at the
victim’s location. This encourages communication, for example about a critical
victim’s location, and coordination between teammates. The three rescuers in a
team are named Red, Blue, Green for easy identification.

4.2 Team Roles

Rescuers can choose from three interdependent roles, each of which have different
capabilities and limitations. Teams can choose to have any team composition
they would like (e.g., one of each role, all three at the same role). Each role’s
tools have limited uses before they need to be replenished. Rescuers can change
their roles or replenish their tools at any time by returning to the base.

– Heavy Equipment Specialist (a.k.a, engineer): Can remove rubble with a ham-
mer, and move at a slow speed.

– Medical Specialist (a.k.a., medic): Can rescue victims and travel at a medium
speed.
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Fig. 2. Human participants serving as rescuers see the first-person view on the right
and client map and marker block legend on the left.

– Searching Specialist (a.k.a, searcher): Can move regular victims to a different
location, making it easier for the medic to rescue multiple victims at one spot,
and move at a fast speed, allowing for scouting.

4.3 Information Asymmetry

To provide heterogeneous mental models associated with task knowledge, the
participants receive different information when the mission starts. On the client
map interface, each rescuer is provided with unique information about a certain
map regions. The information includes the room name and locations of rubble
and victims divided by regions. Each participant receive a map that provides
details in two regions and no information in four regions. In addition, three
rescuers each has a set of marker blocks (numbered 1, 2, and 3) that they can
put on the ground to indicate the state of a room. Each marker block also
indicates the identity of its author (Red, Green, or Blue). In the mission, one
rescuer will receive a legend to the meanings of numbered blocks that conflicts
with the legend given to the other two rescuers. Two possible semantics are
given in Table 1. As such, a rescuer with the marker semantic A would most
likely place a marker 1 in front of a room that she believes to contain no victim.

Table 1. The meaning of different marker blocks assigned to players at the beginning
of the mission.

Semantics Marker 1 Marker 2 Marker 3

A No victim Regular v. Critical v.

B Regular victim No v. Critical v.
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An example of asymmetrical information received by rescuers is shown in
Fig. 3. Note that those rescuers are not aware of this manipulation among team
members and will need to communicate to share information.

Fig. 3. Asymmetrical information on client map and marker block legend received by
each rescuer in the team.

In the present study, we develop a ToM model to predict the marker semantic
belief of each rescuer. Note that this belief is inherently dynamic i.e. it can change
over time. For example, a rescuer might be initially assigned marker semantic A
but later switch to semantic B after the team realize, and communicate about
the information asymmetry, and agree to all switch to semantic B.

4.4 Data Set

19 groups, each of 3 participants, took a series of training sessions and surveys
before entering the actual search and rescue task. Each team completed two
consecutive 15-min missions on two different map configurations. Game state was
recorded for in-game events (e.g. rescue victims, switch roles, and place marker
blocks) 30 Hz. Rescuer screen recordings and verbal communication audio were
saved for post processing.

5 Team Communication Model

Given the experimental setting, rescuers in the team need to intensively com-
municate about task information to maintain a shared situational awareness
among members. Especially for the manipulated marker legends, such informa-
tion asymmetry can lead rescuers to have different mental models about the
meaning of maker blocks, then form false beliefs when seeing makers placed by
other rescuers. If such team mental state misalignment is not resolved by commu-
nication early in the mission, team performance is harmed severely. Therefore,
we propose a natural language processing method to identify team communica-
tion entries related to marker blocks. The model takes in a single communica-
tion transcription and outputs a binary decision: whether this communication is
related to marker blocks or not.
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5.1 Model Structure

Our proposed model is based on general language models pre-trained on a large
corpus and fine-tuned on our data set. An illustration of the model structure is
shown in Fig. 4. Communication transcripts are prepossessed and tokenized then
fed into a pre-trained Bidirectional Encoder Representations from Transformers
(BERT) [9]. BERT embeddings with a 0.3 dropout rate go through a neural
network with two fully connected layers with 64 and 1 hidden neurons each.
The ReLU activation function is used between two FC layers. The single output
value from neural network is used to determine the binary prediction result.

Fig. 4. Communication model structure.

5.2 Training Details

The human data set is divided into two parts, where the training data set consists
of 2725 entries from 10 teams and the test dataset consists of 3434 entries from 9
teams. All transcriptions are manually coded by experimenters to serve as ground
truth labels of each communication entry. There are in total 67 positive cases
out of 2725 entries in the training data. To overcome imbalanced data labels,
we oversample positive entries by 20 times to create an augmented training data
set. We use binary cross-entropy with logit loss as the loss function and Adam
optimizer to regulate the training [13]. Training batch size is 16 and learning
rate is set to 1e-05. The whole model including both BERT and FC modules are
fine-tuned together for 1 epoch.

5.3 Experimental Results

Cross-validation is used on training set to explore different model structures
and hyper-parameters. Specifically, training data from 1 team is held out for
validation, and the other 8 teams are used for training. This process repeats 9
times and the average validation result is used to evaluate model performance.
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In addition, since the aim of this model is to identify potential mental state
transition points, we care more about how relevant returned results are instead
of how complete they are. Therefore, precision is used as the performance metric
in model evaluation. The average precision of cross-validation on training set is
98.6% and the test precision is 81.0%, indicating a good model performance
and a reasonable generalization between teams.

Experimental results show that our proposed model is capable of identifying
marker-related entries from team communication transcriptions. Those commu-
nication points will be used in dynamic belief modeling and human observation
experiment as key decision points where rescuers’ mental state are highly likely
to change.

6 Dynamic Belief Model

The goal of our ToM model is to infer human’s dynamic beliefs based on observ-
able behaviors. Here we again concentrate on inferring what marker block mean-
ings each rescuer was using during the mission. Because one rescuer in the team
was initially assigned with a different marker legend than other team members
and the team may realize and resolve this manipulation at any time during the
mission, this ToM model is trying to infer dynamic beliefs of humans that may
change over time. By observing an individual rescuer’s behaviors for a certain
time interval, the model should be able to estimate the most likely marker legend
that the rescuer is using. Since we have identified time points where the team
communicates about marker blocks, we can assume that the mental state of res-
cuers remains the same during intervals between those communication points.
We make such an assumption based on the observation that it is unlikely for a
certain rescuer to suddenly change her marker block meaning without informing
other team members. For example, when one rescuer realizes the difference in
team marker legends, her first choice is usually confirming with others by asking
‘Do we have marker number 1 for regular victims?’. Then the team will further
discuss and finalize a common legend for the team to use, e.g. ‘Let’s use 1 for
victims, 2 for rubble and 3 for empty room.’ Those communication utterances
can be detected by the communication model proposed earlier and served as
potential belief transition points for the belief model.

6.1 Data Processing

In total, 16 trials of game data from 9 teams are used in model training and
evaluation. We first slice the game log of each trial by marker-related commu-
nication points generated by the BERT communication model, then calculate
each individual rescuer’s actions within those N intervals. Specifically, we count
the number of action sequences that potentially reveal the rescuer’s belief about
marker blocks, in each interval. For example, if a rescuer sees a regular victim and
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then immediately places a number 2 marker block, it is more likely for her to hold
semantics A (the complete action list is shown in Table 2). With a 12-dimension
action vector, each time a listed action is observed within a certain time interval
following its prerequisite, the count of corresponding dimension adds one. Some
actions share the same dimension as they refer to the same semantic meanings
in different forms, e.g. perception (marker in FOV – rescue victim) and intention
(victim in FOV – place marker). By counting those actions in each observation
window, we have an input observation sequence with the shape of (N, 12) per
trial per rescuer.

Table 2. List of action sequences tracked as model input.

Prerequisite Action Dimension

Other Place marker 1/2/3 1,2,3

Marker 1/2/3 in FOV Other 1,2,3

Regular v. in FOV Place marker 1/2/3 4,5,6

Marker 1/2/3 in FOV Rescue regular v. 4,5,6

Critical v. in FOV Place marker 1/2/3 7,8,9

Marker 1/2/3 in FOV Rescue critical v. 7,8,9

Marker 1/2/3 in FOV Clean rubble 10,11,12

In addition, the actual marker semantics rescuers were using during the mis-
sion are manually coded by experimenters into three categories: semantics A,
semantics B, and other. These label sequences are used as the supervised ground
truth for model training and evaluation.

6.2 Model Structure and Experimental Results

Figure 5 shows the structure of our dynamic belief model. It uses Gated recurrent
units (GRUs) to process input observation sequence and transit hidden state
through timestamps [7]. At each timestamp, a fully connected neural network
takes in the hidden state and outputs prediction results. Both the GRU and FC
module share weights along the timeline. Hyper-parameters used in training is as
follows: dropout rate = 0.3, learning rate = 0.001, batch size = 1, loss function
= cross entropy loss, optimizer = Adam.

Values of hyper-parameters are determined by experimenting on small vali-
dation set. The model is trained on 12 trials of data and tested on 4 held-out
data. We run 20 epochs of training 10 times to balance the influence of random
initialization. The average prediction accuracy on test data set is 70.5%.
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Fig. 5. Belief model structure.

7 Human Observation Experiments

Because the initial goal of our computational ToM model is to replicate human
performance at ToM tasks, we have collected predictions from human observers
to provide a baseline with which to compare the model performance. Note that
our human observer experiment goes beyond just inferring the marker block
semantics to include other aspects such as team scores and map. Thus, this data
can be used in future studies for other ToM tasks.

We devise a team-focused and an individual-focused experiment. In the team-
focused experiment, the observer is asked to predict the final team performance
and make inferences about the team mental model such as which rescuer was
assigned with different marker semantics than other team members. In the
individual-focused experiment, the observer is asked to predict individual res-
cuer’s next action based on potential false belief about marker block semantics.

7.1 Materials

For human experiment materials, we use the same 4 team trials as in the test
data set for belief model evaluation. Based on the collected team trajectories,
we generated the following materials: game screen video recordings and dynamic
mini-map videos. The first person screen recordings provides the situation aware-
ness for human observers to understand what the rescuers were doing, while the
dynamic map help locate the rescuers’ current location and navigation path.
The individual-focused experiment differs from the team-focused in which the
observer can have access to only the field of view of one player and the minimap
does not include the locations of other players (unless their locations are within
the field of view). Without the fully-observable perspective, human observers in
the individual-focused experiment have the same amount of information that
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one individual rescuer has during the mission. Video materials were segmented
by ‘decision points’ at which behaviors occur such as spotting a victim or placing
a marker block. The specific types of the decision points are explained below.

Fig. 6. Game state video presented to human observers

Table 3. List of decision points paused for human observers to make predictions.

Prediction tasks Decision points Ground truth

Team performance Fixed intervals Final team performance

Map information Map-related comm. Initial map assignment

Marker semantics Marker-related comm./place markers Initial semantics assignment

Reaction to markers Markers in FOV Actual next action

Table 3 defines “decision points” for each experiment. For the team Perfor-
mance prediction task, observers are asked to predict the final team score at
different mission stages, i.e. 4, 9, 14 min. Other prediction tasks in the team-
focused experiment are triggered at corresponding decision points by communi-
cation behaviors between team members. For example, Map and Marker pre-
diction questions are triggered whenever a rescuer mentions the map or markers
in verbal communication, respectively. At those points, observers are required to
conduct ToM inference by predicting the initial map/marker semantics assign-
ment of each rescuer. The team communication model introduced earlier is used
to detect communication about objects of interest (blocks, maps, ect...).

For the individual-focused prediction task, we concentrate on predicting indi-
vidual behaviors based on their (false) beliefs. Specifically, the video is paused
when a rescuer places or sees a marker block for observers to 1) infer rescuer’s
interpretation about this marker, and 2) predict rescuer’s next action upon seeing
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this marker. Those Reaction predictions require observers to form an accurate
mental model about the rescuer to infer her beliefs and actions correctly.

Video segments were presented in chronological order so that prior segments
can inform judgments. The actual action taken by the rescuer in the video seg-
ments was then presented at the start of the following sequence providing knowl-
edge of results. The total number of decision points in one trajectory is around
300, which is too demanding for human observers to annotate. Thus we sampled
a subset of decision points for each type and generated 15 video segments with
corresponding prediction questions for each trajectory.

7.2 Procedure

102 human observers were recruited from Amazon Mechanical Turk where
42 participated in the team-focused experiment and 60 participated in the
individual-focused experiment. Participants accessed the online survey on their
own computer. Observers received detailed instructions about the search and
rescue environment and the prediction tasks they were to complete. A quiz was
given to the observers to make sure they were familiar with the basic knowledge
of the experiment in order to proceed to the experimental task. Each observer
was assigned with one trajectory from a rescue team. Each trial of team trajecto-
ries were annotated by at least 5 independent observers. In each of the decision
points from the trajectory, human observers were presented a video clip and
the corresponding prediction questions. The length of this human observation
experiment was around 45 min.

7.3 Results

To ensure quality control, we removed data with missing answer entries or
extreme completion times (i.e. it took too long for the observers to answer). For
team performance prediction, observer’s prediction is compared with the discrete
actual team performance, thus the average RMSE of observers is calculated as
the metric. For other categorical predictions, the majority result of observers is
used. For example, if 3 out of 5 observers predict the player will enter the room,
this is the result that is compared with ground truth (e.g. actual team perfor-
mance, initial assignments, and in-game actions). Table 4 show the prediction
accuracy of human observers. In addition to the majority voting results, we also
calculated the 90th percentile of individual observers indicating the performance
of proficient humans in ToM inference tasks.

8 Discussion

In this paper, we propose a sequential Theory of Mind model that reasons about
human dynamic beliefs in a team task. Specifically, the model observes team
communication and individual actions to infer marker meanings each rescuer
used during the search and rescue mission. A team communication module is
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Table 4. Human observation accuracy.

Prediction Human majority voting Human 90th percentile Model prediction

Performance 125.2 48.6 N/A

Map 20.29% 44.44% N/A

Marker 58.52% 77.78% 70.5%

Reaction 32.65% 55.56% N/A

implemented based on a pre-trained language model to identify marker-related
utterances in rescuers’ verbal communication. Then those detected timestamps
are used as potential transition points of human beliefs about marker meanings.
The dynamic belief module is based on recurrent neural networks and capable
of mapping observable action sequences (e.g. see a regular victim then place a
marker 2) with belief sequences (e.g. hold semantics A). The overall framework
of marker ToM inference model is shown in Fig. 1. Both communication and
belief models are trained and tested on data previously collected from human
teams. Test set results show that the communication model achieves 81.0%
precision in identifying marker-related utterances, and the belief model achieves
70.5% accuracy in inferring rescuer’s marker semantics. To provide a feasible
baseline to evaluate our model performance, we assign the same test materi-
als and ToM inference tasks to human observers recruited from Amazon MTurk.
Results show that majority populations only achieve 58.52% in inferring marker
semantics and even worse in other ToM inference tasks. Even for the more com-
petent human observers, i.e. the 90th percentile, the inference accuracy is only
77.78%. This aligns with previous findings in the literature that inferring other
humans’ mental states in complicated task scenarios is challenging for human
observers [14]. We can tell from the above comparison that our proposed com-
putational ToM model achieves a human-level performance in inferring dynamic
beliefs in human teams.

This research bears its own limitations that we would like to improve in
future steps. First, the current model structure deals with the mental state of
each individual in the team separately. Although the communication model con-
siders information shared among all team members, the dynamic belief model
only takes in action sequence from one rescuer when inferring her mental state.
However, in such a team task, the mental states of three members are depen-
dent on each other and conditioned on team roles, which might lead to more
complicated belief structure such as nested second-order beliefs (rescuer Red
thinks that rescuer Blue has marker semantic A). A more reasonable method
to model team ToM is to incorporate action sequences of all individuals in the
team and infer the joint team mental state. In addition, the current model is
trained and tested on a relatively small dataset and limited to a narrow belief
regarding marker meanings. Further experiments on larger dataset and more
general mental beliefs are needed to test the model effectiveness and robustness.
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Abstract. Modeling human decision making plays a fundamental role
in the design of intelligent systems capable of rich interactions and effec-
tive teamwork. In this paper we consider the task of choice prediction
in settings with multiple alternatives. Cognitive models of decision mak-
ing can successfully replicate and explain behavioral effects involving
uncertainty and interactions among alternatives but are computation-
ally intensive to train. ML approaches excel in terms of choice prediction
accuracy, but fail to provide insights on the underlying preference rea-
soning. We study different degrees of integration of ML and cognitive
models for this task. We show, via testing on behavioral data, that our
hybrid approach, based on the integration of a neural network and the
Multi-alternative Linear Ballistic Accumulator cognitive model, requires
significantly less time to train, and allows to capture important cognitive
parameters while maintaining similar accuracy to the pure ML approach.

Keywords: Cognitive models · Decision making · Machine learning ·
Preferential choice prediction · Artificial neural networks · Behavioral
effects

1 Introduction

Decision making is a core capability which is central in describing how humans
function in everyday life. The ability to understand and predict how humans
make choices is also key to the design of artificial agents capable to provide
rich interactions, for example, in the context of teamwork [3,9,17,20]. Under-
standing human decision processes has been a topic of intense study in different
disciplines including psychology, economics, and artificial intelligence. Yet, accu-
rate and general models of human choice behavior are, for the most part, still
work in progress. In the area of psychology, cognitive computational models (e.g.,
[2,7,15,19,26]) have been designed to replicate fundamental aspects of human
decision making such as, for example, violations of transitivity, and the well
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known contextual effects of similarity, attraction and compromise [5]. Contex-
tual effects have practical implications for areas such as recommender systems,
consumer choice and human-machine teaming. They are also important from a
theoretical standpoint, since they exemplify violations to the principle of simple
scalability [28], entailing, for example, independence to irrelevant alternatives,
and underlying many preference theories [14].

In this paper we propose a way to integrate machine learning and a cognitive
model of decision making into an accurate, yet explainable, model of human
choice behavior. In particular, we consider the Multi-alternative Linear Ballis-
tic Accumulator (MLBA) [27], one of the most recent and successful dynamic
models of decision making. MLBA is an ideal candidate as it has been shown to
outperform the state of the art in terms of accuracy on both choice prediction
and deliberation time prediction across all context effects. It is designed for more
realistic tasks including multiple (i.e., non-binary) choices described via multiple
attributes. It strikes a unique balance between cognitive plausibility and com-
putational complexity and comes with a well developed implementation [10,27].
Our contribution can be summarized as follows: (i) we present a pure machine
learning method, namely an MLP (multi-layer perceptron), and show how strong
prediction accuracy can be achieved without relying on cognitive mechanisms;
(ii) we then propose two hybrid architectures integrating a neural network with
MLBA allowing us to examine the accuracy/explainablity tradeoff for different
cognitive priors; (iii) we perform an extensive experimental comparison of the
models (including MLBA) on human behavioral data.

Our results suggest that the integration of ML and cognitive models of deci-
sion making can indeed achieve strong accuracy while retaining explainability
in terms of cognitive foundations underlying the deliberation processes. This is
an important step forward in the design of intelligent agents equipped with a
realistic model of human behavior. Indeed, a natural application of our hybrid
approach would be to provide members of a team with a model of the preferences
and decision making process of other team members. Our integration method
also shows how ML can be used as a tool in the development of cognitive models
to isolate and study the impact of different cognitive assumptions on prediction
performance.

2 Multi-attribute Linear Ballistic Accumulator (MLBA)

The Multi-attribute Linear Ballistic Accumulator (MLBA) [27] is a prominent
cognitive model of value-based decision making designed to capture choice dis-
tributions in settings with multi-attribute and multi-alternative choices.

More formally, we define a choice problem p as tuple 〈O,A,E〉, where O is a
set of K options, O = {o1, . . . , oK}, A is a set of J attributes, A = {A1, . . . , AJ},
and E is the set containing the evaluation of each option in O with respect to each
attribute in A, denoted E = {a

[j]
i |i ∈ {1, . . . , K}, j ∈ {1 . . . J}}. For example, in

a scenario where a car must be chosen, O would be the set of considered models,
and a plausible attribute set might be A = {A1, A2}, where A1 corresponds
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to price and A2 to performance. Then given car model oi, we could have, for
example, a1

i = 20, 000$ would be an evaluation of its price and a2
i = 150 mph be

an evaluation of its performance in terms of maximum speed.
Given a choice problem p = 〈O,A,E〉 in input, the output of MLBA is

a choice probability distribution over O with the aim of replicating observed
human behavior. MLBA is structured into a front-end and a back-end. Similarly
to other successful models of decision making, MLBA is based on the principle
of accumulation to threshold [7], by which deliberation consists in a cumulative
gathering of evidence until a certain threshold is reached. This accumulation
process is modeled by the back-end of MLBA, while as a linear process where,
given an initial point selected within a given interval and a drift rate, the prefer-
ence of an option “races” linearly towards a threshold. The front-end models the
mapping of the raw stimuli (the evaluations in E) into the parameters driving the
accumulation (a distribution of drift rates). Consider the example of choosing
a car based on two attributes: cost and performance. Given a set of cars under
consideration, each described by their retail price and, say, maximum speed,
MLBA would model the choice distribution among them by mapping their val-
ues into drift rates and simulating the linear accumulation of preferences to the
threshold.

We now provide more details on both components, as they are essential to the
understanding of our approach. The back-end of MLBA is based on its precursor
the Linear Ballistic Accumulator (LBA) [4], a dynamic-cognitive approach for
single-attribute choice problems. LBA assumes that the decision maker accumu-
lates information linearly for each option over time but at different rates. The
final decision is made when the accumulated preference for one of the options
exceeds a specific threshold. In Fig. 1 we depict a scenario with three options:
O = {o1, o2, o3}.

0

A

St
ar

t P
oi

nt

χ
Threshold

o1 o2
o3

Drift rate ~ N(d1, s2)

Decision Time

Fig. 1. Example of LBA (back-end of MLBA) with three options o1, o2, and o3.

At the beginning of a trial each option is associated with an initial preference
value sampled from a uniform distribution U(0, A), where A is a parameter of
the model. The accumulation speed of the preference is determined by a drift
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rate chosen randomly from a normal distribution defined by a mean drift rate
associated to the option and a standard deviation. In the example in Fig. 1, drift
rates would be sampled in N (d1, s2), N (d2, s2), and N (d3, s2) where s is the
standard deviation and di denotes the mean drift rate for option oi. The race
continues until one of the preference accumulators reaches threshold χ, which
can, thus, be seen as modeling how cautious the individual is in making decisions.

The front-end component of MLBA maps the raw objective inputs, a
[j]
i (such

as price, quality, or performance) to subjective values representing psycholog-
ical magnitudes, denoted u

[j]
i , and then computes the mean drift rates, di, by

combining pairwise comparisons of subjective values.
The objective-to-subjective mapping accounts for how humans may perceive

rationally indifferent options as distinct and is achieved by curving the indiffer-
ence line

∑J
j=1

(
a[j]

bj

)
= 1, i.e. the line connecting two indifferent options, via a

power function defined by a parameter m:

J∑

j=1

(
u[j]

bj

)m

= 1. (1)

The bj values define the space and are computed from the objective evaluations
of indifferent options (see Appendix C), m is, instead, a parameter of the model
[27] estimated from experimental data. The mapping is exemplified in Fig. 2
for the case with two attributes where the indifference line is in green and its
power function is depicted in red. Notice how the relationship between extreme
and intermediate alternatives is governed by the m parameter. If the curve is
concave (i.e., m > 1), then intermediate options (i.e., those with less attribute
dispersion) are preferred to extreme options, while, the opposite is true when
the curve is convex (m < 1). When m = 1, the curve reduces to a straight line
and subjective and objective values coincide.

Let u
[j]
i and u

[j]
h , j ∈ {1, . . . , J} be the subjective values, determined by the

mapping, for options oi and oh, respectively. MLBA uses these subjective values
to quantify how oi compares to oh:

Vih =
J∑

j=1

w
[j]
ih (u[j]

i − u
[j]
h )

Intuitively, comparison value Vih represents the advantage (or disadvantage) that
oi has w.r.t. oh, and weight w

[j]
ih reflects the amount of attention given in this

comparison to the jth attribute. Weight w
[j]
ih is defined as

w
[j]
ih =

⎧
⎪⎪⎨

⎪⎪⎩

exp
(
−λ1

∣
∣
∣u

[j]
i − u

[j]
h

∣
∣
∣
)

, if u
[j]
i − u

[j]
h ≥ 0

exp
(
−λ2

∣
∣
∣u

[j]
i − u

[j]
h

∣
∣
∣
)

, otherwise

where λ1 and λ2 are decay constants for attention weights with positive and
negative differences respectively. This definition of the attention weights relies
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on two assumptions. The first one is that attention weight should be larger when
attribute values are difficult to discriminate and smaller when they are clearly
different. The second assumption is that similarity judgment in humans often
violates symmetry thus requiring two different decay parameters, λ1 and λ2 [29].

Comparison values are used by the front-end of MLBA to define the mean
drift rate for each option as follows:

di =
∑

j �=i

Vij + I0

where I0 > 0 is introduced to ensure at least one positive drift rate. As an
example, for option o1 in Fig. 1 we would have d1 = V12 + V13 + I0.

Choice Probability Distribution. So far we have described how, given a choice
problem p, MLBA’s front-end first maps objective evaluations into subjective
evaluations, computes the comparison between the different options, and then
uses these comparisons to define mean drift rates for preference accumulators.
After sampling initial preferences and drift rates, MLBA’s back-end selects an
option by launching the accumulators. By running the back-end a sufficient
number of times, one can obtain a choice probability distribution over O. How-
ever, the choice distribution emerging from the LBA component has also been
described in analytical form [4]. First, the cumulative distribution function for
the time taken for the ith accumulator to reach threshold χ can be defined as:

Fi(t) = 1 +
tsφ

(
χ−A−tdi

ts

)
− tsφ

(
χ−tdi

ts

)

A

+
(χ − A − tdi)Φ

(
χ−A−tdi

ts

)
− (χ − tdi)Φ

(
χ−tdi

ts

)

A

(2)

where φ(.) and Φ(.) are the probability density function and cumulative dis-
tribution function of the normal distribution. Informally, Fi(t) represents the
likelihood that option oi’s linear accumulator will reach threshold χ before or at
time t. The associated probability density function is:

fi(t) =
1
A

[

− diΦ

(
χ − A − tdi

ts

)

+ sφ

(
χ − A − tdi

ts

)

+ diΦ

(
χ − tdi

ts

)

− sφ

(
χ − tdi

ts

) ]

.

(3)

Finally, the defective probability density function modeling option oi being
chosen at or before time t as the likelihood that its accumulator reaches threshold
χ by time t while the other accumulators do not, is:

PDFi(t) = fi(t)
∏

j �=i

(1 − Fj(t)). (4)
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We note that the term “defective” signifies that the distribution is normalized
to the probability of the choice with which it’s associated. We denote this dis-
tribution for problem p = 〈O,A,E〉 and option oi ∈ O as PDFp,i. We can now
define the overall choice probability for option oi as the integral over time of the
defective probability density function:

πp,i =
∫ ∞

0

PDFp,i(t)dt. (5)

Fitting MLBA Parameters to Behavioral Data. To assess how well a model
can replicate human behavior its parameters are fitted and its accuracy is tested
using behavioral data. In this paper we consider as a baseline the implementation
of MLBA proposed in [10] where it is converted using a stochastic differential
equation formalism and a hierarchical Bayesian method is used for parameter
fitting. We call it MLBA-HB and we refer to [10] for more details1.

3 Context Effects

Several studies in cognitive science have shown that preferences over a set of
options can be influenced by adding different alternatives to the choice set
[11,22,28]. In some extreme cases it can lead to preference reversal. These so
called “context effects” have significant implications from both an applied and
theoretical perspective and their modeling has been one of the major thrusts
behind the development of dynamic models of decision making like MLBA.

Fig. 2. Mapping of objective values (green line) to subjective values (red line) for
the case with two attributes (resp. x and y axis) and m > 1. Options X,Y,Z,
CX,SX,RX,SY,RZ, and CZ, exemplify the effects described in Sect. 3. (Color figure
online)

1 The code for MLBA-HB was shared by the authors of [10].
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We illustrate the effects with the options in Fig. 2.

– The Attraction Effect enhances the probability of choosing an option (X) over
another one (Z) by introducing a similar, but inferior “decoy”(RX), formally,
as depicted in Fig. 2 options RX and RZ are similar but inferior to option
X and Z respectively. The attraction effect happens when having RX in the
choice set improves the chance of choosing X compared to having RZ and
vise versa: P (X|{X,Z,RX}) > P (X|{X,Z,RZ}) and P (Z|{X,Z,RX}) <
P (Z|{X,Z,RZ}).

– The Similarity Effect occurs when the introduction of an option similar and
competing with another option increases the probability of selecting the dis-
similar option. For example, consider two competitive options X and Y
and two decoy options SX and SY from Fig. 2. We encounter a similarity
effect if adding SX reduces the chance of choosing X compared to the case
where we add SY and vice versa: P (X|{X,Y, SX}) < P (X|{X,Y, SY }) and
P (Y |{X,Y, SX}) > P (Y |{X,Y, SY }).

– The Compromise Effect occurs when an extreme option is introduced and
makes one of the existing options appear as a more appealing compromise in
the choice set. For example, in Fig. 2, Y is a compromise option in choice set
{X,Y,Z} whereas Z is an extreme option. On the other hand Y is an extreme
option in choice set {Y,Z,CZ} and Z is a compromise. The compromise effect
occurs when the probability of choosing Y is bigger in the first choice set com-
pared to the second one and vise versa: P (Z|{X,Y,Z}) < P (Z|{Y,Z,CZ}).

The main goal of cognitive models of decision making is to capture human
decision behavior, including these deviations to rationality [6]. MLBA outper-
forms other state of the art models in terms of providing superior choice (and
deliberation time) predictions when tested on behavioral data collected to elicit
context effects [10]. The results of MLBA-HB on data sets described in Sect. 9
are shown in Fig. 5 in green.

4 Related Work

The integration of machine learning in the context of cognitive modeling of
decision making has recently attracted the interest of researchers in psychology
and artificial intelligence [3,8,18,21,23]. Of particular interest here, is the line of
work generated around the choice prediction competitions CPC-15 and CPC-18
[3,9,17], where cognitive models and ML competed to accurately predict average
human choice behavior. While we share a similar goal, the task considered there
was quite different as it involved only binary choices among gambles. In the more
recent paper [3], the authors propose a system integrating the CPC-18 winner
(an enhanced version of cognitive model BEAST [9,17]) and an ML approach
by using the cognitive model to label training data. In this way they, indirectly,
introduce a cognitive bias that allows ML to outperform both approaches taken
in isolation. This integration is radically different from ours since it does not
include the design of a hybrid architecture and the ML component is not used
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to learn any cognitive parameters. We also note that a similar approach designed
to address the scarcity of data labeled by humans by producing large quantities
of synthetic data using a cognitive architecture, is described in [23] for a more
complex supervisory control task involving planning. Also related to our work is
the one presented in [18], where the authors use a recurrent neural network to
learn some of the parameters of a Multi Decision Field Theory (MDFT) model
[19]. While belonging to the same family of accumulation-to-threshold decision
making models, MLBA and MDFT are radically different in their underlying
preference structure. Moreover, the goal of the ML approach in [18] is to extract
the MDFT equivalent of the MLBA evaluations and attention weights, rather
than to model the choice probability distribution as done here.

5 Learning Task Formulation

Our overall goal is to be able to predict and analyze aggregate decision maker’s
behavior in the presence of contextual effects given examples of past choices.
In the following sections we will present a pure ML approach and two hybrid
ML-MLBA approaches and will compare their performance to that of MLBA on
this task. Our problem setup assumes that various combinations of options has
been presented to the decision makers and their final choices has been recorded.
Our goal is to model the aggregate decision maker’s behavior.

This task can be formalized as follow. Let P = {p1, . . . , pm} be a set of choice
problems with K options and sharing the same attribute set A. Different subsets
of these problems has been presented to a set of decision makers multiple times
and their choices have been recorded. For example, in [25] a perceptual data
set is introduced where each problem involves choosing among three rectangles
and attributes are their height and width, while in [26] an inference data set
is described where each problem concerns three suspects and the attributes are
the eyewitnesses (see Sect. 9). Given collection of N (problem, choice) pairs,
C = {〈pπ1 , c1〉, . . . , 〈pπN

, cN 〉}, where pπl
∈ P for every l ∈ {1, . . . , N}, our goal

is to learn aggregate choice probability distributions, πππp = 〈πp,1, . . . πp,K〉, for
problems p ∈ P, where πp,i represents the probability of option oi ∈ Op to be
chosen. Each sample 〈pπi

, ci〉 in C denotes the choice ci ∈ Opπi
that has been

made by a decision maker for problem pπi
∈ P. In our perceptual example, ci is

the rectangle selected as largest among three by the participant and the goal is
to learn a model which, given in input a triplet of rectangles described by their
heights and width, outputs, for each, the probability of being chosen according
to average human behavior. The inference case is similar.

6 Pure ML Baseline

The task formulated in the previous section can be treated as standard multi-
class classification to obtain class probability distributions. Machine learning
algorithms are natural candidates for learning this task and making accurate
predictions and we start with a pure ML method to investigate its efficacy while
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not relying on any cognitive priors. In particular, we choose multi-layer neural
networks given their expressive power in approximating complex functions.

More in detail, let us assume the problems in set P have K options and J
attributes. We use a four-layered feed-forward neural network, namely MLP, as
our baseline with K × J inputs, one for each subjective evaluation a

[j]
i , and K

outputs estimating the choice probability for each option. The choice probability
distribution is obtained by passing the outputs of the final layer through a soft-
max function [16]. This architecture implies that the probability πp,i of choosing
option oi given problem p, is determined via logistic function

πp,i =
exp (yi)

∑K
j=1 exp (yj)

where yi is the ith output of the feed-forward neural network.

7 ML-MLBA Hybrids

A pure ML approach fails, however, to provide any explanation about the under-
lying deliberation process. On the other hand, one can argue that models, such
as MLBA, suffer from high bias due to over-simplification of the cognitive under-
pinnings of decision making. For example, the front-end component of MLBA
imposes inductive biases by assuming that the objective-to-subjective mapping
is a power function and by fixing the way mean drift rates are computed. This
structure is useful for explaining how a decision emerges from the raw stimuli.
However, it may also cause the model to under-fit the data (see Fig. 5). We pro-
pose to relax some of these constraints by using a feed-forward NN to increase
flexibility and explore the accuracy/explainability trade-off in two different ways.
In the first model, denoted MLBA-NN, we integrate the back-end of MLBA on
top of a multi-layer NN (see Fig. 3). In the second model, we extend the MLBA
parameters learned by the NN component to m which governs the objective-to-
subjective mapping. This architecture is denoted by MLBA-NN-m and is shown
in Fig. 4.

MLBA-NN: As shown in Fig. 3, the NN’s inputs are the objective evaluations
a
[j]
i which are, then, passed through four hidden layers with tanh activation

functions [16] alongside three other free variables filtered by a sigmoid × 10
function [16] to yield back-end parameters 〈d1, . . . , dK , s, A, χ − A〉 with values
in [0, 10] in accordance with original MLBA model constraints (see [10]).

At this point we could use the estimated parameters to run the ballistic
accumulators for the options and obtain the choice distribution. However, we
opt for a more efficient solution, avoiding simulation, and we use the Gauss-
Legendre quadrature to approximate the solution of Eq. 5, obtaining:

πp,j ≈ 1
2

n∑

i=1

wiPDFp,j

(
(xi+1)/2

1−(xi+1)/2

)

(1 − (xi + 1)/2)2
(6)
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Fig. 3. The MLBA-NN architecture. The front-end is a 4-layer feed-forward neural
network. The back-end approximates the choice distributions using LBA model.

where the xi’s and wi’s are respectively discrete time points and parameters
of the approximation method [1]. While we defer the details of this derivation
to Appendix A, we note that, given a particular time t, Eqs. 2, 3 and 4 show
how PDFi can be expressed in terms of parameters χ, A, s, and di which are,
in turn, the output of the NN component of MLBA-NN. Moreover, since Eq. 6
contains a differentiable approximation of the choice distribution, it can be used
for computing the loss (see Sect. 8) and for training the model.

MLBA-NN-m: As depicted in Fig. 4, in this model the objective evaluations
a
[j]
i are first passed through the objective-to-subjective mapping described in

Sect. 2 before feeding them to a NN similar to MLBA-NN. This is possible since
the objective-to-subjective mapping (Sect. 2) is a differentiable function and can
easily be integrated in the training allowing for the estimation of the m parame-
ter. We apply a soft-plus function [16] to ensure positive values for m. Note that
m is represented by a free variable in the model making it independent of the
inputs. The back-end of this model is identical to the back-end of MLBA-NN.

8 Parameter Estimation

Both the baseline and hybrid models output a choice probability distribution
which is differentiable (Sect. 6 and Eq. 6). We can thus minimize the negative-log-
loss over the training data using standard gradient-descent (Appendix B). The
training process for MLBA-NN and MLBA-NN-m is performed in an end-to-end
fashion, meaning that the forward pass goes through the front-end and back-end
in one go and we keep track of all computations by building the computation
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Fig. 4. The MLBA-NN-m architecture. The objective values are mapped to subjective
values before feeding them to a 4-layer feed-forward NN in the front-end. The back-end
approximates the choice distributions using the LBA model.

graph using an off-the-shelf software package (e.g. PyTorch). Next, we calculate
the loss from the outputs of the forward pass. Finally, we use the obtained
computation graph to calculate the gradients and propagate back the loss to the
parameters for adjustment.

9 Experiment Design

All models were trained and tested on the following data sets.

Perceptual Dataset

Participants performed a simple perceptual decision making task involving the
selection of the largest rectangle among three. Attributes correspond to height
and width. The data is structured into two main subsets, collected in separate
experiments ([25] and [24]). The first subset E1, involved 178 participants and
consists of 1440 trials based on 12 conditions, for a total of 82646 (problem,
choice) pairs divided into 3 parts (E1a, E1b, and E1c) each targeting one of
the effects. A condition is a base problem designed to elicit a specific context
effect and a trial for that condition is a problem generated by adding some
random variation to the base problem while preserving the expected choice pro-
portions. The second subset, E2, contains 480 trials from 6 conditions performed
by 75 participants for a total of 35135 (problem, choice) pairs, spanning all three
effects.
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Inference Dataset

Participants were asked to infer which of three suspects was the most likely
culprit, based on two eyewitnesses. Each eyewitness corresponds to an attribute
and the evaluations are guilt evidence ratings ranging from 0 to 100. Also in
this case the data was collected during two different experiments. The first set
[26], E3, consists in 360 trials from 13 conditions, performed by 150 participants,
generating a total of 18000 (problem, choice) pairs divided into 3 subsets (E3a,
E3b, E3c) corresponding to the three effects. The second set, E4, involved 68
participants for 120 trials from 8 conditions and contains 8160 (problem, choice)
pairs [27].

Evaluation

Similarly to [10], we group the choice problems based on their condition and
compare the probability distributions generated by MLBA-HB, MLP, MLBA-
NN, and MLBA-NN-m on each group using the Mean Squared Error (MSE) and
Jensen-Shannon Divergence (JS-Divergence) [13]. For all models, except MLBA-
HB, we report the average of 50 runs with their 95% confidence intervals.

Training Specifications and Hyper-parameters

All models were trained on E2, resp. E4, and tested on E1, resp. E3, depending
on the data set. We further split E2 and E4 to validation/training sets with
ratio of 33/67. Each model was trained for 200 epochs using the Adam [12]
optimizer with weight decay of 10−6, mini-batches of size batchSize, and learning
rate 10−5 × batchSize, with batchSize = 1024 for the perceptual data and
batchSize = 512 for the inference data. The validation set was used for early
stopping and hyper-parameter tuning. The size of hidden layers in all models
was set to 50 with tanh activation functions.2

Results

Figure 5 shows the choice distribution predicted by each model compared to the
observed choice proportions for both experiments.

The first observation is that the choice proportions generated by MLP and
the hybrid methods on all of the conditions are very similar despite using differ-
ent approximations of the choice distributions in the loss function. Furthermore,
we see that MLP and the hybrid methods significantly outperform MLBA-HB
in predicting attraction effects in both datasets. Similarly for the compromise
effect, which, however, seams to be more challenging for all models in the infer-
ence set. It also appears that, for MLP and the hybrid models, the source of error
in this case is concentrated on one condition (represented by a circle in Fig. 5),
and that, otherwise, they predict the other conditions very well. For the simi-
larity effect, MLBA-HB performs slightly better than the other models in the
perceptual data, but much worse on the inference data. As shown in Figs. 6 and
7, the overall accuracy of all of the ML-based methods is significantly better than
MLBA-HB. This proves that our hybrid methods are successful in maintaining
2 All the codes are publicly available at https://github.com/Rahgooy/mlba ml.

https://github.com/Rahgooy/mlba_ml


Integrating Machine Learning and Cognitive Modeling of Decision Making 185

Fig. 5. Probability-Probability plots for the empirical (x-axis) and model (y-axis) pre-
dicted response for the Perceptual (top) and Inference (bottom) data on the three
effects (columns). Symbols (e.g., circle, triangle) represent experimental conditions,
colors represent different models. The closer to the diagonal the better. (Color figure
online)

prediction accuracy while also capturing important cognitive priors. As an exam-
ple regarding drift-rates, on an attraction instance similar to that described in
Sect. 3, MLBA-NN-m correctly captured the decrease in X’s drift rate and choice
probability when shifting from O1 = {X,Z,RX} to O2 = {X,Z,RZ}, with dX

going from 7.31 to 7.17 and the choice probability going from 0.49 to 0.37. We
also note that the training and test sets in both datasets were obtained from dif-
ferent experiments with different participants. This further supports the ability
of our proposed models to generalize the average user behavior.

The MLBA-NN success in making predictions, in comparison with MLBA-
HB, provides evidence that the back-end of MLBA is expressive enough for this
problem and is not a source of under-fitting in MLBA-HB. Similarly, MLBA-
NN-m’s very strong performance, suggests that MLBA’s objective-to-subjective
mapping also doesn’t restrict the expressiveness of the model. Interestingly, by
comparing the average predicted m values for the perceptual and inference data,
namely (2.02, 4.08) for MLBA-NN-m and (1.08, 1.09) for MLBA-HB, we see that
MLBA-NN-m captures a stronger deviation of subjective values from objective
values, which may be a reason for its superior performance. Also open for inves-
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Fig. 6. Performance of the models on the Perceptual Data.

tigation, is whether the lack of accuracy of MLBA-HB may be related to how
attention is modeled and to the way the subjective values are combined to gen-
erate the drift rates in MLBA, or by limitations of the actual fitting method
used in the MLBA-HB implementation.

Fig. 7. Performance of the models on the Inference Data.

We also investigate the effect of reducing the training data on the perfor-
mance of the models. The results are shown in Table 1. We see that MLP and
the hybrid models perform extremely well even with less data. Even with 30%
of the training set they are performing better than MLBA-HB. However, unsur-
prisingly, they are more sensitive to the size of the training set compared to
MLBA-HB. The steeper drop in performance on the inference data is due to its
already limited size. Also, according to the results, the inference problems are
more challenging to predict than the perceptual ones.
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Table 1. Overall MSE ×100 results for models trained on 100%, 50%, and 30% of the
training data.

Model Perceptual Inference

100% 50% 30% 100% 50% 30%

MLBA-HB 0.94 0.93 0.89 3.29 3.05 2.84

MLP 0.44 0.49 0.47 1.86 2.05 2.55

MLBA-NN 0.45 0.44 0.47 1.78 2.11 2.87

MLBA-NN-m 0.44 0.44 0.47 1.73 2.01 2.74

Finally we note that, on average, it takes less than an hour to train any of
the ML based models, the MLP being the fastest and MLBA-NN-m the slowest.
This is significantly faster than fitting MLBA-HB for which training, via the
hierarchical Bayes approach, takes more than 10 h. Summarizing, our experi-
mental results show that our hybrid methods are performing extremely well on
a prediction task involving behavioral effects while explaining major parts of
the decision making process, such as, sequential accumulation to threshold and
subjective mapping of preferences.

10 Conclusion and Future Work

In this paper, we investigated incorporating machine learning into one of promi-
nent cognitive models of decision making, MLBA, in an incremental way. This
approach allowed us to study the prediction accuracy versus explainablity in our
models to examine the expressiveness of different components of MLBA for the
prediction task. We followed this approach on two experimental datasets and
showed that the back-end and also the objective-to-subjective mapping compo-
nents of MLBA are perfectly capable of producing accurate prediction when they
are embedded in our ML architecture. Therefore, we need to look for sources of
error in other parts of the model or the method of fitting MLBA to understand
the shortcomings of MLBA. The experimental results also show that our hybrid
methods are performing extremely well in the prediction task while explaining
major parts of the decision making process namely, sequential accumulation to
threshold, subjective mapping, pairwise comparison of alternatives, and the con-
text effects through the inherited parts from MLBA. In the near future we plan
to address learning the MLBA parameters governing attention and preference
aggregation (i.e., λ1 and λ2) to better understand their role in modeling per-
formance. We also plan to investigate our method in the context of predicting
individual behavior and of more complex decision tasks. Our research agenda also
includes the application of our general methodology to other cognitive models
of deliberation, such as MDFT [19].
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Appendix A: Choice Probability Approximation

In this section we describe the details of approximating the following improper
integral, which describes the choice probability distribution, using the Gauss-
Legendre quadrature method:

πp,j =
∫ ∞

0

PDFp,j(t)dt. (7)

According to the Gauss-Legendre quadrature method, integral of function f
in [−1, 1] interval is approximated by:

∫ 1

−1

f(x)dx ≈
n∑

i=1

wif(xi) (8)

where n is the number of samples, wi are the quadrature weights, and xi are the
roots of the nth Legendre polynomial.

A change of interval from [0,∞] to [−1, 1] is needed to write Eq. 7 in the
form of Eq. 8. We do this in two steps. First, we use substitution x = t

1−t ,
dx = 1

(1−t)2 dt:

∫ ∞

0

f(x)dx =
∫ 1

0

f

(
t

1 − t

)
1

(1 − t)2
dt (9)

applying this to Eq. 7 results in

πp,j =
∫ 1

0

PDFp,j

(
t

1−t

)

(1 − t)2
dt (10)

we define h(t) to be

h(t) ≡
PDFp,j

(
t

1−t

)

(1 − t)2
(11)

and, thus,

πp,j =
∫ 1

0

h(t)dt (12)

next, we change the interval from [0, 1] to [−1, 1] using:
∫ 1

0

f(x)dx =
1
2

∫ 1

−1

f

(
x + 1

2

)

dx (13)

taking this step for Eq. 12 results in:

πp,j =
1
2

∫ 1

−1

h

(
t + 1

2

)

dt (14)
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substitution of h with PDFp,j using Eq. 11 leads to

πp,j =
1
2

∫ 1

−1

PDFp,j

(
(t+1)/2

1−t

)

(1 − (t + 1)/2)2
dt (15)

Finally, we can approximate it using Eq. 8 as follows

πp,j ≈ 1
2

n∑

i=1

wiPDFp,j

(
(xi+1)/2

1−(xi+1)/2

)

(1 − (xi + 1)/2)2
. (16)

Appendix B: Parameter Estimation of Models

In this section we describe the details of parameter estimation for MLP, MLBA-
NN, and MLBA-NN-m models. We utilize the differentiable likelihood functions
of these models to formulate the parameter estimation as a maximum likeli-
hood optimization. More formally, let L(θ;D) be the likelihood of a parametric
distribution function f(y; θ) with parameters θ over sample D, the maximum
likelihood estimation is defined as:

θ∗ = arg max
θ

L(θ;D).

In this paper we assume the samples are independent and identically dis-
tributed (iid). Thus, we can write:

L(θ;D) =
∏

y∈D

f(y; θ)

and we can use the log-likelihood for simplicity:

log(L(θ;D)) =
∑

y∈D

log(f(y; θ)).

In the MLP model the choice distribution function πMLP
p,i is defined as a

soft-max function and the parameters are the weights of the neural network
denoted here by WMLP . The likelihood function is defined as

LMLP (WMLP ;D) ≡
∏

〈p,c〉∈D

πMLP
p,i=c

which is the product of the probability of ground-truth choices. Finally, we find
the optimal weights W ∗

MLP by solving

W ∗
MLP = arg min

W
− log(LMLP (W ;D)).

In the MLBA-NN model, the inputs are passed through a neural network with
weights WNN to generate the 〈d1, . . . , dK , s, A, χ−A〉 parameters as described in
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the model Sect. 7 of the paper. Note that these parameters are functions of WNN

subsequently, PDFp,i is a function of WNN . To calculate the choice distributions
we use the approximation approach in Appendix A using PDFp,i. As a result the
approximated choice distribution function πππNN

p is a function of WNN . Finally,
the likelihood of this model LNN is a function of the same weights:

LNN (WNN ;D) ≡
∏

〈p,c〉∈D

πNN
p,i=c.

Therefore, we can find these weight by solving

W ∗
NN = arg min

W
− log(LNN (W ;D)).

MLBA-NN-m model passes the inputs through a mapping with parameter
m first. Next, it follows the same approach as MLBA-NN. So, the parameters
of this model can be defined as the concatenation of the neural network weights
and the m parameter, Wm = 〈m|WNN 〉, leading to:

LNNm(Wm;D) ≡
∏

〈p,c〉∈D

πNNm
p,i=c .

Consequently, we can estimate these parameters by solving

W ∗
m = arg min

W
− log(LNNm(W ;D)).

All of these likelihood functions are differentiable and we use gradient descent
algorithm to estimate their solutions.

Appendix C: Mapping Objective to Subjective Values

Consider a pair of options o1, o2 objectively defined as indifferent by the additive
rule

∑
j a

[j]
1 =

∑
j a

[j]
2 . The line connecting these two options is defined as:

J∑

j=1

(
a[j]

bj

)

= 1

In the case of our experimental data we have two attributes. The indifference
rule in the inference experiment is defined as:

a
[1]
1 + a

[2]
1 = a

[1]
2 + a

[2]
2 . (17)

In the perceptual experiment, two options are indifferent if their areas are equal,
in order to make them additive we use the logarithm of their values, that is:

a
[1]
1 × a

[2]
1 = a

[1]
2 × a

[2]
2 =⇒

log(a[1]
1 ) + log(a[2]

1 ) = log(a[1]
2 ) + log(a[2]

2 ).
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The indifference line for two attributes is written as:

a[1]

b1
+

a[2]

b2
= 1.

Fig. 8. Mapping of objective values (green line) to subjective values (red line) for the
case with two attributes (resp. x and y axis) and m > 1. (Color figure online)

Using the additive rule in 17 we can find b1 and b2, x-intercept and y-intercept
respectively, as follows:

b1 = a
[1]
1 − a

[2]
1 × a

[1]
2 − a

[1]
1

a
[2]
2 − a

[2]
1

b2 = a
[2]
1 − a

[1]
1 × a

[2]
2 − a

[2]
1

a
[1]
2 − a

[1]
1

Note that when both attribute values are in the same metric, b1 = b2 = a
[1]
1 +a

[2]
1 ,

as it is the case in our experiments. At this point we use these parameters and
the m parameter to map the objective value a1 to subjective value u1 defined
on the following curve and depicted in Fig. 8:

J∑

j=1

(
u[j]

bj

)m

= 1.

For two attributes we can write this formula as:
(

u[1]

b1

)m

+
(

u[2]

b2

)m

= 1. (18)

Now, let θ be the angle between the x-axis and a1 = (a[1]
1 , a

[2]
1 ), which can be

written as:

θ = arctan

(
a
[1]
1

a
[2]
1

)

,
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As you can see in Fig. 8 a subjective vector u is a multiple of its corresponding
objective vector a, hence they produce the same angle with the x-axis. Therefore,
we can write:

u
[2]
1 = u

[1]
1 tan(θ).

Substituting this in Eq. 18 results in:

(
u
[1]
1

b1

)m

+

(
u
[1]
1 tan(θ)

b2

)m

= 1.

We now, obtain the subjective values by solving above equation which gives us:

u
[1]
1 =

b2
(
tan(θ)m +

(
b2
b1

)m) 1
m

u
[2]
1 =u

[1]
1 tan(θ)
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Abstract. The representational andmental processes that support Theory ofMind
need greater clarity to guide computational approaches. Perspective-taking is
among the key abilities for Theory of Mind. In human visual perspective-taking,
two kinds of judgments develop: Level 1 judges whether something can or can-
not be seen, and Level 2 aligns perspectives using communication. To investigate
these processes, simulated agents with limited visual range, and decentralized
active-logic reasoning, moved, saw discrete spatial locations, and communicated
locations visited (Level 2); and inferred the locations within other agents’ visual
range (Level 1). Controlled conditions systematically varied team size and how
far agents spread out. The results are consistent with an account in which Level 1
overgeneralizes and Level 2 corrects, and corrects more, as agents interact more
frequently, in larger teams, or by spreading out less. This account of perspecti-
val processes suggests that overgenerality might have both benefits and costs in
Theory of Mind, and serve an important role in computation approaches.

Keywords: Theory of mind · Perspective-taking · Collective search ·
Multi-agent interaction

1 Introduction

A present challenge for computational approaches to Theory ofMind beyond simulating
a collection of functional abilities—e.g., false belief, joint intention, perspective-taking,
normativity—is that the representational and mental processes which support these abil-
ities are not clearly understood, and it remains unclear how Theory of Mind arises (Moll
and Tomasello 2006, 2007, 2012; Sterck and Begeer 2010). Human and other primate
studies continue to illuminate the topic (Premack andWoodruff 1978;Call andTomasello
2011; Wellman 2018; Tomasello 2019), but the results still offer only general guidance
to computational approaches, leaving them to confront choices of assumptions and the
need to fill in specifics of designs and implementations. Even amid this need for greater
clarity and specificity, prevailing explanations from studies of developmental cognition

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Gurney and G. Sukthankar (Eds.): AAAI-FSS 2021, LNCS 13775, pp. 194–201, 2022.
https://doi.org/10.1007/978-3-031-21671-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21671-8_12&domain=pdf
http://orcid.org/0000-0002-4393-7050
http://orcid.org/0000-0002-2200-5473
http://orcid.org/0000-0001-7576-031X
http://orcid.org/0000-0002-9108-8508
http://orcid.org/0000-0001-7486-0175
http://orcid.org/0000-0001-7042-1028
http://orcid.org/0000-0003-3185-1935
https://doi.org/10.1007/978-3-031-21671-8_12


Overgenerality from Inference in Perspective-Taking 195

offer that biologically-based abilities serve as scaffolding on which experience serves to
promote development toward mature abilities (Tomasello and Rakoczy 2003; Tomasello
2019). Still, the choices for computational approaches to Theory of Mind range from
implementation of mature abilities (Tang et al. 2020) to guidance on minimal Theory of
Mind (Butterfill and Apperly 2013).

The research presented here builds up fromminimal assumptions, toward capabilities
of individual agents to interact using representation and reasoning processes thought
necessary for visual perspective-taking in Theory of Mind. This approach contrasts with
attempts to distinguish between minimal and full-blown Theory of Mind (Butterfill and
Apperly 2013). The aim is not to achieve mature abilities, or to bootstrap them (Tang
et al. 2020), but to focus on a particular ability of Theory of Mind: perspective-taking
(Surtees, Apperly, and Samson 2013; Palmer et al. 2009).

This study focused on visual perspective-taking, an ability widely acknowledged as
fitting in the broad context of social interaction across diverse theoretical approaches to
Theory ofMind (Barnes-Holmes et al. 2004;Moll andKadipasaoglu 2013), and inwhich
visual tasks can serve to investigate perspectival cognition. In visual perspective-taking,
there are twokinds of judgements about another’s perspective (Michelon andZacks 2006;
Moll and Meltzoff 2011; Tomasello 2019). Level 1: what can be seen, is a judgement
about whether something can or cannot be seen. Level 2: how something is seen, is
a judgement that accounts for rotating into the other’s angle of view, where self and
other use communication to align perspectives. Charactering levels of visual perspective-
taking suffers from some ambiguity: e.g., whether to split them into three levels (Moll and
Meltzoff 2011), and how tasks engaged levels by manipulating object appearance, e.g.,
with barriers (McGuigan and Doherty 2002), or by altering perceived color (Moll and
Tomasello 2012; Moll and Kadipasaoglu 2013). A recent proposal broadly characterizes
the tracking of perspectives to account for non-linear development of successes and
difficulties across various social-cognitive tasks of false-believe, appearance-reality, and
aspectuality in language (Tomasello 2019).

Computational approaches to visual perspective-taking that endow agents with full
overhead views of their environment (e.g., Chen et al. 2021) contrast with ego-centric
camera views in the present study.

2 Method

The Active Logic MAchine (ALMA) (Perlis et al. 2017) ran decentralized reasoners for
teaming agents. Agents had 360° field of view with limited range, which required them
to be within range of seeing each other to interact during a search task.

As an agent moved in the simulated environment, its present locations were succes-
sively encoded as visited locations (dark color paths, Fig. 1). From any visited location
an agent saw discrete spatial locations within its field of view (light color disks and
locations, Fig. 1). This distinction between locations visited and locations seen had two
purposes. Communicating only visited locations, and then inferring seen locations com-
pressed information sharing. An agent used the locations it knew to have been seen
to move toward locations known to have not yet been seen (white locations one move
beyond the current field of view, and their quantity per movement direction, Fig. 1).
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Simple active-logic axioms encoded the knowledge for Theory of Mind, enabling
an agent, upon seeing another agent, to react on two levels: 1. infer spatial locations the
other agent could potentially see from its present position; 2. communicate all of the
spatial locations the agent knows to have to been visited thus far.

Fig. 1. Example of Unlimited spread (left) and Limited spread (right). 3-Agents searching for
a target (gray dot). Agent field-of-view history (lighter colors) and path history (darker colors).
White dots represent locations that agents believe are unseen.

An agent’s knowledge base maintained a set of unique locations visited, from which
locations seen were inferred. Agents’ 360° views, and sparsity of the environment,
motivated an approach in which spatial locations were the unit of what an agent could
see. Perspective-taking operated in Level 1, not based on whether a barrier occluded
objects, but whether spatial locations were within field of view range. Level 2, operated,
not with spatial rotations for perspectival alignment, but by using communication. The
Level 1 mechanism was sensitive to the locations within the range of the other agent’s
field of view, but not to occluded locations from the other agent’s position. The Level
2 mechanism was sensitive to another agent’s perspective, in that, the locations known
to have been visited by another agent were communicated between agents, if the other
agent was within visual range and not occluded.

Within ALMA, commonsense active logic reasoning extended the ability to nest
formulas via quotation (Goldberg et al. 2020), which enabled reasoning about the loca-
tions contained in communications. A separate Level 1 perspective-taking mechanism,
operated outside of ALMA, within an agent’s decentralized wrapper, to calculate the
locations within an (unoccluded) field of view. When an agent saw another agent at a
location, it geometrically inferred the locations within the other agent’s field of view.
This Level 1 perspective-taking was sensitive to the spatial locations an agent could
potentially see (within its visual range) and could not see (beyond its visual range), but
not to occlusions. Level 2was sensitive to occlusions, dependent on the spatial alignment
between agents.
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In summary, seeing another agent triggered two perspective-taking levels: Level 1
enabled an agent to infer from that other agent’s present location, all the locations within
the other agent’s field of view. Level 2 used peer-to-peer communication to send all the
locations an agent believed had been visited thus far (by self or others). Upon receiving
a communication containing visited locations, the agent applied each one to the Level 1
mechanism, which inferred all of the locations within the range of field of view centered
on each visited location. Levels 1 and 2 shared a single inferencemechanism for inferring
the locations another agent could see. These two levels of perspective-taking operated as
distinct process, as surmised from human cognitive development (Michelon and Zacks
2006).

The search task axioms and custom physical simulator were implemented to enable
agents to search for a single target within a time deadline. The experiment infrastructure
allocated processing timeslices (distinct from the timestepswithin active logic) to agents,
enabling asynchronous decentralized reasoning. Each agent could sense the simulated
environment (look for the target and see other agents), draw inferences (running its own
copy of ALMA), and act (move one step). Spatial movements were limited to discrete
orthogonal steps forward, back, left, right. Communications encoded only locations,
enabling agents to share information about locations searched.

Agents moved by self-avoiding randomwalks, which allowed for study of agent per-
formance without complications of spatial reasoning and navigation strategies. Agents
were randomly assigned to start locations in a pair or triad configuration. The two levels
of perspective-taking operated as a Theory ofMindmechanism. These designs of agents,
environment, reasoning, and experimental conditions allowed for comparisons of agent
performance between experimental conditions. The design was originally focused on
the broader topic of cooperation, not only perspective-taking, and included conditions
in which agent movements had Limited and Unlimited spread (Fig. 1). In the Limited
condition, agents spread no farther than three times the field of view radius.

This design and method investigated the cost of overgeneralization in visual
perspective-taking. Level 1 judgements were expected to incur overgeneralizations, in
that the inference that “you can seewhat I could see from your location” does not account
for your alignment with me, nor for the locations occluded from your view. Whereas,
Level 2 perspective-taking, was expected to be indirectly sensitive to occlusions, because
agents communicated only if unoccluded, thus indirectly guiding movement choices.

Overgeneralizations were operationalized as follows. Each agent inferred locations
seen by others. The number of unique locations that were inferred collectively by all
agents was counted, and of those, the number of unique locations not seen due to occlu-
sions collectively by all agents was counted. Overgeneralizations were measured as the
mean proportion of unique locations occluded out of the total number of unique locations
inferred as having been seen (Fig. 2). This proportion of inferred locations to occluded
locations measured how much the Theory of Mind inferences overgeneralized. That is,
agents searched for the target bymoving to locations known to have not been seen, based
on knowledge of locations that have been seen, from two sources: observations by self
(sensitive to occlusions), and inferences about what others have seen (not sensitive to
occlusions). This study focuses on those inferences, which overly encoded locations as
seen that were not actually seen.
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Agents were run in four separate teaming conditions: Group size (2-Agents and
3-Agents) and Spread (limited and unlimited). In each condition, 512 trials were run.

3 Results and Analysis

Results for overgeneralization are shown in Fig. 2. An ANOVA compared proportional
overgeneralization across group size and spread. Effect sizes were calculated for F-tests
as partial eta-squared, and for t-tests as Cohen’s d. The ANOVA found significant main
effects of group size (F(1, 2047) = 196.38, p < .0001, ηp

2 = 0.085) and spread (F(1,
2047) = 113.66, p < .0001, ηp

2 = 0.053). Overgeneralizations were proportionally
higher for 3-agents (M = 0.128, SD = 0.084) than for 2-agents (M = 0.067, SD =
0.083), a significant effect (t(2046) = 14.0, p < .0001, d = 0.31). This comparison of
proportional overgeneralizations indicates a 40.3% increase for 3-agents over 2-agents.
Overgeneralizations were proportionally higher for limited spread (M = 0.122, SD =
0.091) than for unlimited spread (M= 0.082, SD= 0.079), a significant effect (t(2046)
= 10.7, p < .0001, d = 0.24). This comparison of proportional overgeneralizations
indicates a 32.7% increase for limited over unlimited spread.

Fig. 2. Theory ofMind overgeneralizations by 2-Agents and 3-Agents, and in Limited andUnlim-
ited spread conditions. Overgeneralization was measured as the mean proportion of unique loca-
tions occluded out of the total number of unique locations inferred as having been seen. Bars
represent one standard error above and below the mean.

Individual tests of spread were conducted for 2-agents and 3-agents. For 2-agents,
overgeneralizations were proportionally no different in unlimited spread (M= 0.083, SD
= 0.082) than in limited spread (M= 0.070, SD= 0.082), not a sizable effect (t(1022)=
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2.6, p= 0.0094, d= 0.08). For 3-agents, overgeneralizations were proportionally higher
in limited spread (M= 0.161, SD= 0.081) than in unlimited spread (M= 0.095, SD=
0.073), a significant effect (t(1022) = 13.8, p < .0001, d = 0.43). This comparison of
proportional overgeneralizations indicates a 41.3% increase when 3-agents were limited
to stay closer together than when 3-agents were free to spread out.

The mains effects of number of agents and spread are each driven by the 3-Agent
limited spread condition. These results exemplify the importance of not relying solely
on p-values but also including effect sizes as more reliable indicators of potentially
meaningful results.

In addition to assessing overgeneralizations (i.e., occlusions that agents failed to
infer), corrections to them were roughly assessed as occlusions eventually seen during
a search. Two set sizes were counted: unique locations seen by all agents, and unique
inferred locations. The set sizeswere equal, in each condition,which suggests that nearly,
if not all, locations overgeneralized as occlusions were eventually seen.

The relative efficiency of Levels 1 and 2 was roughly assessed. Level 2 communi-
cated non-unique locations that agent(s) had thus far visited, then Level 1 inferred the
locations seen within the other agent’s field of view, as if from the vantage point of each
visited location. The overall mean ratio of visited locations encoded in communications
to locations inferred as seen, was M = 2.6, SD = 2.9, ranging from minimum 0.3 to
maximum, 66.5. Within spread conditions, limited spread tended to have the largest
ratios: limited (2-Agents: M= 3.0, SD= 3.1; 3-Agents: M= 3.1, SD= 1.6); unlimited
(2-Agents: M = 2.3, SD = 5.0; 3-Agents: M = 2.1, SD = 1.8). As an agent saw and
communicated locations known to have been visited thus far, it did not keep track of pre-
vious communications. Over the course of a search trial, many locations communicated
were redundant. The ratio of these non-unique locations visited to non-unique inferences
of locations seen, represents the efficiency of not communicating every location seen.
Even though redundant (non-unique) locations were communicated, the mean ratios
were greater than 1, which represents greater efficiency of Level 2 communications and
inferences over Level 1 inferences only.

4 Conclusions and Discussion

Overgeneralizations occurred when agents inferred that some locations were seen by
others, but those locations were not seen, due to occlusion. The pattern of overgeneral-
izations in the results supports competing explanations.When agents’ spreadwas limited,
they were expected to interact more frequently than when they were free to spread out.
So, limited spread increased opportunities for agents to occlude other’s views, which
increased overgeneralizations. A similar explanation might apply to the increased over-
generalizations for 3-agents compared to 2-agents. Larger numbers of agents interact
and occlude one another more frequently than smaller numbers of agents, which would
tend to increase overgeneralizations. This explanation of the results treats Levels 1 and
2 as a single combined mechanism, but does not explain why overgeneralizations were
(nearly) all corrected.

An alternative explanation treats Level 2 as indirectly sensitive to actual occlusions
as agents directly avoided locations known to have been seen, by moving toward unseen
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locations. The results are consistent with an account in which Level 1 overgeneralizes
and Level 2 corrects, and corrects more, as agents interact more frequently, in larger
teams, or by spreading out less. This explanation is consistent with a dual-level theory
of visual perspective-taking. It does not explain whether the levels should or should not
share a common inferencemechanism. The contribution of the results isn’t that the Level
1 inferences were implemented to have overgeneralizations, it’s that overgeneralizations
from inferences can operate dually with Level 2, such that more general information
(Level 1) and more specific information (Level 2) were mediated by agent observation
and communication, respectively.

The present study cannot distinguish between these two alterative explanations of the
results. Presently, human and other primate studies of cognitive development, also cannot
conclude whether Level 1 is replaced by dual-processes which share a legacy Level 1
inference mechanism, or if Level 2 is added to Level 1, or how the two levels interact.
In the absence of a more detailed specification of perspectival processes, computational
approaches can explore the processes requisite for Theory of Mind.

The importance of studying perspective-taking in the context ofmovement and target
search, is that any one missed location (any single overgeneralized location) could mean
missing the target. Surprisingly, the assessment of overgeneralizations found that the
agents collectively corrected them all (or nearly all). Future analyses are required tomore
fully understand that result. The assessment of the communications has importance for
the role of human language in Level 2, for efficiently sharing information. The 2.6 ratio
results of communicated locations to inferred locations is consistent with this theorized
compressive functionality in Theory of Mind (Tomasello 2019), and with the idea that
abstract knowledge can guide reasoning from incomplete information (Tenenbaum et al.
2011).

This investigation focused on perspective-taking, with the acknowledgement that
perspectival processes operate together with others, e.g., that “the notions of objective
reality, subjective beliefs, and intersubjective perspectives thus form a logical net that can
only fully be grasped as a whole” (Tomasello and Rakoczy 2003). Another consideration
is whether computational approaches treat levels as an amalgam (e.g., Stacy et al. 2021),
or distinguish specific processes as in the present study.

Computational approaches to theory of mind tend to focus on tasks or models of
behavior, even if processes are explicitly acknowledged (e.g., Vinciarelli et al. 2015).
The present study’s approach implemented knowledge and processes to test behaviors
and measure performance. The results could be used to inform computational theory
of mind approaches because the alternate explanations of the results are stated in terms
of processes that could be implemented to test between the alternatives. This process-
focused approach has potential importance for theory-testing, as well as, for applications
to integrated human-machine teams. The human cognitive processes that enable Theory
of Mind are some of those which guide human social interactions, which in turn bear
on task performance. For computational theory of mind to socially interact with human
theory of mind, a detailed understanding is required of the processes which cause social
behaviors and task performance.

Acknowledgements. This research was partly supported by DARPA-PA-19-03-01-01-FP-037 to
DP, TC, DJ, and JB.
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Abstract. When performing complex tasks, humans naturally reason
at multiple temporal and spatial resolutions simultaneously. We contend
that for an artificially intelligent agent to effectively model human team-
mates, i.e., demonstrate computational theory of mind (ToM), it should
do the same. In this paper, we present an approach for integrating high
and low-resolution spatial and temporal information to predict human
behavior in real time and evaluate it on data collected from human sub-
jects performing simulated urban search and rescue (USAR) missions in
a Minecraft-based environment. Our model composes neural networks
for high and low-resolution feature extraction with a neural network for
behavior prediction, with all three networks trained simultaneously. The
high-resolution extractor encodes dynamically changing goals robustly by
taking as input the Manhattan distance difference between the humans’
Minecraft avatars and candidate goals in the environment for the lat-
est few actions, computed from a high-resolution gridworld represen-
tation. In contrast, the low-resolution extractor encodes participants’
historical behavior using a historical state matrix computed from a low-
resolution graph representation. Through supervised learning, our model
acquires a robust prior for human behavior prediction, and can effectively
deal with long-term observations. Our experimental results demonstrate
that our method significantly improves prediction accuracy compared to
approaches that only use high-resolution information.
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1 Introduction

Artificially intelligent (AI) teammates should have a number of capabilities to
be effective [1], including inferring the internal states of other agents [2–4], solv-
ing problems collaboratively with them [5–7], and communicating with them
in a socially-aware manner [8,9]. While these capabilities have been developed
to some extent for simple domains (e.g., 2D gridworlds) and simulated agents,
current state of the art approaches still face significant challenges when it comes
to dealing with complex domains and modeling actual human teammates (as
opposed to simulated agents). We attempt to address some of these challenges
in the context of an experiment involving humans conducting a simulated urban
search and rescue (USAR) mission set in a Minecraft-based environment [10].

This domain is significantly more complex than the domains previously stud-
ied in the literature on computational theory of mind (ToM) [2,3]. Enabling AI
agents to understand human behavior in complex domains will be essential to
achieve the goal of better human-AI teaming. The complexity of the domain
and the emphasis on analyzing human subjects lead to a few unique challenges,
which we describe below.

– Limited data. Since collecting human subjects data is expensive and time-
consuming, the amount of training data available to us is very limited. This
rules out using certain classes of modern machine learning approaches (e.g.,
transformer architectures) that require a large amount of training data.

– Noisy data. Human subjects data is typically noisy, especially in the short
term, with participants frequently violating assumptions of rationality that
are used in existing works on computational ToM [2,3,11]. This expresses the
need for a two resolution approach as rationality can often be recovered when
the domain is represented at a lower resolution and the noise is averaged over,
yet the high resolution is required for real-time predictions.

– Long horizon. In contrast to earlier works on computational ToM [2,3,11]
that study domains with ≈ 102 primitive actions per episode1, our work
considers a domain with episodes containing ≈ 103 primitive actions and
a far larger observation space including more than 20 areas and complex
connectivity. This requires us to implement a long-term memory mechanism
and the ability to extract key features from large amounts of noisy data, both
of which are challenging in their own right.

– Complex dynamics. Our domain is large and possesses a complex topolog-
ical structure, coupled with a complex rescue mechanism setting (for details,
please refer to the approach section), which require us to consider human
behavior at different levels of spatial and temporal granularity. Our model
simultaneously takes into account both the short-term goal preference in a
local area and the long-term rescue strategy.

1 We use the term episode to denote a sequence of actions taken by an agent to perform
a given task. We also use the term trial elsewhere in the paper to denote the same
thing.
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To address the above challenges, we propose a two-level representation. The
first is a low-resolution level that contains information about the topology of
the environment (i.e. which areas are connected to each other) and the status
of victims in each area. The second is a high-resolution level that contains more
granular information about the environment, such as the Cartesian coordinates
corresponding to the agent’s current location, walls, openings, and victims inside
the rooms.

For the low-resolution representation, we build a matrix that encodes key
historical information, which helps our model learn high-level features of human
behavior, such as long-term search and rescue strategies. In contrast, for the
high-resolution representation, we organize the input vector to our proposed
model based on the latest short-term observations, which are more conducive to
recognizing short-term goal preferences. Using the high and low level resolutions
simultaneously aligns with the way humans reason about complex tasks, and also
results in better performance on our prediction tasks, compared to considering
only a single resolution.

2 Related Work

There exist a number of other approaches to computational ToM in the litera-
ture. In this section, we describe some of them, along with their advantages and
disadvantages compared with our approach.

Bayesian Theory of Mind (BToM) models [3,12,13] calculate the probabilities
of potential goals of an agent and other’s beliefs. These models are primarily
based on Markov Decision Process (MDP) formalisms and thus suffer from high
computational costs for complex domains.

Zhi-Xuan et al. [11] proposed an online Bayesian goal inference algorithm
based on sequential inverse plan search (SIPS). This approach allows for real-
time predictions on a number of different domains. Notably, their approach mod-
els agents as boundedly rational planners, thus making them capable of executing
sub-optimal plans, similar to humans. However, this approach cannot be directly
applied to our domain due to the fact that our agents (i.e., humans) have incom-
plete knowledge of their domain and thus the short term planning would suffer
without added hierarchical complexity or longer term planning. In our proposed
approach, we use a similar idea of calculating the probabilities of potential goals,
but we use neural networks which allow for the automatic extraction of features
and correlations from the data without having to hand-craft conditional proba-
bility distributions.

Our supervised learning approach considers both long-term historical and
real-time high-resolution features in a robust fashion, dramatically reducing the
computational costs of training and deployment in online settings even for com-
plex domains.

Inverse reinforcement learning (IRL) methods [14–17] make real-time predic-
tions about an agent from learning the agent’s reward function by observing its
behavior. However, IRL methods suffer in online settings for complex domains
because they are based on MDP formalisms, similar to BToM approaches [18,19].



208 L. Zhang et al.

Approaches based on plan recognition as planning (PRP), which use classical
planners to predict plan likelihoods given potential goals, can also give real-time
predictions for complex domains [20–25]. However, these methods require labor-
intensive manual knowledge engineering, which can be prohibitive for environ-
ments that have complex dynamics. Additionally, these methods struggle with
the noisy and sub-optimal nature of human behavior. In contrast, our neural net-
work based approach requires minimal manual knowledge engineering and our
two levels of resolutions allow for an effective treatment of noisy/sub-optimal
behavior.

Guo et al. [26] study the same domain as the one in this paper, and use a
graph-based representation for their model as well. However, they focus on trans-
fer learning as a way to improve training when dealing with a limited amount
of training data. Additionally, their agent predictions are focused on navigation.
The techniques developed in their work are applicable to us and could be useful
to further expand our model in the near future.

Lastly, Rabinowitz et al. [2] used meta-learning to build models of the agents
from observations of their behavior alone. This resulted in a prior model for
the agents’ behavior and allowed for real-time predictions. However, this app-
roach only studied situations where the agents followed simple policies, and the
dynamics of their domain are much simpler than ours.

3 Approach

3.1 Domain and Task

The domain we consider is that of a USAR mission simulated in a Minecraft-
based environment [10]. In this scenario, the participants must navigate an office
building that has suffered structural damage and collapse due to a disaster. The
original building layout is altered by the collapse, with some passages being
closed off due to rubble, and new openings being created by walls collapsing.

The goal of the mission is to obtain as many points as possible by triaging vic-
tims of the building collapse within a 10-minute time limit. There are 34 victims
in the building, among whom 10 are seriously injured and will expire 5 minutes
into the mission. These critically injured victims take 15 seconds to triage and
are worth 30 points each. These victims are represented by yellow blocks. The
other victims are considered non-critically injured, take 7.5 s to triage, and are
worth 10 points each. These victims are represented by green blocks.

Each participant conducts three versions of the mission, with different levels
of difficulty (easy, medium, and hard). On higher difficulty levels, the victims
are less clustered, further away from the starting point, and are more difficult to
find. Higher difficulty levels also have more alterations from the original static
map that the participants are provided at the beginning of the mission (i.e.,
more blockages and openings).
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Fig. 1. A visualization of the high-resolution representation for our domain. The red
dot represents the agent (i.e., the human’s Minecraft avatar), and the grey dots repre-
sent grid cells that the agent has traversed in the past. Green and yellow squares repre-
sent untriaged victims, blue squares represent triaged victims, brown squares represent
walls, and grey squares represent obstacles. Walls and obstacles are not traversable,
and the blank (white) squares are walkable areas. (Color figure online)

3.2 Representation

High-Resolution Representation. We use a highly simplified 2D gridworld
environment representation for the high resolution representation. In this repre-
sentation, we encode different objects and store them in a 51×91 integer matrix.
The specific encodings are shown in Table 1.

Table 1. Encodings for objects in the high resolution representation.

Object Value

Empty 1

Wall 4

Critical victim 81

Non-critical victim 82

Unavailable victim (triaged or expired) 83

Obstacle 255

Agent 0

In Fig. 1, we show a visualization of the high-resolution representation2. Our
primitive action space consists of two types of actions: move and triage. The
2 Our high-resolution visualization code implementation is based on this repository:

https://gitlab.com/cmu asist/gym minigrid.

https://gitlab.com/cmu_asist/gym_minigrid
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‘move’ action can be carried out in four directions: up, down, left, and right,
moving one cell at a time when the direction of moving is not obstructed. The
‘triage’ action can only be performed when the agent reaches locations cells
where victims are located.

In this high-resolution representation, we can analyze human behavior based
on discrete primitive actions combined with the layout of the building, which
enables modeling real-time changes in short-term goal preferences. However,
these actions also introduce noise, and inference based on them alone is not
conducive to extracting high-level features and organizing long-term memory
due to the large number of primitive actions per trial (≈ 103).

Low-Resolution Representation. To facilitate the extraction of high-level
features from human behavior and the organization of long-term historical infor-
mation, we construct a graph-based representation to simplify our domain fur-
ther. The nodes of the represent areas (e.g., rooms, hallways, etc.) of the build-
ing, the edges represent connections between areas, and each node has three
integer-valued attributes:

– Number of green victims in the area.
– Number of yellow victims in the area.
– Visited status. This attribute can take one of four possible values:

• 0: The node has not been previously visited by the agent.
• 1: The node has been previously visited by the agent.
• 2: The agent is currently located at the node.
• 3: The node was the previous node the agent was at.

For ‘visited status’ attribute, if two conditions are met at the same time, the
higher encoding value has a higher priority. For example, if the agent returns to
a previously visited room, the visited status of the current room defaults to 2
instead of 1 even though both are applicable. The visited status in the memory
matrix is updated according to the above rules when the agent moves from one
area to the next. In addition, when the agent successfully triages a specific type
of victim, the number of victims of that type in the current area is reduced by
one. Therefore, the updates to this matrix record the historical behavior of the
current agent.

This is a dramatic simplification of our domain, since we ignores many details
from the environment, such as the specific locations of agents and victims, the
detailed layout of the building, etc. Therefore, the low-resolution representation
provides a more concise encoding of crucial historical information, making it eas-
ier for the model to extract high-level features in human behavior. We organize
this information into a matrix. However, the time interval for state updates is
longer than that in the high-resolution representation, since we are not encoding
primitive actions for this representation, and it cannot grasp real-time changes
in human intentions. Figure 3 shows an example sketch of the time intervals for
updates to the state in the two resolutions. In order to leverage the complemen-
tary strengths of these two resolutions, we propose a model that uses both as
inputs simultaneously.
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2
2 1

1

Area ID Yellow victims Green victims Visited status
Room 101 1 0 0
Room 102 0 2 1
Front Yard 0 0 2
Entryway 0 0 3
Hallway 0 0 1
Computer Farm 1 2 0

Fig. 2. Visualization of an example low resolution graph representation and the cor-
responding memory matrix. The nodes represent the areas in the building, and the
edges the connections between them. The number and type of victims in each area are
recorded as attributes on each node, and are shown using a color and number indicat-
ing the type and quantity of victims. The red node represents the node the agent is
in. The matrix below the graph is the corresponding low resolution memory matrix.
(Color figure online)

Fig. 3. An example sketch showing the different time intervals of state updating for
the two resolutions. Each tick line indicates an update to the state, and the red dotted
lines connect ticks with the same timestamp The high resolution input is updated for
every primitive action, while the low resolution input is only updated when the agent
leaves a node or changes the attributes of a node (triaging a victim), hence the lesser
number of ticks. (Color figure online)

3.3 Model

Our model produces two types of outputs: (i) goals, i.e., objects/locations that
the agent is trying to get to, and (ii) the next type of victim (green or yellow)
that the agent will attempt to triage.
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Goal ΔMD Likelihood
G1 -5 0.4298
G2 3 0.2075
G3 3 0.1813
G4 3 0.1814

Probability that the next victim to be triaged is yellow
0.8994

Fig. 4. An example of how we deal with the data from the high resolution represen-
tation. The arrows represent the agent’s last six movements. The quantity ΔMD(g, 6)
(see Eq. 1) is computed for g ∈ {G1, G2, G3, G4} and shown in the table below the
figure, along with the predictions of the model for each potential goal g in the area.
The window of ‘move’ actions is from when the agent moves from the magenta outlined
square to the blue outlined square. (Color figure online)

Goals. The primary outputs of our model are similar to methods based on
Bayesian ToM approaches [3,12,13]. We consider victims and portals connecting
adjacent areas as potential goals, and aim to predict which goal the agent is
currently pursuing. See Fig. 4 for an example set of goals available to an agent
when entering a particular room.

Next Triaged Victim Type. In addition to predicting the probability of
the agent pursuing a potential goal, we also predict the type of victim to be
triaged next, which helps us identify the agent’s strategy or long term behavior.
For example, we observed that some players prioritize triaging yellow victims
because they are worth more points and expire sooner, while some players are
more opportunistic, triaging victims in the order they appear in their field of
view. Note that the next victim to be triaged may not be in the current area that
the player is in. Thus, we need to leverage information from both the high and
low resolution representations to make this prediction, making it an important
output that takes advantage of our multi-resolution architecture.
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3.4 Architecture

Fig. 5. This is our network architecture. Our inputs are fed into features extractors for
each resolution and then those extracted features are concatenated and fed into the
prediction net which produces our goal and victim type predictions. The values shown
for Ogp and Ovp are taken from the example in Fig. 4 for illustrative purposes.

The architecture of the model is shown in Fig. 5. First, the information from the
high and low resolution representations are used as inputs. The high-resolution
input Ihr is a vector of ΔMD values, one for each goal. The low-resolution input
Ilr is the memory matrix described earlier. The corresponding features ehr =
fhr(Ihr) and elr = flr(Ilr) are extracted by the feature extractor networks fhr
and flr, respectively. Then, these two features from the two different resolutions
are concatenated and fed into the prediction net g. The next goal and victim
type to be triaged predictions Ogp and Ovp take the form of estimating the two
probabilistic outputs with g(ehr, elr). Since the inputs consider state differences
rather than the entire state, the size of the input observation space is significantly
reduced, thereby reducing the training difficulty of our deep learning model. We
use a fully connected (FC) layer combined with a batch normalization layer
as a basic building block for our three neural networks. The output FC layers
in the prediction network (g(elr, ehr)) are passed through softmax and sigmoid
functions to obtain the probabilities of the agent’s goal (Ogp) and the likelihood
that the next victim is triaged (Ovp), respectively.

High-Resolution Input. Similar to the setting of the BToM [3], we infer the
probability of pursuing a goal. As shown in Fig. 4, we compute the quantity
ΔMD, defined as follows:

ΔMD(g,m) = D(xm
i , xg) − D(xm

f , xg) (1)
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where xm
i and xm

f are the initial and final positions of the agent computed with
respect to a window of the past m ‘move’ primitive actions, xg is the location
of the goal g for which ΔMD is being calculated, and D(a, b) is the Manhattan
distance between locations a and b. We found that setting m = 6 to be the
best fit choice, which still gives real-time predictions, while also handling some
noise in the agent’s actions. See Table 4 for a comparison of results with different
values of m.

Low-Resolution Input. As shown in Fig. 2, we record the victim status and
area visitation status of each area in a matrix and use it as an input to the
proposed model. This input helps us extract long-term historical information
to form memory and facilitate the extraction of high-level features (long term
strategies) as a prior to human behavior predictions.

4 Evaluation

Our model is trained in an end-to-end manner via supervised learning using an
Nvidia V100S GPU and the Adam optimization algorithm [27]. We calculate
the softmax cross entropy loss for goal prediction and the binary cross entropy
loss for victim type prediction. The training loss Ltotal is the sum of the goal
prediction loss Lgp and the victim type loss Lvp as seen in Eq. 2, where the
victim type loss weight, W, is given in Table 2, along with the rest of the training
hyperparameters after tuning.

Ltotal = Lgp + W ∗ Lvp (2)

Figure 4 illustrates how our proposed model works. As shown in Fig. 1, in
the room that the agent searched just prior to the room that it is currently in,
the agent only triaged the yellow victim and left the two green victims, which
hints that the agent is likely following a strategy that prioritizes rescuing all the
yellow victims first. Our model encodes this behavior as prior knowledge and
predicts that the probability that the next victim to be triaged will be yellow is
≈ 0.9.

Without a prior about the rescue strategy we may naively expect that the
agent will move from G2 to G3 or G4 (i.e., to the next closest victim) with a high
probability. In contrast, our model predicts that the most likely next short-term
goal is the room’s exit, with a probability of ≈ 0.43. In Fig. 6 (similar to Fig. 4),
the same player finally chose to leave after finding there is no yellow victims
in this room. The probability of the agent returning to G1 to try and find a
yellow victim to triage next can be seen to increase from about 0.90 to 0.95.
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Table 2. Hyperparameters for our model training.

Hyperparameter Value

Learning rate 0.001

Low resolution feature size 64

High resolution feature size 4

Hidden size for prediction net 64

Batch size 16

Random seed 0

Victim type loss weight (W ) 0.3

This demonstrates that our model can learn about high-level strategies that a
player is following, and can also detect instantaneous changes in the short-term
goals of human players.

Goal ΔMD Likelihood
G1 1 0.4674
G2 -5 0.1804
G3 -5 0.1761
G4 -5 0.1761

Probability that the next victim to be triaged is yellow
0.9447

Fig. 6. The high resolution representation at a later time than the example shown in
Fig. 4. Here we see the probabilities of the agent heading to goal G1, and that the
next victim triaged will be yellow are increasing, showing that our model is correctly
predicting the agent’s goals in real-time, in addition to showing our prediction at an
earlier timestep was correct. (Color figure online)

In Table 3, we compare our multi-resolution method to two baseline
approaches based solely on high-resolution information3. The first baseline uses
3 We do not compare with an approach based solely on low-resolution information,

as it would be not be sufficient to differentiate between multiple short-term goals
within a single area/node.
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Table 3. Results for 6-fold cross-validation for our approach and two baselines based
on high-resolution inputs. In the first method, we encode the high resolution input
as the destination locations of the agent’s most recent six ‘move’ actions. For the
second method, we concatenate the high resolution input vector Ihr with an integer
representing which area the agent is in. We find that our multi-resolution approach
significantly outperforms the baselines that only use high resolution inputs.

Easy Medium Hard

Model - Cross Val Goal Acc Vic. Acc Goal Acc Vic. Acc Goal Acc Vic. Acc.

High Res. (Locations) 0.6313 0.7060 0.6232 0.6874 0.6031 0.6838

High Res. (Δi
MD) 0.6526 0.7315 0.6412 0.7037 0.6251 0.6881

High + Low Res 0.7208 0.9008 0.7146 0.8803 0.6780 0.8881

the 2D coordinates of the destination cells of the six most recent ‘move’ actions as
the input. The second baseline considers the high-resolution input based on ΔMD

and includes only a small portion of the information from the low-resolution rep-
resentation. Specifically, since the current area cannot be encoded if only ΔMD

is considered, we encode each area with a unique integer and append this integer
to the input vector Ihr.

We have 66 trials for each difficulty level, and use a 6-fold cross-validation
procedure to evaluate our model4. As shown in Table 3, we see that the baseline
using ΔMD performs better than the baseline that uses only the past six destina-
tion cells of the agent’s ‘move’ actions, and our approach that uses both high and
low resolution information outperforms both the baselines. Compared to using
location information alone, using ΔMD (or more specifically, a vector of ΔMD

values, one for each goal, i.e., Ihr) as an input can lead to better features being
extracted, thus improving prediction accuracy. Our proposed method based on
the combination of high and low-resolution information allows our model to
effectively learn the relationship between features at multiple resolutions in the
data, further improving the accuracy of behavior prediction.

Table 4. Results for 6-fold cross-validation for our approach in which the high resolu-
tion inputs are based on different numbers of ‘move’ actions.

Easy Medium Hard

last m moves Goal Acc. Vic. Acc. Goal Acc. Vic. Acc. Goal Acc. Vic. Acc.

3 0.7181 0.9037 0.7071 0.8816 0.6712 0.8857

6 0.7208 0.9008 0.7146 0.8803 0.6780 0.8881

12 0.7151 0.9001 0.7118 0.8835 0.6801 0.8845

4 We evaluate the accuracy of the victim type prediction only in the first five minutes
of each trial because yellow victims expire after five minutes, leaving only green
victims to triage.
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We also investigated the sensitivity of our approach to the choice of
the parameter m (the number of moves in our window when we compute
ΔMD(m, g)). The results are shown in Table 4. The performance of our proposed
method is not overly sensitive to the number of moves, and thus we choose
m = 6 after comprehensively considering the results for the three tasks.

5 Conclusion

In this paper, we proposed a real-time human behavior prediction model that
uses multi-resolution features. In the high-resolution input, the model observes
the Manhattan distance difference between the agent and each potential goal
during recent behavior, which is robust to obtain the agent’s short-term inten-
tion. The low-resolution historical state matrix effectively organizes the long-
term memory and helps the model extract the high-level feature. In addition,
the supervised learning-based training provides a straightforward and automatic
way to organize and learn the internal correlations from the human subjects data.
After training, the experimental results demonstrated that our method is robust
and accurate at effectively utilizes prior knowledge to predict human behavior.
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Abstract. The success and safety of a Search and Rescue (SAR) team
hinge on routing, making it an integral part of any SAR mission. Conse-
quently, an Artificial Social Intelligence (ASI) agent aware of the “good”
available routes in a mission is a very desirable asset for a SAR team.
Such awareness is contingent on having superior knowledge of the envi-
ronment and understanding the dynamics of the SAR team. An ASI
agent equipped with this capability can utilize it while reasoning about
the mission, similar to how a human may use real-time GPS route sugges-
tions from a navigation application. This feature was historically infeasi-
ble for real-time ASI agents because the problems were computationally
intractable. However, recent advances in Graph Neural Networks, trans-
formers, and attention models make them candidates to be leveraged as
neural heuristics in routing problems to quickly generate near-optimal
routes. This paper describes a sequential decision framework based on
neural heuristics to devise such routes for participants in the DARPA
ASIST Minecraft SAR Task and reports our initial findings.

1 Introduction

The success and safety of a SAR team hinge on routing, making access to a
trusted advisor an indispensable asset. Although many factors impact trust
in advisors, expertise is fundamental [2,7]. Thus, a SAR ASI agent must have
demonstrable expertise in the real-time routing of teams.

A trusted SAR ASI that is equipped with routing technology is similar to a
driver with a real-time GPS navigation application. The recommendations that
an app provides are based on critical information which it can easily access and
process, such as road conditions, traffic jams, accidents, etc. Obviously, this is
not something a driver can readily do while traveling—but drivers are also privy
to their own private information, such as preferences and physiological states. A
driver with a car full of hungry kids, for example, may choose to stop and eat dinner
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early after the app recommends a re-route rather than following the recommenda-
tion. Critically, this decision does not make the re-routing recommendation any
less valuable. The driver trusted the app, but used private information to make a
personal and rational decision. Just like the app performs real-time path planning
and provides options to the user based on the current information state, the SAR
ASI agent ingests routing suggestions and combines them with other information
that it has for the mission and the SAR team it is assisting. Then, the SAR ASI
agent makes informed recommendations to the SAR team.

SAR missions burden rescuers with continual decisions about how to traverse
an environment. These decision are frequently made under extreme conditions
and often from very limited information, both of which place significant stress on
humans and impact their decision making capacity [14]. One of these stressers
is enough to warrant technological help, but more troublesome is the NP Hard
nature of routing in SAR missions. SAR routing is akin to the family of Traveling
Salesman Problems (TSPs) which are also NP Hard and studied extensively in
Operations Research. However, the most advanced Operations Research method-
ologies cannot generate real-time guaranteed optimal solutions for TSP problems
(save for small networks). There are a number of heuristics available to find can-
didate solutions [3], and many practical applications utilize such heuristics.

An insight from studying TSPs is that the problem instances often share key
characteristics or patterns. Cappart et al. (2021) illustrate this with a truck-
ing company routing problem in which the company needs to generate daily
routes for the same city, but with slight differences due to traffic conditions.
Such similarities bring opportunities for the data-dependent machine learning
approaches that exploit these patterns [1]. Recently, Graph Neural Networks
(GNNs) with attention mechanisms have become strong heuristic alternatives
for combinatorial optimization problems [4]. We leverage such an approach as a
neural heuristic to quickly generate good paths that exploit the similarities in
routing requirements of a Minecraft SAR task. A real-time ASI agent prototype
can utilize this capability to explore the routing options available to the SAR
team under different conditions.

2 Background

Combinatorial optimization (CO) is a well-established interdisciplinary area with
many critical real-world applications including routing [12]. For a given problem,
CO tries to optimize a cost (or objective) function by selecting a subset from a
finite set which is subject to constraints on the selection. The goal of CO is to find
a unique, optimal solution to each problem. This is not always practical, how-
ever, due to the complexity of problems. Practitioners turn to problem-specific
heuristic methodologies in such instances [3].

Graph Neural Networks (GNNs) are a powerful machine learning architec-
ture that leverages structural, relational, and compositional biases to facilitate
geometric deep learning [8]. GNNs aggregate information into simpler represen-
tations of nodes and edges from structural and feature-based (e.g. node or edge
type) graph data. By parameterizing this aggregation, they can be trained in
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an end-to-end fashion against a loss function. What differentiates GNNs from
their predecessors, convolutional and recurrent neural networks, is the ability
to operate on higher complexity data than what can be represented in regular
Euclidean structures, e.g., a picture (2D) or text (1D). GNNs accomplish this by
being order-invariant—they propagate on each node in the graph independently
and ignore the input order—and by using the graph structure to guide propaga-
tion. These innovations empower GNN models to “reason” about a graph, that
is, draw general inferences, and then use those inferences to successfully make
predictions and classifications [17]. Recently, GNNs have also been utilized as
neural heuristics to generate solutions for CO problems [16]. The central promise
of GNNs in this role is that the learned vector representations encode crucial
graph structures to help solve a CO problem more efficiently [4].

Kool et al. (2018) proposed a transformer-like encoder-decoder architecture
based on Graph Attention Networks [15], a well-known GNN architecture with
attention, for general routing problems. In this framework, an encoder-decoder
neural network is trained on randomly generated routing problems with network
sizes similar to a target problem. The training leverages an actor-critic reinforce-
ment learning approach that circumvents the need for the optimal solutions to
the training instances. Although the training needs to be done in advance, with
a trained model it is possible to quickly generate very good solutions to SAR
routing problems. The work depicted in this paper leveraged the Kool et al.’s
codebase (2018) (ALSR codebase) and augmented it for our task.

3 DARPA ASIST Minecraft SAR Task

The DARPA ASIST Minecraft SAR task (“our” task) is a game-based simu-
lated training environment designed with the explicit purpose of developing ASI
agents. The task places participants in a Minecraft environment where they
attempt to save victims of an urban disaster and earn points for doing so. Vic-
tims are either non-critical or critical, the latter of which are worth more points
but take a team effort to save. The environment includes risks, which are loca-
tions where a player is frozen until a teammate rescues them. There is also
rubble, which can be cleared, that may block access to victims. Teams consist
of three participants, and each participant can select one of three roles: medical
specialist (medic), hazardous material specialist (engineer), and search specialist
(transporter). Medics can triage victims and rescue frozen teammates, engineers
can clear rubble, and transporters can transport victims. Each role is associated
with a tool that expires after so many uses and must be renewed. Further details
about the environment are available in the preregistration [9].

4 Solution Approach

Participants in a Minecraft SAR experiment face routing decisions akin to a Vehi-
cle Routing Problem (VRP), which is a type of TSP in the Operations Research
literature. A VRP is a combinatorial optimization problem with an objective
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to identify optimal routes for each vehicle in a delivery fleet. For example, in
the Minecraft SAR environment, triaging victims, clearing rubble, deactivating
freezing plates, and converging at critical victims are all demand points (cus-
tomer locations) that the participants need to visit to complete the SAR task.
Consequently, VRP models can provide routing decisions for planning a par-
ticipant’s path. Different VRP models can assist in capturing different aspects
of the Minecraft SAR task. For example, the capacitated VRP (CVRP) model,
which defines vehicle capacities, can model tool durability, whereas the CVRP
with Profits (CVRPP) model can assign unique rewards to different demand
points.

We address routing for the Minecraft SAR teams in a sequential decision-
making framework via defining separate VRP models for each team member.
Each team composition, e.g., one medic - two engineers or one medic - one
engineer - one transporter, defines a different sequence of VRP models. Suggested
routes for one model informs the definition of the next model. For example,
suppose that we generated paths for the medic with the CVRP model under the
assumption that there is no rubble. An engineer must clear the rubble blocking
a victim before the medic arrives at this location for the paths to be valid. This
forms the basis for the engineer routing model definition, which is akin to the
CVRPP. In this definition, we set up rewards if the engineer can clear path
rubble before it is needed or if the engineer can be at a critical victim location
near the same time as the medic so that triage can start.

Each team composition defines a different sequential decision-making prob-
lem. When we have completed the model definitions for all team compositions,
we can compare the results across teams. Here, we only define a (medic, engineer,
engineer) team for demonstration purposes. One of the main assumptions made
with this team composition is that the second engineer switches to the medic
role if time permits and starts triaging victims in reverse order from the medic
routing solution. Figure 1 depicts the routing problem definition process for this
team composition in detail.

Our sequential decision-making framework can start at any arbitrary point
during an experiment. Thus, it is possible to run the framework and generate
solutions for any combination of victims, rubble, and freezing plates. Addition-
ally, the framework can also be initialized with the information that participants
have (or should have), yielding solutions representative of participant knowledge
states. Such a capability also allows the ASI agent to compose what-if type of
questions to develop a better intuition on the routing options available to the
team under different assumptions.

4.1 Solution Pipeline

Our framework adapts the ALSR codebase. We trained separate models for the
medic and engineer roles using various network sizes so that the solution gen-
eration process can utilize the appropriate model to produce routes. Save a few
modifications to set up the routes correctly, we directly utilized a CVRP model
native to the ALSR codebase for training medic routes. We had to update the
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Fig. 1. The sample process to generate a complete routing solution for a (medic, engi-
neer, engineer) team

ALSR codebase for training CVRPP models for the engineer role. For instance,
we added timing-based penalties to the objective function to make the engineer
route better aligned with the medic route. We defined two types of penalties:
(1) Being late, e.g., there is a penalty if the engineer clears rubble later than
the medic needs it; and (2) Being off-sync, e.g., there is a penalty if the engi-
neer visits critical victims or freezing plates before or after the medic’s visits.
Algorithm 1 presents the CVRPP model generation in detail. In this model,
parameters control the weights for each type of penalty and the length of the
proposed route in the objective function.

The ALSR codebase strictly requires using 2D coordinates (between 0 and
1), not distances between nodes, as input. We addressed this requirement by
setting up four abstraction levels of the Minecraft SAR task maps. The lowest
abstraction is the original task map (Saturn) (Fig. 2a). Our second abstraction
level is a semantic graph that captures all the main map features and structures
(rooms, victims, rubble, and the connection of them) needed for navigation deci-
sions (Fig. 2b). Each role has objective nodes, e.g., the medic role needs only the
victim nodes, whereas the engineer role requires the rubble nodes directly block-
ing victims, the critical victims, and the freeze plates. The third abstraction
level is a distance matrix capturing pairwise distances for all objective nodes
(Fig. 2c), where Dijkstra’s algorithm [6] is utilized to calculate the distances



Route Optimization in Service of a SAR Artificial Social Intelligence Agent 225

Fig. 2. Four Abstract Levels of the Saturn Map. a) Plan view of a representative Saturn
map in its original form. b) Semantic map with victims/rooms/connections extracted.
Note: the map structures are consistent with that in (a), but victim distribution is
different. c) Distance matrix (in meters) of objective nodes extracted. d) An euclidean
2-dimensional layout transformed from the distance matrix using mMDS and JLT.
Coordinates are scaled to [0–1]. A sample routing solution with three routes is shown.

between objective nodes directly based on the semantic graph representation
(Fig. 2b). The fourth abstraction level is a set of 2D coordinates between 0 and
1 dictated by the ALSR codebase. Because the distance matrix generated in the
third abstraction level is non-euclidean, we performed Metric Multidimensional
Scaling (mMDS) [5,13], also known as Principal Coordinate Analysis (PCoA), to
transform the distance matrix into coordinates in high-dimensional space (∼36
dim). We then used the John-Lindenstrauss Transform (JLT) [11] to generate 2D
coordinates from those in the high-dimensional space while preserving distance
information from the initial matrix [10]. As the last step, the output coordi-
nates from JLT are scaled to [0, 1] to finalize the fourth abstraction level of the
map (Fig. 2d). We perform route planning via neural heuristics on the fourth
abstraction level and convert the generated routes back to the semantic map
representation for visualization, analysis, and interfacing purposes.
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Algorithm 1: Training Pipeline for the Engineer’s Routing Model
Input: trained medic model modelm, normal victims Vn, high-value victims Vh,

rubbles R, freezing plates F , medic tool life Tm, engineer tool life Te,
mismatch penalty coefficient α, rubble penalty coefficient β

Output: Trained Engineer model modele
Initialize Engineer model modele
Initialize Medic Graph Gm and Engineer Graph Ge

repeat
Gm ← RandUnif2D(|Vn| + |Vh| + 1)
Medic Route Rm ← modelm(Gm, Tm)
foreach node u ∈ Gm do

if u ∈ Vh ∪ R ∪ F then
Ge ← Ge ∪ {u}

end
end
Engineer Route Re ← modele(Ge, Te)
Mismatch Penalty Pm ← 0
Rubble Penalty Pr ← 0
foreach node u ∈ Ge do

tum ← time(Rm, u), tue ← time(Re, u)
if u ∈ Vh ∪ F then

Pm ← Pm + l2(t
u
m, tue )

end
if u ∈ R and tue > tum then

Pr ← Pr + 1
end

end
cost ← |Re| + α · Pm + β · Pr

Update modele parameters based on cost

until convergence

4.2 Exploratory Results

We ran two experiments with our task on the Saturn_B map (see Huang et al.
2021). Both assumed the team composition described in the Solution Approach
section. The first experiment focused on generating a complete solution for the
task. Our sequential decision-making framework generated a solution with a per-
fect score of 750, an average distance traveled per participant of 1646 blocks, and
completed the mission in 802 s. In comparison, the four teams from the Human
Subjects Research (HSR) trials which started with the same team composition—
trials 416, 450, 508, and 523—averaged 392.5 points and a distance of 2974 blocks
per participant during their 900 s missions. The second experiment focused on
selecting an arbitrary point in a trial and running our pipeline from that point
onward. For this experiment, we selected trial 416, and we ran our pipeline given
the scenario state at time 10:44 (when a role change from an engineer to medic
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happens). Our pipeline suggests a solution for the remaining 4:16 of the mission
that improves the total score from 480 to 620 points.

5 Discussions and Future Work

Our pipeline generated superior routes to those followed by HSR teams. This
is expected since the framework had access to the maps and victim locations,
meaning it had the required information to generate near-optimal routes. Nev-
ertheless, these results showed that our framework has the potential to be a
trusted tool to service a SAR ASI agent. The ability to quickly generate routing
solutions under different conditions would allow the ASI agent to better reason
about what routes are available to the SAR team while intervening.

We plan to complete our framework for all possible team compositions and
run experiments to compare them in the short term while setting up an interface
for interaction with the real-time ASI agent prototype. We will also exploit the
decoding stage of our framework by augmenting the masking component in the
ALSR codebase to better handle CO model constraints and resolve potential
deadlocks, e.g., a medic waits for the engineer to clear rubble, where the engineer
waits for the medic at a critical victim. In the medium term, we will explore
avenues to generate solutions concurrently for all team members directly on the
third abstraction level—the distance matrices based on the semantic map.

6 Conclusions

We depicted a sequential decision-making framework leveraging neural heuristics
to quickly inform a real-time ASI agent on routing options available to a SAR
team under different conditions given the state of the SAR mission. Such an
agent could leverage this framework as a trusted tool for routing when reasoning
about how to assist the SAR teams better in Minecraft SAR experiments.
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