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Abstract. We present the curve transformer (CurT), a novel method of
direct baseline detection that models document text line detection as set
prediction of cubic Bézier curves, simplifying the layout analysis pipeline
by removing the need for the laboriously hand-crafted postprocessing
algorithms that are necessary with the current state of the art. CurT
combines multiple appealing features: direct prediction enabling pro-
cessing of material that is ill-suited for the prevailing methods adapting
semantic segmentation backbones, a conceptually simple Transformer-
based encoder-decoder architecture that can be extended to additional
tasks beyond baseline detection, and increased computational efficiency
in comparison to older approaches. In addition, we demonstrate that
CurT achieves metrics that are competitive with methods based on
semantic segmentation.

Training and inference code is available under Apache 2.0 license at
https://github.com/mittagessen/curt.

Keywords: Document analysis · Machine learning · Text line
detection · Object detection

1 Introduction

Document image analysis of historical material has seen a continued and rising
interest over the last few decades, both from Computer Science researchers in
search for more challenging material for their algorithms, scholars in the Human
and Social Sciences aiming to apply computational analysis on ever larger cor-
pora, and libraries and archives digitizing collections to ensure accessibility of
humanity’s collective cultural heritage. High quality document layout analysis
is a keystone technology in any of those efforts reliant on retrodigitization on
both the level of individual lines and higher order zones demarking textual and
non-textual content.

While Automatic Text Recognition has achieved tremendous progress in the
last decade, with typical character error rates well below 10% even for highly
challenging handwritten material, these methods are uniquely dependent on
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accurate prior segmentation as both the best performing and most widespread
systems rely on segmented text lines as inputs. While segmentation-less meth-
ods have been proposed from time to time, they uniformly suffer from incom-
parable requirements on training time and data, are less robust regarding the
nature of the texts to be recognized, or are not competitive with pre-segmenting
approaches. Thus text recognition workflows are almost exclusively constructed
out of a preliminary text line extraction step followed by actual text recognition
with any failures in the segmentation directly translating into text recognition
errors.

As can be expected for its central role, a large number of methods and
paradigms, with varying focuses over the years as text recognition methods
have grown in capability, have been proposed to deal with various handwrit-
ten and machine-printed historical documents. Early algorithms to extract indi-
vidual characters from a page utilizing conventional computer vision methods
have largely been supplanted first by hand-crafted algorithms detecting whole
lines such as [1] and, later, machine learning-based approaches. Through these
advances many documents are now in the reach of digitization without close
human supervision but significant obstacles remain: generalization on out-of-
domain documents is generally poor, especially for degraded material or differ-
ent writing supports, implicit assumptions on the nature of the text, e.g. writing
direction, that often don’t hold for non-Latin-script documents are widespread,
and methodological limitations of many methods make detection of overlapping
and rotated writing difficult.

Layout analysis methods based on object detection systems offer the promise
to overcome many of the conceptual limitations of these earlier systems. While
established indirect object detection algorithms employing surrogate regression
and classification problems that are highly dependent on postprocessing steps
such as non-maximum suppression to collapse near-duplicate predictions, designs
of anchor sets, and heuristics assigning entities to anchors are difficult to adapt to
non-box shaped objects required for text line detection in historical documents,
a new class of direct object detectors based on vision Transformers are much
more flexible in their output data models.

2 Related Work

2.1 Transformers for Computer Vision

Transformers are a class of artificial neural network architecture that is char-
acterised by a self-attention mechanism that learns relationships between ele-
ments of sets. In contrast to conventional recurrent neural networks that process
sequences recursively and in practice can model long-term relationships only in a
limited manner, Transformers are able to attend to complete sequences. This par-
ticular attention mechanism computing attention tensors across multiple heads
(multi-head self-attention) along with minimal inductive biases in comparison
to recurrent (sequentiality, recursion) and convolutional (translation invariance,
locality) neural networks through the exclusive use of fully connected layers
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are the Transformer’s distinguishing features. While Transformer layers can be
arranged in a number of different configurations depending on task, the original
and most widely used one organizes them into a encoder-decoder configuration.

Originally proposed in [32] for Natural Language Processing, Transformers
have demonstrated astounding improvement on the then current state of the art
for language modelling tasks such as text classification, machine translation, or
question answering. The ability of Transformer networks to be effectively scaled
up and trained with very large parameter counts that consistently outperform
prior more lightweight models, e.g. the 340 million parameter BERT, 175 billion
parameter GPT-3, up to the latest Switch transformers with up to 1.6 trillion
parameters, have achieved generalization and adaptability that makes the impact
of these architectures difficult to overstate.

The breakthroughs in performance achieved with Transformers have caused
great interest outside of the NLP domain and the computer vision community
has started to adapt these models for vision and multi-modal learning tasks.
The resulting systems can largely by divided into hybrid architectures com-
bining CNN encoders and Transformer decoders and architectures replacing
convolutions altogether. The Vision Transformer (ViT) [8] was one of the first
showcases for a standard Transformer architecture operating on flattened image
patches producing competitive results on a number of computer vision tasks,
albeit requiring pre-training on the extremely large proprietary JFT dataset.
DeiT [31] demonstrated training transformers on the more moderately sized Ima-
geNet dataset with state-of-the-art results through a teacher-student distillation
approach with a CNN teacher model. These fixed-scale methods perform well on
sparse prediction tasks such as image classification but the quadratic complexity
of self-attention limits their applicability to higher-resolution images. Multi-scale
architectures that merge tokens reducing the sequence length along a cascade of
hierarchical layers have been proposed as a better alternative for dense predic-
tion, e.g. object detection or semantic segmentation. Examples of these are the
Swin Transformer [19], Pyramid Vision Transformers [34], and Focal Transform-
ers [36]. An extensive survey of self-attention and Transformer-like methods for
a wide range of computer vision tasks can be found in [12].

2.2 DETR and Variants

DETR [2] is an object detector built upon a Transformer encoder-decoder archi-
tecture combined with a set-based loss that forces unique predictions for each
ground-truth bounding box through bipartite matching.

The model operates on input feature maps extracted by a CNN backbone,
in the originally proposed implementation ResNet-50 and ResNet-101, that are
fed into a standard Transformer encoder-decoder architecture. The inputs of
the decoder stage are the transformed image features from the encoder and N
learned positional encodings called object queries that condition the decoder to
produce N distinct output embeddings from the transformed image features. A
simple linear projection and a 3-layer feed-forward network are used to decode
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the output embeddings into classes and regress the normalized bounding box
coordinates b ∈ {bcx, bcy, bw, bh} respectively.

The architectural simplicity of DETR and lack of hand-crafted algorithms
such as non-maximum suppression or anchors often required in non-direct meth-
ods such as Faster R-CNN [27], YOLOv3 [26], and SSD [18] among many others
makes it an attractive design for object detection and derived tasks. Unfortu-
nately the original design suffers from several major drawbacks. The first is the
quadratic computational complexity of the attention weight computation in the
Transformer encoder with regard to the input size, putting a low upper bound on
the maximum input resolution which makes detection of small objects difficult.

The second is the slow convergence with the original approach requiring a
very long training schedule of 500 epochs to converge on the COCO dataset,
roughly 10 to 20 times slower than Faster R-CNN’s typical 30 epochs. The
primary reason identified in [37] for this slow convergence is the suboptimal initial
initialization of the attention modules casting nearly uniform attention weights
to all pixels in the input feature maps requiring many epochs to achieve sufficient
sparsity for the decoder to detect object effectively. This slow convergence is
exacerbated by the lack of pre-training of the Transformer.

Another contributing factor to these long training times is the instability
of the bipartite matching during initial epochs, as the assignment is essentially
random in the early phases of training [28].

An abundance of detection transformers variants are intended to resolve these
problems. Deformable DETR [37] decouples the computational cost of the atten-
tion module from the input feature maps through a deformable attention mech-
anism that attends only to a small set of sampling points around a reference
point while at the same time incorporating multi-scale features improving recall
of small objects. Conditional DETR [22] narrows down the spatial range for
localizing object regions via learning the decoder embedding conditioned on
a spatial query. UP-DETR [6] pre-trains standard DETR using a multi-query
patch pretext task. FP-DETR [33] proposes a way to pre-train an encoder-only
Deformable DETR object detector on a classification task. [28] adapt an FCOS-
like object detector [30] with an encoder-only Transformer block and a modi-
fied bounding-box specific matching scheme that improves stability in the early
stages of training. DN-DETR [15] halves the training time of DETR-like methods
by introducing an auxiliary denoising task that bypasses the bipartite matching
to circumvent early instability while at the same time improving accuracy on
baseline DETR.

2.3 Text Baseline Detection

As a representation of text lines, baselines have a long history in historical doc-
ument layout analysis (see [16] for a survey of early methods) and has recently
both enjoyed a resurgence in research interest and widespread use in a number
of practical text recognition systems for handwritten and printed documents
such as Transkribus [5] and eScriptorium [14]. While early methods employing
this paradigm utilized conventional image processing methods, the challenging
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cBAD competitions in 2017 and 2019 have triggered the publication of a large
number of deep learning-based methods.

Fig. 1. Example taken from the cBAD
dataset visualizing the originally anno-
tated baseline (purple), least squares
fitted Bézier curve control points (blue
circles), and Bézier curve interpolated
at 20 equally spaced points.

Baselines are a term originating from
typography referring to a virtual poly-
line on which most characters of a text
line rest upon or hang from. Despite not
being universal, or in fact sometimes not
being located at the bottom of the line
as is the case with Hebrew and various
Indict scripts, analogues that serve the
same purpose for text recognition pur-
poses can often be devised for material
lacking true baselines, e.g. approximate
centerlines for Chinese characters. While
not sufficient by themselves in most cases,
baselines in combination with bounding
polygons can be ingested by modern line-
based text recognizers with minimal adap-
tation while at the same time requiring
only modest effort for manual annotation.

The dominant approach to baseline
detection with trainable methods employ-
ing artificial neural networks is pixel-wise
classification on single or multi-scale fea-
ture maps to label baseline pixels or some
derivation thereof such as corpus height
lines, toplines, or centerlines. These are
sometimes augmented by auxiliary labels

to improve accuracy or enable computation of other line characteristics such as
orientation. In a postprocessing step baseline instances are extracted through
grouping of baseline pixels, typically through thresholding, local connectedness,
skeletonization, or interline distance estimation. Examples of this class of systems
are ARU-Net [11], dhSegment [23], and BLLA [13]. While sufficiently powerful
for many applications, semantic segmentation-based text line extraction has lim-
its: most systems lack a way to determine text line orientation, have a tendency
to merge and/or split close lines, are conceptually unable to deal with inter-
secting lines, and often impose further limitations on possible line shapes in the
postprocessing stage.

3 Contribution

The main contribution of this work is a document layout analysis system based
on object detection paradigms that is:

1. largely postprocessing free having one parameter during inference, a simple
threshold of the objectness score.
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2. almost unconstrained with regard to shape, orientation, and overlapping of
the type of text lines to be extracted.

3. extensible towards other tasks, e.g. text line boundary and region detection,
document classification, or reading order determination.

4 The CurT Model

CurT is heavily inspired by the DETR system for object detection. As such it has
the same fundamental components: a set prediction loss forcing unique matching
between predicted and ground truth baseline curves, and an architecture that
predicts in a single pass a set of objects and models their relation.

For the reasons described above the verbatim method proposed in the seminal
paper is largely unsuitable as a layout analysis system for historical documents.
The limits imposed by the computational and memory complexity on input
image feature size cause suboptimal performance on the detection of small text
lines and the long training times required for convergence make learning for
new material, a frequent requirement when considering the variety of historical
writing one might want to segment, impractical.

From the variants presented above we adapt Conditional DETR [22] and
modify it to better reflect our data model.

4.1 Text Line Data Model

The principal difference between the output of an off-the-shelf object detector
and our text line extractor is the modelisation of the detected objects instances
as polylines that are placed typically on the bottom of the line corpus, the
baseline. As DETR-style models regress object instances encoded with a fixed
dimensionality a flexible, fixed-length line representation that is able to deal with
arbitrarily shaped text is needed. While directly regressing the end points of line
segments of a polyline is possible, the high output dimensionality required to
accurately model complex text shapes and the smoothness of handwriting makes
this approach unappealing. Bézier curves on the other hand are able to represent
complex shapes with a low, fixed number of control points.

A Bézier curve represents a parametric curve c(t) that uses the Bernstein
Polynomial as its basis:

c(t) =
n∑

i=0

biBi,n(t), 0 ≤ t ≤ 1 (1)

with n being the degree of the curve, bi the i-th control point, and Bi,n(t) the
Bernstein basis polynomial:

Bi,n(t) =
(

n

i

)
ti(1 − t)n−i, i = 0, . . . , n (2)

To find the appropriate degree of the Bézier representation, a number of pages
from the pre-training dataset (see Sect. 5.1) where sampled and the manually
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annotated polylines therein fit to curves of differing degrees. Cubic Bézier curves
n = 3 were sufficient to model the lines in these document images to a sufficient
degree (Fig. 1).

Converting the original polyline points to a cubic Bézier curve is done with
a standard least squares fitting of the curve control points; the first and last
points of the polyline are set as the first and last control points respectively. As
polylines with a low number of line segments result in inaccurately parametrized
curves, ground-truth lines are interpolated to contain at least 8 points.

4.2 Curve Detection Set Prediction Loss

As DETR and its derivations, CurT infers a set of N predictions of objects, in our
case baseline curves encoded as cubic Bézier curves, and their associated class
in a single decoder pass. Typically the number of possible text line predictions
N is somewhat larger than the actual number of lines found in the image, so the
possible classes are padded with a no object class ∅.

The loss operates in two stages: a matching phase where each predicted object
(curve) is assigned to a ground truth object through an optimal bipartite match-
ing computed with the Hungarian algorithm, followed by a loss optimizing the
object-specific curve losses. The overall structure is similar to the set prediction
loss proposed in [2] but modified to account for the prediction of baseline curves
instead of bounding boxes.

Given the ground truth y and ŷ = {ŷi}N
i=1, the set of N predictions with

y padded with ∅ (no object) if smaller than N , we find an optimal bipartite
matching between these two sets as a permutation of N elements σ ∈ SN with
the lowest cost:

σ̂ = arg min
σ∈SN

N∑

i

Lmatch(yi, ŷσ(i)) (3)

where Lmatch(yi, ŷσ(i)) is a pair-wise matching cost between ground truth yi and
a prediction with index σ(i).

The matching cost is a linear combination of the class prediction and the
similarity between predicted and ground truth curves. Let the i-th ground truth
element be yi = (ti, ci) where ti is the target class label (which may be ∅) and
ci ∈ [0, 1]8 is a vector defining the coordinates of the four control points relative
to the image size.

For such an element yi, we define the matching cost as Lmatch(yi, ŷσ(i)) as
−1{ti �=∅}αLfocal(ti, p̂σ(i)(ti)) + 1{ti �=∅}β�1(ci, ĉσ(i)) given for a prediction with
index σ(i) the probability of class ti as p̂σ(i)(ti) and the curve prediction as ĉσ(i).
α = 1.0 and β = 5.0 are free parameters defining the relative weight between
class and curve score in the matching cost.

Once a optimal matching has been computed, the Hungarian loss is computed
on the matched pairs. Similar to the matching cost it is a linear combination of
class prediction focal loss and the curve loss:
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Fig. 2. CurT operates in a standard Transformer encoder-decoder configuration on
feature maps computed with a conventional convolutional backbone. The feature maps
from the backbone are flattened and positional encodings are concatenated to it before
being passed into the encoder. The decoder then takes as input a fixed number of
learned positional embeddings, called object queries that are mapped with a linear
projection into reference points (see Fig. 3) and the encoder embeddings. Its output
embeddings are then decoded into separate class scores and curve regressions with a
shared feed-forward network (FFN).

LHungarian(y, ŷ) =
N∑

i=1

[
γLfocal(ti, p̂σ̂(i)(ti)) + 1{ti �=∅}ε�1(ci, ĉσ̂(i))

]
(4)

where σ̂ is the optimal assignment computed in the first step (3) and γ = 1.0
and ε = 5.0 are the relatives weights accorded to classification and regression
losses respectively.

The component losses in both the matching and loss computation phase are
focal loss with loss weight of four [17] for object classification and �1 distance
for the curve regression.

4.3 CurT Architecture

The overall architecture of CurT depicted in Fig. 2 is based on a modification of
the Conditional DETR [22] variant of the originally proposed Detection Trans-
former. It contains three main components: a convolutional backbone extracting
an input feature representation, an encoder-decoder Transformer, and two feed
forward networks predicting line class and the Bézier curve control points respec-
tively.

Backbone. The backbone network is a conventional CNN backbone gen-
erating a lower-resolution feature map f ∈ R

C×H×W from an input image
x ∈ R

3×H0×W0 . Resnet-50 (used by DETR and most variants), SegFormer [35]
(a multi-head attention-based architecture originally devised for efficient seman-
tic segmentation), and EfficientNetv2 [29] were evaluated informally as possible
backbones. All 3 architectures produce output feature maps of size f ∈ R

C× H
32×W

32



42 B. Kiessling

with variable C and higher resolution feature maps available from earlier layers.
While the tests were only performed on a shortened training cycle, backbone
choice and configuration seems to not impact the training loss of the model
drastically apart from slower convergence with the SegFormer backbone and
steeper drop in loss during early training with larger segmentation maps (and
concomitant higher memory consumption at same input image resolution).

Fig. 3. A depiction of one decoder layer
in CurT. The difference to the Conditional
DETR decoder lies in the dimensional-
ity of the reference points s ∈ R

8 with
ps ∈ [0, 1]8 used in the conditional spatial
query construction (red box) and the out-
put regression feed-forward network. s rep-
resents the unnormalized reference points,
ps the normalized reference points including
the fixed positional encoding. Raw object
query dimensionality remains unchanged.
Original figure from [22].

Thus, the backbone model chosen
is an EfficientNetV2-L pretrained on
Imagenet 21k with the last layer fea-
ture maps f ∈ R

640× H0
32 ×W0

32 being
used as the input embeddings of the
Transformer part of the model. This
choice optimizes convergence speed,
memory consumption, and computa-
tional requirements.

Transformer Encoder. The CurT
encoder follows the standard Trans-
former encoder layer construction of
a multi-head attention module and a
feed forward network (FFN).

Encoder inputs are reduced in
dimensionality with a 1×1 convo-
lution of the input feature map f
with C = 640 to an embedding fea-
ture map z0 ∈ R

d×H×W with d =
256. As the standard Transformer
encoder layers expect a sequence the
two-dimensional map z0 is collapsed
into a d × HW tensor. As with
most other applications of the Trans-
former architecture in vision a fixed
sinusoidal positional encoding [24]
is applied to the encoder inputs to
account for the Transformer’s permu-
tation invariance.

Transformer Decoder. The CurT decoder cross-attention mechanism in the
decoder layers is largely identical to the construction of the Conditional DETR
decoder, which modifies the DETR decoder cross-attention by decoupling queries
into a content and spatial part by decoding the object queries into explicit ref-
erence points which are then concatenated to the decoder embeddings with the
aim to accelerate training.

The primary difference in the construction of our decoder is the use of mul-
tiple reference points in the construction of the conditional spatial query (see-
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gray-shaded box of Fig. 3) from object queries and decoder embeddings. Each
object query is decoded not into a single center reference point sc ∈ R

2 but four
separate reference points s ∈ R

8. This is motivated in part by the formulation
of the curve regression (see Sect. 4.3) but is primarily intended to aid the spatial
attention mechanism to more easily deliminate the spatial extent of the baseline,
similar to how singular reference points translate the attention to the extremities
of the object box in the original architecture.

For a detailed description of the operation of the Transformer encoder and
decoder we defer to [2,32] and [22] respectively.

Curve Regression. Following the regression scheme of Conditional DETR the
control points of a candidate curve are predicted from each decoder layer as
follows:

c = sigmoid(FFN(g) + s) (5)

where g is the decoder embedding, c ∈ [0, 1]8 an eight-dimensional vector of the
normalized curve control points, and s ∈ R

8 the unnormalized coordinates of
the reference points. This differs from the originally proposed:

b = sigmoid(FFN(g) + [sc�0 0]�) (6)

with b = [bcxbcybwbh] ∈ [0, 1]4 where the reference point only impacts the regres-
sion of the bounding box center point and extremities of the bounding box are
completely regressed from the decoder embeddings.

The FFN in the curve regressor is a three-layer multi-layer-perceptron with
ReLU activation function, a hidden dimension of d (256 per default as per above)
and output dimension of eight.

Line Class Prediction. The classification score for each candidate curve is
directly predicted from the decoder embeddings through an FNN followed by a
softmax activation from each decoder layer:

t = softmax(FFN(g)) (7)

5 Experiments

5.1 Dataset and Evaluation Protocol

We perform experiments on the standard cBAD 2019 baseline detection dataset,
containing 755 training, 778 validation, and 1511 test images. As this dataset is
insufficient in size to train a CurT model from scratch, an auxiliary dataset of
38k annotated handwritten and machine-printed page images is assembled from
the HTR-United repository [3], the NewsEye project [9], the Kuzushiji cursive
Japanese dataset [4] with automatically annotated baselines, and an additional
set of non-public data including highly challenging material from the Princeton
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Geniza Project. The quality and annotation standards vary widely across this
large dataset, often only containing annotations for parts of the text, a mixture
of top-, center-, and baselines, and a variety of ontologies for text line and region
classes. As there is little coherence across the chosen datasets and the standard
cBAD evaluation scheme for text line detection disregards text line classification,
line classes are merged into one default class and regions are suppressed.

5.2 Implementation Details

Strong augmentation is applied during training, with inputs being resized ran-
domly to a longest edge size between 900 px and 1800 px, random rectangular
crops followed by resizing, and random photometric distortion.

Fig. 4. Example output for a page taken
from the cBAD dataset visualizing the
Bézier curve control points (blue circles)
and Bézier curve interpolated at 20 equally
spaced points.

The number of object queries is
increased to 1000 from the original 100
to account for the higher number of
text lines on a typical page in com-
parison to objects annotated in the
COCO 2017 images. As in other appli-
cations the number of queries is chosen
to be in large excess of the possible
number of objects in any input (μ =
7.19 for objects per image for COCO
2017 resulting in 10–40 times the num-
ber of object queries for DETR and
variants), following the same approach
would increase computational require-
ments considerably for text line detec-
tion as the mean number of lines per
page is 54.3 (σ = 123.8) with a small
number of pages containing above 500
and even 1000 lines in comparison to
the maximum 63 objects in a COCO
image.

By default models are pretrained
on the large general dataset of 38k
page images for 100 epochs and then

fine-tuned for an additional 50 epochs on the target dataset. The model is trained
using the AdamW optimizer [20] with base learning rate of 10−4, β1 = 0.9,
β2 = 0.999, and weight decay of 10−4 with a lower learning rate of 10−5 for
the convolutional backbone. Learning rate is scheduled according to a single
cosine cycle with an initial warmup over 8000 training steps as the more widely
used fixed schedule with a 10-fold decay after 80% of epochs results in conver-
gence at very high losses for the text line detection task. The number of encoder
and decoder layers is set to 3 respectively. Traditional dropout with p = 0.1 is
applied to the transformer. Auxiliary losses are computed on the output embed-
ding decoded with the prediction heads sharing weights at each decoder layer.
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5.3 Overall Performance

We report precision, recall, and F-value averaged over the 1511 test set images of
the cBAD 2019 dataset in Table 1. Baseline results are from the winning method
of the complex track of the cBAD 2017 competition. The metrics were computed
with the standard schema described in [10]. A sample from the output on the
test set is shown in Fig. 4.

Table 1. CurT text baseline detection performance
on cBAD 2019 dataset (values for other methods
from [7])

Method Precision Recall F-value

Baseline (DMRZ-17) 0.773 0.743 0.758

TJNU 0.852 0.885 0.868

UPVLC 0.911 0.902 0.907

DMRZ 0.925 0.905 0.915

Planet 0.937 0.926 0.931

CurT 0.909 0.908 0.908

As shown by the competi-
tive results in comparison to
semantic segmentation-based
methods our approach is able
to detect text baselines effec-
tively under various challeng-
ing conditions such as faded
ink, degraded writing sur-
faces, and variously oriented
lines.

5.4 Ordered Prediction

In addition to models trained with the set loss described above, an alternative
formulation without bipartite matching was also evaluated. The chief purpose is
to determine the ability of the system to learn a basic reading order in addition
to text line detection by enforcing that the prediction at ŷi, i ≤ N corresponds to
the yi in the original ground truth. The basic assumption underlying this experi-
ment is that reading order can be determined using fixed geometric relationships,
i.e. that the spatial attention conditioned on the object queries is sufficient to
determine a basic reading order.

While such a basic system would evidently be insufficient for practical pur-
poses without the introduction of additional semantic depth like the distinction
of headings, notes, insertions, main text, etc. its capabilities would be in line
with the current state of the art of heuristics, learned rule based systems [21],
and recent neural approaches [25].

An obvious challenge for this approach to ordered prediction is that object
query utilization is highly dependent on the spatial frequency of baselines in the
source document, i.e. object queries need to attend to areas of the document
occurring earlier in the reading order for documents with a high number of text
lines and later areas for sparse documents. As somewhat expected CurT failed
to converge for this considerably more challenging task.

5.5 Further Extensions

A straightforward next target for a text line detection system is the extension
to region detection and text line boundary detection. In DETR these tasks were
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analogously modelled as panoptic segmentation, predicting pixel-wise maps for
both stuff and thing classes in COCO with a multi-attentional (M) mask head
that predicts M × N attention maps simultaneously from the decoder embed-
dings. These attention maps are then upsampled through a FPN-like architec-
ture incorporating multi-scale feature maps from the convolutional backbone
network, followed by a classification layer to produce the final output pixel maps.

The drawback of simultaneous prediction of all segmentation maps is the
linear increase of memory consumption with the number of object queries, in
addition to the high base memory requirements for high resolution inputs. A
future extension to CurT is a mask head predicting regions and text line bound-
aries sequentially.

6 Conclusion

This work presents the first attempt to adapt a modern direct object detection
system for the task of text baseline detection in historical documents. The capa-
bilities of this approach are demonstrated on the widely used cBAD 2019 dataset
where the proposed method was shown to perform well. While only rudimentar-
ily explored at this time, the proposed framework offers the perspective to solve
a number of ancillary tasks to document layout analysis such as region detection
and text line boundary detection, or reading order computation.
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