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Chapter 5
Metabolomics of Food Systems

Sandip Kumar Patel, Bhawana George, Neeraj Jain, and Vineeta Rai 

Abstract  ‘Food metabolomics’ is an emerging area in metabolomics, enabling 
food processors and scientists to understand the biochemistry and composition of 
food with precision, speed, and efficiency. The approach is applied to identify food 
resources and nutrition biomarkers, organic and genetically modified food authenti-
cation, geographic origin screening, and elucidation of environmental stress feed-
back in food resources and livestock research, quantitate and quantify dietary intake 
and exposure, and provide insights into the molecular mechanisms underlying sen-
sory and nutritional characteristics. Food metabolomics encompasses plant to 
human nutrition ranging from soil quality, food resources, food processing to human 
nutrition. Understanding the bioactive and nutritional content of the food is becom-
ing an emerging area of metabolomics. Since it’s an emerging area, there are several 
challenges: lack of optimized workflow, uncharacterized metabolites, and lack of 
databases. Typical food metabolomics workflow includes targeted and untargeted 
metabolomics analysis in conjunction with chemometric analysis. Food databases 
help to characterize ‘unknown metabolites.’ This book chapter describes the recent 
trends and application of food metabolomics.
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5.1 � Introduction

Metabolomics deals with the systematic analysis of endogenous and exogenous 
small molecules (<1kD) involved in primary or secondary metabolic processes. 
Metabolomics is fascinating due to the vast diversity of the metabolites classified 
into amino acids, lipids, nucleotides, carbohydrates, organic acids, etc. The organ-
ism’s metabolic repertoire changes consistently and significantly during growth and 
development and interactions with environmental factors. The metabolic shifts thus 
represent the physiological state of the organism and have a strong correlation to the 
phenotype. Metabolomics is applied to all arena of biological sciences ranging from 
human health to agriculture (Kim et al. 2016; Tian et al. 2016). Assessing food qual-
ity is a prime area of the food industry today since there is increasing awareness 
among consumers regarding food safety and composition. Food metabolomics is an 
emerging area in metabolomics, enabling food processors and scientists to under-
stand the biochemistry and composition of food more quickly and efficiently. With 
the ever-increasing population, reduction in agricultural lands, climate change, and 
environmental pollutants, food metabolomics analysis is imperative for food secu-
rity and human health. This chapter focuses on metabolomics workflows, applica-
tions, and challenges in agriculture, livestock, processed food, human nutrition, and 
plant resource food. New advances such as food metabolomics databases, the appli-
cation of metabolomics to screen genetically modified (GM) crops, and organic 
food are also discussed. This chapter also highlights the challenges in the food 
metabolomics research, such as sample preparation, data analysis, identification of 
unknown compounds.

5.2 � Metabolomics Analysis

5.2.1 � Study Design

The study design of metabolomics analysis should be based on the biological ques-
tion. Two different metabolomics approaches are employed based on the analysis 
requirement: untargeted and targeted (Fig. 5.1). If the research is hypothesis-driven, 
primarily to recognize the prior characterized and biochemically annotated metabo-
lites, then a targeted approach is preferred. The analysis could be undertaken 
quantitatively or semi-quantitatively based on the standards. Untargeted metabo-
lomics is ideal for hypothesis development, as it simultaneously identifies and 
quantifies several unknown/known metabolites. The identification of unknown 
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Fig. 5.1  Metabolomics workflows (a) targeted and (b) untargeted

features is performed by matching the metabolic MS/MS fingerprints with the pub-
lic spectral library repository or standards, which leads to limited metabolite identi-
fication. Therefore, many potentially useful information in MS/MS data sets remains 
uncurated. Several in silico tools like Global Natural Product Social Molecular 
Networking (GNPS) could catalog the uncurated MS/MS data sets via a spectral 
correlation and visualization approach (Wang et al. 2016). Both methods have their 
advantages and limitations. There is no universal metabolomics workflow that is 
one-for-all due to vast metabolites complexity.

5.2.2 � Sample Collection, Quenching, and Storage

Sample collection and storage are very critical. The metabolites are very dynamic; 
hence sampling time becomes essential, and samples should be collected systemati-
cally. Consistency is the key to sample collection, particularly for long-term experi-
ments. Food habits, age, sex, social-economic status, geographic location, etc., 
should be considered for animal models or human subjects. Likewise, species, envi-
ronmental factors like watering patterns, nutritional content, light, moisture, day-
night cycles, and development stage should be accounted in plant study. The tissue/
bacterial samples should be washed with buffer or water before storage to remove 
any media/external components. Likewise, for exometabolomics research, the sam-
ples should be filtered to remove any cells in the media. Further, samples may be 
spiked with the known concentration of metabolite “standard” to evaluate any deg-
radation/change in the metabolite during storage. As soon as the samples are col-
lected, they should be quenched with liquid nitrogen or solvents like methanol and 
stored at −80 °C until processed further.

5  Metabolomics of Food Systems
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5.2.3 � Workflow

Typical metabolomics workflow (Fig. 5.2) includes 
(i) Study designing, the most critical factor for any metabolomics study. Study 
design comprises but is not limited to asking the right question or hypothesis based 
on which sample size, controls, sampling time, metabolite extractions solvents/
methods, analytical tools, data analysis, etc., are decided. 
(ii) Metabolite extractions: the intracellular metabolite extraction goals include 
separation of the small molecules from cell debris or other cellular biomolecules 
like protein, nucleic acids, etc. For the exometabolites, like the extraction of metab-
olites from the soil, the aim is to separate metabolites from the complex matrix. The 
metabolite extraction approaches should be consistent and minimize the losses due 
to biochemical/photochemical conversion or degradation. However, the biases are 
inevitable due to the wide dynamic range of metabolites and varying solubility quo-
tient (Phapale et al. 2020). A wide range of solvent choices is available based on 
metabolite interest and chemistry. Apart from the solvent, temperature, pH, and 
desired molecular weight of the metabolite of interest should be considered. 
Monophasic and biphasic extraction approaches are employed based on the metabo-
lites of interest. In monophasic extraction, only one solvent is used, while for bipha-
sic extraction, a combination of polar and non-polar solvents are used to achieve a 
comprehensive metabolite coverage. Samples may be spiked with the known con-
centrations of standards to normalize for metabolite losses during extraction. Again, 
the standard spiked could be stable isotope-labeled (absolute standards) or pseudo 
standards that are primary or secondary metabolite not present in the experimental 
sample. For example, reserpine, curcumin (found exclusively in plants) could be 
spiked in serum/blood samples. Likewise, process control or negative control is 
vital to eliminate any contamination from leached pipette tips, centrifuge tubes or 
mass spec peak tubings, etc. Last but not least, sample homogenization should be 
considered; based on our information on the spatial localization of the metabolites, 
which suggests different regions of the tissue might have different concentrations or 
compositions of metabolites. The extracted metabolites should be aliquoted to pre-
vent any metabolite degradation due to freeze-thaw. 
(iii) Sample complexity could be reduced on-line or off-line. For on-line metabo-
lite separation, liquid/gas chromatography (LC/GC), capillary electrophoresis (CE), 
and ion-mobility spectrometry (IMS) (Fig. 5.3) are attached to the mass spectrometry. 

Fig. 5.2  Typical metabolomics workflow
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Fig. 5.3  (a) Chromatography, (b) capillary electrophoresis, (c) ion mobility spectrometry, (d) 
mass spectrometry, and nuclear magnetic resonance working principle

The most common off-line metabolite separation includes solid-phase extraction and 
LC-based fractionation based on the retention times. This step is essential in complex 
samples, where several masses co-elutes and make the data analysis challenging. 
(iv) Analytical instruments: are selected based on experimental needs. For exam-
ple, Gas-chromatography is employed to analyze the volatiles, or direct infusion 
mass spectrometry is used to analyze less complex metabolite extracts. GC uses gas 
(usually an inert gas or an unreactive gas) as a mobile phase and solid or liquid sta-
tionary phases. GC separation is highly robust as it separates metabolites based on 
vapourization temperatures. Thus, the technique is limited to the analysis (identifi-
cation and semi-quantification) of molecules that are vaporized below 350–400 °C 
without decomposing or reacting with the GC components. Primarily to lower the 
vapor pressure, the metabolites are derivatized. LC uses liquid (acid, base, or neutral 
solvents) as a mobile phase and solid stationary phase. LC separation is highly vari-
able and depends on the combination of mobile and solid phase, solvents, column 
properties like column material, length, diameter, pore size, temperature, etc. LC 
offers versatility and no or limited sample pre-processing requirement (Fig. 5.3a). 
CE separates ionized molecules in the liquid phase based on their electrophoretic 
mobility. The greater the electric field applied, the faster the mobility. Thus, the 
approach is inclusive for the analysis of ions (charged molecules) but not neutral 
species (Fig. 5.3b). IMS separates ionized molecules in the gas phase based on their 
mobility in a carrier buffer gas (Fig. 5.3c). Mass spectrometry (MS) measures the 
mass-to-charge ratio (m/z) of the ionized molecules. MS finds application in abso-
lute or relative quantification of the metabolites, identify unknown molecules based 
on molecular weight and fragmentation patterns, a structure prediction. MS com-
prises three major components: ionization source, a mass analyzer, and an ion 
detector. The ionization source converts molecules to gas-phase ions, which could 
be negatively or positively charged. Hard and soft ionizations could be employed. 
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Hard ionization like Electron Impact ionization (EI) causes extensive fragmentation 
of the ions (ambiguous identification of the molecule weight) and is incompatible 
with LC, hence a method of choice for GC-MS. While soft ionization like electro-
spray ionization (ESI), atmospheric pressure chemical ionization (APCI), and 
matrix-assisted laser desorption ionization (MALDI) has gained popularity and 
increased the MS applications in metabolomics analysis. A mass analyzer sorts and 
separates the ionized molecules according to mass-to-charge (m/z) ratios. 
Quadrupole (Q), Time-of-flight (TOF), Ion trap, Orbitrap, etc., are few examples are 
mass analyzers that are interchangeably used for metabolomics analysis based on 
the prerequisites for sensitivity, precision, accuracy, or resolution. A detector detects 
the sorted ions, and a mass spectrum/chromatogram is generated representing the 
m/z ratio against intensity/relative abundance (Fig.  5.3d). Each technique has 
advantages and limitations (Johnson and Gonzalez 2012). To reduce the complexity 
of the analysis, lower the sample volume and minimize analytical variation, several 
separation-free MS techniques like direct infusion-MS, MALDI-MS, mass spec-
trometry imaging (MSI), and direct analysis in real-time (DART)-MS are gaining 
popularity. Mass spectrometry imaging (MSI) has revolutionized MS-based metab-
olomics by providing spatial resolution. MSI is operated in two modes: imaging 
(Stoeckli et al. 2001) to correlate with histology and profiling to know the overall 
metabolites (Cornett et al. 2006). MSI technique is applied in broad areas of plant 
biology, including development, defense, and responses to abiotic and biotic stress, 
and the developing field of spatial-temporal metabolomics. Nuclear Magnetic 
Resonance (NMR) relies on detecting the electromagnetic signals generated due to 
the perturbation of the nuclei in a weak oscillating magnetic field (Fig. 5.3e). NMR 
finds application in quantifying the known compounds or identifies unknown com-
pounds based on the match against the spectral libraries, or infer the basic struc-
tures. Chromatography or reducing the metabolite complexity is essential to reduce 
the matrix effect, identify reteition time that adds third dimention to the MS data, 
and enhance the MS/MS data quality.
(v) Data analysis: the aim of the data analysis is to get rid of the aritifacts, contani-
mants and redundant peaks, identify/quantify biologically relevant peak and statisti-
cal and pathway analysis. Metabolomics data analyis could be performed using 
propriety tools like mass propessional profiler (MPP), compound discoverer, etc., or 
open source tools like mzMine or XCMS. Metabolomics data analysis pipeline is 
shown in Fig. 5.4.

5.3 � Food Metabolomics

‘Food metabolomics‘is the application of metabolomics in food systems, including 
processes from agriculture-to-human nutrition: (a) soil quality, (b) food resource, 
(c) food processing, and (d) human nutrition (Fig. 5.5).

Considering the constant change and evolution in the food supply and the ever-
increasing and continuous launch of new products and formulations into the market-
place, there is a need to keep track of the vital food metabolites. Moreover, raw 
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Fig. 5.4  Untargeted metabolomics data analysis workflow

Fig. 5.5  Applications of food metabolomics

agricultural products, their composition like nutritional value, assimilated environ-
mental contaminants, pesticides, etc., are also continually changing, leading 
researchers, nutritionists, and food policymakers to emphasize beyond single nutri-
ents to develop holistic nutrition plans foods, food groups, and dietary patterns. 
Also, there is a growing urge for transparent and easily accessible information about 
nutrients and other food components. Typical workflow and challenges encountered 
to perform food metabolomics experiments are shown in Fig. 5.6.

Several natural and non-natural food metabolomics annotated databases are 
made available in the public domain (Table 5.1). Briefly, food databases are in place 
to get the list of possible metabolites, chemical and biological properties, structures, 
spectral data, related metabolic pathways, and their presence or concentration in 
food products based on the query m/z or elemental formula. Recently USDA 
launched an integrated, research-focused data system, ‘FoodData Central,’ that pro-
vides expanded data on nutrients and other food components and links to sources of 
related agricultural, food, dietary supplement, and additional information (https://
fdc.nal.usda.gov/). The data in FoodData Central includes five data types, including 
Foundation Foods and Experimental Foods. In a similar effect, Dr. David Wishart 
Research Group at the University of Alberta annotated a comprehensive 28,000 
food metabolite ‘FooDB’ (http://www.foodb.ca/) that comprises food constituents 
flavor, color, taste, texture, and aroma. Various European research groups have also 
taken the initiative to develop databases with tailored phytochemical components of 
the food metabolome. One such example is Phenol Explorer, which comprises 500 
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Fig. 5.6  Food metabolomics workflow and challanges

dietary polyphenols and their known human metabolites in over 400 foods (Rothwell 
et al. 2012). A similar ongoing project is PhytoHUB that will contain a comprehen-
sive inventory of dietary phytochemicals and their human metabolites and struc-
tures either obtained from previous publications or predicted in silico (http://
phytohub.eu/).

5.3.1 � Soil Quality

Soil quality is one of the most critical factors determining plant health. The typical 
soil quality indicators are organic matter content, salinity, tilth, compaction, avail-
able nutrients, rooting depth, and microbial populations. Untargeted soil 
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Table 5.1  List of food metabolomics databases

# Food metabolomics database Information included
Public 
data

1 FoodData Central Foods, compounds Yes
2 FOODB Foods, compounds Yes
3 Exposome-Explorer Foods, compounds, 

diseases
Yes

4 FoodComEx Food compounds Yes
5 PhytoHub Food compounds Yes
6 Phenol-Explorer Polyphenol content in 

foods
7 Human Metabolome Database (HMDB) Small molecule 

metabolites
Yes

8 Chemical Entities of Biological Interest (ChEBI) Small molecule 
metabolites

Yes

9 Dictionary of Food Compounds Small molecule 
metabolites

No

10 KNApSAcK Core System Plant metabolites Yes
11 Dr. Duke’s Phytochemical and Ethnobotanical 

Databases
Plant metabolites Yes

metabolomics approaches are used to analyze extractable organic matter using 
LCMS (Swenson et al. 2015) and NMR (Johns et al. 2017) or discriminate the sup-
pressive and non-suppressive soils for disease resistance (Rochfort et al. 2015). Soil 
metabolomics is also employed to assess the microbial (Boiteau et al. 2019; Rai 
et al. 2020) and plant metabolites (Petriacq et al. 2017; van Dam and Bouwmeester 
2016) in soil.

Rai et al. has recently developed a high throughput method for the extraction and 
quantification of siderophores, highly specialized iron-chelating secondary metabo-
lite, in the soil (Rai et al. 2020). Siderophores have ecological significance and find 
application as a biomarker for soil quality, the remedy of polluted sites, and improv-
ing nutrient metal uptake by crops or other plants. The detection and quantification 
of soil metabolites are challenging due to the complexity of soil matrix and metabo-
lites’ structural diversity. The workflow has the potentials to identify the soil bio-
markers of plant health, as both plants and microbes secrete siderophores in response 
to iron limitation or cataloging soil-borne plant pathogens, a prerequisite for food 
security. On the other hand, identifying siderophores from beneficial rhizosphere 
bacteria can protect plants from pathogens and their virulence factors and keep them 
healthy. A yet another potential is discovering novel siderophores in the soil, which 
is obscure due to our inability to culture microbes in laboratory conditions. 
Microbes’ critical need to sequester essential iron provides an achilles heel for new 
antibiotic development by utilizing the siderophore-based molecular recognition 
covalently attached to antimicrobial peptides. The unique metabolites of the soil-
borne pathogens are used as biomarkers for plant diseases such as macrocarpa for 
Rhizoctonia solani-suppressive soil (Hayden et  al. 2019) or siderophore of 
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beneficial bacteria that promotes or inhibits Ralstonia solanacearum infections 
(Pollak and Cordero 2020). Metabolomics is also employed to investigate the 
impact of soil microbial population on the leaf metabolome and herbivore feeding 
behavior (Badri et al. 2013).

5.3.2 � Food Resources

Environmental factors such as geographical origins, application of chemicals (fertil-
izers, pesticides, industrial wastes), stress (abiotic and biotic), and genetic factors, 
including genetically modified (GM) crops in agriculture, significantly influence 
food resource production (Kim et al. 2016). Advancements in the analytical tools 
and ease to analyze a wide variety of plant samples ranging with varying culture 
conditions, geographic locations, growing seasons, exposure to stress, etc., could 
lead to the assessment of food resource quality changes due to environmental and 
genetic factors.

5.3.2.1 � Metabolomics to Screen Geographic Origin

Geographical origins of food resources affect the quality and the prices, and hence 
is becoming an important issue for consumers and producers due to increasing 
international trade. It is almost impossible to determine the geographical origins of 
food resources by their phenotypes. Metabolomics is thus employed as a tool to 
assess the legitimacy and source of specific food resources such as hazelnuts 
(Klockmann et al. 2017), tobacco (Zhao et al. 2015), coffee (Arana et al. 2015), 
green tea (Lee et  al. 2015), Spanish Extra Virgin Olive Oils (Gil-Solsona et  al. 
2016), grape (Teixeira et al. 2014), wine (Amargianitaki and Spyros 2017), milk 
and dairy products (Brescia 2005; Renou et al. 2004), honey (Zhou et al. 2018b), 
fish, and seafood (Cubero-Leon et al. 2014), beef (Man et al. 2021) since the metab-
olite profiles differ depending on their geographical origins. NMR fingerprinting is 
used to differentiate coffee beans based on country of origin (Arana et al. 2015). 
Zhao et al. correlated metabolite changes of carbon and nitrogen pools in tobacco 
plants from two different locations due to climatic factors such as rainfall and tem-
perature (Arana et al. 2015).

5.3.2.2 � Metabolomics for Organic Food Authentication

There is an increasing demand for organic products, and hence organic food items 
are expensive. The lack of reliable chemical markers to discriminate between 
organic and conventional products makes them an attractive target for fraudulent 
malpractices. Metabolomics could solve this problem by precisely detecting and 
quantifying the chemicals like pesticides or fertilizers in food products. The ability 
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of metabolomics to detect unknown targets is particularly beneficial to identify/
detect new adulterants. A non-targeted metabolomics approach identifies food 
markers that discriminate between organic and conventional tomato crops (Martínez 
Bueno et al. 2018). Also, the presence of pesticides is determined in the amphibian 
liver (Van Meter et al. 2018), urine samples of healthy individuals (Reisdorph et al. 
2020), and pregnant women (Sem et al. 2013). Growers sometimes apply growth 
promoter substances like testosterone, progesterone, auxin, and gibberellins beyond 
permissible limits to improve food resources quality and production yield. 
Metabolomics has recently been introduced as a new tool to detect illegal and exces-
sive uses of growth promoters (Rodriguez-Celma et al. 2011; Šimura et al. 2018; 
Stephany 2010).

Organic agricultural systems rely on non-conventional soil fertilization tech-
niques like the application of organic manures, biological pest controls, and multi-
annual crop rotation, including legumes and other green manure crops. In contrast, 
chemical plant protection products, including pesticides, are applied to protect 
plants in conventional agriculture. Organic production systems increase the suscep-
tibility of the plants to pathogens, hence resulting in the accumulation of inducible 
protective secondary metabolites such as phenolics; chlorogenic acid (Malik et al. 
2009; Novotná et al. 2012; Young et al. 2005), and flavonoids (Mitchell et al. 2007). 
Metabolomics studies distinguish conventionally and organically grown produces 
(Martínez Bueno et al. 2018; Novotná et al. 2012; Vallverdu-Queralt et al. 2011). 
Factors such as plant response, rhizosphere microbiome are accountable (Bradi 
et al. 2013).

5.3.2.3 � Metabolomics to Screen Genetically Modified (GM) Crops

Genetically modified (GM) food crops are resistant to diseases, pests, and unfa-
vorable environmental conditions, produce high-quality foods with less effort and 
lower costs; however, GM food resources continue to be a controversial issue due 
to their safety and relation to human health and the environment (Simo et al. 2014). 
Organization for Economic Co-operation and Development (OECD), comprising 
37 member countries, is established to globally deal with GM food resources safety 
issues (Kearns et al. 2021). OECD and European Food Safety Authority (EFSA) 
has developed guidance and regulations for GM crops to evaluate their safety and 
nutritional value (Bedair and Glenn 2020). Metabolomics provides comprehensive 
information about GM food composition compared to their corresponding non-GM 
counterparts (Simo et al. 2014). Metabolomics is effectively employed to assess the 
safety of widely consumed GM maize by comparing plasma metabolome and fecal 
microbiota in GM maize and non-GM near-isogenic maize-fed rats (Mesnage et al. 
2019). Metabolomics is also employed to evaluate and assess GM food resources 
such as soybean (Garcia-Villalba et al. 2008; Inaba et al. 2007), rice (Jiao et al. 
2010; Zhou et  al. 2009), maize (Frank et  al. 2012; Piccioni et  al. 2009), wheat 
(Baker et  al. 2006), tomato (Kusano et  al. 2011b; Noteborn et  al. 2000), potato 
(Catchpole et al. 2005), poplar (Srivastava et al. 2013), carrot (Cubero-Leon et al. 
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2018), and barley (Kogel et al. 2010). A recent study of GM rice with Cr1C gene 
transformation showed no significant difference in metabolic profile than the par-
ent line (Chang et al. 2021). Another study reported differential metabolite profiles 
between wild-type and cryIAc and sck genes; for improving insect resistance in 
GM rice (Zhou et  al. 2009). Targeted quantitative metabolomics could provide 
additional information for safety and nutritional assessment for GM crops with 
traits known to modify metabolic pathways. Integrating metabolomics with other 
omics data provides more comprehensive knowledge about risk assessment of GM 
crops (Kok et al. 2019). Metabolomics application for the safety assessment of GM 
crops, which is ever-growing and introduced to the global market, provides rele-
vant information regarding the associated metabolite alteration. The challenges 
faced in such metabolomics applications include chemical complexity, identifica-
tion of unknown metabolites, matrix effect as each plant is different, and dynamic 
concentration range. One key hurdle in using data from omics studies with GM 
crops, including metabolomics, is the difficulty to assess whether there is any 
impact on safety in the observed differences amongst the 1000s of signals charac-
terized by the untargeted profiling method(s) (Bedair and Glenn 2020). Application 
of metabolomics to screen GM crops is infancy, and to get a comprehensive under-
standing of the detected metabolite changes in a biological context, big-data gener-
ated needs to be analyzed together with other ‘omics’ data such as proteomics and 
transcriptomics as proposed by the new Foodomics strategy (Ibanez et al. 2012). 
The development of advanced tools and databases is essential for metabolomics 
studies.

5.3.2.4 � Metabolomics to Elucidate Environmental Stress Feedback 
in Food Resources

Environmental stress (biotic/abiotic) is a major limiting factor of agriculture pro-
duction, affecting both yields and nutritional content. The early detection of stress 
symptoms could help reduce loss. Plant metabolomics has emerged as the most 
promising tool to decipher the metabolic changes caused by (a) climatic and sea-
sonal variations, (b) biotic factors including pathogens and beneficial/symbiotic 
associations (Alseekh and Fernie 2018) for high-quality food resource production 
since the last decade.

Abiotic stress is responsible for global crop yield reduction ranging from 50% 
to 70% (Boyer 1982). Climate change and population growth have worsened the 
situation (Raza et al. 2019). Understanding plants’ responses to such stressors to 
determine methods for improving crops quantitatively and qualitatively is inevita-
ble. Abiotic stress in plants leads to the synthesis of phytohormones to impart stress 
resistance (Han et al. 2012; Rai et al. 2016); the oxidative stress disturbs the stoma-
tal conductance and activates several signaling mechanisms and the dysregulated 
gene expression profiles (Rai et al. 2016). In particular, all essential plants’ mecha-
nisms from germination to maturity are severely affected by abiotic stresses. The 
major abiotic plant health stressors include drought, salinity, temperature extremes, 
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waterlogging, heavy metal, and chilling. Metabolomics has been applied for prob-
ing unique metabolites that regulate the abiotic stress tolerance mechanism in crops 
with two prime objectives: (i) identification of biomarkers for abiotic stress and (ii) 
investigate metabolic variations under abiotic stresses to detect different metabo-
lites that permit restoration of plant homeostasis and normalize metabolic modifica-
tions (Arbona et  al. 2013). Water deficit (drought) caused by global climate 
changes seriously endangers plant survival and crop productivity (Lesk et al. 2016). 
Metabolic profiling of drought-stressed wheat (Michaletti et  al. 2018), barley 
(Chmielewska et al. 2016), rice (Lawas et al. 2019), and soybean (Das et al. 2017) 
are carried out to elucidate vital metabolites/biomarkers for drought tolerance. Soil 
Salinity is rapidly increasing, and about 20% of irrigated land is salt-affected. 
Salinity stress causes >20% losses in crop plants (Food and Agriculture Organization 
2015). The GC-MS-based metabolic profiling of two salt-sensitive (Sujala and 
MTU 7029) and tolerant varieties (Bhutnath, and Nonabokra) of indica rice showed 
accumulation of two signaling molecules, serotonin, and gentisic acid, which may 
serve as a biomarker to produced salt-tolerant rice varieties (Gupta and De 2017). 
Metabolomics is employed to study metabolic remodeling due to salinity stress in 
several other crop plants like tomato (Rouphael et al. 2018), millet (Pan et al. 2020), 
strawberry (Antunes et al. 2019). Temperature stress, including heat (Abdelrahman 
et al. 2020; Escandon et al. 2018; Raza 2020) or cold (Furtauer et al. 2019; Xu et al. 
2020), disturbs the homeostasis and physiological mechanisms. Metabolomics 
analysis of temperature-stressed wheat (Qi et  al. 2017; Thomason et  al. 2018), 
tomato (Almeida et al. 2020; Paupiere et al. 2017; Zhang et al. 2019), and maize 
(Obata et al. 2015; Sun et al. 2016; Urrutia et al. 2021) are studied to identify the 
effect of temperature stress. Heavy metal stress has become a significant concern 
on various terrestrial ecosystems due to extensive industrialization (Guerrero et al. 
2019; Shahid et al. 2015). Suboptimal concentrations of trace metals such as Zn, 
Cu, Mo, Mn, Co, Ni, As, Pb, Cd, Hg, Cr, and Al reduce crop metabolism, growth, 
and productivity (Tiwari and Lata 2018). Metabolomics analysis of high Zn and Cu 
treated beans (Jahangir et  al. 2008), Zn-deficient tea plants (Zhang et  al. 2017), 
heavy metal stressed (Cu, Fe, and Mn) Brassica rapa (Jahangir et  al. 2008), 
Cr-toxicated sunflower (Gonzalez Ibarra et al. 2017) and Fe-toxicated rice (Turhadi 
et  al. 2019) are performed. A better understanding of the nutrient-limitation, 
including macro- and micro-nutrients, would enhance the food/fodder nutritional 
contents. Metabolic changes due to macro-nutrient: nitrogen (Kusano et al. 2011a; 
Rai et al. 2017), phosphorus (Jones et al. 2018; Vance et al. 2003), and potassium 
(Zeng et al. 2018), deficiency has been studied in plants/microalgae using HPLC 
and enzymatic activities (Scheible et al. 2004; Tschoep et al. 2009), FT-ICR-MS 
(Hirai et  al. 2004), LC-MS (Peng et  al. 2008), GC-MS (Heyneke et  al. 2017; 
Urbanczyk-Wochniak and Fernie 2005), CE-MS (Takahara et al. 2010; Takahashi 
et al. 2009), 1H-NMR (Broyart et al. 2010).

Plant-microbe (pathogenic/beneficial) interactions (Biotic factors) trigger a 
plethora of primary and secondary metabolites changes, which could be easily 
detected by metabolomics (Allwood et al. 2008; Castro-Moretti et al. 2020). A wide 
range of phytopathogens, including fungi, bacteria, viruses, viroids, mollicutes, 

5  Metabolomics of Food Systems



254

parasitic higher plants, and protozoa, are known to cause plant disease. Metabolomics 
is an emerging tool to study plant-pathogen interactions (Castro-Moretti et  al. 
2020). An integrated metabolo-proteomic approach showed induced phenolic acid 
and phenylpropanoids in Fusarium graminearum infected wheat (Gunnaiah et al. 
2012). NMR analysis indicated an increased accumulation of disease-resistant bio-
markers (Sarrocco et al. 2016). Metabolomic analysis of the susceptible and resis-
tant wheat cultivars infected with the fungal pathogen Zymoseptoria tritici showed 
that immune and defense-related metabolites in resistant and susceptible wheat cul-
tivars using FT-ICR-MS (Seybold et  al. 2020). Likewise, the metabolomics 
responses in wheat against viral infection; wheat streak mosaic virus (Farahbakhsh 
et al. 2019), rice against fungal infection; Rhizoctonia solani (Suharti et al. 2016), 
Magnaporthe grisea (Jones et al. 2010), insect attack; gall midge (Agarrwal et al. 
2014), bacterial infection; Xanthomonas oryzae pv. oryzae (Sana et al. 2010), maize 
against fungal infection; Fusarium graminearum (Zhou et al. 2018a), southern corn 
leaf blight (Vasmatkar et al. 2019), and insect attack; Ostrinia furnacalis (Guo et al. 
2019) are studied. Adverse environmental conditions, including temperature, soil 
fertility, light, water deficit, give an edge to the pathogens and increase disease 
severity. However, we have very little knowledge about these tripartite interactions, 
suggesting future investigations towards understanding the multi-dimensional 
nature of plant-pathogen interactions in changing climate conditions (Velásquez 
et al. 2018). Weeds are yet another problem that impacts crop productivity at mul-
tiple levels, such as competing for nutrients, reducing crop yields and nutritional 
content, interfering with harvest efficiency, and recurrence. Metabolomics analysis 
of the canola plant extracts detected allelopathic metabolites (3,5,6,7,8-pentahydroxy 
flavones, p-hydroxybenzoic acid, and sinapyl alcohol) that inhibit the rye root and 
shoot development (Asaduzzaman et al. 2015). Similarly, weed-suppressing metab-
olites in wheat and legume are investigated (Latif et al. 2019).

5.3.2.5 � Metabolomics in Livestock Research

Traditional livestock analysis, such as feed consumption, is time-consuming, expen-
sive, and requires specific equipment (Karisa et al. 2014). Reproductive trait mea-
surements need animals to reach the maturity stage, while carcass trait evaluation 
requires animal slaughter which otherwise could have been used for breeding. 
Metabolomics has emerged as an efficient, cost-effective, non-invasive way to 
detect animal traits for livestock research and industry. Livestock metabolomics is 
instrumental in animal breeding farm trials for efficient and quicker quantitative 
phenotyping (Karisa et al. 2014; te Pas et al. 2017) and is primarily applied for bio-
marker identification for weight gain, milk quality (D’Auria et  al. 2013), health 
(LeBlanc et al. 2005), fertility (Chapinal et al. 2012), etc. The metabolomic signa-
tures associated with feed efficiency in beef cattle (Novais et al. 2019), dairy cow 
(Saleem et al. 2012) is studied. Also, metabolomics is employed to analyze antimi-
crobial resistance in livestock pathogens like E. coli (Campos and Zampieri 2019; 
Lin et  al. 2019). Livestock metabolomics experimental design should take diet, 
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diurnal variations, sex, and sampling time into consideration to reduce variability. 
Shortage of data resources makes data interpretation a challenge in livestock metab-
olomics Goldansaz et  al. created a livestock metabolome database of more than 
1000 metabolites detected in livestock metabolomic studies on cattle, sheep, goats, 
horses, and pigs (Goldansaz et al. 2017). Bovine Metabolome Database is a recent 
collection of more than 50,000 metabolites focusing on animal health which 
describes a healthy range of metabolites in bovine biofluids and tissues (Foroutan 
et al. 2020).

5.3.3 � Food Processing

Our modern lifestyle and the ever-growing global population have caused increased 
food processing industry demands. Food processing can be defined as the physical 
and/or chemical manipulation of raw food to enhance nutritional and sensory qual-
ity and sustainability. Some of the food processes where metabolomics is applied 
include cheese (Afshari et al. 2020), tomato purees (Capanoglu et al. 2008), tinned 
vegetables, biscuits (Diez-Simon et  al. 2019), alcoholic beverages (Álvarez-
Fernández et al. 2015; Ichikawa et al. 2019), yogurt (Settachaimongkon et al. 2015) 
and milk (Rocchetti et al. 2020). Metabolomics finds its role in the food processing 
industry ranging from food preparation, packaging, and storage. For instance, food 
preparation processes like pasteurization, fermentation, etc., could affect the food’s 
nutritional and sensory quality either beneficially (improved digestibility, nutrients 
bioavailability, foodborne pathogens/toxins inactivation) or detrimentally (vitamins 
and nutrient loss, toxic compounds formation, conferring adverse effects on flavor, 
aroma, texture or color), monitored by metabolomics. Another exciting application 
of metabolomics is identifying the chemical species that contribute to flavor, tex-
ture, taste, and color quality, which could be used to develop meat using plants, 
considering the growing demand for plant-based foods (https://www.impossible-
foods.com/food). Metabolomics is applied in food safety for rapid and reliable 
monitoring of food contaminants (i) pesticides and other chemical residues like 
furans, dioxins, dioxin-like polychlorinated biphenyls (PCBs), non-dioxin-like 
PCBs (Tengstrand et al. 2012; Zainudin et al. 2015), (ii) foodborne pathogens like 
Salmonella sp., E. coli (Cevallos-Cevallos et al. 2011) and Listeria sp. (Jadhav et al. 
2015), with short-term and long-term health risks (Pinu 2016). Predicting the end of 
shelf life before apparent spoilage (expiry date or best before) and determining 
effects of food processing on the shelf life is another application of metabolomics. 
For instance, metabolic profiling showed a correlation between diphenylamine oxi-
dation treatment and extended shelf-life during storage in apples (Leisso et  al. 
2013). Likewise, the shelf life of meat at various storage temperatures was studied 
(Argyri et al. 2015). A comprehensive understanding of food metabolite composi-
tion during processing and storage will improve preservation methods. Metabolomic 
assessment of food packaging types is performed to detect contaminants and spoil-
age in packaging materials (Makkliang et  al. 2015). Also, metabolomics could 
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expand our understanding of the biodegradable materials used for packaging 
(Kleeberg et al. 1998) and microbial and plant strain improvement for efficient pro-
duction of eco-friendly packaging materials.

5.3.4 � Human Nutrition

Diet/nutrition is linked to metabolic disorders, including obesity, diabetes, cardio-
vascular disease, and aging (Shlisky et al. 2017). The traditional way to evaluate 
beneficial or detrimental effects of foods based on volunteers filling the question-
naires has several limitations: misreporting, bias and measurement error, high cost 
and time consumption, and unreliability for populations with cognitive impairment 
(Fallaize et al. 2014). Metabolomics is a powerful tool to overcome such limita-
tions, and hence dietary biomarkers are emerging as an objective and accurate mea-
sure of dietary intake and nutrient status (O’Gorman et al. 2013). Novel metabolic 
signatures are associated with juice and fruits (Liu et al. 2015), grain, fish (Hanhineva 
et al. 2015), wine (Urpi-Sarda et al. 2015), and diet patterns (western vs. prudent) 
(Bouchard-Mercier et al. 2013). Also, metabolomics is used to monitor diet-related 
metabolic diseases (Sebedio 2017). LC/MS-based metabolic profiling suggested 
green tea mediated stimulation of hepatic lipid metabolism associated with obesity 
prevention (Lee et al. 2015). Likewise, the anti-hyperlipidemia effect of curcumin 
was demonstrated using NMR and MS-based metabolomics (Li et al. 2015). A yet 
another hot area of metabolomics research is the human gut-microbiota study. 
Recent studies have suggested that the gut microbiome secretes metabolites that 
impact human health (Dore and Blottiere 2015). Moreover, the gut microbiome var-
ies between individuals and is greatly affected by diet. Interestingly, diet changes 
can manipulate the gut microbiome, currently being studied for use as a potential 
therapy (Shoaie et  al. 2015). Selected food metabolomics studies are listed in 
Table 5.2.

5.4 � Challenges in Food Metabolomics

Despite its enormous potential, there are several dark areas of food metabolomics: 
(i) lack of optimized workflow for sample processing, normalization, and data anal-
ysis, (ii) run-to-run variability, (iii) substantial matrix effects, (iv) limited spectral 
library coverage, (iv) availability of open-source data analysis tools and databases, 
and (v) lack of comprehensive guidelines for biomarker prediction and validation 
for food resources. To overcome the challenges of experimental design, power cal-
culation should be performed to determine the sample size required for statistically 
significant results and reduce variability, particularly for field samples. Cultivated 
varieties, geographical location, and fertilization schemes should be taken into con-
sideration. Quality control samples should be included to determine run-to-run 
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variability; any data showing coefficient of variance higher than 20% should be 
discarded. The lack of external validation sets using samples, which are not part of 
the statistical models built for prediction, is a significant limitation in most studies 
published (Cubero-Leon et al. 2018). Matrix effects could to either eliminated by 
reducing the sample complexity or spiking the standards in the matrix. Absolute 
metabolite quantification workflows should be improved using a combination of 
different analytical tools. So far, targeted approaches are used for metabolite quan-
tification, efforts for developing untargeted quantitative metabolomics methods are 
needed for efficient biomarker discovery. Further regulatory guidelines for bio-
marker discovery should be put in place for robust experimental design, data acqui-
sition, validation, and translation. Extensive research is required for the instrument 
miniaturization, cost-effectiveness, accessibility, and ease-of-handing for the field-
able application of metabolomics in agriculture farms. This could be achieved by 
corroboration between farm workers, researchers, and engineers. Automated, user-
friendly, and open-source metabolomics data analysis platforms should be devel-
oped for robust data interpretation.

5.5 � Conclusion

With ever-increasing food demand, climate change, and the advent of food metabo-
lomics in the past decade, the horizon of metabolomics application has increased 
from food resource production to food processing and human nutrition. Because of 
increased efficiency, cost-effectiveness, and accuracy, applications of food metabo-
lomics are rapidly expanding, as discussed extensively in this chapter. Untargeted 
metabolomics is especially useful in detecting unknown adulterants or advancing 
food metabolomics research (Cubero-Leon et al. 2014). Food databases are handy 
in elucidating the unknown/novel metabolites (Table 5.1). Plant metabolite reper-
toire has a wide dynamic range and diverse chemical composition. With the current 
set-up, only ~10% of the metabolite are identified; hence there is enormous scope to 
explore the unknowns. Integrating the metabolomics information with other-omics 
(genomics, transcriptomics, and proteomics) and non-omics studies (physiological 
data), combined with reliable and broad-spectrum food metabolome databases and 
artificial intelligence technologies, could help identify and elucidate many 
‘unknowns’ and monitor in real-time to predict dynamics and quality control for 
accelerating, automating and progressing production processing.

5.6 � Perspective

Apart from the applications of food metabolomics discussed in this chapter, metab-
olomics could be employed in personalized nutrition, crop improvement, metabolic 
fingerprinting in livestock and plants. Metabolomics investigations have generated 
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a plethora of information that will allow food manufacturers to develop nutritional 
and sensorial rich food. Metabolomics-assisted crop improvement could lead to 
high-yielding, stress-tolerant germplasm and create climate-smart crop varieties. 
However, deciphering a specific metabolite’s function (metabolite-phenotype) and 
decoding the structure of metabolic networks remains a major hurdle in the third 
decade of plant metabolomics. Identifying biomarkers related to plant biotic/abiotic 
stress, genetically modified organisms (GMOs), organic vs. conventional produce, 
and human nutrition using metabolomics and its translation in the agricultural fields, 
food industry, and clinics could be a future application. Also, metabolomics allows 
the determination of nutrient enhancement or reduction due to food processing via 
detection chemical alteration, which could significantly alter human health. 
Fingerprinting metabolic phenotypes of livestock and plants in response to defined 
feeding/fertilizing patterns and compositions is another emerging application. 
Finally, the food waste generated as a by-product of agriculture, the food processing 
industry, or household could be used to extract high-value bioactive compounds and 
nutraceuticals. In the years to come, an innovative sequential approach could simul-
taneously use food resources for food processing and simultaneously extract spe-
cific bioactive compounds and nutraceuticals to be used as functional foods.
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