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Genomic Selection in Maize Breeding

Vishal Singh and Amita Kaundal

1 � Introduction

Maize is one of the most important crops after rice and wheat and has numerous 
industrial uses. It is a diploid species from the tribe Maydae of the Poaceae family, 
having 2n = 20 chromosome numbers, with its primary center of origin in Mexico 
and Central America. Since its domestication, maize has undergone artificial and 
natural selection for centuries. Selection for morphological traits has been the foun-
dation of crop improvement. Thousands of years of conscious selection by the farm-
ers have led to the development of landraces adapted to specific climatic conditions 
harboring valuable alleles for various traits related to quality and yield. In the early 
1900s, efforts for systematic corn breeding to develop hybrids started (East 1908; 
Shull 1909). The selection was practiced even before that time, providing several 
open-pollinated cultivars through mass selection. This improved germplasm acted 
as a sourced germplasm for deriving inbred lines for hybrid breeding (Hallauer et al. 
1988). Europe observed a tremendous expansion of corn area in some countries, 
aided by selection for early maturity (Trifunovic 1978). During the earlier phases of 
crop improvement, unconscious selection was practiced for a few loci, followed by 
selecting many loci through mass selection. After the invention of Mendelian genet-
ics, selection for a few loci resulted in the improvement of disease resistance and the 
development of dwarf wheat varieties enabling the green revolution. Later, the 
development of the breeder’s equation (Lush 1937) and linear mixed model 
(Henderson et al. 1959) methods provided new tools to plant breeding. With the 
advent of sequencing technologies, genomic data could be associated with pheno-
type data which helped identify causal genomic regions through QTL (quantitative 
trait loci) and association mapping. It facilitated the transfer of QTLs using marker-
assisted selection (MAS) approach. A detailed description of all these plant 
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breeding phases is provided elsewhere by Ramstein et al. (2019) and recommended 
for more information. The major drawback of MAS was its unsuitability for quanti-
tative traits where QTLs have minor effects only, thus having huger QTL × environ-
ment interactions. Also, QTL and association mapping strategies are challenged by 
the difficulty in identifying rare and small effect QTLs for important traits. The use 
of genome-wide markers was proposed to predict the breeding value of genotypes 
(Meuwissen et al. 2001) and is called genomic selection (GS). GS is contrary to 
MAS, where few loci with significant effects are targeted. The goal of GS is to pre-
dict the breeding and/or genetic values of the genotypes. Although getting geno-
typic information is still a significant financial bottleneck for implementing GS in 
breeding programs, reducing cost of genotyping is a strong motivation for adopting 
this advanced tool in crop improvement. Statistically, GS has supervised learning 
where a set of individuals (inbreds, hybrids, or segregating genotypes) acts as a 
training set having both genotypic and phenotypic information. A suitable predic-
tion model is applied to this training set, and a fitted model is used to predict the 
breeding values of unknown samples using only the sequence data. A common mis-
understanding about GS is that it predicts phenotypic value, which it does not. 
Instead, it predicts genomic estimated breeding values (GEBVs), which do not 
directly represent phenotypic values. Despite this, it may be used to rank genotypes 
for a trait that is used to fit the model. A correlation between the actual phenotypic 
value and GEBVs might give a good idea about the accuracy of the predictions by 
such an approach.

The selection of an appropriate prediction model is an essential aspect of 
GS. Several models have been proposed for GS considering different statistical fac-
tors (Crossa et al. 2017). GS has several complexities which need to be addressed to 
obtain acceptable prediction accuracies. One of these complexities is a huge number 
of markers (p) compared to population size (n). It makes least squares estimates for 
marker effects to be less practical to compute. Solutions to these complexities 
include dimensionality reduction, penalized regression, and variable selection, to 
mention a few. Another critical challenge is to consider genotype × environmental 
interaction in GS models. GS methods can be classified based on different criteria. 
A major classification scheme divides GS models into parametric, semiparametric, 
and nonparametric models. Among many, parametric models include ridge regres-
sion BLUP (rrBLUP), genomic BLUP (gBLUP), compressed BLUP (cBLUP), and 
super BLUP(sBLUP), collectively called BLUP models (Endelman 2011; Pérez 
and de Los Campos 2014; Wang et al. 2018). Another group of models in the para-
metric category is Bayesian models comprising Bayesian ridge regression, Bayesian 
LASSO, and Bayes alphabets A, B, and C (Pérez and de Los Campos 2014). The 
principal components can be integrated into parametric models to account for the 
population structure in the GS models (Merrick and Carter 2021). Semiparametric 
methods include reproducing Kernel Hilbert spaces regression (Gianola and van 
Kaam 2008), abbreviated as RKHS. RKHS is supposed to capture complex gene 
interaction. Random Forest and Support Vector Machine regressions are among the 
nonparametric methods for GS. The choice of model depends on various factors, 
including the composition of the training population. Epistatic interaction also 
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affects prediction accuracies and can be improved slightly using specific models 
that capture epistasis, such as EG-BLUP. The predictive abilities of models also 
depend on crop and trait genetics.

2 � GS in Maize for Biomass, Yield, and Yield-Related Traits

Yield is a complex phenotype governed by several loci with small to medium effect 
sizes in maize (Chen et al. 2017). Prediction of yield using GS may be made at 
several levels depending on the study’s objectives. Since hybrids are the main culti-
var types in maize, GS can be employed to identify high-yielding parents in segre-
gating or double haploid populations to predict hybrids’ yield to narrow down 
candidates for field trials.

2.1 � Prediction of Per Se and Hybrid Performance 
in Segregating Generations

The development of parental lines for a hybrid breeding program is a continuous 
process in a maize breeding program. Pedigree breeding is a popular method of 
developing new inbreds where two or more selected parents are crossed to generate 
segregating population to select desired segregants based on their per se perfor-
mance or combining ability with chosen testers. Early generation testing helps 
determine better lines by reducing the cost of evaluation and advancing many lines 
from a cross. GS may be applied at early generation testing to reduce the cost of 
evaluation of test crosses. In one such attempt, the shelling percentage was pre-
dicted with higher accuracy than the yield in test crosses of an F2 population obtained 
with the primary aim of improving the shelling percentage (Sun et al. 2019). To 
improve grain yield and stover quality traits, the genome-wide selection was imple-
mented on a testcross population from 223 recombinant inbreds. The results were 
compared with that of marker-assisted recurrent selection (MARS) in the same 
population (Massman et al. 2013). GS resulted in significantly higher realized gains 
than MARS for yield + stover index. GS was employed to predict the hybrid perfor-
mance in test crosses to predict GCA for grain yield (Burdo et al. 2021). Genomic-
estimated GCA for the inbred lines was computed and was found to have a higher 
correlation to testcross values than phenotypic GCA. The primary motivation was 
to identify the best combiner lines in the early generations of inbred line develop-
ment to avoid an exhaustive and practically unfeasible scheme to test all the parental 
line candidates. Such an approach for GS-assisted line selection can save a signifi-
cant amount of finances by narrowing down the best candidates for field-based test-
cross evaluations for yield.
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2.2 � GS in Inbred Lines

Inbred lines are homogenous and homozygous populations used as parents in maize 
hybrid breeding. GS selection in maize inbred populations primarily aims at the 
parental selection and studying the feasibility of GS for a specific crop-trait sce-
nario. Stalk strength is an important agronomic trait in maize and is related to stalk 
lodging and grain yield. A set of inbred lines belonging to two RIL populations were 
subjected to GS for rind penetrometer resistance (RPR), an indicator of stalk 
strength in maize. High prediction accuracy for RPR was observed when a multi-
variate model was used and when QTLs were taken as a fixed effect in the model 
(Liu et al. 2020). The authors explained that fixed and multivariate models might 
better capture the genetic variance of the trait and probably both the additive and 
nonadditive interaction effects. The husk is a part of the maize ear that indirectly 
affects grain yield by reducing susceptibility to ear rot (Warfield and Davis 1996), 
providing limited photosynthesis and acting kernel dehydration after physiological 
maturity. Suitable husk characteristics are important for obtaining optimum yield in 
specific agroecologies. On an association mapping panel of 498 inbred lines, GS 
models were used to predict husk-related traits (Cui et al. 2020). The highest predic-
tion accuracy was observed for husk thickness. Diverse association mapping panels 
are highly likely to have the presence of subpopulations. While predicting husk-
related traits, subpopulation-level training of models showed higher prediction 
accuracies than when modeling across the subpopulations, provided that the sub-
population size is large enough. Similarly, the kernel oil trait was predicted with 
good prediction accuracy (0.68) in a set of maize inbred lines to assess the feasibil-
ity of GS for this trait (Hao et al. 2019).

2.3 � GS for Double Haploid-Based Breeding Programs

In commercial maize breeding programs, double haploid (DH) line development 
has become a routine scheme. The convenience of generating a large number of DH 
lines in a much shorter time compared to the traditional pedigree method has 
allowed generating thousands of DH lines every year. The phenotypic evaluation of 
this vast novel germplasm resource is a very challenging and costly task. GS may 
help narrow down good candidates for field evaluation for specific traits, thus saving 
substantial financial resources. Scientists at CIMMYT (International Maize and 
Wheat Improvement Center) evaluated a scheme to predict yield and agronomic 
traits for a set of 3068 tropical DH lines at the early stages of the pipeline (Beyene 
et al. 2019). The experiment was conducted over multiple years, and it suggested 
that the inclusion of 10–30% of lines from the following year to the existing training 
set of the previous year can significantly increase the prediction accuracies and save 
high costs compared to testcross formation and multilocation testcross evaluation. 
A comparative study at CIMMYT showed that the performance of testcrosses from 
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DH lines selected from GEBVs has an advantage over DH lines selected based on 
phenotypic values for yield and yield-related traits (Beyene et al. 2019). The gain 
from GS was realized in terms of a 32% cost reduction and time savings. A good 
reference for different phases of GS in the breeding program is reported elsewhere 
(Fu et al. 2022).

2.4 � Rapid Cycling Genomic Selection

Time is an essential factor in the breeder’s equation. The time taken to complete a 
breeding cycle depends on factors like crop species and the availability of off-season 
nurseries. Breeders have to optimize their program to incorporate GS in such a way 
that reduces breeding cycles. Maize is a crop that can be grown in multiple seasons 
in tropical climates, providing opportunities to utilize off-season nurseries. Several 
studies have reported efforts to shorten the generation interval to increase genetic 
gain per unit of time (Beyene et al. 2015; Gaynor et al. 2017; Massman et al. 2013; 
Vivek et al. 2017). Rapid cycling genomic selection (RCGS) was implemented in a 
multi-parental tropical maize population, using 18 founder lines for 4  cycles 
(2 cycles per year) for selecting grain yield (Zhang et al. 2017). A slight reduction 
in genetic diversity was reported after four cycles compared to the base population. 
The authors suggested that RCGS can be adopted in tropical maize breeding pro-
grams without rapidly losing genetic diversity and achieving higher genetic gains in 
a short period. A good compilation of information on RCGS is available elsewhere 
(Volpato et al. 2021).

3 � GS for Abiotic and Biotic Stress Tolerance

Abiotic stresses are a few critical challenges of today’s climate change era. Maize 
faces substantial loss in biomass and yield when subjected to environmental stresses 
such as drought, heat, salt, and waterlogging. The evaluation of breeding material 
takes twice as much effort as the same set of germplasm is evaluated both under 
control and stressful environments compared to yield and yield-related traits. 
Implementing GS may save time and resources in stress tolerance-oriented breeding 
programs, thus increasing genetic gain per unit of time. The genomic selection was 
conducted on eight bi-parental populations by CIMMYT to estimate genetic gain 
for grain yield under managed drought conditions (Beyene et al. 2015). The study 
suggested the superiority of the GS approach over conventional pedigree-based 
phenotypic selection for increasing genetic gains for yield in a drought environ-
ment. In another attempt to improve drought tolerance in tropical maize using 
GEBV-based selection, researchers at CIMMYT (Vivek et al. 2017) demonstrated 
the superiority of genomic selection over phenotype-based selection in two 
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bi-parental populations. Markers were used to generate a stable source population 
by selecting drought-tolerant alleles without selecting under drought stress.

Possible erratic rainfall pattern due to climate change poses a risk of drought and 
waterlogging within the same crop growth period. It is important to simultaneously 
improve drought and waterlogging tolerance in the same genetic background. It is 
theoretically possible due to potential links between molecular mechanisms impart-
ing tolerance to moisture-deficit and excess environments. A rapid cycling genomic 
selection was implemented to select combined stress tolerance in a multi-parent 
yellow synthetic population (Das et al. 2020). The study enables the development of 
a breeding population through molecular markers even in the absence of the target 
stress in one season. No yield penalty under optimal moisture conditions was 
observed while selecting yield for drought and waterlogging environments. Not 
much efforts have been made to improve cold and heat tolerance using genomic 
selection. Salinity stress is another critical environmental stress causing substantial 
yield reduction to maize yield. In a first attempt to predict salinity tolerance for 
biomass-related traits in maize, GS was implemented on a set of diverse inbred lines 
for the shoot and root-related traits (Singh et  al. 2019). With leading efforts by 
CIMMYT, good progress in improving abiotic stress tolerance using genomic selec-
tion is expected.

Plant diseases pose severe threats to global food security, and with climate 
change, pathogens are expected to evolve rapidly, overthrowing the existing toler-
ance of crops for them. Efforts to map R genes have been undertaken in the past 
(Carson et al. 2004; Collins et al. 1998; Kuki et al. 2018). Despite such efforts, not 
many large-scale marker-assisted selection (MAS)-based gene pyramiding studies 
are available to transfer these mapped genomic regions. Genomic selection can be a 
good approach where there are no or very few major QTLs available for quantitative 
disease resistance. For selecting genotypes with reduced disease severity against 
northern lead blight (NLB) caused by Setosphaeria turcica, the G-BLUP model was 
implemented (Technow et al. 2013) with prediction accuracies up to 0.706 (dent 
corn) and 0.690 (flint corn). High prediction accuracies using GWAS-detected SNP 
markers were observed for Fusarium ear rot (FER), another destructive fundal dis-
ease of maize (Liu et al. 2021). The feasibility of GS has been studied for a few 
other maize diseases, such as tar spot complex (Cao et al. 2021), lethal necrosis 
(Gowda et al. 2015), and Gibberella ear rot (Riedelsheimer et al. 2013). With care-
ful design of strategy to implement, GS may yield higher genetic gains saving time 
and resources as it does for any other trait.

4 � GS for Pre-breeding

The genetic basis of elite cultivars in major crops suffers from a narrow genetic 
base. It poses a risk of the inability to cope with the new challenges of climate 
change. Corp wild relatives harboring valuable alleles for the traits of interest are an 
essential resource for crop improvement, and introgression of these alleles into 
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cultivation background, popularly known as pre-breeding, is a challenging task. 
Despite difficulties, several attempts to introgress valuable alleles in the active 
breeding germplasm have been made for a few traits in some crops (Barrantes et al. 
2016; Dutra et al. 2018; Fulop et al. 2016; Grewal et al. 2020; dos Santos et al. 2022; 
Singh et al. 2021; Wang et al. 2017). Most marker-assisted introgressions for pre-
breeding have been successful for qualitative traits and traits for which major alleles 
are present. For quantitative traits, the traditional introgression approaches are not 
an idea. A novel origin-specific genomic selection (OSGS) scheme was proposed 
(Yang et al. 2020) where in a bi-parental derived population, separate marker effects 
were predicted for favorable exotic alleles based on their origin (wild vs. elite). The 
scheme aims at increasing the contribution of favorable exotic alleles in a bi-parental 
cross between wild and elite lines. The scheme was validated on two nested associa-
tion mapping populations of barley and maize. In another interesting study, a pro-
posed design was evaluated, which aimed at initiating a pre-breeding program to 
harness polygenic variation from landraces using genomic selection (Gorjanc et al. 
2016). The study suggests the introgression of favorable alleles from landraces in a 
phased manner. Thus, genomic selection may help broaden the genetic base of 
breeding populations.

5 � Take-Home Message

Genomic selection is a powerful tool gaining popularity in maize breeding pro-
grams to predict the breeding values of individuals. Genomic selection is a practi-
cally proven tool and can give remarkable success for maize improvement if used 
wisely. With the reducing prices of DNA sequencing, an upward trend is expected 
in its adoption as an essential breeding tool. However, for developing countries in 
general and public sector breeding programs in particular, DNA sequencing of 
many maize inbreds is still not feasible. Hence, an appropriate strategy for selecting 
various parameters, such as the number of markers and population size, in the con-
text of specific traits is recommended.
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