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Preface

Discover, Discuss, Develop—
Crossing Established Boundaries

Introduction

The variety, quantity and distribution of life on Earth, its biodiversity, are the basis
of our existence. For many centuries, researchers have been attempting to capture
the world’s biodiversity and most of this research has initially been based on large-
sized, conspicuous organisms. However, the famous dictum by Linnaeus (1739)
“No wonders are greater than the smallest ones” 1 is still valid today. Over 90% of
animal life onEarth is smaller thanyourfingernail (Naskrecki 2005)!This remarkably
underlines the necessity of integrating in our studies organisms of all sizes, including
those that are invisible to the naked human eye. This ‘small life’ is mostly aquatic and
mainly marine: here, bottom-living invertebrates, the meiobenthos, represent diverse
assemblages of minute animals that emerge as an increasingly relevant link between
the microbial and the macroscopic world.

The great mentors of meiobenthology, Remane (1933) and Mare (1942), saw
‘interstitial fauna’ and ‘meiobenthos’, respectively, as rather exotic and somewhat
isolated groups occurring in specific habitats. However, subsequent research in
diverse biotopes revealed the numerous and complex interactions of meiobenthos
with other organisms, and with the physical and chemical environment: meiobenthos
plays a critical role in the benthoswithmany links to themicro- andmacro-world, and
often with a pioneering role, especially when environments change. Thus, the posi-
tion of meiofauna in benthic systems reflects the classical perception of Alexander
von Humboldt (1803; English version 1811) who, on his numerous travels, realised
that in the entire scenery of nature “everything is interrelatedness” 2. Up to now, the

1 “Inga underwärk äro större än de minste”.
2 “Alles ist Wechselwirkung”.
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complex interactions of meiofauna with all other benthic organisms, this ‘theorem
of interconnection’, have often been disregarded or underestimated.

Meiobenthology has developed into a wide field, with more and more researchers
studying cross-disciplinary aspects. This shift in perspectives motivated this book:
a multifaceted compilation of contemporary meiobenthology. The aim is to give
an integral view of this fascinating biological discipline, with emphasis on rapidly
developing topics and techniques of future relevance.

Knowledge of meiofauna has expanded to such a degree that developing the
expertise necessary to conduct meiobenthos research at the cutting edge of the
entire discipline is virtually impossible. This, in combination with the increasing
complexity of the questions addressed, means that on a collective level, meiobenthos
research is becoming more cross-disciplinary and collaborative. On an individual
level, researchers are required to consider the bigger picture, much of which lies
well outside their specific area of expertise. The value of bringing together multiple
disciplines, and of working at the intersections of disciplines, is that each brings to
the table a unique and distinct set of tools and approaches.

Since the last compilation (Giere 2009), meiobenthology has advanced rapidly
with the development of newmethods and amazingprogress in digitisation.Newhori-
zons for impactful research are emerging, as evident in the progress of freshwater
meiobenthology (Majdi et al. 2020), and in the growing understanding of physio-
logical and ecological processes affecting meiobenthos and their roles in aquatic
ecosystems (Schratzberger and Ingels 2018). Accelerating environmental threats
force us to adopt a wider cross-disciplinary perspective to gain a more comprehen-
sive and integral understanding of ecosystems, usingmodern, sophisticatedmethods.
These include computer-supported mathematics and models that can simulate the
processes underlying nature’s responses to environmental dynamics and human-
caused change, and require innovative experimental approaches to identify the factors
affecting such responses.

This book does not aim to represent another textbook or a review covering all
aspects of meiobenthology. Rather, it attempts to address and summarise recent
progress in various fields of forthcoming importance, thus emphasising the role of
meiofauna in the world of benthos. Scientifically rigorous, this compilation seeks, on
the basis of well-founded knowledge, to outline new horizons for future meioben-
thology. A selection of seminal chapters seeks to encourage future studies in this
fascinating field. The initial chapters discuss general topics that frame the presence
of meiofauna. These include evolutionary processes determining the diversification
of meiobenthos, biochemical pathways underlying and driving meiobenthic life,
the biofilms and their prokaryotic world forming the basis of all meiobenthic life,
as well as molecular-biological processes determining bacteria-symbiotic interac-
tions with meiofauna. The following chapter identifies the factors driving patterns of
meiofauna diversity and distribution, and addresses the causes and consequences of
shifts in those patterns. Demonstrating the numerous parallels in marine and limnetic
meiobenthology, the ecological relevance of freshwater meiofauna is underlined
within the complex network of organisms in different limnetic systems (streams,
rivers, lakes). In a rapidly changing world, multifaceted ecological effects play a
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central role. Hence, the effects of the most widespread and persistent anthropogenic
disturbances on meiobenthic species, populations and communities in the ocean are
considered in a conceptually comprehensive central chapter. Corresponding to the
introductory chapter, where the origins of meiofauna are reflected, the circle of chap-
ters closes by emphasising the often extreme conditions underwhich these amazingly
differentiated microscopic organisms exist, with the focus on adaptations of meio-
fauna in difficult to access or ‘exotic’ biotopes of high general relevance such as the
deep sea, the polar regions and the often disregarded subterranean world.

The rapidly increasing knowledge of meiobenthos, both theoretical and applied,
renders an attempt to cover these broad topics by a single-author bookhardly possible.
Therefore, in order to meet the ambitious goal of compiling a treatise that reflects
the wide scope of contemporary meiobenthology, leading specialists in the various
disciplines of meiobenthic research have come together to present the current state
of knowledge, and outline directions for further research. The different background,
perspectives and experiences of over thirty participating authors are reflected by
the varying structure and style of the chapters. Despite, or maybe because of, this
diversity, the chapters emphasise the shared curiosity, commitment and imagination
of those who wrote them: curiosity to ask the scientific questions, commitment to
interact with others to address those scientific questions in all their complexity and to
offer answers, and imagination tomove from listing data to generating understanding.
We hope that the chapters, individually and collectively, inspire the next generation
ofmeiobenthologists to pursue alternative lines of evidence, offer new interpretations
of existing data, ask new questions, and find alternate explanations, all of which will
help meiobenthos research to move forward towards new horizons.

Trying to create rather self-contained chapters, a certain overlap is not only
unavoidable, but is welcomed to attain independent topical units. Succinct text
sections are often supported by illustrations and compilations: figures, tables,
flowcharts and graphs. This way, we hope to keep complex information manage-
able and, importantly, intellectually attractive. For ease of use, each chapter has its
own, separate reference list. We are confident that the authors of this book, well
known in their numerous often diverging research fields, achieve our common goal:
stimulating and directing innovative and relevant future research and highlighting
how and where meiobenthology can become integral to general benthology.

Conceptually, this book was conceived at the 17th International Meiofauna
Conference in July 2019 in Évora (Portugal), where, during a memorable lunch
break in the ‘refectory’ of a historic monastery, the first plans and suggestions found
a markedly positive echo. Therefore, it is our pleasure to dedicate this work to
Professora Helena Adão, the lead organiser of this inspiring conference.

Hamburg, Germany
Lowestoft, UK
March 2023

Olav Giere
Michaela Schratzberger



x Preface

References

Giere O (2009) Meiobenthology. The microscopic motile fauna of aquatic sediments, 2nd
ed.Springer, Berlin, Heidelberg, p 527. https://doi.org/10.1007/978-3-540-68661-3

Humboldt von A (1803) American Travel Journal. In: Black, J (ed) English edn, vol IX, Part 3.
1811, Longman’s Publ Group

Linnaeus C (1739) Om märkwärdigheter uti insecterne. Tal 3. Oktober, Kungl. Sv. Vetensk.-Acad.,
Stockholm

Mare MF (1942) A study of a marine benthic community with special reference to the micro-
organisms. J Mar Biol Ass UK 25:517–554

Majdi N, Schmid-Araya JM, Traunspurger W (2020) Patterns and processes of meiofauna in
freshwater ecosystems. Hydrobiologia 847(12):2587–2799

Naskrecki P (2005) The smaller majority: the hidden world of the animals that dominate the tropics.
Cambridge, Massachusetts, USA, Belknap Press of Harvard University Press, ISBN 0-674-
01915-6

Remane A (1933) Verteilung und Organisation der benthonischen Mikrofauna der Kieler Bucht.
Wiss Meeresunters, Abt Kiel, NF 21:161–221

Schratzberger M, Ingels J (2018) Meiofauna matters: the roles of meiofauna in benthic ecosystems.
J Exp Mar Biol Ecol 502:12–25

https://doi.org/10.1007/978-3-540-68661-3


Contents

1 Evolution of Bilateria from a Meiofauna
Perspective—Miniaturization in the Focus . . . . . . . . . . . . . . . . . . . . . . . 1
Katrine Worsaae, Jakob Vinther, and Martin Vinther Sørensen

2 Meiofauna Shaping Biogeochemical Processes . . . . . . . . . . . . . . . . . . . 33
Stefano Bonaglia and Francisco J. A. Nascimento

3 Meiofauna and Biofilms—The Slimy Universe . . . . . . . . . . . . . . . . . . . 55
Nabil Majdi, Cédric Hubas, Tom Moens, and Daniela Zeppilli

4 Meiofauna Meets Microbes—Chemosynthetic Symbioses . . . . . . . . . 79
Jörg Ott, Silvia Bulgheresi, Harald Gruber-Vodicka,
Alexander Gruhl, Lena König, and Nikolaus Leisch

5 Marine Meiofauna Diversity and Biogeography—Paradigms
and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Ann Vanreusel, Pedro Martínez Arbizu, and Moriaki Yasuhara

6 Freshwater Meiofauna—A Biota with Different Rules? . . . . . . . . . . . 153
Ignacio Peralta-Maraver, Walter Traunspurger,
Anne L. Robertson, Olav Giere, and Nabil Majdi

7 Hidden Players—Meiofauna Mediate Ecosystem Effects
of Anthropogenic Disturbances in the Ocean . . . . . . . . . . . . . . . . . . . . . 175
Michaela Schratzberger, Roberto Danovaro, Jeroen Ingels,
Paul A. Montagna, Melissa Rohal Lupher, Federica Semprucci,
and Paul J. Somerfield

8 Deep-Sea Meiofauna—A World on Its Own or Deeply
Connected? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Jeroen Ingels, Daniel Leduc, Daniela Zeppilli, and Ann Vanreusel

9 Polar Meiofauna—Antipoles or Parallels? . . . . . . . . . . . . . . . . . . . . . . . 285
Jeroen Ingels, Christiane Hasemann, Thomas Soltwedel,
and Ann Vanreusel

xi



xii Contents

10 Cave Meiofauna—Models for Ecology and Evolution . . . . . . . . . . . . . 329
Alejandro Martínez

11 Meiofauna—Adapted to Life at the Limits . . . . . . . . . . . . . . . . . . . . . . . 363
Jeroen Ingels, Daniela Zeppilli, and Olav Giere

Correction to: Meiofauna—Adapted to Life at the Limits . . . . . . . . . . . . . C1
Jeroen Ingels, Daniela Zeppilli, and Olav Giere

Correction to: Marine Meiofauna Diversity
and Biogeography—Paradigms and Challenges . . . . . . . . . . . . . . . . . . . . . . C3
Ann Vanreusel, Pedro Martínez Arbizu, and Moriaki Yasuhara

Concluding Remarks: New Horizons in Meiobenthos
Research—Profiles, Patterns, and Potentials . . . . . . . . . . . . . . . . . . . . . . . . . 401

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403



Chapter 1
Evolution of Bilateria from a Meiofauna
Perspective—Miniaturization
in the Focus

Katrine Worsaae, Jakob Vinther, and Martin Vinther Sørensen

Abstract Meiofaunal life forms are found all over the animal tree of life, and minia-
turization seems to have occurred within otherwise macrofaunal clades multiple
times. While sponges, comb jellies and cnidarians suggest a macroscopic ancestry
for Metazoa, several phyla are exclusively meiofaunal, however, and may evidence
a wider microscopic ancestry of some major groups, such as Ecdysozoa and
Spiralia/Lophotrochozoa. This is an unsolved debate, which should be tackled
from a synthesis of zoomorphological, palaeontological, molecular and phyloge-
netic approaches to test alternative scenarios. Advances in microscopic techniques
have led to a renaissance in anatomical studies that allows for new and detailed
examination of both extant and extinct meiofauna, revealing an unseen wealth of
information. Likewise, the rapid development in genomic sequencing and analytical
tools makes detailed reconstructions of meiofauna genomes feasible. The anticipated
flood of new morphological and molecular data on meiofauna will broaden integra-
tive and comparative studies and hopefully allow scientists of this generation to
answer the long-debated questions of how the animal kingdom evolved and ramified
into today’s amazing diversity of life. In this enormously complex tree of life, what
is the significance of minute creatures represented by meiofauna?

1.1 Introduction

Animals are the most diverse and disparate kingdom of multicellular organisms,
thanks to their heterotrophic lifestyle, diverse feeding strategies and modes of

K. Worsaae (B)
Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen,
Denmark
e-mail: kworsaae@bio.ku.dk

J. Vinther
Schools of Biological Sciences and Earth Sciences, Bristol University, Life Sciences Building,
Bristol, UK

M. V. Sørensen
Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Giere and M. Schratzberger (eds.), New Horizons in Meiobenthos Research,
https://doi.org/10.1007/978-3-031-21622-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21622-0_1&domain=pdf
mailto:kworsaae@bio.ku.dk
https://doi.org/10.1007/978-3-031-21622-0_1


2 K. Worsaae et al.

motility. Animals, macroscopic or microscopic, have shaped in their evolutionary
process the biosphere by developing complex ecosystems and habitats. This includes
sediments, the seafloor and water column and even land and air. Meiofaunal animals
contribute to ecosystems as primary consumers and recycle organic detritus in terres-
trial soils and aquatic sediments. Microscopic animals capable of passing a 0.5 mm
mesh and being retained on a 44 µm-mesh are categorized as meiofauna (Giere
2009; but see Ptatscheck et al. 2020). While juvenile macrofauna may belong to this
category temporarily, a diversity of animal species and groups lives their entire life
cycle as part of the “permanent” meiofauna. With several phyla being exclusively
meiofaunal across the tree of life, meiofauna has been speculated to represent an
archaic community from which bilaterian evolution started. If true, it would have
ramifications for palaeobiological scenarios and body plan evolution (Vinther 2015).
For example, the fossil record may not reveal the true origins of the earliest incep-
tions of metazoan life if too small to be preserved. Understanding the evolutionary
drivers of animal diversity and disparity requires understanding the size and shared
anatomy of ancestors.

Almost all major lineages in the tree of life contain meiofaunal representatives
(Fig. 1.1), which attests to a clear adaptive trend towards a successful life strategy
in spite of the several inherent constraints it also poses. Phylogenetic inference
studies (bracketing) reveal that many meiofaunal groups, in particular those found
within otherwise macroscopic phyla, have originated secondarily through miniatur-
ization. Nonetheless, recent phylogenomic studies have found several meiofaunal
phyla branching off at the deeper nodes of Bilateria and Spiralia/Lophotrochozoa
(Fig. 1.1). These include the acoelomorph worms, which have been recovered as
sister group to the remaining Bilateria (Cannon et al. 2016), as well as the Gnathifera
consistently recovered as sister group to the remainder of Spiralia (Struck et al. 2014;
Laumer et al. 2015a, 2019;Marlétaz et al. 2019).Moreover,within Ecdysozoa several
microscopic phyla exist that subtend macroscopic branches (Laumer et al. 2015a,
2019; Borner et al. 2014; Campbell et al. 2011).

Could this imply that small body size may be ancestral for Bilateria? While
microscopic phyla are widespread, a complicating factor is that each of these
deep branching meiofaunal clades also accommodates extant macrofaunal taxa,
i.e. (i) Xenoturbellida in Xenacoelomorpha, (ii) Chaetognatha and Acanthocephala
in Gnathifera, (iii) Priapulida in Scalidophora and (iv) Nematomorpha and some
Nematoda in Nematoida.

Can the fossil record, which will be in the focus of this chapter, be of any use in
resolving these issues? Fossilization tends to favour macroscopic organisms, which
is somewhat of a limitation but offers the possibility to reveal whether stem groups to
microscopic phyla were once macroscopic. Still, there are some unique taphonomic
windows preserving meiofauna that trace this lifestyle back in time, even to the
Cambrian Explosion (Butterfield and Harvey 2012; Baliński et al. 2013; Harvey and
Butterfield 2017). There are also some macroscopic fossil taxa that could be stem
groups for some microscopic phyla (Peel et al. 2013).

Another perspective that complements morphology and the fossil record is the
exploration of microscopic organisms at the genomic level. Body size and cell size
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Fig. 1.1 Metazoan tree of life. Images showing meiofauna representatives of exclusively meio-
faunal lineages, within macroscopic lineages (mixed with meiofauna), and representatives of
exclusively macrofaunal lineages (original)

have been shown to sometimes correlatewith genome size, e.g. inCopepoda and free-
living flatworms, and loss of morphological complexity or features may be accompa-
nied by changes in the genetic architecture. However, overall, genome size and archi-
tecture are highly variable and seemingly influenced by a range of different factors
which are not easily linked to morphological miniaturization (Martín-Durán et al.
2021). Nonetheless, with the accumulation of genomic data onmeiofauna organisms,
functional and comparative genomics may yield new evolutionary insights.

Thus, several future frontiers exist for understanding the role of meiofauna in
animal evolution. We here outline how this subject can be examined from multiple
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disciplines, including phylogenetics, comparative zoomorphology, genomics and
palaeontology. We believe the answers should be sought through their synthesis.

1.2 Where to Find Meiofauna on the Metazoan Tree
of Life?

Most of the exclusively meiofaunal organisms were historically lumped together in
groups such as “Nemathelminthes” or “Aschelminthes”, suggestive of a common
origin. However, it has become clear that the immense anatomical diversity among
meiofaunal taxa is evidence for a wide phylogenetic distributionwith clear indication
of independent evolution in many cases. As modern phylogenetic approaches using
genetic evidence have advanced to include meiofauna, testing of evolutionary rela-
tionships has further corroborated that meiofauna evolved through multiple evolu-
tionary events across the tree of life (Nielsen 2012; Laumer et al. 2015a; Giribet and
Edgecombe 2020) (Fig. 1.1).

When thinking of the origin of meiofaunal organisms in an evolutionary perspec-
tive, a robust phylogeny is crucial. Reconstruction of the tree topology allows
for distinguishing between clades of exclusively meiofaunal organisms and clades
accommodating both meio- and macrofaunal animals. In the latter case, we need to
ask ourselves if these clades evolved from a microscopic or macroscopic ancestor,
and also if enlargement or miniaturization happened multiple times within the clade.
The deepest branches (more appropriately successive sister lineages) in the animal
tree of life—the sponges, the placozoans, and the phylogenetically controversial
comb jellies—do not accommodate any meiofaunal organisms. The first examples
of meiofaunal clades appear within the cnidarian lineages where we find well-known
meiofaunal hydrozoans such as Halammohydra and Protohydra (Schmidt-Rhaesa
2020a, b). Most cnidarian phylogenies support that Hydrozoa is a derived clade
within Medusozoa (Bridge et al. 1995; Kayal et al. 2018). This suggests that ances-
tral cnidarians were macroscopic organisms, and that Halammohydra, Protohydra
and other meiofaunal hydrozoans are results of miniaturization.

The remaining metazoans are united in the large clade Bilateria exhibiting bilat-
eral symmetry and triploblastic bodies, i.e. with tissues derived from the three germ
layers: endoderm, ectoderm and mesoderm. Biologically, we also see a shift from
mainly a sessile benthic or passive pelagic lifestyle, towards free-living and actively
moving benthic and pelagic animals. Being motile with a through-gut offers new
modes of life and effective consumption. The rampant diversification of bilaterian
phyla as evidenced by the fossil record in the earliest Cambrian (~541 ma) coin-
cides with the first carnivores represented by grasping spines of chaetognath-like
spiralians (Caron and Cheung 2019; Vinther and Parry 2019) as well as trace fossils
attributed to priapulid-like ecdysozoans (Sperling et al. 2013). It is not unlikely that
the emergence of predators kick-started an arms race forcing animals to quickly
adapt, evolve new defence mechanisms and explore new habitats for resources or



1 Evolution of Bilateria from a Meiofauna Perspective—Miniaturization … 5

refuge. This shift in lifestyle and biology must be facilitated by anatomical architec-
ture and genomic regulation. Hunting and escaping are contingent upon detection
and speed. They result in centralization of nervous systems and formation of brains
and ganglia and sensory organs (e.g. olfaction, mechano- and photo-sensing). This
novel regionalization along the body axis is evidenced by expansions of transcription
factors, such as the three Hox gene classes “anterior”, “central” and “posterior”.
Whereas “anterior” and “posterior” are present in cnidarians also, “central” is
present exclusively in bilaterians (Hejnol and Martindale 2009).

Bilateria are divided into the smaller clade Xenacoelomorpha and the diverse
Nephrozoa that accommodates all remaining bilaterians. Xenacoelomorpha is a rela-
tive novelty in metazoan systematics and includes the two former flatworm groups
Acoela and Nemertodermatida, and the enigmatic Xenoturbellida that also origi-
nallywere considered to be flatworms (Westblad 1949). Xenacoelomorpha have been
recognized as a monophyletic assemblage for about a decade, even though recent
spermatological results might question themonophyly of the group (Buckland-Nicks
et al. 2019). Also, it is still debated whether they are nested within Deuterostomia
(Philippe et al. 2011, 2019) or are basal bilaterians (Hejnol et al. 2009; Cannon et al.
2016; Laumer et al. 2019). In the present chapter, we follow the early divergence
hypothesis and consider Xenacoelomorpha as early bilaterians and as sister group to
Nephrozoa (Fig. 1.1), but acknowledge that this debate is far from over.

Acoela andNemertodermatida (collectively referred to as Acoelomorpha) include
mostly meiobenthic species, and even though some species may grow to a centimetre
in body length, it is fair to consider the group meiofaunal. Species of Xenoturbellida,
on the other hand, are all macroscopic and divided into a group of smaller (2–5 cm)
shallow water species and another taxon with considerably larger (10–25 cm) deep-
sea species (Rouse et al. 2016). This leaves it uncertain whether the acoelomorphs
evolved andminiaturized fromamacroscopic ancestor, or ifXenacoelomorpha repre-
sents an ancestrally meiofaunal clade. With a possible sister group relationship to all
other bilaterians, this question is obviously an important one to resolve.

Nephrozoa is divided into the two well-supported clades Deuterostomia and
Protostomia—a classification that was already recognized by Haeckel (1866).
The deuterostomes include predominantly macrofaunal clades like echinoderms,
hemichordates and chordates, whereas occasional meiofaunal species, such as the
meiobenthic enteropneust Meioglossus psammophilus (Worsaae et al. 2012), appear
to be the result of miniaturization. The vast majority of diversity is contained in the
other nephrozoan clade, the Protostomia, which is divided into the two large clades
Ecdysozoa (8 phyla) and Spiralia (> 14 phyla) (Fig. 1.1).

Ecdysozoa is a very well-supported clade, supported by target gene phylogenies,
more comprehensive phylogenomic studies, as well as several robust morpholog-
ical autapomorphies (Eernisse et al. 1992; Giribet et al. 2000; Hejnol et al. 2009;
Holton and Pisani 2010; Mallatt et al. 2010). The latter includes the moulting of
cuticle induced by the steroidal hormone ecdysone, the loss of a ciliary primary
larva, which has been replaced by either direct development or secondary larvae,
and the loss of feeding and locomotory cilia. Morphology suggests that the ecdyso-
zoans can be subdivided into the predominantlymeiofaunal clade Cycloneuralia with
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organisms characterized by the presence of a ring-shaped brain that wraps around the
pharynx. This clade includes the groups Nematoda and Nematomorpha (collectively
Nematoida) and Kinorhyncha, Priapulida and Loricifera (collectively Scalidophora)
(Figs. 1.1 and 1.2).

The remaining ecdysozoans form the clade Panarthropoda, uniting Tardigrada,
Onychophora and Arthropoda. Phylogenomic analyses are still indecisive about the
relationships within Ecdysozoa. Especially nematodes and tardigrades often tend to
obscure the analyses, since, here, they can appear as sister taxa (e.g.Hejnol et al. 2009;
Laumer et al. 2015a), which is difficult to accept from amorphological point of view.
However, these analyses often suffer from a biased taxon samplingwith an overrepre-
sentation of arthropods and nematodes, whereas other taxa, such as kinorhynchs and
loriciferans, have been under-sampled, represented by single species, or in certain
cases not included at all. Furthermore, nematodes and tardigrades are long-branched
terminals in molecular phylogenies. Their higher molecular substitution rates can
be hard to model and accommodate for. But when accounting for such artefacts,
minimizing potential long-branch attraction, nematodes and tardigrades do not form
a clade (e.g. Rota-Stabelli et al. 2013; Borner et al. 2014).

Despite the phylogenetic uncertainties, it would be fair to speculate about the
common ancestor of all Ecdysozoa to be of meiofaunal size, since

• Tardigrada may be a sister to all other panarthropods;
• Scalidophora is dominated by two entirely meiofaunal phyla, Kinorhyncha and

Loricifera;
• Priapulida include meiofaunal (or at least “close to meiofaunal”) genera such as

Tubiluchus, Meiopriapulus and Maccabeus;
• Nematoida accommodate the entirely macrofaunal and endoparasitic nemato-

morphs, but also the nematodes in which deep branching clades are meiofaunal
free-living animals (De Ley and Blaxter 2002);

• Nematoda as trace fossils have been dated back to the Early Ordovician (470
million years ago (Mya) (Baliński et al. 2013)) or even Late Ediacaran (555–542
Mya) (Poinar 2011; Parry et al. 2017), while also molecular analyses have pointed
to an origin of nematode evolution at roughly 500–550 Mya (Rota-Stabelli et al.
2013; Vanfleteren et al. 1994).

However, meiofaunal origins are contradicted by the rich macrofaunal ecdyso-
zoan fossil fauna. The fossil record includes famous Cambrian signature animals
like the stem euarthropods Opabinia, Anomalocaris and Pambdelurion, a variety of
macroscopic lobopodian-grade total group panarthropods. Several bona fide scali-
dophoran fossils exist, including the fauna of palaeoscolecid worms that could be
cycloneuralian, scalidophoran or even nematoid/panarthropod stem groups (Dzik
and Krumbiegel 1989; Yang et al. 2020). For the mixed meio- and macrofaunal
Priapulida, we also know several macroscopic stem group species, such as the well-
known Cambrian Ottoia prolifica. Even the entirely meiofaunal phylum Loricifera
might have had macroscopic ancestors, as suggested by the more than 120 mm long
Sirilorica, proposed as stem group loriciferan (Peel et al. 2013). The occurrence
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Fig. 1.2 Scanning electron micrographs on meiofauna (originals unless other stated) a Loricifera:
Armorloricus elegans, Higgins larva; b Kinorhyncha: Triodontoderes anulap; c Priapulida: Meio-
priapulus fijiensis; d Nematoda: Epsilonema sp.; e Nematoda: Thalassomonhystera vandoverae;
f Tardigrada: Neostygarctus oceanopolis; g Mystacocarida: Derocheilocaris remanei (photograph
credits: Jørgen Olesen); h Halacaridae: Acarothrix grandocularis; i Cycliophora: Symbion ameri-
canus, feeding stages (photograph credits:Matthias Obst); j, k. Rotifera:Encentrum astridae, whole
animals + jaws. Scale bars: a, d, k, 10 µm; b, c, e–j, 100 µm
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of macroscopic stem group species obviously does not necessarily refute a meio-
faunal origin of Ecdysozoa, but then they should be considered as representing tips
on the phylogenetic tree. But we should always ask ourselves how the “meiofauna
hypothesis” would look like if those macroscopic lineages had survived until today.
Among arthropods, which (arguably) were ancestrallymacroscopic, there are several
independent switches to meiofaunal modes of life.

The other large protostome clade, Spiralia, is supported by a stereotypical cleavage
pattern during the early embryology, the so-called spiral cleavage. This character is
not uncontroversial because many spiralian species have modified/different cleavage
patterns. Moreover, the embryology is still only known from a restricted number
of representatives, some of which show deviation from the spiral cleavage pattern
(Hejnol 2010; Martín-Durán and Marlétaz 2020). However, Spiralia are also well-
supported in phylogenomic analyses (Laumer et al. 2015a, 2019; Marlétaz et al.
2019), and there are no reasons to question its monophyly. The basal branching
order in Spiralia has been a topic of intense debate during the last decade, but we are
moving closer to a consensus by consistently identifying the Gnathifera as the sister
group to all other Spiralia. Gnathifera accommodates the two exclusively meiofaunal
phyla Gnathostomulida and Micrognathozoa, plus the Rotifera that includes free-
living meiofaunal organisms and the derived clade of macroscopic, endoparasitic
Acanthocephala (Figs. 1.1 and 1.3). Gnathifera is morphologically well-supported
by the presence of chitinous pharyngeal mouth parts, forming a jaw apparatus, in
which the central forceps-like elements appear with the same tubular ultrastructure
(Rieger and Tyler 1995; Kristensen and Funch 2000). Such jaws are present in all
gnathiferans, except the acanthocephalans, which have lost them together with their
mouth opening as an adaptation to an endoparasitic lifestyle.

While it remains uncertain whether spiralians derived from meiofaunal ances-
tors, up to now it appeared reasonable to consider the gnathiferan ancestor as meio-
faunal. However, recently even this hypothesis became weakened by new studies
demonstrating phylogenetic affinities between gnathiferans and chaetognaths. The
phylogenetic position of Chaetognatha has been contentious in both molecular and
morphological studies. Until recently, it was even disputed to which of the top clades
they belong, to the deuterostome or protostome branch? However, recent studies
revealed that theHox protein geneMedPost, that so far hadbeen considered unique for
chaetognaths, is present in rotifers as well, suggesting a closer relationship (Fröbius
and Funch, 2017). This affinity was confirmed by a subsequent transcriptomic phylo-
genetic study, which substantiated the relationship between Chaetognatha and the
gnathiferan taxa (Marlétaz et al. 2019; Laumer et al. 2019) (Fig. 1.1). Additional
evidence is provided by the fossil record with studies suggesting that the Cambrian
taxon Amiskwia was equipped with internal, pharyngeal hard parts that could be
homologized with the gnathiferan jaws (Caron and Cheung 2019; Vinther and Parry
2019) and, thus, representing a taxon with a combination of gnathiferan and chaetog-
nath characters (see further discussion below in Sect. 1.6.1). With Chaetognatha
accommodating a mix of nearly microscopic, i.e. millimetre long, planktonic species
and much larger, up to 12 cm long benthic species, it becomes uncertain whether
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Fig. 1.3 Light micrographs of meiofauna. Anterior end pointing to the left or upwards. a Cnidaria:
Halammohydra sp. b Hemichordata: Meioglossus psammophilus. c Nemertea: Cephalothrix sp.
d Entoprocta: Loxosomella sp. e Gastrotricha: Xenotrichula velox. f Micrognathozoa: Limno-
gnathia maerski. gRotifera: Seison nebaliae. hGnathostomulida: Onychognathiidae sp. iMollusca:
Helminthope sp. j Annelida: Diurodrilus sp. k Annelida: Pharyngocirrus sp. l Platyhelminthes:
Acanthomacrostomum sp. m Platyhelminthes: Schizorhynchidae sp. Abbreviations: ag, adhesive
glands; e, eye; j, sclerotonized jaws; s, calcareous spicule in body wall; sc, scale; p, proboscis; at,
adhesive tail. Scale bars: a–e, g–m. 100 µm; F. 10 µm (originals)
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gnathiferans derived from meio- or macrofaunal ancestors and it will also depend on
the exact phylogenetic placement among the other gnathiferans.

Further muddying the waters, it is the fact that remaining spiralian taxa are still
not fully resolved. While Marletaz et al. (2019) place the gastrotrichs among the
lophophorates, several other phylogenomic studies recovered a sister group relation-
ship between Platyhelminthes and Gastrotricha—a clade referred to as Rouphozoa
(Struck et al. 2014; Laumer et al. 2015a) (Fig. 1.1).Whereas all gastrotrichs aremeio-
faunal, we have much more size variation within Platyhelminthes, and especially
the parasitic Neodermata can grow to considerable sizes. However, platyhelminth
phylogeny is relatively well-understood, and the deepest branches within the phylum
are represented by free-living, meiofaunal flatworms (Laumer et al. 2015b). This
would suggest that the rouphozoan ancestor was meiofaunal.

The phylogenetic relationships get more blurred as we move further into Spiralia.
A potentially monophyletic, but yet disputed clade, is the Polyzoa that accommo-
dates Cycliophora, Bryozoa and Entoprocta (Fig. 1.1). Whereas all cycliophoran life
stages are exclusively meiofaunal, and entoprocts balance right at the limit between
meio- and macrofaunal, bryozoans form colonies that definitely are macroscopic,
even though the single individuals in the colonies have meiofaunal size, perhaps
except for the Phylactolaemata. The polyzoan phyla are often recovered together
with two other lophophore-bearing phyla, the brachiopods and phoronids. As such,
the particular sessile and lophophore-bearing morphology could have evolved only
once in a common ancestor to a clade that is termed Lophophorata. But this may
still be premature since both Polyzoa and Lophophorata are highly sensitive to the
phylogenetic reconstruction methods and data used (Laumer et al. 2019; Marlétaz
et al. 2019). Hence, it requires further studies and careful examination of previous
studies to reconstruct the evolution of size and life strategy among the lophophorates.

The remaining spiralians are dominated by the two diverse phyla Mollusca and
Annelida alongside Nemertea (Figs. 1.1 and 1.3). Their interrelationship is highly
controversial (Laumer et al. 2015a, 2019). While meiofaunal representatives occur
in most major molluscan lineages, phylogenetic bracketing and the fossil record
clearly show that molluscs successfully evolved and radiated as a macrofaunal body
plan. The most successful diversification of meiofaunal molluscs happened within
the Aplacophora, in which the majority of the ca. 425 species are smaller than a few
millimetres (Bergmeier and Jörger 2020). Morphological hypotheses had for a long
time been influencing hypotheses for how the ancestral mollusc may have looked
like, with either monoplacophorans or aplacophorans being the most ancestral repre-
sentative among living species, and thus representing the “Urmollusk”. Molecular
phylogenetic studies now corroborate a topology in which twomajor clades exist, the
Aculifera and the Conchifera (Vinther et al. 2012; Kocot et al. 2020). Fossil evidence
shows that aplacophorans evolved from ancestors with a slug-like appearance and
eight overlapping shell plates, like polyplacophorans today (Vinther et al. 2012). The
fossil record suggests that the molluscan common ancestor was slug-like, covered by
sclerites and harbouring a single valve, while taxa such as the naked Odontogriphus
and sclerite-covered Wiwaxia with their more primitive radula resolve as stem group
molluscs (Vinther et al. 2017).
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The other major Spiralian phylum, the Annelida, also shows huge diversity,
morphological variation, and size ranges from less than 500 µm and up to 3 m.
Annelida is perhaps the phylum presenting the highest number of independent minia-
turization events—within orders, families andgenera across the annelid tree (Worsaae
2020; Worsaae et al. 2021). Exclusively meiofaunal (or interstitial) annelid families
have been, for a period, grouped as “archiannelids” and discussed to represent a
successive sister group (often incorrectly termed a “stem group”) from which the
macrofaunal lineages had evolved (e.g. Hermans 1969). However, both morpholog-
ical and later phylogenomic data have disputed the similarity and common origin of
the meiofaunal families. Although their exact positions in the annelid tree are not
conclusively resolved, all deep branching annelid clades are macrofaunal (Andrade
et al. 2015; Laumer et al. 2015a, b; Struck et al. 2015; Helm et al. 2018; Martín-
Durán et al. 2021). Also the Cambrian fossil record comprises several macroscopic
stem lineages (Parry et al. 2016; Vinther et al. 2011) plus even an early, macroscopic,
crown group member attributable to the palaeo-annelids (Chen et al. 2020).

1.3 Do Common Structural and Functional Traits Exist
in Meiofauna?

Whereas size anddiameter, in particular, define an animal asmeiofaunal, other similar
features (or absences) frequently occur. From an ecological perspective, the highest
diversity ofmeiofauna is found in soft sandy sediments. This environment is generally
referred to as the interstitial realm. Pore spaces between the sand grains restrict the
feasible diameter (but not the length) of its inhabitants. Therefore, the body shape
is often elongated, and body appendages are either absent or reduced in number or
length, as they become disadvantageous for moving between sand grains (Figs. 1.2
and 1.3). Interstitial organisms move by muscular contractions (ecdysozoans) or
ciliary gliding (acoels and spiralians), and many groups possess specialized adhesive
structures, such as duo-glands, tails, toes, claws or suction discs (Fig. 1.3) (Giere 2009
and references herein).

Whether related to inherent, developmental or spatial constraints, coelomic cavi-
ties are often lacking or less developed in meiofauna—especially among meiofaunal
phyla. Originally thought to have evolutionary and phylogenetic bearing, the phylo-
genetic distribution of coeloms, as we currently understand the tree of life, reveals
them as being highly interchangeable and their development easily being suppressed
(Bartolomaeus et al. 2009). Also, mesodermal tissues and organs are often missing
(e.g. blood vascular system) or developed in a less complex state (in, e.g. nephridia
and gonoducts) (Bartolomaeus and Quast 2005; Worsaae and Kristensen 2005;
Schmidt-Rhaesa 2007).

The neural architecture in meiofauna is often comparably simple, e.g. showing a
reduced number of cord commissures and glial cells, the brain lacking mushroom
bodies or distinct regionalization and less complex sensory organs such as eyes
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(Schmidt-Rhaesa et al. 2015; Bekkouche and Worsaae 2016a, b; Kerbl et al. 2016a;
Gąsiorowski et al., 2017). This lack of structural complexity may be compensated
for by a higher diversity of neurotransmitters (Kerbl et al. 2017; Martín-Durán et al.
2021).

Asexual reproduction, hermaphroditism and internal fertilization are fairly
common among meiofauna (Giere 2009;Worsaae et al. 2012, 2020, 2021; Fontaneto
2019). Most meiofaunal groups exhibit direct development. With their small body
size, the numbers of eggs are often limited, eggs may be adapted for desiccation
prevention (Guil 2011), or embryos may be nursed through brooding (Giere 2009;
Schmidt-Rhaesa 2020a, b).

For many of these organ systems, there is a clear relationship to size—whether it
is rheological properties of water or the volume dependency on gas and nitrogen
exchange. Being smaller often also means having fewer cells (Loriciferans is a
notable exception), which limits the complexity of organs. These organ systems may
therefore primarily reflect body size rather than reveal evolutionary relationships.
Some of these traits also resemble those of larval or juvenile stages of macrofauna
where organ systems such as nephridia, coeloms or nervous systems may not yet be
fully developed, indicative of their dependence on size. None the less, the anatomical
resemblance of macrofaunal larvae and juveniles to several meiofaunal groups may
still hold clues to the evolutionary trajectories that lead to miniaturization.

It is clear thatminiaturization is a frequent phenomenon that has happened conver-
gently in most animal phyla. However, with (i) the many exclusively meiofaunal
phyla, (ii) the current phylogenetic uncertainty and iii) the incomplete morpholog-
ical, genomic and palaeontological records, much remains to conclusively estab-
lish the true antiquity of any meiofaunal taxon as well as the evolutionary role of
miniaturization.

1.4 Pathways Towards a Secondarily Miniaturized Body

Although some meiofauna lineages may represent ancestrally small body designs,
multiple meiofaunal taxa are indisputably nested within phylogenetic clades of
macroscopic phyla or families (e.g. within Annelida; Laumer et al. 2015a; Struck
et al. 2015; Worsaae et al. 2018, 2021; Worsaae 2020) and must hereby represent
coincidences of regressive evolution in the form of miniaturization (Hanken and
Wake 1993). Highly diversified evolutionary pathways may lead to a miniaturized
outcome, the two overall theoretical pathways being either a “stepwise” miniaturiza-
tion or a “one-step”miniaturization (Westheide 1987).Whereas the first evolutionary
theory relies on independent mutations, losses and gains in an adaptation to a new
niche, the latter theory suggests an evolutionary short-cut through heterochrony,
leading to paedomorphosis (underdevelopment) (e.g. Garstang 1922; Gould 1977).
The outcome is characterized by “paedomorphic” traits, theoretically resembling
those of a juvenile ancestor (inferred from juvenile characteristics of closely related
macrofaunal taxa) (Martynov et al. 2020).
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1.4.1 Paedomorphosis

Paedomorphosis is usually considered to be the outcome of one of three under-
lying processes (Smith 2001; McNamara 2012), all of which involve changes in
developmental rate or timing:

progenesis: an early offset of development
neoteny: a decelerated rate of development
postdisplacement: a late onset of development.

The theory of progenesis has been discussed and specified by Gould (1977),
Smith (2001) and McNamara (2012) (and should be prioritized to “hypomorphosis”
as named by Reilly et al. 1997). The early offset of somatic growth is often proposed
to be coupled with or even caused by an early or accelerated sexual maturation (e.g.
Westheide 1987), because many animals arrest their somatic growth when sexually
maturing. Progenesis has been a popular explanation for the origin of the small-
sized meiofauna taxa, especially those that show resemblance to larval or juvenile
stages of macrofaunal taxa (Westheide 1987; Worsaae and Kristensen 2005). Since
many macrofaunal taxa already have a temporary meiofaunal larval or juvenile life
stage, it would “only” take a fast sexual maturation and successive arrest of somatic
development to become part of the permanent meiofauna.

The two other scenarios cannot as easily explain meiofauna origin since they do
not infer an overall reduction of somatic growth and size. Neoteny has been often
used as an explanation for delayed development or retention of juvenile features
into adulthood, e.g. the hairless body and slow development of humans compared to
non-human primates (e.g. Rice 2002). Postdisplacement characterizes features that
are delayed in their development relative to their ancestor and may not be completed
when the descendant reaches maturity.

However, neither of these three scenarios can be clearly defined since they do not
reflect the evolutionary and genetically controlled processes per se, but rather the
appearance of the descendant’s morphology. Moreover, these theoretical changes
can morphologically act on a complete scale (entire organism) or a local scale
(selected tissues or characteristics), which further complicates their definition and
mutual distinction. Finally, with the increasing knowledge of the geneticmechanisms
controlling development, it seems likely that a variety of genetic changes or modi-
fications of regulatory networks may lead to a paedomorphic phenotype. Hence, it
is rarely possible to predict the specific evolutionary process leading to a paedomor-
phic meiofaunal taxon, when judging from comparative phenotypic traits and the
phylogenetic context. So, one may be restrained to using the common descriptive
term “paedomorphosis”, rather than more refined terms of hypothetical processes
(Martynov et al. 2020).
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1.4.2 Genetic Mechanisms Underlying Paedomorphosis

Meiofaunal taxa (e.g. within Annelida, Tardigrada, Rotifera, Gastrotricha andNema-
toda) often possess small-sized genomes (C. elegans Sequencing Consortium 1998;
Gregory et al. 2000, 2007; Hashimoto et al. 2016; Yoshida et al. 2017, Martín-
Durán et al. 2021). Yet, several macrofaunal and parasitic taxa also exhibit tiny
genomes (Seo et al. 2001; Slyusarev et al. 2020; Martín-Durán et al. 2021 and refer-
ences herein), whereas the simple-looking meiofaunal acoels have relatively large
genomes (Arimoto et al. 2019) exceeding the size of their macrofaunal sister group
Xenoturbellida (Gregory et al. 2007). Thus, genome size is clearly highly variable,
and so far, it has not been possible to link specific genetic changes with the origin of
paedomorphic meiofauna.

Reconstructing such potential genetic changes on an evolutionary scale is chal-
lenging.Thegeneral lackof closely relatedmacrofaunal andmeiofaunal sister species
hampers comparative genomic studies, and the complexity of genetic interplay and
control during development are ever amazing. Moreover, changes affecting a variety
of developmental processes such as cell division and differentiation may lead to
evolutionary paedomorphosis, although these mechanisms are not directly control-
ling the timing of explicit events (Moss 2007). In this context, a recent genomic
study (Martín-Durán et al. 2021) of the miniaturized meiofaunal annelid, Dimor-
philus gyrociliatus, revealed aminiaturized, highly compacted andconservedgenome
with a few gene losses explaining the change of certain morphological structures.
Interestingly, this genome also presented a divergent Myc pathway, which is a key
physiological regulator of growth, proliferation and genome stability in animals.

Relevant genetic insights into miniaturization might be gained from intraspecific
studies of species exhibiting sexual dimorphism in the form of paedomorphic males
(Vollrath 1998), such as the finding of sex-specific expression patterns of metamor-
phic genes in the insect Xenos vesparum (Chafino et al. 2018). Meiofaunal, miniatur-
ized males are found in, e.g. annelids, cycliophorans or rotifers (Ricci and Melone
1998; Obst and Funch 2003; Worsaae and Rouse 2010; Kerbl et al. 2016b), and
comparative molecular studies of their dimorphic sexes will likely be informative.

Also, experimental approaches exploring distinct timing mechanisms have turned
out to be very promising. Especially Caenorhabditis elegans with its meticulously
mapped genome and engineering options has facilitated striking discoveries, espe-
cially of “heterochronic genes” orchestrating developmental timing (e.g. lin-4 and
lin-28) (e.g. Ambros and Horvitz 1984; Thummel 2001; Moss 2007). Although
timing mechanisms may not exist to regulate all aspects and scales of develop-
ment, their presence is supported by the discovery of the “heterochronic genes”
in C. elegans. These genes not only prove the existence of an explicit regulation
of developmental timing but may also aid to achieve synchrony and succession of
developmental events, such as emergence of patterns and organ formation (Moss
2007 and references herein). Although timing may also emerge from other aspects
of developmental regulation, the genetic or epigenetic changes in the “heterochronic
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genes” may affect pathways not too different from the evolutionary heterochrony
scenarios hypothesized to cause paedomorphosis.

No doubt, with all these potential evolutionary trajectories towards paedomor-
phosis, it will be challenging to establish genetic causality through comparative
analyses. Yet, the technical progress in morphology, phylogenomics and compara-
tive genomics is now opening a window for a broader and integrative search for the
genetic causality of paedomorphosis.

1.5 What Can the Fossils Tell Us?

To understand body plan evolution, much can be learned from looking at the tree
of extant life. For example, sponges share traits with the animal sister group, the
choanoflagellates, and have less differentiated tissues and organs than eumetazoan
taxa.More often, however, extant diversity is a poor representation of a lineage and its
trajectory as it splits from its sister clade. Hence, the fossil record would be the only
testament. To illustrate this, birds and crocodiles aremorphologically distinct, but are
sister taxa. By comparing their extant diversity, one could never establish how birds
became birds. Their ancestral ecology can only vaguely be pondered about, and even
the way some branches evolved to fill unique roles in the past (e.g. giant quadruped
herbivores or the independent evolution of flight in pterosaurs)would be but a fantasy.
Returning tomeiofauna, how representatives are living clades for reconstructing their
origin? Extant phylogenetic bracketing (Witmer 1995) may help to establish shared
antiquity between clades and, along with molecular clock estimates, could help to
date the minimal temporal origin (e.g. Rota-Stabelli et al. 2013).

However, there may still be long branches between meiofaunal clades and their
split to their nearest extant sister taxon. Palaeontological evidence is therefore of
importance for complementing the neontological framework. As with any other
line of evidence, palaeontological data come with its strengths and its weaknesses.
Fossils typically preserve limited aspects of an organism, even under truly excep-
tional circumstances. Furthermore, available windows into the past are scattered and
feature their own biased set of filters governing what is recorded, where and how.
Charismatic fossils are of course macroscopic, but in fact there is a just as diverse
fossil record documenting bacteria, pollen, single-celled eukaryotes and indeed even
microscopic animals such as meiofauna (Fig. 1.4). Hence, to appreciate what the
fossil record has revealed and what may be in store is key to appreciate taphonomical
pathways.
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Fig. 1.4 Taphonomic windows and fossil representatives of meiofauna and putative stem groups.
a, f, g Orsten-type preservation. c, d Small carbonaceous fossils. e and i: Chert and h Amber. a The
putative stem group kinorhynch, Eokinorhynchus rarus from the Early Cambrian (~535 million
years old) Xinli section, Sichuan, China. b The macroscopic stem group loriciferan, Sirilorica
carlsbergi from the Early Cambrian (~518 million years) Sirius Passet Lagerstätte, North Green-
land. c The meiofaunal loriciferan Eolorica deadwoodensis from the Late Cambrian Deadwood
Formation (485–497 million years old). d Mandible of anostracan grade crustacean from the
Late Cambrian Deadwood Formation (485–497 million years old), Saskatchewan, Canada. e The
nematode Palaeonema phyticum from the Early Devonian (~410 million years old) Rhynie Chert,
Scotland. f The pancrustacean Scara anulata from the Late Cambrian (485–497 million years
old) Alum shale, Kinnekulle, Sweden. g The pancrustacean Martinsonia elongata from the Late
Cambrian (485–497 million years old) Alum shale, Kinnekulle, Sweden. h A putative rotifer from
theMiddle-Late Jurassic hot spring-cherts of the DeseadoMassif, Patagonia, Argentina. i The rhab-
docoel flatworm Palaeosoma balticus from the Eocene (~40 million years old) of the Kaliningrad
region, Russia. Image credits and courtesy: a open access CC 4.0; b Tae Yoon Park, Korean Polar
Research Institute; cNicholas Butterfield and ThomasHarvey, Cambridge and Leicester University;
d Nicholas Butterfield, Cambridge University; e George Poinar Jr.; f, g Palaeontological Research
Open Access https://doi.org/10.2517/prpsj.7.71; h Juan Garcia Massini; i George Poinar Jr

1.5.1 Taphonomy and Windows to Preservation of Meiofauna

Taphonomy is the study of fossil preservation.Whereas trace fossils support the pres-
ence ofmeiofaunal bilaterians already in the Late Ediacaran, these burrowmorpholo-
gies can only provide limited information on the animal creating them (Parry et al.
2017). On the other hand, fossilsmost often comprise only themost resistant remains,
such as biomineralized bones and shells, yet under the right circumstances, it is

https://doi.org/10.2517/prpsj.7.71
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possible to preserve more delicate tissues that are more decay-prone (Parry et al.
2018). Several conditions and burial pathways may facilitate exceptional preserva-
tion. Most universal is the need for rapid burial and anoxia, slowing down decay
and disarticulation. The rapid formation of an impermeable environment and alter-
native anaerobic metabolic pathways generate steep chemical gradients that can
cause mineralization around, or within, carcasses and stabilization of more labile
organic molecules (Parry et al. 2018). A couple of taphonomic windows have been
particularly instrumental in tracing meiofauna back in time and are the result of very
differentmechanisms for high fidelity preservation. Formore ancient marine records,
these include the Orsten localities and the Small Carbonaceous Fossil (SCF) window.
For younger occurrences, hydrothermal vent cherts (Poinar et al. 2008; Massini et al.
2016; Dunlop and Garwood 2018) and amber (Waggonar and Poinar 1993; Bertolani
and Grimaldi 2000; Huys et al. 2016; Poinar and Nelson 2019) have been crucial
windows into terrestrial and limnic environments.

1.5.1.1 Orsten Preservation

During the Cambrian period, diagenetic phosphate deposition was a widespread
phenomenon. The phosphate precipitated on the seafloor as the sediment became
anoxic and reducing, often replacing or infilling minute skeletons of various miner-
alogical nature, but also soft tissues such as coprolites and certain meiofauna. When
encountered in limestones, phosphatic microfossils can be extracted using weak
acetic acid.

Most phosphatic microfossils are skeletal and are not considered particularly
exceptional (termed small shelly fossils). However, the discovery of soft-bodied
organisms preserved at cuticular and even cellular fidelity is more notable. The first
and best-known occurrence is the Orsten fauna, from the Late Cambrian alum shale
across theBaltic craton, butmainly fromKinnekulle in Sweden (Müller andWalossek
1985;Waloszek 2003;Maeda et al. 2011).Older andyounger occurrences nowextend
thiswindowback to the Earliest Cambrian (Dong et al. 2005; Zhang et al. 2007, 2015;
Han et al. 2017; Shao et al. 2018) and up into the Ordovician (Siveter et al. 1995).

Famous Orsten fossils comprise various panarthropods (Euarthropoda,
Onychophora and Tardigrada and the descendants of the common ancestor) in artic-
ulation although their delicate nature often leads to disarticulation upon extraction
from the rock. Pancrustaceans (all crustacean lineages plus hexapods) are the most
diverse and abundant faunal elements (Fig. 1.4f, g) and often include both adult stages
and nauplius larvae and intermediates. The pancrustacean fauna allows for tracing
several lineages back to the Cambrian (Branchiopoda, Cephalocarida, Thecostraca
and Pentastomida). In contrast, Burgess Shale-type deposits preserve macroscopic
organisms and document several abundant stem and crown euarthropods, but no
apparent crown group pancrustaceans. The fossil record is a strong indicator for
pancrustaceans having ancestrally been small-bodied members of the zooplankton
and meiobenthos.
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Non-euarthropodmicrofossils also occur in theOrstenwindow, including lobopo-
dians (Maas et al. 2007a, b; Zhang et al. 2016), tardigrades (Maas andWaloszek 2001)
as well as some cycloneuralians with putative nematode and kinorhynch affinities
(Fig. 1.4a) (Dong et al. 2005;Maas et al. 2007a, b; Zhang et al. 2015; Shao et al. 2018)
and the extinct palaeoscolecids (Dong et al. 2013). The prevalence of ecdysozoan
microfossils underlined someof the potential biases inherentwithOrsten-type preser-
vation. The chitinous cuticle of ecdyzosozoans may make these either more prone to
phosphatization ormore resistant to rapid decay for time periods long enough to enter
the conditions leading to phosphatization within the sediment. Cellular details also
occur in some of the oldest deposits (Dong et al. 2004), preserving embryos ofmainly
cnidarian affinities (Dong et al. 2013) as well as their chitinous periderm. Some
peculiar organisms still await further scrutiny, such as the putative deuterostome
Saccorhytus (Han et al. 2017), which has been used as evidence for a microscopic
ancestry of deuterostomes (but see Liu et al. 2022).

1.5.1.2 Small Carbonaceous Fossils

Organic preservation is not uncommon in the fossil record (e.g. coal, oil and gas
are the products of buried fossil organic matter) and includes microfossils. Since
organic material is essentially carbon dioxide that has been reduced to form larger
molecules, the key is to protect organic molecules from enzymes, oxidation and
hydrolysis. However, different organic molecules are more likely to degrade or be
consumed faster and may never survive to enter the geological record. Most unstable
are nucleic acids (DNA/RNA) and peptide chains (proteins), while a range of more
robust organic molecules have a survival potential, including long-chained hydrocar-
bons and lipids, such as waxy substances or cholesterol/hopanoids and large, cross-
linked/polymerized molecules such as melanin, lignin and sporopollenin (Ellington
and Logan 1991; Parry et al. 2018). The latter class of molecules explains the preva-
lence of pollen and plant material occurring as microfossils and melanin associated
with exceptionally preserved skin, hair and feathers in vertebrates (Vinther et al. 2008;
Vinther 2020). Chitinous tissues also preserve and occur as microfossils (Butterfield
and Harvey 2012). Chitin is less stable, however, and seems to preserve mainly
through secondary cross-linking with lipids in the pore water fluids to form kerogen
(Stankiewicz et al. 1998, 2000). As organicmaterial is buried, the increasing pressure
and temperature lead to both fragmentation and condensation reactions, generating
oil and gas and more stable coke, eventually becoming graphite. For these reasons,
organicmicrofossils are generally obtained from fairly shallow-depth deposits where
they retain some volume and are not too brittle from having been cooked.

SmallCarbonaceousmicrofossils (SCF) havebeendescribed froma rangeofEarly
and Mid-Cambrian sites preserving sponge spicules, chaetognath grasping spines,
wiwaxiid sclerites, polychaete chaetae and scales, various cuticular fragments, scali-
dophoran scalids and arthropod limb elements (Stankiewicz et al. 1998; Slater et al.
2018a, b).



1 Evolution of Bilateria from a Meiofauna Perspective—Miniaturization … 19

As with the Orsten window, the SCF window yields pancrustaceans (Fig. 1.4d)
and corroborates their meiofaunal ancestry, documenting appendages reminiscent to
modern branchiopod filtering elements and copepod mandibles (Harvey et al. 2012;
Harvey and Pedder 2013). While most scalidophoran and ecdysozoan microfossils
are elements derived from macroscopic organisms (Caron et al. 2013; Smith et al.
2015), a remarkable discovery of a fully articulated and microscopic loriciferan with
lorica (Fig. 1.4c), introvert and scalids from the Late Cambrian Deadwood formation
(Harvey and Butterfield 2017) illustrates the great potential for future exploration of
the SCF window.

1.5.1.3 Entombed Meiofauna

Another pathway for high fidelity preservation is rapid precipitation of mineral
cements (siliceous opal/chert, Fig. 1.4e, h) or immersion into viscous organic
substances that are stable over geological time (tar or tree resin, Fig. 1.4i) (Parry
et al. 2018).

Cherts are amorphous silica derived from opal. Such deposits are common as late-
forming concretions but can form directly in evaporative and hydrothermal settings
when super-saturated. Cherts are the most important record for Precambrian unicel-
lular life and record prokaryotic cells back to the Archaean (4000–2500 million
years), although some previous claims may instead be pseudofossils (Braiser et al.
2006;Donoghue 2020). Themost notable fossil locality is theEarlyDevonianRhynie
Chert in Scotland (~410 million years old), preserving a shallow water environment
near a hydrothermal vent system. Early vascular plants with cellular detail, fungi
and arthropods are encountered here along with the oldest unequivocal record of a
nematode (Fig. 1.4e) (Poinar et al. 2008). Younger hot spring-cherts from the Jurassic
(Fig. 1.4h) preserve putative rotiferan loricae and bodies (Massini et al. 2016) which
await more detailed description.

Amber is another remarkable taphonomic window, which becomes significant
from the Cretaceous and onwards, although some Triassic records are noteworthy
(Schmidt et al. 2012). Amber is derived from tree resins, rich in diterpenes and
trienes, which polymerize and cross-link into stable macromolecules. Notable is of
course the diversity of insect inclusions commonly retained in these, but meiofaunal
elements also occur, including tardigrades (Cooper 1964;Mapalo et al. 2021), rotifers
(Waggoner and Poinar 1993), nematodes (Poinar 2011) and even platyhelminths
(Poinar 2003) (Fig. 1.4i).

A peculiar window of preservation that can be placed in this category is the
bioimmersion of meiofauna into the cocoon walls of leeches from the Permian
(~270 million years) and onwards (McLoughlin et al. 2016). A well-preserved Early
Cretaceous nematode suffered such a fate (Manum et al. 1994).
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1.6 Taphonomic Biases May Explain Distribution Patterns
of Fossil Meiofauna

The nature of preservation explains the absence of many meiofaunal groups and the
overrepresentation of others. Taxa with chitinous cuticles dominate both the Orsten
and SCF windows. They do allow us to trace microscopic cycloneuralian lineages
and possibly kinorhynchs back to the Early Cambrian (541–529million years), while
microscopic loriciferans were in existence in the Late Cambrian (485–497 million
years). Pancrustacean zooplankton is known from the Cambrian (521–514 million
years ago). Several meiofaunal groups, although lacking decay-resistant features or
a robust cuticle, such as rotifers with their proteinaceous lorica, are still recorded in
fossils from younger Jurassic cherts (Massini et al. 2016) and amber (Waggoner and
Poinar 1993), which may be indicative of a more recent origin but again could be
the result of the inherent biases in preservation as such deposits are not available or
discovered from this time. A possible rotiferan stem lineage is offered by Inquicus
fellatus (Vinther and Parry 2019; Cong et al. 2017), see below. Meiofaunal annelid
chaetaemaypreserve, but the body is unlikely to preserve, rendering suchoccurrences
non-informative. Anymeiofauna that is entirely soft-bodied is unlikely to preserve in
a taxonomically informative state, though traces hereof may persist (Knaust 2020).

1.6.1 Fossil Evidence for Macroscopic Ancestries
to Meiofauna

A central question remains as to whether meiofauna may have been a cradle for
macroscopic bilaterians, given their distribution among spiralians and ecdysozoans
with phyla that are entirely microscopic (Struck et al. 2014; Laumer et al. 2015a) as
previously discussed. But given the numerous cases of secondary miniaturization,
the meiofaunal realm might altogether represent a derived pool in which many early
diverging phyla ended up as a consequence of competition and evolutionary refuge,
rather than an adaptive cradle of origin (Laumer et al. 2015a; Vinther 2015). An
obvious test for this is to trace microscopic lineages back in time and see if they
always have been microscopic or not.

While aLateCambrianmeiofaunal loriciferan has been discovered, there areEarly
Cambrian macroscopic forms suggested to represent stem loriciferans (Sirilorica
from the Early Cambrian Sirius Passet Lagerstätte in Northern Greenland, Fig. 1.4b,
Peel 2010a, b, 2013). Specimens collected range up to more than 120 mm in length
(J. Vinther, pers. obs.). The hexaradial introvert scalid arrangement aligns Sirilorica
with the arrangement observed in loriciferans, nematoids and tardigrades in contrast
to pentaradial kinorhynchs and priapulids.

With chaetognaths as probable members of the Gnathifera, another group of
microscopic phyla are facing scrutiny as to their ancestral nature. Fossil evidence
corroborates the links between chaetognaths and gnathiferans as mentioned earlier.
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Amiskwia from the Burgess Shale has been debated as a possible chaetognath
(Walcott 1911) but was later dismissed for its lack of grasping spines to instead repre-
sent a pelagic nemertean (Owre and Bayer 1962) or of uncertain affinity (Conway
Morris 1977). Two independent studies demonstrated that Amiskwia preserves a
robust jaw apparatus (Caron and Cheung 2019; Vinther and Parry 2019) that
include bilateral elements and a symmetrical basal plate reminiscent of the condi-
tion observed in gnathostomulids. While the first study argued for Amiskwia being
a stem chaetognath, the latter one argued for a stem gnathostomulid affinity with
the otherwise chaetognath anatomy being convergent. Irrespective of these differing
positions, tracing chaetognaths back in time to their shared origin with gnathiferans
as macroscopic forms provide evidence, albeit not conclusive, for a macroscopic
ancestry of gnathiferans while potentially, some or all, gnathiferans could be the
result of a single, shared miniaturization event depending on where chaetognaths
should be placed among the Gnathifera. Another taxon worth mentioning is the
sessile and relatively large (3.3 mm long) taxon Inquicus fellatus (Cong et al. 2017),
which appears to possess a jaw apparatus and a subterminal gut, hence possibly a
gnathiferan, perhaps related to rotiferans (Cong et al. 2017; Vinther and Parry 2019).

The fossil record may eventually provide evidence for other phyla having been
macroscopic in the past or been genuinely microscopic since their dawn. As such,
the fossil record, as vestigial and interpretable it may be, is a crucial piece of the
puzzle for understanding and resolving the origin and evolution of meiofauna.

1.7 Meiofauna Evolution—How to Trace Back Animal
Miniatures

The origin and early evolution ofmeiofauna is one of themost fundamental questions
in meiofauna research. Living animals and their relationship to each other provide
important insights into the potential sequence of events that led to the establishment of
specific morphologies. Linked to these morphologies is a vast diversity of functions
and interactions of meiofauna with their habitat and other biota. However, compared
to larger-sized benthic organisms, many meiofauna taxa are poorly studied with
regard to their morphology, systematics, population structure, biogeography and
biology (see chapters in this book). This leaves many research frontiers unaddressed
that relate to the fundamental questions of:

• How did meiofauna evolve?
• How has natural selection modified meiofauna over evolutionary time?

Evolution is the unifying theory that explains all biological science. All life is
connected, and none of it can be fully understood without understanding its evolu-
tion. Research on evolution therefore relies on many other fields in the biological
sciences, and there is a wide variety of methodologies and research tools to tackle
complex and often unresolved questions. Our questions of “where from?”, “along
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which pathways?” and “at what time periods?”, all of which are of genuine human
interest, can only be addressed successfully by collaborating specialists studying
the diverse aspects of meiofauna evolution with diverse methods. As we learned
from this chapter, successfully resolving questions regarding meiofauna evolution
requires integration of geological/paleontological, climatic, ontogenetic andmorpho-
logical data ranging from microscopic to macroscopic scales. Findings from devel-
opmental biology, genomics, functional ecology, genetics and ethology also have to
be considered.

The analysis and interpretation of the time scales at which meiofauna evolution
is occurring remain challenging, partly because short-term changes are predictable,
whereas long-term evolution is not. We cannot directly observe processes at macro-
ecological time scales. Instead, we collect and interpret data from many related
scientific fields and connect and interpret their diverse bodies of evidence to form a
robust thread of scientific deduction as a basis of highest probability. As heteroge-
neous as the research fields involved will be the novel methods not only advancing
but also promoting future research on the phylogenetic role of meiofauna. Some
examples could be:

• Cryo-fixation of tissue preserving unseen ultrastructural details.
• High-resolution microscopy techniques such as serial block-face scanning elec-

tron microscopy combined with computational analysis tools, enabling faster,
better and three-dimensional anatomical reconstructions.

• New staining and scanning analyses of minute biomineralized remnants in fossils.
• Optimized protocols for acquiring high-quality genomic data from minute

organisms with limited amount of high molecular weight input DNA.
• Better bioinformatic pipelines for genomic data and analyses.

When discussing animal evolution and addressing the plethora of open ques-
tions, which ones have the potential to put meiobenthic organisms and their connec-
tions with macrofauna in a critical, complementing position? As almost all major
animal groups include meiobenthic representatives, some more general aspects and
questions may include:

• The possibility of Xenacoelomorpha as sister group to Bilateria,
• The role of Scalidodophora within Ecdysozoa,
• The phylogenetic position of Tardigrada,
• The position of Chaetognatha and evolution of Gnathifera,
• The potential monophyly of Polyzoa,
• Trochozoa with ancestors of meiobenthic size,
• The role of miniaturization and paedomorphosis, e.g. at the origin of larger clades

and within phyla such as Annelida,
• Fossils of meiofaunal size as derivates or origin of macrofauna,
• Genomic signatures of miniaturization.

The inevitable reliance on an indirect, combined approach renders pertinent
evolutionary research complex, especially when dealing with minute meiobenthic
organisms. On the other hand, multiple deductive approaches that use varied, often
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independent, methods of investigation increase the probability of achieving resilient
results and avoid reasoning in merely likely (abductive) derivations (the advantage
of “triangulation” sensu Munafò and Smith 2018).

Supported by novel computational power, the numerous, heterogeneous pieces
comprising the puzzle of meiofauna evolution will be put together to form a more
coherent picture. In interdisciplinary collaboration, network processes will elucidate
the role and often still rather vague position of meiobenthos in the tree of life. Most
challenging and fascinating, this has the potential of stimulating many other studies
in various biological fields. Pursuing major open questions on meiofauna evolution
will moreover generate significant ramifications into macro-evolutionary research:

• Morphologists and evolutionary biologists wanting to understand diversification,
biogeography and adaptation to different environments.

• Geochemists and microbiologist seeking to understand how meiofauna have
shaped biogeochemical processes.

• Palaeontologists seeking to constrain the timing and nature of animal evolution.
• Molecular biologists wanting to characterize the link between genomic and

phenotypic organization.
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Chapter 2
Meiofauna Shaping Biogeochemical
Processes

Stefano Bonaglia and Francisco J. A. Nascimento

Abstract Biogeochemical processes at the sediment–water interface are essential
for the functioning of marine ecosystems. It is a central question in benthic ecology
how these processes are controlled and mediated by biotic factors. Particularly, the
role of meiobenthos, the most abundant and diverse faunal component in these
systems, is little understood and requires more attention. In this chapter, we discuss
the impact of meiofauna bioturbation inmarine sediments on significant mechanisms
and processes in (a) carbon degradation and oxygen penetration, (b) sulfide dynamics,
and (c) nitrogen cycling. Particularly in the growing hypoxic areas of the seafloor
where meiofauna is often the only animal group present, the role and bioturbative
activities of this central component of the benthos need further scrutiny regarding the
decrease of oxygen and increase of toxic hydrogen sulfide. These knowledge gaps in
the interaction between meiofauna and marine biogeochemistry are the background
for our concluding outlines: We present current research frontiers in order to assess
the role of meiofauna as regulators of geochemical processes and microbial activ-
ities. These goals require combination of quantitative and qualitative meiobenthos
investigations with state-of-the-art experimental work.
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2.1 Sediment Biogeochemistry—Of Basic Relevance
to Meiobenthos

Marine sediments cover 71% of our planet surface (Emerson and Hedges 2008).
This vast surface area makes sedimentary habitats the most widespread, yet under-
explored environments on our planet. By definition, marine sediment is a type of
substrate produced by chemical and mechanical weathering of rocks and shells of
dead organisms into particles that are moved by different forces (e.g., air, water, ice)
and accumulate on the seafloor. Besides this enormous pool of inorganic particles,
sediments—and the derived sedimentary rocks—also host the largest reservoir of
organic carbon on the planet (Hedges and Keil 1995). Organic matter within the sedi-
ments is composed of both living organisms (e.g., microbes, protists, meio-, macro-,
and megafauna) and of dead organic matter, also known as detritus or particulate
organic matter (POM).

What is happening between the grains of marine sediments? The processes
involved are inseparably linked to the dynamics occurring in the pelagic realm,where
sunlight and dissolved nutrients sustain rapidly growing phytoplankton, which, in
turn, is continuously grazed by protozoans and zooplankton. This is what constitutes
marine productivity (Hedges and Keil 1995). The average depth of the ocean is ca.
3700 m. Some seminal works demonstrated that only 1% to 4% of marine primary
production is settling to sediment depths (Martin et al. 1987). Thus, physical, chem-
ical, and biological composition of marine sediments is intimately connected with
processes and conditions that happen in the overlying water column.

Diagenesis refers to physical, chemical and biological forces that lead to sedi-
ment alterations (Berner 1980). For decades, the consensual picture of diagenesis
was that physical changes lead to chemical changes, which finally determine biolog-
ical features of ecosystems (Fig. 2.1a). In the 80s, however, Robert Aller and Erik
Kristensen started reporting evidence that macrofauna (and to a lesser extent meio-
fauna) with their sediment reworking activities affect sediment geochemistry and
physical properties (Aller 1982; Aller and Aller 1992; Kristensen and Blackburn
1987). In the following decades, studies on bioturbation mainly concentrated on
macrofauna omitting the impacts of meiofauna bioturbation. The main reasons why
macrofauna outcompeted meiofauna in this type of studies are twofold. Beside tech-
nical reasons, large animals were expected to alter microbial pathways and process
rates more intensively and with clearly measurable end-points.

Only recently, studies on meiofauna bioturbation started emerging again. Exper-
iments conducted with Baltic Sea sediments showed that meiofauna significantly
affect ecosystem functions as they double nitrogen removal by denitrification
(Bonaglia et al. 2014), stimulate by up to 50% organic matter mineralization (Nasci-
mento et al. 2012), and alter pathways of hydrocarbon degradation (Näslund et al.
2010). Very recently, it was further demonstrated that meiofauna can increase benthic
oxygenation and help removing toxic hydrogen sulfide from hypoxic sediments
(Bonaglia et al. 2020). These studies helped abolish the earlier sequential paradigm,
i.e., physical properties influence sediment chemistry, which in turn allows specific
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Fig. 2.1 Diagrammatic comparison of earlier (a) and recent (b) conceptions of benthic interactions
in marine research. Original

benthic communities to thrive. Instead, they introduced an interacting paradigm
in which physical, chemical, and biological properties mutually affect each other
(Fig. 2.1).

Most fast-growing microorganisms and metazoan communities inhabiting the
seafloor are heterotrophs or organotrophs, i.e., organisms that utilize settling organic
material as food and energy. During diagenesis, these organisms sustain 30 to >
99% degradation of the organic matter deposited on the sediment surface (Henrichs
1992). In the absence of these players, the seafloor would be an enormous repository
of undecomposed organic matter. While most heterotrophic organisms metabolize
and respire the largest fraction of the available organic carbon to carbon dioxide
(CO2) through aerobic respiration with oxygen (O2) (for more details, see Sect. 2.3),
many meiofauna organisms can respire other compounds than O2 or can “hold their
breath” for long time (see Chap. 4).

Different benthic habitats obviously have different biogeochemical regimes.
Benthic biogeochemical processes (and their relative importance) mainly depend
on organic carbon content (both quantity and quality), on oxygen conditions and on
microbial communities. While most carbon becomes already degraded in the water
column, this process continues in the sediment fueled by a variety of electron accep-
tors (Fig. 2.2). The energetically most favorable carbon degradation process uses
oxygen and is generally carried out in the topmost oxic zone (Fig. 2.2). When O2

is gone, microbes start respiring nitrate (NO−
3 ), which, energetically, constitutes a

pretty good substitute of O2. At these depths, we already encounter the accumulation
of the so-called reduced compounds, products of redox respiration processes, such as
ammonium.When also NO−

3 is depleted, microbes get energy from the respiration of
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Fig. 2.2 Simplified
schematic chemical zonation
of marine sediments
indicating the specific
dominating respiratory
pathways. Modified after
Canfield and Thamdrup
(2009)

manganese and iron oxides, which produce and accumulate reduced dissolvedmetals
(Fig. 2.2). Below these layers called nitrogenous, manganous and ferruginous zones,
respectively, microorganisms use sulfate for energy, which is reduced to hydrogen
sulfide (Fig. 2.2). Finally, very specialized microorganisms (so-called Archaea) can
respire CO2 and use it to oxidize organic matter into methane (CH4).

Depending on latitude and water depth, the seafloor hosts very different quan-
tity and quality of organic matter for the heterotrophic meiofaunal organisms. For
example, shallower sediments contain muchmore organic material than deeper ones,
which is reflected in the oxygen penetration through the sediment layers (Glud 2008).
The higher the organic carbon content and lability, the less oxygen penetration;
in contrast, the lower organic carbon content, the more oxygen stays unused and,
thus, penetrates deeper (Glud 2008). Organic matter quality can be classified in
different types such as dead organic matter (algal detritus, zooplankton carcasses,
etc.), living organic matter like biogenic structures (mucus) and living organisms
(bacteria, protists) thatmeiofauna can feed upon. Thus, it strongly influences commu-
nity composition of organisms. Carbonic gases such as CO2 and CH4, which derive
from microbial and infaunal respiratory processes, are emitted from the sediment
to the water column and depending on the conditions may reach the atmosphere
and act as “greenhouse gases.” All carbon that is not respired to CO2 and CH4 by
benthic organisms is stored, preserved, sequestered, or also “buried” in sediments.
This carbon preservation fraction enters the long-term geological cycle. In themarine
environment, it was estimated to be less than 0.5% efficient, meaning that < 0.5% of
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modern oceanic productivity is preserved in sediment repositories (Hedges and Keil
1995).

Marine and especially coastal sediments are not only repositories for the nutritious
organic matter, but they are also important sinks for organic pollutants. Especially
important and environmentally relevant are organic pollutants such as microplas-
tics and pharmaceuticals. Nowadays, microplastics are becoming a common feature
in marine sediments (Kvale et al. 2020), especially in anthropologically impacted
coastal sediments. Whether meiofauna organisms will adapt and cope with this new
impact or alternatively become threatened is currently under debate (seeChap. 7). It is
important to note thatwhilewe start understanding the role ofmeiofauna in degrading
natural organic carbon (see Sect. 2.3, below), no studies have so far addressed
the impact that meiofauna bioturbation and activity may have on transformation
of microplastics and their ultimate fate.

In a pristine world, the benthic realm would represent a stable and self-regulated
environment mostly dominated by oxic processes with bioturbation, maintenance
reactions, predation, and other ecological pathways dominating. However, the
currently changing global conditions force us to resolve many open questions
arising from the emerging impacts, which affect biogeochemistry and ecosystem
functioning.

2.2 The Concept of Meiofauna bioturbation—The “Benthic
Fusion”

The term “bioturbation” sensuKristensen et al. (2012) defines howbenthic organisms
affect the sediments they inhabit and encompasses “all transport processes carried
out by animals that directly or indirectly affect sediment matrices.” Regarding these
processes infaunal organisms are often divided into five functional groups depending
on their modes of sediment reworking (François et al. 1997; Kristensen et al. 2012;
Maire et al. 2008):

• Gallery-diffusors,
• biodiffusors,
• upward conveyors,
• downward conveyors, and
• regenerators.

Infauna acting as gallery-diffusors andbiodiffusors normallymove sediment parti-
cles randomly over short distances through diffuse transport (Meysman et al. 2003).
On the other hand, downward and upward conveyorsmove particles between the sedi-
ment surface and deeper layers by non-local transport. While downward conveyors
feed at the sediment surface and relocate particles to the deeper egestion layer, upward
conveyors feed under the surface and move sediment particles in the opposite direc-
tion (Kristensen et al. 2012). Lastly, infaunal regenerators create particle movement
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to the sediment or to the overlying water column through digging or through passive
non-local transport resulting from burrow desertion (Gardner et al. 1987; Kristensen
et al. 2012).

In marine sediments, the community structure and diversity of infauna determine
the predominant mode and intensity of bioturbation. It seems that the impact of
bioturbation on ecosystem processes depends rather on functional richness than on
species diversity (Mermillod-Blondin 2011;Meysman et al. 2006; Solan et al. 2004).
However, it shouldbenoted that the above functional groups of bioturbators havebeen
defined based on macrofauna studies (Dauwe et al. 1998; Maire et al. 2016; Sandnes
et al. 2000). In contrast, for meiofauna, there is, as yet, virtually no information on
different bioturbative modes. Clarifying these should be a much needed and exciting
“frontier field” of future meiofauna research.

Regarding meiofauna, the organisms are often smaller than the surrounding sedi-
ment particles. Nevertheless, their population density affects sediment reworking.
Bioturbation by meiofauna (Fig. 2.3), or meiobioturbation, as an active process was
first identified and clearly distinguished from macrofauna bioturbation by Cullen
(1973): “meiobenthic bioturbation is a factor to be considered, in addition to
the better known physical and biological marine processes.” He suggested that
macrobenthic burrows and sediment reworking (back then called lebensspuren)
should be regarded as a short-lived phenomenon, which would likely not persist
for more than a few days, because of the constant activity and presence of ubiq-
uitous meiofauna, which would essentially destroy the results of this macrofauna
activity. Thus, bioturbation with its complex and ever fluctuating interactions, is
a strong example of “the benthic fusion” that is linking life histories of meio- and
macrobenthos. For decades, these realms have been considered as rather independent
fields.

Meiobioturbation is then a term that encompasses multiple biological processes
performed by meiofauna in sediments, that carry oxygen, nutrients and solutes from
the overlying water down to sediments (Coull 1999). These include the reworking
and aggregation of sediment particles, the formation of microburrows through the

Fig. 2.3 Visual impact of meiofauna bioturbation: left–low intensity: about 130 ind.10–3 m−2;
right–high intensity: about 850 ind.10–3 m−2 (Bonaglia et al. 2014). Original
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binding of particles withmucus and other substances and feeding activities that result
in ingestion and excretion of particles and macromolecules important for bacterial
production (Chandler and Fleeger 1984; Kristensen et al. 2012; Schratzberger and
Ingels 2018). The combined result of these activities impacts sediment hydrody-
namics and sediment physical properties such as permeability, granulometry, and
stability (Coull 1973; Schratzberger and Ingels 2018). Until recently the effects of
meiobioturbation were considered to be local and small scale, but work by Murray
et al. (2002) has indicated that such impacts on sediment proprieties are significant
at a global scale, due to meiofauna’s ubiquitous distribution and high abundances.

Meiofauna activities in the sediments can have important consequences for the
vertical biogeochemical zonation of sediments, especially the balance between oxic
and anoxic sediment processes (Bonaglia et al. 2020; Fenchel 1996). Because of its
impact on sediment porosity and permeability, meiobioturbation can attain an impor-
tant role in mediating the rates of nutrient cycling and biogeochemical fluxes (Aller
andAller 1992; Bonaglia et al. 2020, 2014). Especially the seminal work byAller and
Aller (1992), quantifying meiobioturbation, demonstrated that meiofauna enhances
solute transport by a factor of two when compared to defaunated sediments. Later,
these findings were confirmed by field studies that used inert tracers to estimate the
effect of meiofauna on solute transport (Berg et al. 2001; Rysgaard et al. 2000). This
quantification can be performed by measuring solute transport sustained by molec-
ular diffusivity (Ds) and biodiffusivity (Db) in sediments inhabited by meiofauna
compared to defaunated sediments governed only by molecular diffusivity. Meio-
fauna biodiffusivity is clearly enhanced by increasingmeiofauna abundance/biomass
(Fig. 2.4). Using variations of this approach,metazoanmeiofauna inArctic sediments
was found to increase transport of solutes by 1.5–3.1 times (Rysgaard et al. 2000).
In addition, by combining microchamber experiments, microsensor measurements
and empirical modeling, Glud et al. (1995) further demonstrated that large densities
of ciliates and nematodes enhance interstitial solute transport by a factor of 1.1 to
10× in surface sediments and benthic microbial mats (Glud and Fenchel 1999; Glud
et al. 1995).

Fig. 2.4 Relationship
between meiofauna
abundance and biodiffusivity
(Db). Yellow dots are from
Bonaglia et al. (2014) and
blue dots are from Rysgaard
et al. (2000). With
permission of Bonaglia et al.
(2020)
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More recently, a number of studies have directly quantified meiobioturbation
intensity. Bouchet and Seuront (2020) showed that in surface sediments reworking
rates by foraminifera can range between 11.5 and 65 cm2·m−2·day−1 depending
on the taxa. Extrapolating to population level, the authors estimate foraminifera
sediment reworking rates in intertidal mudflat habitats to be comparable to those
by polychaete and bivalve macroinvertebrate populations. In the same temperate
intertidal sediments, it was further demonstrated that foraminiferal bioturbation was
significantly reduced when individuals were exposed to high temperature regimes
above 32 °C (Deldicq et al. 2021).

Experimental approaches manipulating entire meiofauna communities have been
useful to quantify the effect of total meiobioturbation on oxygen distribution in the
sediment (Bonaglia et al. 2020, 2014). These works indicate that meiofauna signifi-
cantly increased oxygen penetration depth (OPD) when compared to sediments with
very low meiofauna abundances. The experimental impact of meiofauna abundance
on OPDwas, however, variable and ranging from 12% (Bonaglia et al. 2014) to 85%
(Bonaglia et al. 2020). OPD enhancement by meiofauna is likely to be in the higher
ranges of this interval, as the latter study simulatedmore natural environmental condi-
tions. In this latter experiment with undisturbed, recently hypoxic sediment, OPD
increased by 85% after 5 days when meiofauna was added, an effect mirroring the
rapid initial colonization by meiofauna. Even after 22 days, the OPD enhancement,
although decreasing, was still 62%, significantly indicating that meiofauna effects
on oxygen transport to deeper sediment layers is pervasive through time (Bonaglia
et al. 2020).

This change in oxygen dynamics has important structural and functional impacts
in benthic ecosystems. Meiofauna activities in the sediment not only significantly
change bacterial abundance, community structure and composition (Bonaglia et al.
2020; Lacoste et al. 2018; Nascimento et al. 2012; Näslund et al. 2010), they
also seem to modulate the biotic interactions between macrofauna and bacterial
communities (Lacoste et al. 2018). The ecological consequences of these meiofauna-
mediated alterations in the physical, chemical and biological characteristics ofmarine
sediments can have important consequences for global ecosystem processes and
biogeochemical cycles (Meysman et al. 2006) and are our next topic of discussion.

2.3 Meiofauna and Dominant Chemical Cycling Processes

2.3.1 Carbon Cycle

Most of the global marine carbon is produced and consumed in photic pelagic envi-
ronments (approximately 50 Pg C y−1) and less than 4% of this carbon reaches the
ocean floor (2 Pg C y−1), mostly in a highly degraded form (Martin et al. 1987;
Middelburg 2019). Despite this efficient pelagic degradation, marine sediments are
central to the functioning of global carbon cycle (Atwood et al. 2020; Middelburg
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2019). Since sediment-buried organic carbon can be sequestered for millions of
years (Estes et al. 2019; Mcleod et al. 2011), marine sediments harbor is one of
the largest carbon reservoirs on our planet and is inhabited by some of the most
efficient heterotrophic communities on Earth (Middelburg 2019). Settling organic
carbon and its mineralization is vital for the maintenance, growth and reproduction
of all benthic heterotrophs including meiofauna (Albert et al. 2021). However, to
empirically quantify the contribution of meiofauna for carbon cycling is not a trivial
task and needs a short methodological detour.

The amount of carbon mineralized in sediments depends on multiple factors
including organic matter quality and quantity, sediment type and the biological
communities living in these sediments (Glud 2008; Song et al. 2016). It is usually
indirectlymeasured by the rate at which total oxygen is taken up (TOU) or consumed.
TOU is a complex, summative parameter. It encompasses respiration by macro-,
meiofauna, and microorganism, but also oxygen transport processes resulting from
bioturbation, bioirrigation, and chemical oxygen demand. A subunit of TOU is the
diffusive oxygen uptake (DOU): the sum of oxygen consumption by microbial respi-
ration and chemical re-oxidation processes. Therefore, the difference between TOU
and DOU allows to estimate the oxygen consumption and carbon mineralization of
the benthic fauna, including bioturbation and bioirrigation as side effects (Glud 2008;
Kristensen et al. 2012).

The use of this comparative oxygen method allowed for a number of important
ecological insights in benthic metabolism: Oxygen consumption and carbon miner-
alization of the benthos strongly correlate with their biomass (Middelburg 2019).
In marine sediments, infauna normally accounts for 10–25% of the total biomass
and direct oxygen consumption. The most important components of the fauna-
mediated TOU are aerobic microbial activity and chemical oxidation, stimulated
by bioirrigation and bioturbation (Glud 2008).

In general, there is consensus that meiofauna only makes a small direct contri-
bution (a few %) to C mineralization (Schratzberger and Ingels 2018). Neverthe-
less, meiofauna’s contribution to carbon mineralization and oxygen consumption
seems to increase with water depth (Rex et al. 2006; Snelgrove et al. 2018). Using
benthic respiration data, meiofauna has been reported to account for similar sediment
oxygen demand as macrofauna (approximately 12% together) at depths between
500 and 1200 m in the Pacific Ocean (Leduc et al. 2016). Also, the meiofauna
biomass correlated positively with sediment oxygen demand in the same deep-sea
area (Pilditch et al. 2015). In shallow sediments, the importance of meiofauna in
sustaining carbon mineralization compared to that of macrofauna seems to follow a
seasonal pattern, i.e., increasing meiofauna activity in spring after the settling of the
spring bloom (Franco et al. 2010). Due to their fast metabolism and short generation
times (Coull 1999) in meiofauna, the time-lag between secondary production and
settling of phytodetritus is short (Olafsson and Elmgren 1997). This enables these
communities to quickly respond andmineralize carbon while macrobenthic densities
and biomass are still seasonally low.

As stated above, assessing meiofauna metabolism is a complex and demanding
task. While the above data are based on summative and indirect calculations, first
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direct measurements with microelectrodes yielded differing results. They indicated
that in earlier calculations total oxygen consumption was significantly higher than
in recent data derived from direct measurements of single individuals (Maciute et al.
2021). The modeling data of Braeckman et al. (2013) also suggested a lower carbon
turnover in meiofauna than assumed from earlier estimations. A relatively minor
direct contribution of meiofauna to carbon mineralization has been confirmed by
other studies that used isotope tracing to quantify direct carbon assimilation by
meiofauna in marine ecosystems (Middelburg et al. 2000).

Summarizing, these works confirm that the importance of meiofauna for organic
matter mineralization through direct grazing and carbon assimilation is limited. This
pattern is consistent and independent of the geographical area or carbon source.
Collected experimental and field data indicate that usually in marine ecosystems
meiofauna assimilate less than 3–4% of total labeled carbon from phytodetritus
(Nascimento et al. 2008, 2012; Olafsson et al. 1999), polar sediments (Braeckman
et al. 2018, 2019; Urban-Malinga and Moens 2006), and deep-sea ecosystems
(Moodley et al. 2005; Van Oevelen et al. 2012, 2006). However, this contribution can
become largerwhenmeasuring carbon assimilation in short-time frames (Middelburg
et al. 2000; Moodley et al. 2002).

Conversely, the facilitation effects ofmeiofauna tomicrobial processes involved in
carbon mineralization (aerobic degradation and denitrification) are high and gener-
ally recognized (Fig. 2.5). As mentioned before, mineralization of detritus is to a
large extent a microbial process. However, several lines of evidence show that this
process is enhanced by positive interactions between meiofauna and microorgan-
isms. Although difficult to quantify, these supporting processes mediated by meio-
fauna have been suggested in many earlier studies (Cullen 1973; Findlay and Tenore
1982; Moens et al. 2005) based on the degradation rates of carbon. More recently,
Nascimento et al. (2012) calculated, using radioisotope techniques, that this effect
could be as high as 50%, and that it depended on meiofaunal abundance (Fig. 2.5).
A comparable increase (30%) in the decomposition rate of macroalgal detritus was
found by Alkemade et al. (1992) to result from stimulation of microbial processes
by nematode activity.

This positive effect on carbon mineralization by microbial communities is
mediated through a number of different mechanisms:

• Meiofauna grazing on microbial populations can keep microbes in an active
growth phase, resulting in higher carbon requirement and consequent enhance-
ment of carbon mineralization rates (Alkemade et al. 1992; Lillebø et al.
1999).

• Meiobioturbation increases solute transports and breaking down of detritus that
facilitate microbial activity by catalyzing carbon degradation processes. These
providemicrobes with both carbonaceous substrate and critical electron acceptors
(Aller and Aller 1992; Bonaglia et al. 2014).

Additionally, high turnover rates of meiofauna increase the rate of nutrients
supply to microorganism with potential benefits to carbon degradation (Coull 1999)
and provide sediment microbial communities with important sources of carbon in
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Fig. 2.5 Conceptual scheme illustrating the main stimulatory effects of meiofauna activity
on microbial processes involved in carbon degradation such as aerobic mineralization and
denitrification. Original

the form of mucus (Coull 1973), fecal pellets, or carcasses which may enhance
heterotrophic microbial metabolism (Schratzberger and Ingels 2018).

2.3.2 Sulfur Cycle

In marine sediments, sulfur and oxygen cycling are closely linked. The interface
between the oxic zone and the sulfidic zone is an unstable, much fluctuating envi-
ronment that is often, but incorrectly called the suboxic zone. This is the zone where
molecular oxygen is absent, but metal oxides (iron and manganese) and nitrate may
still be present to keep the conditions oxidized. A better definition of sediment
layers is given through the geochemical conditions present in the sediment (Fig. 2.2;
Canfield and Thamdrup (2009).

In principle, when oxygen is completely consumed by aerobic respiration and by
other geochemical oxidation processes, anaerobic respiration processes take place.
Only when all other favorable electron acceptors (i.e., nitrate, manganese and iron)
have been consumed, sulfate is used in microbial respiratory pathways leading to the
production and potential accumulation of hydrogen sulfide (H2S) in this sulfidic layer
(Fig. 2.2). When O−

2 and/or NO−
3 are available, hydrogen sulfide can be re-oxidized

to sulfate by sulfide-oxidizing microorganisms (both Bacteria and Archaea).
Hydrogen sulfide, the main reductive product of sulfate metabolism, is toxic to

most aerobic meiofauna. At high concentrations, H2S is also toxic to the few special-
ized meiofauna with an aberrant metabolism such as certain protists and metazoan
meiobenthos like Loricifera that can live under fully anaerobic conditions (Fenchel
2012). Far more widespread in the sulfidic zone are aerobic organisms that can live,
often in high abundance, under slightly sulfidic conditions, the so-called thiobios
(Boaden and Platt 1971), e.g., marine nematodes and oligochaetes (see Muschiol
et al. 2015; Ott et al. 2004; Sogin et al. 2020); for more details, see Chap. 4 of this
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book, and overview in (Giere 2009). Often thiobiotic species have been found to live
in symbiosis with chemosynthetic bacteria where the partners interact in complex
metabolic pathways.

Beside this direct effect on sulfur cycling, it was previously suggested (Wetzel
et al. 1995) and only recently demonstrated thatmeiofauna, through their bioturbative
burrowing activity, have the capacity to push sulfides deeper down into the sediment.
Bonaglia et al. (2020) could demonstrate that in short-term periods (six days expo-
sure) meiofauna can enhance the thickness of the sulfide-free sediment layer by 68%
and decrease the sulfide flux by a factor of 22. In hypoxic sediments, meiofauna
can coexist with cable bacteria (Bonaglia et al. 2020). These multicellular filamen-
tous prokaryotes have a global distribution in marine sediments and are electrically
conductive. Cable bacteria transfer electrons vertically from different layers of the
sediment, thus connecting sulfide oxidation at deeper layers with oxygen reduction
at the sediment surface (Malkin et al. 2014). These ecosystem engineers can thus
take advantage and thrive on H2S and have a strong impact on the biogeochemistry
of hypoxic habitats (Pfeffer et al. 2012). The electrical coupling of H2S oxidation
to O2 reduction by cable bacteria can even occur over centimeter distances (Nielsen
et al. 2010), thus removing free H2S from sediments. It is not clear whether the above
described bioturbative effects on sulfur cycle are solely due to meiofauna or to the
combined activity of meiofauna and cable bacteria and require further investigations.

2.3.3 Nitrogen Cycle

Nitrogen (N) cycling is perhaps the most complex of all element cycles on Earth
and its transformation pathways from one chemical compound to another are almost
exclusively carried out bymicroorganisms (Canfield et al. 2005). Nitrogen cycling in
sandy and muddy sediments is particularly intense in the top mm layers, coinciding
with the oxic and nitrogenous zones (Fig. 2.6). In both the upper oxic and deeper
anoxic sediment layers, N cycling is initiated by microbial degradation of particulate
organic nitrogen (PON, e.g., algal detritus, fecal pellets, etc.). This involves the
breakdown of macromolecules (proteins, nucleic acids, etc.) into ammonium by the
ammonification process (Bonaglia 2015).

In oxic sediments, ammonium is either assimilated by benthic organisms or
oxidized while oxygen is reduced by the nitrification process, which leads to produc-
tion of nitrate (Fig. 2.6). Even in well-oxygenated sediments, anoxia usually occurs
after few millimeters (coastal sediments) or centimeters (deep-sea sediments) (Glud
2008). Thus, nitrification is generally constrained to the sediment surface, but can
become very important in deeper sediment layers in the presence of burrowing
animals (Kristensen and Kostka 2005). It has been suggested that meiofauna may
promote sedimentary nitrification by increasing solute transport and reactions in the
oxic zone of the sediments (Aller and Aller 1992). Later, this “enhancement effect”
bymeiofauna has been supported by experiments in Baltic Sea sediments (Prast et al.
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Fig. 2.6 Schematic of benthic N cycle and microbial pathways mediating it. Numbers on x-axis
represent the oxidation state of nitrogen (N atom) in the molecules. PON = particulate organic
nitrogen, DNRA = dissimilatory nitrate reduction to ammonium. With permission of Bonaglia
(2015)

2007) where the addition of ciliates caused higher nitrification rates and abundances
of nitrifying bacteria.

It is well documented that bacterivorous nematodes obtain nitrogen that greatly
exceed their requirements, which is then excreted in the form of ammonium (Lee and
Atkinson 1977; Wright and Newall 1976). Evidence from soil ecology has shown
that C/N ratios in bacterial-feeding nematodes (ca. 5.9) are 43% higher than those in
bacteria (ca. 4.1), and that the N surplus is secreted as ammonium (Ferris et al. 1997).
Ammonium, dissolved in the porewater, is then cycled through different pathways:

• it can be aerobically nitrified, i.e., converted in to nitrate by nitrification; this
process is generally stimulated by larger bioturbators such as polychaete worms
and bivalves with an intense effect on nitrogen cycling (Kristensen et al. 1985;
Kristensen and Kostka 2005).

• it can be directly assimilated by microorganisms;
• it can flow back to the water column;
• it may be sequestered by physical sorption onto clay sediment particles;
• it can be oxidized anaerobically through the anammox process (Dalsgaard and

Thamdrup 2002; Thamdrup and Dalsgaard 2002). This anaerobic nitrate removal
process is reaching high contribution of nitrogen loss in deep-sea sediments with
low organic carbon content (Thamdrup 2012);

• it can be temporarily removed, together with nitrate, by algal and plant uptake.

Regarding nitrate, bioturbators increase its diffusion rate down into the sedi-
ment from the upper water column. Nitrate also develops by nitrification inside
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the sediment (Kristensen et al. 1985; Pelegri and Blackburn 1995). Most nitrate,
however, is partly or entirely removed by the denitrification process—the respira-
tory reduction to nitrous oxide (N2O, a potent but overlooked greenhouse gas) or
dinitrogen gas—in the absence of oxygen and presence of electron donors such
as organic carbon, reduced iron or sulfide (Canfield et al. 2005; Thamdrup 2012).
The reaction couple “nitrification–denitrification” is a vital ecosystem process as it
converts biologically available nitrogen (ammonium and nitrate) into less bioavail-
able nitrogen (gaseous compounds) and thus alleviates ecosystem nutrient loading
and potential eutrophication of water bodies (Fig. 2.6).

Bonaglia et al. (2014) tested how meiofauna activities such as bioturbation and
bioirrigation affectmicrobial nitrogen cycling, and particularly the vital nitrification–
denitrification process: marine muddy sediments with abundant and diverse meio-
fauna double nitrogen loss rates compared to sediments with low abundances and
less diverse meiofauna. This stimulation can be related to a significant enhancement
of microbial nitrification–denitrification coupling. High abundance and biodiversity
of meiofauna, and particularly nematodes, may promote denitrification and nitrogen
loss via two mechanisms:

(1) excretion of ammonium (Ferris et al. 1997), which directly stimulates nitrifica-
tion;

(2) bioturbation andmixingof oxidized solutes such as oxygen andnitrate (Bonaglia
et al. 2014), which promote nitrification and denitrification, respectively. Espe-
cially important is the creation of more endogenous nitrogen at the oxic–anoxic
interface, where nitrifiers are mainly active, which fosters nitrification rates and
lead to enhanced denitrification rates.

The fact that certain meiofauna taxa can carry out nitrate respiration instead of
oxic respiration is a fascinating topic. Hentschel et al (1999) indicated that the nema-
todes Stilbonema sp. and Laxus oneistus have capacity to denitrify, and that the
process was carried out by their associated bacterial ectosymbionts (see Chap. 4).
However, incubation experiments with randomly picked Baltic Sea nematodes did
not result in any detectable denitrification rate (Bonaglia et al. 2014) suggesting that
the capacity for nematode-associated nitrate reduction is species-specific. Not only
prokaryotes (Bacteria and Archaea), but also eukaryotes belonging to the subphylum
Foraminifera (Risgaard-Petersen et al. 2006) and to the order Gromiida (Piña-Ochoa
et al. 2010) can carry out direct denitrification. Interestingly, these organisms, all
being Rhizaria within the SAR (Stramenopila, Alveolata and Rhizaria) supertaxon,
have the capacity to accumulate and respire with nitrate instead of oxygen, a trait that
was suggested being of ancient origin (Piña-Ochoa et al. 2010). This unique feature
enables some Rhizaria to respire even when favorable electron acceptors are absent
from the environment, i.e., when completely anoxic conditions are present. Recently,
it was further indicated that denitrification is the preferred respiration pathway in
some benthic Foraminifera from the Peruvian oxygen minimum zone (Glock et al.
2019).



2 Meiofauna Shaping Biogeochemical Processes 47

Nitrate is an efficient electron acceptor and the most favorable after oxygen. Thus,
many microorganisms and SARs compete for it. In highly eutrophic and organic-
rich sediments (An and Gardner 2002) and in hypereutrophic pelagic environments
(Broman et al. 2021), nitrate can be converted back to ammoniumby the dissimilatory
nitrate reduction to ammonium (DNRA). Contrarily to denitrification, this antago-
nistic nitrate reduction process retains bioavailable nitrogen in the ecosystem, with
strong implications for eutrophication (Burgin and Hamilton 2007). In short-term
experiments, abundant copepods from silty intertidal sediments enhanced DNRA
rates, possibly through interaction with bacteria and diatoms (Stock et al. 2014).

These links between meiofauna ecology and N cycling provide important insights
into marine benthic ecosystem functions. But they need further scrutiny by complex
manipulative experiments.

2.4 Knowledge Gaps and New Research Horizons

Meiofauna research in the field covered by this chapter has progressed significantly in
the last two decades. However, there is still a number of critically important questions
that today remain unanswered. Regarding meiofauna-biogeochemical research, we
suggest a number of frontiers that would contribute to resolve relevant knowledge
gaps.

Methane oxidation: A relatively unexplored, but relevant, question is the effect
of meiobioturbation on sediment to water fluxes of greenhouse gases like methane
(CH4) and nitrous oxide (N2O). While even the impact of macrofauna on these fuxes
is relatively unknown, there is virtually no information regarding meiofauna. As
for sulfides, meiofauna may have an analogous mitigating effect on these fluxes by
enhancing CH4 oxidation in the oxic and nitrogenous sediment zones (Fig. 2.6).
The need to decrease greenhouse gas emissions will necessitate a comprehensive
mechanistic understanding of these emissions from marine sediments, particularly
considering the role of meiofauna in carbon and nitrogen cycling.

Microplastics: The direct and indirect effects of meiofauna activity on emerging
contaminants polluting the ocean, is another topic that will require attention in the
future. For example, pollutants such as microplastics often constitute only a minute
fraction of carbon budgets in marine sediments, but when present in high concentra-
tions they may potentially affect ecosystem processes and carbon cycling (Ladewig
et al. 2021). However, there is almost no literature regarding microplastic ingestion
by marine nematodes or the consequences of such particle ingestion to meiofauna
populations and their overall carbon uptake and storage. Recent literature has shown
that microplastics can function as an additional carbon source to benthic microbial
communities not only due to their carbon content, but also through their capacity
of sorbing other organic contaminants (Ladewig et al. 2021; Nauendorf et al. 2016;
Romera-Castillo et al. 2018). There is a clear knowledge gap on the consequences
of increasing microplastic exposure to benthic community structure and function.
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Future work in this area should focus on investigating these hypotheses also in the
context of meiofauna-mediated microbial interactions.

Nitrogen cycling: As yet it is unknown, whether meiofauna have a stimulatory
effect on anaerobic ammonium oxidation and nitrogen fixation activity. The former
process would be particularly important in deep-sea sediments, where meiofauna
outcompetes macrofauna both in terms of numbers and in terms of biomass. Also,
the photosynthetic activity of micro-algae living at the sediment surface, and that of
bacteria associated with major plant communities can introduce a relevant amount
(15 Tg N y−1) of nitrogen (Capone 1983). Even inside sandy sediments, nitrogen
fixation was shown to occur resulting from the metabolic activity of sulfate reducing
bacteria. This mechanism was particularly intensive in well-mixed and bioturbated
sediments (Bertics et al. 2010). Thus, in shallow coastal sediments also, the usually
abundant meiofauna might strongly contribute to and influence nitrogen fixation
through their bioturbative activities.

Phosphorus and silicon cycling: The impact ofmeiofauna on these entire element
cycles has not been considered yet. Phosphorus is an element that limits primary
production in the ocean and controls eutrophication in coastal systems. Its benthic
cycling is largely governed by redox conditions such as oxygen and sulfide concen-
trations. Biogenic silica (a mineral containing silicon) is often abundant and well
preserved in aquatic sediments (Conley and Schelske 2001), but bioturbation can
return large quantities of this element to the water column where it may favor diatom
blooms.

2.5 Conclusions

We here evidence the important role of meiofauna in mediating biogeochemical
cycles in marine sediments. While in most contexts the direct, quantifiable effect
of meiofauna on carbon and nitrogen cycling is relatively small, the indirect role
of meiofauna in these processes through bioturbation and interaction with prokary-
otes at multiple scales is undeniable. Today, meiobenthos is acknowledged to be
an important mediator of sediment biogeochemical cycles and benthic ecosystem
processes, particularly in habitats exposed to anthropogenic pressure (hypoxic sedi-
ments, heavily polluted sediments, hypereutrophic environments) where they may
dominate the benthos in abundance and biomass. With the increase of such habi-
tats, the relationship between meiofauna and biogeochemical processes may attain
a decisive role. This cognition underlines that the knowledge gaps indicated above
represent crucial research frontiers. They should be urgently addressed not only for
allowing a deeper understanding of the functional cycles in marine ecosystems, but
also for assessing their hazards and potential resilience under continuous change.
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Chapter 3
Meiofauna and Biofilms—The Slimy
Universe

Nabil Majdi, Cédric Hubas, Tom Moens, and Daniela Zeppilli

Abstract Biofilms develop in and on any wet substrate from mountainous rocks
splashed by glacier-fed streams to deep-sea hydrothermal vents. Biofilms are not
only hotspots of microbial diversity, but they also house astonishing abundances
of meiofaunal organisms that find in a few-mm thick biofilm a proper shelter and a
wealth of food items. This tiny ‘slimy universe’ represents a coherent and predictable
framework to investigate responses of complex biological communities at convenient
experimental scales. Therefore in this chapter, we proposed to explore three ques-
tions to identify frontiers of meiofauna–biofilm research: (1) What are the Benefits
of Living in the Slimy Universe? (2) How doMeiofauna Contribute to Biofilm Func-
tions? (3)What are Applied Aspects of Research on Biofilm—Meiofauna? It appears
that meiofauna is key players in biofilm food webs, obviously finding there a diver-
sity of nutritive food items. However, studies should further investigate the feeding
preferences of the meiofauna and their role in fluxes of energy to the upper-ends
of those food webs (the macroscopic world). Biofilms offer shelter for meiofauna
against flow erosion, desiccation, temperature fluctuation, UV-radiation and preda-
tion. Whilst we have evidence of biofilm-compatible life-styles in some meiofaunal
taxa like chromadorid nematodes, we lack knowledge on how the microbial world
behaves when it is exposed to meiofaunal grazers. At small scales, meiofauna tends
to stimulate biofilm functions both directly when grazing on somemicrobes and indi-
rectly through poking holes in the cohesive matrix and through their excretion and
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secretions. However, to gain a comprehensive understanding of how benthos func-
tions we urgently need to assess at a larger-scale, the consequences of meiofaunal
control on microbially-mediated ecosystem processes. Finally, biofilm–meiofauna
interactions show encouraging premices for a number of rewarding environmental
applications like epuration of wastewater, remediation of xenobiotics, restoration of
contaminated sites and consolidation of sediments.

3.1 Introduction—The Slimy Universe

Biofilms arewhatmost of uswould call ‘slime’, butmore scientifically speaking, they
define a complex assemblage of microorganisms growing on a surface and becoming
so prominent that theymay form clearly observablemacroscopic structures. Biofilms
are probably the oldest and most successful form of collective life on our planet (the
fossil stromatolites of Shark Bay, Australia, are estimated to be 3.5 billion years
old, thus proving that extensive microbial biofilms had already evolved less than
0.5 billion years after the origin of the very first life on earth; Schopf et al. 2007).
Biofilms contain mind-blowing numbers of organisms (Flemming and Wuertz 2019
estimate 40–80% of ca. 1.2 × 1030 prokaryote cells on Earth which are organized
in biofilms), and they are extremely dynamic and diverse in their physico-chemical
structure, their ecological functions and their species composition (e.g. Decho 2000;
Consalvey et al. 2004;Romaní et al. 2004;Battin et al. 2016). This reflects the textural
diversity of the substrates they colonize and the environmental diversity they are able
to cope with (e.g. Cardinale et al. 2002; Lyautey et al. 2003; Boulêtreau et al. 2014).

Perhaps you have slipped whilst hopping from one slime-covered rock to another
across a stream or on a rocky shore or you observed extensive goldish or greenish
‘smears’ on the surface of intertidal muds (Fig. 3.1). More generally, when given
enough time, a biofilm layer will appear on almost any moist surface and in the
interstices of coarse and fine sedimentary beds. But complex biofilms may form in
the most unhospitable places for life as well: from biological soil crusts populated
by nematodes, tardigrades and micro-arthropods in the most arid deserts (Darby
and Neher 2016), to microalgal mats growing on snow or glaciers and populated
with an intriguing meiofauna community dominated by cold-tolerant tardigrades
and rotifers (Zawierucha et al. 2021). Biofilms also thrive in chemotrophic ecosys-
tems, e.g. hydrogen sulphide-based bacterial mats floating at the surface of ther-
momineral cave waters. Here, rich nematode populations were found to develop
ecological successions depending on bacterial density (Muschiol et al. 2015). Also
under extremeconditions of temperature andpressure,whitish chemotrophic biofilms
develop on the ocean floor around hydrothermal vents (Fig. 3.1). These biofilms
mostly comprise nematodes and assemblages of harpacticoid copepods (e.g. Dirivul-
tids) with a high degree of endemism (Zeppilli et al. 2018). Dirivultid copepods dwell
in bacterialmats growing on hard-substrates or are found associatedwith engineering
macro-invertebrate species (Gollner et al. 2016).
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Fig. 3.1 Some examples of epibenthic biofilms. Upper panel: microphytobenthic biofilms coating
cobbles in the Garonne River, France (photo N. Majdi). Middle panel: microphytobenthic biofilms
coating tidal flats near Yerseke, The Netherlands (BIO-Tide project, photo K. Sabbe). Lower panel:
chemotrophic biofilms coating rocks and clams near a deep-sea hydrothermal vent (Lucky Strike,
1700 m water depth, Mid-Atlantic Ridge, MOMARSAT 2012 cruise, photo courtesy of Ifremer)

When organizing into a biofilm, microbes (prokaryotes, unicellular eukaryotes
or both) secrete a matrix of exo-polymeric substances (EPS) providing a favourable
environment for growth. They can invest as much as 73% of their carbon produc-
tion into the formation of such matrices (e.g. Goto et al. 1999). The EPS matrix
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can capture, retain and transform dissolved ions, organic molecules as well as inor-
ganic and organic particles (e.g. Flemming 2016; Bonnineau et al. 2020). The self-
organization of biofilm organisms in space and time is remarkable, contributing to
form a collective, adaptative barrier against some external constraints like tempera-
ture, dessication, sheer stress, pollution and predation (e.g. Sabater et al. 2002; Neu
et al. 2003; Risse-Buhl et al. 2017) that would otherwise be quite detrimental to a
loosely organized community. When forming biofilms, microbes cooperate and/or
compete, but eitherway, biofilmsmay be viewed as ‘microbial forums’,where collec-
tive exchange of information and chemical communication is key mechanisms (e.g.
Decho 1990; Parsek and Greenberg 2005; Nadell et al. 2008). Indeed, biofilms have
been the focus of an intense scientific interest, the majority of it directed at their asso-
ciated economical benefits (e.g. wastewater mitigation, bio-production, biofouling,
coastal erosion prevention) and health issues (e.g. antibiotic resistance, infections).
Nevertheless, microbial biofilms are also emergingmodels in ecology as biodiversity
hotspots and for their provision of essential ecosystem functions such as photosyn-
thesis, decomposition of organic matter and recycling of nutrients (e.g. Battin et al.
2016).

But biofilms should not be viewed with a scope that is too narrowly focussed on
theirmicrobial constituents and their EPS secretions only.As dynamic and productive
interface ecosystems, biofilms are a food resource and a refuge for meiofaunal organ-
isms that are either permanently or temporarily associated with the biofilm matrix.
Not to mention that the interstitial meiofauna spends their entire life associated with
biofilms growing in the interstitial space. In most marine ecosystems, biofilms devel-
opping on hard-substrates are quickly and massively colonized by foraminiferans,
nematodes and copepods (e.g. Fonsêca-Genevois et al. 2006; Zeppilli et al. 2018). In
rivers, thick diatom biofilms may cover stones, cobbles and pebbles (Fig. 3.1), being
crowded with diatom-feeding nematodes and bdelloid rotifers filtering out drifting
particles (Kathol et al. 2011; Majdi et al. 2011, 2012a). The notion that meiofauna
can attain high abundances within a biofilm that is only a few-mm thick testifies to
the affinities of many meiofauna with biofilms: up to a dozen million individuals per
m2 were found on stones in the littoral of a lake (Schroeder et al. 2012), and up to
50 million individuals per m2 were found in diatom biofilms growing on the surface
of intertidal muds in salt marsh creeks (Moens unpubl.). However, whilst there is
well-grounded consensus about the importance of the ecological functions provided
by biofilms (e.g. Lock et al. 1984; Ford and Lock 1987; Winterbourn 1990; Mulhol-
land et al. 1991), suprisingly poorly investigated is the role of biofilm-dwelling
meiofauna in mediating these functions. Only recently, broader biofilm food web
concepts comprising bacteria, algae, protozoans, meiofauna and macrofauna have
been developped (Weitere et al. 2018).

Here, we argue that the slimy universe consisting of microbes and meiofauna is
one of meiobenthology’s frontiers but is not restricted to meiobenthology. It will
rather become a decisive domain in numerous facets of modern integrative aquatic
biology, for example:
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• In ecosystem ecology, we foresee that studying biofilm-dwellingmeiofauna could
shed more light on the fate of carbon, nitrogen and phosphorus (see Chap. 2).

• In functional ecology, one may learn more about the relationships between the
different components of diversity (taxonomic, trait-based) and the functioning of
ecosystems at a scale quite convenient for the experimentation–modelling–theory
loop.

• In sociobiology, much is to be understood about the different ways in which
biofilm-forming organisms and biofilm inhabitants communicate and interact
which each other.

• In ecotoxicology, studying biofilm-dwelling meiofauna would help refining the
toxicokinetics of pesticides which can be sequestered, transformed by the EPS
matrix, and then bio-accumulated by the grazing meiofauna (see Chap. 7), and
eventually transmitted to higher trophic levels (e.g. fishes).

• In restoration ecology, studying biofilm-dwelling meiofauna can hint at newways
to improve the purification capacities of hydrosystems.

• Last but not least, studying ecological interactions and adaptations of biofilm-
dwelling meiofauna can further improve our understanding of the evolutionary
consequences of processes such as competition, collaboration and communication
between phylogenetically distant organisms.

We foresee an immense potential for further research exploring the fascinating
set of meiofaunal interactions within the slimy universe. In this chapter, we try to
address three questions to pave our way beyond the frontier of meiofauna–biofilm
relationships:

• What are the Benefits of Living in the Slimy Universe?
• How do Meiofauna Contribute to Biofilm Functions?
• What are Applied Aspects of Research on Biofilm–Meiofauna?

3.2 What Are the Benefits of Living in the Slimy Universe?

3.2.1 Main Features of the Slimy Universe

The terms biofilm, slime, aufwuchs, periphyton, epixylon, epipsammon, epilithon,
microbial mats or even soil crusts may be found in the literature and may refer to
different assemblages of various viscosities and location (e.g. epilithon, or epilithic
biofilm, defines biological assemblages growing on stony substrates), yet there is
currently no consistency in the use of these different terms. However, whether it is a
film, a crust or a mat, growing on wood chunks, macrophytes or stones, the general
structure of these consortia has a number of similarities with, in the foreground,
the secretion of extracellular polymeric substances (EPS) or low-molecular weight
metabolites that literally form this ‘slimy universe’. These secretions support a signif-
icant number of functions that are common to the various assemblages considered
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and have been reviewed a number of times (e.g. Decho 2000; Wotton 2004; Battin
et al. 2016; Flemming 2016; Decho and Gutierrez 2017).

The idea that all biofilms share common features, and structure is well grounded
(e.g. Costerton et al. 1995; Stoodley et al. 2002; Lasa and Penadés 2006; Battin et al.
2007). All biofilms are indeed subject to attachment and dispersion constraints that
require adaptation to fluid dynamics (air flow for biological soil crusts, water flow
for aquatic biofilms), and all communities must protect themselves from external
deleterious factors (e.g. water or air pollution, temperature, salinity, desiccation,
UV-radiation and irradiance) by promoting the production of EPS. Thereby, biofilms
show similar successional patterns, with simple colonizer forms adhering to the
substrate whilst more complex forms emerge through time as a result of immigration
and diversification of the community (e.g. Jackson et al. 2001; Lyautey et al. 2005).

These assemblages are also characterized by a high level of complexity and coop-
eration (or competition) between the different members that compose them: for
instance, bacteria use intercellular signalling (aka. quorum sensing) to trigger the
complex biofilm succession process such as attachment, maturation, aggregation
and dispersal (Parsek and Greenberg 2005), and bacteria are involved in a number
of synergistic interactions with microalgae such as algal growth and flocculation
(Ramanan et al. 2016). But one may note that microalgae also secrete ‘allelochem-
icals’ (aka. toxins) to inhibit the growth of competitors for space and resources or
to deter their predators (Leflaive and Ten-Hage 2007). These complex cross-talks
between the different organisms composing biofilm assemblages are an obvious
common feature that has been described by vanGemerden (1993) as a ‘joint venture’.

Whilst the largely stochastic processes of death, reproduction and immigration
from source assemblages are important drivers of biofilm community assembly, inter-
actions such as grazing by protozoans and/or metazoans and quorum sensing are just
some of the factors that influence the structure and heterogeneity of biofilms and
microbial mats. Environmental features such as topography and pressures (season-
ality, desiccation, exposure to radiation, the existence of chemical and energetic
gradients) drive microorganisms to organize themselves in space (e.g. in laminated
microbial mats), to exclude each other (i.e. soil crusts, stromatolithes) or, by contrast,
to associate evenmore closely, adding a further crucial structuring force to the defini-
tion of biofilms. Thus, despite the resulting heterogeneity, from a conceptual point of
view, all these assemblages share some common key features and form microscopic
landscapes where EPS compounds represent the nodal point fromwhich the relation-
ships betweenmicroorganisms, but also betweenmicroorganisms andmeiofauna, can
be explained (Hubas et al. 2018).

In addition, not only doEPScompounds share commoncharacteristics, but species
assemblages are also extremely dynamic and can constantly change from one state to
another as environmental parameters fluctuate (e.g. Jackson et al. 2001; Boulêtreau
et al. 2006;Timoner et al. 2012). Purple bacterialmats growingonto coastal sediments
are a good example of this dynamics (Fig. 3.2). Indeed, during episodes of green algae
proliferation (i.e. green tides), the sediment becomes progressively anoxic as the
algae are deposited and degraded (Hubas et al. 2017). The biogeochemical gradients
are gradually modified until H2S becomes dominant on the sediment surface. Then,
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Fig. 3.2 Seasonal development of a photosynthetic microbial community in coastal sediments.
The community develops from a typical microphytobenthic mat to a purple anoxygenic bacteria
biofilm. From left to right, the images represent the evolution of the sediment surface from winter
(left) to the end of summer (right). The pink line indicates the approximate position of the purple
anoxygenic bacteria in the sediment core. The depth of the core is proportional to the thickness
occupied by the photosynthetic organisms. Adapted from Hubas et al. (2018)

very thick and almost monospecific biofilms, composed of Chromatiaceae of the
Thiohalocapsa genera, settle on the surface (Hubas et al. 2013). These bacteria,
which are usually present deeper inside the sediment, can then massively proliferate
at the surface. After the complete degradation of green algae, the purple biofilms
generally disappear, and a microbial mat more typical of sandy-muddy sediments
gradually returns, dominated by diatoms at the surface (Fig. 3.2).

Independent of the type of ecosystem (i.e. freshwater, marine, terrestrial), the
following sections will describe the numerous advantages for meiofauna organisms
to live in the microbial slimy universe. Notwithstanding the remarks made above,
for the sake of readability, the term ‘biofilm’ (which is the most widely used in
the literature) will be used throughout this chapter to refer to this complex and
multi-faceted ecosystem.

3.2.2 The Biofilm Food Web

The trophic ecology of meiofauna has been the subject of a number of publications
(see Chap. 5), and it is generally assumed that the quantity and quality of food
sources are primary factors in structuringmeiofauna communities. Biofilms represent
a wealth of food sources and beneficial nutrients for meiofaunal organisms. The
generous EPS production by biofilms fuels the growth of bacteria that in turn can
be grazed by certain species of meiofauna (Pascal et al. 2008; Wu et al. 2019).
Moreover, ‘drinking EPS soup’ itself has been considered a significant food source
to some meiofaunal organisms too (Decho and Moriarty 1990). Whilst this topic
surely requires more research, there is ample evidence that meiofauna uses the high-
nutritional quality cells present in the biofilm. For example, diatom cells are rich
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in essential polyunsaturated fatty acids (e.g. Eicosapentaenoic acid 20:5ω3), and
they allocate organic carbon into both triacylglycerol and store the polysaccharide
chrysolaminarin (Bohorquez et al. 2013; Gügi et al. 2015). Diatoms are known
to be an important resource for many meiofaunal organisms (e.g. Azovsky et al.
2005; De Troch et al. 2005; Moens et al. 2013). Also, cyanobacteria, producing
a large number of different monosaccharides, may represent another relevant food
source for the meiofauna (Mialet et al. 2013); and green algae (chlorophytes) have
been found to be exploited by the biofilm-dwelling meiofauna (Kazemi-Dinan et al.
2014; Neury-Ormanni et al. 2016). The combined use of stable isotopes and fatty
acids underlines the role of microphytobenthos and benthic bacteria as the main
food sources of nematodes and benthic copepods in intertidal mudflats (Wu et al.
2019; van der Heijden et al. 2019). In freshwater biofilms, dissolved and particulate
organic matter, microalgae (often diatoms) and bacteria are important food sources
for nematodes (Majdi andTraunspurger 2015; seeChap. 6) andothermeiofaunal taxa,
such as rotifers, tardigrades, water mites, harpacticoid copepods and oligochaetes
(Schmid-Araya et al. 2016).

Interestingly, bacterial communities also tend to form biofilms as a refuge against
predation by bacterivores such as free-living protozoans (Arndt et al. 2003). Amongst
the anti-predator strategies of bacteria, one can distinguish four categories (Matz
2009):

(1) adherence effects (hydrophilous properties or increased adherence to substrate
with pili, fimbriae and flagellae that will affect prey dislodgement),

(2) matrix effects (theEPS coating forms a physical barrier decreasing susceptibility
to phagocytosis, or a chemical barrier that disrupts chemotaxis in predators),

(3) density effects (bacteria use quorum sensing to form larger aggregations in
response to predation, triggering swarm effects or synergistic toxic effects on
predators) and

(4) diversity effects (the self-generated structural complexity in complex assem-
blages reduces susceptibility to grazing and a collaborative defensive strategy
with multiple anti-predator responses).

Some of those anti-predator strategies probably hold true when biofilms face
meiofaunal grazers as well, but this topic deserves more exploration. For example,
Chan et al. (2020) showed that biofilms of Pseudomonas aeruginosa produced an
exopolysaccharide to entangle and slow down nematode predators. Herman et al.
(2001) also suggested that the trapping of mud particles in the biofilm mucilage
decreases grazing efficiency, mainly by macrofauna but perhaps also by meiofauna
as well. Biofilms may interfere with the chemotaxis of nematode grazers using
volatile organic compounds (Höckelmann et al. 2004). The odds of complex chem-
ical communication in biofilms, such as the elaboration of anti-predator strategies by
a disparate assemblage of microbes, are a strong topic in microbiology.We argue that
this topic would gain ecological relevance by being more inclusive and comprising
the chemical interaction between microbes and their meiofaunal grazers.

Interestingly, meiofaunal grazers do not seem to be a major threat to biofilms, and
biofilms may even have some benefits in housing meiofaunal grazers. For example,
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evidence suggests that meiofaunal grazing ‘opens’ the biofilm matrix with positive
effects on resource fluxes,microbial growth and activity as detailed in Sect. 3.3 of this
chapter. Moreover, meiofauna has a relatively low grazing impact on biofilm micro-
phytobenthos compared to the grazing pressure of freshwater macro-invertebrates
(Majdi et al. 2012b; Graba et al. 2014). Correspondingly, nematode grazing rates
in estuarine and intertidal flats were found to be modest (Middelburg et al. 2000;
Van Oevelen et al. 2006). However, these observations seem to have a local validity
only: other calculations on feeding rates of dominant epistrate-feeding and deposit-
feeding nematodes from tidal flats suggested that their grazing rates could attain a
significant impact onmicrophytobenthic production, at least during spring (Rzeznik-
Orignac et al. 2003). This would correspond to a recent food web modelling study
(van der Heijden et al. 2020) in five different intertidal habitat types. It suggested
that meiofauna was more efficiently involved than macrofauna in transferring micro-
phytobenthic carbon to higher trophic levels. These contrasting data on the role of
meiofaunal grazing for benthic biofilms need further clarification.

Chemoautotrophic biofilms can be a source of food and support very high densities
ofmeiofauna organisms aswell (Zeppilli et al. 2018): in deep-sea hydrothermal vents,
Beggiatoa bacterial mats might constitute a feasible food source for some nematodes
(Zeppilli et al. 2019). By concentrating nematodes, these mats indirectly offer high
quality food source to other predators (such as to polynoid annelids). Furthermore,
some nematodes thriving in chemoautotrophic biofilms develop symbiotic associa-
tions with bacteria (for details see Chap. 4). This is the case in Oncholaimus dyvae,
which hosts various proteobacterial types on its cuticle and on surfaces of its gut,
suggesting some direct or indirect benefits (nutrition or detoxification).

Given its productivity, nutritional quality and the variety of resources it harbours,
the biofilm is, therefore, a place that promotes the development of a complex foodweb
comprising several trophic levels and ranging from opportunistic to selective feeders
(Weitere et al. 2018): it is not uncommon to find organisms with very specific diets.
In these microscopic food webs, microalgal carbon can be passed directly by grazing
to herbivorous nematodes such as Metachromadora remanei, Daptonema oxycerca
or even benthic copepods with a high degree of selectivity regarding diatom size,
but microalgal carbon could be also transferred indirectly to higher trophic levels
such as the predacious nematode Sphaerolaimus gracilis that feeds on the herbivo-
rous D. oxycerca (Rzeznik-Orignac et al. 2008). In rivers, photosynthetically-fixed
carbon has been found to quickly flow to Chromadorina bioculata nematodes and
chironomid larvae (Majdi et al. 2012b), although a significant part of photosynthetic
carbon also leaves the biofilm presumably through the drift of organisms or faecal
pellets, or the consumption of biofilm organisms by larger, mobile predators.

Many meiofauna species have a high degree of trophic plasticity to adapt to the
potential lack of their preferred food sources in the biofilm (Moens et al. 2004). As
shown by Riera and Hubas (2003), free-living nematodes may sometimes prefer an
allochthonous food source if it is more available or has superior nutritional qualities
than local food sources. As another example, in rivers, rotifers can attain record abun-
dances in biofilms growing on hard-substrates. Still, they may largely rely on filter-
feeding the water column rather than exploiting the biofilm (Kathol et al. 2011). The
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isotopic signature of thewhole benthic community can switch towards allochthony in
response to resource turnover, or to massive allochthonous inputs, such as observed
in forested streams where leaf litter falls in autumn (Majdi and Traunspurger 2017),
or in sheltered coastal bays upon massive inputs of macroalgal wrack (Riera and
Hubas, 2003). It appears that assessing who feeds on whom in biofilms is a complex
task, and we surely need more empirical knowledge to better understand the role of
meiofauna in the biofilm food web.

3.2.3 The Biofilm as a Habitat—A Safe Haven in Stressful
and Extreme Environments?

Aquatic systems are not always favourable places for the settlement of an exhuberant
fauna. For example, flow velocity (and sheer stress) is a recognized, predominant
driver of the structure of stream and river communities but also more generally in
zones exposed to water currents or wave disturbance. Water flow dictates biofilm
metabolic rate by limiting the thickness of the diffusive boundary layer of the mat
(e.g. Costerton et al. 1995). Flow determines exchanges with the water column like
the emigration/immigration rate of organisms (e.g. Peterson and Stevenson 1992;
Majdi et al. 2012a; Tekwani et al. 2013). Of course, the slimy nature of the biofilm
reduces considerably its vulnerability to shear stress, because the increased fluid
viscosity near the biofilm surface imposes a slower and less turbulent flow (Stewart
2012). Additionaly, the biofilm organisms may engineer the local architecture of the
mat, e.g. filamentous diatoms may form large ‘tufty’ structures on top of the mat
further reducing flow velocity and biofilm vulnerability to erosion (e.g. Battin et al.
2003; Besemer et al. 2009; Risse-Buhl et al. 2020).

From a macroscopic perspective, biofilms may appear unstable ecosystems,
constantly assembling and disassembling; however, at themicroscopic scale, they are
coherent and predictable frameworks in response to environmental forcing (Ceola
et al. 2014). Biofilms tend to shelter meiofauna against such fluctuations (Majdi et al.
2012a; Graba et al. 2014); however, not all species have a life-style compatible with
shear stress constraints. For example, Kreuzinger-Janik et al. (2015) showed that
exposure to wave action in a lake had a positive short-term effect on the density of
biofilm-dwellingmeiofauna by favouring the species able to anchor themselves to the
substrate like the chromadorid nematode Punctodora ratzeburgensis. Similar find-
ings were corroborated in ponds (Croll and Zullini 1972), in rivers with chromadorid
nematodes dominating during high flow periods (Majdi et al. 2011), and on epiphytic
and ‘hard’ substrates in coastal waters, where Chromadoridae again appear the best
adapted nematodes to maintain themselves when exposed to waves, probably by the
use of sticky secretions from their caudal glands (Fonsêca-Genevois et al. 2006).
Interestingly, nematodes can attain very high densities with a higher proportion of
gravide females in free-floating biofilms, suggesting that they may use those floating
biofilms as ‘biological rafts’ for downstream dispersal (Gaudes et al. 2006). Recent
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studies have also shown that biofilms growing on the carapace of loggerhead turtles
were housing an abundant and diverse meiofauna community (Ingels et al. 2020),
which suggests that those ‘moving biofilms’ may help meiofauna to disperse over
long distances.

In intertidal areas, it has been shown that biofilms can act as a protective
layer on the sediment surface against the disturbance imposed by the cycle of
emersion/immersion (Orvain et al. 2014), EPS composition playing a critical role
for protection against dessication and osmotic fluctuation. In streams and rivers,
biofilms buffer the effects of droughts (Costerton et al. 1995; Timoner et al. 2012).
Further comparingbiofilm-dwellingmeiofaunal communities,Caramujo et al. (2008)
observed a greater abundance of copepods, turbellarians, nematodes and larval
chironomids in rivers impacted by droughts that could be linked to changes in
algal composition and biofilm growth rate. As another example, Majdi et al. (2020)
observed thatmeiofaunal taxa showing themost outstanding capabilities to copewith
desiccation (like tardigrades) benefitted the most from the longest drought periods
in Mediterranean streams, and those dessication-resistant meiofauna might help to
quickly restore river functions after droughts. The mucilaginous nature of the EPS
matrix certainly helps biofilm organisms to withstand moisture fluctuations and also
provides additional shelter against UV- radiation (Elasri and Miller 1999).

3.3 How Do Meiofauna Contribute to Biofilm Functions?

3.3.1 Biofilm–Meiofauna Systems: A Trophic Powerhouse?

Studying the response of complex, multitrophic biofilm communities to environ-
mental fluctuations might help to better understand how changes in the structure
of species assemblages could transmit to ecosystem functions. Tackling such issues
implies a mechanistic understanding of patterns and processes at a scale compre-
hensive enough to link changes in species assemblages to the ecosystem functions,
which are mostly determined by microbes (Pusch et al. 1998). Biofilms are such a
landscapewhere all fundamental ecosystemcompartments (producers, decomposers,
primary consumers and predators) are at work. From a biogeochemical point of view,
biofilms form a micro-world producing its own organic matter through autotrophic
fixation of inorganic carbon (CO2) by algae and cyanobacteria and/or through uptake
of dissolved organic carbon (DOC) by decomposers (e.g. bacteria and fungi).

As an example, in headwater streams, subsidized by large amounts of
allochthonous DOC originating from soil aquifer and riparian forests (Gessner et al.
1999), benthic biofilms are hotspots of DOC degradation and CO2 production (Battin
et al. 2003; Romaní et al. 2004). Inversely, microphytobenthic (MPB) biofilms in
intertidal areas generally show a high autotrophic fixation of inorganic carbon (CO2),
but patterns of net MPB primary production vary strongly in these ecosystems as a
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result of the high variability and interactions of environmental factors which gener-
ally affect the estimation of realistic annual carbon budgets (Hubas et al. 2006;
Davoult et al. 2009; Haro et al. 2020). Producers and decomposers are also linked
through mutualistic interactions as producers fuel decomposers with labile organic
carbon sources, whereas producer growth is dependent on nutrient recycling ensured
by decomposers (Danger et al. 2013). In intertidal sediments, bacteria represent up
to 88% of benthic community respiration, but a significant part is also sustained by
meiofauna activity (Hubas et al. 2006). In addition, it has been shown in those inter-
tidal areas that the contribution of a given benthic compartment (i.e. bacteria or meio-
fauna) to total secondary production depends on productivity gradients (Fig. 3.3):
Contribution of heterotrophic bacteria to material flows is greatest in less productive
sandy sediments and decreases towards more productive muddy sediments in favour
of the meiofauna and macrofauna. This is presumably based on the permeable nature
of the coarser sediments, where organic matter is not retained but rapidly ‘drains
through’, not allowing time for meio- and macrofauna to use it.

The complex set of biological interactions occuring in biofilms can indirectly
affect carbon dynamics (see also Chap. 2). An illustrative example might be the

Fig. 3.3 Contribution of the different benthic heterotrophic compartments to total secondary
production (in gC m−2 y−1) along a productivity gradient. Stations A, B and C correspond to
muddy to sandy sediment (median grain sizes are, respectively, 132 ± 54, 215 ± 43 and 251 ±
10μm) of the Roscoff Aber bay andW to theWimereux sandy beach (median grain size ~ 200μm).
The total secondary production for each site has been reported at the bottom of the graph. Bacterial
production was estimated by the incorporation of radiolabelled thymidine, meiofauna and macro-
fauna production which were estimated by measurement of the biomasses and biovolumes. All
measurements were converted to C units using conversion factors. Unpublished results adapted
from Hubas (2006)
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top-down effect of nematodes on the species composition of both the diatoms and
bacteria of an artificial biofilm reared in laboratory conditions (D’Hondt et al. 2018).
There are more examples of studies where nematode grazing, even at relatively low
rates, may affect the composition (e.g. DeMesel et al. 2004, 2006) or the productivity
of microbial assemblages (Traunspurger et al. 1997), but the functional implications
are not always well understood.

As another example of top-down controls, we may question the role of ‘top-
predators’. In biofilms, those top-predators may be in the millimetre range; still,
they are expected to perform the same important functions than in other ecosys-
tems: triggering trophic cascades, engineering habitat properties or modifying the
behaviour of prey organisms (e.g. Schmitz et al. 2010; e.g. Terborgh and Estes 2010).
In benthic environments, there is some evidence that microscopic top-predators have
effects on ecosystem processes and community structure through direct predation but
also through indirect pathways such as mucus secretions (e.g. Riemann and Helmke
2002; Majdi et al. 2014, 2016; Wilden et al. 2019), excretions (De Troch et al. 2010),
construction of burrows (Ings et al. 2017), displacement of sediment particles (Majdi
et al. 2015) or dispersion/displacement of microbes (Riemann and Helmke 2002).

There is much debate about how food web architecture and how biodiversity
influence emergent properties of ecosystems, notably their productivity and stability
(e.g. Johnson et al. 1996; Worm and Duffy 2003; Cusson et al. 2015). Tackling this
question is essential to understand and to anticipate and remediate the ecological and
societal consequences of global declines in species diversity (Estes et al. 2011). We
envisage that biofilm–meiofauna systems could be highly suitable models to tackle
such questions given their amenability to experiments and the diversity of biological
interactions at play.

3.3.2 On the Roles of Poking Holes

Akey aspect of biological interactions is the ‘engineering’ effect that animals have on
their habitats. Like beavers do when creating reservoirs by damming rivers, worms
can turn a homogeneous seabed landscape into a mosaic of holes, burrows and exca-
vation patches. Whilst the important ecological (and evolutionary) consequences
of bioturbation by macrofauna are well known (Meysman et al. 2006), the conse-
quences of meiofaunal bioturbation (which might be specifically coined ‘microbio-
turbation’ or ‘meioturbation’) are comparatively little studied. With their worm-like
morphologies, many meiofaunal species are well adapted to an interstitial life-style,
not necessarily pushing aside large sediment particles when moving. But they rather
move through interstices and through biofilm matrices. By doing so, they probably
modify the cohesiveness (and permeability) of biofilms, thereby affecting the pene-
tration of light and solutes in deeper layers (Pinckney et al. 2003). In addition, the
way meiofauna ingest or displace microbes, whilst they forage may further affect the
composition of biofilm assemblages.



68 N. Majdi et al.

Collectively, ‘meioturbation’ has been suggested to have a significant and often
stimulatory effect on interstitial biofilm functions (see Chap. 2). Regarding epiben-
thic biofilms, a similar stimulation of ecosystem functions has been measured in the
presence of meiofauna. For example, Mathieu et al. (2007) used microelectrodes to
measure oxygen profiles in artificial diatombiofilms incubatedwith andwithout free-
living nematodes. They showed that with nematodes present (density threshold > 50
ind cm–2), biofilms produced more oxygen under daylight, and even deep biofilm
layers were found to produce oxygen at a higher rate than without nematodes. A
similar effect was observed by D’Hondt et al. (2018), where nematodes have been
found to further alter the community structure and increase the production of diatom
biofilms. In another experimental study, the effect of bacterivorous nematodesDiplo-
laimelloides meyli and D. oschei on the EPS production by biofilm bacteria and
diatoms was investigated (Hubas et al. 2010). Despite expected grazing by nema-
todes on bacterial cells and on microbial EPS, the biofilm structure (including EPS
production) was always stronger in the presence of nematodes. This indicates that
links between meiofauna and EPS are not straightforward and include a number of
retro-control loops, whichmake the relationship highly unpredictable.Whether these
stimulations of biofilm functions are mainly due to grazing, meioturbation or both,
need more studies, but there is consensus that the presence of meiofauna stimulates
key biofilm functions.

More specifically, our knowledge on the different suites of foraging behaviour
in meiofauna that trigger specific engineering effects is quite fragmentary. Some
congruent observations have reported interesting behaviours, e.g. in chromadorid
nematodes, that use sticky secretions to collect surrounding particles and form small
‘nutritive’ pellets thatmay further be used as a shelter or food supply (Meschkat 1934;
Croll and Zullini 1972). These pellets might affect the biofilm architecture (and func-
tions), given the outstanding abundances that biofilm-dwelling chromadorids may
attain on hard-substrates. Other biofilm-dwelling organisms are known to build tubes
or burrows lined with silky secretions. These burrows modify biofilm architecture
locally (Lock et al. 1984; Pringle 1985) and probably affect the distribution of micro-
bial organisms as well. Turbellarians secrete substantial amounts of mucus when
moving, and thereby, they might be expected to have conspicuous effects on biofilm
and sediment cohesiveness (like in their macroscopic relatives Majdi et al. 2014).
The suite of behaviours that leads to meioturbation effects needs to be assessed more
thoroughly and in a broader variety of taxa, in order to obtain a better understanding
of its influence on benthic processes.

3.3.3 On the Roles of Mucus

Another potential contribution ofmeiofauna to biofilm function is the ‘priming effect’
(PE) due to the use of labile exudates (e.g. faecal pellets, mucus) boosting the decom-
position of recalcitrant organic matter bymicrobes. PE, as first studied in soil ecosys-
tems, has been defined by Kuzyakov et al. (2000) as ‘strong short-term changes in
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the turnover of soil organic matter caused by comparatively moderate treatments of
soil’. The influence of PEs for DOCmineralization in aquatic ecosystems is a timely
topic (Guénet 2010), but studies have mostly assessed PE triggered by the mucilage
of autotrophic organisms like diatoms (e.g. Danger et al. 2013).

Here, we argue that PE triggered by animal secretions could be ideally studied
using meiofaunal models. Indeed, several species of nematodes secrete mucus
trails when moving, and these trails become quickly colonized by bacterial clus-
ters (Riemann and Helmke 2002; Moens et al. 2005). This suggests that nematodes
are able to displace or ‘prime’ the bacteria that surround them or even specifically
‘prime’ the microbiome they carry with them. These bacteria find ideal conditions
for their development in the mucus trails. The nematodes may benefit from this
mechanism by ‘turning back’ and grazing on previous trails. Riemann and Helmke
(2002) proposed the hypothesis of such a facilitative interaction between nematodes
and bacteria: the enzyme-sharing concept. On the one hand, the nematodes disperse
bacterial colonies and the cellulolytic activity of the mucus provide a labile carbon
source, which would stimulate bacterial growth (i.e. PE triggered by animal secre-
tions). On the other hand, the proteolytic activity of the bacteria (as well as potential
direct nutrition of the nematodes on the bacterial clumps) would be beneficial for
the nematodes, which depend on labile nitrogen in their environment. Referring
to green algae, Warwick (1981) noticed that the nematode Praeacanthonchus was
unable to ingest the ‘square’ active Tetraselmis cells but could feed intensively on
its slimy spherical resting cells. Although the ecological relevance of these mecha-
nisms at larger scales needs to be confirmed, priming effects triggered by meiofaunal
exudates or external enzymatic-symbioses could change the way we conceptualize
the sociomicrobiology of biofilms.

3.4 Applied Research on Biofilm–Meiofauna

3.4.1 Improving Water Purification Processes

Inland waters and coastal areas are increasingly impacted by dissolved pollu-
tants (heavy metals, pesticides, pharmaceuticals) as well as by particulate matter
(fine-sediment, organic particles, micro-plastics, nano-materials; see Chap. 7) from
anthropogenic activities. Biofilms can, depending on the composition and perfor-
mance of their communities, affect the toxicokinetics (absorption, distribution, bio-
transformation and elimination) of those contaminants (Bonnineau et al. 2020).
Moreover, some species of annelids, nematodes and rotifers can massively colo-
nize contaminated biofilms or thrive in sludge from sewage treatment plants (Fried
et al. 2000; Fraschetti et al. 2006;De-ming andXiao-shou 2014;Monteiro et al. 2019;
Bighiu et al. 2020; Rohal et al. 2020). Studies explored the hypothesis that the pres-
ence of meiofauna would improve the filtration rate and the lifespan of gravity-driven
membrane filtration (GDM) as the meiofaunal activities tend to reduce the clogging
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of membranes (Derlon et al. 2013; Klein et al. 2016; Lee et al. 2020). It could be
shown that the flux of water could be significantly enhanced: e.g. + 119 to 164%
flux in the presence of nematodes,+ 50% in the presence of oligochaetes. Studies in
laboratory microcosms have considered the addition of meiofauna to biofilms (e.g.
Nascimento et al. 2012; Bonaglia et al. 2014; Liu et al. 2015, 2017, 2021). Results of
these studies show that in the presence of more meiofauna, biofilms denitrify more
and retain more dissolved organic carbon.

In the realm ‘biofilms–microorganisms–meiofauna’, our knowledge is often
minimal. Basic questions of high theoretical relevance are still open, although they
often represent the ‘natural’ pathways biofilms cope with chemical stress:

• To what extent will the contaminants become adsorbed by the EPS matrix,
accumulated, metabolized to microbial cells or transferred to the ‘biofilm-fauna’?

• Does meiofauna living in biofilms represent a sink or a source of harmful
compounds that is transmitted (bio-accumulated) to the higher levels of the food
Web?

• To what extent become (micro)plastic particles, trapped in biofilms and subse-
quently ingested by the meiofauna (Fueser et al. 2020)?

In experimental designs, one could selectively remove biofilm-dwelling grazers
known to accumulate problematic contaminants. One could also apply as ‘useful’
indicators those meiofaunal taxa whose sensitivity, resistance or even accumulation
capacity is known. Considered at different operational scales (from use in private
aquariums to wastewater treatment plants), biofilm-dweeling meiofauna would indi-
cate problematic pollutants or the restoration status of contaminated sites. Finally,
one could assess the potential of self-purification provided by biofilms and their asso-
ciated meiofauna. Based on these results, this specialized biota could be applied, e.g.
for mitigating contaminations in wastewater effluents.

3.4.2 Biogenic Stabilization

The increased mobilization of fine sediments in river and coastal ecosystems due
to deforestation and urbanization is a threat to benthic ecosystems. The resulting
massive deposition of fine-sediment increases accumulation of particulate organic
matter and tends to clogg interstitial spaces (Wood and Armitage 1997; Goatley and
Bellwood 2013). Schratzberger and Ingels (2018) conceptualized the ambivalent
role of meiofauna in the process of sediment stabilization: meiofauna may increase
sediment cohesiveness by increasing EPS production by microbes or by secreting
sticky mucus and burrows. On the other hand, meiofauna may decrease sediment
cohesiveness when grazing on or moving through the interstitial biofilms. Empir-
ical experiments have supported both aspects: For example, Hubas et al. (2010)
showed increased sediment compaction by nematodes stimulatingEPSproduction by
bacteria, whereas De Deckere et al. (2001) found decreased stabilization by grazing
and bioturbating effects of meiofauna. This exemplifies the need of gaining more
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evidence on the impact of meiofauna on sediment stabilization in order to formu-
late better predictions about the fate of sediments in aquatic ecosystems. Further-
more, meiofauna may affect both the permeability of biofilms for dissolved parti-
cles and the chemical diversity of biofilm exopolymers. Particles entering the EPS
matrix may become affected and/or entrapped on hard-surfaces under the influence
of meiobenthos. Unravelling such meiofauna-mediated processes of sediment stabi-
lization represents potentially high relevance and a frontier that needs urgent investi-
gation. More knowledge about the relation between meiofauna and EPS production
or composition in biofilms may lead to important future applications, e.g. mitigation
of fine-sediment deposition or erosion. Similarly, the role of biological interactions
at a meiofaunal scale in the restoration of ecotones (e.g. mangroves, riparian forests)
would help to reduce sediment displacement—a research frontier of high future
relevance.

Finally, biogenic stabilization has also been suggested for applications trying
to mitigate desertification. It may be considered an anecdotal suggestion, but recent
technologies have beenproposed sprayingnanoscopic tubular frameworks inoculated
with eutrophicated lake water containing cyanobacteria to stimulate the development
of a biological crust which slows down the erosion of superficial sand layers (Li et al.
2020). Would those ‘artificial ecosystems’ be sustainable and could they benefit
from the presence of desiccation-resistant meiofauna like tardigrades or nematodes
to initiate trophic retro-controls or to further spread the algal crust vertically?

3.5 Frontiers and Future Horizons

Biofilms are fascinating microbiological structures that show some analogies with
multicellular organization. Since meiofauna are important components in biofilms,
we explored in this chapter three questions to identify frontiers of meiofauna–biofilm
research:

(1) What are the Benefits of Living in the Slimy Universe?
(2) How do Meiofauna Contribute to Biofilm Functions?
(3) What are Applied Aspects of Research on Biofilm–Meiofauna?

The short history of this scientific fieldmay account for the frequent lack of evident
answers. However, we may conclude identifying the following scientific frontiers in
this field:

• Meiofauna benefits from biofilms in two ways: firstly, biofilms are a hotspot
of microbial diversity and thus constitute an ideal resource for microbivorous as
well as predatorymeiofauna. However, we needmore evidence to differentiate the
relative importance of each resource as diet of meiofaunal organisms, andwhether
microbes may adopt defence strategies to repel meiofaunal grazers. Secondly, we
have evidence that biofilms offer shelter to meiofauna against flow disturbance
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and moisture fluctuation. Biofilms probably also protect meiofauna from long-
term desiccation, UV-radiation, chemical stress and predation effects, but these
topics are little studied so far.

• Meiofauna contributes to biofilm function: when grazing on microbes meiofauna
affect microbially-mediated processes. Thus, future insights on the feeding selec-
tivity of meiofaunal organisms would reveal how top-down controls can structure
biofilm functions.

• Meiofauna acts also indirectly on biofilm functions through poking holes in the
cohesive matrix, as well as emitting secretions. Overall, these indirect controls
have the potential to stimulate microbial processes. As bioturbation increases
solute fluxes, labile secretions tend to stimulate the remineralization of recalcitrant
organic matter. These fluxes are, thus, mostly bottom-up driven. But without
quantification of those controls at larger scales we are not yet in the position to
refine these animal-effects on ecosystem processes.

• The domain of biofilms and meiofauna has a large potential for environmental
applications (e.g. epuration of wastewater, remediation of xenobiotics, restoration
of contaminated sites, sediment stabilization). Details in this complex relationship
between meiofaunal grazers and their biofilm habitat–resource are, as yet, mostly
unexplored.

• Based on the small-scale engineering capacities of a biofilm-dwelling meio-
fauna community, technical applications for their use are probably countless,
and there are many fields that could benefit from the study of meiofauna–biofilm
relationships with a high potential of rewarding exploitation.
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Chapter 4
Meiofauna Meets Microbes—
Chemosynthetic Symbioses

Jörg Ott, Silvia Bulgheresi, Harald Gruber-Vodicka, Alexander Gruhl,
Lena König, and Nikolaus Leisch

Abstract Nutritional symbioses of meiofauna with chemosynthetic bacteria occur
across the globe, from deep-sea vents and seeps to shallow water sediments. The
bacteria provide nutrition to their hosts, and the hosts provide both habitat and the
efficient bridging of long redox gradients. In this chapter, we summarize our current
understanding of these intricate symbioses, identify knowledge gaps and point out
future-oriented research directions in this expanding field. The peak species diver-
sity of meiobenthic hosts of chemosynthetic bacteria is found in shallow water sedi-
ments towards the tropics, however in only a few higher taxa, including ciliates,
platyhelminths, nematodes and oligochaetes. The degree of association ranges from
ectosymbioses, subcuticular endosymbioses to intracellular endosymbioses. Inde-
pendent of the association type, several modes of nutritional transfer have been
documented, even a transfer of nutrients via outer membrane vesicles. The mode
of symbiont transmission is independent of association type or nutrient transfer. It
can be strictly vertical or a mixed mode depending on the host group, but largely
remains unknown. The symbiotic life style has profound influences on morphology
and functions in both partners. The mouth and several other key structures related to
food uptake or excretion are reduced in members of all host phyla. Several bacterial
partners exhibit a strongly modified cell biology with longitudinal division as an
adaptation to secure contact with the host. The host immune system, responsible for
establishment and maintenance of the symbiotic association, appears highly specific
and except for the oligochaetes, allows only one microbial partner across the host
phyla. The receptor and effector molecules that ensure the selective presence of the
“right”, and the effective defence against the “wrong”, microbes appear convergent
for both nematodes and oligochaetes. In both hosts, the symbionts appear integrated
into the host defence. Diverse carbon and energy sources are exploited and the ability
to use small organic molecules as carbon source puts the strict autotrophy of these
symbiotic consortia in question. Mixotrophy and even heterotrophy are possible,
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and in addition, anaplerosis seems to play an important role in inorganic carbon
acquisition. Among the symbionts, the Gammaproteobacterium Ca. Thiosymbion
stands out with an extremely broad physiological spectrum that includes nitrogen
fixation in some hosts. This flexibility has enabled it to associate with phylogeneti-
cally unrelated host groups and adopt all possible life styles, from ectosymbiont to
intracellular endosymbiont. Frontiers and challenges of future research in this field
include the still unresolved taxonomic diversity of these symbioses, their puzzling
evolutionary dynamics, the lack of cultivable representatives, and the unknown scale
of their global influence in permeable sediments, one of the largest global habitats.

4.1 Introducing a Special Relation

The living world runs on solar energy: photosynthesis is the dominating process
that converts oxidized inorganic carbon into reduced organic carbon compounds
as the building blocks of life. However, the greater part of the surface, and even
more of the volume, of the biosphere is lightless. Life in the vast volume of water,
sediment and crustal rock below the euphotic zone depends on the production by
photosynthetic organisms inhabiting ecosystems that receive enough sunlight where
a surplus build-up of organic matter can be sustained.

Whilst the existence of alternative ways to reduce inorganic carbon for produc-
tion of organic matter has been acknowledged for some time, it was considered
an insignificant part of global production. The discovery of abundant deep-sea hot
vents where microbes utilized reduced compounds to incorporate inorganic carbon
renewed the interest in such alternative ways of carbon fixation (see Chap. 2). The
main pathway is the oxidation of reduced sulphur compounds, mainly hydrogen
sulphide, as an energy-yielding process. Many of the microorganisms involved in
this chemolithoautotrophic production live in symbiosis with animals. They provide
a plentiful, stable and safe environment for their bacterial partners and in turn are
nourished by the microbial production. The ecological and physiological processes
that evolved in these symbioses seemed to be restricted to the lightless deep sea.

However, in the wake of the discoveries in the deep ocean, scientists turned their
attention to shallow water ecosystems where reduced compounds, such as sulphide
are abundant on sheltered sedimentary coasts and in subtidal shelf areas. These habi-
tats revealed an astonishing diversity of animal-microbe symbioses comparable to
those in the deep sea (Dubilier et al. 2008; Sogin et al. 2020). Surprisingly, both hosts
and symbionts differed from those found in the deep. At deep water vents and seeps
the hosts of thiotrophic symbioses are represented bymacrofauna,whereas in shallow
water, they belong, with the exception of bivalve molluscs, to the meiobenthos,
including various taxa of e.g., Ciliata, Nematoda, and Annelida (Fig. 4.1).

Higher taxa that make up the chemosynthetic meiofauna are different from those
in the deep sea. Of the four groups included in this chapter, amongst Platyhelminthes
and Nematoda so far, no symbiotic representatives have been found around deep-
sea hot vents and seeps, although symbiotic nematodes occur in bathyal habitats.
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Fig. 4.1 Overviewof chemosyntheticmeiofauna.Today, awide rangeof chemosynthetic organisms
live in sediments surrounding seagrass meadows and coral reefs. Many of the taxa are small, like the
gutless oligochaetes (Olavius and Inanidrilus), mouthless flatworms (Paracatenula) and nematodes
(Stilbonematinae with ectosymbionts, mouthless Astomonema with endosymbionts), and single-
celled ciliates (Kentrophoros). These habitats also support larger fauna, such as clams (lucinids
and Solemya, latter not shown). Image credits: Seagrass meadow, Y. Sato; Olavius algarvensis, A.
Gruhl;Kentrophoros, B. K. B. Seah; and Stilbonematid, U. Dirks. Modified after Sogin et al. (2020)

Symbiotic Ciliata and Annelida are represented by taxonomic groups that differ
from those in deep water.

Complex animal life evolved with the Precambrian oxygenation of the oceans
some 850–540 Ma ago, (see Chap. 1). The intimate relationship with bacteria that
may have existed a billion years prior to the origin of the eukaryotic cell shaped
the evolution of animal diversity to the present day (McFall-Ngai et al. 2013). The
oldest chemosynthetic symbioses documented so far are the marine catenulid flat-
worms (Paracatenula) and lucinid mussels, with estimated ages of 500–400 million
years (Gruber-Vodicka et al. 2011; Stanley 2014). The fossil lucinids were probably
already associated with chemosynthetic symbionts as they are showing imprints of
enlarged gills that, in the present relatives, house the symbionts (Stanley 2014). With
the evolution of terrestrial vegetation and export into coastal sediments, available
carbon and energy sources diversified. A second major organic input was provided
by the evolution of seagrasses in the Late Cretaceous Tethys Sea (65–100 Ma). It
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should be noted that chemosynthetic production in these shallow water systems is
not independent of light and photosynthesis since the energy for inorganic carbon
fixation is ultimately derived from bacterial decomposition of organic matter.

Numerous meiofauna organisms have developed mutualistic associations with
microbiota enabling the colonization of new niches. This process resulted in the
evolution of novel metabolisms and tissue adaptations. In these associations, micro-
bial symbionts colonized meiofauna hosts via various routes. The fact that most
multicellular organisms harbour a variety of microorganisms, the microbiome, is
already textbook knowledge substantiated by a great number of studies. In meio-
fauna, however, such studies are rare for those organisms that are not in an obvious
symbiotic relationship. A study on the microbiome in marine free-living nematodes
(Schuelke et al. 2018) did not find correlations with either geographic location,
habitat, feeding type, or phylogenetic position of the host, but on host species level
identified putative pathogenic, parasitic, or symbiotic interactions.

4.1.1 Why Study Chemosynthetic Symbioses in Meiofauna?

There are both advantages and drawbacks when choosing meiofauna as the preferred
research objects.

Advantages are:

(1) Easily accessible, most known chemosynthetic meiofauna live in shallow water
where no costly equipment, ships, robots, submersibles, etc., are needed for
sample collection.

(2) All stages of integration of the microbial symbiont into the holobiont are
represented: ectosymbiosis, extracorporal to intracellular endosymbiosis.

(3) High diversity, all types and many species may be found together in a
few handfuls of sediment, raising the question of niche partitioning/niche
diversification.

(4) Sampling is possible without exposing the objects to excessive stress (temper-
ature, pressure) as is the case in deep-sea sampling.

(5) Possibility of keeping the objects alive for extended periods under near-natural
conditions.

(6) Ease of experimental manipulation (small size, no high-pressure chambers
needed); possibility of work with high numbers of individuals increases
statistical power of arising data sets.

Disadvantages are:

(7) Small size/low biomass, but genetic and biochemical techniques become
increasingly sensitive.

(8) Identification is often difficult, tedious, requiring microscopical preparations;
knowledge of specialists is necessary, risk of misidentification.
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(9) Information on biology is scarce due to limitations in observing the objects
under (near) natural conditions.

We discuss symbiont transmission and integration, cell biology of symbionts,
the immunological basis of symbiont recognition and maintenance, and, finally, the
physiology of the holobionts.We highlight recent advances in the study ofmeiofauna
chemosynthetic symbioses. In a final section,we identify challenges in understanding
the intricate relationships between eukaryotes and their prokaryotic partners and
map frontiers for the advancement of science in meiofauna and general biology. For
explanation of terms used see Box 4.1.

Box 4.1 Definitions

Autotroph—an organism capable of synthesizing its own food from
inorganic substances using light or chemical energy.
Heterotroph—an organism feeding on sources of organic carbon.
Chemosynthesis—synthesis of organic compounds using energy derived
from inorganic chemical reactions.
Chemolithoautotroph—a chemosynthetic organism that obtains energy
from the oxidation of inorganic compounds and uses inorganic carbon as
sole source of carbon.
Chemolithoheterothroph—a chemosynthetic organism that obtains
energy from the oxidation of inorganic compounds and uses organic
compounds as a source of carbon.
Ectosymbiont—a partner in a symbiotic relationship that lives on the
surface of its host.
Endosymbiont—an organism that lives within the body or cells of another
organism.
Holobiont—an assemblage of a (often eukaryotic) host and another (often
prokaryotic) species living in or on it, together forming an ecological unit.
Morphospecies—a species whose taxonomic definition is based on
morphological characters.

4.2 Ecological Settings

All microorganisms using energy sources alternative to light depend on chemical
gradients between electron donors and acceptors. The quantitatively most important
of these is the redox gradient from sulphide to sulphate, which provides the highest
energetic yield. In sharp gradients over a few millimetres, non-symbiotic microor-
ganisms dominate, some of them with a (limited) capability to move or with other
adaptations (e.g., Beggiatoa, Thioploca, cable bacteria).
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Both, highest diversity and numbers of chemosynthetic meiofauna, are found
in sediments where the redox gradient stretches over several centimetres. Here, the
associationwith amotile host appears to be a selective advantage for microorganisms
despite the tribute they have to pay for the transportation service (Giere et al. 1991;
Ott et al. 1991). In some of the sediments containing the most diverse symbiotic
meiofauna, sulphide is not detectable in the field and appears only when sediment
is kept under stagnant conditions in the laboratory. Here, obviously, production and
removal of sulphide by both biotic and abiotic processes, such as percolation of oxic
water, is in perfect balance.

Prime habitats for the groups included in this chapter (marine Catenulida, Stil-
bonematinae, Astomonematinae, and Phallodrilinae) are subtidal sediments. Here,
the silt and clay fractions are sufficiently low to allow both interstitial meta-
zoan life and percolation of water through subtidal pumping preventing stagna-
tion and sulphide build-up. There are, though, a few reports of Stilbonematinae and
Astomonematinae from deeper shelf water (Ansari et al. 2016; Ingole et al. 2010) or
in continental slope canyons (Leduc 2013; Tchesunov et al. 2012).

Highest abundance and diversity are found in tropical towarm-temperate climates.
Especially rich are back-reef sediments where locally produced sand often has a
coarser grain size than the hydrodynamic situation would predict, while at the same
time the organic fraction is high. There is some evidence that the sediment near
and within seagrass beds supports a more diverse and abundant meiofauna with
thiotrophic symbioses than bare sediments do. Seagrasses provide shallow water
sediments with both fresh and decaying organicmaterial, available to fuel chemosyn-
thesis via remineralization. Decaying seagrass might e.g., be the source for CO and
H2, and by stabilizing the habitat it also enhances development of chemical gradients.
Seagrassmaterial incorporated into sediments increases the surface area of the redox-
cline in a three-dimensional way, enhances development of micro-niches and, thus,
fosters local diversity. Furthermore, seagrasses often have seasonal dynamics, adding
temporal variation to the habitats of many chemosynthetic symbioses. In addition,
the root system provides valuable protective habitats for meiofauna like annelids but
also macrofauna like the lucinids. All these factors might have contributed to the
high diversity of chemosynthetic hosts we encounter today that are often linked to
seagrass stands, and to the underlying rampant radiations of chemosynthetic meio-
fauna in several host groups over the last 100 million years alongside the evolution
of seagrasses.

So far, the marine Catenulida and Phallodrilinae have been found predominantly
under tropical towarm temperate conditions. Stilbonematinae andAstomonematinae
have also been recorded from cold temperate and even subpolar locations, albeit
in much lower abundance and diversity than in warmer climates. Also, reports of
Stilbonematinae and Astomonematinae in canyons originate from cold deep areas.
Kentrophoros appears to be ubiquitous in sheltered sulfidic sediments.
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All thiotrophic symbionts store large amounts of elemental sulphur and polyhy-
droxyalkanoates (PHA) in intracellular vesicles causing the hosts to appear bright
white in incident light, and facilitating their detection in live samples under low
magnification.

4.3 Introduction to the Organisms Included in this Chapter

The hosts in chemosymbiotic meiofauna belong to diverse and unrelated taxa. Here,
we present them ordered from the lowest to the highest degree of functional intimacy
with their microbial symbionts.

Stilbonematinae (Nematoda, Chromadorea, Desmodorida, Desmodoridae) are
a taxon classified presently as a subfamily, comprising 12 genera with approxi-
mately 50 species, both numbers which tend to increase. The slender, cylindrical
worms are 3 to almost 10 mm long and 30–50 µm in diameter. Except for two
monotypic genera from bathyal canyons, all other known species have been reported
from intertidal or shallow subtidal sands. A synapomorphic character is the posses-
sion of complex glandular sense organs (GSO) that play an important role in host-
symbiont recognition and adhesion. Despite their close molecular relationship, they
show a large morphological diversity with regard to the structure of the cuticle,
the pharynx and especially the arrangement of the coat of ectosymbiotic sulphur-
oxidizing Gammaproteobacteria. The symbionts belong to the Candidatus genus
Thiosymbion and are host-species specific. Mucus-embedded bacteria are attached
to the host cuticle and are, therefore, directly exposed to the environment. Worms
migrate between oxic and sulfidic layers. For several host species, there is evidence
(gut content, stable isotope ratio) that the bacteria constitute all or at least the bulk
of the host nutrition.

Kentrophoros (Ciliata, Karyorelictea), a worm-shaped ciliate genus comprising
17 species, is characterized by the lack of an oral apparatus (“mouth”). The ribbon-
shaped body has a dense coat of ectosymbiotic sulphur bacteria on one side. The
symbiont-bearing surface is non-ciliated, while the other side is coveredwith somatic
kineties. Folding of the symbiont-bearing body surface provides some separation
from the environment. Kentrophoros consumes its symbionts by direct phagocy-
tosis into digestive vacuoles. The symbiotic Gammaproteobacteria Ca. Kentron is
chemolithoheterotrophic in contrast to the autotrophic microbial partners in most
thiotrophic symbioses.

Gutless oligochaetes/clitellates (Annelida, Clitellata, Tubificidae, Phallo-
drilinae). This monophyletic taxon comprises over 100 described species worldwide.
They are 100–200 µm in diameter and up to 4 cm long. They are found in tropical
and subtropical soft sediments with redox gradients, e.g., in mangroves, coral reefs,
or seagrass meadows, as well as in coastal upwelling zones. Both, digestive tract
and excretory organs, are completely reduced. Between cuticle and epidermis, they
contain a species-specific consortium of extracellular symbionts with a gammapro-
teobacterial sulphur oxidizer Ca. Thiosymbion as numerically dominant symbiont
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phylotype in all but one species (exception Inanidrilus exumae; Bergin et al. 2018).
Additional symbiont phylotypes can be other sulphur oxidizers, sulphate-reducing
Deltaproteobacteria or Alphaproteobacteria. In at least one species (Olavius algar-
vensis; Dubilier et al. 2001), syntrophic sulphur cycling occurs between gamma- and
deltaproteobacterial symbionts. Additionally, spirochaetes with unclear functional
roles (heterotrophic, possibly parasitic) can occur. As in Stilbonematinae, the worms
migrate between oxic and sulfidic layers (Giere and Langheld 1987). Transmission
of bacteria from host to host is apparently vertically. There are indications that the
majority of sulphur oxidation takes place under oxic conditions.

Astomonematinae (Nematoda, Chromadorea, Monhysterida, Siphonolaimidae).
The subfamily comprises two genera, Astomonema and Parastomonema. The very
slender worms lack a mouth and pharynx. The majority of the body is occupied
by large endosymbiotic bacteria, which are located in either the lumen or the cells
of a gut rudiment. Like in the Stilbonematinae and the gutless oligochaetes, the
symbionts belong to Ca. Thiosymbion. Little is known about the ecology of the
Astomonematinae. For the type species, Astomonema jenneri, an association with
the tubes of sediment-dwelling Annelida has been reported.

Paracatenula is a genus of marine catenulid flatworms, lacking a mouth. Except
for the anterior-most region (rostrum), the body is filled with a mass of symbiocytes
(trophosome) that contain large Alphaproteobacteria packed with sulphur and poly-
hydroxybutyric acid (PHB) inclusions which constitute the primary energy storage
for the holobiont. Transfer of nutrition from symbiont to host is via outer membrane
vesicles. The mechanism of infection of new stem cells for trophosome growth is
still unclear. Reproduction of the host is mainly by vegetative fission where symbiont
transmission is vertical.

4.4 Symbiont Transmission and Physical Integration
in Chemosymbiotic Meiofauna

Chemosynthetic symbioses vary widely in terms of quality, specificity, and inte-
gration (Dubilier et al. 2008; Sogin et al. 2020). In most cases, the symbionts are
the primary source of energy and nutrients for the host. However, further symbiont
functions can add to the host’s benefit or even constitute the main “currency” in the
association. Sulphur-oxidizing symbionts, for example, remove poisonous sulphide
allowing their host to live in sulphide-rich habitats without own detoxification mech-
anisms. While some host taxa have very specific, single symbiont phylotypes, other
associations can involve several partners. Chemosymbioses cover a wide range from
very low to high stabilities over time, between individuals or between geographical
locations. In this section, we explore the physical interaction between the symbiotic
partners. Focussing on structural host adaptations, such as specific organs or cells for
hosting symbionts, as well as symbiont transmission mechanisms, we compare the
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different levels of host-symbiont integration and discuss their significance for both
the interactions between the partners and the evolution of their symbioses.

One of themain characteristics of symbiosis is the degree of integration or physical
connection between the partners. Commonly, ectosymbioses in which the symbionts
are on the surface of the host are juxtaposed with endosymbioses in which symbionts
reside within the host body. In the latter case, symbionts occur in specific host organs,
tissues or compartments (e.g., body cavities). On a finer scale, the symbiont location
can be either intra- or extracellular (e.g., between cells in a tissue or in acellular, fluid-
filled compartments). Intracellular symbionts may occur in specialized cells, called
bacteriocytes, where they either occur freely in the cytoplasm, or are enclosed by the
cellmembrane into vesicles or vacuoles, called symbiosomes. Intracellular symbionts
can be restricted within their host cell to certain parts of the cytoplasm or associated
with specific cell structures, compartments or organelles, such as cytoskeleton, ER,
or mitochondria (Fig. 4.2).

Host and symbiont structures forming and mediating the physical interaction
between the partners are collectively referred to as the host-symbiont interface. We
expect the structure of the host-symbiont interface to both shape and be shaped by
the quality and quantity of physiological interactions between the partners. Nutrient
transfer, for example, depends on the number, structure, and function of barriers

Fig. 4.2 Chemosymbiotic meiofauna and the integration of their symbionts into their body plans.
Top row: low magnification micrographs of live holobionts. Middle row: schematic drawings indi-
cating the location of the symbionts on or in the body of the host. Bottom row: False-coloured
transmission electron microscopy of the symbionts on or in the host tissues. a–c Stilbonematinae;
d–f Kentrophoros; g–i ‘gutless oligochaetes’; j–l Astomonema; m–o Paracatenula. From Sogin
et al. 2020, modified and supplemented. Photos courtesy of U. Dirks (Stilbonematid) and B. K. B.
Seah (Kentrophoros)
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(membranes, cell walls, tissue layers) that these substances have to pass on their
way between the partners. In many cases, environmental substrates required by the
symbionts have to either pass host structures, or be transported by the host, enabling
the latter to exert control over the symbionts’ access to these substances. Conversely,
the location of the symbionts as well as the characteristics of their cell wall and
membrane determine, for example, their visibility to the host immune defence.

Finally, animal-microbe symbioses show a wide variety of transmission strategies
(Bright and Bulgheresi 2010; Russell 2019). In order to achieve continuity of the
symbiotic associationover time, the hosts have to either pass on the symbionts directly
or evolve other mechanisms that ensure the reliable establishment of a consistent
symbiont community after an aposymbiotic life cycle stage.

4.4.1 Host-Symbiont Interfaces and Transmission
in the Different Taxa

All members of the nematode subfamily Stilbonematinae carry dense coats of
coccoid, rod-shaped or filamentousCa. Thiosymbion bacteria on their cuticles (Bayer
et al. 2009; Ott et al. 2004; Scharhauser et al. 2020). However, the connection of the
symbionts to the host cuticle differs between species. In species of Stilbonema and
Leptonemella, the bacterial coat is multi-layered and the bacteria are embedded in
a mucous matrix, the exact composition and origin of which is unclear. It could be
both parts of the cuticle and a secretion of the bacterial cells. Monolayered coats are
found, for example, in the genera Laxus, Catanema, and Robbea. Within these, the
symbionts are typically rod-shaped and attach with one end to the cuticle. A mucous
matrix has been shown in some cases.More complex coats of filamentous bacteria are
present in the genera Eubostrichus and Adelphus. Here, the symbionts are attached
with either one or both ends and often arrange in regular spiral patterns along the host
body. Stilbonematinae have fully functional intestinal tracts and are suspected to feed
on their symbionts. The mode of transmission of ectosymbionts in Stilbonematinae
has not been demonstrated directly. However, high consistency of host species and
associated symbiont phylotypes as well as congruence between symbiont and host
phylogenies make a vertical transmission likely (Zimmermann et al. 2016). In Stil-
bonematinae, stability of the symbiont population does not only have to be achieved
across generations, but also across life-cycle stages, as the cuticle is shed four times in
the regular moults. The mechanisms of ‘inter-’ and ‘intra-generational’ transmission
could differ, for example feeding on exuviae after moult versus egg-smearing.

In the ciliate Kentrophoros, the gammaproteobacterial Ca. Kentron symbionts
densely cover the dorsal surface of the body. The currently 17 distinguishedmorphos-
pecies differ in the degree of involution of the dorsal surface, amongst other charac-
ters. In species with flat or slightly rolled-up dorsal surfaces, the ectosymbiont coat
is monolayered. In some species, the involuted dorsal surface forms pouches packed
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with symbionts (Seah et al. 2020, 2017). The enclosed space, termed “pseudotropho-
some”, however, still communicates with the outside via a small pore or slit. Attached
symbionts appear to be connected to the host cell membrane (called pellicle in cili-
ates) and proximally embedded in a mucous matrix (Foissner 1995). Kentrophoros
has reduced its cytostome (the cellular feeding apparatus) and symbionts are digested
by phagocytosis via the entire symbiont-covered surface. Symbiont transmission is
not documented, but reproduction of the hosts seems to happen mainly by fission,
during which also the symbiont population would simply be distributed to the
daughter cells, thus resulting in vertical transmission. Partial incongruence between
symbiont and host phylogenies, however, indicates at least occasional horizontal
transmission or host-switching (Seah et al. 2017). Thus, we have to assume a mixed
mode of transmission. Whether horizontal transmission happens directly between
individuals, for example during conjugation, or mainly as environmental uptake is
currently unknown.

Gutless oligochaetes harbour their symbiotic bacteria in spaces between the
epidermis and the cuticle. The cuticle is secreted by epidermal cells and is connected
to protrusions of their apical surfaces via spot-like hemidesmosomes. This ‘symbiont
space’ is formed by connected invaginations and surface extrusions of the epidermal
cells. Regularly repeated constrictions of the symbiont space are visible as annuli,
a type of secondary segmentation that occurs in a regular pattern of around seven
annuli per segment. The composition of the symbiotic consortium differs between
body regions. Whereas in the postgenital (trunk) region all symbiont phylotypes
are present and intermixed, the symbiont space in the pregenital region (tip) is
much narrower and only contains the smaller morphotype symbionts, excluding
Ca. Thiosymbion. There is evidence that symbionts are regularly digested by phago-
cytosis (Giere and Langheld 1987). All gutless oligochaetes reproduce exclusively
sexually. Despite a high potential for regeneration, fragmentation of worms never
results in proliferation. Individuals can regenerate the post-genital trunk region, but
tip regeneration only happens in cases where the prostomium or first segment was
amputated. As typical clitellates, gutless oligochaetes are hermaphrodites and self-
fertilizationdoes not seem toplay a role. Sperm transferredduring copulation is stored
in spermathecae and used to fertilize oocytes during or directly after oviposition.
During the reproductive season, gutless oligochaetes develop prominent structures,
so-called “genital pads”. These are formed by ventrally located epidermal swellings
of the genital segments that are filled with abundant symbionts. In most species, the
genital pads surround or adjoin the female genital opening so that they rupture and
release their contents onto the egg surface. In newly deposited eggs, the symbionts
are located in the fluid-filled space of the cocoon, surrounding the embryo. During
embryogenesis, they get incorporated into the epidermis once the cuticle forms (for
details of symbiont transfer in Inanidrilus leukodermatus see Krieger 2000).

In the siphonolaimid nematode genus Astomonema, the buccal region and
intestinal tract are reduced and the body (behind the head region) is filled with
endosymbiotic bacteria. In those species studied in detail by electron microscopy,
different situations have been described. In A. jenneri two morphotypes of bacteria
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occur, one smaller and one larger type. The symbionts reside intracellularly in cells
interpreted as gut rudiment (Ott et al. 1982). Contrarily, in A. southwardorum the
cells of the single symbiont morphotype are surrounded by a layer of eukaryotic
cells interpreted as gut lining (Giere et al. 1995). The modality of nutrient transfer
is unresolved as no evidence for phagocytotic digestion has been found. In both
A. southwardorum and A. jenneri, the intestinal cells appear amorphous with very
electron-lucent cytoplasm and few organelles. The mode of symbiont transmission
is not known for any Astomonema species.

The catenulid flatworm Paracatenula houses intracellularCa.Riegeria symbionts
in specialized bacteriocytes in the trunk region of the body, also termed ‘tropho-
some’ (Dirks et al. 2011; Ott et al. 1982). The body wall consists of epidermal cells,
musculature and neoblasts; large bacteriocytes fill almost the entire inner lumen of the
worms (Gruber-Vodicka et al. 2011; Leisch et al. 2011). Each bacteriocyte, which, in
turn, is surrounded by a vacuolar membrane, contains numerous symbionts. Interest-
ingly, bacteriocytes themselves do not divide, but are formed, like all differentiated
cells in platyhelminths, from dividing pluripotent stem cells, so-called neoblasts.
Ca. Riegeria symbionts divide within the bacteriocytes, but how the newly formed
bacteriocytes are infected is not known. In terms of nutrient transfer, digestion of
entire symbionts by the bacteriocytes via phagocytosis seems to play a minor role:
phagolysosomal structures in bacteriocytes are very rare compared to other nutri-
tional symbioses in which transfer via phagocytosis is the major pathway (Jäckle
et al. 2019). There is also no evidence for transporter-mediated exchange of nutri-
ents. Instead, nutrients are likely transferred via outer membrane vesicles (OMVs)
which are abundantly found in the vacuolar spaces that surround the symbionts.
Reproduction of the holobionts in Paracatenula happens mostly by asexual fission;
sexual reproduction has never been documented (Dirks et al. 2012). Fragmenta-
tion in the trophosome region results in division of the bacteriocyte population to the
daughter animals. Highly congruent co-diversification patterns support strict vertical
transmission (Gruber-Vodicka et al. 2011).
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4.5 Structure and Function of Host—Symbiont Interfaces

In chemosymbiotic meiofauna, we see a wide range of host-symbiont interfaces.
In ectosymbioses, the symbionts are firmly attached to the cuticle (in the case of
nematodes) or cell membrane (in the case of ciliates). Based on the ultrastructure,
it seems reasonable that this contact is mediated by both partners, i.e., by secretion
of glycocalyx by the host, mucus that could come from both partners, and specific
cell polarity and surface structures by the symbiont. The symbionts have direct and
unrestricted access to environmental substrates from the sediment pore water. Thus,
host control of symbiont proliferation can only happen via host behavioural adap-
tions, harvesting of symbionts, or immunological interaction. Conversely, symbiont
secretion products will hardly be efficiently taken up by the host, limiting nutrient
transfer pathways in these systems to intra- or extracellular symbiont digestion.
In the extracellular endosymbioses, represented here by the gutless oligochaetes
and Astomonema southwardorum, direct uptake of substrates is still possible, but
symbionts are in a slightly more restricted compartment (subcuticular space and gut)
where the chemical composition may differ from the surrounding pore water. Intra-
cellular symbionts in Paracatenula experience a much higher level of host control.
For example, considering that bacteriocytes do not divide, symbiont cell proliferation
needs to be restricted. Substrate provisioning happens via the bacteriocyte cytoplasm
and is, thus, potentially highly regulated by the host. Conversely, nutrient transfer has
been shown to happen via exchange of OMVs, a process that is putatively controlled
by the symbionts and not the host (Jäckle et al. 2019).

4.5.1 Symbiosis as a One-Way Street?

So, do the differences in the extent of host-symbiont integration represent adaptations
to specific biological conditions or can they be interpreted as stages in an evolutionary
series of increasingly higher integration and dependency, culminating in an organelle-
like role of the symbionts? Naturally, in each symbiotic system, the partners have
co-evolved based on their biological properties and environmental conditions. Thus,
a specific degree of integration may be an optimal, evolutionary stable strategy. For
example, a certain openness for horizontally acquired symbionts may not indicate an
evolutionary young association, but can be an adaptation to unstable conditions or
enable the animal to easilymove into new habitats and take advantage of locally well-
adapted pools of potential symbionts (Russell 2019). Hosts often evolve mechanisms
to control symbionts by separating them or confining them to certain cellular or body
compartments, a concept termed compartmentalization (Chomicki et al. 2020b). This
may help the host to control symbiont reproduction, prevent infection, “punish”
or “reward” symbionts based on their performance. However, some mechanistic
explanations suggest that a pathway to higher integration and dependence may be
a common phenomenon in mutualistic symbioses (Bennett and Moran 2015). For
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example, hosts may get locked into an association at some point by having adopted
so many changes and losses that they cannot easily revert back. On the symbiont
side, reduction of effective population size by strict vertical transmission can lead
to genome reduction and accumulation of deleterious mutations, leading to reduced
performance outside the host (Fisher et al. 2017).

In the known chemosynthetic meiofauna taxa, the phylogenetic positions of the
hosts provide clear evidence that these associations have evolved multiple times
independently. However, each taxon (i.e. gutless oligochaetes, Stilbonematinae,
Astomonematinae, Kentrophoros, Paracatenula) is a well-defined monophylum
including only symbiotic species within its higher taxon of non-symbiotic rela-
tives. This shows that in meiofaunal chemosymbioses the hosts, once the associ-
ation is firmly established, hardly ever revert to a non-symbiotic lifestyle. Also,
signs for adaptive radiations are seen in some of the chemosymbiotic meiofaunal
taxa, suggesting a strong selective advantage of these symbiotic associations (Seah
et al. 2017). Dependence is not always symmetrical between hosts and symbionts.
This is shown, for example, in Stilbonematinae and gutless oligochaetes, whose
gammaproteobacterial symbionts have repeatedly switched between major host
lineages (Zimmermann et al. 2016). An interesting question is whether chemosym-
bioses are particularly prone to strong dependence phenomena, which might have
further implications. For example, highly dependent mutualists are suspected to be
less adaptable towards new and fluctuating environmental conditions (Chomicki
et al. 2020a), a possible explanation for the rarity or lack of chemosynthetic taxa
in cold-temperate or limnic habitats.

4.6 Symbiotic Associations Are a Window
into Environmental Bacterial Cell Biology

Symbiotic associations between animals and bacteria face the challenge to coordinate
the rapid cell cycle of the bacteria within the cell- and the-life cycle of the eukaryote.
Ectosymbionts for example need to ensure that their bacterial offspring stays in
contact with the animal host, to continue the symbiotic association. Endosymbionts
on the other hand need to be able to copewith the host’s immune system and strike the
balance of growingwithout “overrunning” the host, and in the case of chemosynthetic
symbioses grow enough to satisfy the metabolic demand of the host. To understand
these symbiotic associations, one really needs to understand the bacterial cell biology.
Research in this field has shown that sophisticated systems are in place to ensure that
bacteria keep their shape and can propagate it to their offspring over generations.
Despite the misleading simplicity, multiple molecular systems interact with each
other to ensure a coordinated cell cycle. In rod-shaped bacteria like Escherichia
coli, the cell cycle has two morphologically distinct phases. Initially, the rod-shaped
cell elongates, along the whole length of the cell. Key to this is the protein MreB,
a homologue of the eukaryotic actin protein. MreB binds to the cytoplasmic face
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of the inner membrane and coordinates cell elongation. Its binding behaviour lets
MreB ”sense” the local curvature of the cell wall and ultimately maintains the rod
shape (reviewed in Shi et al. 2018). The cell elongation is followed by the actual
septation process. This centres around the bacterial tubulin homologue FtsZ. FtsZ,
a GTPase, is the first protein to localize to the future division site where it self-
polymerizes into a ring-like structure termed the Z-ring. It recruits approximately 30
more proteins into a macromolecular complex called the divisome, which organizes
the cell wall constriction, peptidoglycan synthesis and overall formation of the two
new poles, until the two daughter cells are separated (reviewed in McQuillen and
Xiao 2020). Research in the last decades has highlighted the complexity of this whole
process, but most research was limited to a handful of cultivable model organisms.
Symbiotic associations with a low diversity, however, are ideal to gain insights into
the cell cycle of uncultivable environmental bacteria.

Among the chemosynthetic associations, nematodes of the sub-family Stilbone-
matinae are the ideal model to study bacterial cell division. The association is highly
specific, and each worm species carries a monoculture of a single symbiont on its
cuticle (Fig. 4.3) The symbionts are still in contact with the environment and there-
fore need to cope with both the symbiotic and the free-living aspect simultaneously,
and, finally, one can easily remove the symbiont monoculture from its host for exper-
imentation. The symbionts do rely on the host for transport through their habitat and
have therefore evolved strategies to ensure that the contact with the host is transmitted
to the offspring upon cell division.

The nematode Eubostrichus fertilis carries one of the most complex but also
aesthetically appealing bacterial coats (Fig. 4.3a, b). Under themicroscope, theworm
has a rope-like appearance,which is due to the symbionts on its cuticle. The bacterium
is crescent-shaped and attaches with both cell poles to the worm’s cuticle. However,
the bacteria span one order of magnitude in length, ranging from 4 to 45 µm in
length. The shortest bacteria are attached closest to the worm and layered on top

Fig. 4.3 Symbiotic nematodes of the subfamily Stilbonematinae and their ectosymbionts.
Overview (a) and detail (b) of the crescent-shaped bacteria that cover Eubostrichus fertilis. The
long thin filaments covering Eubostrichus dianeae give it a furry appearance (c,d). The nematode
Laxus oneistus (e) is covered by a monolayer of rod-shaped bacteria (f). While the head of Robbea
hypermnestra (g) is symbiont free, the rest of its body is covered with rod-shaped bacteria, arranged
in a picket-fence-like manner (h)
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are longer and longer bacteria (Ott et al. 2014; Pende et al. 2014). Typically, the
individual cells of a bacterial population deviate very little from its size-optimum
(e.g., E. coli approximately 1–4% in length), as the surface-to-volume ratio governs
most bacterial processes (reviewed in Young 2010). It is therefore surprising to see
such a huge range of cell length within a single Eubostrichus fertilis symbiont popu-
lation. Immunofluorescence marking of the FtsZ protein showed that this population
structure is actively maintained, as all cells from 4 to 45 µm length formed Z-rings
and underwent cell division (Pende et al. 2014). One explanation for the stark differ-
ences in size might be the arrangement itself. The symbiont cells are stacked on top
of each other and require reduced sulphur compounds and oxygen from the environ-
ment to fuel their metabolism. The topmost cells might simply have better access to
these than the bottom ones, therefore growing faster and with this nutrient gradient
established, the complex 3D structure is perpetuated further.

The closely related nematode Eubostrichus dianeae is similarly covered by long
filamentous bacteria, however, they only attach with one pole to the cuticle and grow
even longer, up to 120 µm in length (Fig. 4.3c, d). Despite their large cell size, these
bacteria are dividing by binary fission (Pende et al. 2014). While bacterial gigantism
has been observed in multiple endosymbionts, like nodulating root bacteria, insect
symbionts or bacteria inhabiting the surgeonfish gut, these are often under strong
host control. Here, cell division is inhibited, resulting in large, polyploid bacteria
(Bulgheresi 2016; de Velde et al. 2010; Login et al. 2011; Mendell et al. 2008). As
the symbiont still actively divides in a FtsZ-based manner, this makes it not only
the longest non-septate bacterial cells that undergo binary fission, but also highlights
how the positioning system for the Z-ring can function even in bacteria of extreme
length, to reliably find mid-cell. One of the open questions here is how the apically
formed daughter cell gets in contact with the host’s surface, as, after division, this is
far away from the host’s cuticle.

The most studied symbiont is that of the nematode Laxus oneistus (Fig. 4.3e, f).
Based on electron microscopy, Polz et al. (1992) pointed out that the rod-shaped
bacteria colonizing this nematode attach with one pole to the host’s cuticle where
they are arranged like a picket fence. Moreover, they seem to split along their longi-
tudinal axis, instead of transversal like typical rod-shaped bacteria (e.g., E. coli).
Using a combination of morphometric analyses, transmission electron microscopy
and immunofluorescent labelling, Leisch et al. (2012) showed that this symbiont,Ca.
Thiosymbion oneisti, grows in width instead of length, and the division is mediated
by the Z-ring forming at mid-cell, along the length axis.

The arrangement and division mode of the symbiont Ca. Thiosymbion hyper-
mnestrae of the co-occurring nematode Robbea hypermnestra do look identical at
first glance but differ in an important detail (Fig. 4.3g, h). At the basal pole of the
symbiont, which attaches to the host cuticle, a patch of FtsZ localizes and initi-
ates cell division earlier than the apical pole, resulting in an asynchronous division.
Only later on in the division process, a full Z-ring is formed and cell division will
terminate in the upper third of the bacterial cell length (Leisch et al. 2017). Using
D-amino acids which are incorporated into the bacterial peptidoglycan layer, and
which can be fluorescently labelled, together with immunofluorescent detection of
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MreB, Pende et al. (2018) started to dissect the growth mechanisms of these two
symbiont species. They showed that MreB is required for septal growth, which starts
at the poles, a region typically thought to be inert in model rod-shaped bacteria, and
furthermore that growth of new cell wall is mainly in the region of the new septum
(Pende et al. 2018). This is in stark contrast to textbook knowledge of model rod-
shaped organisms where MreB-based cell elongation occurs along the length of the
cell, independently of the FtsZ-driven septal growth. This re-orientation of the divi-
sion plane not only highlights the flexibility of prokaryotic protein machineries, but
it allows both daughter cells to remain in contact with the nematode host throughout
the whole division process.

The ectosymbionts of the ciliate Kentrophoros also show an extraordinary repro-
duction mode. They are rod-shaped bacteria which attach with one pole to the host.
Based on morphological observations, their longitudinal cell division initiates at the
distal pole and proceeds unilaterally towards the basal pole (Fenchel and Finlay
1989).

Few insights are available from endosymbionts. For both the symbionts of the
mouthless nematode Astomonema and the mouthless flatworm Paracatenula, no
data are available on growth rates, division strategy or host control. In the case of
Astomonema, the symbionts are clearly understudied, with the main published work
focussing on the phylogenetic identity, their position within the host or the host
anatomy (Giere et al. 1995; Musat et al. 2007; Ott et al. 1982; Tchesunov et al.
2012). None of the Paracatenula species analysed with electron microscopy showed
clear signs of dividing cells (Jäckle et al. 2019; Leisch et al. 2011). However, as the
symbiont seems to rely on outer membrane vesicle secretion to supply the host with
nutrients, this could be a symbiotic system in which bacterial cell division is under
tight host control.

The symbionts of gutless oligochaetes seem to be fairly “unconstrained”
compared to other endosymbionts. Representing a complex consortium with up to
fivebacterial types, that occupy the extracellular spacebetween epidermis and cuticle,
these endosymbionts show no strictly ordered arrangement like the symbionts of the
Stilbonematinae. Not being within cells or cellular compartments, they are exposed
to different local micro-niches with varying nutrient supply and bacterial-bacterial
interactions. For the main symbiont of the gutless oligochaete Olavius crassituni-
catus, longitudinal division has been documented, based on transmission electron
microscopy (Giere and Krieger 2001).

Methodological improvements in fluorescent imaging, ranging from super-
resolution to novel dyes and stains, have rapidly accelerated our understanding of
bacterial cell biology and have highlighted the complexity of the processes that
control bacterial growth and division. Whilst most of these studies stem from a
handful of cultivable model organisms, symbiotic associations have proven ideal to
gain broader insights into the cell cycle of uncultivable and environmental bacteria.
Most importantly, research on these symbiotic bacteria allows us to evaluate which
of the findings that originated from bacterial model organisms are applicable more
broadly. The range of biological solutions to the deceptively simple question “How
to divide one bacterium into two?” is wide.
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4.7 Should I Stay or Should I Go? How Chemosynthetic
Bacteria Are Chosen by Their Meiofauna Hosts

Although immunology has so far focussed onpathogenicmicrobes and on laboratory-
reared animals, much can be learned by studying how immune systems cope with
beneficial microbes in their natural habitats. In this section, we discuss and compare
immune components and mechanisms that likely allow meiofauna to engage in
successful relationships with chemosynthetic bacteria (Fig. 4.4). At present, host
transcriptomics and proteomics have only been performed for the nematode L.
oneistus (Bulgheresi 2011; Paredes et al. (2022) and for the oligochaete O. algar-
vensis (Wippler et al. 2016; L. König and Y. Sato, unpublished). This section there-
fore only reviews the immune systems of these two symbiotic meiofauna worms.
Comparing their repertoires to those of the model nematode Caenorhabditis elegans
and the marine annelidCapitella capitata, respectively, allows us to identify putative
symbiosis-specific components. Finally, we review immunoreceptors and immune
effectors, both of which represent host immunity components that directly interact
with microbes. Immune signalling pathways, on the other hand, will not be covered
here, because the core set of invertebrate immune signalling pathway components
is present in both L. oneistus and O. algarvensis (Bulgheresi 2011; Paredes et al.
(2022); L. König and Y. Sato, unpublished).

4.7.1 Immune Receptors

For microbes to associate with their hosts, microbial signals must first be detected
by immunoreceptors. These recognize microbial molecules that are essential for
microbes, but are absent in multicellular eukaryotes, such as the cell surface
molecules lipopolysaccharide (LPS), peptidoglycan, or flagellin. They can also
recognize bacteria-derived molecules, such as signal peptides or short-chain fatty
acids. Immune receptors include Toll-like receptors (TLRs), G-protein coupled
receptors (GPCRs), peptidoglycan-binding receptor proteins (PGRPs) and C-type
lectin receptors (CTLRs). In contrast to the former two classes, PGRPs and CTLRs
can also directly control the growth of bacteria and may therefore be considered
both, immune receptors and effectors. They can activate immune pathways that lead
to bacterial death and, at the same time, they can directly agglutinate and immobilize
bacteria (as in the case of CTLRs) or kill bacteria by, for example, hydrolysing their
peptidoglycan (as in the case of PGRPs).
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Fig. 4.4 Schematic overview of immune system components present in Laxus oneistus andOlavius
algarvensis transcriptomes. The immune systems of chemosyntheticmeiofauna are adapted tomain-
tain their bacterial symbionts (grey)while controlling their symbionts’ growth and defending against
pathogens. AMP, antimicrobial peptide; ER, endoplasmic reticulum; GPCR, G-protein coupled
receptor; LECTIN, C-type lectin receptor; PGRP, peptidoglycan-binding receptor protein; SRCR,
scavenger receptor-like cysteine-rich protein; TLR, Toll-like receptor

4.7.2 Toll-Like Receptors (TLRs)

Although functional evidence of the role of TLRs in immunity is only available for
model organisms, bacteria are known to modulate the expression of genes encoding
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TLR pathway components even in the most basal metazoans, which suggests that
microbial recognition is the ancestral function of TLRs.

Canonical, bona fide TLRs are transmembrane receptors with several extracel-
lular leucine-rich repeat (LRR)motifs and an intracellular Toll/interleukin-1 receptor
(TIR) domain. The extracellular LRR motifs of TLRs can bind a wide range of
microbe-derived signals, but also endogenous ligands derived from damaged cells
such as fibronectin (Yu et al. 2010). TLR stimulation ultimately causes the transcrip-
tion factor NF-kB to enter the nucleus and to switch on the expression of inflamma-
tory antimicrobial peptides (AMPs) or cytokines. In addition to NF-kB signalling,
TLR receptors can activate mitogen-activated protein kinase (MAPK) and interferon
regulatory factor signalling cascades (Akira et al. 2006; Kawai and Akira 2010).

Initially identified as essential in fruit fly early development (Anderson and Jiir-
gens 1985), the Toll signallingwas later found to protect adult flies from bacterial and
fungal pathogens. Curiously, although one Toll homolog (Tol-1) was identified in C.
elegans, this nematode lacks key proteins of the canonical TLR-signalling cascade
including the NF-kB transcription factor (Pujol et al. 2001). Moreover, rather than
being required to kill pathogens, C. elegans tol-1 is necessary for the development
of chemosensory neurons that nematodes need to sense and avoid pathogens (Brandt
and Ringstad 2015; Pradel et al. 2007).

One bona fide TLRwas found to be expressed in L. oneistus and twowere found in
O. algarvensis (L. König and Y. Sato, unpublished). In addition to complete TLRs, L.
oneistus and O. algarvensis, encode for a similar number of TIR-only or LRR-only-
containing proteins, reported to be related to TLR proteins (Brennan and Gilmore
2018). Therefore, besides their TLRs, it is possible that both symbiotic worms use
LRR-containing proteins in combinationwith other signalling components to interact
with microbes.

In neither L. oneistus nor O. algarvensis, we observed the expansion of the TLR
family reported, for example, for humans and for the polychaete Capitella capitata
(10 TLRs have been identified in our genomes andwe confirmed the presence of eight
C. capitata TLRs out of the 105 previously reported), or the impressive explosion
observed in some invertebrates such as sea urchins (Davidson et al. 2008; L. König,
unpublished). However, all the key components of the Toll signalling pathway were
identified in both L. oneistus andO. algarvensis, indicating that this pathway is active
and may mediate successful host-microbe negotiations (see Wippler et al. 2016).

Concerning what is downstream of the Toll receptors, L. oneistus seems to bear a
more ancient version of the Toll pathway in comparison to the gutless oligochaete,
but a far more complete one when compared to the model nematodeC. elegans. Most
strikingly and in stark contrast to all other nematodes, which notoriously do lack a
NF-kB transcription factor, L. oneistus encodes one. The presence of a NF-kB1-like
protein in the symbiotic nematode suggests that triggering of the Toll pathway might
result in the expression of immune effectors, as observed in fruit flies and humans.
Whether the presence of this key immune transcription factor enables Laxus to wear
its symbiont coat awaits to be proven.
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4.7.3 G Protein-Coupled Receptors (GPCRs)

GPCRs are central for the perception of external stimuli and the transduction of
the signal to the cytoplasm and, therefore, vital for connecting organisms with their
environments. GPCRs are characterized by a conserved signature motif consisting
of seven transmembrane (TM) spanning helix domains. Upon ligand binding, a
conformational change activates the cytoplasmic C-terminal domain, which, in turn,
through coupling to heterotrimeric guanine nucleotide-binding regulatory proteins
(G proteins), starts the intracellular signalling cascade (de Mendoza et al. 2014;
Dierking and Pita 2020). Although there is evidence of the involvement of GPCRs
in the immunity of model invertebrates and although, in C. elegans, GPCRs present
a potential link between the nervous system and immunity, it is as yet unclear if they
directly respond to microbes or to microbe-triggered endogenous ligands.

The family of GPCRs represents the largest receptor family in animals. Vertebrate
genomes may contain over 1300 GPCRs, whereas in invertebrates, numbers vary
unpredictably: from the hundreds of GPCRs found in Drosophila melanogaster and
sponges to over a thousand inC. elegans (Dierking and Pita 2020). As for L. oneistus
andO. algarvensis, 238 and 118GPCRswere predicted, respectively. In both worms,
the largest group of GPCRs are the rhodopsin receptor-like class A GPCRs. Within
this GPCR class, both organisms have a relatively high number of FMRFamide
receptors (59 in Laxus and 20 in Olavius). Interestingly, FMRFamide-like recep-
tors have been functionally linked to alterations in microbial pathogen susceptibility
in C. elegans. In contrast to Olavius, Laxus also displays an expanded repertoire of
neuropeptide Y receptors (NPYR). NPY is found at all levels of the mammalian
brain-gut axis and it may control the impact of the gut microbiota on inflammatory
processes, pain, brain function and behaviour (Holzer and Farzi 2014). Although the
impact of neuropeptides on the gut microbiota-brain interaction awaits elucidation,
it is possible that biologically active peptides will emerge as neural and endocrine
messengers in orchestrating animal-microbe interactions. Why should FMRFamide-
like and Y receptors be more represented in Laxus than in gutless oligochaetes? As
mentioned in Sec. 4.3 of this chapter, the nematode GSOs are composed of both
gland and neuronal cells. Local neuronal regulation of the glandular component of
the GSOs might, therefore, allow localized secretion of immune effectors.

4.7.4 Peptidoglycan Receptors (PGRPs)

PGRPs are key innate immunity components known to be involved in many animal-
bacteria symbioses, where theymediate symbiont tolerance, control symbiont prolif-
eration or regulate symbiosis establishment and maintenance (Dierking and Pita
2020; Dziarski and Gupta 2018; Royet et al. 2011). PGRP overexpression was
observed in the trophosomes of hydrothermal vent tube worms and mussels, but
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their function within these deep-sea symbioses remains unknown (Bettencourt et al.
2014).

Transmembrane PGRPs that carry intracellular domains often induce an antimi-
crobial response by activating immune pathways such as the Toll pathway. However,
some PGRP receptors bind peptidoglycan without passing on an intracellular signal
which results in down-regulation of immunity. Similar to transmembrane PGRPs,
secreted PGRPs can induce an antimicrobial response by indirectly activating
immune pathways or acting as bacterial growth inhibitors or antimicrobials them-
selves (Lu et al. 2006).Notably, if they possess amidase activity, they can also dampen
the host immune response by cleaving PG into non-immunogenic fragments.

Although six PGRPs were originally identified inOlavius (Wippler et al. 2016), a
subsequent round of sequencing, assembly and annotation could only identify three
(L. König and Y. Sato, unpublished). One corresponds to OalgPGRP2 (Wippler
et al. 2016); it contains a signal peptide, an amidase catalytic site and it is homolo-
gous to the symbiont PGRP2 of the squid Euprymna scolopes. As for the other two
PGRPs, they do have amidase catalytic domains, but their N-terminal PGRP domains
are incomplete and transmembrane domains are absent. Because the existence of a
signal peptide cannot be ruled out, they can either act as intracellular or secreted
amidases. All in all, given that all three confirmed Olavius PGRPs could function
as amidases, they might contribute to symbiont tolerance by digesting immunogenic
peptidoglycan fragments, which are released as a by-product of bacterial growth
(Wippler et al. 2016). Moreover, Olavius PGRPs may also play a role in symbiont
population control and host nutrition by contributing to symbiont digestion. Intrigu-
ingly, two of the three recently confirmed Olavius PGRPs are diaminopimelic acid
(DAP)-specific, i.e., theymay specifically target the peptidoglycan of Gram-negative
bacteria including, for example, Ca. Thiosymbion (Schleifer and Kandler 1972;
Swaminathan et al. 2006).

Although C. capitata has a similar number of PGRPs, namely four, these are
absent from all nematodes including L. oneistus. Therefore, if PGRPs are likely
involved in mediating the Olavius symbiosis, they do not seem to be universally
required by meiofauna to establish chemosynthetic symbioses.

4.7.5 C-Type Lectin Domain-Containing Proteins
(CTLD-Containing Proteins)

The C-type lectin-like domain family contains secreted, as well as transmembrane
proteins that differ regarding their tertiary structures, but all share primary and
secondary structural homology in their carbohydrate recognition domain (Cummings
andMcEver 2009). The first describedmembers of this family indeed bound carbohy-
drates in a calcium-dependent (C-type) manner, and were thus true lectins. However,
the carbohydrate recognition domain was subsequently identified also in proteins
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that did not bind carbohydrates, but other ligands such as proteins and lipids, and
also did not require calcium for binding. The termC-type lectin-like domain (CTLD)
was thus introduced to reflect the structural similarity to the CRD of bona fide C-type
lectins without implying common function. CTLD genes occur in all multicellular
eukaryotes and they may constitute more or less expanded and diverse gene families:
the human genome contains 100 CTLD genes, the C. elegans genome 283 and D.
melanogaster 56 CTLD genes. Based on their transcriptomes, L. oneistus encodes
for 117 CTLD-containing proteins, 42 of which are predicted to be secreted and O.
algarvensis for 49, 11 of which may be secreted (Wippler et al. 2016; L. König
and Y. Sato, unpublished). Although nothing is known about CTLD-containing
protein localization and function in Olavius, in the case of the Stilbonematinae L.
oneistus and Stilbonema majum, we showed recombinant Mermaid CTLs to mediate
symbiont aggregation and host-symbiont attachment. Furthermore, L. oneistus and S.
majumMermaids exclusively localized to symbiont-coated regions of the two nema-
todes and different isoforms bound the two respective symbionts more or less effi-
ciently (Bulgheresi et al. 2011; Bulgheresi et al. 2006). Although our localization
and functional studies suggested that Mermaid CTLs may be involved in the recruit-
ment of specific symbionts by L. oneistus and S. majum, their transcripts were
hardly detectable in our adult nematode transcriptomes. One possibility to explain
this apparent under-representation of mermaid transcripts in adult nematodes is that
Mermaid CTLs expression is limited to hatching and moulting (Paredes et al. 2022)
stages. Transcriptomics of all nematode developmental stages will tell us whether
Mermaids are exclusively expressed when the symbiosis must be established (during
hatching) or re-established (during moulting).

4.7.6 Effector Molecules

Given that antimicrobial peptides (AMPs) are generally not conserved, it is not
surprising that most species-specific AMPs identified in model invertebrates are
absent from both L. oneistus and O. algarvensis. However, non-species-specific
antimicrobial peptides such as saposin-like proteins were expressed in both worms.
Additionally, L. oneistus encoded for thaumatin-like (C. elegans) and macin-like
(Hydra) putative AMPs.

Concerning lysozymes, O. algarvensis only encodes for an invertebrate-type
one, whereas L. oneistus almost exclusively encoded for lysozyme-like proteins,
namely 12, nine of which are secreted. Given that invertebrate-type lysozymes
were upregulated upon bacterial infection in C. elegans, how could Thiosymbion
withstand host lysozymes? Given that Thiosymbion does not appear to encode for
lysozyme inhibitors, it might modify its peptidoglycan to make it invulnerable to
enzymatic digestion. Intriguingly,Ca.T. oneisti peptidoglycan displays a high degree
of O-acetylation and cross-linking of its glycan strands (Wang et al. 2021). However,
future studies need to clarify whether these two modifications enable the symbiont
to escape host lysozyme-mediated lysis.
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Bactericidal permeability-increasing proteins (BPIs) are AMPs that are found in
vertebrates and invertebrates and play a crucial role in the innate immune response
against Gram-negative bacteria (Chen et al. 2017). Indeed, by binding their LPS,
they may literally perforate bacterial membranes. While most research focussed on
mammalian BPIs, just a handful of studies have been carried out in invertebrate ones.
For example, in the squid Euprymna scolopes BPI was expressed in the symbiotic
(light) organ and showed bactericidal effects against its symbiont Vibrio fischeri.
This suggests that the squid expresses BPIs to control the size of the symbiont
population (Chen et al. 2017). A total of 16 bona fideBPIswere found to be expressed
by L. oneistus, but a single one was identified in O. algarvensis (König and Sato,
unpublished). Laxus BPIs are likely secreted from the GSOs onto the nematode
cuticle throughout the nematode anteroposterior axis (Bauer 2012). Particularly in
the symbiotic region of the cuticle, BPIs co-localized with and embedded in Ca.
T. oneisti. Obviously, this symbiont is not harmed by these broadband antibiotics,
however, more studies are necessary to prove that the Laxus BPIs contribute to
symbiosis specificity, i.e., that they select out environmental, non-symbiotic bacteria.

4.7.7 Environmental Regulation of Host Immunity

Because immune systems have traditionally been studied in the laboratory, we do
not know much about how environmental, abiotic factors affect vertebrate and inver-
tebrate immunity. The transcriptional response of L. oneistus to the presence of
oxygen has been recently analysed by comparative transcriptomics. Transcripts of
innate immune molecules, likely involved in Ca. T. oneisti attachment (e.g., CTLD-
containing proteins) were more abundant in the absence of oxygen (Paredes et al.
2022), where this ectosymbiont was observed to proliferate more (Paredes et al.
2021). It is therefore conceivable that the nematode expresses more CTLs to retain
and/or control a proliferating symbiont. Additionally, overexpression of lectins in
anoxia could favour symbiosis establishment in deep sand. Conversely, transcripts
encoding for the Toll receptor, an antifungal protein (e.g., endochitinase-B) and two
BPIs were more abundant in the presence of oxygen. This could be explained by the
fact that we expect microbial pathogens to be more abundant in oxygenated than in
anoxic environments.

All in all, the Laxus immune system appears to be optimized to resist to potentially
deleterious microbes where they most abound (superficial, oxic sand) and to recruit
its symbiont Ca. T. oneisti where it thrives (deep, reduced sand).

4.7.8 Conclusions

• The ectosymbiotic nematode L. oneistus and the endosymbiotic gutless
oligochaete O. algarvensis engage similar classes of receptors to interact with
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microbes, the important exception is the PGRPs which are completely absent
from nematodes (Fig. 4.4).

• Both worms may use very diverse immune receptors and effectors (e.g., GCPR,
CTLD-containing proteins, lysozymes) to achieve highly specific symbioses.

• Amixof symbiont-induced suppression of host immunity and secretion of growth-
inhibiting immune effectors (e.g., CTLD-containing proteins, lysozymes) could
mediate symbiont population control (Fig. 4.4); additionally, the gutless Olavius
appears to directly digest its symbiotic partners.

• In L. oneistus, symbiont restriction to specific regions of the cuticle could be
mediated by neuronal regulation of the epidermal immune system as suggested by
the expansion of genes encoding for neuropeptides (e.g., NPY) and neuropeptide
receptors (e.g., NPYR).

• The bacterial skin may be regarded as part of the nematode and oligochaete
immune system in the sense that symbiont antimicrobials and/or secretion systems
likely repel deleterious or non-beneficial environmental microbes.

• Recent transcriptional studies on L. oneistus suggest an exquisite sensitivity of
its innate immunity to environmental changes. Indeed, abiotic factors such as
oxygenmay greatly affect both its capacity towithstand pathogens and to establish
microbial symbioses.

4.8 New Insights from the Physiology of Chemosynthetic
Symbionts in Meiofauna

4.8.1 Carbon and Energy Sources

The discovery of bacterial sulphide (H2S) oxidation in a mouthless animal host
sparked the characterization of chemosynthetic symbioses at deep-sea hydrothermal
vents. Soon after, not only sulphide oxidation but also the oxidation of other reduced
sulphur species such as thiosulfate was detected in many environments from the
deep-sea to shallow water habitats, coupled with the reduction of a suitable electron
acceptor such as oxygen or nitrate. In the initial concept of chemosynthesis framed
more than four decades ago, the symbionts were interpreted as nutritional symbionts
that provide two innovations to the metabolic spectrum of their eukaryote hosts: 1)
the ability to use chemolithotrophic energy sources and 2) the ability to build biomass
from one-carbon (C1) carbon sources (see Fig. 4.5 for convergent features in meio-
faunal symbionts). It was quickly accepted that, in addition to CarbonDioxide (CO2),
which defines autotrophic metabolism, also methane (CH4) might be a C1 carbon
source in chemosymbiosis, which, strictly speaking, renders these symbionts chemo-
organo-heterotrophs.Methane, as single energy and carbon source, plays amajor role
at deep-sea sites, but has, however, not been shown to play a role in shallow water
habitats and in meiofaunal hosts. Another leap forward in our understanding of the
diversity of energy sources was the discovery of hydrogen use in deep-sea mussels
that also prompted the discovery of hydrogenuse in shallowwater symbioses (Kleiner
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et al. 2015; Petersen et al. 2011). An additional energy source, and the only substrate
that, so far, has been only shown in shallowwater hosts and not in deep-sea habitats is
carbon monoxide (CO), an energy-rich but toxic compound that likely is ubiquitous
in decaying seagrass materials around the globe (Kleiner et al. 2015). In addition
to these energy sources based on the oxidation of reduced inorganic or C1 organic
compounds such as sulphide and methane, a diverse range of more complex organic
substrates have been shown to fuel chemosynthetic symbioses in deep-sea environ-
ments. In oil-rich sediments of the Gulf of Mexico, chemosynthetic mussel hosts, for
example, draw a substantial amount of carbon and energy from short-chain alkanes
such as propane or butane (Rubin-Blum et al. 2017). The impact of these hydrocar-
bons as energy and/or carbon sources is a current frontier in chemosynthesis research
and has received quite some attention, as it connects chemosynthetic symbioses and
bioremediation, for example, in oil-contaminated shallow water habitats.

Fig. 4.5 Convergence in major parts of the metabolism characterizes shallow water chemosyn-
thetic symbionts. Depicted are central metabolic features present in all thiotrophic symbionts of
meiofaunal hosts. Anaplerosis indicates several carboxylation reactions that lead to a significant
top-up to the total carbon budget that is very cheap compared to the same amount of carbon fixed
via the Calvin-Benson-Bassham (CBB) cycle. Sred, reduced sulphur species; SulfOx, oxidation of
reduced sulphur compounds; PHA, polyhydroxyalcanoates; PPi, Pyrophosphate; p3-HPB, partial
3-hydroxypropionate bicycle; CBB cycle, Calvin-Benson-Bassham cycle
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4.8.2 Autotrophs, Mixotrophs or Heterotrophs?

These complex carbon and energy sources point to a conundrum in chemosyn-
thesis research: Where to place the consortia in the spectrum from autotrophy to
heterotrophy? In the symbioses that are clearly within an autotrophic framework,
symbiont carbon fixation via Calvin-Benson-Bassham cycle (CBB) is the main
carbon source. CBB has in fact been shown in most symbiont groups from both
the deep sea and shallow waters, apart from the methane and alkane oxidizers. Other
pathways for carbon fixation such as the reverse tricarboxylic acid cycle (rTCA)
pathway have been documented as well, and some deep-sea symbionts are appar-
ently able to use more than one carbon fixation pathway (Hinzke et al. 2021; Kleiner
et al. 2012; Rubin-Blum et al. 2017). In shallow-water meiofaunal hosts, carbon
fixation via the CBB dominates carbon source (Fig. 4.5).

In addition to CBB-based autotrophy, many chemosynthetic symbionts, particu-
larly in shallowwater environments, can alsomake use of small organic molecules as
substrates (Fig. 4.5). These compounds are, for example, propionate or acetate, and
symbionts also express transporters for their specific uptake (Jäckle et al. 2019;
Kleiner et al. 2012; Paredes et al. 2021). Unrelated symbionts in Paracatenula
and gutless oligochaetes, for example, express an incomplete 3-hydroxypropionate
bicycle (3-HPB) that can be used for the heterotrophic assimilation of these small
organic acids (Fig. 4.5; Jäckle et al. 2019; Kleiner et al. 2012; Paredes et al. 2021).
These substrates can be connected to a role of the symbionts in host waste recy-
cling. This is a logical conclusion, given that important and well-researched host
groups such as the gutless oligochaetes lack a gut, and excretory organs. Recent data
from stable isotope analyses of the chemosynthetic consortia on one hand and the
habitat’s biochemistry on the other hand, however, suggest that such “small organic
substrates” can also come from the environment. The fermentation of the substrates
could be performed by the hosts, by environmental organisms, or by the symbionts
themselves. A major source for these external substrates is, for example, seagrass.
Recent observations show that many seagrasses massively export metabolites into
sediments, both directly as simple sugars or indirectly via the slow decay of the dead
plant biomass that has been accumulated in a peat-like fashion (Sogin et al. 2019).

The use and importance of such heterotrophic resources in chemosynthesis were
long overlooked. This comes as no surprise, given the fact that their use might be
buried in the complexity of the overall metabolism of the symbionts present in a
given host. Only very recent technical innovations, that allow to track stable isotope
data for different members of chemosynthetic communities, have shown that some
members of these communities clearly have a non-autotrophic signature for their
carbon source (Kleiner et al. 2018). The data also shows that this additional carbon
source appears to have a strong effect on the overall carbon budget in the gutless
oligochaeteO. algarvensis, as the host signature can only be explained by an evenmix
of both types of carbon uptake (Kleiner et al. 2018). In extreme cases, these symbiont
groups likely provide a substantial part of their holobionts’ carbon budget and would
effectively put this chemosynthetic holobiont on the heterotrophic part of the spec-
trum, despite a large autotrophic potential in their symbionts. The most extreme
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case of heterotrophy in chemosymbioses was discovered in the meiofaunal ciliate
Kentrophoros that showed that their Ca. Kentron symbionts have no pathway for
autotrophic carbon fixation, but rather express an array of importers of small organic
substrates including small C3 and C4 organic acids as well as sugars that fuel a
completely heterotrophic metabolism (Seah et al. 2019). Initially thought to be a
protist-only phenomenon, the striking observation that aKentron symbiont has appar-
ently replaced the Thiosymbion (Gamma1) symbiont in a gutless oligochaete species
from the Caribbean also points to the importance of such chemoorganoheterotrophic
lifestyles in meiofaunal animal hosts.

4.8.3 Anaplerosis as a New Force to Reckon
with in Chemosymbiosis

The observation that the Ca. Kentron symbionts lack an autotrophic pathway
for carbon fixation came as a particular surprise, as experiments that were
already conducted in the early days of chemosynthetic symbiosis research in
Kentron; Kentrophoros symbioses showed strong signals of carbon fixation in phys-
iological experiments (Fenchel and Finlay 1989). Both the genomic and expres-
sion data from Ca. Kentron, but also from Ca. Thiosymbion and Ca. Riegeria, the
alphaproteobacterial symbiont in Paracatenula flatworms, showed that a process
called “anaplerosis” could explain the conflicting results between sensitive tracer
experiments based on using radioactive CO2 and the recent metabolic reconstruc-
tions (Jäckle et al. 2019; Paredes et al. 2021; Seah et al. 2019). Anaplerosis is the
replenishment of intermediates for the TCA cycle. These pathways that fuel the
TCA all involve carboxylation steps and therefore the fixation of carbon from CO2.
Anaplerosis is a ubiquitous process and is, for example, also taking place in human
mitochondria. In most animal hosts, the anaplerotic additions to the total carbon
pool are minor and make up less than one percent of the total carbon uptake into
the system via heterotrophic nutrition. Both in the Ca. Kentron symbionts that lack
an autotrophic carbon fixation pathway, but also in the Ca. Riegeria symbionts that
massively express CBB-based autotrophy, several such carboxylation steps fuel the
central carbon metabolism (Jäckle et al. 2019; Seah et al. 2019). When constantly
supplied by a high flux of turned over substrate, pathways such as the “incomplete
3-HBP pathway” the Ethyl-Malonyl-CoA pathway can add substantial amounts of
carbon to the total carbon budget. InKentrophoros, this apparently reaches such high
levels that the positive signal from radiotracer-based analytics can be mistaken for
signatures of a chemoautotrophic lifestyle (Fenchel and Finlay 1989; Seah et al.
2019).

The recent expansion of available genomic resources for symbionts has revealed
that anaplerosis is widespread in the metabolism of chemosynthetic symbionts.
Anaplerotic pathways and carboxylation steps have been detected in all meiofaunal
systems investigated (see Fig. 4.5;Kentrophoros,Paracatenula, gutless oligochaetes,
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and Stilbonematinae). The advantage of amassive integration of anaplerotic carboxy-
lation into the symbiont’s carbon metabolism and the host-symbiont carbon cycling
could be the low energy demand per mol carbon fixed. It is a highly efficient supple-
ment to the already accumulated carbon in the system, be it fromauto- or heterotrophy
or from host waste recycling. These insights are very similar to what has been
suggested for efficient free-living heterotrophs that make most of light in the coastal
ocean (see e.g., review by Moran and Miller 2007). They point to a much larger role
of anaplerosis on carbon budgets across marine habitats that is starting to get more
and more attention (Braun et al. 2021).

4.8.4 A Call for Precise and Detailed Physiological Data

In symbionts with versatile genomes, which can use complex organic substrates, the
type of metabolic input, be it autotrophic or heterotrophic, cannot be determined by
genomic analyses alone. This recent insight in chemosynthetic research is a prime
example for the need of e.g., community-resolved stable isotope analyses that can
differentiate and resolve e.g., carbon sources that are the two deltaproteobacterial
symbionts in O. algarvensis. Both have a very similar genomic potential, but one
effectively contributes as a net heterotroph and one as a clear autotroph (Kleiner et al.
2018). Particularly in the sediments around seagrasses that are rich in sugars and other
plant materials (Sogin et al. 2019), such analyses must be considered imperative if
any conclusion on the overall status of the holobiont and the contributions of any
given symbiont is drawn.

4.8.5 Nitrogen Sources

Animals have high demands of nitrogen. Therefore, it was a revelation of recent
meio- and macro-faunal chemosynthetic symbiosis research to see that symbionts
from shallow water sediments are capable of fixing N2 even within the tissue of their
hosts (Petersen et al. 2017; Paredes et al. 2021). While this is essential in nitrogen-
limited environments, the major nitrogen source for most symbionts still appears
to be ammonium. The mode of nitrogen fixation is not stably retained throughout
symbionts, not even within a single symbiotic genus such asCa. Thiosymbion where
only some members can fix nitrogen. The host supply with nitrogen and with amino
acids are tightly coupled processes. All chemoautotrophic symbionts are fully self-
reliant on amino acid production and canprovide their hostswith all essential andnon-
essential amino acids. This complete potential for de-novo production of amino acids
is in stark contrast to the nutritional symbioses present in terrestrial systems, e.g.,
in insects. Selection for a fully autonomous metabolism in the bacterial symbionts
seems to prevent integration of amino acid synthesis and metabolism into the host’s
metabolism. However, for most chemosynthetic symbioses details of amino acid
supply remain unresolved.
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4.8.6 Biomass Transfer and Storage

Typically, chemosynthetic symbionts are food items for their hosts, and as such form
the natural stocks to ‘harvest’ and consume. The standing stock of symbionts also
forms the storage reservoirs that hosts can draw onwhen environmental resources are
limited and symbiont populations are not growing. Most symbioses, including the
gutless oligochaetes, someStilbonematinae andKentrophoros,digest their symbionts
at high rates. They share this with their deep-sea counterparts such as giant tube
worms or Bathymodiolus mussels. Digestions can happen in the gut as in Stil-
bonematinae, or through phagocytosis and lysosomal digestions such as in gutless
oligochaetes and Kentrophoros. In contrast to this, the Paracatenula symbiosis has
developed a different way to transfer large amounts of biomass from the symbionts
to the host. The bacterial symbionts massively secrete OMVs which the host takes
up via phagocytosis. Unlike the crop harvest model typical for most chemosynthetic
symbioses, the Paracatenula symbiosis rather functions like a battery-and-current
system, where the symbionts are a rechargeable storage unit that can supply a current
of OMVs for nutrition. Hence, the symbionts become only very rarely digested, they
rather develop massive and versatile storage inclusions comparable to fat cells and
other specialized storage cell types inmetazoans (Jäckle et al. 2019).A similar pattern
likely applies to Astomonema nematodes that also have very large symbionts, but of
a lineage of the gammaproteobacterial Ca. Thiosymbion that is specific to this host
genus. The Astomonema Thiosymbion are much larger than the host cells and the
symbionts are completely filled with storage vesicles (Fig. 4.2). Similar to Para-
catenula, the Astomonema symbiont populations show few signs of symbiont diges-
tion in electron microscopy data, suggesting a convergent role for these symbiont
lineages from different bacterial phyla as nutritional and storage symbionts (Leisch
pers. comm.; Giere et al. 1995; Ott et al. 1982).

4.8.7 The Role of the Hosts

While in these symbioses many details are known about the metabolic role of the
bacterial partners, the hosts’ input in carbon uptake and total carbon and energy
budget remains as yet far less resolved.Meiofaunal animals have long been suggested
to take up dissolved organic substrates. This is especially important and needs to be
considered in those representatives with an open and soft body surface or epidermis
such as ciliates, flatworms, or annelids. Nematodes, on the other hand, with their
dense and multi-layered cuticle, are relatively unlikely to live of dissolved organic
matter, particularly those groups lacking a gut. Proteomic approaches that capture
expression and also generate host and symbiont-specific stable isotope data are
promising tools to explore the host role.
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4.8.8 Ca. Thiosymbion—The Archetypical Chemosynthetic
Symbiont in Meiofaunal Hosts

While the autotrophic symbionts Ca. Riegeria in flatworms and the heterotrophic
Ca. Kentron symbionts in Kentrophoros represent two extremes of a broad spectrum
ranging from pure autotrophy to pure heterotrophy, the entire metabolic spectrum is
largely covered by Ca. Thiosymbion, one of the most successful and archetypical
chemosynthetic symbionts. Associated with three unrelated host groups and more
than a hundred host species (seeTable 4.1 andFig. 4.2;Musat et al. 2007; Scharhauser
et al. 2020; Zimmermann et al. 2016), Ca. Thiosymbion:

• can use both nitrate and oxygen as electron acceptors,
• utilizes a wide range of carbon sources,
• uses anaplerosis to top up carbon,
• can fix nitrogen,
• hasmultiple options to store carbon and energy (Kleiner et al. 2018, 2012; Paredes

et al. 2021),
• can flexibly employ all of the metabolic pathways mentioned above in the typical

oxic to anoxic gradients, and, at leastwhen associatedwithLaxus oneistus, appears
to prefer anoxic conditions (Paredes et al. 2021).

4.9 Intricate Symbiotic Relationships—Present Frontiers,
Emerging Challenges, and Future Research

The study of chemosynthetic symbioses in meiofauna has produced an appreciable
number of fundamental insights into topics of general relevance in cell biology,
immunology and physiology. Nevertheless, many questions still remain unanswered,
opening new horizons for research and posing challenges for methodology. Below,
we outline some of these, pertaining to the distribution of chemosynthetic symbioses
amongst meiofauna groups, the pathways that led to the intimate symbioses that we
observe today, the interactions between partners, the mechanisms for acquisition and
maintenance of symbionts, the physiology behind the partnerships and, lastly, the
role of chemosynthetic symbioses in their ecosystem.

• Up to now, chemosynthetic symbioses have been found in a few meiofauna
groups only, (karyorelictid ciliates, catenulid platyhelminthes, nematoda, and
oligochaetes). Are there more to be discovered? Currently, it is unclear if abun-
dant and well-studied taxa such as Gnathostomulida, Gastrotricha, Kinorhyncha
or the diverse interstitial crustacea have symbiotic representatives, althoughmany
of those co-occur with symbiotic species and live in environments favourable
for chemosynthetic bacteria. Similarly, which traits enable the most successful
symbiotic bacterium, Ca. Thiosymbion, to colonize most diverse hosts and adopt
all lifestyles from ectosymbiont to intracellular endosymbiont? Comparative
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approaches could allow us to identify traits that either foster or prohibit symbiotic
interactions in either symbiotic partner.

• What were the evolutionary starting points and pathways that led to the
establishment of the symbioses? Are the symbiotic bacteria survivors from an
ancestral microbial menu of the hosts, as seems probable in Astomonema? Are
they the descendants of pathogens that the host succeeded to keep in check and
finding an agreement with the “attacker”, as may be the case in Vestimentifera and
Paracatenula? Have themicrobes just “hitched a ride” on themoving host that has
proven to be beneficial to both partners as inKentrophoros or the Stilbonematinae?
Understanding the evolutionary background of many clades likely enables us
to generalize the dynamics of host microbe associations along the mutualist to
parasite spectrum (see Box 4.2).

Box 4.2 How and why did such symbioses evolve?

Expand food sources—Many animals feed on bacteria, and it is likely that
the consumption of chemosynthetic bacteria by animals was a major driver
for the first encounter of the two partners.
Expand symbiont habitat—Space is highly limited in highly productive
environments, and a bacterium that colonizes animal epithelia or cuticles
conquers large new habitats.
Expand host habitat—Sulphide detoxification by chemosynthetic
symbionts might help to expand the range of the animal host. This effect
likely is limited by the quick diffusion of sulphide into animal tissue and
only very thick coats might mitigate sulphide stress for a significant period.
Expand symbiont access to resources—Oxygen and sulphide is the
optimal red/ox couple, but are spatially separated. An animal host can easily
traverse the gradient and provide access to both oxygen and sulphide much
more efficiently than if the symbiont was on its own.
Provide buffering capacity—The symbionts can use host carbon and
nitrogen waste as substrates, which makes them more independent from
environmental conditions.
Provide shelter—Free-living bacterial populations are under pressure for
exploitation, both from viruses as well as bacterial and animal predation.
Intracellular endosymbionts are fully sheltered from many of these attacks,
and even ectosymbionts are much more sheltered, for example, via biofilm
formation, physical barriers such as invaginations or chemical barriers such
as an extracellular matrix.

• None of the symbiotic meiofauna species has been cultivated over several sexual
generations or for an extended period of time yet. This is a major challenge for
methodology. Efforts must continue to overcome this shortcoming and thus pave
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the way to creating model organisms, that can be physiologically and genetically
manipulated. The recent successes with cultivation approaches for both Para-
catenula flatworms and gutless oligochaetes (Gruber-Vodicka and Gruhl, pers.
comm) are promising and might open new avenues, for example, in immunology
and experimental physiology to gain a mechanistic understanding of meiofaunal
animals that live in obligate symbiosis.

• In order to fully understand interactions between symbiotic partners, we need a
holistic approach, combining high-resolution structural data with gene expres-
sion and chemical information. In this respect, the small size of meiofaunal organ-
isms is both a challenge and a blessing. Nucleotide, protein andmetabolite extrac-
tion as well as detection and sequencing methods are more difficult and prone
to systematic error the smaller the amount of starting material is. However, low-
input library protocols and sensitive sequencingmethods are constantly improving
towards detection of low-abundance transcripts and assembly of genomes from
single cells. Chemical imaging approaches like EDX (Energy Dispersive X-Ray),
Raman, SIMS (Secondary-Ion Mass Spectrometry) techniques and especially
MALDI-MSI (Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry
Imaging) allow quantitative label-free imaging of elements or biomolecules. Here
the challenges lie in the balance between spatial resolution and analytical range
and in the necessary combination with structural imaging to provide the morpho-
logical framework. On the structural side, small organisms are much easier to
image in full size than larger organisms. Modern 3D techniques like FIB-SEM
(Focused Ion Beam-Scanning Electron Microscopy) allow acquisition of volu-
metric data sets at ultrastructural level of detail. New light microscopy tech-
niques such as lattice light sheet microscopy make acquisition of near-isotropic
3D data near the diffraction limit possible, thus in the range of bacterial cells.
Subcellular imaging can be achieved with new structured illumination or other
super-resolution techniques. These are currently highly innovative fields and it
is important to follow this progress and its potential for the study of meiofaunal
organisms.

• Throughout their lives, meiofauna animals, just like us, need to communicate
with microbes, and to decide whether to escape, destroy or cooperate. The study
of meiofauna immune systems revealed that at least some of the underlying
molecules are also at work in vertebrates, including humans. This was high-
lighted by the discovery of the Mermaid lectins in L. oneistus. The carbohydrate
recognition domain of this family of proteins is structurally and functionally so
similar to the human immunoreceptor DC-SIGN that it can compete with it and
block pathogen uptake and transmission by human cells. The potential for discov-
ering, for example, new AMPs by studying symbiotic meiofauna is vast, as it is
that of understanding the role of neuropeptide signalling in immunity. Not before
we succeed in cultivating and genetically manipulating symbiotic meiofauna,
will it become possible to understand which receptors, pathways and effectors
are responsible for symbiosis establishment and maintenance of highly specific
symbioses.
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• Can these autonomous and efficient bio-factories inform synthetic biology?
Nutritional symbioses in insects, where symbionts provide a limited set of
metabolic functions exhibit streamlining of the symbiont genomeswhere genomes
lose most genes and only retain the very few metabolic functions necessary for
the hosts. This drastic reduction can lead to a point of decay that was observed
in many insect symbioses, but such deleterious reduction of the genome is rare
in chemosynthetic symbionts. In fact, only two host groups, the deep sea Vesi-
comyidae clams and the Paracatenula flatworms, show pronounced symbiont
genome streamlining compared to the free-living prokaryotic relatives. However,
in both cases the symbiont genomes remain autonomous for carbon metabolism,
amino acid and vitamin synthesis and the two symbiont groups are able to satisfy
the full nutritional needs of their animal hosts with a common share of approx-
imately 700 genes. The genomes of chemosynthetic symbionts are smaller than
those of most free-living bacteria with highly streamlined genomes, and at the
same time are tailored to serve as nutrition.Maybe one daywe can learn from these
symbionts how to efficiently provide nutrition for animal livestock or humans from
recycled waste and at the same time detoxify problematic side products such as
sulphide?

• What is the influence of chemosynthetic symbioses in meiofauna on the condi-
tions in the interstitial environment? Is there an effect on flux rates in biogeo-
chemical cycles, especially the sulphur or nitrogen cycle? In many cases, the
density of symbiotic meiofauna is probably too low to leave a signature. In
tropical back-reef sediments, however, chemosynthetic meiofauna can drasti-
cally outnumber non-symbiotic interstitial organisms and their role in processes
which are largely controlled by abiotic physical and chemical forces in other sedi-
ments, is still unknown. Human-induced global change such as eutrophication,
rising temperature and CO2 concentrations are expected to result in expansion of
sulfidic, hypoxic and oxygen minimum zones in marine habitats (see Chap. 7).
How do chemosynthetic symbioses respond and adapt to these changing condi-
tions? Experimental physiological and ecological approaches may help to assess
adaptability and resilience in symbiotic systems.

• For most symbiotic meiofauna, little is known about their reproductive biology.
However, most of them share traits like internal fertilization, direct development,
and low number of offspring. With a lack of planktonic dispersal stages, the full
life cycle is effectively locked into the sediment. This raises the questions of how
their populations are structured and the effective range of dispersal in both space
and time.

• In a symbiosis context, it is a completely open frontier how population structure
and dispersal are linked to the acquired pool of symbionts. As many symbiotic
meiofauna systems show a degree of horizontal symbiont uptake, answering these
questions will help to identify the key traits that select for a successful association.
The comparison between different hosts should allow to differentiate between
host- and symbiont-driven selection.
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Chapter 5
Marine Meiofauna Diversity
and Biogeography—Paradigms
and Challenges

Ann Vanreusel, Pedro Martínez Arbizu, and Moriaki Yasuhara

Abstract Scientists studying the biodiversity and biogeography of meiofauna
encounter many uncertainties regarding the causes and consequences of natural
and anthropogenic-driven changes in biodiversity patterns they observe worldwide.
Recently developed novel analytical and computational technologies are facilitating
more systematic and integrated approaches to the study of meiofauna biodiversity. In
this chapter,we reflect on the state of the art in biodiversity and biogeography research
with a focus on the most abundant and diverse meiofauna taxa including nematodes
and copepods.Other occasionally abundantmeiofauna taxa such as carbonate-shelled
crustacean ostracods and protist foraminiferans,which are present in the fossil record,
allow meiobenthologists to understand the links between shifts in biodiversity and
major historical events in the marine environment. Sample-size dependency and
the lack of standardization across benthic surveys currently hamper the integra-
tion of disparate meiofauna studies into wider research of seafloor biodiversity and
biogeography. We discuss habitat-specific meiofauna biodiversity patterns that are
observed at different scales and identify the main drivers of such patterns. Important
factors include physical characteristics of the seafloor, biogeochemical processes,
ecosystem productivity, geographical location, but also the interactions of meiofauna
with other ecosystem components including their prey, their predators, competitors,
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and habitat facilitators. We discuss the importance of meiobenthic biodiversity for
ecosystem functioning and touch on the biogeography of dominantmeiofauna taxa by
looking atwhatwe knowabout the importance of endemismversus cosmopolitanism,
the growing insights in population genetics and cryptic speciation, the phylogenic
processes underpinning them, and critical gaps in our knowledge. We conclude by
identifying some dynamic areas of research and inquiry for future generations of
meiobenthologists studying the biodiversity and biogeography of meiofauna.

5.1 Why Study the Biodiversity and Biogeography
of Meiofauna?

One of the major challenges in ecological research today is to identify the causes
and effects of natural and human-driven changes in marine biodiversity patterns.
Particularly urgent is the need to better understand and quantify different aspects of
biodiversity and identify the role of anthropogenic activities and their consequences
such as global warming, deoxygenation, acidification, eutrophication, overfishing,
and pollution in local, regional, and global declines of biodiversity for all major
components of themarine realm (Sala and Knowlton 2006;Mieszkowska et al. 2014;
Luypaert et al. 2019), including the microscopically small meiofauna (see Chap. 7).
The United Nation’s Convention on Biological Diversity of 1992 defines biological
diversity as “the variability among living organisms from all sources including, inter
alia, terrestrial, marine, and other aquatic ecosystems and the ecological complexes
of which they are part: this includes diversity within species, between species, and
of ecosystems” (Josefsson 2018).

In ecological research on meiofauna, biodiversity is generally represented by the
number of species and their equitability or evenness in a given sample, location, or
area. Depending on the context, biodiversity is obviously much more than species
counts and includes different sources of biological variability, such as genes, ecosys-
tems, phylogeny, and functional traits (Turnhout and Purvis 2020). The metrics that
represent biodiversity seem almost infinite, each of them emphasizing particular
features of the biodiversity concept, which refers to a biological entity comprising
multiple components (e.g., a community represented by different species) (Hill 1973;
Ellison 2010; Chao et al. 2020). Biodiversity is studied in many different ways and
at a variety of levels of biological organization. These range from counts of taxo-
nomic or functional units per surface area or volume (for meiofauna traditionally
expressed as number of taxa per 10 cm2 surface area) to dominance (i.e., numbers
of the most abundant taxon), and from alpha (sample or site) to beta (turnover) to
gamma (large scale) diversity (Fig. 5.1), and include different temporal and spatial
scales of sampling (Whittaker 1972).

Several abundant meiofauna taxa, especially nematodes and copepods, are known
to comprise numerous co-occurring species (from about 10 to more than 100) in a
relatively small sample of sediment (10 cm2 surface area), yet many meiofauna
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Fig. 5.1 Visualization of alpha, beta, and gamma diversity. The large box in solid line represents
a region; the 4 small boxes labeled a, b, c, and d are samples from 4 different locations (sites)
representative for the region. The different colored drawings illustrate different species or taxonomic
units. Gamma diversity is calculated based on all species from within the large box representing the
region. Alpha diversity is calculated for each small box separately and represents the site diversity.
Beta diversity refers to differences between the sites (small boxes) and is a measure for how many
species are shared between two sites. For example, sites a and b share no species and have a
maximum turnover or beta diversity while sites b and d have a minimum beta diversity since they
are identical in species composition

taxa are among the least known in terms of their diversity (Appeltans et al. 2012),
suggesting that a large proportion of meiofauna species remains taxonomically unde-
scribed.Understanding drivers of large-scale diversity patterns, i.e., the biogeography
of meiofauna, requires knowledge of their dispersal, their evolutionary history, and
their ability to adapt to prevailing environmental conditions (see Chap. 7). Is every-
thing everywhere or do we find highly specialized taxa that are endemic to specific
ecosystems in distinct areas? The high abundance of some meiofauna taxa, their
ubiquitous presence, and their high taxonomic diversity have generated a set of inter-
esting paradigms but also created challenges when interpreting contrasting patterns
of meiofauna distribution.

Scientists studying the biodiversity and biogeography of meiofauna indeed
encounter many uncertainties regarding the causes and consequences of changing
biodiversity patterns they observe worldwide. Some of these uncertainties may
remain unresolved in the short term. At the same time, innovative sampling
approaches and recently developed novel analytical and computational technologies
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are facilitating more systematic and integrated approaches to the study of meio-
fauna distribution and biogeography. In this chapter, we reflect on the state of the
art in biodiversity and biogeography research with a focus on the most abundant
and diverse meiofauna taxa including nematodes and copepods. Both taxa generally
co-occur in the benthos under the same prevailing conditions despite being char-
acterized by different functional traits linked to their distinctive morphology, life
history, and physiology. Other occasionally abundant taxa composing the meiofauna
are carbonate-shelled crustacean ostracods and foraminiferans, an important protist
group. Generally present in the fossil record, studying those taxa allows meioben-
thologists to understand the links between shifts in biodiversity and major historical
events in the marine environment. Carbonate-shelled ostracods and foraminiferans
are also susceptible to the effects of climate change and in particular ocean acidifi-
cation (Yamada and Ikeda 1999; Fabry et al. 2008; see Chap. 7). Several additional
permanent meiofauna taxa, including kinorhynchs, gastrotrichs, tardigrades, turbel-
larians, and loriciferans, are either rare in most environments or occur in such low
abundances that they are largely outnumbered by the previously mentioned taxa in
terms of their diversity. Nevertheless, poorly-studied rare taxa also represent inter-
esting cases for comparison with the more abundant taxa to understand biodiversity
and biogeography patterns, and the factors and processes driving them.

In this chapter, we

• Reflect on the biodiversity concept within the context of meiofauna biology and
ecology, including generally applied approaches tomeasure biodiversity and some
novel methodological and analytical developments, and identify the issues that
currently hamper the integration of meiofauna biodiversity data across scales of
space and time (e.g., sample size dependency, lack of standardization; Sect. 5.2);

• Discuss, for the most abundant meiofauna taxa, the biodiversity patterns that are
observed at different biogeographical scales (Sect. 5.3);

• Reveal similarities and differences in meiofauna biodiversity patterns among
habitats and identify the main drivers including physical characteristics of
the substrate, biogeochemical processes, ecosystem productivity, water depth,
geographic location, alongside biotic interactions of meiofauna with other
ecosystem components including predator–prey relationships, competition, and
facilitation (Sect. 5.4);

• Examine the importance of meiobenthic biodiversity for ecosystem functioning
with an emphasis on the mediating role of meiofauna interacting with other
ecosystem components from micro- to megabenthos (Sect. 5.5).

• Consider long-term changes of taxa for which we have a paleo-record (Sect. 5.6).
• Reflect on the biogeography of meiobenthic taxa by looking at what we

know about the importance of endemism versus cosmopolitanism, the growing
insights in population genetics and cryptic speciation, the phylogenic processes
underpinning them, and the gaps in our knowledge (Sect. 5.7).

• Finally,we put forward future perspectives and challenges and present somemajor
opportunities for biodiversity and biogeography research ofmeiofauna (Sect. 5.8).
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5.2 Studying an Invisible World: Sampling and Measuring
Meiofauna Biodiversity

Nematoda is one of the most remarkable and widely studied invertebrate phylum
on our planet. Still, many aspects of their biodiversity and biogeography in marine
environments are poorly understood. Currently, one of the major research questions
remains the reason behind the success of nematodes as one of the most abundant
and diverse metazoan taxa across aquatic and terrestrial ecosystems (Schratzberger
et al. 2019; Traunspurger 2021). Combining soil nematode habitat associations with
a phylogenetic tree based on small sub-unit ribosomal DNA sequences, Holterman
et al. (2019) showed that the phylum’s success resulted from numerous habitat transi-
tions followed by moderate diversification, rather than from extensive diversification
after a limited number of major habitat transitions. Resolving the extent to which the
sameprocesses applywithin themarine realmwould delivermajor insights formarine
biodiversity research. While taxonomic research on marine nematodes began in the
early twentieth century, quantitative biodiversity studies on meiofauna started in the
late 1960s early 1970s (see reviews by Heip et al. 1985; Giere 2009). Although also
present as epifauna or epibionts on hard substrata occasionally of biological origin
(such as coral rubble or macroalgae), nematodes generally dominate invertebrate
communities in soft sediments (Giere 2009). Soft sediment meiofauna is tradition-
ally sampled with cores (diameter between 2 and 10 cm) to a sediment depth of 5 to
10 cm. Depending on the substrate, the majority of specimens are generally recorded
in the upper 3–5 cm of the sediment, and nematode densities commonly lie between
100 and a few 1000s per 10 cm2 surface area (varying between the extremes of
about 10 to more than 10,000 individuals per 10 cm2; see below for examples). The
second most abundant metazoan group tends to be copepoda, generally representing
about 10% of the total meiofauna. This proportion is remarkably constant across
water depths, only decreasing by a higher copepod sensitivity to oxygen depletion
when oxygen becomes more limited (Kawano et al. 2021). Within the copepoda,
the Harpacticoida dominate meiofauna samples in terms of abundance and diversity
(George et al. 2020).

Because of their generally high abundances, identifying nematodes from an entire
sample can be very time-consuming. For this reason, samples are traditionally sub-
sampled (after randomization) to a maximum of a few 100s of nematode specimens
that are subsequently identified at varying levels of taxonomic resolution.Most diver-
sity metrics are sample size dependent, so unless sampling and sub-sampling tech-
niques as well as taxonomic resolutions are standardized, data from different surveys
are often not directly comparable (Soetaert and Heip 1990). Given the high nema-
tode diversity, it is estimated that the majority of species remains undescribed to the
present day (Mokievsky and Azovsky 2002). Consequently, many ecological studies
tend to identify nematodes to genus level only. Although nematode genus compo-
sition often reflects macro-ecological patterns observed at species level (Vanreusel
et al. 2010; Hauquier et al. 2019), several genera can be represented by numerous
species in the same sample (high congeneric species richness), especially in the deep
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sea (Muthumbi et al. 2011). Furthermore, the lack of species descriptions hampers
biogeographic studies, and cryptic speciation is probably common in marine nema-
todes (although evidence is limited tomainly brackish and only a fewmarine species;
Derycke et al. 2005, 2007, 2008; Bhadury et al. 2008; also see Sect. 5.3 below).

High throughput sequencing (HTS) approaches such as those based on metabar-
coding are beginning to address these major drawbacks in meiofauna biodiver-
sity research, while generating new uncertainties. No sub-sampling is required
when sequencing sufficiently large samples after extraction from the sediment, and
sequences can be analyzed at the highest (genetic) resolution. However, some taxa
are still not sequenced or recognized in the bioinformatic pipelines currently used
(Avó et al. 2017; Macheriotou et al. 2020; Brandt et al. 2021; Castro et al. 2021).
Also, different conclusions can be drawn from analyses using different sequencing
techniques (Leasi et al. 2018). DNA sequencing does not differentiate between dead
and alive specimens, and therefore, the use of environmental RNA (eRNA), specifi-
cally targeting live organisms, is being explored as a tool in meiofauna studies. For
instance, Broman et al. (2021) demonstrated a clear response of meiofauna to an
organic enrichment gradient along the Baltic coast off Finland using eRNA targeting
nematodes, foraminiferans, and ciliates.

The identification of copepods to species level can only be achieved by studying
the adult specimens. Copepodites and nauplii are therefore generally excluded from
biodiversity comparisons using traditional morphological methods. With the rise
of molecular methods such as barcoding and metabarcoding, identification of all
developmental stages is theoretically possible (Rossel et al. 2019). However, as for
nematodes, the lack of suitable reference libraries is still greatly reducing the appli-
cability of molecular methods (only 12% of the 122 species sequenced in Rossel
and Martínez Arbizu 2019 are currently present in GenBank). Most of the species
found in the abyss (> 99%) are thought to be new to science (George et al. 2013), but
even in relatively well studied areas such as the North Sea, many copepod species
remain undescribed (Huys et al. 1992) with only a few recent species descriptions
added since 1992. Moreover, molecular methods revealed that 19% of the harpacti-
coid species in the German Bight, a part of the North Sea, are new to science, and
> 8% represent species complexes with high cryptic genetic diversity which is not
reflected in the morphology (Rossel and Martínez Arbizu 2019). Lack of compre-
hensive identification keys for marine harpacticoids also hampers the understanding
of species ranges and biogeographical patterns of meiobenthic copepods.

Lacking calcareous skeletal structures, nematodes and copepods, do not generally
leave a fossil record that could be used to study past biodiversity changes. Conversely,
the shelled ostracods and foraminiferans (alive and as fossils) have been well studied
since the nineteenth century, although originally with a focus on taxonomy. They
both are an important meiobenthic taxon of interest in most aquatic environments,
not only for their living specimens, but especially for their fossil records. Quantitative
ecological and paleoecological studieswere initiated in the 1950s (e.g., Benson 1959;
Benson and Kaesler 1963, Walton 1955). Similar to other meiobenthic taxa, most
soft sediment ostracods and foraminiferans live in the top few centimeters of the
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sediment (Gooday 1986; Jöst et al. 2017), and are therefore sampled in the same way
as other meiofauna taxa.

5.3 Meiofauna Biodiversity Patterns Across Benthic
Habitats

Single locality (sample, site, or station), or alpha, diversity patterns observed for
nematodes and copepods range from samples with a very high number of rare taxa
(often occurring as singletons or doubletons in a sample) to samples dominated
(> 50% or more of total abundance) by a single or few high-abundance species.
Intermediate between these extremes, we often observe assemblages composed of
a few abundant species and a significant number of taxa with low abundances.
Figure 5.2 illustrates some of the density-biodiversity patterns observed for alpha
diversity of nematodes and copepods across habitats. While this figure generalizes
themain trends, in each of the habitats shown, specific environmental gradients result
in within-habitat shifts of density-diversity relationships. For instance, abyssal plains
are generally characterized by low densities (from less than 10 to about 100 individ-
uals per 10 cm2) and high species richness with no dominant nematode or copepod
species present (Hauquier et al. 2019; Rose et al. 2005). However, a gradual increase
in particulate organic carbon (POC) fluxes to the seafloor along a surface productivity
gradient tends to result in higher abyssal densities because of the higher food input.
This often corresponds with an increase in species richness for both copepods and
nematodes (Fig. 5.3).

Fig. 5.2 Generalized
patterns of
density-biodiversity
relationship for alpha
diversity of marine
nematodes and copepods in
different habitats (OMZ:
Oxygen Minimum Zones)
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Fig. 5.3 Relationship between nematode species and nematode genera counts and densities (indi-
viduals per 10 cm2) in the abyssal NE Pacific along a particulate organic carbon (POC) gradient in
the abyssal North East Pacific (based on data fromHauquier et al. 2019) combined with the relation-
ship between copepod species versus densities from two locations (same depth) in theAngola Basin.
Samples with copepod densities below 20 individuals per 10 cm2 are from an extreme oligothrophic
site while samples with densities above 20 individuals per 10 cm2 are from a site influenced by
Benguela Upwelling System (based on George et al. 2013)

Areas that have been depleted of organic matter (OM) for long periods of time,
such as permanently ice-covered areas (Rose et al. 2014) or the deepest areas of
shallow-water marine caves (Janssen et al. 2013; see Chap. 11), closely resemble
abyssal communities in terms of low abundance and high evenness. This contrasts
with cold seeps, where methane emanates from soft sediments. Its anaerobic oxida-
tion is coupled to sulfate reduction producing high sulfide concentrations. In these
reduced environments, occasionally, very high densities of a single nematode species
(up to 10,000 individuals per 10 cm2) were found, such as Halomonhystera hermesi
(originally identified as H. disjuncta) which was recorded on the subarctic Håkon
Mosby mud volcano (Van Gaever et al. 2006; Tchesunov et al. 2014). The high
bacterial production on this volcano seems to feed a single opportunistic species that
is tolerant to, and even thrives in, extreme sulfidic and anoxic sedimentary condi-
tions. However, not all seeps show the same elevated densities although diversity is
in most cases reduced since only a few species seem to survive (Van Gaever et al.
2009; Pape et al. 2011). Also, sediments near shallow hydrothermal vents, such as
off Milos (Greece), exhibit low diversity and the dominance of a single nematode
species tolerant to the reduced sulfide-rich conditions. Although densities are not of
the same magnitude as in the subarctic mud volcano, here too a single free-living
marine nematode, Oncholaimus campylocercoides, occurred with abundances of up
to 600 individuals per 10 cm2 at the fringe area of the vents, coping with high sulfide
concentrations and developing sulfur inclusions in the epidermis (Thiermann et al.
1994, 2000).
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While some nematode species may thrive, most copepods and ostracods do
not tolerate oxygen depleted sediments (see Chap. 10). Their densities in oxygen-
poor sediments are generally very low, and assemblages are represented by a few
species only. Copepod assemblages from seeps are often characterized by widely
distributed taxa, such as species from the genus Tisbe which, for example, was the
dominant taxon in chemosynthetic mussel beds in the Gulf of Mexico (Plum et al.
2015). In deep-sea hydrothermal vents, Gollner et al. (2015) reported decreasing
copepod species diversity with increased hydrothermal activity. Noticeable is that
the functional copepod diversity may increase under intense hydrothermal influence
despite the seemingly challenging environmental conditions at vent sites compared
to surrounding areas not influenced by vent emissions (Alfaro-Lucas et al. 2020).
It is likely that local biochemical conditions and fluid flow intensity resulting from
seepage or venting, in combination with the capacity of the dominant species to
colonize the reduced environments, are responsible for different diversity patterns
observed at different seeps and vents.

Antarctic shelfs too can be characterized by very high nematode densities (> 5000
individuals per 10 cm2; Veit-Köhler et al. 2018). Depending on the local conditions,
nematode assemblages comprise either a few dominant species (Ingels et al. 2006)
in addition to several rare taxa or no obvious dominant taxon (Pantó et al. 2021).
The availability of food and oxygen seems to drive the patterns observed (Pasotti
et al. 2014), as does disturbance from past and present ice scouring (Lee et al.
2001). Moreover, when new ice-free habitats appear as a consequence of glacier
and ice shelf collapses, succession can cause shifts in densities and diversity (see
Chap. 9). Recently ice-free areas along the Antarctic shelf, for instance, are initially
characterized by low densities of colonizing nematodes. Densities of a single or a
few rapidly colonizing nematode species then increase before, often after decades,
species-rich, highly abundant assemblages develop (Raes et al. 2010; Hauquier et al.
2011, 2015). This observation is in accordancewith empirical studies fromother habi-
tats, recording the dominance of generalist species at an early stage of succession,
followed by colonization of specialists when a diverse resource base has accumu-
lated (Yeakel et al. 2020). The above cases illustrate some of the extreme biodiversity
values in Fig. 5.2. Most environments, including sandy or muddy shelf areas, exhibit
more moderate average diversity and density. Biodiversity will vary within habi-
tats, depending on local gradients related to different environmental conditions (see
Sect. 5.3).

Beta and gamma diversity of meiofauna is less well understood due to the lack of
species descriptions and limited numbers of larger-scale studies. Spatial turnover is
generally high between distinct habitats. Habitat heterogeneity has a strong positive
effect on beta and gamma diversity, both at genus and at lower taxonomic levels
(Danovaro et al. 2009; Zeppilli et al. 2011; Leduc et al. 2012a; Schratzberger and
Somerfield 2020).A recent regional-scale studyof soft sediment nematode communi-
ties by Liao et al. (2020), assessing the structuring roles of regional (e.g., dispersal)
versus local (e.g., environmental habitat) processes, confirmed the importance of
the environment as the first filter that selects a subset of species from the regional



130 A. Vanreusel et al.

species pool. Distance between locations seemed of lower importance for the surface-
dwelling species, but when subsurface-dwelling nematodes are included in variation
partitioning analyses, the importance of spatial descriptors such as geographical
coordinates increases, in addition to the environmental filter (Hauquier et al. 2018).

Metabarcoding methods are being used to reduce limitations resulting from the
large number of undescribed species and the unknown degree of cryptic diversity.
Using HTS, Macheriotou et al. (2020) evidenced the importance of environmental
filtering for nematodes in relatively homogenous abyssal sediments along a 2000 km
POC gradient in the North East Pacific. In addition, sympatric speciation and affinity
for overlapping habitats were suggested as important processes for diversity based
on observations of aggregation and phylogenetic clustering in abyssal nematode
amplicon sequence variants (ASVs).

5.4 Environment-Related Drivers of Meiofauna Diversity
Patterns

Here we focus on important natural drivers of meiofauna biodiversity. What do we
know about the relationship between specific environmental factors and their effect
on the diversity of meiofauna taxa?

Substrate type: Sediment granulometry has been one of the most frequently
evoked proxies correlating with patterns of nematode and copepod community
composition. Multivariate analyses often group (or differentiate) samples based on
their species and genus composition according to sediment type (Heip et al. 1985;
Vanaverbeke et al. 2011; George et al. 2020). Changes in sediment characteristics
are, at least partly, responsible for both nematode and copepod species turnover,
because species are highly adapted to the substrate in which they live. For example,
more slender copepod species dominate in sandy sediments, living in the interstices
between sand grains, while adapted appendages help some copepod and even nema-
tode species such as the members of the families Epsilonematidae and Dracone-
matidae, to attach to hard substrates (Raes et al. 2008). In contrast to taxonomic
composition and species turnover, the correlative relationship between granulom-
etry and alpha diversity is less straightforward to explain empirically. Reviewing
the wider literature on animal-sediment relationships, Snelgrove and Butman (1994)
found little evidence that animal distributions are determined by any of the sediment
variables derived from grain size alone. This also applies to meiofauna. Sediment-
related primary drivers for biodiversity rather include biochemical processes related
to oxygen supply and food input (Vanaverbeke et al. 2011). Shallow silty, organi-
cally enriched sediments are often associated with higher densities and lower meio-
fauna diversity due to the dominance of opportunistic species. Conversely, meio-
fauna species tend to be more evenly distributed in clean sands, but density is lower
because of the generally lower organic matter content in those sediments. Mean-
ingful and predictive explanations for meiofauna distributions are likely to emerge if
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these are also evaluated relative to the suite of hydrodynamic and sediment transport
processes that are responsible for sediment distributions. Also, offshore it seems
important to investigate the physical form of the sediments (e.g., bedforms) at a
range of spatiotemporal scales, including the details of the grain size distribution
when aiming to provide meaningful explanations for the associations of nematodes
with their sedimentary environment (Schratzberger and Larcombe 2014).

Organic matter supply and oxygen concentrations: In deep waters, nematode
and copepod diversity generally increase with food availability, provided oxygen
is not a limiting factor (Bianchelli et al. 2013; George et al. 2013; Hauquier et al.
2019). As shown in Fig. 5.3, both nematode genus and species numbers tend to
increase with increasing food densities along a gradient of surface productivity in
the North East Pacific abyss. It is likely that the general absence of opportunistic
taxa in these food-limited environments prevents an overall increase in dominance,
so that an increase in OM content at the seafloor is beneficial to many species. Also,
copepod abundance in the abyssal study area in the South East Atlantic is mainly
controlled by OM input to oxygen-rich sediments (George et al. 2013). A northern
station, influenced by the Benguela upwelling system, had 5 times higher abundances
and approximately 3.5 times more species than a southern station located outside the
influence of the upwelling system. Remarkably, copepod evenness was only slightly
(but significantly) lower in a more productive area, evidencing a clear linear rela-
tionship between abundance and diversity of copepods (at nearly constant evenness)
in these well oxygenated deep-sea sediments (George et al. 2013). According to
several studies, there is not a linear but a parabolic response of diversity to food
availability in the deep sea. This is in accordance with the species richness energy
hypothesis which suggests that both low and high food availability results in a low
local or alpha meiofauna diversity (Leduc et al. 2012b). Indeed, studies from high
productivity areas, such as parts of the Southern Ocean (Lins et al. 2018), docu-
mented a decrease in diversity due to the dominance of particular nematode species
at locations with high food input, despite its abyssal depths. To what extent the
decrease in biodiversity is determined by food supply only, or also by an associated
decrease in oxygen concentrations or other factors such as shifts in species interac-
tions, is not yet established. In eutrophic environments, oxygen limitation may favor
a limited number of more opportunistic nematode species which can thrive on the
available food and achieve high densities. However, highly refractory OM content
in oxygen-poor sediments, as found in mud flats and mangroves, can depress both
diversity and density since both variables may vary from high (Sharma et al. 2021)
to very low (Cai et al. 2020). In contrast to nematodes, most other meiofauna taxa,
including copepods and ostracods, are often absent or occur in very low abundance in
hypoxic and anoxic sediments (Yasuhara and Irizuki 2001; Yasuhara and Yamazaki
2005; Yasuhara et al. 2012a; Yasuhara 2019). Crustaceans are much more sensitive
to oxygen depletion and will decrease in density and diversity much more quickly
along an oxygen gradient than nematodes (Elmgren 1975; see Chaps. 7 and 11).
Neira et al. (2018) recorded a decrease of copepod densities along a gradient of
oxygen depletion at the oxygen minimum zone (OMZ) off Costa Rica. No copepods
were found at the site with lowest oxygen dissolved concentration (0.05 ml/L) at
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400 m depth. Some Harpacticoid families like the Cletodidae, however, show some
resistance to low oxygen levels, being the only family able to survive during a two
months long anoxic event (Grego et al. 2014).

Temperature: Temperature is a major driver of marine biodiversity (Tittensor
et al. 2010). Even in the deep sea, temperature plays an important role in controlling
meiofauna biodiversity (Yasuhara et al. 2009; Yasuhara and Danovaro 2016; Jöst
et al. 2019; Doi et al. 2021). Physiological tolerance drives the temperature diversity
relationship, with fewer species being able to tolerate very cold temperatures (Currie
et al. 2004;Yasuhara andDanovaro 2016). Paleontological and biological time series,
and modern spatial distribution records of ostracods, foraminiferans, and nematodes
all show significant temperature diversity relationships (Cronin and Raymo 1997;
Danovaro et al. 2004; Hunt et al. 2005; Yasuhara et al. 2009, 2014; Yasuhara and
Danovaro 2016; Jöst et al. 2019). A recent paleontological time series deep-sea
benthic Foraminifera by Doi et al. (2021) supported the causality of temperature on
diversity, suggesting a major role of bottom-water temperature. For shallow water
environmentswhere the effects of globalwarming are expected to bemore prominent,
laboratory experiments with nematodes revealed that thermal stress from elevated
temperature not only affects the fitness of selected species, but also species inter-
actions, thereby impacting species coexistence and consequently biodiversity (De
Meester et al. 2015; Vafeiadou and Moens 2021). Both the amplitude and frequency
of diurnal temperaturefluctuations affected nematode species interactions (Vafeiadou
andMoens 2021).Multiple stressor experiments also demonstrated a combined effect
of acidification and warming on meiofauna and nematode structural and functional
community descriptors (Meadows et al. 2015; see Chaps. 7 and 11).

Bathymetry: Rex (1973) revealed a parabolic relationship between alpha diver-
sity and water depth for specific macrobenthic taxa such as gastropods. According
to this and other studies, diversity reaches a maximum at mid-water depth between
1500 and 2000 m. Some nematode studies evidenced increasing diversity from the
shelf break to mid-slope depths (Muthumbi et al. 2011), while others showed that
diversity decreases from the mid-slope into abyssal depths (Gambi et al. 2010). Rex
et al. (2005) suggested that low abyssal biodiversity resulted from the fact that the
benthic fauna there was only a spill-over (sink) from the shallower slope fauna and
not a province on its own. However, the presence of abundant nauplii, copepodites,
and egg-carrying females was indicative of self-sustaining copepod populations that
do not depend on spill-over of individuals from slopes to survive. The vent endemic
copepod family Dirivultidae (> 65 species) also diversified in the mid-ocean ridges
and not on the slopes (Gollner et al. 2010). For nematodes, biodiversity data spanning
the whole bathymetric range from shelf to abyss is limited. The increase of nema-
tode species and genus diversity with increased POC flux in the abyss up to a certain
level (Fig. 5.3) is also likely the process responsible for biodiversity increases from
the abyss to mid-slope depths (1500–2000 m). From mid-slope to the upper slope,
depending on surface productivity, the oxygen minimum (between 1500 and 500 m
water depth in general) may impinge on the seafloor which can reduce diversity at the
core of the oxygen minimum area and increase the dominance of species adapted to
low oxygen concentrations. Furthermore, the presence of strong selective pressures
related to gradients of food and oxygen availability, in combination with predation
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and competition, may have led to an increase in habitat specialization in the lower
reaches of oxygen-minimum zones at about 1500 m. This may have supported an
increased rate of speciation atmid-water depths (Rogers 2000) and explain the peak in
biodiversity at mid-slope depths. For copepods, data on diversity-depth relationships
across continuous transects from the shelf to the abyss are also currently lacking. We
can only infer from the small volume of diversity-productivity data that does exist
that diversity will be attenuated along a transect of increasing depth, following the
productivity gradient. Remarkably, meiofauna abundance and diversity increased in
several hadal trenches, as these environments act as accumulation areas for OM trig-
gered by lateral transport (Schmidt and Martínez Arbizu 2015; Schmidt et al. 2018;
see Chap. 9). Ostracods tend to show a similar parabolic depth diversity relationship.
The peak of the curve is shallower in the Arctic and Nordic Seas (several hundreds
of meters) than in the North Atlantic (1500–2000 m; Yasuhara et al. 2012b; Jöst et al.
2019).

Disturbance: Measures of nematode diversity have been proposed as potential
indicators for disturbance (see reviews byBalsamo et al. 2012; Zeppilli et al. 2015 and
Chap. 7 for further references), but suchmetrics are not always reliable as single indi-
cators of stress. Different natural environmental variables strongly affect meiofauna
biodiversity (see sections above), leading to disturbance-biodiversity relationships
that are habitat-specific and difficult to unravel. Emerging modeling studies using
artificial neural networks may provide new insights. Merckx et al. (2010) modeled
both the predictability of free-livingmarine nematode diversity on the Belgian Conti-
nental Shelf (North Sea) as well as the environmental dynamics affecting it, using a
large historical database. Reliable predictions were made for evenness and species
richness, which were mainly related to the clay and sand fraction of the sediment,
and the minimum annual total suspended matter. Variation in species richness was
partly explained by disturbance from sand extraction and the amount of gravel of the
seabed. To our knowledge, no further attempt has been undertaken to date using such
modeling approaches, despite a major development in modeling tools during the last
decade. Metabarcoding approaches too have the potential to help identify a baselines
against which future changes in meiofauna diversity, both natural and anthropogenic
in origin, can be evaluated. On the condition that reference databases are avail-
able, metabarcoding can provide a comprehensive and multi-taxon assessment of
meiobenthic biodiversity while avoiding the labor-intensive sorting and expert-based
morphological identification.

Salinity: Sharp transition zones along strong environmental gradients such as
those caused by salinity are known as ecotones. The extent to which ecotones harbor
more or fewer meiofauna species than the adjacent environments, which they are
connecting, is habitat-specific. For marine nematodes, there is occasional evidence
of increased taxonomic distinctness at upper sandy beaches where freshwater and
marine species coexist (Gheskiere et al. 2005). Meiofauna diversity patterns along
estuarine gradients are not always consistent, but river mouth areas with higher
salinity generally have a higher biodiversity of most meiofauna taxa compared to
the more brackish and freshwater parts (Soetaert et al. 1995; Whitfield et al. 2012;
Broman et al. 2019; Horne et al. 2022). To what extent nematodes species are truly



134 A. Vanreusel et al.

brackish or just tolerant of decreased salinity is unclear at present. It is clear, however,
that salinity can limit the dispersion of both marine and freshwater species. Under-
standing physiological tolerance of these species is a prerequisite to interpret biodi-
versity patterns along estuarine gradients (see Chap. 7). A noticeable observationwas
made in theBaltic Sea,where nematode genera classified as predators prevailed under
more saline conditions. Network analysis demonstrated more prominent meiofauna-
macrofauna associations which were correlated to the higher biodiversity of both
size groups (Broman et al. 2019). However, the total number of meiofauna species in
estuaries is temporally and spatially variable, and reasons for this are complex. Using
eDNA data, Fais et al. (2020) revealed that intertidal meiofaunal communities in the
Lima estuary (Portugal) comprised marine taxa, even under oligo- or mesohaline
conditions, suggesting they went through a large adaptive effort, compared to the
limnetic meiofauna.

Interaction with other ecosystem components: Larger animals belonging to
macro- and megafauna affect meiofauna community composition by bioturbating
and bio-irrigating the seafloor (Braeckman et al. 2011), providing habitat (Raes et al.
2008; Degen et al. 2012), grazing (Ólafsson 2003), and/or competiting with meio-
fauna for food (Ólafsson 2003; Nascimento et al. 2011; Ingels et al. 2014). The resul-
tant, combined effect on meiofauna diversity is challenging to ascertain. Meysman
et al. (2006) suggested that bioturbation increases the number of habitable niches and
the variety of food sources, resulting in higher meiofauna diversity. Recently devel-
oped ecological models for larger fauna supported the idea that ecological engineers
may enhance community diversity by facilitating colonization and limiting compet-
itive exclusion (Yeakel et al. 2020). To what extent this is applicable to meiofauna is
not yet clear. The benthic environment harbors different size classes and is contin-
uously reshaped by larger organisms interacting with their smaller co-inhabitants.
Interesting in this context are results from microcosm experiments investigating the
effect ofmeiofauna and their activities on sediment properties and inter- and intraspe-
cific interactions of sediment-dwelling fauna. For example, Piot et al. (2013) found
that in the presence of a natural meiofauna community, the interactions between
macrofaunal species changed, which subsequently led to modifications of ecosystem
properties such as oxygen and nutrient fluxes in the sediment but also microbial
abundances.

5.5 The Function of Meiofauna Biodiversity

Positive relationships between nematode biodiversity and benthic prokaryotic
activity as a proxy for ecosystem functions in deep-sea sediments suggested that
marine diversity loss could have adverse effects on ecosystem functioning (Danovaro
et al. 2008; Pusceddu et al. 2014). To what extent these relationships are causal rather
than due to other, confounding variables, or are a consequence of reverse causation,
remains unclear and requires further experimental testing. However, manipulating
the biodiversity of microscopically small organisms in a laboratory approach is not
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a sinecure. Bonaglia et al. (2014) controlled meiofauna abundances and biodiversity
in laboratory microcosms and measured resultant effects on sediment biochemistry.
Interactions between meio-, macrofauna and bacteria contributed significantly to the
nitrogen cycling in soft sediments. However, the role of biodiversity versus abun-
dance was not disentangled in this experiment. Other experiments also evidenced
the effects of meiofauna abundance on specific aspects of ecosystem functioning
such as oxygenation of hypoxic sediments and sulfide removal, although the effects
of biodiversity were less clear (Bonaglia et al. 2020; see Chap. 2). Mathieu et al.
(2007) showed that the activity of nematodes enhanced the net productivity of
diatom biofilms, while natural meiofauna communities enhanced the mineraliza-
tion of organic matter in another experimental setup (Nascimento et al. 2012).
Schratzberger and Ingels (2018) reviewed the role of meiofaunal activities in regu-
lating ecosystem processes that provide or support ecosystem services. While empir-
ical evidence is growing on the importance ofmeiofauna, the specific role of diversity
remains a critical knowledge gap. Interesting is the observation that not only biodi-
versity, but even more so the presence of specific functional traits appears to be
crucial for maintaining specific ecosystem functions.

5.6 Looking into the Past to Understand the Future: Fossil
Records

Studying temporal variation in marine benthic communities requires continuous and
regular sampling. Consequently, long-term studies on benthos including meiofauna
are rare (Kitazato et al. 2000; Danovaro et al. 2004; Ruhl et al. 2008; Smith et al.
2009). Currently, the only way to explore temporal variation beyond decadal time
scales is by using fossil records. Meiofaunal foraminifera and ostracods are the only
groups that have hard, mainly calcareous parts (i.e., shells) that are fossilized and
provide good fossil records. In the deep sea, ostracod and foraminiferal fossil diver-
sity changes in accordance with climatic change (Cronin and Raymo 1997; Hunt
et al. 2005; Yasuhara and Cronin 2008; Yasuhara et al. 2009, 2014; Doi et al. 2021).
Species diversity is generally higher during warmer periods on 102 to 104 time
scales (Yasuhara and Cronin 2008; Yasuhara and Danovaro 2016). Global climate
and deep-sea biodiversity curves are remarkably similar on glacial-interglacial time
scales, indicating a climatic control of deep-sea biodiversity (Fig. 5.4; Yasuhara et al.
2009).Major climatic events affect meiofauna diversity. There is increasing evidence
that theMid-Brunhes Event (MBE; amajor climatic mode shift at approximately 400
to 350 thousand years ago) has affected deep-sea ecosystems substantially, espe-
cially in marginal seas such as the Arctic and the Sea of Japan (DeNinno et al.
2015; Cronin et al. 2017; Huang et al. 2018, 2019). In contrast to the majority of
marine species, deep-sea benthic foraminifera did not have a major extinction at the
Cretaceous/Paleocene (K/Pg) boundary (D’Hondt 2005). Mass extinction of marine
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foraminifera occurred in the Paleocene-Eocene Thermal Maximum (PETM: approx-
imately 55.5 million years ago; Thomas 2007) during the Cenozoic. An extinction
event of certain deep-sea foraminiferan taxa is also known for the Mid-Pleistocene
Transition (MPT: approximately 1.2–0.55 million years ago; Hayward et al. 2007).
Evidence from bathyal and abyssal foraminiferan fossils indicates that the origin of
a latitudinal diversity gradient was at approximately 37 million years ago (Thomas
and Gooday 1996; Stuart et al. 2003; Yasuhara et al. 2020). Because of high sedi-
mentation rates in marginal marine environments, highly resolved young meiofaunal
fossil records are available, allowing us even to depict the effects of anthropogenic
activities. For example, in Osaka Bay and theGulf ofMexico, man-induced eutrophi-
cation and its associated deoxygenation via urbanization and industrialization caused
a substantial diversity and/or abundance decline of benthic foraminifera and ostra-
cods (Rabalais et al. 2007; Yasuhara et al. 2007, 2012b, 2019; Tsujimoto et al. 2008;
Pitcher et al. 2021).

Recent extensive benthic foraminiferal research resulted in a synthetic Cenozoic
paleobiogeographic framework known as the Hopping Hotspots Model (Renema
et al. 2008), suggesting that the biodiversity hotspot has moved through the Ceno-
zoic. During the Eocene, highest diversity occurred in the western Tethys (present
Mediterranean). Then, the hotspot shifted to the Arabian region from the late Eocene
through the Oligocene. By the mid-Miocene, both hotspots had collapsed, the Indo-
Australian Archipelago (IAA) hotspot in the southeastern Asian (aka Coral Triangle)
emerged and remains until today. Some ostracod data are consistent with this model
(Yasuhara et al. 2017a; Shin et al. 2019).Although further data and studies are needed,
meiobenthic ostracods and foraminiferans help to understand deep-time diversity and
biogeography dynamics by taking advantage of their excellent (i.e., continuous and
high abundance) fossil records.

Fig. 5.4 Global paleoclimate (top: oxygen isotope; Lisiecki and Raymo 2005 versus deep-sea
ostracod species diversity; bottom: as a standardized diversity measure, rarefaction E(50)) in the
Atlantic Ocean. Note the remarkable similarity between global climate and deep-sea diversity
curves. Orange areas indicate peak interglacials (warm climate peaks). Modified after Yasuhara
et al. (2009)
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5.7 Biogeography of Meiofauna: Hypotheses and Evidence

Thedegree towhichmeiofaunabiodiversity differs betweenoceans and seas is largely
unknown. The lack of biodiversity estimates at species level hampers comparisons
of alpha diversity, while the general lack of species descriptions (Appeltans et al.
2012) hampers comparisons of beta and gamma diversity across oceans and seas.
Also, latitudinal trends in biodiversity of nematodes are not always straightforward
to establish and interpret (Danovaro et al. 2009; Gambi et al. 2010), not even at
higher taxonomic levels (Kotwicki et al. 2005). Ameta-analysis byHillebrand (2004)
revealed onlyweak geographical gradients for Nemathelminthes, mainly represented
by nematodes. Also, Gobin and Warwick (2006) found that nematode species colo-
nizing artificial hard substrates did not show a trend based on latitude, as diversitywas
similar for the northern and southern temperate and the tropical areas under investiga-
tion. However, in contrast to these shallow water studies, counts of nematode species
in the abyssal North Atlantic increased with latitude between 13 to 56°N and were
related to the productivity gradient in the North Atlantic (Lambshead et al. 2000).
Both, ostracods and foraminiferans show standard latitudinal diversity gradients in
shallow-marine and deep-sea systems (Culver and Buzas 2000; Buzas et al. 2002;
Yasuhara et al. 2009; Jöst et al. 2019; Chiu et al. 2020). Marginal seas (e.g., Arctic
Ocean) tend to lack certain faunal elements (DeNinno et al. 2015). Shallow marine
ostracods have more genus-level endemicity among oceans and seas compared to
largely cosmopolitan deep-sea ostracod genera.

Since the early days of marine research, it has been acknowledged that many
of the small benthic organisms are surprisingly widespread, even to the extent that
biogeographical patterns seem absent (Costello et al. 2017; Fontaneto 2019). This
observation is commensurate with the ubiquity hypothesis or among meiobenthol-
ogists known as the meiofauna paradox: despite their low mobility and their lack
of planktonic larval stages, microscopic benthic organisms are often cosmopolitan.
Now, we know that there is a wide variety of meiobenthic distribution patterns,
ranging from cosmopolitan to endemic. We also know that, depending on specific
morphological and life history characteristics, meiobenthic species disperse to
varying degrees. According to Fontaneto (2019), important traits for long-distance
dispersal in small organisms include dormancy capability, long-term resistance of
dormant stages, and the ability to colonize newhabitat rapidly. Themeiobenthic sized
annelid Dinophilus vorticoides is a widely distributed species, which lives buried in
sediments and lacks pelagic larvae. However, it is also found on macroalgae and ice,
likely surviving by forming dormant encystment stages during long-distance rafting
(Worsaae et al. 2019). Previously presumed mechanisms for passive transport of
meiofauna are now supported by empirical evidence, including resuspension and
drifting in the water column, attachment to other fauna (e.g., turtle shells) and flora
(e.g., drifting algae), and even survival as aeroplankton (Corrêa et al. 2013; Ptatscheck
et al. 2018; Buys et al. 2021). For instance, an unexpectedly dense epibiont commu-
nity was observed on the back of loggerhead turtles migrating over large distances
for reproduction and feeding (Ingels et al. 2020a). Considering the evolutionary age
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of the taxa involved, dispersal of meiobenthic taxa through turtles is very likely
contributing to the cosmopolitan distribution of meiobenthos (Corrêa et al. 2013).

Studying harpacticoid copepods belonging to the deep-sea family Argestidae,
Menzel et al. (2011) sampled 113 stations across 12 abyssal regions. They found
that many species had a long-range distribution across the Atlantic Ocean and that
submarine ridges were not a barrier for dispersal. Pointner et al. (2013) found the
same species of deep-sea Paramesochridae distributed in the Atlantic and Pacific
abyssal plains.

In addition to limited knowledge on dispersal of meiobenthic taxa, there is also
a lack of information on genetic structuring of populations. Given the originally
presumed limited dispersal capacity of marine nematodes, prominent genetic differ-
entiation between geographically isolated specieswas expected previously.However,
shared haplotypes and multiple admixture events (when previously diverged or
isolated genetic lineages mix) in the population of a Sabatieria species (Nema-
toda) at several widely separated cold seeps in the East Mediterranean revealed gene
flow, most likely facilitated by water current transport of individuals and/or eggs (De
Groote et al. 2017). In contrast, in the Southern Ocean off the Weddell Sea, gene
flow between Sabatieria populations and Desmodora species was restricted at large
geographic distances, questioning the efficiency of transport via currents (Hauquier
et al. 2017). However, genetic structuring differed between nematode species from
the same geographic area, but with different habitat preferences. Nematodes from
surface sediments had a different population genetic structure than those from the
deeper layers with the latter exhibiting more complex haplotype networks.

Also, cryptic species are found among several meiofauna groups including not
only nematodes and copepods but also nemerteans (Leasi and Norenburg 2014),
turbellarians (Tessens et al. 2021) gastrotrichs (Todaro et al. 1996, but Kieneke et al.
2012), and even microscopically small sea slugs (Jörger et al. 2012). Derycke et al.
(2016) reported the sympatric occurrence of cryptic nematode species. The coex-
istence of different bactivorous cryptic species of the nematode species complex
Rhabditis (Pellioditis) marina was explained by substantial differences in their asso-
ciated microbiomes and feeding strategies (Derycke et al. 2016). Their performance
in combined cultureswas comparedwith that inmonospecific cultures at twodifferent
salinities, showing that three of the four cryptic species were able to coexist. Salinity
had an effect on their interactions, suggesting that abiotic conditions may play an
important role in facilitating coexistence between cryptic nematode species and can
alter the interspecific interactions between them (De Meester et al. 2011).
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5.8 The Future of Meiofauna Biogeography
and Biodiversity Research: Gaps in Our Knowledge
and Research Frontiers

Biogeography is a multifaceted, multidisciplinary field of study aimed at answering
two fundamental questions in science: How and why are organisms distributed as
they are on Earth? (Wen et al. 2013). Addressing these questions from the perspec-
tive of meiobenthology is challenging, not only because of the animals’ small size
and their seemingly wide geographical distribution, but also because many questions
concerning the systematics, ecology, and paleontology of meiofauna remain unan-
swered (see previous sections of this chapter). Yet, meiofauna diversity and biogeo-
graphy offer many dynamic areas of research and inquiry for future generations of
meiobenthologists.

The chapters comprising this book have emphasized the importance of meiofauna
as an integral part of marine benthic ecosystems. Although they are not currently
considered amajor component in food webmodels in terms of metabolic activity and
carbon flow (Gontikaki et al. 2011; Braeckman et al. 2013), their ubiquitous distri-
bution across the globe, their high taxonomic and functional diversity and proven
interaction withmega- andmacrofauna, andmicrobiota makes them a non-negligible
component of multidisciplinary marine biodiversity research (see Ingels et al. 2020b
as a reply to Danovaro et al. 2020). Furthermore, several meiofauna taxa act as excel-
lent model organisms both for experimental research and for modeling approaches
to understand fundamental drivers and consequences of biodiversity change.

Many questions in meiofauna diversity and biography remain unanswered,
offering horizons for future research and posing challenges for rapidly developing
methodology. Most frontiers pertain to the difficulty of generating sufficiently large
volumes of reliable distributional, genetic, and phylogenetic meiofauna data:

• Overcoming taxonomic challenges:

A critical knowledge gap in biodiversity and biogeography research onmeiofauna
currently is information on the distribution of species, the degree of turnover,
population connectivity, and understanding the diversification process. This is
mainly due to the identification burden which is, when centered on morphology,
time-consuming and expert-based, and therefore not always feasible, affordable,
or indeed reliable. Finding rapid, and at the same time standardized and sound,
tools for estimating biodiversity at relevant spatial and temporal scales is essential.
HTS is offering that first step but still requires a critical and cautious approach.
Developing new investigationmethods and standardizing them is still ongoing and
needs further investments to optimize protocols and validate different techniques.
Furthermore, not all questions can be answeredwith HTS, so training taxonomists
with the necessary morphology-based skills remains a necessity for the future.
Artificial Intelligence and machine learning may have a role to play in making
taxonomy less dependent on the expertise of a limited (and declining) number of
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taxonomists. By automatizing taxonomic identification through pattern recogni-
tion technologies, biodiversity research could becomemore accessible (MacLeod
et al. 2010). The development of automated identification systems that are robust
and reliable will take time, however, as has been shown in plankton research
(Pastore et al. 2020).

• Overcoming analytical challenges:

In the next decade, data analytical challenges are emerging as a result of increasing
volumes of occurrence data and phylogenetic information. Even for extreme
and remote environments, such as trenches and polar seas, access to samples
and biodiversity data is growing. Fortunately, data sharing is being facilitated
through research financers, journals, and easy to access data platforms (e.g.,
Genbank, Barcode of Life Data Systems BOLD, Ocean Biodiversity Information
System OBIS, World Register of Marine Species WORMS). It seems inevitable
that data mining methods will become essential tools for future biogeographic
research of meiofauna. The processes involved are not yet perfect due to the
lack of standardization and sound quality control of data. Meiofauna phylogenies
are increasing in size, and taxonomic breadth and new sequencing techniques
generate increasingly vast phylogenetic datasets, yet tools for data mining and
integrated analyses of meiofauna are in their infancy. Most existing parametric
statistical approaches will need to be improved or developed to handle large and
more complex meiofauna data. The need for input from computer scientists is
becomingmore urgent. As access to reliable big datasets is being ensured, innova-
tive approaches to the study of meiofauna diversity and biography should allow to
answer a whole range of crucial research questions beyond the specific meiofauna
interest (see below).

• The continued search for general patterns of meiofauna diversity and
biography:

This is particularly challenging because of the tendency of diverse taxa responding
differentially to local environmental conditions at varying scales of space and time.
Meiofauna biodiversity and biogeography will undoubtedly become an increas-
ingly multidisciplinary and integrative endeavor and become more closely linked
to conservation biology (see concluding paragraph below). The current loss of
biodiversity causes dramatic changes in the spatial distributions of many species,
but the contribution of meiofauna to these global trends remains poorly under-
stood and quantified. Many contemporary drivers of biodiversity change are also
recognized as having driven such changes in the past. Therefore, paleobiological
investigations reconstructing biogeographic patterns of meiofauna over geolog-
ical time scales from their fossil records have been increasing steadily. This line
of research should be further pursued, given the fact that fossils are the only direct
evidence to understand the past biodiversity beyond biological monitoring of a
few decades. Paleobiodiversity reconstruction across spatial and temporal scales,
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using proxy records of paleoenvironment and paleoclimate (such as paleotemper-
ature), will help our understanding of past, present, and future biodiversity and
their drivers (Yasuhara et al. 2017b, 2019, 2008). Evidence generated from studies
of contemporary and fossil meiofauna will provide the empirical underpinning
for predictive models of biodiversity change to address questions including:

– Where are the highest/lowest levels of meiofauna diversity and what factors
drive the patterns observed?

– Why are some meiofauna taxa found in certain locations and not others, and
what are the processes that generate the patterns in their distribution?

– How have biogeographic patterns of meiofauna been altered in the past, and
how are they likely to be altered under various future scenarios?

– Where are changes in meiofauna diversity most pronounced and why?

However, not only the access to large biodiversity datasets is a priority. The use
of micro- and mesocosms under controlled conditions is providing us with crucial
insights into the interactions of meiofauna with microbiota and macrofauna, while
demonstrating the importance of their biodiversity for ecosystem functions such as
primary production and mineralization. This kind of experiments would provide
further evidence for the consequences of biodiversity loss and natural habitat degra-
dation, and at the same time support the adjustments of model outputs to more
realistic descriptions and predictions.

We cannot make meaningful decisions about the conservation of marine life if
we do not know what species are where and why. It is clear that meiofauna has
a role to play in the discovery and conservation of biodiversity. To some extent,
predictivemodeling can anticipate the expected impacts of natural and anthropogenic
disturbance on seafloor functions coupled to meiofauna biodiversity. Uhlenkott et al.
(2020a, b), for example, used random forest models to predict the meiofauna abun-
dance and diversity across the whole German polymetallic nodule contract area in
the abyssal Northeast Pacific. They were able to test the suitability of Preservation
and Impact Reference Zones that will help in assessing the impacts of future deep-
sea mining. Lessons learned from future meiofauna studies need to be applied not
only to discover previously unknown species and report their distributions, but to
put those findings into a broader ecosystem context. Only then can global biodiver-
sity dynamics be understood in a more holistic, integrated, and consequently more
meaningful way.
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Chapter 6
Freshwater Meiofauna—A Biota
with Different Rules?

Ignacio Peralta-Maraver, Walter Traunspurger, Anne L. Robertson,
Olav Giere, and Nabil Majdi

Abstract Great divergences arise when comparing the ecology of meiofauna in
freshwater andmarine ecosystems. Emphasizing themain differences between fresh-
water meiofauna and their marine counterparts, we will go on a stepwise journey
through three major frontiers in freshwater research, which in turn are hierarchi-
cally interrelated: biodiversity, community organization (e.g. food webs structure),
and ecosystem processes (e.g. metabolism and organic carbon breakdown). The
starting point of this chapter is one of the utmost frontiers, both in marine and fresh-
water research: meiofaunal diversity. Especially in freshwater ecosystems diversity
becomes evident since, here, habitats extend as highly disconnected biotopes, each
characterized by an often fundamentally different biocenosis. From the biodiversity
level, we move up the theoretical hierarchy to assess the role of meiofauna as an
integral part of benthic food webs. Recent research underlines the role of freshwater
meiofauna as highly connected nodes and shows their pivotal role in the transfer of
energy and carbon along food chains. Distributed over all trophic levels, this structure
contrastswith the prevailing conception ofmeiofauna in foodwebs,wheremeiofauna
often are considered rather marginal units. Finally, we apply allometric principles
from the metabolic theory of ecology in order to assess the role of freshwater meio-
fauna in the functioning of the benthic systems. With a novel modelling framework
we develop an analytical perspective, showing that secondary production of micro-
and meiobenthic communities can predict microbial decomposition rates within the
benthic interface. Our results demonstrate that productive micro- and meiobenthos
act as catalysers in the system of organic carbon breakdown and recycling. These
findings underline the relevance of freshwater meiofauna within the biogeochemical
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carbon cycle. The mechanistic forces behind the processes involved require future
experimental research.

6.1 Introduction

In the freshwater realm, meiofaunal-sized organisms occur everywhere in lakes,
streams, ponds, groundwaters, puddles, wet soils, mosses, etc. They have been
studied since the seventeenth century when the development of microscopes made
their observation possible. Linné included freshwater rotifer species in his Systema
Naturae, and Spallanzani introduced the term ‘Tardigrada’ (meaning ‘slow-walkers’)
and he noticed those animals were able to survive desiccation. During the nineteenth
and early twentieth century, zoologists showed a broad interest in describing the
species of freshwater nematodes, rotifers and micro-crustaceans and other meio-
faunal groups from all over the world including some notes on their distribution,
behaviour, and ecology (amongst many others: Sars 1867; Hudson and Gosse 1886;
de Man 1884; Cobb 1914; Micoletzky 1911). During the first half of the twentieth
century, freshwater meiofaunal researchmoved towards the understanding of species
distribution and assessing their ecological importance. For example,Meschkat (1934)
provided a first picture of the complex microscopic life in biofilms (or “Aufwuchs”),
which cover submerged stones in lakes. Altherr (1938) extensively described micro-
scopic communities in abandoned mines, linking species distribution with the pres-
ence of water and patches of organic matter or microbial mats. Shortly before
Lindeman (1942) first formulated the concepts of food webs and the cyclic nature
of trophic fluxes in a lake ecosystem, Pennak (1940) observed that sandy shores of
lakes harboured complex communities of micro-metazoans that were presumably
using microbes as food and sediment interstices as habitats.

During the 70s and 80s the ubiquity and diversity of meiofauna, and their
amenability to laboratory experiments have provided fertile grounds for studies in
population dynamics, energetics, functional and community ecology, and biomoni-
toring of polluting impacts. As underlined also in other chapters of this book, meio-
fauna are ideal study organisms for understanding the functioning of benthic ecosys-
tems because they can characteristically show how microbial consortia connect with
macroscopic processes. But this work, leading to a greater comprehension of the role
of meiofauna in ecosystems, has mostly taken place in marine and brackish water
biotopes (see general meiofauna textbooks). However, through special issues such as
the one byMajdi et al. (2020a) that summarizes our knowledge on the ecological role
of freshwater meiofauna, the research efforts also in this field seem to be regaining
the long-deserved momentum.

In this chapter, apart from establishing an overview of our current knowledge on
freshwatermeiofaunawith the aim to evidence their contribution in benthic processes,
we alsowant to highlight how this contribution differs from that of their marine coun-
terparts. For example, studies describing body size distribution patterns in streams
have rarely found the typical bimodal distribution reported from the marine benthos.
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It has been reasoned that in freshwaters, unlike in the marine environment, larval
stages of many insect species (e.g. chironomids, mayflies, stoneflies) are important,
yet transient, components of the benthic community resulting in a multimodal body
size curve.

We will then examine how meiofaunal models can provide valuable new insights
and perspectives to main topical areas of freshwater ecological research: biodiver-
sity, food webs, energy fluxes, and ecosystem processes. For a general overview of
freshwater meiofauna taxonomy, ecology and participation in ecosystem processes,
we recommend the textbooks and journal issues by Robertson et al. (2000), Rundle
et al. (2002), Giere (2009), and Majdi et al. (2020a).

6.2 Research on Meiofauna Species—a New ‘Frontier
in Biodiversity’?

Freshwater meiofaunal assemblages are numerically dominant and surprisingly
diverse in lakes and streams (where they may represent a whopping 50–80% share of
metazoan species richness, Robertson et al. 2000; Traunspurger et al. 2020). Fresh-
water meiofaunal communities typically comprise many interstitial groups such as
nematodes, rotifers, copepods, annelids, and may form the bulk of all individuals
encountered. However, unlike themarine benthos, in freshwater habitats larval stages
of many insect groups are common. Especially chironomid larvae are important
components of meiofaunal assemblages regarding their total contribution to benthic
invertebrate biomass. Furthermore, freshwater habitats are strongly compartmen-
talized and physically disconnected by terrestrial barriers (Fig. 6.1). Their envi-
ronmental features can differ fundamentally from one another as we move down
from mountainous springs to alluvial plains (e.g. glacier-fed streams or hot springs,
forested headwater streams, mosses and peatland patches, ponds and riffles, sandy
lake and river shores, muddy alluvial zones and wetlands). Additionally, at smaller
scales, biotope patchiness occurs within the same river reach or lake, providing a
diversity of potential habitats for meiofauna (e.g. fine or coarse-grained interstitial
habitats, microbial biofilms growing on hard stony substrates like cobbles, or on
organic substrates such as wood chunks, leaf litter or macrophytes; free-floating
biofilms). A freshwater continuum also extends vertically from the surface stream
through the benthic zone into the hyporheic zone and eventually into groundwater,
providing further habitats (Fig. 6.1).

The great diversity of habitats and the metacommunity dynamics result in unique
assemblages of meiofaunal taxa that may be locally quite variable and different from
the assemblages in marine habitats. For example, bdelloid rotifers may populate
hard-substrates filtering suspended particles as effectively as clams would (Kathol
et al. 2011), whilst, in muddy bottoms, they might be largely replaced by detri-
tivorous, burrowing forms such as, annelids and nematodes. Mosses and other
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Fig. 6.1 Conceptual depiction of freshwater meiobenthos across a selected variety of freshwater
habitat compartments, in part disconnected

ephemeral freshwater habitats comprise a larger share of drought-resistant or terres-
trial taxa like springtails, mites, tardigrades, and soil nematode species (Fig. 6.1; e.g.
Kreuzinger-Janik et al. 2021). Copepods and cladocerans thrive in ephemeral ponds
and basins, including those in urban areas (e.g. Martins et al. 2019). Gastrotrichs,
micro-platyhelminths, nematodes, and rotifers flourish in various epiphytic and inter-
stitial biofilm habitats worldwide. Freshwater mites (Hydrachnidia) are surprisingly
diverse, being ecto-parasites of aquatic insects and using their host’s flying adult
stages to disperse (Di Sabatino et al. 2000). The relatively recent discovery in
Greenland springs of a completely new class in the Gnatosthomulida clade, Microg-
nathozoa, exemplifies our limited knowledge of the diversity of freshwater meio-
fauna (Kristensen 2002). Also in biofilms, species richness and their contribution
to freshwater meiofaunal communities remain greatly underestimated, mainly for
methodological reasons (see Chap. 3; Zotz and Traunspurger 2016; Balsamo et al.
2020).

Furthermore, groundwaters occurring in unconsolidated sediment aquifers, frac-
tured aquifers, and karst aquifers (including karstic springs) harbour highmeiofaunal
diversities because the habitat patchiness and low dispersal ability of many ground-
water fauna result in a high degree of endemism and ecological specialization. Here,
copepod crustaceans are prevalent: a groundwater survey in the early 2000s in the
Lessinian region of northern Italy recorded 89 stygobiotic species. More than 50
species were meiofauna, 36 of whom belonged to the Copepoda and many were new
to science (Galassi et al. 2009).

Freshwater habitats are often highly disconnected, whether considering across-
land distances between lakes or ponds, or flow direction constraints in river networks.
While these spatial barriers canbe important for larger aquatic organisms, the smallest
meiofaunal species tend to easily enter ‘resistance stages’ enabling them to passively
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disperse across large distances, supported by wind, rain, drift, and migrating animals
(Ptatscheck and Traunspurger 2020). A high dispersal capacity of meiofauna seems
a prerequisite for populating disconnected habitats. This is exemplified by cave-
dwelling nematodes. Unlike other groundwater animals, most nematode species
inhabiting caves are ubiquitous and constitute a transient cave biota, while only a
small proportion of the species catalogued show typical troglobiotic traits (Du Preez
et al. 2017). Hence, biotopes of freshwater meiofauna represent a complex structural
assembly: lateral gradients from terrestrial through riparian to aquatic, horizontal
gradients from spring to estuary, finally vertical ones from surface biofilms to the
sediment horizon and the deeper hyporheic zone and karst (Fig. 6.1).

Compared to larger organisms, freshwater meiofauna can also be less sensitive
to the environmental constraints acting at local and sediment-determined scales. For
example, in the hyporheic zone the reduction in oxygen supply and pore-space with
depth or under upwelling conditions exert less selective constraints on meiobenthos
than on macrobenthos (Strayer et al. 1997; Peralta-Maraver et al. 2018a, 2019a). The
ability to populate even the most remote or ephemeral aquatic habitats render fresh-
watermeiofaunal assemblages interesting alternativemodels for studies onmetacom-
munity patterns. Thus, they feed the debate about processes explaining the observed
species richness in a given biotope. Gansfort et al. (2020) recently reviewed 19 meta-
community studies in freshwater, and, although most studies focussed on a limited
number of meiofaunal taxa (mostly ostracods), they show that species sorting effects
and locally random distribution determine meiofaunal metacommunities. Further
studies will doubtlessly reveal the elaborate metacommunity concepts to greatly
benefit from incorporating the freshwater meiofaunal compartment.

In the freshwater realm another fundamental contrast tomarinemeiofaunal assem-
blages is the common occurrence of temporary meiofauna, i.e. species that start
off at meiofaunal size but grow into macrofauna or emerge out of the benthos
during their lifespan. This category mostly comprises larval stages of insect species
from different orders (mostly Diptera, Plecoptera, Ephemeroptera, Coleoptera,
Trichoptera; Fig. 6.1). In inland waters they can greatly influence the spatial and
temporal dynamics of meiofaunal assemblages.

Regarding the taxonomic diversity ofmeiofauna illustrated above and the complex
environmental zonation of many freshwater bodies, it is reasonable to assume that
the meiofaunal community of a whole lake or of a whole river system can represent
one of the most species-rich assemblage of metazoans in a limited spatial area. As a
result, even though much effort has been made in recent years to unravel the hidden
diversity of freshwater meiofaunal communities (reviewed in Schenk and Fontaneto
2020), traditional taxonomic methods based on morphological features will hardly
cover the full range of species found. Using adequate methodologies of sampling
andmolecular-based identifying allmeiofaunal taxa, even the soft-bodied ones, could
help avoid potential underestimations ofmeiofaunal species richness (Schmid-Araya
1997; Kolasa 2002; Tang et al. 2012; Balsamo et al. 2020).

Considering the present scarcity of taxonomic expertise, the recent surge of, and
refinement in, molecular-based identification techniques have been proposed as an
alternative tool to fill in actual gaps in taxonomy (e.g. Schenk et al. 2020). Nowadays,
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sequencing has become a standard protocol in developing many biological inven-
tories and monitoring programmes (Baird and Hajibabaei 2012; Leese et al. 2018).
However, very few studies have yet addressed shortfalls in freshwater meiofauna
diversity sequencing DNA. As recently shown by Schenk and Fontaneto (2020), in
ecological research of freshwater meiofauna the use of DNA data and barcoding is
presently not well developed.

Yet, this new frontier of diversity assessment in freshwater meiofauna repre-
sents a promising avenue of research to link the invisible diversity of meiofauna to
conspicuous features of inland water ecosystems. Broad-scale molecular inventories
of meiofaunal species could be used for example to tackle ‘hot’ research topics such
as:

• effects of environmental changes on species biogeography,
• detailed recording of potentially invasive species,
• co-occurring networks indicating community structuring or food web processes,
• linkage between biodiversity and ecosystem functions.

Of course, this requires identifying appropriate target genes and primers.
For example, candidate target genes for amplification in freshwater meiofauna
mainly include ribosomal 18S rRNA and 28S rRNA genes, and the mitochondrial
Cytochrome c Oxidase subunit I (COI) gene (reviewed in Schenk and Fontaneto
2020). However, discrepancies might arise when comparing with data acquired with
previous methods. Ribosomal genes are preferred because they amplify the broadest
range of taxa, but these sequences are generally highly conserved and might fail to
discriminate between closely related taxa (Tang et al. 2012; Papakostas et al. 2016;
Schenk et al. 2020). Conversely, mitochondrial COI genes possess higher discrim-
ination capacity, but they might even co-amplify with procaryotes and fungi, and
inflate real biodiversity values (Weigand and Macher 2018).

In addition, even in up-to-date reference databases of DNA sequences, which
determine the accuracy of DNA taxonomy and metabarcoding studies, freshwater
meiofauna is underrepresented (Weigand et al. 2019). At the same time, significant
advances inmolecular-based biodiversity research of freshwater meiofauna advocate
for the achievement of complete reference genomes. This implies the challenge of
combining morphological identification of model organisms with advanced molec-
ular approaches. Until a very few years ago sequencing the complete genome of
an organism was prohibitively costly, not to mention sequencing a whole commu-
nity. Today, with the ever-decreasing sequencing costs and massive multiplexing
capabilities of next-generation-sequencing technologies, molecular barcodes can be
generated for thousands of taxa in parallel (Shokralla et al. 2015; Bleidorn 2016).
Also, next-generation-sequencing (NGS) methods, in contrast to traditional proto-
cols, permit sequencing completely new organisms for which little genetic informa-
tion is available (Mardis 2008; Neale and Kremer 2011; Cahais et al. 2012). The use
of genomic barcoding has proven to be a powerful method in detecting rare and inva-
sive species in freshwater realms (Brown et al. 2016; Lim et al. 2016). Thus, building
complete reference databases in conjunction with applications of NGS techniques
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might represent the only valid strategy to ensure a future monitoring of diversity, not
only in freshwater meiofauna.

6.3 Do Freshwater Meiofauna Hold the Key
for Understanding Food Web Topology and Benthic
Energy Fluxes?

The trophic role of meiofauna in aquatic food webs tends to underestimate the fresh-
water compartment. So, here we ask some specific questions of meiofaunal food
webs characteristic for freshwater ecosystems:

• How can the taxonomic resolution affect the metrics of food web complexity?
• How does the incorporation of meiofauna into food web analyses affect our view

on the connectivity of energy fluxes across terrestrial and freshwater biocenosis?

There is a growing body of research on food web structure involving freshwater
meiofauna, which provides some answers to these questions.

In the trophic cycle of ecosystems, the position of meiobenthos is often vaguely
defined and mostly lacking larger-scale quantitative evidence. Either they are sweep-
ingly proposed as intermediaries between microbial producers/decomposers and
macroscopic organisms (e.g. Schratzberger and Ingles 2018), or, as in most food
web studies, the meiobenthic fraction is barely considered. Often, they are also rele-
gated to the level of ‘trophospecies’ within the food web assemblage (aggregation of
species that have identical predators and prey). Unfortunately, this undifferentiated
conception is symptomatic of both a poor taxonomic definition and a poor knowledge
of the feeding habits in meiofaunal species.

As a result, ecologists have often disregarded the role of meiofauna in food web
structures (but see Schmid-Araya et al. 2002, 2016). This causes a bias in the inter-
pretation of food web patterns, the metrics of community structure and stability,
and ultimately in our understanding of ecosystem functioning. When information on
feeding habits is not included, the traditional perception assumes that meiobenthic
trophospecies mostly occupy the level of primary consumers (Majdi et al. 2012a;
Peters et al. 2012; Schmid-Araya et al. 2016). This is because general allometric
scaling principles, inherited from the ‘Metabolic Theory of Ecology’ (Brown et al.
2004), assume that specieswith small body size occupy low trophic levels (Woodward
and Warren 2007; Yvon-Durocher et al. 2011).

Hence, meiofaunal organisms have traditionally been considered as little-
connected trophic dead ends in marine ecosystems (Heip and Smol 1975; McIntyre
andMurison 1973; Feller 2006). This argumentwas considered to be supported by the
observed high population densities of (marine) meiofauna in sediments that did not
seem to be compatible with the expected high predation pressure from large assem-
blies of macrofauna (shrimps, crabs, polychaetes, ophiuroids, and juvenile fishes
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(Castel 1992; Ceccherelli et al. 1994). However, recent studies based on trophic
biomarkers such as stable isotopes, are pointing towards a more complex picture.

Freshwater meiofauna are not only primary consumers, but also occupy higher
positions in food webs (Schmid-Araya et al. 2016; Majdi and Traunspurger 2017).
Manymeiofaunal groups (e.g. tardigrades, mites or dorylaimid nematodes) possess a
puncturing stylet or piercing-sucking feeding apparatus. Therefore, they can feed on
microbes, plants, fungi as well as other meiofaunal organisms, and parasitize animals
and plants larger than themselves (e.g. Di Sabatino et al. 2000; Khan and Kim 2007;
Hohberg and Traunspurger 2009). For example, freshwater mites (Hydrachnidia)
parasitizing aquatic insect larvae occupy top predator positions in food webs (Di
Sabatino et al. 2000).

Moreover, within the vast meiofaunal species pool assumed to be microbivorous
(i.e. feeding on algae, protozoans or bacteria), diets seem to varywidely. For example,
some nematode species seem to prefer certain bacteria species (e.g. Estifanos et al.
2013), or select specific densities of bacteria offered in the laboratory (e.g. Weber
and Traunspurger 2013). In the field, nematodes, likely acting as generalist feeders,
have been found to opportunistically switch their diet depending on the quantity and
quality of prey available (Estifanos et al. 2013; Majdi et al. 2012a; Kazemi-Dinan
et al. 2014). There is some evidence that nematodes may even use dissolved organic
matter (Höss et al. 2001). This potential trophic flexibility suggests that we should
move away from linear schemes for the feeding interactions of meiofauna.

Often meiobenthologists use allometric morphological proxies (body size,
morphological traits) to better conceptualize meiofaunal food webs (Weitere et al.
2018; Neury-Ormanni et al. 2020). However, combining several lines of evidence
in a holistic manner is a more robust way to better assess the role of meiofauna
in freshwater food webs. For example, Schmid-Araya et al. (2016) combined gut
content analysis of macro- and meiofauna with stable isotope data of meiofauna to
investigate the structure of a stream food web. In addition, information about the
community composition (co-occurrence network) was included at an exceptionally
high (species-level) taxonomic resolution. Results from this study place meioben-
thic species into all trophic levels of the food web. For example, benthic rotifers act
as herbivores (i.e. Proales sp., Euchlanis sp.), microbial feeders (mostly bdelloids),
and omnivores including omnivorous predators (i.e. Dicranophorus sp.) feeding on
other larger ciliates and rotifers. This example also demonstrates that aggregating
meiofaunal species into single trophic niches will cause a severe bias of key web
properties such as web size, links, linkage density, and predator–prey ratios. In the
context of food web ecology these findings are especially relevant because assess-
ment of food web complexity is fundamental to predicting stability and resilience of
natural communities (Dunne et al. 2002; Neutel et al. 2007; Sánchez-Carmona et al.
2012).

Meiobenthos contribute considerably to the lengthening of the food chains, the
complexity of the foodweb, andultimately the transfer of energy andbiomass through
trophic levels (Schmid-Araya et al. 2016; Fig. 6.2). Therefore, the idea of meioben-
thos as a simple trophic intermediary or a dead-end within the food webs should be
discarded and replaced by alternative hypotheses that require urgent testing. In this
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Fig. 6.2 Food web of River Lambourn, UK (summer 2004) indicating trophic interactions between
consumers and resources. A comparison of the same community with meiofaunal-sized taxa
included (red colour nodes) or excluded. Dots (nodes) represent different species, their links indi-
cated by lines. Location of dots depends on their trophic position. Resources are located in the basal
level, followed by primary and secondary consumers, top predators in the upper part. Adapted from
Schmid-Araya et al. (2020)

vein, we predict that further significant advances in general food web ecology of
benthic systems will necessitate the inclusion of the meiobenthic fraction and their
trophic links at a proper, refined scale. Such studies could ideally be performed in
manageable freshwater biotopes or in freshwater mesocosms across the globe (urban
water bodies, ponds, water reservoirs, etc.).

Information on the role of freshwatermeiobenthos as a significant trophic resource
for other organisms is limited. Meiofaunal organisms may serve as food for preda-
tory amoebae (Geisen et al. 2015) and may be incidentally ingested by snails grazing
on biofilms (Peters et al. 2007). It is intriguing to notice that larvae of Chironomus
riparius (classified traditionally as a detritivorous deposit-feeder) can feed vora-
ciously onmeiofaunal organisms (Ptatscheck et al. 2017). This example demonstrates
the way earlier freshwater ecologists have often predefined the trophic preferences
even of key actors in energy flows.

Furthermore, awide rangeofmeiobenthic species has been identified as significant
prey for economically important freshwater fish (reviewed in Ptatscheck et al. 2020).
For example, juvenile and adult stages of carps, gobiids, and Tilapia sp. can feed
directly on freshwater meiofauna by filtering them out of sediments (e.g. Weber and
Traunspurger 2014, 2015). In aquaculture, freshwater meiofaunal organisms such as
copepods, nematodes and rotifers have been extensively used for decades as ‘good
quality food’ (reviewed in Ptatscheck et al. 2020).

Interestingly, these trophic interactions between fishes and meiofauna represent
a direct link within the food web levels that roughly expands over six orders of
magnitude corresponding to a ‘predator–prey body mass ratio’ (PPMR) in the same
range as that of whales and krill. Wide PPMRs within the food web have profound
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implications for the efficiency of energy transfer between benthic predators and prey
budgets. The energetic availability, and consequently the metabolic performance
and development of predators feeding on low-density resources is constrained by
the abundance of large prey. In contrast, those consumers able to exploit swarms of
small prey reach a much higher metabolic efficiency (Goldbogen et al. 2019).

In freshwater systems, meiobenthos, such as rotifers, nematodes, oligochaetes,
micro-crustaceans and larval chironomids, not only represent the most abundant
community of metazoans (Majdi et al. 2020b; Traunspurger et al. 2020), in some
benthic habitats they can even dominate in biomass and secondary production
(Schmid-Araya et al. 2020; Stead et al. 2005). Furthermore, a number of studies
have evidenced de novo synthesis of essential poly-unsaturated fatty acids in common
meiofaunal groups such as nematodes, rotifers, and copepods (Lubzens et al. 1985;
Menzel et al. 2018; Boyen et al. 2020). Therefore, the ability of benthivorous fish
species to ‘short-circuit’ the food web by including abundant and nutritive meioben-
thic organisms in their diet is indeed a highly efficient trophic strategy (Tucker and
Rogers 2014). Furthermore, large PPMRs have been suggested to promote persis-
tence of populations in complex food webs and stabilize the diversity of natural
ecosystems (Brose et al. 2006).However, the dimension of these interactions between
fish and meiobenthos need further scrutiny.

6.4 Inclusion of Meiobenthos, a Pathway Towards New
Metabolic Perspectives of Freshwater Ecology?

Communities inhabiting marine and freshwater ecosystems are strongly size- struc-
tured,meaning that the abundance (N) of different groups scales powerfullywith their
bodymass (M) (Petchey et al. 2002; Schmid et al. 2000; Perkins et al. 2018;Reiss et al.
2019; Peralta-Maraver et al. 2018b, 2019b). The body mass abundance relationships
(M–N) are amongst the most extensively studied patterns in ecology (Blackburn and
Gaston 1997; Schmid et al. 2000; Reuman et al. 2008). When individual organisms
are clustered into body mass classes, the intercept of the logarithmic relationship
provides a proxy for the carrying capacity of the community, while the area under
the slope (and intercept) provides a measure of total biomass or biomass spectrum
(Fig. 6.3a). Furthermore, the M–N scaling is strongly consistent across habitats of
the same type (Schmid et al. 2000). Since deviations from expected scaling indicate
the influence of stressors (Petchey et al. 2002) such as anthropogenic contamination
(Peralta-Maraver et al. 2019a), M–N scaling coefficients are likely a powerful metric
to detect threatened communities.

Under natural conditions, freshwater meiofauna occupy a pivotal position within
the standing stock (biomass) described by M–N slope (Fig. 6.3a). Furthermore, their
response to disturbance differs from that of macrofauna and, given their small size
and potentially high abundance, this can alter the steepness of the M–N slope. For
example, macrofauna are scarce within the streambeds of urban water bodies, in



6 Freshwater Meiofauna—A Biota with Different Rules? 163

Fig. 6.3 a Fitted relationship between body mass (M) and abundance (N) of benthic communities
across 30 UK streams. Data expand six orders of magnitude in body size from prokaryotes to
macroinvertebrates (from Peralta-Maraver et al. 2019b). b Predicted linear relationship between
production and biomass for micro- and meiobenthic taxa. Temperature-corrected production (P
eE/kT) measured in mg DM m−2 year−1, biomass (B eE/kT), measured in mg DM m−2; adapted
from Schmid-Araya et al. (2020). c Predictions from the generalized additive mixed model relating
microbial decomposition of leaf litter (degree days−1) as response of secondary production in
micro- and meiobenthic communities (Total P) across 30 UK rivers. Scaling coefficients from
Schmid-Araya et al. (2020) were used to calculate secondary production of micro- and meiobenthic
taxa from reported biomass measurements in Peralta-Maraver et al. (2019b). In all plots, grey areas
between blue lines represent the 95% confidence intervals; red line represents fitted predictions

polluted areas, or alluvial plains due to their soft-bottom substrates and frequently
hypoxic conditions (Sonne et al. 2018). In contrast, several meiofaunal groups
colonize those environments and may even dominate in terms of biomass (Palmer
1990).

In addition to their importancewithin the standing biomass spectrum, the short life
cycles, rapid reproduction rates and dominant abundances ofmeiofauna in freshwater
benthic habitats ensure that these organisms are significant contributors to the total
biomass production (permanent meiofauna: ca. 0.3–3 g C/m2/year, temporary meio-
fauna: ca. 0.8–5.5 g C/m2/year) and turnover (Schmid-Araya et al. 2020; Brüchner-
Hüttemann et al. 2020). Notwithstanding the body of evidence, and in contrast to
studies on macroinvertebrates, only a few studies have quantified empirically the
contribution of meiobenthos to the overall production budget of freshwater ecosys-
tems. Indeed, measuring secondary production of microscopic animals demands
laborious practises, including tracing development stages of cohorts through time,
or assessing species-specific growth rates (Schmid-Araya et al. 2020).

Contrary to the bimodal size spectra distribution of metazoans that is frequently
described formarine benthos, more complexmodalities prevail in freshwater benthos
(Fig. 6.3b). This is probably due to the transient nature of freshwater meiofaunal
assemblages comprising a large fluctuating share of temporary meiofauna. Addi-
tionally, in temperate zones meiobenthic production ranges can vary greatly with
their seasonal changes and export of plant biomass (Majdi et al. 2017) and they can
also vary with the small-scale patchiness of stream habitats (Brüchner-Hüttemann
et al. 2020). All of these variations demand considerable increase in sampling effort
required to obtain reliable estimates. Therefore, in freshwaters, traditional approaches
derived from studies on macroinvertebrates might be less suitable for meiofauna.
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Current studies on freshwater meiofauna have opted to use allometric scaling
relationships to bypass some of the previous issues (reviewed in Schmid-Araya
et al. 2020). These models aim to predict production or growth rate as a response
to many other variables such as lifespan, temperature, or body size (Benke and
Huryn 2010). Their theoretical principles are rooted in the well-established concept
of the Metabolic Theory of Ecology (Brown et al. 2004; Sibly et al. 2012). However,
in freshwater ecosystems empirical measurements of benthic production showed a
weak relationship to individual biomass or temperature (Morin and Bourassa 1992;
Benke 1993). In contrast, a new allometric model demonstrates that the temperature-
corrected standing biomass powerfully scales withmeiobenthic production (Schmid-
Araya et al. 2020). Coefficients from this allometric relationship are consistent across
benthic habitats both in lakes and rivers, and across nematodes, copepods, clado-
cerans, ostracods, chironomids, microturbellarians, rotifers, and ciliophoran species
(Fig. 6.3b).

Estimates of secondary production integrate information on population density,
biomass stock, growth rate, reproduction, and biomass turnover (Benke 1993; Benke
and Huryn 2010), and help to explain the organization of natural communities at a
local level (e.g. trophic pyramids; O’Gorman et al. 2008). From the perspective of
ecosystem functioning, production is the means by which organic carbon and energy
become available for transfer from basal to top trophic levels. Hence, production
represents a common currency to quantify energy and organic carbon flows between
taxonomic groups, trophic levels, and different habitats and/or systems (Dolbeth
et al. 2012; Benke and BruceWallace 2015). Thus, quantifying meiobenthic produc-
tion brings us to a central domain of future meiobenthic research: The challenge of
assessing the role of meiofauna within the biogeochemical carbon cycle.

Microbially-mediated decomposition of organic substrates, e.g. leaf litter, repre-
sents a main entry of bioavailable carbon within benthic food webs. It fuels
secondary production in benthic habitats. The diverse microbial consortia inhabiting
the streambed pore–spaces are key sites of enzymatic activity and play a leading
role during decomposition (Romani et al. 2008; Battin et al. 2016). At the same
time, activities of micro- and meiofauna (crawling in the pore–space, digging in the
sediment, and grazing on biofilms) promote microbial activity in benthic habitats.
Incubation experiments have reported an apparent stimulation of microbial activity
and organic matter decomposition with increasingmeiofaunal densities (see Chap. 2;
Mathieu et al. 2007; Nascimento et al. 2012; Bonaglia et al. 2014; D’Hondt et al.
2018). Based on these premises, we can expect that productive meiobenthic commu-
nities promote microbially-mediated decomposition of organic carbon substrates,
and therefore, support rapid cycling of allochthonous carbon. Furthermore, recalling
secondary production might be used as a common currency of carbon and energy
transfer, the microbial decomposition rate enables standardized comparisons across
communities and at large spatial scales.

To test our predictions and present an example, wemodelled themicrobial decom-
position of an organic carbon substrate as a response to the secondary production of
micro- and meiobenthic communities. For this purpose, we used data provided by
Peralta-Maraver et al. (2019b) describing leaf litter decomposition across thirty UK
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rivers. Their study reports microbial decomposition rates (k) using a standardized
bioassay (cotton-strips) as a proxy of leaf litter (Tiegs et al. 2013). In addition, the
proxy provides fine-resolution information of the biomass of streambed taxa inhab-
iting the benthic zone expanding six orders of magnitude in size (from prokaryotes
to macroinvertebrates). In essence, length and width of all counted organisms were
measured to the nearest micrometre, and transformed into dry carbon (mg C) using
allometric relationships. Then, biomass (mg C dm−3 of sediment) was obtained from
multiplying dry carbon content by individual density (ind dm−3 of sediment).Herewe
consider community data of micro- and meiofauna smaller than 2 mm inhabiting the
benthic zone (0–5 cm depth). These data include flagellates, ciliates, and permanent
and temporarymeiofauna.Biomass data of each taxonwere transformed to secondary
production using the allometric coefficients provided by Schmid-Araya et al. (2020)
for micro- and meiobenthic taxa (Fig. 6.3b). Then, total secondary production of all
community taxa was averaged by study site (river) as a measure of total meiobenthic
production. Note that the original datasets included other abiotic variables (e.g. lati-
tude, temperature, pH) that were excluded here to facilitate the model performance.
Finally, decomposition rateswere plotted as responseof the totalmeiobenthic produc-
tion to explore the shape of the relationship. We could show that decomposition rates
follow a convex-curved relationship along the gradient of secondary production,
and thus we used non-linear generalized additive mixed modelling (GAM) to fit
the observed pattern (Fig. 6.3c). Our results evidence complex trade-off relation-
ships between microbial decomposition and secondary production of micro- and
meiobenthic communities in the field.

Our predictions show that productive micro- and meiobenthic communities
promote microbial decomposition up to a tipping point at which negative effects
come into play and reduce microbial performance (e.g. over-grazing). However,
the complexity of processes involved, the various forces behind microbial decom-
position and organic carbon cycling defy, as yet, clearly assessed explanations
(Peralta-Maraver et al. 2018a). Several pathways come into consideration:

• selective consumption of less active decomposers (Shapiro et al. 2010);
• stimulation of bacterial activity by limiting overgrowth (Traunspurger et al. 1997);
• micro-bioturbation of meiofauna increasing the porosity of microbial mats to

nutrients, light and gases (Chap. 2; Pinckney et al. 2003; Mathieu et al. 2007;
Otto et al. 2017);

• surface increase of biofilms due to moderate grazing (Neury-Ormanni et al. 2016;
Peralta-Maraver et al. 2018a);

• predation–induced recycling of nutrients (microbial loop) (Shapiro et al. 2010);
• dispersal of microbiomes and/or localized priming of bacteria through the depo-

sition of mucus trails and faecal pellets by the meiofauna (Riemann and Helmke
2002).
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6.5 Conclusions

Ecologically oriented biodiversity research of freshwatermeiofauna not only touches
theoretical considerations (e.g. food web topology, diversity-stability). It also affects
the practical management of ecosystems. However, the potential use of meiofauna
as an efficient tool for monitoring freshwater ecosystems is usually limited by taxo-
nomic impediments. This is changing now with the striking development of genetic
sequencing methods that can surmount this limitation. Also in freshwater systems,
these powerful genetically-based methods increasingly support the number, effi-
ciency and relevance of those biomonitoring projects that are based on meiofauna
assessments: ‘meiofaunaat the biodiversity frontier’ (e.g.Höss et al. 2011;Semprucci
et al. 2015).

Microcosms experiments using meiofauna give insights in physiological
processes with the advantages of a broad numerical basis, short experimental times,
and convenient repeatability. These studies show that meiofauna species not only
represent valuable indicators for a wide range of tolerance limits in ecosystems, with
their defined sensitivity against anthropogenic stressors they can also serve as valu-
able indicators of pollution (e.g. Höss et al. 2004; Gyedu-Ababio and Baird 2006;
Brinke et al. 2010, 2011). The large abundances, ubiquity and rapid life cycles char-
acterizing meiofauna make them perfect tracers of pollutants. Additionally, experi-
ments with meiofauna also allow for valuable conclusions on trophic transfer routes
and energetic pathways from microbial decomposition rates to macrobenthic preda-
tion. Future experimental approaches will define under which circumstances we
can expect previously addressed tipping points in microbial decomposition rates in
relation to productivity of meiobenthos.

Assessments of secondary production across a broad-range of size spectra prove
meiofauna to serve as a powerful indicator of ecosystem structure and processes.
Clearly, multiple mechanisms combine to cover these interactions extending from
microbial decomposition to top-level predation, but models presented in this chapter
offer a novel analytical toolkit to assess these important processes. Considering
the effects of environmental drivers (e.g. oxygen concentration) within our models,
and their interactions with data on secondary production, will improve our analyt-
ical scrutiny. However, theoretical modelling does not substitute the well-designed
experiments and survey studies at a fine taxonomic resolution. This combination
will still be required to fully understand the role of meiobenthos in the ecosystem
functioning: ‘the indicative role of meiofauna in benthic ecosystems’.

Another basic issue is inclusion of meiofaunal organisms into our understanding
of the energetic connectivity between terrestrial and aquatic ecosystems, especially
relevant under the extremes to be expected in future developments. Interruptions in
stream flow are becoming increasingly common worldwide due to climate change
and rising pressure on water resources (Datry et al. 2014). In this scenario, studies
show that meiofaunal organisms such as tardigrades or nematodes have the potential
to quickly recolonize habitats and restore ecological processes even after severe
droughts (Majdi et al. 2020b). Thus, we consider particularly freshwater meiofauna
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as important players when it comes to re-establishing the energetic connectivity
between terrestrial and aquatic ecosystems after major disturbances: ‘meiofauna as
indicator of and basis for ecological regeneration’.

Summing up, in freshwaters, meiobenthos lives in a closer connection to the
terrestrial world. This aquatic-terrestrial link is particularly tight and evident in
those organisms with terrestrial adult stages, a life strategy that is very common
in freshwater ecosystems, while there are only very few examples from intertidal,
mangrove and saltmarsh habitats. This specific aspect underlines freshwater meio-
fauna as important contributors to the ecosystem complexity and interactivity of
benthic habitats, whereas in marine ecosystems, the lines connecting meiobenthos
with their ecosystemary neighbours, the microbial world and/or the macrobenthic
compartments, often seem weaker, so that in the marine realm meiofauna is often
viewed as a trophically less connected entity.

Returning to the basal question underlying this chapter “Freshwatermeiofauna—a
biota with different rules?” the answer, seen from various perspectives, is affirmative
in many ways:

Important differences do occur when comparing biota and biotopes of
freshwater meiofauna with their marine counterparts.
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generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer
reveals species-rich and reservoir-specific communities. R Soc Open Sci 3:160635

Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23(4):399–417
Lubzens E, Marko A, Tietz A (1985) De novo synthesis of fatty acids in the rotifer Brachionus
plicatilis. Aquaculture 47:27–37

Majdi N, Traunspurger W (2017) Leaf fall affects the isotopic niches of meiofauna and macrofauna
in a stream food web. Food Webs 10:5–14

Majdi N, Threis I, Traunspurger W (2017) It’s the little things that count: Meiofaunal density and
production in the sediment of two headwater streams. Limnol Oceanogr 62(1): 151–163

Majdi N, Tackx M, Buffan-Dubau E (2012) Trophic positioning and microphytobenthic carbon
uptake of biofilm-dwelling meiofauna in a temperate river. Freshw Biol 57:1180–1190

Majdi N, CollsM,Weiss L, Acuña V, Sabater S, TraunspurgerW (2020a) Duration and frequency of
non-flow periods affect the abundance and diversity of stream meiofauna. Freshw Biol 65:1906–
1922



170 I. Peralta-Maraver et al.

Majdi N, Schmid-Araya JM, TraunspurgerW (2020b) Preface: Patterns and processes of meiofauna
in freshwater ecosystems. Hydrobiologia 847:2587–2595

Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet
9:387–402

Martins PK, da Silva Bandeira MG, Palma-Silva C, Albertoni EF (2019) Microcrustacean
metacommunities in urban temporary ponds. Aquat Sci 81:56

MathieuM, Leflaive J, Ten-Hage L, DeWit R, Buffan-Dubau E (2007) Free-living nematodes affect
oxygen turnover of artificial diatom biofilms. Aquat Microb Ecol 49:281–291

McIntyre AD, Murison DJ (1973) The meiofauna of a flatfish nursery ground. J Mar Biol Assoc
UK 53:93–118

Menzel R, Geweiler D, Sass A, Simsek D, Ruess L (2018) Nematodes as important source for
omega-3 long-chain fatty acids in the soil food web and the impact in nutrition for higher trophic
levels. Front Ecol Evol 6:96

Meschkat A (1934) Der Bewuchs in den Rörichten des Plattensees. Arch Hydrobiol 27:436–517
Micoletzky H (1911) Zur Kenntnis des Faistenauer Hintersees bei Salzburg, mit besonderer
Berücksichtigung faunistischer und fischereilicher Verhältnisse. Int Rev Ges Hydrobiol Hydrogr
3:506–542

Morin A, Bourassa N (1992) Modèles empiriques de la production annuelle et du rapport P/B
d’invertébrés benthiques d’eau courante. Can J Fish Aquat Sci 49:532–539

Nascimento FJ, Näslund J, Elmgren R (2012) Meiofauna enhances organic matter mineralization
in soft sediment ecosystems. Limnol Oceanogr 57:338–346

Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev
Genet 12:111–122

Neury-Ormanni J, Vedrenne J, Morin S (2016) Who eats who in biofilms? Exploring the drivers of
microalgal and micro-meiofaunal abundance. Bot Lett 163:83–92

Neury-Ormanni J, Vedrenne J, Wagner M, Jan G, Morin S (2020) Micro-meiofauna morphofunc-
tional traits linked to trophic activity. Hydrobiologia 847:2725–2736

Neutel AM, Heesterbeek JA, Van de Koppel J, Hoenderboom G, Vos A, Kaldeway C, Beredese F,
De Ruiter PC (2007) Reconciling complexity with stability in naturally assembling food webs.
Nature 449:599–602

O’Gorman EJ, Enright RA, Emmerson MC (2008) Predator diversity enhances secondary
production and decreases the likelihood of trophic cascades. Oecologia 158:557–567

Otto S, Harms H, Wick LY (2017) Effects of predation and dispersal on bacterial abundance and
contaminant biodegradation. FEMS Microbiol Ecol 93: fiw241

Palmer MA (1990) Temporal and spatial dynamics of meiofauna within the hyporheic zone of
Goose Creek, Virginia. J North Am Benthol Soc 9:17–25

Papakostas S, Michaloudi E, Proios K, Brehm M, Verhage L, Rota J, Peña C, Stamou G, Pritchard
VL, Fotaneto D, Declerck SA (2016) Integrative taxonomy recognizes evolutionary units despite
widespread mitonuclear discordance: evidence from a rotifer cryptic species complex. Syst Biol
65:508–524

Pennak RW (1940) Ecology of the microscopic Metazoa inhabiting the sandy beaches of some
Wisconsin lakes. Ecol Monogr 10:537–615

Peralta-Maraver I, Galloway J, Posselt M, Arnon S, Reiss J, Lewandowski J, Robertson AL (2018a)
Environmental filtering and community delineation in the streambed ecotone. Sci Rep 8:1–11

Peralta-Maraver I, Reiss J, Robertson AL (2018b) Interplay of hydrology, community ecology and
pollutant attenuation in the hyporheic zone. Sci Total Environ 610:267–275

Peralta-Maraver I, Posselt M, Perkins DM, Robertson AL (2019a) Mapping micro-pollutants and
their impacts on the size structure of streambed communities. Water 11:2610

Peralta-Maraver I, RobertsonAL, Perkins DM (2019b) Depth and vertical hydrodynamics constrain
the size structure of a lowland streambed community. Biol Lett 15(7):20190317

Perkins DM, Durance I, Edwards FK, Grey J, Hildrew AG, Jackson M, Jones JI, Lauridsen
RB, Layer-Dobra K, Thompson MSA, Woodward G (2018) Bending the rules: exploitation of



6 Freshwater Meiofauna—A Biota with Different Rules? 171

allochthonous resources by a top-predator modifies size-abundance scaling in stream food webs.
Ecol Lett 21:1771–1780

Petchey OL, Morin PJ, Hulot FD (2002) Contributions of aquatic model systems to our under-
standing of biodiversity and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P (eds)
Biodiversity and ecosystem functioning—synthesis and perspectives. Oxford University Press,
Oxford, UK, pp 127–138

Peters L, Hillebrand H, Traunspurger W (2007) Spatial variation of grazer effects on epilithic
meiofauna and algae. J North Am Benthol Soc 26:78–91

Peters L, Faust C, TraunspurgerW (2012) Changes in community composition, carbon and nitrogen
stable isotope signatures and feeding strategy in epilithic aquatic nematodes along a depth
gradient. Aquat Ecol 46:371–384

Pinckney JL, Carman KR, Lumsden SE, Hymel SN (2003) Microalgal-meiofaunal trophic
relationships in muddy intertidal estuarine sediments. Aquat Microb Ecol 31:99–108

Ptatscheck C, TraunspurgerW (2020) The ability to get everywhere: dispersal modes of free-living,
aquatic nematodes. Hydrobiologia 847:3519–3547

Ptatscheck C, Putzki H, Traunspurger W (2017) Impact of deposit-feeding chironomid larvae
(Chironomus riparius) on meiofauna and protozoans. Freshw Sci 36:796–804

Ptatscheck C, Brüchner-Hüttemann H, Kreuzinger-Janik B, Weber S, Traunspurger W (2020) Are
meiofauna a standard meal for macroinvertebrates and juvenile fish? Hydrobiologia 847:2755–
2778

Reiss J, PerkinsDM,FussmannKE,Krause S,CanhotoC,Romeijn P,RobertsonAL (2019)Ground-
water flooding: Ecosystem structure following an extreme recharge event. Sci Total Environ
652:1252–1260

Riemann F, Helmke E (2002) Symbiotic relations of sediment-agglutinating nematodes and bacteria
in detrital habitats: the enzyme-sharing concept. Mar Ecol 23(2): 93–113

Reuman DC, Mulder C, Raffaelli D, Cohen JE (2008) Three allometric relations of population
density to body mass: theoretical integration and empirical tests in 149 food webs. Ecol Lett
11:1216–1228

Robertson AL, Rundle SD, Schmid-Araya JM (2000) Putting the meio-into stream ecology: current
findings and future directions for lotic meiofaunal research. Freshw Biol 44:177–183

Romaní AM, Fund K, Artigas J, Schwartz T, Sabater S, Obst U (2008) Relevance of polymeric
matrix enzymes during biofilm formation. Microb Ecol 56:427–436

Rundle SD, Robertson AL, Schmid-Araya JM (2002) Freshwater meiofauna. Backhuys, Leiden, p
369

Sánchez-Carmona R, Encina L, Rodríguez-Ruiz A, Rodríguez-Sánchez MV, Granado-Lorencio
C (2012) Food web structure in mediterranean streams: exploring stabilizing forces in these
ecosystems. Aquat Ecol 46:311–324

Sars GO (1867) Histoire naturelle des crustacés d’eau douce de Norvège. Chr. Johnsen, Norway, p
145

Schenk J, FontanetoD (2020)Biodiversity analyses in freshwatermeiofauna throughDNAsequence
data. Hydrobiologia 847:2597–2611

Schenk J, Kleinbölting N, Traunspurger W (2020) Comparison of morphological, DNA barcoding,
and metabarcoding characterizations of freshwater nematode communities. Ecol Evol 10:2885–
2899

Schmid PE, Tokeshi M, Schmid-Araya JM (2000) Relation between population density and body
size in stream communities. Science 289:1557–1560

Schmid-Araya JM (1997) Temporal and spatial dynamics of meiofaunal assemblages in the
hyporheic inter- stitial of a gravel stream. In: Gibert J, Mathieu J, Fournier F (eds) Ground-
water/surface water ecotones: biological and hydrological interactions and management options.
Cambridge University Press, Cambridge, pp 29–36

Schmid-Araya JM, Hildrew AG, Robertson A, Schmid PE, Winterbottom J (2002) The importance
of meiofauna in food webs: evidence from an acid stream. Ecology 83:1271–1285



172 I. Peralta-Maraver et al.

Schmid-Araya JM, Schmid PE, Tod SP, Esteban GF (2016) Trophic positioning of meiofauna
revealed by stable isotopes and food web analyses. Ecology 97:3099–3109

Schmid-Araya JM, Schmid PE, Majdi N, Traunspurger W (2020) Biomass and production of
freshwater meiofauna: a review and a new allometric model. Hydrobiologia 847:2681–2703

Schratzberger M, Ingels J (2018) Meiofauna matters: the roles of meiofauna in benthic ecosystems.
J Exp Mar Biol Ecol 502:12–25

Semprucci F, Frontalini F, Sbrocca C, Du Châtelet EA, Bout-Roumazeilles V, Coccioni R, Balsamo
M (2015) Meiobenthos and free-living nematodes as tools for biomonitoring environments
affected by riverine impact. Environ Monit Assess 187:1–19

Shapiro OH, Kushmaro A, Brenner A (2010) Bacteriophage predation regulates microbial
abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J
4:327–336

Shokralla S, Porter TM, Gibson JF, Dobosz R, Janzen DH, Hallwachs W, Goldin GB, Hajibabaei
M (2015) Massively parallel multiplex DNA sequencing for specimen identification using an
Illumina MiSeq platform. Sci Rep 5:9687

SiblyRM,Brown JH,Kodric-BrownA (2012)Metabolic ecology: a scaling approach. JohnWiley&
Sons, Chichester, UK, p 256

Sonne AT, Rasmussen JJ, Höss S, TraunspurgerW, Bjerg PL,McKnight US (2018) Linking ecolog-
ical health to co-occurring organic and inorganic chemical stressors in a groundwater-fed stream
system. Sci Total Environ 642:1153–1162

Stead TK, Schmid-Araya JM, Hildrew AG (2005) Secondary production of a stream metazoan
community: does the meiofauna make a difference. Limnol Oceanogr 50:398–403

Strayer DL, May SE, Nielsen P, Wollheim W, Hausam S (1997) Oxygen, organic matter, and
sediment granulometry as controls on hyporheic animal communities. Arch Hydrobiol 140:131–
144

Tang CQ, Leasi F, Obertegger U, Kieneke A, Barraclough TG, Fontaneto D (2012) The widely used
small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys
of the meiofauna. Proc Natl Acad Sci USA 109:16208–16212

Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ (2013) A standardized cotton-strip assay for
measuring organic-matter decomposition in streams. Ecol Indic 32:131–139

Traunspurger W, Bergtold M, Goedkoop W (1997) The effects of nematodes on bacterial activity
and abundance in a freshwater sediment. Oecologia 112:118–122

Traunspurger W, Wilden B, Majdi N (2020) An overview of meiofaunal and nematode distribution
patterns in lake ecosystems differing in their trophic state. Hydrobiologia 847:2665–2679

Tucker MA, Rogers TL (2014) Examining predator–prey body size, trophic level and body mass
across marine and terrestrial mammals. Proc Royal Soc B 281:20142103

Weber S, Traunspurger W (2013) Food choice of two bacteria-feeding nematode species dependent
on food source, food density and interspecific competition. Nematology 15:291–301

Weber S, Traunspurger W (2014) Top-down control of a meiobenthic community by two juvenile
freshwater fish species. Aquat Ecol 48:465–480

Weber S, Traunspurger W (2015) The effects of predation by juvenile fish on the meiobenthic
community structure in a natural pond. Freshw Biol 60:2392–2409

Weigand AM, Macher JN (2018) A DNA metabarcoding protocol for hyporheic freshwater
meiofauna: evaluating highly degenerate COI primers and replication strategy. Metabarcod
Metagenom 2:e26869
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Chapter 7
Hidden Players—Meiofauna Mediate
Ecosystem Effects of Anthropogenic
Disturbances in the Ocean
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Abstract Humans have used, and had effects on, marine ecosystems throughout
history. As the human population and its economic activities increase, these effects
intensify. Yet, our awareness and understanding of the long-term, pervasive effects
of anthropogenic disturbances on the seafloor, and the resident meiofauna, is far
from complete. This chapter summarises research on the responses of marine meio-
fauna to the most widespread anthropogenic disturbances, including bottom-fishing,
pollution, introductionof invasive species, and climate change.Anthropogenic distur-
bance and natural environmental dynamics interact to cause changes in the response
of meiofauna species, either in the short-term, through effects on growth and devel-
opment, or in the long-term, through genetic selection. Species-specific sensitivity
to disturbance can propagate to community-level responses, mediated by shifts in
interspecific interactions. Meiofauna responses to anthropogenic disturbance are
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commonly nonlinear and depend on the environmental context in which the distur-
bance occurs, on the scales at which meiofauna responses are observed, and on the
extent to which the disturbance creates novel environments that differ from those
to which the resident meiofauna are adapted. Although responses of meiofauna
assemblages to anthropogenic disturbance are complex, in general severe distur-
bance leads to dominance by opportunistic species. The widespread replacement of
habitat-specific ecological specialists by broadly-adapted ecological generalists and
opportunists often results in biotic and functional homogenisation of once disparate
biotas. Their small size, their life history characteristics, and their phylogenetically
and functionally diverse species pool, all suggest that meiofauna are resilient, and
there is little evidence for the local extinction of meiofauna from anthropogenically
disturbed seafloor habitats. It therefore seems likely that meiofauna have the ability
to adapt, and thrive, in response to most environmental changes. New horizons for
future meiofauna research pertain to the extent to which the resistance or resilience
of meiofauna to anthropogenic disturbance buffers ecosystem functioning against
further change.

7.1 Disturbance: A Multifaceted Phenomenon

Disturbance is recognised as an event that, regardless of origin, occurs when poten-
tially damaging forces or influences are applied to habitat space occupied by an
individual species, population, community, or ecosystem. The forces and resultant
changesmay harm, displace, or kill organisms, alter or remove consumable resources
such as living space and food, and change, degrade, or destroy habitat structure. Prior
to the 1990s, a disturbance to an ecosystem was regarded as a discrete event in time
(White and Pickett 1985). Since then, the definition of disturbance has broadened,
gradually including long-term pressures on ecosystems that may have no foresee-
able end, such as climate change (Shukla et al. 2019). Here we follow the notion that
disturbance is external to the system of interest and that its effects are manifested as
perturbations and stress (Table 7.1).

Disturbance events and how they are distributed through time vary in distinct,
quantifiable aspects (Table 7.2). Environmental factors may affect spatial and
temporal variability in disturbance regimes.

Table 7.1 Terms used to describe the effects of disturbance (adapted from Rykiel 1985; Parker
et al. 1999)

Disturbance consequence Description

Perturbation Effect of a disturbance event, altering the physical structure or
arrangement of biotic and abiotic elements of ecosystems; may be
either temporary or permanent, and can be defined in terms of a
change in structure or functions

Stress Effect of a disturbance event on a biological entity (individual,
population, community, food web, etc.), which does not cause
mortality; can be defined in terms of a decrease in fitness (i.e.
survival and/or reproduction)
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Table 7.2 Terms used to describe disturbance regimes (adapted from White and Pickett 1985;
Turner 2000; Keane 2017; Ratajczak et al. 2018)

Disturbance characteristic Description

Source, type Origin of the disturbance

Intensity The strength or physical energy of the disturbance per area per time
period; characteristic of the disturbance rather than the ecological
consequences

Duration Time period during which the disturbance continues

Frequency How often the disturbance occurs in a period of time

Return time Time between disturbances (i.e. the inverse of frequency)

Magnitude Spatial extent of the disturbance (i.e. area disturbed); can be
expressed as area per event, area per time period, or percentage of
study area per time period

Timing Occurrence of disturbance relative to season and/or life cycle of the
biological entity in question

Severity Consequence of the disturbance for the receiving abiotic and biotic
environment; is closely related to intensity because more intense
disturbances are generally more severe

Variability Spatial and temporal variability of the characteristics above

Regime Spatial and temporal patterns of the disturbance over a long period
of time; a disturbance regime is characterised by multiple factors
including frequency, return time, intensity, and severity

Disturbance responses are often framedwithin the context of ecological resilience,
i.e. the ability of a population, assemblage, or ecosystem affected by disturbance to
reorganise and renew itself. Resistance to, and recovery from, disturbance are two
important components of resilience (Table 7.3).

Responses of individuals to disturbance include changes in their physiology and/or
behaviour that may enhance or reduce rates of survival/mortality and/or recruitment,
altering population structure and/or density. Changes in the performance of individ-
uals, either in the short-term through detrimental effects on growth and development,
or in the long-term through genetic selection, are possible. Species-specific sensi-
tivities to disturbance propagate through population dynamics to community-level
responses, mediated by shifts in interspecific interactions (Supp and Ernest 2014;
Fig. 7.1).

Species-level responses to disturbance are most easily interpreted when they are
linked to single, clearly defined factors that respond to disturbance, particularly
physical or chemical features of their environment. Community-level responses
to disturbance are complex as they integrate the responses of numerous popula-
tions (Fig. 7.1). However, community responses provide valuable insights into the
biological magnitudes of disturbance-induced changes. Inevitably, because of the
number of species present, it becomes increasingly difficult to establish well-defined
and well-understood causal relationships between disturbance and the composition
of entire communities.
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Table 7.3 Terms used to describe disturbance responses (adapted from Arnoldi et al. 2018; Falk
et al. 2019)

Disturbance response Description

Resistance The ability of individuals or their assemblages to tolerate, avoid, or
persist in environmental or biological alterations; also referred to as
persistence; characterised by low mortality rate

Recovery Re-establishment of the pre-disturbance population following
mortality of the original individuals through recruitment and/or
colonisation

Reorganisation As the intensity, frequency, or magnitude of disturbance increases,
both resistance to and recovery from disturbance can be exceeded, and
the ecosystem reorganises into an alternative state; alternative states
may be transient or permanent

Resilience Ability to recover following disturbance; this is a key emergent
property of individuals, populations, and communities, and recognises
that some degree of ecosystem change may reflect processes of
adaptation to altered environmental conditions; change is not
necessarily an indicator of ecosystem failure

Individual

Physiology, 
behaviour 

(e.g. injury, 
foraging)

Demography 
(e.g. loss or gain 

of individuals)

Species 
interac ons 

(e.g. compe on, 
facilita on)

Survival
Fecundity
Growth

Popula on size
Age structure

Turnover 
Immigra on 
Emigra on

Richness
Evenness
Diversity

Dis nctness

Popula on

Community

Fig. 7.1 Responses of organisms to disturbance are the result of sequentialmechanisms that operate
at progressively higher levels of biological organisation (adapted from Falk et al. 2019). See text
for details

7.1.1 Under Pressure: Anthropogenic Disturbances
in Marine Ecosystems

Disturbance ecology is becoming one of the more valuable lenses through which
ecosystem consequences of a rapidly changing world are interpreted. Research on
disturbance effects has largely focused on large-sized, visible organisms but most
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animal life on Earth is small. Over 90% of known species are smaller than a human
fingernail (Naskrecki 2005). This ‘small life’ is dominated by invertebrates with
recent estimates placing their proportion as high as 95%, against 5% comprising
vertebrate species, and it is mostly aquatic, rather than terrestrial. Aquatic envi-
ronments cover over 70% of the Earth’s surface and are overwhelmingly marine
(Charette and Smith 2010). These global overviews are useful, but for a deeper
understanding we need to know whether there are differences in threats between
different aquatic habitats, and whether similar species are affected by these threats
in different ways.

Anthropogenic activities cause many different types of disturbance in all ocean
basins (United Nations 2017; Vitousek et al. 1997; Geist and Hawkins 2016).
The relative importance of these disturbances varies depending on ecosystem type,
species vulnerabilities and spatial context, ranging from global (e.g. overexploitation
of populations, introduction of invasive non-native species, climate change), through
regional (e.g. non-point-source pollution) to local scales (e.g. point-source pollution)
(Box 7.1).

Box 7.1. Major anthropogenic disturbances in the marine ecosystem
(adapted from WWF 2020)

Fishing and harvesting

The unsustainable removal of certain species and size classes directly alters the
composition and diversity of target and non-target species. These alterations
can be amplified by species interactions, whichmediate indirect effects through
changes in trophic relationships, habitat, etc.

Pollution

Pollution can lead to direct effects by making the environment unsuitable for
species and their populations (e.g. oil spills) and/or indirectly by affecting food
availability, reproductive performance, etc.

Introduction of invasive species

Direct effects of invasive species includepredationof native species and compe-
tition for space, food, and other resources. This can result in the fragmenta-
tion, destruction, alteration, or complete replacement of native habitats which
in turn, can lead to further cascading indirect effects on more species and
ecosystem processes.

Climate change

Increases in global ocean temperatures have been linked to decreased ocean
productivity, altered food web dynamics, reduced abundances of habitat-
forming species and shifting species distributions. In addition, polar regions
are experiencing rapid changes in sea ice duration, iceberg disturbance and
melt water run-off.



180 M. Schratzberger et al.

7.1.2 The Small Majority: Adding Meiofauna to the Bigger
Picture

Here we leverage the knowledge gained in disturbance ecology in a broader context
by focusing on the largest ecosystem on Earth by area (i.e. the seafloor), inhabited
by meiofauna, some of the most abundant small-sized invertebrates, and investigate
how meiofauna mediate ecosystem effects of anthropogenic disturbances.

Marine sediments on continental shelves (above 200 m) and slopes (200–2000 m)
occupy approximately 16% of the ocean area, yet they deliver over 80% of global
organic matter mineralisation (Middelburg et al. 1997). Metazoan meiofauna inhab-
iting benthic ecosystems worldwide are the most abundant and phyletically diverse
metazoans on Earth (Warwick 1993; Giere 2009). The great abundance and species
diversity of meiofauna suggest a high degree of specificity in their choice of the envi-
ronment (Table 7.4). This, together with their generally short generation times, low
mobility and often direct benthic development, results in a wide range of specific and
rapid responses to short-term fluctuations of, and longer-term trends in, local envi-
ronmental conditions (Schratzberger et al. 2000a; Fleeger and Carman 2011). Most
meiofauna live in spaces and channels between sediment particles and are, therefore,
susceptible to changes in seafloor physico-chemical composition (e.g. texture, bed
forms, oxygenation, etc.), biological properties (e.g. biofilms on sediment particles,
content of organic matter), and contaminants (Coull and Chandler 1992). The entire
life cycle ofmanymeiofauna species can be completed in amatter ofweeks (Warwick
and Gee 1984), resulting in a much higher production-to-biomass ratio of meiofauna
compared with macrofauna. Thus, despite their negligible biomass, meiofauna can
make an important contribution to overall benthic productivity (Schratzberger and
Ingels 2018).

Meiofauna are relatively easy to sample in large numbers and thus ideal for studies
focusing on species richness (alpha-diversity), species turnover (beta-diversity) and
comparisons of community similarity in space and time (Table 7.4). However, under-
standing ofmeiofauna diversity remains incomplete.Manymeiofauna species remain
undescribed owing to the lack of taxonomic study, or remain undiscovered due to
chronic under-sampling of seafloor habitats and unknown numbers of co-occurring
cryptic species (see Chap. 5).

Although functional attributes of meiofauna (such as feeding type, life history,
life strategy, growth rates) remain poorly understood, evidence suggests that meio-
fauna play key roles in the functioning of benthic ecosystems. Meiofauna activities
(e.g. movement, ingestion and defecation of food particles, excretion of metabolic
wastes), and their stimulating effect on microbiota, modify many physical, chemical
and biological sediment properties and processes (Schratzberger and Ingels 2018).
These modifications, directly and indirectly, positively and negatively, affect various
ecosystem services including sediment stabilisation, biochemical cycling, waste
removal and food web dynamics, across spatial and temporal scales (see Chaps. 2
and 5; Schratzberger and Ingels 2018). Meiofauna can mediate ecosystem processes
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Table 7.4 Advantages and disadvantages associated with the use of meiofauna in marine
disturbance studies (adapted from Schratzberger et al. 2000a)

Advantages Disadvantages

Small size

Can be maintained in relatively small volumes
of sediment; intensive repeated sampling is
possible with minor disruption to the sampling
site because the sample size required is small;
follow-up studies in the laboratory are possible
under controlled and repeatable conditions

Taxonomic problems increase with smaller
body size, whereas ecological knowledge
decreases; preparation for identification can be
time-consuming; a high-power microscope is
required for species identification; small-scale
spatial variability may be high

Ubiquitous distribution

Occur in many environments that provide a
source of organic carbon, under all climatic
conditions, and in habitats that vary from
pristine to degraded

Species, population, and community responses
to environmental change are not
well-documented

High abundance and diversity

A generally large number of individuals and
species give a high intrinsic information value
to each sample, and ensure statistical validity
of the data; often high species diversity
suggests a high degree of specificity in the
choice of the environment

High abundance and diversity, together with
lack of taxonomic expertise, make the analysis
of meiofauna community structure difficult,
time-consuming, and labour-intensive; many
groups need specialised methods that are rarely
employed

Short generation times

Most species have short life cycles (from days
to months) so that changes in community
structure can be observed in short-term studies

Population density is affected by a variety of
abiotic and biotic factors so that densities may
fluctuate over small spatial scales

Direct benthic development, sessile habitat

Holobenthic lifestyle, general lack of pelagic
larvae, and direct contact of many species with
the interstitial water make them sensitive to
changes in local conditions

Separating meiofauna from the sediment
matrix requires a carefully controlled
laboratory protocol and the life cycle for most
species is unknown (including possibility of
producing resting stages that are virtually
unaffected by most environmental conditions)

in sediments in the absence of macrofauna, thereby increasing the resilience of those
benthic ecosystemprocesses that are essential for the continueddelivery of ecosystem
services desired by society. This is of growing importance, since benthic ecosystems
are under increasing anthropogenic pressure (Box 7.1).
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With the aim of stimulating future research on disturbances in a changing world,
here we review the scientific literature to identify frontiers of current knowledge of
meiofauna responses to, and their recovery from, themost prominent andwidespread
anthropogenic disturbances in the sea. We address the following questions:

(i) How do various types of anthropogenic disturbance affect meiofauna and
their habitats?

We focus on changes to (a) the quality, quantity, complexity, and hetero-
geneity of the physico-chemical environment, and (b) the fitness, behaviour,
composition and distribution of species, their populations and their commu-
nities. We attempt to establish how, and to what extent, responses of indi-
viduals propagate through species’ populations and communities. We include
shifts in inter- and intra-specific interactions, recognising that, in general,
these cannot be observed directly. Therefore, we infer interactions based on
co-occurrence patterns and synchronous population dynamics. The emerging
correlative relationships are interpreted to capture biological similarities,
functional redundancy or dissimilarities/antagonisms through competition or
predation.

(ii) How do the component processes of meiofauna resistance to, recovery from,
and reorganisation following anthropogenic disturbance affect marine
ecosystems?

Our underlying premise is that species, populations, communities, and
ecosystems will be best prepared to cope with new or variable conditions
induced by disturbance if their altered environment is within the range of vari-
ability to which they are adapted. This assumption, however, is being tested and
challenged as environmental elements (e.g. atmospheric CO2 concentrations,
biogeochemical cycles, etc.) are moving outside their known historical ranges.

By virtue of their quantitative dominance in marine sediments and robust bodies,
nematodes and harpacticoid copepods are the most frequently studied components
of the meiofauna. Consequently, the great majority of meiofauna articles published
in the peer-reviewed scientific literature to date deal with these taxa, which adds
inevitable taxonomic bias to this chapter. However, although the ecological know-
ledge is scarcer, several other meiofauna taxa can provide useful insights into meio-
fauna responses to various anthropogenic disturbances (Mirto and Danovaro 2004;
Fraschetti et al. 2006).

The disturbance-specific sections that follow (see Sects. 7.2–7.5) are based on
large numbers of published studies, conducted in a variety of habitats and loca-
tions. Inevitably, study designs and methodologies differ widely among studies, as
do the intensities, frequencies and spatial and temporal scales of the disturbances
investigated (see Sect. 7.6). We have reviewed many of these studies to illustrate
and summarise the range of effects observed, rather than attempting to provide a
complete list.
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Placing meiofauna responses to anthropogenic disturbances in the wider context
of benthic ecosystems emphasises current uncertainties regarding observable versus
assumed, direct versus indirect, and single versus interactive consequences of anthro-
pogenic disturbances. This allows us to reflect on our current knowledge about meio-
fauna, and to identify new horizons for future meiofauna research, which we put
forward in the concluding section of this chapter (see Sect. 7.7).

7.2 Fishing for Answers: Response of Meiofauna
to Bottom-fishing

General aspects: Bottom-contact fisheries are one of the most widespread anthro-
pogenic sources of direct disturbance to the seafloor and associated biota globally.
Halpern et al. (2008) estimated that three-quarters of the world’s continental shelf
area (approximately 20 million km2) has been trawled or dredged at least once, and
it is the first pass of the gear that is most damaging for the seafloor (Cook et al.
2013) and its biota (Duplisea et al. 2002; Couce et al. 2020). Fishing effort is highly
aggregated, reflecting seafloor characteristics and the relative availability of the target
species (Table 7.5). For example, while large parts of the European continental shelf
are fished at an intensity of less than once in every two years, localised areas may be
fished over ten times per year (Eigaard et al. 2017). A wide range of fishing gears and
technologies has evolved, allowing fishers to trawl habitats ranging from muddy or
sandy sediments, via coarse and mixed sediments to gravel and other hard substrata
(Rijnsdorp et al. 2008). Declines of target species in shallow coastal waters have led
to expanding fisheries at increasing depths offshore (Roberts 2002; Thurstan et al.
2010).

Different fishing gears are designed to have different levels of seafloor contact
or penetration depending on the target species and substrate type, and these factors
influence the ecological consequences (Hiddink et al. 2017). Bottom-fishing can
cause direct mortality of biota as well as physical changes in sediment composition,
topographic complexity, and biogeochemistry (Table 7.6), which in turn can affect
seafloor communities (Sciberras et al. 2018). Eigaard et al. (2017) estimated abottom-
fishing intensity of 0.1 year−1 to be a critical intensity beyond which bottom-fishing
may compromise the integrity of the seafloor and the associated benthic community.

Species-level effects: The small size of meiofauna implies that they are resuspended
during bottom-fishing and that their response is mediated primarily via fishing-
induced modifications to the seafloor (Table 7.6). Studies have quantified the effects
of bottom-fishing on meiofauna using small-scale Before-After-Control-Impact
(BACI) experiments or large-scale longer-term studies of areas subject to differing
levels of fishing. The response of meiofauna generally depends on the type of fishing
gear, the intensity and frequency of fishing and its magnitude relative to other natural
disturbances, and the habitat. Given the variety of study designs and habitats inves-
tigated, inconsistent effects of fishing practices on total meiofauna densities are
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Table 7.5 Disturbance characteristics of bottom-fishing (Halpern et al. 2008; Piet and Quirijns
2009; SPRFMO 2012; Pusceddu et al. 2014; Eigaard et al. 2017; Amoroso et al. 2018)

Disturbance characteristic Bottom-fishing

Source Harvesting of aquatic wild animals for commercial purposes using a
variety of mobile gears (e.g. trawls, dredges) likely to come in
contact with the seafloor or benthic organisms

Attributes (see Table 7.2) 75% of the world’s continental shelf area has been trawled or
dredged at least once

Continuous sediment resuspension induced by deep-sea trawling
can remove approximately 60–100% of the organic carbon from the
trawled area per day

Fishing effort is highly aggregated; heterogeneous distribution with
intensive bottom-fishing in localised areas and lower intensity
fishing elsewhere

Bottom-fishing footprint varies regionally from less than 10% of
seafloor area in Australian and New Zealand waters to more than
50% in some European seas

Distribution of fishing effort is relatively stable over time, especially
when determined by morphological features of the seafloor

Table 7.6 Effects of bottom-fishing on the quality, quantity, complexity, and heterogeneity of
meiofauna habitat (Jennings and Kaiser 1998; Pilskaln et al. 1998; Cabral et al. 2002; Kaiser et al.
2002, 2006; de Madron et al. 2005; Puig et al. 2012; Pusceddu et al. 2014; Oberle et al. 2016)

Habitat property Bottom-fishing

Physical Resuspension of surface sediment and winnowing of fines leads to
changes in sediment sorting and grain size; resuspended sediment settles
in less frequently trawled areas when trawl tracks are filled in

Chemical Release of previously buried organic matter and increased organic loading
of sediments (discarded bycatch) lead to modified biogeochemical cycles,
including shifts towards microbial-dominated, anaerobic food webs

Heterogeneity ‘Flattening’ of the seafloor reduces the small-scale heterogeneity and
topography created by epifauna and flora, large burrowing infauna and
demersal fish, and alters hydrodynamic and biogeochemical processes

perhaps unsurprising (Table 7.7; Pranovi et al. 2000; Schratzberger and Jennings
2002; Schratzberger et al. 2002a; Lampadariou et al. 2005; Hinz et al. 2008; Liu et al.
2011; Pusceddu et al. 2014; Ramalho et al. 2020). While short-term, smaller-scale
field experiments quantify the immediate effects of bottom-fishing on meiofauna
communities, larger-scale surveys at real fishing grounds enable examination of the
prolonged effects and their manifestation over many generations. Although each
method is not without its own biases, coupling the results from analyses at multiple
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scales provides insights into the response of meiofauna species, populations, and
their assemblages to bottom-fishing (see Sect. 7.6).

The effects of a single passage of a trawl on meiofauna taxa are relatively limited
(Alves et al. 2003; Pranovi et al. 2000, 2004), and the presence of nematodes of
different developmental stages in experimentally trawled areas suggests a lack of
acute effects on reproduction and growth of many species (Schratzberger et al.
2002a). Cumulative effects of repeated hauls, however, result in long-term changes
inmeiofauna communities. Bottom-fishing influences the number of species, genera,
and taxa, affecting physiological, morphological, and behavioural adaptations, and
population growth rates, which are reflected in relative reproductive successes, or
failures, in fished areas (Table 7.7). Across habitats, nematode diversity decreases
with increasing fishing intensity and frequency (Hinz et al. 2008; Schratzberger et al.
2009; Pusceddu et al. 2014; Rosli et al. 2016). The loss of diversity primarily reflects
decreased species richness (Schratzberger and Jennings 2002) and/or increased
dominance of opportunistic species and genera (Table 7.7).

There has been comparatively little effort to examine how traits other than popu-
lation growth rates or size make somemeiofauna species more vulnerable to bottom-
fishing than others. Generally overlooked is the likelihood that variation in physio-
logical traits could make some species more susceptible. Slow-moving nematode
species, generally with low respiration rates, are particularly sensitive to experi-
mental physical disturbance (Schratzberger and Warwick 1998a). However, there
are currently no investigations of the direct relationships between physiological traits
of meiofauna species persisting in fished sediments and trawling intensities. Fished
sediments appear to be colonised by meiofauna of larger sizes (individual biomass
approximately 60% higher, on average; Table 7.7) than those in unfished sediments
at the same depth.

Several studies infer physiological, morphological, and behavioural adaptations
of meiofauna to habitat modifications resulting from the release of previously buried
organic matter and/or the presence of dead and decomposing animal tissue in fished
sediments. The persistence of meiofauna is pertinent to their ability to use the surplus
of organic matter either directly or via increased primary production, and to tolerate
low levels of oxygen (Tables 7.7 and 7.16). Increased organic loading of the sediment
can lead to a shift towards microbial-dominated, anaerobic food chains, causing
the proliferation of those meiofauna species that are able to exploit microbial food
sources (Hinz et al. 2008) and survive in, or escape from, oxygen-poor sediments
(Franco et al. 2008).

Effects on food webs and ecosystems: Results from a modelling study by van de
Wolfshaar et al. (2020) indicated that ecological interactions in the benthic food
web are important determinants of the effects of bottom-fishing on benthos, and that
these indirect feedback effects can, in some cases, even reverse the direct effects of
fishing. This can lead to notable increases in abundance of some functional groups.
Duplisea et al. (2002) predicted that the largest size classes, with low specific growth
rates, would be adversely affected even by relatively low levels of fishing activity.
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Conversely, the smaller meiofauna, that is very productive and has short genera-
tion times, is relatively unaffected by fishing disturbance. There is growing empir-
ical evidence indicating that the predicted changes in meiofauna size spectra are
consistent with those that actually occur in fishing grounds, especially in shallow
water where repeated intense bottom-fishing tends to select for meiofaunal nema-
tode communities dominated by small-sized colonists that combine high fecundity,
short generation times, and continuous asynchronous breeding with a feeding posi-
tion near the sediment surface (Schratzberger and Jennings 2002; Lampadariou et al.
2005). The benefits of such a survival strategy at high levels of fishing disturbance are
clear: continuous dispersal and recolonisation of fished areas are possible. Dominant
nematode species in fished deep-sea sediments, for example, differ little from those
in shallower sediments in their life history characteristics. However, their mean indi-
vidual biomass is higher than that of nematodes in unfished sediments, suggesting
that the disturbance exerted by bottom-fishing more easily resuspends smaller indi-
viduals (Pusceddu et al. 2014). The observed shift towards nematode dominancemay
relate to their tolerance to decreased oxygen in the deeper sediment layers in highly
fished areas resulting fromdead and decomposing animals (Table 7.7;Ólafsson 1992;
Franco et al. 2008).

The removal of sublittoral epifaunal turfs, biogenic reefs, and burrowing macro-
fauna is one of the first and most conspicuous effects of bottom-fishing (Table 7.6).
Reduction and removal of ecosystem engineers can alter resources for meiofauna,
including the quantity and quality of food sources, thereby favouring those species
equipped to exploit new trophic conditions. Ingels et al. (2014), for example, used
experimental mesocosms to investigate how the effects of reduction and removal
of large bioturbators cascade through nematode communities. The biogeochemical
heterogeneity generated by bioturbators benefits many meiofauna species. The pres-
ence of bioturbators consistently leads to abundance declines of a few numerically
dominant nematode species. Fewer, more opportunistic species proliferate in the
absence of bioturbators when predation risk and/or competition for food are reduced,
thereby affecting nematode density and community structure as part of a trophic
cascade of indirect effects. Similarly, in the deep sea where the destructive action
of bottom-fishing on cold-water corals alters meiofauna and nematode assemblages,
the presence of corals has a facilitating effect on nematode assemblages (Cerrano
et al. 2010). Habitat heterogeneity/complexity, mediated by improved quantity and
quality of organic matter, and provision of a wide variety of microhabitats and niches
formany nematode species, is crucial to preservemeiofaunal biodiversity (Bongiorni
et al. 2010).While the abundance of meiofauna is mostly correlated with the quantity
of sediment organicmatter, species richness of the nematode assemblages is primarily
related to the quality of organic matter. Weak effects of bottom-fishing frequency on
the trophic diversity of nematode genera suggest that trophic redundancy of meio-
fauna communities is maintained in fished sediments where ecosystem engineers
are absent (Schratzberger et al. 2009). It is therefore possible that these nema-
tode assemblages are functionally resilient to further increases in fishing-induced
disturbance.
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Can meiofauna sustain chronic fishing effects? Bottom-fishing is so pervasive
that it is now effectively impossible to find control systems to investigate effects
of bottom-fishing on natural communities and their recovery trajectories (Jackson
2001). Most shelf seas around the world have entered a fished state (sensu Jennings
and Kaiser 1998), so that even controlled (i.e. experimental) manipulation of fishing
effort may no longer lead to clear responses in meiofauna diversity and commu-
nity structure. While meiofauna recolonisation of small experimental areas may be a
result of active vertical andhorizontal immigration (Schratzberger et al. 2000b, 2004),
this form of recovery is likely to be negligible in larger and repeatedly fished areas
(Schratzberger and Jennings 2002). The persistence ofmeiofauna in fished sediments
worldwide is maintained by their presence in infrequently fished areas and habitats
unsuitable for fishing, both of which can act as sources of recruitment via physical
transport. Recovery from fishing-induced disturbance is habitat-dependent. Meio-
fauna in structurally complex habitats (e.g. bioturbated sediment, biogenic reefs) and
those that are relatively undisturbed by natural perturbations (e.g. deep-water mud
substrata) are generally more adversely affected by bottom-fishing than meiofauna
inhabiting unconsolidated sediments in shallow coastal waters. Shallow-water meio-
fauna are frequently subjected to natural physical disturbance of varying intensity
and frequency, and the characteristic species are adapted to the rigours of bottom-
fishing. Their response to fishing-induced disturbance is weaker, their changes in
abundance, diversity, and biomass small. Competition for resources is a less impor-
tant structuring force ofmeiofauna populations in habitatswhere natural disturbances
are frequent and intense. Biological interactions are more likely to be such a force
in sheltered, deeper, muddy sediments, and here a decline in species richness with
increasing fishing frequency is more apparent (Table 7.7).

Total benthic community biomass and production generally declinewith increased
fishing frequency and sustained fishing activity, and megafauna are more likely to
suffer adverse effects than the smaller macro- and meiofauna (Bergman and van
Santbrink 2000; Hiddink et al. 2006; Queirós et al. 2006). A large initial decline in
the community production-to-biomass ratio observed in modelling studies (Duplisea
et al. 2002), followed by a gradual increase, is consistent with small, fast-growing
(meio)fauna with low biomass contributing relatively more to community produc-
tion as fishing frequency increases. Because respiration rates are inversely related to
body size, meiofauna make a disproportionately greater contribution to total benthic
community metabolism, and hence to organic matter mineralisation compared to
larger-sized animals. Where benthic communities are dominated by small-sized
meiofauna, as is the case in deep-sea sediments, meiofauna respiration can represent
up to 10% of total benthic metabolism (Soetaert et al. 2009; Leduc et al. 2016).

The generally weak relationship betweenmeiofauna respiration and fishing inten-
sity in deep-sea sediments suggests that biomass ismore strongly affected by bottom-
fishing than respiration is, because larger organisms account for a substantial propor-
tion of total community biomass, yet make a relatively small contribution to commu-
nity respiration. Due to the comparatively low respiration rate of large organisms, a
fishing-induced shift in favour of smaller (meiofauna) organisms may not, there-
fore, necessarily result in substantial changes in respiration (Leduc et al. 2016;
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Ramalho et al. 2020). Despite their small size and fast life cycles, meiofauna are
affected by intensive bottom-fishing, in particular on muddy, deep fishing grounds
(Table 7.7). However, the effects of fishing on meiofauna assemblages in shelf seas
(e.g. Schratzberger and Jennings 2002) are much more subtle than those on larger
macrofauna, certainly in the central North Sea (Bergman and van Santbrink 2000;
Jennings et al. 2001; Piet et al. 2001). Given the high rates of recruitment and growth
in meiofauna, they would, therefore, be expected to contribute a disproportionally
high proportion of benthic biomass, production, and metabolism in heavily fished
areas. This, however, would not fully compensate for the loss in production by larger
macrofauna, so further reduction in secondary production in chronically fished areas
is highly likely (Schratzberger and Somerfield 2020).

7.3 Cohabiting with Harmful Substances: Response
of Meiofauna to Pollution

General aspects:Sources, types, and levels of pollution in themarine environment are
increasing worldwide (Borja et al. 2011). The range and potential effects of contam-
inants entering the ocean are vast. Novel contaminants and classes of contaminants,
such as nanoparticles, androgens, antiobiotics, and fire-retardants, are continually
being added. Although some contaminants may become prevalent, it is likely that
many remain at levels too low to induce widespread toxic effects. Most pollution
effects, therefore, are relatively localised, centred around sources of contamina-
tion such as estuaries, outfalls, and industrial infrastructure. Some newly recognised
contaminants such as micro-plastics are becoming ubiquitous and their effects are
being studied (Hägerbäumer et al. 2019), although their potential effects on meio-
fauna have received little attention to date (Gusmão et al. 2016). Here we focus on
three main classes of marine pollution (Table 7.8):

• Nutrients and organic material released in organic or inorganic form.
• Persistent pollutants including halogenated hydrocarbons or organic compounds

(e.g. Dichlorodiphenyltrichloroethane DDT, polychlorinated biphenyls PCBs),
metals (e.g. iron, manganese, lead, cadmium, zinc, mercury), and metalloids (e.g.
arsenic, selenium).

• Petroleum products and polycyclic aromatic hydrocarbons (PAHs).

The concentration of pollutants alone does not always reflect their toxicity to
the biota. Bioavailability and toxicity of pollutants are affected by their partitioning
between the sediment, pore water, and overlying water and this can depend on the
sediment organic carbon content (Table 7.9; Di Toro et al. 1991). Some chemicals, for
example,may not be bioavailablewhen bound to organic carbon (Liu et al. 2004; Losi
et al. 2013). Furthermore, the bioavailability of heavy metals in sediments depends
on environmental factors (e.g. pH, redox potential, salinity; Davies et al. 1991) and
biologicallymediated processes (e.g. bioturbation, bioaccumulation, trophic transfer,
biodegradation, biodeposition; Schratzberger et al. 2000c).
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Table 7.8 Disturbance characteristics of pollution (Sandulli andDeNicolaGiudici 1991;Danovaro
2003; Borja et al. 2011; Balsamo et al. 2012; Montagna et al. 2002; Gallucci et al. 2015; Gentry
et al. 2020)

Disturbance characteristic Pollution

Source Introduction of harmful materials into the sea; cause adverse effects
on the abiotic and biotic environment; may enter via point sources
(e.g. sewage outfall) or non-point sources (e.g. urban run-off);
sometimes concentrated in ‘hot spots’ but are often diffuse

Attributes (see Table 7.2) Nutrients originate from run-off (approximately 50% sewage, 50%
from land use), also aquaculture, and airborne nitrogen oxides; can
cause algal blooms; algal decomposition depletes water of oxygen,
and releases toxins; enrichment occurs when input of organic matter
exceeds an ecosystem’s capacity to process it
Persistent contaminants (polychlorinated biphenyls PCBs, metals,
Dichlorodiphenyltrichloroethane DDT, etc.) result from industrial
and wastewater discharge, pesticides from land use, etc.; poison
marine life, especially near major cities or industry; fat-soluble
toxins bio-accumulate and bio-magnify in marine food webs
Oil enters the marine environment from natural seepage (43%),
transportation (12%), diffuse sources (38%), and offshore
oil-drilling (3%); oil seep fauna are adapted to the presence of small
oil inputs; oil spills can be large; studies around oil and gas
infrastructure are often confounded with an artificial reef effect

Table 7.9 Effects of pollution on the quality, quantity, complexity, and heterogeneity of meiofauna
habitat (Di Toro et al. 1991; Sandulli and De Nicola Giudici 1991; Coull and Chandler 1992; La
Rosa et al. 2001; Liu et al. 2004, 2015; Dalto et al. 2006; Beyrem et al. 2007; Netto and Valgas
2010; Losi et al. 2013; Rochman et al. 2019; Gambi et al. 2020)

Habitat property Pollution

Physical Particulate pollutants alter the physical properties of sediments; pollutants
including micro-plastics can change the porosity and heat-transferring
capacity of sediments

Chemical Organic wastes modify the quantity and biochemical composition of sediment
organic matter; plastic debris accumulates organic chemicals and trace metals
from the surrounding environment; bioaccumulation of metals by algae and
seagrasses is a potentially important pathway of contaminant exposure to
grazing organisms

Heterogeneity Changes in sediment texture and transformation of substrate into a flocculent
anoxic environment in organically enriched sediments can reduce
microhabitat heterogeneity; tensioactive compounds, crude oil, and paraffines
reduce habitat heterogeneity in soft sediments and can limit the colonisation
of hard bottoms by erect species, thereby reducing physical complexity of the
substrate
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Studies of the effects of pollution on meiofauna have a long history (Coull and
Chandler 1992). Meiofauna has been used in experiments to examine the effects of
pollutants (Hägerbäumer et al. 2015), although themajority of studies are spatial field
studies comparing sites with differing levels of pollution. Many such studies have
found correlations between pollutants and changes in the abundance, diversity and
composition of meiofauna (Table 7.10), so that changes in meiofauna communities
are often proposed as potential indicators of ecological status. However, although
these studies often attribute meiofauna changes to pollution, the relationships are
generally confounded by the inherent spatial and temporal variability of the envi-
ronment. More targeted approaches for impact assessment, such as Before-After-
Control-Impact (BACI) studies, are often not applicable for meiofauna because base-
line data, necessary to assess the type and severity of ecological effects (Underwood
1991), are missing. For marine meiofauna, direct studies on pollution effects are
scarce, and quantitative data is often lacking. Hence, in most cases, links between
changes in meiofauna and pollution have to be inferred from work in other habitats,
including terrestrial soils and freshwater sediments (e.g. Ekschmitt and Korthals
2006 and references therein). The wealth of knowledge that exists for those habitats
about the physiological responses of meiofaunal taxa such as nematodes to toxic
substances has yet to be incorporated into marine studies.

7.3.1 Nutrients and Organic Enrichment

Meiofauna play a crucial role in the decomposition of detritus, in nutrient cycling,
and in energy flow (Schratzberger and Ingels 2018). Hence, they are good indica-
tors of biodeposition effects (Mazzola et al. 2000; Mirto et al. 2002, 2012; Vezzulli
et al. 2008; Grego et al. 2009). Effects of fish farms and sewage discharges on meio-
fauna, for example, depend on the culturing method (Mirto et al. 2000; Mahmoudi
et al. 2008; Netto and Valgas 2010) and the volume discharged (Bertocci et al.
2019). Interstitial meiofauna are generally more vulnerable to organic enrichment
thanmeiofauna inhabitingmud (Sandulli andDeNicola Giudici 1991; Schratzberger
and Warwick 1998b; Mirto et al. 2012) due to alterations in the texture (i.e. occlu-
sion of interstitial spaces by organic matter) and chemistry (i.e. establishment of
anoxic conditions) of the substrate. Longer-term effects on meiofauna depend on
their response to the accumulation of by-products from bacterial metabolism (i.e.
ammonia and hydrogen sulphide) rather than oxygen depletion per se. Nematodes in
particular possess numerous behavioural and/or physiological adaptations to prevail
in hypoxic or intermittently anoxic conditions (Warwick and Gee 1984; Nicholas
et al. 1987; Somerfield et al. 1995; Armenteros et al. 2010; Boufahja et al. 2016;
Sapir 2021; Table 7.10; also see Table 7.16 for hypoxia and Chaps. 8 and 11).

Effects on assemblages and their interactions: It is mostly the structure of meio-
fauna assemblages that is altered by organic enrichment. Changes in total abundance,
biomass, diversity, and evenness generally remain weak or inconsistent (Table 7.10).
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Especially distinct in nematode assemblages, these structural changes result from the
replacement of sensitive species by cosmopolitan and tolerant species (Mirto et al.
2002; Vezzulli et al. 2008; Netto and Valgas 2010). As nematodes and kinorhynchs
exhibited species-specific responses to organic enrichment arising from aquaculture,
they have been proposed as indicators for fish farm disturbance (Vezzulli et al. 2008;
Grego et al. 2009; Dal Zotto et al. 2016; Netto and Valgas 2010). Changes in nema-
tode community structure are accompanied by dominance shifts in trophic guilds:
from detritivores, as microbial biomass increases due to decomposition processes,
to epistrate feeders tolerant of increasing concentrations of toxic by-products from
the breakdown of organic matter (Semprucci et al. 2015). Oncholaimid nematodes
have been found to establish dense aggregations in organically enriched sediments
(Lorenzen et al. 1987; Moore and Bett 1989; Somerfield et al. 1995; Moore and
Somerfield 1997; Warwick and Robinson 2000). The highly localised distribution of
these aggregations within enrichment hotspots, which sometimes lack other fauna,
may partly be a result of their ability to take up dissolved organic matter directly from
the environment (Chia and Warwick 1969; Lopez et al. 1979). Under less polluted
conditions, the attributes that contribute to the dominance of oncholaimids in organi-
cally enriched sedimentsmay comprise a physiological cost rather than a competitive
advantage because of the trade-offs between the ability to exploit resources in envi-
ronments that few other organisms can tolerate, and the metabolic costs associated
with that exploitation.

7.3.2 Persistent Chemical Pollutants

Many persistent pollutants, incorporated into sediments by absorption and ion
exchange, reach concentrationsmuch higher than those in thewater column (Binning
and Baird 2001; Dalto et al. 2006; Liu et al. 2015). Particulates are taken up by meio-
fauna but biological and ecological processes involved in the ingestion and accumula-
tion of pollutants are poorly understood (Balsamo et al. 2012). Uptake occurs via the
body surface (through cuticular mucous secretions in nematodes or adsorption to the
exoskeleton in harpacticoid copepods) or via the digestive tract following ingestion
with food. Nematodes can sensemetals and avoid them by ceasing to feed (Ekschmitt
and Korthals 2006). Once in the body, pollutants may be eliminated or stored in
cells or tissues depending on the organism’s metabolism (Howell 1982, 1983; van
Damme et al. 1984; Millward 1996; Schratzberger et al. 2002b). Meiofauna living in
heavily polluted sediments generally have higher concentrations of metals (between
two and eighteen times) in their tissue than meiofauna from unpolluted sediments
(Coull and Chandler 1992). Acute and sublethal metal toxicity depends on the type
of metal, temperature, salinity, and food (Liu et al. 2015). Many of the physiological
responses of nematodes to toxic substances, such as avoidance or induction of detox-
ification, removal or sequestration pathways are unspecific, and the development of
co-tolerance, whereby organisms acquire resistance to numerous pollutants simul-
taneously (Ekschmitt and Korthals 2006), is probably widespread (see Sect. 7.7). In
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the most severe circumstances, however, pollution may cause direct mortality and
lead to effects on recolonisation and recruitment dynamics.

Adaptive strategies: The effects of biocides such as tributyltin (TBT) on nematode
assemblages are generally less pronounced than those of heavy metals (Austen and
McEvoy 1997), and nematode responses to single contaminants differ from those to
contaminant mixtures, reflecting synergistic and antagonistic effects on the species’
mortalities (Beyrem et al. 2007; see Sect. 7.7 and Balsamo et al. 2012 for review).
In general, meiofauna respond to persistent chemical pollutants via various adaptive
pathways:

• Adaptation to physico-chemical factors. Estuarine assemblages are less sensitive
than those from sublittoral environments of similar granulometry (Austen and
McEvoy 1997; Austen and Somerfield 1997; Semprucci et al. 2014; Sahraeian
et al. 2020), and mud-dwelling communities more tolerant than those inhabiting
sand (Austen et al. 1994). The former is likely a result of the adaptation of estuarine
meiofauna to fluctuating environmental conditions; the latter is most likely due to
the binding ofmetals with the finer particulates, thus reducing their bioavailability
(Table 7.9).

• Physiological mechanisms of tolerance and detoxification (Millward and Grant
1995; Gambi et al. 2020; Table 7.10). Heavy metals and TBT interfere with
cellular and biochemical functions and disrupt physiological and reproductive
systems. Egg production of harpacticoid copepods in TBT-contaminated sedi-
ments is reduced or ceases (van Damme et al. 1984), and the proportion of juve-
nile nematodes declines (Schratzberger et al. 2002b). Growth and larval develop-
ment of some harpacticoid copepod species are inhibited in metal-contaminated
sediments, especially when mixtures of metals are present.

• Autecological changes leading to a prevalence of species with life styles that
reduce exposure to pollutants (van Damme et al. 1984; Somerfield et al. 1994;
Lampadariou et al. 1997; Boufahja and Semprucci 2015), and/or life history
characteristics that allow them to proliferate rapidly in polluted sediments
(Schratzberger et al. 2002b). Subsurface dwellers, such as epistrate and deposit-
feeding nematodes, are likely to develop tolerance in response to an accumula-
tion of unexploited resources because fewer macrofauna and meiofauna taxa are
generally present in polluted sediments (Schratzberger et al. 2002b; Losi et al.
2013; Gambi et al. 2020). However, some exceptions occur in areas characterised
by long-term contamination (Montagna and Li 1997; Gambi et al. 2020; see
Sect. 7.7).

• Synecological changes leading to the dominance of tolerant and opportunistic
species. Highest levels of contamination generally result in decreased meiofauna
abundance and diversity (e.g. Millward and Grant 1995; Austen and McEvoy
1997; Austen and Somerfield 1997; Hedfi et al. 2007), despite some exceptions
(e.g. Coull and Chandler 1992; Gambi et al. 2020), whereas evenness trends are
more variable (Beyrem et al. 2007, 2011). The taxonomic and functional breadth
of meiofauna assemblages is reduced in polluted sediments due to the progressive
decline of sensitive, and proliferation of tolerant and opportunistic, species.
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• Genetic changes, associated with a genetically inherited increase in tolerance
(Table 7.10) following exposure to contaminants. This microevolution can buffer,
partially, the effects of contamination in populations. Extremely high metal
concentrations lead to the selection of locally adapted pollution-tolerant meio-
fauna populations. The evolution of heavy-metal resistance occurs within a few
generations in some nematode species. Consequently, nematodes from metal-
polluted sites are often less sensitive to contamination than those from uncon-
taminated sites (Howell 1982; Millward and Grant 1995; Austen and Somerfield
1997).

• Trophic shifts. Pollution can potentially modify the nature of intra- and interspe-
cific interactions (Warwick and Clarke 1998), further altering community struc-
ture indirectly. Uptake of metals by meiofauna may have potential implications
for the flux of contaminants from the sediment into the food web (Fichet et al.
1999). Metal (copper) and pesticide (atrazine) contamination, for example, affect
diatom biomass (i.e. diet quantity) and lipid (i.e. diet quality) production, altering
the energy flow to harpacticoid copepods, the diatoms’ main meiofaunal grazers
(Mensens et al. 2018). Importantly, contaminant-induced shifts in diatom commu-
nity structure (resulting from species-specific tolerances) affect the energy flow
to their copepod grazers before changes in diet quality may be detected.

7.3.3 Petroleum Hydrocarbons

Effects of oil pollution on meiofauna are complex, because hydrocarbons from both
natural and anthropogenic sources are not only ubiquitous within marine ecosystems
but also structurally and chemically divergent. In recent decades, oil spills from
tanker accidents polluting the sea and shallow shores have been the prevailing threat
tomarine flora and fauna. Improving safety regulations continue to reduce this threat.
However, sophisticated technologies allowoil to be drilled fromopenwater platforms
in both coastal and deep-sea environments.Hence, accidents at deep-water operations
present a novel threat to sensitive deep-sea benthos. The Deepwater Horizon (DWH)
well blowout in the Gulf of Mexico in 2010 led to the discharge of oil and gas under
high pressure at 1500 m water depth. It involved the traditional shore-bound surface
spill with the novel deep-ocean persistence of intrusions of finely dispersed oil, gas,
and dispersants. The formation of marine snow, incorporation of oil, and subsequent
gravitational settling to the seafloor were significant pathways for the distribution
and fate of oil. Effects on deep-sea meiofauna, however, are poorly understood,
due to gaps in baseline information on their communities, their functioning, and
their ecotoxicological vulnerability, as well as the challenging sampling conditions.
Meiofauna are strongly affected by particular organic carbon fluxes in shelf, slope,
and basin habitats (Baguley et al. 2006), so that the deposition of oil in the form of
marine oiled snowwas particularly destructive tomeiofauna communities (Montagna
et al. 2020). Thus, deep-sea habitats appear to be especially vulnerable to oil spills
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because they are affected by deposition, and recover slowly (Montagna and Girard
2020; Rohal et al. 2020).

Effects on species and their interactions: The effects of oil spills and offshore oil
and gas exploration on meiobenthos have been well-documented. General trends,
ranging from individuals to populations and their communities, are summarised in
Table 7.10:

• At the species level, concentrations of PAHs as low as 4.0 mg kg−1 (ppm) can be
toxic to meiofauna (Balthis et al. 2017). Growth and productivity of harpacticoid
copepod, polychaete, and nematode species decrease near oil platforms (Carr
et al. 1996; Montagna and Li 1997), but toxicity is probably due to heavy metals
from drilling because oil concentrations are generally low. The survival rate of
harpacticoid copepod nauplii is reduced during oil spills (Street et al. 1998). Oil
spills are often treated with dispersants. Dispersants themselves can be toxic to
microbes (Montagna and Arismendez 2020) and harpacticoids (Lee et al. 2013),
and may increase toxicity by making the water-soluble fraction of the oil more
bioavailable (Giere and Hauschildt 1979; Giere 1980).

• At the population level, habitat partitioning near oil and gas infrastructure appears
widespread in harpacticoid copepods in shallow (Street and Montagna 1996; Lee
et al. 2003) and deeper water (Gregg et al. 2010). In both cases, genetic diversity is
reduced near platforms, suggesting population subdivision (Street and Montagna
1996; Street et al. 1998). This could be due to the low dispersal potential of
harpacticoid copepods because most species brood eggs that then hatch into a
benthic naupliar stage.

• At the community level, diversity and evenness decrease near offshore platforms
(Montagna and Harper 1996; Netto et al. 2009), and during oil spills (Montagna
et al. 2013; Baguley et al. 2015; Reuscher et al. 2020). Nematode abundance
sometimes increases during oil spills (Montagna et al. 2013), but it typically
decreases around offshore platforms (Montagna and Harper 1996; Netto et al.
2009), as does biomass (Montagna and Harper 1996).

• At the ecosystem level, environmental persistence, bioaccumulation, and trophic
transfer of PAHs in aquatic food webs are of particular interest. A relationship
between trophic cascades and pollution effectswas demonstrated for nematodes in
diesel-contaminated laboratory sediments (Fleeger et al. 2006a). Increased nema-
tode abundance in polluted sediments constituted a bottom-up effect stimulated by
diesel-induced increases in diatom abundance. Depressed nematode abundance
in the presence of a small, burying goby in oil treatments suggested that the pres-
ence of the goby decreased diatom abundance, thereby reducing the likelihood of
a trophic cascade in joint diesel-goby treatments.

During oil spills, nematodes appear to have high resilience and low vulnerability,
and harpacticoid copepods have low resilience and high vulnerability (Schwing et al.
2020). It is common for the abundance of harpacticoid copepods to decrease and
numbers of nematodes to increase (Montagna et al. 2013). These are similar to the
responses to organic enrichment (see Sect. 7.3.1), probably because oil is organic
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matter that is a reduced form of carbon. But oil is toxic as well, so the increase in
nematodes has been referred to as the ‘enrichment versus toxicity paradox’ (Spies
et al. 1988), suggesting that meiobenthic populations respond to low concentrations
of oil in the same way they would respond to other organic matter.

Recovery from oil pollution: Coastal interstitial meiofauna in sandy sediments can
recover within a year after an oil spill (Giere 1979). Shallow saltmarshmeiofauna can
recover from oil spills within 6.5 years, depending on the recovery of the vegetated
foundation species habitat and benthic microalgae (Fleeger et al. 2019). After the
DWH oil spill, nematode diversity and functional traits recovered within 12 months
in polluted intertidal coastal and bay sediments hit by the upwelling oil (Brannock
et al. 2020). Habitat complexity is typically greater in shallower habitats than in the
deep sea, so meiofauna diversity, abundance, or biomass can be greater in shallow
waters, but they also recover more quickly there than in deeper environments. Faunal
abundance generally recovers more quickly than diversity; the latter can remain low
even after several decades (Reuscher et al. 2017; Gambi et al. 2020). Rohal et al.
(2020) estimated that it could take the area impacted by the DWH spill between 50
and 100 years to recover via natural sedimentation processes that would bury the
oil spread at the surface of the bottom sediment. Many studies around oil platforms
point towards protracted recovery times. In addition to oil, drill cuttings and drill
muds as well as heavy metals are discharged, which can all be toxic to meiofauna
(Gee et al. 1992; Netto et al. 2010). Recovery in deep-sea habitats in particular may
take years to decades (Montagna et al. 2002).

7.3.4 Resilience to Pollution

Recovery of polluted ecosystems is one of the primary goals of environmental legis-
lation but there are few formerly polluted marine areas in the world with a nearly-
complete recovery (Borja et al. 2010). Recovery trajectories of meiofauna are poorly
known and are generally inferred by extrapolation from resistance in experimental
exposures. This, however, remains challenging because ecological processes and
interactions must be understood before experiments in laboratory micro- or meso-
cosms can be related reliably to natural conditions (Mayer-Pinto et al. 2010). Further-
more, the type and intensity of pollution, the nature of the receiving assemblage and
the spatio-temporal scale at which recovery is assessed (i.e. single sites may not
capture regional recovery; see Sect. 7.7), all impede inferences regarding potential
resistance and resilience of meiofauna to pollution.

The drivers of meiofauna community resilience to pollution are diverse, including
habitat characteristics (Bejarano and Michel 2016), the availability and composition
of pollutants, biotic controls such as species-specific tolerance (see Sects. 7.3.2 and
7.7), life history characteristics and lifestyles (Sundelin and Elmgren 1991), and
biotic interactions including feeding, competition, and predation. Therefore, meio-
fauna recovery from pollution is highly variable but can be relatively rapid, especially
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when associated changes in sediment granulometry are limited (La Rosa et al. 2001;
Mirto et al. 2002; Netto and Valgas 2010).

What form should future pollution studies take? Given the extreme levels of pollu-
tion within sediments in many of the studies reviewed (Table 7.10), it is perhaps
surprising that anymeiofauna survive at all. Some heavily polluted sediments support
high meiofauna densities, albeit often with reduced diversity. While physiological
and community responses to pollutants have been investigated inmany studies (Table
7.10), little is known about the pollution tolerance or resilience of many meiofauna
taxa. Furthermore, it is currently unclear whether sediment-processing undertaken
by meiofauna (and their interactions with other fauna) could explain the burial of
pollutants. Some evidence suggests that biodiverse and functionally important seabed
habitats act as pollutant sinks, with burrowing fauna contributing to this process via
well-understood benthic-pelagic pathways. However, the contribution of meiofauna
to these ecosystem-wide processes is unknown (Schratzberger and Ingels 2018).
After several decades of intensive pollution studies of sublethal effects in the labora-
tory, progress with identifying field effects is less convincing. The balance of future
effort between laboratory studies and field ecology should therefore be tipped heavily
in favour of the latter.

7.4 Invaders Among Locals: Response of Meiofauna
to the Introduction of Invasive Species

General aspects:Globalisation of trade andmobility has facilitated human-mediated
movements of species from one region to another. Introduced species, also called
non-indigenous species (NIS), are those arriving in a region beyond their native range
due to direct or indirect human intervention. If a species survives, escapes, and begins
reproducing without direct human intervention, it becomes established, and eventu-
ally invasive if it spreads widely and causes measurable environmental, economic,
or human health effects (Table 7.11). Approximately 10–50% of introduced species
become established permanently, and approximately the same proportion of these,
once established, becomes invasive, depending on the species in question and the
region of introduction. Invasive species have notable and long-lasting effects on
regions and are now recognised as one of the major drivers of biodiversity change
globally (Keller et al. 2011). Coastal estuarine and marine systems are among the
most heavily invaded systems in the world (Grosholz 2002). Europe alone contains
over 300 aquatic invasive species that cause ecological or economic effects (Vilà
et al. 2010).

Non-indigenous and invasive species can affect native species throughdirect biotic
interactions such as competition for food, space, and other resources, and/or preda-
tion, thereby changing flows of energy or biomass (David et al. 2017). Some non-
indigenous and invasive species are ecosystem engineers, which create, remove,
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Table 7.11 Disturbance characteristics of the introduction of invasive species (Vitousek et al. 1997;
Reise et al. 2006; Molnar et al. 2008; Williams and Grosholz 2008; Keller et al. 2011; Corriero
et al. 2015; Tricario et al. 2016)

Disturbance characteristic Introduction of invasive species

Source Introduced species have been introduced intentionally or
accidentally outside their native range through human activities (e.g.
international shipping, aquaculture) and are able to live, spread, and
reproduce in the new habitat; they become invasive when causing
ecological or economic harm

Attributes (see Table 7.2) Include viruses and bacteria to fungi, plants, and animals; more than
half of all non-native species are benthic invertebrates, followed by
macroalgae

At least one invasive species has been recorded in 84% of the
world’s 232 marine ecoregions; levels of invasion are highest in
temperate regions of Europe, North America, and Australia and are
increasing due to shipping, aquaculture trade, etc

In some regions, invasions are becoming more frequent; some
introduced species may quickly become invasive over large areas
whereas others become widespread only after a lag of decades or
more

modify, reconfigure, or redistribute habitats by altering their physical or chem-
ical properties for native species (Katsanevakis et al. 2014). Autogenic engineers
(e.g. some invertebrates, macroalgae, and seagrasses) provide and alter habitat with
their physical structure, thereby offering new habitat, shelter, and food resources
for native species. Allogenic engineers (e.g. some burrowing macrofauna) transform
their surroundings through their activity and thus alter biogeochemical cycles and
resources for native species (Reise 2002). Some (meiofaunal) species associate with
the biogenic structures created by non-indigenous and invasive ecosystem engineers
and can occupy the environment only when these species are present (Table 7.12).

Table 7.12 Effects of invasive species on the quality, quantity, complexity, and heterogeneity of
meiofauna habitat (Crooks 2002; Hendriks et al. 2010; Haram et al. 2020)

Habitat property Introduction of non-indigenous and invasive species

Physical Introduction of habitat-forming species may provide protection from exposure
to predators, resuspension, environmental conditions, and change the textural
characteristics of the seafloor

Chemical Changes in availability of organic matter pools derived from and/or trapped
by non-indigenous species are possible; burrowing activity of invasive species
transports oxygen from the surface to deeper layers and modifies
biogeochemical cycles

Heterogeneity Invasive species change the physical structure of the ecosystem itself, thereby
increasing or decreasing habitat heterogeneity and altering flows of energy;
invasion of seafloor can result in the generation of more microenvironments
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Intra- and interspecific interactions between native and invading species comprise
both negative (competitive) and positive (facilitative) components (Stachowicz
2001). These may affect the spatial distribution of meiofauna as well as their density,
diversity, and species composition (Table 7.13). A common conclusion of many
studies therefore is that meiofauna distributions are context-dependent. Effects vary
according to the extent to which invasive species create environments that differ
from those to which the resident meiofauna is adapted, the life habits of the invader
and the resident meiofauna, the magnitude of invasion, and the time since invasion.
Many meiofauna studies report positive relationships between the heterogeneity of
the habitat and the diversity and abundance of its inhabiting meiofauna (see Ólafsson
2003 for review; macroalgae: Hicks 1980; Warwick 1977; Gee and Warwick 1994;
Hull 1997; Arroyo et al. 2006; Da Rocha et al. 2006; Frame et al. 2007; seagrass: De
Troch et al. 2001; Fonseca et al. 2011; polychaete tubes: Tita et al. 2000; burrowing
crustaceans: Koller et al. 2006; Pillay andBranch 2011; Citadin et al. 2016).Morpho-
logical and physiological differences between native and invasive autogenic and
allogenic ecosystem engineers affect patterns of meiofauna communities (Table
7.13).

Effects of algae and plant invasions: Even though differences in meiofauna diver-
sity are often weak and inconsistent between native and non-native ecosystem engi-
neers (Austen et al. 2003; Table 7.13), different ecosystem engineers may support
distinct meiofauna assemblages (Veiga et al. 2016). This is particularly true for auto-
genic ecosystem engineers such as macroalgae (Somerfield and Jeal 1995, 1996). A
combination of differently structured algal species results in a greater diversity of
meiofauna than amonoculture creating homogenisedmicrohabitats (Best et al. 2014;
Katsanevakis et al. 2014). Invasive macroalgae including Sargassum pose a threat to
benthic ecosystems because of their ability to reduce native algal growth and become
a monoculture (Britton-Simmons 2004). Diversity in algal morphology is necessary
to support a more diverse assemblage of meiofauna, which, in turn, support a more
diverse group of species at higher trophic levels (Richardson and Stephens 2014).

At local scales, changes in meiofauna diversity resulting from habitat modifica-
tions induced by invasive macroalgae and seagrass species seems to be rather incon-
sistent (Chen et al. 2007; Gallucci et al. 2012; Pusceddu et al. 2016). However, at
larger scales, diversity increases by favouring species that are absent from both vege-
tated and unvegetated native environments (Gallucci et al. 2012). Lower species rich-
ness of sediment-dwellingmeiofauna associatedwith nativemacroalgae and seagrass
is generally related to an advanced stage of ecological succession and indicative of
a climax community that comprises fewer, but well-adapted, species (Mateu-Vicens
et al. 2010).Higher species richness anddiversity recorded fromsediments associated
with invasive ecosystem engineers probably result from the creation of new micro-
habitats with different seasonal patterns available for colonisation of opportunistic
species or species characteristic of other habitats (Table 7.13).

Selective feeding by meiofauna on different food types can diminish, and in
some instances eliminate, competition within a particular habitat. This, for example,
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enables co-habitation of various harpacticoid copepod, ostracod, and nematode
species in a small area, such as on algal or seagrass blades (e.g. Hicks 1977a, b;
Trotter and Webster 1984; Frame et al. 2007; De Troch et al. 2001, 2008). Local
effects on endobenthic meiofauna tend to be more heterogeneous, facilitating some
functional groups and species, and impeding others. Varying rates and pathways
of decaying invasive algae and seagrass can modify nutrient cycling in estuarine
wetlands (Gallucci et al. 2012) and mangroves (Fu et al. 2017). This then leads to the
proliferation of those nematode species with specific physiological, morphological,
and behavioural adaptations to survive under these specific physico-chemical condi-
tions. Macroalgal detritus can contribute to meiofauna diets (Queirós et al. 2019).
However, it needs to be clarified whether the trophic ecology of meiofauna allows
exploitation of fresh organic matter derived from, and/or detritus trapped by, invasive
macroalgae as a primary resource (Chen et al. 2007). There is some indication that
organic pools derived from an invader’s biomass are not easily exploited as a primary
resource by meiofauna (Pusceddu et al. 2016).

Effects ofmacrofauna invasions:Settlement and growthwithinmacrofauna burrows
may be challenging for meiofauna because bioturbators constantly change their
burrows. Burrow-wall meiofauna counters this either by high growth rates (as illus-
trated by high juvenile-to-adult ratios) and/or by having high locomotive ability (as
is often the case in small-sized, slender species; Table 7.13). Studies of nematodes
inhabiting sediments inside and adjacent to burrows of native and invasive ecosystem
engineers provide an additional perspective to trophic interactions. Microhabitats
generated by thalassinidean shrimps, for example, attract nematode genera that are
able to benefit from the specific nutritional and physico-chemical sediment charac-
teristics inside the burrows (Koller et al. 2006). Likewise, the burrowing activity of
the invasive polychaete Marenzelleria spp. was found to transport oxygen from the
surface to deeper sediment layers, thereby creating new niches in the micro-oxic
environment near its burrows. This, in turn, facilitates the vertical penetration of
some nematode species that are able to utilise additional food sources deeper in the
sediment (Urban-Malinga et al. 2013).

Ecosystem level effects: Cascading effects of invasive engineers are likely to alter
processes and functions: (i) when the invader appears in a habitat where compa-
rable structural forms are absent, thereby modifying flows and associated physico-
chemical habitat conditions (e.g. plant and/or animal invasion of unvegetated or
uncolonised native sediment, respectively); and/or (ii) when the invader introduces
large quantities of novel food sources (e.g. detritus) that are used by a specific suite
of meiofauna species (Table 7.13). For example, a decline in the trophic diversity of
nematode genera in Spartina-invaded seagrass meadows suggests simplification of
benthic food webs and compromisation of trophic redundancy in meiofauna commu-
nities (Chen et al. 2007).Despite frequently increased alpha-diversity in invadedhabi-
tats, these nematode assemblages may therefore be functionally more vulnerable to
further invasions, as functional (trophic) complexity has been reduced compared to
native habitat (Fridley et al. 2007).
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Few studies compare the effects of invasive species on meiofauna communities
comprising several species (Beisner et al. 2006). At small spatial scales, invasive
species may facilitate the colonisation and settlement of new meiofauna species
resulting in positive relationships between native and invasive species richness (Table
7.13). Within the same trophic level, marine invaders often have negative effects
on biodiversity, but positive effects on the biodiversity of higher trophic levels
(Thomsen et al. 2014). As illustrated by studies with epibioticmeiofauna, contrasting
effects are manifested through community-wide antagonism (e.g. competition and
consumption) versus facilitation (e.g. habitat and food provisioning) interactions
(Table 7.13).

How are entire communities affected by species invasions? Currently, know-
ledge of meiofauna is largely based on evidence from short-term, small-scale studies
(Table 7.13). The complexity of species interactions and the variety of both beneficial
and adverse effects associated with an invasive species makes meiofauna-mediated
ecosystem consequences difficult to establish. Hence, the simple presence of invasive
species is insufficient to assess the magnitude of their effects, which will generally
vary across their distributional range. Furthermore, effects vary temporally, as there
is a dynamic interaction between the population of invasive species and meiofauna.
Significant time-lags can occur between the introduction of a non-native species and
its subsequent effects on meiofauna, or the magnitude of effects can change over
time.

Are invasion effects long-lasting or even irreversible? Studies with macrofauna
revealed significant and multi-annual effects after eradication of invasive Spartina
(Reynolds et al. 2017). The absence of above-ground Spartina structures may, over
time, affect the reproduction and survivorship of epibiotic (meio)fauna by removing
important egg-laying habitat and food resources (Table 7.13). The slower breakdown
of below-ground biomass consisting of roots and rhizomes would dictate the equally
slow transition of the benthic food web dominated by sub-surface detritivores to a
pre-invasion community. This process may be most expressed in hypoxic or anoxic
sediments where anaerobic decomposition dominates, as has been shown for heavily
fished sediments (Table 7.7).

The persistence of meiofauna in invaded habitats may be considered a conse-
quence of their favourable life history characteristics that allow them to respond
rapidly to the patchy microhabitats generated by invaders. Although invasion may
lead to local population losses, species with niches better suited to the new envi-
ronmental conditions often compensate for species lost. Compared to macrofauna,
for meiofauna their small size and high turnover rates may represent valuable
compensatory mechanisms that lead to the widespread replacement of habitat-
specific ecological specialists by more broadly-adapted ecological generalists and
opportunists.
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7.5 Living in a Hot, Sour, Breathless, and Disturbed Ocean:
Response of Meiofauna to Climate Change

General aspects: The atmospheric concentration of carbon dioxide (CO2) has been
rising since the 1750s to a current value of more than 400 ppm (NOAA1). CO2 and
other ‘greenhouse’ gases absorb the Sun’s heat, much of which is taken up by the
world’s oceans. Increasing global average temperatures drive a number of related
climate-change phenomena (Table 7.14; Shukla et al. 2019), including a decrease
in the ability of water to hold oxygen. The extent of hypoxic zones has increased
significantly over the past five decades (Rabalais et al. 2010). The ocean has also
taken up about 30% of CO2 released into the atmosphere, decreasing ocean pH, and
fundamentally changing ocean carbonate chemistry in all ocean regions (Hoegh-
Guldberg and Bruno 2010; Brondizio et al. 2019), particularly in cooler, high latitude
waters (Sahade et al. 2015). Ocean warming, acidification, deoxygenation, and ice
loss are expected to be irreversible on time scales relevant to human societies and
ecosystems (Shukla et al. 2019).

Most investigations of the response of seafloor biota to climate change focus
on warming, with fewer studies of the effects of changing oxygen, wave climate,
precipitation (especially in coastal waters), or ocean acidification (Poloczanska et al.
2016). Meta-analyses across diverse species and ecosystems have so far linked
climate change to decreased ocean productivity, altered food web dynamics, reduced
abundance of thermally sensitive calcifying habitat-forming species, shifting species
distributions, and a greater incidence of disease, among other effects (Table 7.15;
Hoegh-Guldberg and Bruno 2010).

The detection and attribution of meiofauna responses to climate change are chal-
lenging given the idiosyncratic responses of species and populations (De Mesel
et al. 2006; Table 7.16). Many responses are defined, at least in part, by interactions
with other organisms and food sources, and there is uncertainty in climatic trends
at regional or local scales (Hansen et al. 2016). The picture is further complicated
by the interaction of climate change with natural environmental dynamics and other
anthropogenic disturbances at regional and local scales (see Sects. 7.2–7.4; Halpern
et al. 2008).

Effects of rising temperatures in the ocean:As ectotherms, meiofauna regulate their
body temperature by exchanging heat with their surroundings. Their physiological
performance, and hence distribution, depends on the range and extremes of tempera-
tures that they experience throughout their life cycle (Giere 2009; Schratzberger and
Somerfield 2020). Rising temperatures can shorten generation times and increase
fecundity and food assimilation of individual nematode species up to a maximum,
which is usually a few degrees below a species’ upper temperature limit (Gerlach and
Schrage 1971; Hopper et al. 1973; Warwick 1981; Moens and Vincx 1999, 2000).
Across shallow-water temperate and tropical habitats, meiofauna abundance gener-
ally decreases with both elevated constant and fluctuating temperatures (Table 7.16;

1 https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-car
bon-dioxide

https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide
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Table 7.14 Disturbance characteristics of climate change (Häder et al. 2015; Sahade et al. 2015;
Shukla et al. 2019; Johnson and Lyman 2020; Tsai et al. 2020; Ingels et al. 2021)

Disturbance characteristic Climate change

Source Increasing emissions (predominantly human-caused) and
subsequent atmospheric warming owing to the greenhouse gas effect
is causing numerous primary and secondary effects across habitats

Attributes (see Table 7.2) Warming (0.73–2.58 °C by 2100 compared to recent past) is
projected to continue gradually; average temperatures will increase
across habitats
Cooling is predicted for 1–3% of areas that have lost heat through
changed circulation patterns
Glacier and ice-shelf melt, calving, and collapse will open new
areas; larger areas will be exposed to increased temperatures and
sedimentation; increased and faster glacial melt in areas where
ice-shelves have retreated or collapsed, and discharge will affect
local ecosystems
Decrease in sea ice extent and thickness is altering marine primary
production in the Arctic and disrupts sympagic organisms reliant on
sea ice as habitat
Salinisation and freshening are variable and challenging to predict
in terms of frequency, intensity, and magnitude
Changes in UV exposure may affect biogeochemistry, nutrient
cycles, primary production, and organism health
Extreme events (physical, meteorological) are likely to increase
owing to rising sea levels, iceberg scouring from increased ice shelf
and glacial calving, and discharge
Acidification is projected to increase; a decrease in water pH
compared to recent past of between 0.065 and 0.315 is predicted by
2100
Changes in water circulation and currents will include reduced
shallow-to-deep-water exchange owing to increased stratification
Decline in net primary production of 4–11% is predicted by
2081–2100 relative to 2006–2015
Decline in dissolved oxygen is predicted, with 0.6–3.9% change by
2100 compared to recent past, depending on ocean circulation
patterns (including upwelling) and currents

Gingold et al. 2013; Meadows et al. 2015; Mevenkamp et al. 2018; Vafeiadou et al.
2018).

Like all organisms, meiofauna are constrained to exist within physiologically
prescribed thermal windows (Widdicombe and Somerfield 2012). At the edges of
this thermal window their performance decreases with respect to activity, growth,
reproduction, and fecundity (Table 7.16). Biological interactions (e.g. predation,
competition) determine which species are able to persist at the edges of the thermal
window. Changes in seawater temperature not only alter the performance of resi-
dent meiofauna species, but also change competitive interactions among them. De
Meester et al. (2015) and Vafeiadou et al. (2018), for example, demonstrated that
changes in fitness of nematode species in response to elevated temperature can alter
their relative competitiveness, thereby affecting interactions between co-existing and
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Table 7.15 Effects of climate change on the quality, quantity, complexity, and heterogeneity of
meiofauna habitat (Snelgrove et al. 2018; Shukla et al. 2019)

Habitat property Climate change

Physical Heat absorbed by the ocean alters the physical environment (habitat
degradation, current/hydrodynamic changes, etc.); changes to circulation and
current patterns, ice melt, glacial discharge, scouring and calving may alter
sedimentation and disturbance regimes on the seafloor; increasing frequency
of extreme events, flooding and increased wave height will cause increased
physical disturbance; newly-open areas, following decreasing sea ice
coverage and ice shelf demise, will be subject to surface production and
potentially bioturbation

Chemical Warming alters the physico-chemical conditions on and in the seafloor,
including oxygenation (i.e. reduction of oxygen availability and penetration
in the sediments), carbonate chemistry (i.e. ocean acidification, pH, and
alkalinity), atmospheric changes alter light intensity (i.e. UV radiation);
salinity changes are likely following ice melt and increased river flow

Heterogeneity Climate change-induced changes in faunal communities alter bioturbation
regimes, thereby affecting biogeochemical processes including the
redistribution of particles, organic matter, water and solutes; introduction or
loss of ecosystem engineers can change 3D habitat complexity, thereby
affecting hydrodynamic and biogeochemical processes; changing sea ice
dynamics can increase habitat heterogeneity and aid generation of more
microenvironments

competing species. Such shifts in interactions, rather than a differential temper-
ature tolerance alone, trigger changes in abundance of temperature-tolerant and
temperature-sensitive species. The latter was demonstrated byDanovaro et al. (2004)
who used a decadal dataset of nematodes in the deep Eastern Mediterranean Sea to
test direct effects of temperature changes in situ, but also the indirect effects that such
changes have on the organic inputs to the deep sea and on related benthic trophody-
namics. An abrupt decline in temperature of about 0.4 °C resulted in concomitant
changes in nematode abundance and diversity, suggesting that small fluctuations in
temperature can have profound consequences for meiofauna communities.

Additional alterations of the physico-chemical environment induced by climate
change, such as physical disturbance, hypercapnia, hypoxia, and salinity change,
alter the thermal window of meiofauna organisms and therefore affect their suscepti-
bility to temperature changes and extreme temperature events. The interaction of two
or more variables at or near tolerance limits produces complex effects on meiofauna
(Table 7.16). Densities of a few opportunistic nematode species in tropical subtidal
communities, for example, increased when the interactive effects of elevated temper-
ature and reduced pH were tested in combination (Lee et al. 2017). Consistently-
observed shifts in dominance patterns of meiofaunal nematode species reflect differ-
ences in species-specific physiological tolerances to changes in temperature and pH
(Mevenkamp et al. 2018) and shifts in species interactions (Ingels et al. 2018).

Effects of ocean acidification: Meiofauna assemblages comprise both non-
calcifying and calcifying taxa. While calcifying taxa generally exhibit more negative
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responses to hypercapnia than non-calcifying ones (Kroeker et al. 2010), physio-
logical and metabolic functions common to both, such as reproduction and growth,
energy production, and protein synthesis, are vulnerable to changes in pH (Vézina
and Hoegh-Guldberg 2008; Widdicombe and Spicer 2008). Morphological and
physiological effects of experimental hypercapnia on meiofauna have been recorded
(Table 7.16). Short-term exposure of calcareous foraminifera to low-pH treatments,
for example, leads to reduced survival, growth, and calcification of some species.
Sublethal effects, including morphological changes to the test surface and feeding
structures are likely to result in longer-term alterations of feeding efficiency and thus
long-term ecological competitiveness, energy transfer within the benthic food web,
and total production of calcium carbonate (McIntyre-Wressnig et al. 2013; Guaman-
Guevara et al. 2019). Calcareous foraminifera in surficial sediments are particularly
sensitive (Ricketts et al. 2009).

Sublethal effects of experimentally reducedpHand increased pCO2 have also been
demonstrated for intertidal harpacticoid copepods (Fitzer et al. 2012; Sarmento et al.
2017). Malformations increase whereas developmental time, fecundity, and body
length decrease in response to (substantially) reduced pH, suggesting that harpacti-
coid copepods preferentially re-allocate resources towards maintaining reproduc-
tive output at the expense of somatic growth. Physiological effects of low pH on
meiofauna remain poorly documented. Alterations to the redox system and an up-
regulation of stress-related genes have been shown for harpacticoid copepods (Lee
et al. 2019) with nauplii generally more sensitive than adults (Oh et al. 2017).
A recent study with the nematode Caenorhabditis elegans provided first insights
into the effects of declining pH on regulatory mechanisms (Cong et al. 2020). As
pH declines, transcriptome genes responsible for cuticle synthesis and structural
integrity, and xenobiotic metabolism, are upregulated, presumably to protect against
toxic substances likely associated with decreasing pH in the environment. Similarly,
drastic pH reductions associated with sequestering CO2 in liquid form on the deep
seafloor have pervasive, and sometimes lethal effects on meiofauna species and their
populations (Carman et al. 2004; Fleeger et al. 2006b, 2010; Thistle et al. 2006).

Investigations carried out in shelf seas, in contrast, suggest that meiofauna will be
relatively resistant to pH changes akin to a more gradually changing climate (Table
7.16). In situ, shifts in meiofauna community structure are more subtle, and less
driven by physiological intolerance to low pH than by the indirect effects of acidifi-
cation. The latter include changes to habitat type and structure, and shifts in species
interactions resulting from, for example, release from predation and altered quantity
and type of food available (Garrard et al. 2014; Ravaglioli et al. 2019). Ecosystem
engineers mediate the response of meiofauna to ocean warming and acidification.
The replacement of coral reefs by algae (Hoegh-Guldberg et al. 2007), for example,
can result in the development of meiofauna communities on dead corals, akin to
meiofauna colonist communities observed in response to coral loss in trawled areas
(Table 7.7). Furthermore, reduced burrowing activity of sea urchins with decreasing
pH affects soft-bottom nematodes by limiting the facilitating effects of bioturbation
on their assemblages (Dashfield et al. 2008; Table 7.7).
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Effects of oxygen decrease: Short-term exposure to hypoxia causes mortality in
some meiofauna and inhibits growth and reproduction. Experimental evidence has
been confirmed by studies of spatial distribution in relation to natural gradients of
oxygen content (Tables 7.7 and 7.16).Meiofauna is generally less affected by hypoxia
and anoxia than larger macrofauna (Levin 2003); harpacticoid copepods, and in
particular their larvae, are more sensitive than nematodes (Vernberg and Coull 1975;
Hicks and Coull 1983; Josefson and Widbom 1988). Some specialised nematodes
and oligochaetes tolerate temporary anoxia and sulphide development, and prefer
the hypoxic/anoxic transition zone between the surficial and deeper sediment layers.
Here, they seem to take advantage of less competition and a rich organic food supply
(see Chap. 4; Giere et al. 1991; Ott et al. 1991).

Meiofauna lack respiratory organs and depend on diffusive oxygen uptake. Conse-
quently, slender, worm-shaped species with a higher surface-to-volume ratio gather
oxygen most efficiently. Despite these generalities, meiofauna responses to hypoxia
appear to be species-specific (Modig and Ólafsson 1998); the diversity of nematodes
decreases (Van Colen et al. 2009) and some worm-shaped copepod species tolerate
hypoxia (Vopel et al. 1996;Grego et al. 2014). Sensitivity to hypoxia tends to increase
with increasing temperature (Josefson and Widbom 1988). Foraminifera generally
dominate meiofauna in oxygen-depleted deep-sea sediments. While morphological
changes such as reduced size and more porous shells improve oxygen exchange
under hypoxic conditions (Levin 2003; Gooday et al. 2000), this increases vulner-
ability to dissolution in more acidic waters. Under hypoxia, the oxygen required by
meiofauna to support energetically costly processes such as feeding, assimilation,
and digestion of food, is not met by the ambient oxygen supply. This means that
meiofauna species, resistant to ocean warming and acidification, might be adversely
affected by elevated temperatures and CO2 when concurrently exposed to hypoxia
(Tomasetti et al. 2018).

Secondary ecosystem effects of global warming – the loss of sea ice: Ice-shelf and
glacial retreat or collapse lead to more frequent iceberg scouring, freshwater input,
and higher sediment loads (Ingels et al. 2021). Although Somerfield et al. (2006)
found little evidence for a specialisedmeiofauna in unconsolidated and nutrient-poor
sediments close to a glacier front, meiofauna are members of the sympagic food web
inside polar ice (see Chap. 9; Gradinger and Bluhm 2020). In areas where sea ice
is persistent, a significant part of sympagic production is exported to the seafloor
(Gradinger 1999; Gradinger and Bluhm 2020). Under ongoing climate change, the
loss of sea ice, and hence habitat, will affect sympagic meiofauna and meiobenthos
reliant on algal export.

Meiofauna rapidly colonise newly created habitat following glacier retreat (Table
7.16). In the early stages, when poor nutritional conditions of the sediment are
coupled with high sedimentation rates, macrofaunal biomass is reduced and meio-
faunal biomass and production are increased, in part due to release from macro-
faunal predation and competition (Górska andWłodarska-Kowalczuk 2017).Gradual
increases in primary production and subsequent benthic food influx increase differ-
entiation among trophic niches for more abundant meiofauna (Murray and Pudsey
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2004; Pasotti et al. 2015a). Coupled with timings of ice release, nematode commu-
nities of low density and low evenness gradually transition to denser, more diverse
communities (Raes et al. 2010; Rose et al. 2015). The capacity of some nematode
species to colonise new habitat depends on their tolerance of increasing glacial sedi-
ment input as glaciers melt, rather than increased iceberg disturbance (Lee et al.
2001a; Pasotti et al. 2015b; Vause et al. 2019).

Iceberg scouring can remove over 95% of the nematode assemblage and reduce
diversity (Lee et al. 2001a, 2001b). Recovery from scouring can occur within
weeks and without signs of community succession, suggesting the nematode fauna
is relatively well-adapted to frequent disturbance. However, in recently ice-free
areas, colonisation can lead to community succession with dense communities of
opportunistic species occupying scoured areas, which were previously populated by
low-abundance, low-diversity assemblages characteristic of sub-ice-shelf conditions
(Hauquier et al. 2011; Raes et al. 2010).

Effects on food webs:Meiofauna community responses to climate change integrate
direct effects on physiology and function, and indirect effects from altered intensity
of ecological constraints (e.g. food availability and variability, predation, compe-
tition; Hale et al. 2011), including interactions between microbes, meiofauna, and
macrofauna. It is uncertain whether predicted ocean temperature and acidification
scenarios will significantly affect meiofauna mortality per se, especially in envi-
ronments that are regularly exposed to high variability in environmental conditions
such as intertidal systems (Table 7.16). Changes in the structural and functional
composition of meiofauna communities, however, are likely. To simulate warming
in a temperate subtidal bay, Jochum et al. (2012) reduced the body size of the top
predator (shore crab Carcinus maenas) and amplified nutrient enrichment. A trophic
cascade emerged whereby meiofauna-grazing gobies were released from predation
by (smaller) crabs, resulting in reducedmeiofauna abundance. Under nutrient enrich-
ment, microalgae, the main food source of the dominant meiofauna, could flourish
and increased meiofauna biomass and diversity (Jochum et al. 2012), suggesting that
pervasive consequences of warming in marine ecosystems include trophic cascades
that affect entire food webs.

Meiobenthos and the time factor in climate change: Alterations of environmental
conditions by climate change occur over time scales of tens to hundreds of years,
encompassing hundreds of thousands of meiofauna generations. The long-term
survival of meiofauna is therefore more likely to be determined by their ability
to adapt rather than the ability of individuals to persist. Heat stress causes body
size reduction in marine species (Piazza et al. 2020), and large animals have higher
nutritional needs compared to smaller organisms, and often more specific habitat
requirements. Expansion of warmer, more acidic, oxygen-depleted waters is there-
fore predicted to increase the relative importance of meiofauna in biogeochemical
cycling relative to larger taxa (Rabalais et al. 2010; Sweetman et al. 2017).Meiofauna
from habitats regularly exposed to highly variable levels of temperature or CO2, or
to low levels of oxygen, are more likely to possess the physiological and ecological
adaptations necessary to persist in climate-change-induced, variable environmental
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conditions than meiofauna from areas with more stable conditions, such as the polar
ocean basins, deep sea, or well-oxygenated sands (Table 7.15). In some experiments,
climate change effects onmeiofauna populationsweremasked by the dominant influ-
ence of sediment granulometry (Gingold et al. 2013; Ingels et al. 2018). If, however,
sediment structure begins to shift in response to awarmer,more acidic ocean, changes
in meiofauna would be expected. Most effects of climate change are influenced by
the meiofauna habitat. Effects of anoxia, for example, are more pronounced in vege-
tated habitat than in bare sediment. This is due to the increased amount of decaying
organic matter, deterioration of sediment chemical composition, and reduction in
habitat heterogeneity. Meiofaunal recovery proceeds more slowly in complex habi-
tats, as heterogeneity needs to be restored to facilitate meiofauna settlement, and this
can be a lengthy process (Guerrini et al. 1998; Van Colen et al. 2009).

Responses of meiofauna to climate change and associated complex ecological
interactions are hard to quantify, althoughmeiofauna appear more resilient to climate
change within ranges predicted for the next century than macro- and megafauna
(Table 7.16). Under climate change conditions where larger benthos becomes sparse
or absent, meiofauna often thrive owing to reduced grazing and predation, and
decreasing competition for food resources.

7.6 Scale Matters: Observing the Response of Meiofauna
to Anthropogenic Disturbances

The presence of different types of anthropogenic disturbance across marine ecosys-
tems, their occurrence and interconnectedness at a wide range of spatial and temporal
scales, and their continuity across all levels of biological organisation are the essence
of their importance (Fig. 7.2).Understanding their effects onmeiofaunameans under-
standing how man-induced environmental changes at local, regional, and global
scales affect individuals, impose selective pressures upon their populations, and
alter assemblages. There is, therefore, no single scale at which meiofauna responses
should be studied. Rather, the challenge is to bridge across very different spatial
and temporal scales, from one cubic centimetre of sediment to ecosystem, or indeed
global, scales, while reconciling ecological and evolutionary temporal scales (Chave
2013), as well as the heterogeneity of those scales (Ellis and Schneider 2008).

The scales at which meiofauna responses are observed and tested are critical.
Our literature review in preceding sections exemplifies the rather artificial separation
into small-scale laboratory studies, addressing the disturbance responses primarily of
meiofauna species and populations, and larger-scale in situ investigations addressing
the responses of meiofauna communities within the wider ecosystem. This research
divide is not unique to meiofauna studies but seems common in benthic ecology
(Ellis and Schneider 2008).
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Fig. 7.2 Spatial and temporal scales at which meiofauna individuals, their populations, their
communities, and entire ecosystems respond to anthropogenic disturbances (adapted from Van
Goethem and Van Zandem 2019). See text for details

‘Study windows’ are usually constrained by practicalities and costs associated
with collecting meiofauna and other relevant environmental and faunal data. Meio-
fauna studies reviewed here rely heavily on experimental approaches that inevitably
limit the spatial and temporal scales that can be investigated. Assessing wider
ecosystem effects of anthropogenic disturbances, and the roles that meiofauna
play, must also consider large-scale patterns in the distributions of populations and
communities (Ellis and Schneider 2008). The relevant processes underlying these
are primarily large in scale and/or infrequent, and thus challenging to identify, track
and investigate.

When attempting to determine the likely effects of climate change on meiofauna,
concerns exist about the validity of short-term experiments simulating conditions
at levels that are unrealistically lower (e.g. pH, oxygen) or higher (e.g. temperature,
pCO2) than those predicted under future climate change scenarios (Widdicombe et al.
2009). However, increasing magnitudes and frequencies of extreme events (e.g. heat
waves, winter storms, hypoxic events) render short-term experimental exposures
more useful compared to their application to long-term climate change scenarios
or other types of chronic anthropogenic disturbance. The often high phenotypic
plasticity of meiofauna species, illustrated by their ability to alter their growth rate,
physiology or behaviour to better suit the environmental conditions with which they
are faced (Schratzberger et al. 2009), can mask the effects of short-term (weeks
to months) exposure to elevated temperature, hypercapnia, hypoxia, and salinity
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changes (Table 7.16). Similar concerns exist regarding testing of acute toxicity of
pollutants in the laboratory versus effects of chronic exposure in situ (Table 7.10).
Compensatory mechanisms in response to acute anthropogenic disturbance place
an energetic burden on the individual, which could be unsustainable in the long-
term. The longer-term consequences of the short-term physiological and metabolic
responses of meiofauna, or indeed how these responses are manifested under (future)
conditions in the field, are currently unknown and a central research challenge.

Many of the reviewed studies highlight the scale dependence of the mechanisms
that underlie the resistance and resilience of meiofauna to anthropogenic distur-
bances. Studies assessing the resilience of meiofauna communities to experimental
trawling, for example, revealed the spatial scale of disturbance and the proximity
of potential recruits to be important factors that facilitate relatively rapid recovery
(Table 7.7). Recovery dynamics in areas disturbed at the scale of a fishing ground
differ because reproduction and growth of resistant meiofauna species are the
main processes driving observed recovery if immigration from surrounding areas
is limited. Initial successional stages involve meiofauna species characterised by
rapid dispersal, high reproductive rates, and short generation times, later joined by
better resource competitors which, over time, displace the opportunistic species in
less frequently fished areas or in areas where fishing results in specific habitat char-
acteristics that benefit particular species. A similar interplay between biotic and
abiotic drivers also applies to spatial scales of observation, as revealed in meiofauna
studies investigating their response to species invasions (Table 7.13). At small scales
where abiotic drivers (e.g. resource availability) of community composition are rela-
tively homogeneous, biotic interactions amongmeiofauna species and betweenmeio-
fauna and other benthic components dominate. The significance of biotic interactions
generally diminishes as survey area increases.

7.7 Invisible Allies: New Horizons for Future Meiofauna
Research

Meiofauna communities are complex, as are their responses to anthropogenic distur-
bances. The detail matters; meiofauna responses to disturbance are largely nonlinear
and context-dependent. The net effects of anthropogenic disturbances on meiofauna
species, populations, and communities vary. They depend on the abiotic and biotic
context in which the disturbance occurs, on the scales at which meiofauna responses
are observed (see Sect. 7.6), and on the extent to which the disturbance creates
novel environments that differ from those to which the resident meiofauna is adapted
(Fig. 7.3; Hobbs et al. 2009).

The generally weak effects of anthropogenic disturbances on meiofauna commu-
nity metrics (e.g. abundance, diversity, biomass) mask generally stronger responses
of species with physiologies and life histories that either allow or prevent them from
thriving under disturbed conditions (Schratzberger and Somerfield 2020; see Sects.
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Fig. 7.3 Interactive biotic (species composition, species interactions) and abiotic (quality, quantity,
complexity, and heterogeneity of the physico-chemical environment) changes lead to alteration in
meiofauna communities (adapted from Hobbs et al. 2009). See text for details

7.2–7.5). Higher meiofauna abundances and numbers of species relative to macro-
andmegafauna generally enablemeiofauna to acclimatise and adapt to environmental
change more effectively.

High meiofauna functional diversity means that there may be species that can
be lost from some ecosystems without substantial alteration of ecosystem function,
as two species can show similarities in the way they feed, reproduce, and move
within the habitat (Schratzberger et al. 2007). However, co-existing species probably
do not carry out these activities in exactly the same way or at the same time, and
the functional significance of these differences is likely to depend on the species
and ecosystem in question (Snelgrove 1999). The morphological similarity of many
meiofauna species often hides high genetic diversity (Todaro et al. 1996; Warwick
and Robinson 2000; Jörger et al. 2012; Kieneke et al. 2012; Derycke et al. 2016).
Cryptic species have subtly different environmental preferences and sensitivities to
changes in, for example, temperature and salinity, as demonstrated by lineages of
cryptic species from an intertidal flat (De Meester et al. 2015). Therefore, sympatric
community shifts and local adaptation of genotypes to specific sets of environmental
conditions will most likely determine longer-term changes in meiofauna taxonomic
and functional diversity in the face of anthropogenic disturbances.

Meiofauna research to date illustrates how far the field has advanced and how
well it has assimilated a cross-disciplinary view. It also points to new horizons for
future research, pertaining to the following questions (Box 7.2):
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Box 7.2. New horizons for meiofauna research

Ecosystem consequences of anthropogenic disturbances

Does the resistance and resilience of meiofauna to anthropogenic disturbances
buffer against further ecosystem change?

Research priorities:

• Relationship between species richness, environmental and biotic homogeni-
sation, and species interactions

• Drivers and consequences of changes in the strength and nature of microbe–
meiofauna–macrofauna interactions

• Potential of trophic cascades involving meiofauna to alter entire ecosystem
productivity and energy transfer

The importance of disturbance history

To what extent do responses of meiofauna to anthropogenic disturbances
depend on the history of previous disturbance events?

Research priorities:

• Interactions between disturbance attributes and adaptive traits of dominant
and rare meiofauna species

• Effects of disturbance history on the resistance and recovery of meiofauna
in response to novel disturbances (including novel pollutants)

• Relative influence of ‘disturbance-induced community tolerance’ and
‘disturbance-induced community sensitivity’ on meiofauna responses to
environmental change

• Genetic basis of biotic interactions and local adaptations/phenotypic plas-
ticity of meiofauna species

Interactive effects of multiple disturbances

Howdomutually reinforcing or antagonistic interactions between disturbances
affect meiofauna?

Research priorities:

• Relative effects of disturbances of the same or different type applied at
different frequencies and in different sequences

• Interactive effects of multiple anthropogenic disturbances on meiofauna
against a background of climate shifts

• Interactive disturbance effects and tipping points beyond which the long-
term viability of meiofauna populations, communities, or ecosystems are
compromised
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• Does the resilience of meiofauna to anthropogenic disturbances buffer against
further ecosystem change?

There is little evidence for the extirpation of meiofauna across anthropogenically
disturbed seafloor habitats. The persistence of meiofauna is the combined conse-
quence of their small size, life history characteristics, and their phylogenetically
and functionally diverse species pools. These allow meiofauna to respond rapidly
to the patchy microhabitats generated by anthropogenic disturbances, as well as to
adapt to new environmental conditions on a molecular level more rapidly than larger
organisms. Intermediate levels of disturbance often affect larger-sized macrofaunal
predators with longer generation times and/or lower fecundity more strongly than
their meiofaunal counterparts.

Although responses of meiofauna communities to anthropogenic disturbances are
complex, generally severe disturbance leads to dominance of opportunistic species.
The widespread replacement of habitat-specific ecological specialists by broadly-
adapted ecological generalists and opportunists mixes the taxonomic and functional
composition of once disparate biotas, resulting in biotic and functional homogenisa-
tion (sensu McKinney and Lockwood 1999; Schratzberger and Somerfield 2020).
Some anthropogenic disturbances facilitate novel interactions among meiofauna
species and between meiofauna and other benthic organisms. Meiofauna studies
investigating the effects of invasive species introductions (Table 7.13), for example,
reported both, increasing and declining numbers of meiofauna species. Increased
species richness is often the consequence of habitat modification caused by invasive
species that facilitate the colonisation of opportunistic meiofauna species or meio-
fauna species characteristic of other habitats. The number and breadth of these novel
species interactions are therefore likely to be limited. This potentially narrows the
availability of functional groups of species for renewal and reorganisation and could
lead to further ecosystem change (Falk et al. 2019; WWF 2020).

While biotic homogenisation in meiofauna species composition has been recog-
nised as a common consequence of anthropogenic disturbances, less is known about
how species relationships change over space and time. There are many more inter-
actions than species, but does biotic homogenisation of species composition lead to
homogenisation of species relationships or are changes in species composition decou-
pled from the dynamics of species relationships? It is likely that the rate at which
species interactions respond to anthropogenic disturbances differs from the rate at
which species per se, and their populations and communities, respond. Modelling
studies in terrestrial habitats suggest that such decoupling can be negative or posi-
tive. Consequently, the rate of species loss may be delayed or accelerated depending
on the balance of interaction losses (Valiente-Banuet et al. 2015; Li et al. 2018).
Understanding the relationship between species richness, biotic homogenisation, and
species interactions will help to better estimate the wider ecosystem consequences
of anthropogenic disturbances, and the parts meiofauna play.

Despite the proven interdependence between microbe, meiofauna, and macro-
fauna production (Hunter et al. 2012; Baldrighi andManini 2015), understanding the
drivers of changes in the strength and the structure of their interactions is still limited.
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A mesocosm experiment designed to investigate climate-change-induced alterations
in an intertidal food web, for example, showed that meiofauna does indeed mediate
the effects of increased nutrient input following increased frequency of flooding
and agricultural run-off through its trophic interactions with primary producers and
higher-level consumers. Although opportunistic meiofauna grazers (copepods and
ostracods) benefited in terms of population densities, energy transfer to higher trophic
levels was hampered, thereby reducing the overall biomass of the system (Jochum
et al. 2012). Future research into the potential of trophic cascades involving meio-
fauna to alter ecosystem productivity and energy transfer following anthropogenic
disturbances would enhance our understanding of the key roles meiofauna will play
in future benthic ecosystems.

• To what extent do responses of meiofauna to anthropogenic disturbances
depend on the history of previous disturbance events?

The seafloor is subject to natural disturbance regimes that operate across a range
of temporal and spatial scales. Natural disturbances have characteristic magnitudes
and frequency distributions to which local meiofauna assemblages are adapted, and
fromwhich they can recover. Anthropogenic disturbances are often of greater magni-
tude, higher frequency and/or longer duration. Whereas the effects of severe, acute
anthropogenic disturbances are relatively straightforward to establish, it is less clear
how moderate, more prolonged levels of anthropogenic disturbance affect meio-
fauna populations. Studying the latter is particularly important because most marine
ecosystems have become mosaics of natural and anthropogenic disturbances.

Although previous sections highlight anthropogenic disturbance as an important
influence on meiofauna communities, understanding how the context of previous
disturbances influences the ability of communities to respond to novel disturbances
is largely missing. Laboratory and in situ studies investigating the response of meio-
fauna from contrasting habitats to anthropogenic disturbances showed that natural
disturbances including fluctuations in physico-chemical parameters (e.g. currents,
salinity, temperature, etc.) play a role in the observed shift toward more disturbance-
adapted meiofauna communities. The effects of anthropogenic disturbances are
minimised if there is close congruence with natural disturbances. For example,
shallow-water meiofauna in unconsolidated sediments is generally less adversely
affected by bottom-fishing than meiofauna in either structurally complex habitats
such as biogenic reefs, or habitats that are relatively undisturbed by natural perturba-
tions such as deep-sea mud (see Sect. 7.2). Sediment movement, erosion, and depo-
sition are natural processes to which benthic organisms are adapted (Hall 1994).
Benthic infauna burrow upwards or downwards to maintain an ideal position in
the sediment but the rates and magnitudes of bottom-fishing often exceed those
of natural occurrences. Understanding how disturbance interacts with the adaptive
traits of dominant and rare meiofauna species would provide some clarity about the
broader ecosystem consequences of human-induced changes (Fig. 7.3). Differences
in meiofauna resistance to, and recovery from, anthropogenic disturbances clearly
reflect local disturbance history due to disturbance filtering out ill-adapted species,
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but where is the limit of tolerance of meiofauna to new environmental conditions
and disturbance regimes? Do disturbances function as a catalyst of change?

When species sensitivities to two disturbances are positively correlated, either
disturbance eliminates certain species, but leaves more species that are tolerant of the
other disturbance than if species sensitivities were unrelated (Fig. 7.4). Therefore, a
positive correlation between species sensitivities (i.e. positive species co-tolerance)
increases resistance to one disturbance as a result of exposure to the other. Vine-
brooke et al. (2004) termed this stress-induced community tolerance, following the
ecotoxicological concept of pollution-induced community tolerance where commu-
nities that have been chronically exposed to pollutants are relatively less affected by
exposure to new pollutants (see Sect. 7.3). Positively correlated species co-tolerances
lead to antagonistic disturbance interactions and hence disturbance-induced commu-
nity tolerance. Conversely, negatively correlated species co-tolerance would result in
additive or synergistic disturbance effects and hence in disturbance-induced commu-
nity sensitivity (Vinebrooke et al. 2004). Evidence to date suggests that previous
natural and anthropogenic disturbances strongly influence howvulnerablemeiofauna
communities are to additional/novel disturbances (also see disturbance interactions
in Box 7.2 and below), and so these should be considered when predicting how shifts
in disturbance regimes will affect future (meiofauna) community composition.

Fig. 7.4 Hypothetical effects of two disturbances (Disturbance A vertical, Disturbance B hori-
zontal) on 40 meiofauna species as influenced by positive co-tolerance (left) and negative co-
tolerance (right). The combined effects of Disturbance A and B are reduced when tolerances are
positively correlated (i.e. disturbance-induced community tolerance; adapted fromVinebrooke et al.
2004). See text for details
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Empirical tests, however, are challenging because the time scale of available
historical data constrains the ability to identify drivers of long-term, large-scale
changes. In situ changes resulting from anthropogenic disturbances occur well
beyond the weeks or months, and square centimetres or metres typical of micro-
or mesocosms used to study meiofauna in the laboratory. Natural analogues of
experimental treatments replicating oil pollution, for example, such as oil seeps
(MacDonald 1998), can provide insights into how organisms respond to the pres-
ence of oil, recognising though that there is a great deal of variability in the scales of
oil spills (i.e. a few litres spilled during refuelling to millions of litres spilled during
a large accident). Also, while human accidents are stochastic, natural oil seepage
is more constant. Because oil seeps occur in geological structures where oil can be
produced, it is also possible that meiofauna communities in areas where there is
hydrocarbon exploration and production could be adapted to the presence of oil and
other hydrocarbons such as methane.

Equally, analogues replicating increases in temperature and CO2, such as
hydrothermal and CO2 vents (Dahms et al. 2018; Foo et al. 2018), provide critical
insights into potential longer-term consequences for, and adaptations of, meiofauna
to global change. For instance, using shallow-water CO2 vents in the Mediterranean
as a proxy for potential CO2 leakage (following sub-seafloor CO2 storage), meio-
fauna abundance and biomass declined and community composition changed, despite
the overall increase of microphytobenthos productivity as a meiofaunal food source
(Molari et al. 2018). Similarly, sub-surface marine hydrothermal vent conditions
cause effects akin to those expected from various global change scenarios, with
retarded growth, chemosynthesis and photosynthesis fuelling biomass, and physio-
logical adaptations owing to exposure to high concentrations of heavy metals, low
pH, and elevated temperature (Dahms et al. 2018). Novel genetic and genomic
approaches are expected to reveal molecular mechanisms of adaptation of meio-
fauna to such conditions, and in particular the genetic basis of biotic interactions
and local adaptation/phenotypic plasticity of meiofauna species (Schratzberger and
Somerfield 2020).

• How do mutually reinforcing or antagonistic interactions between distur-
bances affect meiofauna?

In situ, meiofauna communities are often exposed to multiple anthropogenic
disturbances that can occur either simultaneously or sequentially and, moreover,
differ in frequency and intensity. Taken collectively, the multiple anthropogenic
disturbances investigated in Sects. 7.2–7.5 interact across scales of space and time
(Côté et al. 2016). The recognition that disturbance interactions can lead to unex-
pected, rapid, and nonlinear change has been growing in recent years (Buma 2015;
Halpern et al. 2019). There are now examples from several marine ecosystems on
interactive effects of anthropogenic disturbances and climate change (Occhipinti-
Ambrogi and Galil 2010; Planque et al. 2010). However, the consequences of distur-
bance interactions onmeiofauna,where known, are not always synergistic or additive,
nor necessarily intuitive.
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Studies at fishing grounds, for example, indicated that repeated bottom-trawling
influences the resilience of meiofauna communities (Table 7.7). Passages of a bottom
trawl occurring at short intervals clearly prevent successful recovery of an appropriate
portion of the population or assemblage because there is an insufficient proportion of
reproducing adults in the population. Largely additive cumulative effects on meio-
fauna are thus likely and have been demonstrated by empirical studies in the field
and the laboratory. Disturbances of the same type occurring at different frequen-
cies could amplify, or attenuate, the effects of individually occurring disturbances,
but there are as yet few empirical studies that have quantified potential interactive
effects of different types of anthropogenic disturbances on meiofauna. For instance,
experiments investigating the combined effects of warming and acidification (Table
7.16) recorded decreased meiofauna diversity, owing to increased dominance by few
opportunistic species, whereas reduced pH alone did not decrease diversity (Lee
et al. 2017). Also, complex interactions between nutrient load and toxicant exposure
suggest that non-additive effects (synergetic or antagonistic) on meiofauna may be
more common than additive effects (Sundbäck et al. 2010).

Understanding how disturbances interact with each other would provide some
clarity about the broader ecosystem consequences of human-induced changes. To
what degree is the response of meiofauna to a particular anthropogenic disturbance
contingent on the response to other co-occurring disturbances of a different type?
What are the consequences of multiple anthropogenic disturbances for meiofauna?
It will not be possible to identify the effect of every disturbance interaction on
every species’ physiology and every community’s structure and function because the
number of anthropogenic disturbances and their potential interactions are growing
rapidly. The ability to predict the nature of interactions between different disturbances
thus depends primarily on understanding the underlying processes and mechanisms.

The concept of co-tolerance (Vinebrooke et al. 2004) is again a useful starting
point here (also see disturbance history in Box 7.2 and above). When different types
of anthropogenic disturbance act on the same physiological or ecological processes,
then antagonistic interactions are likely. A common physiological response across
meiofauna taxa and disturbance types is energy transfer from growth and reproduc-
tion under heavily disturbed conditions to ensure that basic metabolic processes are
maintained, leading to reduced rates of growth and development (see Sects. 7.2–7.5).
Acclimation to one kind of anthropogenic disturbance may therefore prevent, or at
least reduce, damage by another because more vulnerable individuals or species are
removed from the community and replaced by more resistant individuals or species.
However, when different types of disturbances act on different mechanisms, individ-
uals or species may be equipped to resist one type of disturbance but not another.
The latter can increase the susceptibility of the community to the effects of multiple
disturbances (Côté et al. 2016).

The co-occurrence of different types of anthropogenic disturbances either in time
or space, is likely to have important cumulative effects on meiofauna communi-
ties. Improved understanding of how different types of (natural and) anthropogenic
disturbances interact would therefore provide key information to aid predictions of
their effects on meiofauna resilience (also see meiofauna resilience in Box 7.2 and
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above), particularly in the context of global change. Identifying dominant, additive
or non-additive disturbance effects, as well as tipping points beyond which the long-
term viability of meiofauna populations and communities is compromised, is an
imperative focus for future meiofauna research.

7.8 Concluding Remarks

With more than 600 million years of evolutionary history (see Chap. 1), and high
phylogenetic and phyletic diversity, the ecological success of meiofauna is strongly
linked to their ability to survive in contrasting environmental conditions and to prolif-
erate rapidly (Schratzberger et al. 2019). As a consequence, they are ubiquitous in
marine benthic systems, from the upper reaches of estuaries to the deepest parts of the
ocean, from the poles to the tropics, and from swell-beaten rocks to low-energy deep
muds. With such a broad range of meiofaunal potential on which to draw, it seems
likely that meiofauna will adapt to, and thrive in, most changes that anthropogenic
disturbances are likely to inflict upon them. It is also clear that our understanding
of meiofauna ecology is derived from an overwhelming preponderance of spatial
(with a small proportion of temporal) studies that compare communities from one
place (or time) with others. The scales of these studies, whether in the field or in
the laboratory, rarely consider the world as experienced by meiofauna. Meiofauna
are small and inhabit a world dominated by viscous forces and chemical gradients
(see Chaps. 2 and 3). Disturbances that appear to humans as severe may be prac-
tically undetectable to individual meiofauna organisms. On the other hand, some
disturbances that may have severe effects on meiofauna may be ignored by human
investigators because these disturbances cannot be seen or have not been thought
of. Advances in imaging and analytical technology are opening windows through
which we may observe the world that meiofauna inhabit, and indeed the meiofauna
themselves. It is time for meiofauna research to move beyond spatial comparisons
and to pay more attention to the meiofauna themselves and to their world as they
perceive and experience it, in order to understand what they do, how they do it, what
effects we are having on them, and how their responses to those effects may alter our
world in the future.
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Chapter 8
Deep-Sea Meiofauna—AWorld on Its
Own or Deeply Connected?

Jeroen Ingels, Daniel Leduc, Daniela Zeppilli, and Ann Vanreusel

Abstract The deep sea is Earth’s most typical environment and meiofauna its most
common and arguably its most diverse metazoan inhabitants. They are therefore key
in understanding temporal and spatial patterns in biodiversity and biogeography and
are major contributors to ecological processes and functions. Meiofauna are integral
to deep-sea benthic communities, with numerous links to other benthic organisms
and the interstitial environment, the habitat from where they experience life around
them. Although manymeiofaunal patterns and relations have been identified, limited
progress has beenmade in answering questions as to “why” and “how” these patterns
and relations exist or are formed and maintained, and in many cases such knowledge
does not exist. In this chapter, we review the knowledge we do have and present
interpretations and explanations that bring a better understanding of how meiofauna
patterns in the deep sea can be explained in terms of processes and ecological inter-
actions.We applied this approach in four distinct fields of study: trophic interactions;
biodiversity and ecosystem function; distribution and diversity patterns; and connec-
tivity patterns. All four illustrate the extent to whichmeiofauna relate to other biolog-
ical components and the abiotic environment. Moreover, technological advances and
the increase in multidisciplinary approaches (inherent to offshore deep-sea research)
show that meiofauna studies are becoming better integrated with other fields of deep-
sea research. Meiofauna, therefore, offer an exciting scientific and diverse future of
discovery with research operating at the frontiers of deep-sea science.
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8.1 Introduction

The deep sea (generally defined as deeper than 200 m water depth) covers vast
expanses of the globe, providing an unimaginable amount of habitat space for micro-
scopic organisms, to the point where it becomes difficult to grasp—at least for one
not immersed in the study of meiobenthos. Those tiny animals, the size of a sand
grain or smaller, can make a meaningful contribution to ecological processes on
such a vast scale. Ubiquity and abundance, two important characteristics of meio-
fauna worldwide, make these organisms an essential part of deep-sea habitats and
ecosystems. They should therefore be seen as central to the study of temporal and
spatial patterns in biodiversity and biogeography, as key contributors to ecological
processes and functions.

This is in opposition to misguided descriptions of meiofauna as an interesting but
non-essential sideshow. Deep-sea meiofauna are, after all, the most common meta-
zoan organisms living in the largest ecosystem on the planet. In other words, they are
among the planet’s most typical organisms living in the planet’s most typical envi-
ronment. Not only are they connected to deep-sea habitats by the simple fact that the
abiotic environment, or environmental envelope, of these habitats provides themwith
the means to survive, but they are also an integral component of benthic commu-
nities. It is therefore not surprising to see links between the meiofauna and their
biotic and abiotic surroundings everywhere in the deep sea. However, it behooves
us to investigate questions beyond establishing a link and investigate the “why” and
“how” of the observed relationships.

From the continental slope, to canyons, seamounts, guyots, abyssal plains,
trenches, hydrothermal vents, and seeps, meiofauna are prevalent (Fig. 8.1).
Foraminiferans, nematodes, and copepods constitute the most abundant taxa in deep-
sea sediments (Zeppilli et al. 2018) and, at depths below 3000 m, meiofauna surpass
larger size groups such as macrofauna and demersal fish in terms of total biomass
(Rex et al. 2006; Wei et al. 2010). How can this be the case? Oligotrophy and intense
natural selection for particle selection and resource exploitation ability have been
posited as potential mechanisms for the prevalence of meiofauna in the deep sea
and for the diminutive size of macrofaunal taxa in the deep sea (Jumars et al. 1990;
Kaariainen and Bett 2006).

Considering the increasing relative abundance and biomass of meiofauna with
water depth, we must also consider contributions of meiofauna to ecosystem func-
tions (and ultimately services) in the deep sea. Their dominance over other deep-sea
metazoan life forms needs to be explained by ecological processes and mechanisms
providing them a competitive advantage. We should therefore also expect meiofauna
to make an important contribution to ecosystem function, especially on continental
margins, the transition zone from the shallow shelf to the oligotrophic abyssal plains,
where much of the essential ecosystem services provided by the deep sea are concen-
trated [e.g., hydrocarbons, fisheries, and carbon burial (Levin and Dayton 2009;
Sarmiento and Gruber 2002)]. However, despite their importance, many deep-sea
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Fig. 8.1 Examples of different deep-sea ecosystems: top left: hydrothermal vent; top right: deep-
sea nodules on the abyssal plain; bottom left: canyon (Gulf of Gascogne); and bottom right: REGAB
pockmark © Ifremer

ecological processes are still not understood. This lack of knowledge is particu-
larly acute for meiofauna, and most microscopic organisms, including protozoans,
bacteria, archaea, and viruses.

In this chapter, we will address advances in our understanding of four broad topics
in meiofauna research that illustrate their relation to the deep ocean, the environment
they inhabit, and the other biological components they relate to. This is by no means
an attempt to review the entirety of available literature, but rather to present in-
depth case studies of existing paradigms and ecological questions that merit further
investigation and have relevance to the general field of marine ecology:

1. Trophic interactions
2. Biodiversity and ecosystem function
3. Distribution and diversity patterns
4. Connectivity

These four fields of study illustrate how meiofauna species and communities
are connected to each other and the world around them. These disciplines have seen
substantive increases in understanding in the last decade or so, supported by advances
in technology and the tools with which to investigate important scientific questions.
These make them ideal study topics to highlight what we currently understand to be
frontiers in deep-sea meiofauna research.
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8.2 Trophic Interactions of Deep-Sea Meiofauna: “You Are
What You Eat” But What Do Deep-Sea Meiofauna Eat?

When staring down a microscope looking at an intact meiofauna sediment sample,
one is immediately confronted with the hidden nature and intricacies of intersti-
tial space. Jansson (1971), in his work “The “Umwelt” of the Interstitial Fauna”
in the Proceedings of the First International Conference on Meiofauna, describes
elegantly the functional environment of meiofauna from their point of view in an
attempt to understand better the environmental parameters that drive the behavior
and function of the microscopic organisms living between the sediment grains. It
is easy to imagine the grain surfaces to be analogous to vast landscapes filled with
green hills of micro-algae and meadows of bacteria on which meiofauna may feast
(Meadows and Anderson 1966, 1968). It is evident that such an image evokes the
necessity of a myriad of ecological connections between meiofauna and other organ-
isms in their immediate surroundings, trophic, or otherwise. Ecological interactions
between different meiofauna taxa and between meiofauna and other benthic compo-
nents have been amply documented for shallow waters, but much less so for the deep
sea (Schratzberger and Ingels 2018).

The deep ocean relies almost exclusively on a food supply originating from
primary production in surface waters (except for chemosynthetic ecosystems where
chemical energy is harnessed as the basis for the food web). Benthic–pelagic
coupling, the exchange of energy, mass and nutrients between the water column
and seafloor ecosystems, is crucial to deep-sea benthic life (Woolley et al. 2016).
This organic matter, produced in surface waters as a result of photosynthetic primary
production (phytoplankton), is converted into sinking particles by foodwebprocesses
(zooplankton, other grazers, microbes), by aggregation and fecal pellet production
(Cavan et al. 2015), as well as microbial colonization and growth during sinking
(AzamandMalfatti 2007).Once on the seafloor, bacterial activity normally increases,
and together with the deposited material, serves as a rich food for protozoans and
small metazoans (Gooday 1993; Moodley et al. 2002; Witte et al. 2003a, b).

Meiofauna play a key role in linking detrital and prokaryotic food resources with
higher-level consumers, making available energy that may remain unused in their
absence, therefore fulfilling an essential ecological role (Schratzberger and Ingels
2018). High metabolic and reproductive rates and high standing stocks of meio-
fauna in coastal areas and shallow waters imply that meiofauna play an important
role in benthic energy transfer. However, what about deep-sea settings? Owing to a
lack of direct observations of deep-sea meiofauna life histories and metabolic char-
acteristics, the same trophic linkages have not yet been explicitly documented in
deep-sea settings. There, the limited evidence available suggests that meiofaunal
energy demand is met through consuming labile and refractory detritus, bacterial
resources, or dissolved organic matter (Gontikaki et al. 2011; Guilini et al. 2010;
Ingels et al. 2010; Pape et al. 2013c; vanOevelen et al. 2006, 2011a, b;) andpotentially
other sources [e.g., fungi and protozoa such as foraminifera and ciliates (Bhadury
et al. 2011; Majdi et al. 2020)]. However, they also respond to episodic food falls
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(Debenham et al. 2004; Soltwedel et al. 2018) and may consume other meiofauna
organisms as evidenced by gut-content observations (Fonseca and Gallucci 2008). In
addition, stable isotope and fatty acid analyses have shown the capacity of the nema-
tode Deontostoma tridentum in deep-sea sediments off New Zealand, to consume a
relatively wide range of food sources, spanning three trophic levels, while the species
itself is highly nutritious to other predators as shown by elevated poly-unsaturated
fatty acid content (Leduc et al. 2015). In some deep-sea habitats, such as canyons,
increased numbers of predatory and scavenging nematodes also suggest that preying
on small metazoans may be a successful strategy (Ingels et al. 2009; Soetaert and
Heip 1995).

Meiofauna have been shown to exploit newly arriving phytodetrital matter in
deep-sea settings, which can enhance both meiofauna densities and diversity (Lins
et al. 2014; Pape et al. 2013b). Response times vary widely and range from days
to weeks (Ingels et al. 2011a; Witte et al. 2003b). In contrast, other studies have
shown metazoan meiofauna may in fact fail to exploit and use phytodetritus and
associated microorganisms, unlike foraminifera. There is a distinct likelihood that
foraminifera are more responsive to food arrival through efficient food-gathering
organelles and their ability to raise metabolic activity very rapidly (Gooday 1993;
Gooday et al. 1996). Metazoan meiofauna, on the other hand, may be hampered
owing to potentially slower growth rates and higher reproductive expense, which
puts them at a disadvantage in competitive interactions with foraminifera.

Veit-Köhler et al. (2011) noticed metazoan meiofauna becoming more concen-
trated at the sediment surface following a phytoplankton bloom deposition event,
suggesting either active migration to where fresh phytodetritus had arrived to feed
onbacteria and/ormore degradedmaterial, ormigration to avoid increased respiration
and declining oxygen concentration in deeper sediment layers. Further experimental
evidence suggests (1) potential passive uptake of bacterial carbon in limited time
periods (Guilini et al. 2010); (2) preferential bacterial carbon consumption by meio-
fauna (Ingels et al. 2010; Pape et al. 2013c); (3) or even dissolved organic matter
uptake (Pape et al. 2013c).

Using experimental pulse chase and natural isotopic data in modeling has brought
valuable perspectives into the contribution of meiofauna to total organic matter and
carbon processing in various deep-sea settings (Gontikaki et al. 2011; van Oevelen
et al. 2011a, 2011b). In subarctic conditions (−0.7 °C) in the Faroe–ShetlandChannel
at about 1000 m water depth, Gontikaki et al. (2011) reported that bacteria domi-
nated carbon flow and respiration in the sediments, but nematodes were respon-
sible for 96% of the refractory detritus uptake, almost entirely covering their energy
requirements in this way. This implies an important role for nematodes in phytode-
trital carbon turnover. However, only 2% of overall macrofaunal consumption was
linked to predation on nematodes (but 35%of that of polychaetes), suggesting limited
trophic transfer. In the upper sections of submarine canyons on the other hand, meio-
fauna can be responsible for over one fifth of carbon remineralization, suggesting
high current speeds and sediment resuspension could favor meiofauna communities
compared to macrofauna and megafauna (van Oevelen et al. 2011b).
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Experiments and in situ observations have demonstrated how surface bloom
fallouts and subsequent deep-sea arrival of food sources fuel the benthic food
web. However, there is still large uncertainty about the mechanistics of meiofauna
responses to this arrival and how selectively they can feed on various resources.
Deducting from different buccal or mouth structures, as well as pharyngeal charac-
teristics, some degree of selectivity or competitive advantage must exist if we accept
the benefits of evolutionary adaptations to efficient feeding and niche segregation.
However, Schuelke et al. (2018), investigating nematode-associated microbiomes in
various ocean regions, could not find any relationship between these microbiomes
(from the different parts of the nematode’s body) and nematode feeding morphology
nor nematode taxonomy. This would suggest decoupling of food source identities
and nematode taxonomic and functional diversity.

Experimental observations have not yet revealed how meiofauna meet their ener-
getic requirements. Howmuch energy is needed to sustain growth and reproduction?
Metabolism rates of meiofauna (and hence also their energy requirements) may be
currently overestimated depending on environmental conditions (Braeckman et al.
2013). The apparent lack of uptake of administered food in experiments could be
explained (1) by non-selectively feeding on the bulk organic matter already present
in the sediments, (2) by very high trophic specialization so that uptake, measured
on assemblage or community level would strongly dilute the signal of administered
food sources. In addition, the oligotrophic deep-sea floor provides an environment
where small metazoans are most of the time exposed to limiting resource conditions,
likely responsible for body-shape, behavioral, and metabolic adaptations that enable
them to survive long periods without abundant food sources.

An overview of meiofauna diets in the deep sea would be incomplete without
considering chemosynthetic food sources. Seeps and associated bacterial mats, pock-
marks, etc., often exhibit increased meiofaunal abundance compared to adjacent,
phytodetrital-dependent deep-sea environments (Cepeda et al. 2020; Vanreusel et al.
2010, 1997). Deep-sea hydrothermal vents on the other hand exhibit generally
low meiofauna standing stock (Vanreusel et al. 2010). Three reasons are evoked
why vents are characterized by low meiofauna abundances: (1) unsuitability of
hard vent substrates, (2) possibility that quality and quantity of vent food sources
can’t sustain high standing stocks, and (3) predation and competition with abundant
macro-invertebrates (Vanreusel et al. 2010).

Chemosynthetic systems harness chemical energy through bacterial activity,
rendering it directly or indirectly (through bacterial lysis) available to heterotrophic
meiofaunal consumers or in close association with meiofauna in the form of
symbioses such as for the nematode species Oncholaimus dyvae, Parabostrichus
bathyalis, and Astomonema southwardorum (Bellec et al. 2018; Tchesunov et al.
2012). This is exemplified in isotopic work on deep-sea nematodes and copepods in
or near chemosynthetic systems: thiotrophic and methanotrophic bacteria are likely
contributors to their diets (Pape et al. 2011; Van Gaever et al. 2006, 2009).

Intricate, potentially symbiotic, relationships between bacteria and meiofauna
(especially nematodes) have long been reported, (see Chap. 4), but in the deep
sea, their relevance has only been considered relatively recently (Bellec et al. 2018;
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Tchesunov et al. 2012). Evidence is emerging that chemosynthetic and photosyn-
thetically derived heterotrophic pathways are not mutually exclusive, suggesting that
a black-and-white approach to resolving deep-sea benthic food webs may be inad-
equate to assess carbon flows (Ingels et al. 2011b; Tchesunov et al. 2012; Zeppilli
et al. 2019).

While meiofauna can feed on a variety of food sources (of photosynthetic or
chemosynthetic origin), evidence of higher consumers feeding on meiofauna has
been much less documented. Selective predation on meiofauna taxa may occur in
shallow waters (Coull 1990; Jochum et al. 2012), and in fresh water where meio-
fauna are prey to a large number of macroinvertebrates (Ptatscheck and Traunspurger
2020). However, to our knowledge, such data do not exist for the deep sea (e.g.,
Gontikaki et al. 2011). Experimental results from exclusion studies suggest that
megafaunal grazing in the deep sea reduces meiofauna abundance and diversity
(Gallucci et al. 2008a). This is likely caused by indirect effects through competition
of resources, sediment disturbance, and burrowing of megafauna, rather than through
direct grazing; an observation that was also supported in shallow-water experiments
under a controlled environment with different megafauna species (Ingels et al. 2014).

So far, studies have attempted to unravelmeiofauna diets andnutritional selectivity
in various deep-sea habitats of the world’s oceans. Different approaches have been
used, from field studies on natural lipid biomarkers and stable isotope signatures to
enrichment experiments performed ex situ and in situ, supported or not by carbonflow
modeling studies. However, out of necessity modeling studies still include assump-
tions and parameterizations formeiofaunametabolism and physiology that stem from
shallow-water investigations and may exclude potentially important food sources
such as dissolved organic matter and protozoa.

Moreover, in many deep-sea studies, meiofauna are typically considered as one
functional group, thus ignoring the structural and functional diversity found across
the many meiofauna taxa. Since meiofauna comprise minute organisms, traditional
approaches such as stable isotope analysis require extraction of many individuals to
obtain sufficient biomass. Moreover, traditional methods involve destructive manip-
ulation so that individuals are not preserved for further taxonomic analysis. Although
new technological developments such as NanoSIM allow for isotope identification
on a (sub)cellular level, such techniques are currently still prohibitively expensive
or not widely accessible. This normally hampers dietary assessments on the level of
genera or species to enhance the resolution of intricate deep-sea food webs.

In the few habitats that are dominated by a few species, these methods are more
easily applicable, but for most of the deep sea, where meiofauna are characterized
by high diversity and low abundance (i.e., most species are rare, and abundance is
relatively low) we must rely on more advanced technology to move forward in this
field of study. However, technological advances, progress in microscopy, and novel
molecular and isotopic procedures, should bring the elucidation of meiofauna diets
and their trophic interactions with other benthic components within reach (Majdi
et al. 2020).
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8.3 Meiofauna Biodiversity and Ecosystem Function
in the Deep Sea

There is still ample scientific debate about the relation between deep-sea meiofauna
taxonomic diversity, their functional diversity, and ecosystem function. Functional
diversity can be identified as a measure of how diverse functional traits (i.e., traits
that bear importance to processes and functions in an ecosystem, such as body size
and buccal cavity structure) are within a group of taxa. Ecosystem function, on
the other hand, is a term encompassing many different processes operating in an
ecosystem, such as nutrient fluxes or secondary productivity. Ecosystem function
results from the interaction of organisms with their environment. Although linked,
functional diversity and ecosystem function are largely different and influenced by
environmental constraints depending on the habitat or ecosystem. This is a topic
worthy of intense future study since the relationship “biodiversity–ecosystem func-
tion” is central in understanding the role of biodiversity: Which processes and func-
tions within an ecosystem are maintained? How do these processes and functions
generate andmaintain the services the ecosystemprovides, and howdoes biodiversity
contribute to them (Loreau et al. 2001)? The deep sea and meiofauna, in particular,
may offer unique insights into our understanding of species interactions, ecosystem
functioning, and, thus, implications of biodiversity loss (Loreau 2008).

Several studies have shown that in the deep-sea, meiofaunal structural, or taxo-
nomic diversity can be closely linked to meiofauna functional diversity (often
expressed in terms of trophic diversity or life-history characteristics for nematodes)
(Danovaro et al. 2008; dos Santos et al. 2020; Gambi et al. 2014; Leduc et al. 2013).
Yet, meiofaunal diversity and ecosystem function/efficiency, the latter measured by
means of biomass, production, respiration, bacterial processes, or enzyme concen-
trations, have been found to co-vary either positively or negatively in the deep sea
(Danovaro et al. 2008; Leduc et al. 2013; Pape et al. 2013a) or not to vary at all (Pape
et al. 2013a).

Leduc et al. (2013) highlighted the importance of environmental drivers in
affecting the biodiversity–ecosystem function relation. They noted that the previ-
ously documented exponential relation between nematode diversity and ecosystem
function [sensu Danovaro et al. (2008)] appears to largely break down beyond a
certain diversity. This is potentially owing to increased competition or greater func-
tional redundancy under a given set of environmental constraints, such as available
resources or carrying capacity of the habitat or ecosystem. In other words, adding
species to an already high-diversity assemblagewill likely not additionally contribute
to ecosystem function (Leduc et al. 2013). Loreau (2008) expresses how extraordi-
nary the findings by Danovaro et al. (2008) are, considering that, in general, diversity
has a positive but saturating influence on ecosystem function. Generally, a plateau is
reached in the biodiversity–ecosystem function relation at high biodiversity levels,
and meta-analyses have shown that this paradigm is remarkably consistent across
different ecosystem types and trophic levels (Balvanera et al. 2006; Cardinale et al.
2006; Loreau 2008;Worm et al. 2006). Future research into this phenomenon should
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consider the full range of deep-sea meiofauna diversity in assessing its relationship
with deep-sea ecosystem function, and, importantly, move further into investigating
the causal mechanisms responsible for that relation (Fig. 8.2). It is possible that
characteristics of deep-sea ecosystems such as low disturbance and low food avail-
ability somehow promotes facilitation among species, unlike what has been observed
in other ecosystems. However, that does not mean that coexistence and facilitation
among (nematode) species is a relation that does not eventually saturate.

More broadly, there are many examples of facilitation between different compo-
nents of deep-sea benthic communities. A few cases in point are as follows:

(1) facilitative meiofauna–bacteria relationships; whereby bacteria serve as nutri-
tion for meiofauna (symbiotic or otherwise) and are stimulated for growth when
grazed upon by meiofauna;

(2) bioturbation activities by macrofauna (and large meiofauna) and sediment
disturbance bymegafauna species enhance biogeochemical cycling and nutrient
exchange, or may redistribute food sources to consumers (Levin et al. 2001;
Lohrer et al. 2004);

(3) deep-sea species such as large xenophyophorans (megafauna-sized
foraminifera) may cause enhanced microbial activity, while itself processing
dissolved organic matter and acting as particle traps as do other structure-
forming organisms, thereby enhancing sedimentary food-source retention and
promoting meiofaunal abundance and diversity (Levin and Gooday 1992);

(4) positive relationships between meiofauna and macrofauna taxonomic and
functional diversity (including feeding morphology, predator richness, and
bioturbation potential) (Baldrighi and Manini 2015).

Fig. 8.2 Three different types of relationships between ecosystem function and diversity have been
used to explain observed patterns in the deep sea. a Saturation: as diversity increases, ecosystem
function increases, but only to a certain point where the relationship becomes saturated and increases
in diversity do not increase ecosystem function, possibly because of competitive processes or func-
tional redundancy. This relationship has been observed in most ecosystems (Loreau 2008). b Expo-
nential (unsaturated) relationship: as suggested by Danovaro et al. (2008), an exponential relation-
ship between diversity and ecosystem function suggests facilitation between biological components,
where diversity increases only lead to increased ecosystem functioning. c Combined exponen-
tial–saturation relationship: The diversity–ecosystem function relationship starts exponentially but
eventually saturates due to functional redundancy (Leduc et al. 2013)
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These are just four examples of how the relation between biodiversity and
ecosystem function in the deep sea may be characterized by enhanced facilita-
tive interactions to maintain important ecosystem processes and functions involving
meiofauna. Theoretically, these examples could also occur in shallow-water benthos,
but it can be argued that such facilitative relationships have a better chance of devel-
oping and being sustained in the deep sea.Deep-sea sediments seem to generally have
a more even distribution of individuals, faster accumulation of species with individ-
uals, and often a higher proportion of singletons in a given sample compared to their
shallow-water counterparts (Snelgrove and Smith 2002). This suggests species popu-
lations in deep-sea sediments are smaller than in shallow waters, but also distributed
over larger areas, allowing increased habitat and resource space that may attenuate
intense competition processes and promote facilitation. In more dynamic shallow-
water environments, facilitative relationshipsmay break downmore quickly. Perhaps
it is not surprising that increased niche space, as found in the deep sea, in addition to
habitat patchiness (caused by biotic activity and abiotic regimes) plus intermediate
levels of disturbance allows for the smaller meiofauna to become more dominant
than larger organisms, and more diverse and successful, especially below 3000 m
water depth, as previously noted.

8.4 Distribution and Diversity of Deep-Sea Meiofauna:
Local to Global Scale Patterns

Standing stocks—Food availability [i.e., particulate organic carbon (POC) flux to
the seafloor] is the main factor influencing the abundance and biomass of deep-sea
meiofauna, explaining not only bathymetric patterns but also geographical variation
among and within ocean basins. On a global scale, the highest biomass is found in
areas with coastal upwelling (e.g., continental margins), and the lowest biomass is
found in central abyssal plains of major ocean basins (Wei et al. 2010). The bathy-
metric decline of benthic standing stocks is not equal across different size classes;
meiofaunal abundance and biomass decreasemore slowlywith depth thanmacro- and
megafauna, resulting in the dominance of meiofaunal-sized organisms below 3000m
depth. Indeed, the reduction in average animal body size with depth is among the
best established macro-ecological patterns in the deep sea (Rex et al. 2006; Thiel
1975). This pattern is thought to originate from the effect of food limitation, which
disproportionately affects the ability of large species with a high energy demand
to maintain populations above a critical threshold required for reproduction (Thiel
1975). Although themeiofauna-dominated seafloor below 3000m depth is character-
ized by low benthic standing stocks relative to coastal, shelf and slope environments,
it accounts for more than half of global benthic biomass due to its large surface area
(Wei et al. 2010). The oceans’ deepest ecosystems therefore play a critical role in
global biogeochemical cycles (see Chap. 2) despite the paucity of large fauna.
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Species richness and diversity patterns—As Rex and Etter (2010, p. 25) noted,
‘[benthic] standing stock is the culmination of pelagic–benthic coupling, (…) and is
the most directly relevant measure of ecological and evolutionary opportunity in the
deep sea’. Given the importance of POC flux in determining deep-sea meiofaunal
standing stocks, it is perhaps not surprising that food availability (i.e., chemical
energy) has emerged as the main driver of deep-sea meiofauna species richness, in
addition to standing stocks (Mokievsky et al. 2007; Soltwedel 2000). This contrasts
with coastal marine environments where thermal energy has a dominant role in
determining species richness (Yasuhara and Danovaro 2016).

The relationship between productivity and local species richness in the deep sea
generally takes a unimodal shape, at least when the full range of productivities is
considered. In studies confined to a relatively narrow range of productivities, the
unimodal curve can be skewed to the right or left or can show positive or negative
relationships with productivity (Rex and Etter 2010). The unimodal relationship was
demonstrated for deep-sea nematodes by using biomass as a proxy of productivity
(Leduc et al. 2012b) and the relationship also seems to hold in newly studied deep-
sea systems (e.g., Dos Santos et al. 2020). Because this relationship persists at both
regional and global scales, the mechanisms involved are likely to be of an ecological
rather than an evolutionary nature. The ascending limb of the unimodal curve may be
the result of higher proportions of rare (Preston 1962) and specialized species (Evans
et al. 2006), whereas the descending limb may result from increased competitive
exclusion (Grime 1973; Rosenzweig and Abramsky 1993), temporal variability in
productivity (Chown andGaston 1999), or environmental stress (e.g., hypoxia; Levin
and Gage 1998). Gray (2002) suggested that the role of productivity lies primarily
in setting the upper limit of species diversity, with other factors such as disturbance
and habitat heterogeneity (e.g., grain size diversity; Leduc et al. 2012b) influencing
the realized diversity at a given location.

The richness of infauna also decreases with distance to the nearest landmass
(Woolley et al. 2016). Although it is difficult to disentangle the effects of water
depth (i.e., POC flux) and distance from landmass, it is possible that the transport
of propagules (Rex et al. 2005), land-derived organic matter (Leduc et al. 2020)
and sediment particles of various sizes and mineralogy (Cerrano et al. 1999) have
an impact on deep-sea meiofaunal diversity. The fact that meiofauna lack pelagic
larval stages and still have abyssal populations of relatively high density means they
are more likely to be self-sustaining. Passive dispersal of meiofaunal adults may be
morewidespread than once thought (see Sect. 8.5 on connectivity and dispersal), and
source-sink processes could be influencing deep-sea meiofaunal diversity patterns
in low productivity areas.

As seen for standing stocks, meiofaunal diversity is less sensitive to the declines in
productivity than that of larger fauna, as might be expected frommeiofauna’s smaller
body size and energy requirements. Relative to shallow water environments, local
species richness of meiofauna in bathyal and abyssal environments is often elevated
perhaps reflecting not only lower rates of competitive exclusion due to lower overall
productivity, but also lower levels of physical disturbance, and/or lower likelihood
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of species extinction due to wider species distribution ranges in the vast deep-sea
environments (Rex and Etter 2010; Zeppilli et al. 2018).

Data on nematode species richness obtained from across the full range of ocean
depths (200–11,000 m), from across the Pacific Ocean and including data from
Tonga, Kermadec, and Mariana trenches show a trend of decreasing species richness
with depth (Fig. 8.3; P < 0.0001, R2 = 0.49). A closer look at the data, however,
shows that there is no significant relationship between depth and nematode species
richness within each of the 200–6000 and > 6000 m depth ranges (P > 0.1). The
overall decrease across the full ocean depth range is therefore due to lower species
richness values in hadal trenches (mean ES(51) = 16) relative to slope and abyssal
environments (mean ES(51) = 33).

Although at a glance these data suggest that species richness does not respond to
depth-related environmental gradients in slope and abyssal environments, it seems
more likely that the lack of trend reflects wide variation in bathymetric environmental
gradients across different locations in the Pacific Ocean. The apparently sudden
twofold decrease in nematode species richness observed as we cross the abyssal–
hadal trench boundary at ca. 5500–6000 m depth (Fig. 8.3) indicates that habitat-
related factors are limiting species richness in the oceans’ deepest environment.

Fig. 8.3 Nematode species richness (ES(51)) from 200 to 11,000m depth in the Pacific Ocean. The
dotted line indicates a significant negative correlation with depth (P < 0.0001, R2 = 0.49) across
the full depth range; however, there is no relationship with depth within each of the 200–6000
(empty circles, mean species richness= 33) and >6000 m depth ranges (filled circles, mean species
richness = 16). Note the paucity of data below 3000 m depth. (Data from Danovaro et al. 2008;
Danovaro et al. 2002; Frank Wenzhöfer, unpublished; Guilini et al. 2012; Lambshead et al. 2002;
Leduc et al. 2010b; Leduc and Rowden 2018; Leduc et al. 2012a; Leduc et al. 2016; Miljutin et al.
2010; Miljutin et al. 2011)
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Relative to abyssal plains, the limited extent of hadal trench environments as
well as their recent geological formation and isolation likely limit the size of the
species pool available for colonization. The greater frequency of physical disturbance
induced by turbidity flows in hadal trenches is also likely to limit local species
richness. These findings are not irreconcilable with the unimodal model relationship
between nematode species richness and productivity since habitat-related factorsmay
affect the general decline of available energy with increasing water depth. Also, food
input may be considered a disturbance at levels consistent with high organic loads.
To expand our understanding of these patterns, more data on species richness from
the full range of ocean depths (200–11,000 m) should be obtained. Our knowledge
has so far been hampered by the limited amount of data available for abyssal plains
(ca. 4000–6000 m) and hadal trenches (>6000 m) in particular.

Species richness from local to regional and global scales—Meiofauna species
number estimates in the deep sea is still fodder for rich debate. Lambshead (1993)
noted that local diversity of deep-sea nematodes is roughly the same as that of
polychaetes (which typically dominatemacrofaunal species richness and abundance),
but that nematode abundance is one order of magnitude higher. He concluded that
both local and global nematode diversity should therefore be about one order of
magnitude greater than macrofaunal diversity. It has since been shown that when all
meiofaunal individuals from a site are identified (as opposed to the common practice
of estimating species richness based on relatively small subsamples) local nematode
and harpacticoid species richness is indeed much greater than polychaete species
richness. Perhaps the best illustration of this comes from a study conducted at an
abyssal site in the Angola basin, where a total of 600 harpacticoid copepod species
were identified based on the identification of 1804 adult specimens, with over half of
species represented by a single specimen (George 2014). Extrapolating this order of
magnitude difference between meiofaunal and macrofaunal species richness at the
global scale, however, relies on the potentially flawed assumption that meiofaunal
species turnover is also high.

Based on a dataset from the equatorial central Pacific Ocean, Lambshead and
Boucher (2003) later showed that his estimate of nematode species globally had to
be revised down because “similar patches with similar species are duplicated over
large areas resulting in a more modest regional diversity.”

In other words, while local diversity is high, turnover diversity and hence
regional/global diversity are lower than previously assumed. This pattern of very
high local species richness but limited spatial turnover was also demonstrated in a
study where the identification of 1850 nematode specimens from a single bathyal site
on Chatham Rise, New Zealand continental margin, revealed 247 morphospecies,
which represents about a third of all 775 morphospecies species identified from the
entire Chatham Rise (Leduc et al. 2010a, 2012a).

The assumption of high turnover diversity in deep-sea meiofauna communities
followed from the premise that meiofauna have limited dispersal capabilities and
therefore restricted geographical distributions. However, the dispersal potential of
meiofauna may have been underestimated, at least in shallow-water environments
where processes such as zoochory, rafting, drifting, and anthropogenic vectors can
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disperse meiofaunal organisms across vast distances (Ptatscheck and Traunspurger
2020). On the other hand, the presence of cryptic species complexes suggests that
morphospecies distributions may hide true species distributions, resulting in high
turnover diversity that can only be detected through molecular analysis. Although
the nature and extent of transport mechanisms are less clear in the deep sea, some
molecular data provide support for widely distributed deep-sea nematode species
(Bik et al. 2010; see next Sect. 8.5 “Connectivity and dispersal”).

Of great interest in determining local to global diversity patterns of meiofauna
is the notion that biogeographic distribution patterns of species are likely driven by
the size of the organism in the context of the ubiquity model of global distribution.
Azovsky et al. (2020) demonstrated how body size is the “master trait” that shapes
global biogeographic patterns of marine micro- and meiofauna. The smallest of
organisms, such as flagellates, tend to show low endemicity, high regional but low
global diversity, and relatively little sign of dispersal limitation. Larger organisms
within the size range investigated, such as harpacticoid copepods, on the other hand
are posited to have higher endemicity and more restricted global distributions caused
by dispersal limitation. These findings support the idea that body size is shaping
global biogeographical patterns toward higher predictability and greater dispersal
limitation for larger organisms (Azovsky et al. 2020).

Scalability of drivers andmechanisms of diversity distributions—While the size of
the organisms seems important in shaping diversity patterns, the scales at which envi-
ronmental variables operate and drive communities in the deep seamay vary substan-
tially. A meta-analysis of deep-sea meiofaunal studies (Rosli et al. 2018) has shown
that most of the variability in communities occurs at the largest (100–10,000 km)
and smallest spatial scales (0.001–0.1 m), while the effect of intermediate scales
(0.1 m–100 km) is usually less pronounced. At the small scale, gradients in meio-
faunal communities are primarily linked with vertical gradients in food and oxygen
availability into the sediments (see also Ingels and Vanreusel 2013). However, at the
scale of ocean basins, evolutionary/geological history, dispersal barriers, and envi-
ronmental variables such as surface productivity may all act to increase variability.
Although studies have shown that some meiofaunal species can have distributions
spanning several 1000s of km within an ocean basin (Ingels et al. 2006; Lambshead
and Boucher 2003; Vermeeren et al. 2004), minimal overlap in species distributions
across basins has also been observed (Fonseca et al. 2007; Ingels et al. 2006).

The causes behind the high local species richness of meiofauna in some parts of
the deep sea are not yet fully understood.While we know that the relatively low levels
of productivity in the deep sea should slow down rates of competitive exclusion, thus
promoting species coexistence, we have very little information on the nature and
extent of competitive interactions and niche segregation among meiofaunal species.
The limited information that is available showshigh levels of horizontal heterogeneity
in meiofaunal communities at the centimeter scale, with the size of patches varying
from less than 4–64 cm2 depending on the mobility of different taxa (e.g., nematodes
vs copepods and small sedentary nematode species vs large and mobile nematode
species) (Gallucci et al. 2008b). Therefore, if we assume that competitive exclusion
takes place among meiofauna, we could expect that a greater number of species
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can coexist in a given area of sediments when species sizes decrease, which could
partly explain the high species richness in the deep sea relative to shallow-water
environments. Microhabitat heterogeneity resulting from steep vertical gradients in
food availability, oxygen and sulfide concentrations as well as particle size diversity,
and biogenic structures are also likely to play an important role.

It has been shown that closely related, cryptic meiofaunal species can differ
markedly in their competitive abilities, response to environmental stressors, and
trophic preferences despite having almost identical morphologies (De Meester et al.
2012, 2015). This indicates that a considerable degree of niche segregation may be
occurring, which would facilitate species coexistence. While it will be difficult to
investigate niche segregation among deep-sea species, predictions based on species
size and mobility could be tested using existing data sets.

Major challenges, which have prevented further investigations of deep-sea species
distributions, particularly at ocean basin and global scales, include the time-
consuming nature of species identifications, the paucity of taxonomic expertise, the
large number of species (many of which are undescribed), and the limited geograph-
ical extent of most deep-sea investigations. Although methodologies such as envi-
ronmental DNA have been touted as potential solutions to this problem, sequence
libraries remain far from complete and most sequence data obtained from deep-sea
sediment samples cannot be assigned to species (Laroche et al. 2020). Taxonomists
working on deep-sea meiofaunal taxa should therefore give sequence data in their
species descriptions a high priority so tomaximize the uptake of their research among
the wider scientific community.

8.5 Connectivity, Dispersal, and Origins of Deep-Sea
Meiofauna

The knowledge on population connectivity for deep-sea meiofauna taxa is limited in
general. While meiofauna are relatively abundant in the deep sea, most meiofaunal
species are rare, with a distinct lack of abundant, dominant species. This results in
high species richness in deep-sea assemblages. The exceptions to this impediment
may be presented by foraminifera, copepods, and nematodes, which can reach abun-
dances sufficient for such studies. Furthermore, deep-sea meiofauna have a tendency
for dwarfism, which is an additional hampering factor for widespread connectivity
studies on bathyal, abyssal, and of course hadal meiofauna species.

Despite the fact that the deep seafloor comprises the largest contiguous biotope
on Earth, deep-sea populations of benthic species are in general fragmented with
evidence of cryptic speciation (Taylor and Roterman 2017). Benthic species from
sediments show in general a more restricted dispersal compared to species from
hard substrate, demersal, or pelagic habitats. Obviously species with pelagic and/or
feeding (planktotrophic) larvae aremore dispersive than other larval types (Baco et al.
2016). There is controversy as to the importance of geography versus bathymetry as a
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barrier for gene flow (Havermans et al. 2013; Zardus et al. 2006). Most studies seem
to support the notion that vertical divergence between deep-sea populations is more
pronounced than horizontal divergence over similar scales (reviewed in Taylor and
Roterman 2017). The mechanisms responsible for this pattern are not clear at present
but could relate to differences in currents and oceanographic patterns. This is not just
of scientific relevance: Growing interest in deep-sea resources makes connectivity
research critical for understanding themechanisms that regulate population sizes and
its function in the context of spatial management and mitigation of recovery from
anthropogenic disturbance.

In contrast to themajority ofmacrobenthic species, connectivity inmeiofauna taxa
is not achieved through planktonic larval stages, and the dispersal processes are still a
major gap in our understanding. Nematodes carry and/or lay eggs, while harpacticoid
copepods have naupliar larvae but are still mainly restricted to a benthic lifestyle
[despite documented emergence patterns of copepods, see Thistle et al. (2007)].
Also, other meiofauna taxa tend to lack life stages with pelagic dispersal capacities.
While some shallow-water species exhibit a relatively wide geographic distribution,
especially for opportunistic taxa (Bhadury et al. 2008; Sahraean et al. 2017), evidence
is growing, based on an increasing number of molecular-based studies, that so-
called cosmopolitan species are part of species complexes with a high degree of
cryptic speciation (Bhadury et al. 2008; Cerca et al. 2018; Derycke et al. 2007,
2005; Sahraean et al. 2017). While these cases demonstrate a “hidden diversity” in
shallow waters, for the deep sea, information is scant so far. Hauquier et al. (2019)
demonstrated that gene flow and cryptic speciation can be very different among
nematode species on the deep Antarctic shelf (300–500m) depending onwhether the
species is a surface dwelling or deep burrowing species, with the latter showing lower
geneflow.There are stillmanyquestions surroundingour understandingofmeiofauna
distributions and dispersal, especially in the deep sea. It seems that the meiofauna
paradox is not somuch a paradox, but rather a paradigm fed by a lack of understanding
and underestimation of true species diversity and dispersal mechanisms (Cerca et al.
2018; Ptatscheck and Traunspurger 2020).

It is little understood to what extent the underestimation of species diversity
and dispersal mechanisms holds for deep-sea meiofauna. Here, no major environ-
mental drivers or obvious dispersal barriers are present, except for depth, certain
topographies, water mass characteristics, and surface productivity. According to a
study by Bik et al. (2010), Enoplids, an important nematode order, are not repre-
sented by endemic deep-sea lineages nor do their populations cluster according to
bathymetry or geography. The study provides evidence for several cosmopolitan
marine species at least at a trans-Atlantic scale. Moreover, Lecroq et al. (2009) and
Pawlowski et al. (2007) found a wide bathymetric and geographic distribution of
benthic foraminifera species in the deep sea. In contrast to shallow-water benthic
foraminiferans, the common species Epistominella exigua showed a remarkably
high genetic similarity between Arctic, Atlantic, Pacific, and Antarctic populations,
implying a true cosmopolitan distribution (Lecroq et al. 2009). Pawlowski et al.
(2007), on the other hand, discovered very limited genetic differentiation between
Arctic and Antarctic specimens of two species (E. exigua, Cibicides wuellerstorfi),
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suggesting huge metapopulations for these species extending from pole to pole
across vast bathymetric ranges (1351–4975 m, 573–4407 m, respectively). They
also found genetically similar specimens of the same species in the North Atlantic
Ocean, suggesting distributions of the species beyond the Arctic and Antarctic.

It is also remarkable that non-chemosynthetic meiofauna taxa dominate deep-sea
cold seeps or hydrothermal vents, in contrast with what has been observed for macro-
fauna and megafauna (Vanreusel et al. 2010; Zeppilli et al. 2018). Several studies
have shown that meiofaunal species recorded from chemosynthetic environments are
also distributed across proximate and distant habitats, suggesting that populations
close to these chemosynthetic systems can be the result of a continuous colonization
from adjacent areas (Gollner et al. 2015 and references therein; Zeppilli et al. 2018).
A study by Gollner et al. (2016) based on the analysis of mitochondrial DNA of nine
dirivultid copepod species occurring at hydrothermal vents in different ocean basins
suggests wide dispersal capacity for all species. Despite different geological settings
and wide geographic distances, the vents were occupied by these same species indi-
cating high population expansion and high connectivity of these copepod populations
with great dispersal capacity.

On the other hand, natural disturbance events (such as volcanic eruptions) at
these ephemeral and harsh environments may prevent settlement and successful
arrivals. They may even wipe out entire populations, thereby affecting realized rates
of dispersal of these hydrothermal species. The authors put forward various reasons
for the overall, large-scale genetic exchange between populations:

(1) ocean current regimes may favor dispersal of these copepods since they have
lecitotrophic nauplii and feeding copepodites that have been observed in the
water column above vents;

(2) intermediate habitats between vents may be used as stepping stones, since vent
copepods have been observed up to 1 km away from active vents; and

(3) the potential of biological traits such as lecitotrophy and directed migration
during current entrainment may support successful dispersal (Gollner et al.,
2016).

Very little is known about the evolutionary origins of deep-sea meiofaunal taxa.
Most nematode genera are globally distributed, and most are found both in shallow
and deep-sea settings, although some genera occur mostly (e.g., Acantholaimus) or
exclusively (e.g., Bathyeurystomina, Manganonema, Thelonema, Cricohalalaimus)
in the deep sea. Some recently discovered genera are so far only known from hadal
trench environments (>6000m, e.g.,Lamyronema,Maragnopsia). Relative tomacro-
fauna, little is known about the depth distribution of meiofaunal species. So far,
forty-eight nematode species are known to have a depth range over 2000 m, and half
a dozen have a depth range exceeding 4000 m (Miljutin et al. 2010), which suggests
that species ranges for nematodes may be wider than for macrofaunal species.

On the other hand, phylogenetic analyses of deep-sea and shallow-water nema-
todes suggest repeated and recent interchanges between the deep-sea and intertidal
zone and provide evidence for multiple, independent invasions of both deep-sea and
shallow-water habitats (Bik et al. 2010). This supports the suggestion of Holterman
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et al. (2008) that habitat transitions are frequent and common in this taxon. Apart
from generally smaller body size, there is no evidence for morphological adaptations
specific to deep-sea meiofaunal taxa, although it seems likely that physiological and
enzymatic adaptations have developed (Zeppilli et al. 2018).

Given the low abundances and high species richness of meiofauna taxa in the deep
sea, our knowledge on species distribution and population connectivity is growing
only slowly. To solve questions related to the dispersal, radiative adaptation, and
genetic diversity of deep-seameiofauna, high-throughput sequencing such as genome
scanning approaches,metagenomics ormetatranscriptomics is very important (Cerca
et al. 2018). A metabarcoding approach applied at a wide geographic scale in the NE
Pacific abyss provided some insights regarding the distribution of deep-sea nema-
todes and the tentative mechanisms defining their community structure (Macheri-
otou et al. 2020). From a phylogenetic perspective, nematode assemblages from the
abyssal plains in the Pacific Clarion Clipperton Fracture Zone were characterized by
high relatedness.

But factors controlling phylogenetic structuring, or the relative dominance thereof,
remain mostly unknown and can differ between genera. Areas located at a few
hundreds to thousands of km distance showed a high degree of rarity represented
by a large proportion of unique single DNA sequences recovered from a high-
throughput molecular analysis (~85% of the entire sequence assemblage). These
unique Amplicon Sequence Variants (ASV) have a higher degree of re-usability,
reproducibility, and comprehensiveness, and are increasingly replacing Operational
Taxonomic Units (OTU) as the standard unit of marker-gene analysis: They can be
based on single nucleotide changes instead of a cluster analysis using fixed dissim-
ilarity thresholds (Callahan et al. 2017). However, interpretation of distributional
isolation or connectivity between geographical areas, based onASV’s units, remains,
as yet, problematical.

8.6 Conclusions, Thoughts, and Future Perspectives

We attempted to address a common theme that is often discussed in deep-sea meio-
fauna research: How connected aremeiofauna in the deep sea?We used four different
topics to illustrate the advances in these research frontiers:

• trophic interactions,
• biodiversity and ecosystem function,
• distribution and diversity patterns, and
• connectivity.

In the field of deep-sea trophic ecology, it is obvious that meiofauna is inherently
linked to the dominant food source—marine snow, and the remnants and microbes
that travel to great depths to feed the benthos. Meiofauna respond to these fluxes of
particulate rain coming down. However, it is also becoming clearer that in the deep
sea, meiofauna are not exclusively reliant on phytodetrital food sources, but that they
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can acquire energy frommicrobial and chemosynthetic sources through consumption
or symbiosis. Innovative modeling approaches together with stable isotope infor-
mation (from natural data or experiments whereby food sources are labeled) have
brought a better understanding of energetic pathways and carbon cycling and what
role meiofauna plays in them. So far, habitat characteristics and their respective envi-
ronmental conditions seem to affect to a great degree how food webs function and
howmuch energy is transferred through the meiofaunal component to higher trophic
levels. However, our understanding of dietary and metabolic mechanisms for meio-
fauna species is still limited, exacerbated by the complexity of obtaining in situ data.
In addition, the observation that many meiofauna exhibit dietary plasticity and the
fact that their energetic requirements are not met based on our current understanding
of meiofauna metabolisms and food availability lays open a field of study that is
certainly worth pursuing. Research into food selectivity and the energetic mecha-
nisms used by meiofauna to cope with the general oligotrophy in the deep sea will
give us a better idea of how meiofauna contribute to overall functioning of the deep
seafloor and give much-needed insights into the adaptation of deep-sea organisms in
general to the deep sea.

In recent years, insights into meiofauna biodiversity and ecosystem function
patterns have drastically increased as more data from different deep-sea habitats that
may cover larger swaths of seafloor become available. Also here, the connection
between meiofauna, their environment, and other organisms is essential in shaping
the observed patterns. This is particularly the casewhen assessing ecosystem function
using microbial activity and biomass/production, or biogeochemical processes such
as nutrient consumption and cycling. The paradigms associated with the idea that
facilitative interactions may play a very important role, and according to some, cause
an exponential relationship betweenmeiofauna biodiversity and ecosystem function,
must receive further attention in future studies. As more data from full water-depth
spectra become available, amore complete picture of this relationship should become
more apparent (e.g., Fig. 8.3).

Distribution and diversity patterns are perhaps the best-studied topics in deep-
sea meiofauna research. Small-to large-scale studies, ranging from a very specific
sampling area to sometimes global-scale assessments, have shown that meiofauna
communities respond to environmental conditions in relatively predictable ways.
However, newgenetic information and insight into cryptic species have demonstrated
that distribution patterns of deep-seameiofauna species that are based onmorpholog-
ical identifications alone are smaller than originally thought. In other cases, globally
distributed meiofauna species in the deep sea have been confirmed by molecular
studies. Questions as to why distributions of different meiofauna species can differ
so drastically have not been answered satisfactorily, but recent insights into body-size
distributions suggest that being small may positively influence large-scale dispersal
and distribution ranges. Further study into why meiofauna diversity is high in the
deep sea is also needed. Ecological theory has been used to explain diversity patterns
to a great extent, but our understanding of speciation and niche differentiation for
meiofauna in the deep sea does not seem entirely consistent with resource ecology
as used for larger organisms such as macrofauna and megafauna.
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In the field of meiofauna connectivity research in the deep sea, great advances
have been made in the past few years. Yet, the contrast between species that have
wide distributions and high gene flow between distant locations, and species that
have very limited distributions remains unexplained. Rarity seems to be the norm in
the deep sea, with low abundance of many unique DNA sequences in any particular
area, but some species do not answer to that paradigm. The evolution and origin of
deep-sea meiofauna are relatively unstudied, but some studies suggest that repeated
exchange between shallow waters and the deep sea lie at the cause for the large depth
ranges observed for some meiofauna species. Morphological adaptations to living in
the deep sea (apart from perhaps smaller body size as a consequence of oligotrophy)
have not been posited, but it is likely that molecular or enzymatic adaptations exist
that allow successful exploitation of the unique challenges the deep sea and its various
habitats pose.

Concluding, it emerges that it is not particularly useful to make a distinction
between marine benthic ecology and deep-sea benthic ecology. This distinction
would contribute to the perception of the deep sea as a disconnected and atypical
ecosystem not relevant to society (Jamieson et al. 2020). Deep-sea benthic ecology
really is just benthic ecology since the deep sea comprises over 98% of the oceans’
depth range and most of the seabed surface.

Likewise, the study of deep-sea meiofauna is not some esoteric pursuit focusing
on organisms that are tiny, strange, difficult to study, and ecologically irrelevant.
On the contrary, meiofauna are a dominant component of benthic ecosystems and
although there is still much to learn, our knowledge has increased dramatically owing
to hundreds of deep-seameiofauna studies covering thousands of sites sampled across
the globe since the pioneering work of Wigley and McIntyre (1964).

Despite the progress, however, many questions about meiofauna in the deep sea
remain. It is not surprising that also the diversity of topics being studied in this
field seems to increase. Advances in technology and large integrative projects, often
involving multiple nations, are improving access to the deep sea and therefore also
access to meiofauna samples or ship time to conduct experiments. Advances in
analytical procedures, notably inmolecular science,with ever-decreasing sequencing
costs and increasing resolution and reliability, help to generate vast amounts of new,
previously inaccessible information. The multidisciplinary nature of the research
is another notable advance. Many studies take advantage of diverse fields of study
such as oceanography, modeling approaches, microbiology, geology, and biogeo-
chemistry, to answer questions on the meiofauna patterns we observe: How do meio-
fauna organisms live and function in the largest, and therefore most characterizing
environment on Earth—the deep sea?
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Chapter 9
Polar Meiofauna—Antipoles
or Parallels?

Jeroen Ingels, Christiane Hasemann, Thomas Soltwedel, and Ann Vanreusel

Abstract At opposite ends of our world lie the poles. In the North, the Arctic, an
ocean surrounded by coasts; in the South, the Antarctic continent surrounded by an
ocean that separates it from the nearest landmasses. At first glance, the poles could
not be more dissimilar owing to their contrasting location, geography, and tectonic
and evolutionary history. The amplitude and types of ice cover, though differing
between the poles, are influenced by the same climatic, atmospheric, and hydro-
dynamic processes that affect the entire Earth. Freshwater influx into their coastal
areas too—beyond the effects of glaciological changes and dynamics such as glacier
melt and increasing meltwater discharges—is different: in contrast to the Arctic,
the Antarctic continent and sub-Antarctic islands lack major rivers. However, their
latitudinal range and low temperatures, ice shelves, icebergs, sea ice, impacts from
tidewater and land-based glaciers, significant seasonal variation in light intensity
and, hence, primary productivity, offer parallel environments for organisms that have
adapted to such conditions. Althoughwe knowmuch about the similarities and differ-
ences from an environmental perspective, there are still many unknowns about how
benthic communities, especially themeiobenthos, from both regions compare. In this
chapter, we provide an overview of the contrasts and parallels between Arctic and
Antarctic meiobenthos and place it into context of their extreme habitats. Following
a brief account of Arctic and Antarctic evolution and the historical study of their
faunas, we (i) compare how extreme polar conditions affect meiofauna across four
main habitats: polar coastal areas and fjords, continental shelves and ice shelves, the
deep sea, and sea ice, and we (ii) discuss the implications of climate change on meio-
fauna in these habitats. Reflecting on (i) and (ii) allowed us to identify frontiers for
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future research of polar meiofauna, which we put forward in the concluding sections
of this chapter.

9.1 An Old Continent and a Young Ocean—How Different
or Similar Are the Poles?

“Old” continent. The Antarctic is separated from other continents by at least
1000 km and surrounded by some of the deepest and coldest seas in the world.
In Palaeozoic times, the Antarctic was part of Gondwana, but continental drift in the
Early Jurassic eventually separated an Antarctic continent from South America by a
deep-water passage 23–32 million years ago (Lawver et al. 2014; Thomson 2004).
Significant cooling of theSouthernOcean can be traced back to about 40million years
ago (Clarke and Crame 1992). Separation continued, opening the Drake Passage,
leading to the appearance of theAntarcticCircumpolarCurrent (west to east) between
22 and 17 million years ago and the development of a separate Antarctic fauna,
including meiobenthos (Crame 1999, 2014; Knox 2006). Along the northern border
of the Antarctic Circumpolar Current, the cold Antarctic waters mix with the warmer
sub-Antarctic waters forming the Antarctic Convergence (41–61° S). This maritime
Polar Front, together with steep temperature and productivity gradients, the long
period of isolation, and the occurrence of succeeding glacial and interglacial periods
drove evolution and has led to distinct patterns in diversity and biogeography, with
endemism on different taxonomic levels being a common phenomenon in Antarctic
waters.

However, despite its depth, the Antarctic shelf has seen significant numbers of
major andminor glacial advances in the last 2.6million years, and up until about 11.7
thousand years ago, affecting benthic fauna. The origin and evolution of Antarctic
benthos has therefore intrigued scientists for a long time and several hypotheses have
been put forward. It may represent a relict autochthonous fauna, or consist of (i)
eurybathic species derived from adjacent deep-water basins, (ii) abyssal species and
sub-Antarctic species of predominantly northern origin, or (iii) species ofMagellanic
origin which have migrated to Antarctica via the Scotia Arc and vice versa (Knox
2006).

“Young” Ocean. With three million years, the Arctic ocean is a relatively young
ecosystem that is regulated to a large extent by sea-ice cover (Clarke and Crame
2010; Grebmeier and Barry 1991). Hence, the period in which fauna has had the
opportunity to generate distinct biogeographic and diversity patterns has been much
more limited and shaped by recent glacial and interglacial processes. The Arctic seas
comprise the waters over the continental margin of numerous adjacent shelves as
well as the Barents and Bering Seas (Piepenburg 2005). Currently, the Arctic seas
are characterized by very low, but relatively constant, water temperatures, and long-
lasting seasonal ice cover. However, these seas were under the influence of temperate
climate conditions throughout theMiocene (ca. 23 to 5million years ago). Until then,
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theArctic Oceanwas largely ice-free andwas connectedwith the Pacific andAtlantic
oceans. The drastic decrease in sea temperatures started approximately four million
years ago and intensified at the beginning of the Pleistocene (about 1.8 million years
ago); a period that was characterized by alternations of cold glacial and warm inter-
glacial climate conditions. The sea-level changes between these alternations caused
the Arctic shelf areas to dry up or become covered by glaciers in the glacial intervals.
In interglacial periods, the last of which started around 13,000 years ago, the environ-
ment was recolonized. These fluctuating processes, including massively destructive
ice sheet incursions and subsequent recolonizations from relict populations, have
shaped the evolutionary history of the contemporary Arctic fauna (Clarke 2003;
Clarke and Crame 2010).

9.2 Brief Historical Perspective on Polar Meiobenthic
Research

In the last few decades, a wealth of information has been obtained from meiobenthic
studies in the Arctic and Antarctic regions, but polar meiobenthic research is not
limited to the late twentieth and twenty-first centuries. The earliest Antarctic expe-
ditions that yielded meiofauna information date back to the late nineteenth and early
twentieth centuries, the Heroic Age of Antarctic Exploration (1897–1922). About
17 expeditions generated a vast number of samples and data, many of which served
extensive taxonomic treatises. However, quantitative comparisons were challenging
owing to the different sampling techniques and the explorative nature of sampling.
Sampling was not necessarily based on detailed spatial sampling strategies or driven
by ecological hypotheses, but rather determined by discovery and documentation
as main purposes. For instance, the first Antarctic scientific expedition “Expedition
Antarctique Belge 1897–1899”1 resulted in many scientific reports on meiobenthic
taxa,2 including Nematoda (De Man), Copepoda (Giesbrecht), Ostracoda (Müller),
Tanaidacea (Monod), and Turbellaria (Böhmig). Apart from continuing taxonomic
treatises, a hiatus followed until late in the second half of the twentieth century, when
interest renewed nationally and internationally, leading to multiple sampling efforts
and expeditions. These were mostly associated with the development of multidisci-
plinary research programmes at research stations or based on deep-sea expeditions,
with mainly international consortia using large research vessels capable of breaching
annual sea ice to access various regions of the Southern Ocean. Forty-two countries
operate seasonal and year-round research stations in the Antarctic with most of them
having direct access to the coastline. Only a few stations were established prior to

1 The Belgian Antarctic Expedition under the command of A. de Gerlache de Gomery – Summary
Report of the Voyage of the Belgica in 1897–1898-1899; digitally available at https://core.ac.uk/
download/pdf/80828963.pdf
2 The data and scientific reports from the Belgian Antarctic Expedition (1897–1899) are digitally
available via http://www.vliz.be/en/imis?dasid=4228&amp;doiid=68.

https://core.ac.uk/download/pdf/80828963.pdf
http://www.vliz.be/en/imis?dasid=4228&amp;amp;doiid=68
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the 1940s, followed by a substantial post-second world war expansion. Ecological
research only became more prevalent much later, with several studies appearing in
the 1980s and 1990s when the drive to advance ecological knowledge of the envi-
ronment from an ecosystem perspective took hold. To the best of our knowledge,
early ecological papers on Antarctic meiofauna started to be published in the 1980s,
intensified in the 1990s and became more prevalent in the twenty-first century.

Similar to the situation in the Antarctic, scientific interest in the Arctic has
increased dramatically since the 1980s (Dayton 1990; Dayton et al. 1994; Piepen-
burg 2005), and is now seeing a veritable revival, owing to the reduced annual ice
cover as a consequence of climate change, the opening up of the Arctic Ocean,
and the subsequent economic and ecological consequences. This has been resulting
in numerous larger national and international research projects and programmes.
Ecological meiobenthic studies in the Arctic may well outnumber equivalent studies
in theAntarctic (Table 9.1 for deep-sea studies). Perhaps even lesser known is the fact
that the Arctic seas off Russia and Siberia had been extensively explored throughout
the twentieth century, but the resulting—mostly Russian—publications remained
relatively inaccessible to the international community until English translations of
these works were published in the 1960s and 1970s, whereas more recently, taxo-
nomic and ecological studies of meiofauna from Eurasian-Arctic areas are mostly
available in international journals.

9.3 Meiofauna Along Polar Seascapes—From Coasts
to Shelf and the Deep Sea, Including Sympagic Ecology

How are the extreme polar conditions affecting meiofauna? We will address four
main habitats: subtidal meiofauna from sheltered bays and fjords connected with
glaciers, continental shelf meiofauna and communities associated with ice shelves,
sympagicmeiofauna, and deep-seameiofauna.Wewill look for parallels and contrast
between polar regions (Table 9.2).

9.3.1 Polar Coastal Areas and Fjords

Despite the differences in geological history, polar coastlines share several geomor-
phological features such as the numerous sheltered bays and fjords, but also the
exposed coarse-grained sandy and gravel-dominated beaches (Fogg 1998). Polar
and subpolar coasts are largely protected from strong wave activity by the develop-
ment of sea ice and a shore-fast ice-foot in winter, as well as ice shelves where they
occur. However, polar coasts experience strong erosional forces from the seasonal
freeze and melt cycle of sea ice and when wave activity forces sea ice to scour the
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Table 9.1 Meiofauna studies in Arctic and Antarctic regions > 200 m water depth

Region Sampling dates Water depth
range (m)

Metazoan
abundances

References

Northern polar regions (north of 75° N)

SE Beaufort Sea,
70–72° N

October/November
2003; June–August
2004

250–530 23–3386 Bessière et al. (2007)

Eastern
Greenland,
Greenland
Abyssal Plain, 75°
N

October/November
1965

250–2250 550–1470 Thiel (1975)

E Greenland
slope, 75° N

July 2000 656–3033 71–209* Fonseca and
Soltwedel (2007)*

Chukchi Sea
slope, 75–77° N

September 2010 393–2300 235–628 Lin et al. (2014)

S Fram Strait,
76–77° N

August 1975 3208–3709 186–1068 Dinet (1979)

W and E Fram
Strait, 76°N, 79°
N

August 2006 ~2000 242–2001 Fonseca and
Soltwedel (2009),
Fonseca et al. (2010)

Cross Arctic
Section, 76–90° N

September 1991,
July/August 1994

540–4273 28–639 Vanreusel et al.
(2000), Renaud et al.
(2006)*

W Novosibirskiye
Island, Nansen
Basin, 77–79° N

September 1993 1935–3237 418–700 Vanaverbeke et al.
(1997)

E Fram Strait, 79°
N

Summer 2000–2014 1280–5500 148–3409 Hoste et al. (2007);
Gallucci et al.
(2008a, b, 2009),
Guilini et al. (2011)*,
Hasemann and
Soltwedel (2011),
Hasemann et al.
(2013, 2020),
Soltwedel et al.
(2013, 2017, 2020),
Gorska et al. (2014,
2017)

E Greenland
slope, 79° N

July 2018 1056–2558 83–245 Hoffmann et al.
(2018)

(continued)
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Table 9.1 (continued)

Region Sampling dates Water depth
range (m)

Metazoan
abundances

References

Kara Sea, 79–80°
N

September 2015 241–335 378–1519 Portnova and
Polukhin (2018),
Garlitska et al.
(2019)

Yermak Plateau,
80–82° N

July/August 1999 744–3020 175–568 Schewe and
Soltwedel (2003)

Cross Arctic
Section, 80–88° N

August/September
1991

258–4427 2–211 Kröncke et al. (2000)

Yermak Plateau,
81–82° N

1997, 1999, 2003,
2006

635–1232 136–601 Soltwedel et al.
(2009)

Yermak Plateau,
81–83° N

July 1997 481–4268 220–3955 Soltwedel et al.
(2000)

NE Svalbard,
Nansen Basin,
81–82° N

July 1980 342–3920 342–1330 Pfannkuche and
Thiel (1987)

Central Arctic,
Alpha Ridge,
Lomonosov
Ridge, 84–88° N

July 1998 1270–3170 29–94 Schewe (2001)

Central Arctic,
84–90° N

July–September
1996

864–4187 68–247 Schewe and
Soltwedel (1999)

Molloy Deep, 79°
N

1997, 1999, 2000,
2001

5416–5589 935–1295 Soltwedel et al.
(2003)

Southern polar regions (south of 60° S)

WAntarctica,
Drake Passage,
60–62° S

January/February
2002

2274–5194 75–2731 Gutzmann et al.
(2004)

Weddell Sea, 61°
S

April 2003 307 3409 Ingels et al. (2006)

Drake Passage,
Weddell Sea,
62–64° S

January–March 2015 437–518 3049 -7196 Hauquier et al.
(2015)

King Haakon VII
Sea, 62–70° S

December 2007,
January 2008

1935–5323 704–1193 Lins et al. (2014),
Guilini et al. (2013)*

Weddell Sea,
63–64° S

February–April 2002 4541–4995 317–678* Sebastian et al.
(2007*)

E Antarctic
Peninsula,
Weddell Sea, 65°
S

March 2002,
December 2006,
January 2007

242–4068 381–1792 Rose et al. (2015)

(continued)
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Table 9.1 (continued)

Region Sampling dates Water depth
range (m)

Metazoan
abundances

References

E Antarctic
Peninsula, Larsen
B Area, Cold
Seep, 65° S

January 2007, March
2011

818–820 2220–4205 Hauquier et al.
(2011, 2016)*

Lazarev Sea,
66–71° S

January 1982 227–3580 111–2977 Parulekar et al.
(1983)

Ross Sea, Scott
and Admiralty
seamounts,
67–75° S

March 2008 849–3543 236–7023* Leduc et al. (2012)*

E Antarctica,
Prydz Bay, 69° S

February/March
2006

525–722 120–320 Ingole and Singh
(2010)

Weddell Sea,
Kapp Norvegia,
71–72° S

January–March 1989 211–2080 815–5122 Vanhove et al. (1995,
1999)*

Ross Sea, 72–74°
S

November–January
1994

432–587 192–1191 Fabiano and
Danovaro (1999)

Weddell Sea,
Halley Bay,
74–75° S

January–March 1989 339–1958 792–3119 Herman and Dahms
(1992)

*only nematode data

shores. The short summers are mainly dominated by wave and sea-ice erosion at
high latitudes and by wave activity at lower latitudes (Hansen et al. 2014).

Polar fjords. Most of the Arctic fjord research on meiofauna has been conducted
around the Svalbard archipelago (mainly Spitsbergen). In the Antarctic, studies are
limited to a few areas close to research stations. The few meiofauna studies that
document coastal Antarctic fjord meiofauna have predominantly focussed on Potter
Cove, a shallow bay under the influence of the Fourcade Glacier and Admiralty
Bay, both on King George Island (Mayer 2000; Pasotti et al. 2012, 2014, 2015a, b;
Veit-Köhler 2005, 2008). Potter Cove sediments contain richmeiofauna assemblages
(18 phyla/orders), with nematodes dominating the metazoan fraction (90–95% abun-
dance (Veit-Köhler 2005)), and peak meiofaunal densities of 1.5 × 106 ind. m−2,
despite the high disturbance levels in the bay (compared to Andvord Bay on the
Western Antarctic Peninsula (WAP) for instance). Likewise, Martel Inlet on King
George Island exhibited very high meiofauna densities (3.5–4.1 × 106 ind. m−2),
mainly driven by sedimentary features and food availability (de Skowronski and
Corbisier 2002).

Food input and food reserves, even in winter, do not seem limiting for meiofauna
(Pasotti et al. 2014), a pattern that may be related to the food bank hypothesis. This
hypothesis, originally developed for the shelf systems along the Western Antarctic
Peninsula (Mincks et al. 2005), postulates that phytodetrital material deposited from
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the summer bloom provides a sustained source of food for benthic detritivores during
winter months, when organic matter flux from the water column is extremely low.

On King George Island, the retreat of Fourcade Glacier has resulted in meiofauna
dominating benthic colonization following glacial melting (Pasotti et al. 2015a).
Glacial-related disturbance may enhance trophic diversity, most likely by allowing
continuous, rapid recolonization by diverse meiofauna (Pasotti et al. 2015b). Results
from stable-isotope tracer experiments suggested that different meiofauna can feed
selectively on the different food sources available, and that their trophic plasticity
allows them to exploit high Particulate Organic Carbon (POC) fluxes in this fjord-like
ecosystem (Pasotti et al. 2012). Meiobenthic abundance and biomass are frequently
positively correlated with POC flux, especially in low-current, fine-sediment habi-
tats similar to the WAP fjord basins and the open WAP shelf (de Skowronski and
Corbisier 2002; Lins et al. 2014). Greater POC flux enhances food availability and
carrying capacity for benthic detritivores in general, supporting also greatermeioben-
thic community abundance and biomass (Rex et al. 2006; Soltwedel 2000; Wei et al.
2010). High rates of terrigenous sedimentation may also alter the enhancing effects
of high POC flux by diluting food for detritivores and causing physiological stress
through burial (Lohrer et al. 2006; Norkko et al. 2002; Wlodarska-Kowalczuk et al.
2005).

In general, the steep environmental gradients created by sedimentation processes
and freshwater input are reflected in the benthos. From the open water towards
the inner part of a fjord, water depth and oceanographic conditions decrease while
glacier effects increase, reducing abundance, biomass, and diversity of meiofauna
taxa in the same way as for macrofauna. Patterns of decreasing density, biomass, and
biodiversity of meiofauna towards the active glacier have been observed in different
fjords on Svalbard (Kongsfjorden (79° N) (Jima et al. 2021; Kotwicki et al. 2004);
Adventfjorden (78° N) (Pawłowska et al. 2011; Włodarska-Kowalczuk et al. 2007,
2016); Hornsund Fjord (77° N) (Grzelak and Kotwicki 2012). The inner fjords close
to the glacier show low faunal abundance and biomass, independent of water depth
due to sedimentation of inorganic particles and sediment instability. Both nema-
todes and copepods seem to be affected, resulting in low densities or occasionally
even absence of these taxa. Despite the intense disturbance, no specialized nema-
tode assemblage has been reported in the area with strongest deposition of sediment
(Somerfield et al. 2006). The combined survey of meio- and macrobenthic commu-
nities in several of these studies showed a similar sensitivity to sediment instabilities
and physical disturbance caused by high sedimentation (Włodarska-Kowalczuk et al.
2007). This has also been demonstrated for the meiofauna (Giere 2009) and its domi-
nant components, the Nematoda (Leduc et al. 2012;Moens et al. 2013; Schratzberger
et al. 2009) and Copepoda (Guidi-Guilvard et al. 2009, 2014; Hicks 1984; Hicks and
Coull 1983) (for more details see Chap. 7 on effects, patterns and processes of distur-
bances on meiofauna). Biodiversity patterns in Arctic subpolar fjords are consistent
with general ecological predictions; high rates of terrigenous sedimentation (> 2 cm
year−1) cause intense burial disturbance, reduction of food availability (through food
dilution), and loss of habitat heterogeneity, yielding low species diversity and trophic
complexity in inner-middle fjords, with biodiversity increasing down fjord to the
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open shelf (Renaud et al. 2007; Syvitski et al. 1989; Wlodarska-Kowalczuk et al.
2005). Meiofauna abundance increases with increasing distance from the source of
disturbance caused by tidal glaciers (Grzelak andKotwicki 2012) and a clear environ-
mental gradient owing to glacial disturbance effects is reflected in distinct meiofauna
communities along Arctic fjords axes (Grzelak and Kotwicki 2012; Kotwicki et al.
2004; Somerfield et al. 2006).

While the same processes are at play in Antarctic fjords, preliminary data
and ecological theory suggest that here biodiversity forcing—particularly along the
WAP—differs from that in the Arctic:

• Terrigenous sedimentation rates appear to be more moderate in the middle basins
of WAP fjords; with for instance, 0.03–0.2 cm year−1 in the middle Andvord Bay
basin (Kennicutt et al. 2014; Powell and Domack 1995),

• Elevated productivity in the fjords is likely to offset moderate sedimentation stress
(Huston 1994)

• The middle-outer basins of WAP fjords are likely to contain high habitat hetero-
geneity resulting from juxtaposition of soft sediments and drop stones, and high
spatio-temporal variability in trophic resources resulting from seasonal phyto-
plankton blooms, krill falls, and whale faeces, and the cascade of macroalgal
detritus as well as the spatio-temporal trophic processes that influence the distri-
bution of these food sources when they descend to the seafloor (Ingels et al.
2021).

• Hypoxia/anoxia resulting from very high POC flux and/or limited bottom water
exchange reduces metazoan standing crop and body size in many benthic habi-
tats, including temperate fjords (Dias et al. 2002; Levin et al. 2009; Middelburg
and Levin 2009; Pearson and Rosenberg 1978). Although low oxygen levels and
reducing sedimentary conditions may not affect the standing stock of the nema-
todes to the same extent as other meiofauna, nematode community structure and
biodiversity are altered and despite rapid colonization by certain species, recovery
may be a lengthy process (Austen andWibdom 1991; Cook et al. 2000; Hua et al.
2006; Josefson and Widbom 1988; Levin 2003).

It is clear that habitat heterogeneity and processes such as disturbance, produc-
tion, and trophic interactions all work in concert on different spatial and temporal
scales in fjord ecosystems, which leads to a complex picture of observable patterns
in meiobenthic communities. All of these sources of heterogeneity may enhance
meiofaunal taxon diversity and trophic complexity in fjord basins and will affect
meiofaunal contributions to ecosystem processes (Ingels and Vanreusel 2013; Levin
and Dayton 2009; Snider et al. 1984; Vanreusel et al. 2010).

Remarkable—although similar as for macrofauna—is the absence of a response
in Arctic subtidal meiofauna to a marked seasonality in pelagic phytodetritus fluxes.
Włodarska-Kowalczuk et al. (2016) suggested that the presence of organic matter
reserves in sediments is large enough to sustain the detritus feeders on a year-round
basis, in parallel with the food bank hypothesis formulated for Antarctic shelf sedi-
ments (see above; Mincks et al. 2005). Variations in meiobenthic population density
and structure seem to be regulated by input and availability of organic matter and
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less so by water temperature. The absence of a “winter decline” in densities supports
the idea that food is not limiting in the Antarctic coastal areas.

The densities of meiofauna taxa can be significantly higher in Antarctic than
in Arctic subtidal areas (de Skowronski and Corbisier 2002). Occasionally, densi-
ties up to 18,000 ind. 10 cm−2 have been recorded (Vanhove et al. 2000), while in
the Arctic, the maxima recorded so far lie below 4000 ind. 10 cm−2 (Table 9.3).
However, a high spatial variability in Antarctic areas is characteristic too (Stark
et al. 2017, 2020), similar as for Arctic fjords in relation to glacier impacts, but
very much dependent on the local conditions. The comprehensive study by Stark
et al. (2020) on the meiofauna (focussing on nematodes and copepods at locations
around Casey station, East Antarctica, and comparing other Antarctic meiobenthos
studies) suggested that within the Antarctic region, differences in primary produc-
tivity, sea ice, and temperature define the meiobenthic differences observed, and
encompass significant spatial variability in nearshore environments. Here, the colder
and more ice-prone area around Casey station in East Antarctica resulted also in
lower abundances and diversity compared to those of the Antarctic Peninsula region.

Coarse sediment beaches—like elsewhere in the world—do not seem to be
a suitable habitat for meiofauna taxa (Włodarska-Kowalczuk et al. 1998), except
for Turbellaria which can occasionally be found as the dominant taxon (Kotwicki
et al. 2005; Urban-Malinga et al. 2005). Kotwicki et al. (2005) studied latitudinal
patterns in meiofauna biodiversity in sandy littoral beaches and found that both
the Arctic and Antarctic beaches exhibited much depressed densities compared to
temperate, subtropic and tropic areas. In addition, and most relevant for our consid-
erations here, they documented that the meiofauna communities from the Arctic and
Antarctic were in fact more similar to each other than to communities from lower
latitudes, suggesting similar polar environmental conditions could result in similar
communities (at least at higher taxon level).

While diversity was low at higher taxon level in the above studies, others suggest
that Antarctic diversity is likely underestimated (Fonseca et al. 2017). In addition,
themore sheltered intertidal areas showmeiofaunal densities and diversities similar
to those in temperate areas (Bick and Arlt 2005). This refers particularly to the
subsurface layers where meiofauna densities appear to be higher than at the surface
(Urban-Malinga et al. 2005). In Arctic eulittoral areas, with their large salinity fluctu-
ations, diversity was reduced with juvenile oligochaetes (enchytraeids) dominating.
The Antarctic intertidal is even less studied. The expected poverty in biodiversity
and the lack of tidal sandy beaches has kept scientific interest low. However, as
deposition zones for macroalgae and resting places for birds and mammals, some
beaches are expected to receive a high organic load and may be very suitable habitat
for meiofauna.
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9.3.2 Polar Continental Shelves and Ice Shelves

In recent decades, amajor driver of benthic research onAntarctic shelves has been the
retreat and collapse of ice shelves (Ingels et al. 2021).Most Antarctic ice shelves have
covered the continental shelves for thousands of years, impoverishing the benthic
communities by exclusion of local primary productivity and export of detrital food
sources to the sea floor. However, some studies have documented life underneath ice
shelves, includingmeiofauna (Ingels et al. 2021 and references therein). For instance,

• Pawlowski et al. (2005) documented meiobenthos from underneath the Ross
Ice Shelf 450 km away from the open sea, including nematodes, polychaetes,
oligochaetes, sipunculids, molluscs, and cumaceans (all passing through a 0.5mm
sieve and retained on a 125 μm mesh sieve). One litre of sediment contained 16
foraminifera morphotypes and 18 unique phylotypes.

• Studies at boreholes through the McMurdo, Armery, and Filchner-Ronne ice
shelves (Griffiths et al. 2021; Kim 2019; Riddle et al. 2007) have documented
sessile, filter feeding communities, and suspension feeders underneath the ice
16–80 km, 100 km, and 625–1500 km away from the nearest source of primary
production, respectively (Griffiths et al. 2021; Kim 2019; Riddle et al. 2007).
This suggests that advection of food fuels the benthos underneath ice shelves and
challenges the contention that resources are so limited that benthic life dimin-
ishes with increasing distance away from open water and further underneath ice
shelves.

• A benthic sampling campaign in Larsen A and B (ice shelves at the Antarctic
Peninsula; ice-free since 1995 and 2002, respectively) revealed sub-ice commu-
nities characterized by low densities and low diversity (Raes et al. 2010). Oppor-
tunistic nematode species dominated, suggesting that they took advantage of the
increased food supply in the sediments, while other species were absent. Nema-
tode diversity was elevated at locations that had been ice-free for 12 years, but
densities were still low and dominance of opportunistic species high, suggesting
that those meiofauna communities represented a later stage of succession. The
composition of the meiofauna still showed some minor differences with offshore
shelf communities, when the area was revisited by Hauquier et al. (2016). From
the same study, a revisited inner station nine years after ice-shelf collapse still
showed a species-poor community dominated by monhysterids that represented
94% of all nematodes. However, densities had increased nearly tenfold between
2007 and 2011. This confirms the slow colonization by species other thanmonhys-
terids, which seemed the only taxon that could take advantage of the available
food supply resulting in strongly elevated densities. Rose et al. (2015) reported
that meiofauna communities that were no longer underneath an ice shelf, still
showed more resemblance with communities from the oligotrophic deepWeddell
Sea than with shelf sites that had been receiving surface input for a longer period
of time (see also Ingels et al. 2021).
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Ecological research suggests that the strong seasonality of productivewaters over-
lying continental shelf environments in the Antarctic does not necessarily result
in seasonal patterns of sedimentary labile organic material and microbial biomass
(Mincks et al. 2005). Composition of macrofauna communities seems to confirm
this, with the year-round presence of small juveniles suggesting continuous recruit-
ment albeit with periodic enhancement coinciding with resource enrichment from
seasonal bloom events (Mincks and Smith 2007). In addition, trophic analyses
suggest inertia in benthic-pelagic coupling on the Antarctic shelf, with sediments
integrating long-term variability in receiving seasonal surface water input (Mincks
et al. 2008).

These observations have been captured in the food bank hypothesis (see above;
Mincks et al. 2005) and have been confirmed for meiofauna (particularly nematodes
and copepods) at Antarctic shelf depths by Veit-Köhler et al. (2018). Cold conditions
could enhance the persistence of food resources on the Antarctic deep-shelf, but
climate change will likely drastically change these standing-stock-enhancing food
conditions and alter pelagic-benthic coupling (Veit-Köhler et al. 2018).

In the Arctic, distinct gradients in sedimentary food sources are observed along
the continental shelf depth gradient (McMahon et al. 2021). The Canadian Beaufort
Sea is characterized by an organic carbon reservoir fed by terrestrial nutrients fuelling
surface water production and under ice primary production. Terrestrial factors domi-
nating shallow shelf sites limited meiofaunal populations, while benthic produc-
tion at deep sites was limited by low levels of labile organic matter. At mid-shelf
depths, however, peak densities of diatoms and dinoflagellates corresponded with
higher meiofaunal abundance (McMahon et al. 2021). These observations indicate
the importance of terrestrial versus marine input in shelf benthic systems, as well
as the highly variable spatial distributions of meiofauna communities in the Arctic
compared to the Antarctic.

High spatial variability in Arctic shelf sediments has also been observed in the
Northeast Chukchi and Beaufort Seas when considering nematode genus composi-
tion (Mincks et al. 2021) and for meiofauna in general along a depth gradient that
included the Barents Sea shelf and slope (Oleszczuk et al. 2021). While the quality
and quantity of sedimentary organic matter sources drove broad spatial and bathy-
metric gradients in nematode communities, local patchiness as observed in nematode
genus differences within the various sampling areas were mainly driven by grain
size, and possibly related to complex hydrographic patterns and disturbance events
(Mincks et al. 2021). Interestingly, the distribution patterns of the dominant nema-
tode genus Sabatieria in Mincks et al.’s (2005) samples suggest a potential relation
with high organic loading and limited oxygen availability in Arctic areas under the
influence of large river systems. Further, in the Beaufort Sea, Bessière et al. (2007)
reported large numerical variability in meiofauna communities (2.3 × 105 to 5 ×
106 ind. m−2) as well as spatially and seasonally changing dominance of different
taxa). This suggests the presence of meiofauna communities that are responsive to
changing environmental conditions and not representative of a continuously avail-
able food reservoir as proposed for Antarctic shelf sediments. Moreover, significant
relationships found between sediment-bound photopigments and various meiofauna



9 Polar Meiofauna—Antipoles or Parallels? 305

taxa point to sediment phytodetritus as main food source for the meiofauna. Also
carbon-based grazing models suggest that meiofauna in Arctic shelf sediments may
be significant and responsive consumers of phytodetrital material (Bessière et al.
2007).

9.3.3 Sea Ice and Sympagic Meiofauna

Sympagic meiofauna spend all or part of their life cycle in the ice, living mainly
in the brine cavities within the sea-ice matrix. Most organisms live near the bottom
of the sea ice in close contact with the pelagic and benthic sub-ice environment. A
surprisingly large amount of information on sympagic systems of the Arctic has been
gathered since the 1980s—see review by Bluhm et al. (2018). However, large gaps in
knowledge on Antarctic sympagic fauna remain and present a promising ecological
and physiological research frontier.

This fauna must be environmentally adaptable considering the dynamics of sea-
ice and the seasonal advance and retreat of this special habitat. It has been shown
that copepods in particular are tolerant to the extreme conditions. They withstand
freezing for short periods of time and reproduce several times per year unaffected by
winter conditions (Ehrlich et al. 2020).Nematodes and rotifers are also successful ice-
inhabitants—evidenced by their pan-Arctic distribution associated with ice—owing
to their ability to produce resting stages (Bluhm et al. 2018). The brine channel
network and ice-water interface provide habitable space that can serve as a feeding
ground, nursery for juveniles, and offer shelter from predators, so that meiofauna
can be abundant (10–10,000 s of individuals per cubic metre of ice; (Bluhm et al.
2018; Schnack-Schiel et al. 2001)). Numerous eggs and juveniles of different taxa
(nematodes, polychaetes, harpacticoids) are observed regularly, suggesting that ice
may have a sheltering nursery function for sympagic species (Gradinger and Bluhm
2020; Marquardt et al. 2011; Nozais et al. 2001).

Sea ice of theWeddell Seawas dominated by foraminifera (75%of totalmeiofauna
abundance) and by turbellarians in terms of total biomass (45%; Schnack-Schiel et al.
2001). Meiofauna was concentrated in the lowest parts of the sea ice, especially in
winter and autumn, whereas in summer time, meiofauna occurred much higher up
in the ice matrix (Schnack-Schiel et al. 2001). The most recent comprehensive study
of sympagic meiofauna was conducted by Ehrlich et al. (2020), covering numerous
stations in a large area north of Svalbard and sampling organisms both inside the
ice as underneath the ice: diverse assemblages with more than 17,000 ind. m−2 were
reported. Ciliates dominated the assemblages (46%), followed by copepod nauplii
(29%) and harpacticoid copepods (20%).

Pelagic and benthic meiofaunal communities and sympagic assemblages are
closely connected but information about the dynamics of exchange between these
habitats in ice-covered regions is limited. To our knowledge only Leasi et al.
(2020) specifically assessed meiofauna communities from all three habitats (pelagic,
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benthic, and ice) and investigated potential exchange between them across different
seasons:

• Community patterns were distinct between habitats, even though the sedimentary
environment was less than 5 m underneath the ice, but with notable shifts across
habitats with changing seasons.

• Winter ice communities showed taxonomic similarities with spring benthic
communities, and winter benthic communities were more similar to spring ice
communities. These patterns were a result of the interaction between strong envi-
ronmental selection and organisms’ seasonal preference for particular habitats as
well as life-history strategies.

• The exchange of taxa apparently occurred in April, around the peak of the algal
bloom, suggesting that seasonality has an important role in the appearance and
distribution of meiofauna in these habitats.

• Some taxa may be able to withstand the reduction or disappearance of ice by
migrating and settling in either the pelagic or the benthic habitat. While these taxa
may be able to withstand the habitat dynamics, other taxa are heavily dependent
on the sea ice and the seasonal food sourcesmay be at risk of disappearing because
of climate change.

The present lack of detailed taxonomic resolution inmany studies hampers conclu-
sions regarding species-specific distribution patterns, although analyses of some
species data suggest that broad species distribution ranges may be common. This
is entirely plausible considering the pan-Arctic drift patterns of pack ice and conse-
quentially high potential for connectivity and exchange (Bluhm et al. 2017). In a
meta-analysis of sympagicmeiofauna communities in the Arctic, Bluhm et al. (2018)
reported that, across the Arctic ice cover, essentially the same sea-ice meiofauna
higher taxa occur. Even comparisons between Arctic and Antarctic sympagic fauna
did not indicate drastic differences, at least at higher taxonomic levels (Gradinger,
1999). Only rotifers and nematodes were restricted to the Arctic. Hence, compar-
isons between the Arctic and Antarctic sympagic fauna do not indicate substantial
differences (at higher taxonomic levels).

Biomass transport with ice floes in the form of sympagic fauna (for instance
amphipods) can be significant. About 80 × 103 t C year−1 of biomass has been
estimated to be transported by ice floes to southern marginal seas from the Arctic
(Hop and Pavlova 2008) and this can represent a substantial part of the total ice-
derived particulate organic carbon (Gradinger and Bluhm 2020). Moreover, in some
areas of the Arctic marginal ice zone, sinking material can be dominated by ice-algal
matter fuelling benthic systems (Tamelander et al. 2008). Hence, climate-induced
reductions of sympagic biomass may have consequences for the ice-associated food
webs and the outfall to benthic systems underneath the ice.

Meiofaunal ingestion rates of ice algae can vary between seasons. Therefore,
consumption of other food sources by sympagic meiofauna such as bacteria or
dissolved organic matter seems plausible as suggested by isotope data (Gradinger
and Bluhm 2020). Despite the close relationship between sympagic meiofauna and
sea-ice algae, meiofauna grazing rates are generally lower than ice-algal production,



9 Polar Meiofauna—Antipoles or Parallels? 307

implying sympagic meiofauna is not food-limited and most of the ice-algal produc-
tion is available for consumption by pelagic and benthic organisms (Gradinger 1999,
2001).

9.3.4 Polar Deep Seas

9.3.4.1 Sampling for Meiofauna in Polar Deep Seas

Meiofauna research in polar deep-sea regions has seen much progress over the last
decades, but the overall number of publications and sharing of resulting data remains
low compared tomeiofauna studies from other deep-sea regions.Meiofauna research
in deepArctic regions started in the late 1960s (Paul andMenzies 1974),while studies
on deep-sea meiofauna in Antarctica started only in the early 1980s (Parulekar et al.
1983). Our literature review reveals 33 publications on Arctic deep-sea meiofauna
(including those focussing exclusively on nematode assemblages), but only 16 from
deep-sea regions off the Antarctic continent (Table 9.1).

Arctic and Antarctic deep-sea ecosystems differ in both the amplitude and nature
of their ice-cover. Although generally decreasing in extension and thickness over
the last decades, large parts in the central Arctic Ocean still hold (thicker) multi-
year ice with small variations in extension (Cavalieri et al. 2003). The ice extending
over the deep Antarctic Ocean is thinner and seasonally more variable that that in
the Arctic (Comiso and Nishio 2008). These differences have fundamental effects
on the primary production in both oceanographic regions, and subsequently on the
settling of particulate organic matter to the deep seafloor, which represents the major
food source for deep-sea benthic communities.

Without standardized techniques for sampling, sorting andbiomass determination,
comparison of meiofauna data from the literature poses a significant challenge (Rosli
et al. 2018; Soltwedel 2000). For instance, investigators of polar deep-sea meiofauna
have used multiple corers (26 studies), box corers (8 studies), Reineck grabs (1
study), and a Niemistö corer (1 study). All these differences in the sampling methods
and sample processing affect the meiofauna data that have been produced so far. In
addition, the limitations in spatial and temporal coverage of polar deep-seameiofauna
data remain limited (Fig. 9.1, Table 9.4). Thus, the following comparisons of deep-sea
meiofauna stocks in the Arctic and Antarctic should be considered with caution.

Compared to the deep Arctic Ocean, vast regional meiofauna data gaps exist in
the deep Southern Ocean.

9.3.4.2 Meiofauna Composition and Standing Stocks in Polar Deep
Seas

Meiobenthic standing stocks in polar regions decrease with increasing water depth
and distance from the coast because the energy content of settling organic matter
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Fig. 9.1 Sampling locations for polar deep-sea meiofauna (> 200mwater depth) in the Arctic (left)
and Antarctic (right). For details of data points arising from a total of 35 publications see Table 9.4

Table 9.4 Distribution of data points arising from 35 studies in the deep Arctic and deep Antarctic
(for study locations see Fig. 9.1)

Deep Arctic Deep Antarctic

No. of data points 237 54

Geographic limit Southernmost limit at 75° N* Northernmost limit at 60° S

Distribution of data points Two thirds of the data points are
from the Fram Strait (Dinet 1979;
Fonseca and Soltwedel 2007, 2009;
Gorska et al. 2014; Grzelak et al.
2017; Hoffmann et al. 2018; Hoste
et al. 2007; Soltwedel et al. 2003,
2020; Thiel 1975), including
Yermak Plateau (Schewe and
Soltwedel 2003; Soltwedel et al.
2003, 2009)
All other data points cover Arctic
cross-sections (Kroncke et al. 2000;
Vanreusel et al. 2000), transects
across the Gakkel, Lomonosov, and
Alpha Ridges (Schewe 2001;
Schewe and Soltwedel 1999), the
Nansen Basin slope (Pfannkuche
and Thiel 1987; Vanaverbeke et al.
1997), and slope transects in the SE
Beaufort, Chukchi, and Kara Seas
(Bessière et al. 2007; Garlitska
et al. 2019; Lin et al. 2014;
Portnova and Polukhin 2018)

Data points come almost
exclusively from the Scotia,
Weddell, and King Haakon VII seas
between approx. 60°W and 30° E
(Gutzmann et al. 2004; Hauquier
et al. 2011; 2015; Herman and
Dahms 1992; Ingels et al. 2006;
Lins et al. 2014; Parulekar et al.
1983; Rose et al. 2015; Sebastian
et al. 2007; Vanhove et al. 1995)
Additional information comes from
a few sites in the Cooperation and
Ross Seas (70° E and 175° E,
respectively) (Fabiano and
Danovaro 1999; Ingole and Singh
2010)

*except SE Beaufort Sea with deep stations at 70–72° N
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generally decreases during degradation processes within the water column. Interest-
ingly, meiofauna depth gradients in the peripheral Arctic and in Antarctic regions
were almost identical (Fig. 9.2), with overall only slightly highermeiofauna densities
inwater depths between 200 and approx. 2000m in southern polar regions. Data from
the central Arctic Ocean with its perennial ice cover revealed overall significantly
lower meiofauna densities, however, with a similar rate of decrease in the number of
individuals with increasing water depth.

Higher taxon composition and standing stocks. There were no higher taxa
restricted to either northern or southern polar regions. Total meiofauna densities in
the deep Arctic Ocean range between 2 and 3955 ind. 10 cm−2, while in the deep
AntarcticOcean,meiofauna numbers vary from111 to 7196 ind. 10 cm−2 (Table 9.3).
The proportion of single higher taxa within the meiofauna community could only be
determined from nine studies in the North and four studies in the South. Nematodes
usually dominate the polar deep-sea metazoan meiofauna with an average share of
91.0% in the Arctic deep sea (range: 65.9–99.1%) and 89.9% (range: 56.8–97.2%)
in the deep Antarctic Ocean. Copepods (including nauplii) were second dominant
with a mean relative abundance of 6.5% (range: 0–27.9%) in the deep Arctic and
5.3% (range: 1.0–34.9%) in the Antarctic Ocean. All other taxa made up 2.6% in
the North and 5.0% in the South. Other taxa than Nematoda showed a stronger

Fig. 9.2 Meiofauna densities in polar deep-sea regions (> 200 m water depth); data
points/regression lines: black circle/straight line—central Arctic Ocean (n = 50), grey
circle/hyphenated line—peripheral Arctic Ocean (n = 187), circle/dotted line—Antarctic Ocean
(n = 54)
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decline in relative abundance with increasing water depth in the Arctic, compared to
the deep Antarctic Ocean. However, it is uncertain whether these differences truly
reflect fundamental ecological differences or are the result of the low number of data
points in Antarctic studies (29 data points, compared to 165 data points from Arctic
studies).

Nematode standing stocks. In both hemispheres, gradients of nematode densi-
ties along increasing water depth generally resembled results for the total meio-
fauna (Fig. 9.2). However, the proportion of nematodes from the total meiofauna
in Antarctic regions exhibited a slightly stronger decrease with increasing water
depth, compared to those in the Arctic. Total nematode biomass followed the same
trend with decreasing values along the bathymetric gradient in both the Arctic and
Antarctic Ocean. In contrast, individual nematode biomass (data derived by dividing
total nematode biomasses by the number of nematodes per site) showed no trend over
the entire bathymetric range from 200 m down to > 5000 mwater depth in peripheral
Arctic and Antarctic regions. Udalov et al. (2005) generated a similar result when
analysing a global set of nematode biomass data and concluded that this findingmight
reflect that individual nematode biomass is not just a function of food availability
but also of other environmental characteristics, e.g. sediment grain size distribution
or biogeochemical gradients. Mean individual nematode biomasses in the central,
permanently ice-covered Arctic Ocean, however, showed clearly decreasing values
with increasing water depth, implying that, here, nematodes on average decrease in
size with increasing water depth.

Nematode composition and diversity. Like deep-sea areas worldwide, few fami-
lies and genera dominate Arctic and Antarctic meiofauna (Table 9.3). Species diver-
sity within some nematode genera was studied on Antarctic shelves and slopes (De
Mesel et al. 2006; Fonseca et al. 2006; Ingels et al. 2006; Vermeeren et al. 2004),
reporting high local and regional species diversity (Brandt et al. 2007). The highest
number of co-existing species within the same genus was found for Acantholaimus,
with 29 species recognized in only one sample (Brandt et al. 2007; De Mesel et al.
2006).

Studies in the deep Arctic Ocean that identified nematodes to genus or species
level have been performed in the western Greenland Sea, the eastern Fram Strait, the
Laptev Sea, and in the deep central Arctic, recording between 70 and 640 (putative)
species, and between 29 and 180 genera (Table 9.3).

In the Antarctic, studies of nematode genera and species found between 94 and
137 genera in total, but Leduc et al. (2012) reported a species richness ES(51) between
20 and 34 species (water depths between 500 and 3500 m).

Although a vast number of Arctic and Antarctic deep-sea nematode species prob-
ably remains undiscovered due to chronic under-sampling, and despite the lack of
specialists, we can generally state that deep-sea nematode communities are charac-
terized by high alpha species diversity, where most species are represented by only
few specimens; hence, a high evenness is typical (Miljutin et al. 2010 and citations
therein; Vanaverbeke et al. 1997).
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9.3.4.3 Food Availability—An Important Driver of Polar Deep-Sea
Meiofauna

Food supply has been proven to structure benthic communities and several indices
have been used to estimate flux rates of settling organic matter to the seafloor. For
instance, concentrations of sediment-bound pigments, chloroplastic pigment equiva-
lents (CPE), which comprise the bulk of intact chlorophyll a and its derivatives, were
introduced as an indicator of food/energy availability from primary production in sea
surface layers (Thiel 1978) and have been applied in numerous studies to explain
spatial and temporal variations in benthic standing stocks. In the deep Arctic and
Antarctic Oceans, a total of 14 meiofauna studies (one in the central Arctic, 10 in the
peripheral Arctic, three in Antarctica) have provided information on the sedimentary
pigment inventory. The analysis of meiofauna numbers and pigment concentrations
from these studies (183 data points) reveals a statistically significant correlative rela-
tionship (Fig. 9.3), which is indicative of a close pelagic-benthic coupling. However,
the large variation in the data suggests that their relationship is complex, and likely
influenced by various other abiotic factors (e.g. pressure, water temperature, oxygen
concentrations, sediment characteristics), in conjunction with biological processes
in the water column (i.e. the degradation of organic matter in the pelagic food web),
and interactions with other faunal groups (e.g. competition, predation).

Recognizing food availability in quantity and quality as a decisive factor
for meiobenthic densities and the community composition, one should assume
that regional differences at broader spatial scales exist. In polar regions, the marginal
ice zone (MIZ) appears to be a region of enhanced primary production and subse-
quently increased input of particulate organic matter to the deep seafloor. Along a
bathymetric transect of stations on the East Greenland continental margin crossing
the MIZ off Greenland, Fonseca and Soltwedel (2007) found clear evidence for the
impact of locally enhanced food availability on deep-sea meiobenthic communities.
The amount of phytodetritial material was approximately threefold higher in sedi-
ments underneath the ice-edge and ice-free regions, compared to the shallower, but
ice-covered stations of the transect. The increased amount of phytodetritus at these
stations not only enhanced bacterial activities, but also meiofauna abundance and
diversity (number of nematodes species).

Despite the traditional bathymetric decline ofmeiobenthic standing stocks, unusu-
ally high meiofauna densities and biomasses can occasionally be found at deep
abyssal and hadal depths in polar regions. At about 5500mwater depth in theMolloy
Deep (Fram Strait), Soltwedel et al. (2003) found metazoan meiofauna numbers in
the range of 935–1295 ind. 10 cm−2, similar to numbers recorded at 2500 m water
depth off Svalbard. In Antarctica, Lins et al. (2014) reported a nematode biomass
of 11.75 μg dry weight at 5323 m water depth in the Kong Haakon VII Sea, which
is similar to the nematode biomass found at 1943 m water depth on the nearby
slope off Dronning Maud Land (12.45 μg dry weight). Topographic settings and
special hydrographic conditions are most likely responsible for the increased food
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Fig. 9.3 Correlation between sediment-bound chloroplastic pigment equivalents (CPE) and meio-
fauna densities in the polar deep sea; double-logarithmic display; regression line for the entire data
set

availability at some very deep sites which promotes increased meiobenthic standing
stocks at these deep sites.

The decisive influence of food availability on meiobenthic assemblages (see
above) is also visible in those polar regions that episodically face profound changes
in the ice cover: the collapses of the Larsen A and B ice shelves at the eastern coast of
the Antarctic Peninsula in 1995 and 2002 more or less instantly transformed an olig-
otrophic sub-ice ecosystem to a productive shelf ecosystem. Based on a comparison
of meiobenthic diversity and composition (higher taxa) of Larsen continental shelf
stations and deep stations in the adjacent Western Weddell Sea, Rose et al. (2015)
could show that the food limitation in the shelf regime at times of ice-shelf coverage
resulted in meiobenthic communities similar to those in the nearby deep sea.
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9.4 Polar Meiofauna and Climate Change—Observations,
Conclusions, Prognoses

As much as the polar regions of our globe differ, their ecosystems are both affected
by climate change, which is altering the extent and dynamics of the cryosphere
rapidly (Meredith et al. 2019). Global warming, mainly resulting from continued
anthropogenic emissions, causes the loss of ice, ocean acidification, and changes
other ocean conditions that alter patterns of primary production and subsequently
benthic-pelagic coupling (Meredith et al. 2019). Much of the polar ocean ecosystem
is modulated by ice dynamics and the associated biology and ecology of organisms
(including ice-associated or sympagic communities). Climate change is therefore
highly likely to cause profound and far-reaching consequences such as changing
organic matter quality and quantity, and biological transformations of carbon and
nutrient pools. Despite increased understanding of benthic meiofaunal communities
in polar regions, it is currently not entirely clear how biodiversity of meiofauna will
respond to climate change at varying scales of space and time (but see Ingels et al.
2012, 2021; Zeppilli et al. 2015), and what the resultant effects on the functioning of
polar ecosystems may be. However, below we briefly summarize some findings that
may shed some light on expected changes. For an overview on changing meiofauna
in response to climate change, we also refer to Chap. 7, where the matter is discussed
more generally in the context of disturbance effects.

While both polar oceans have continued to warm in recent years, the Arctic is
suffering greatest and most rapid sea-ice loss (Yadav et al. 2020). In the Antarctic,
climate change effects are mainly occurring along the Antarctic Peninsula, but are
much less obvious in otherAntarctic regions (Meredith et al. 2019;Meredith andKing
2005; Turner et al. 2013; Turner et al. 2005). It is predicted that Arctic sea ice will
disappear entirely in summer by 2040 (Serreze and Stroeve 2015), which will impact
benthic organisms that are reliant on the surface productivity and sympagic produc-
tion associated with sea ice. Potential effects can be deducted from the meiofauna
standing stock data from the Central Arctic with perennial ice cover (Figs. 9.2 and
9.3). Densities there are much lower than in the peripheral Arctic Ocean and the
Antarctic Southern Ocean owing to the severely limiting food supply to the benthos.
While there is still a water depth gradient observable in the central Arctic Ocean,
CPE values are orders of magnitude lower compared to the peripheral Arctic Ocean
and the Antarctic, resulting in much lower densities (Fig. 9.3). The opening up of
the Central Arctic Ocean will lead to increased food resources becoming available to
the meiobenthos, potentially leading to colonization dynamics and shifts in standing
stocks as observed in the Antarctic where ice shelves have retreated or collapsed.
These changeswill affect shelf depths aswell as the polar deep seas. The shift from an
ice-covered and cold ocean to an ice-free and warmer ocean will have severe impacts
through altered algal abundance and composition (Nöthig et al. 2015), which will
affect zooplankton community structure (Chiba et al. 2015) and subsequently the
flux of particulate organic matter to the seafloor (Tamelander et al. 2017). Here,
the changing quantity and quality of this matter will impact benthic communities
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(Campanyà-Llovet et al. 2017; Jones et al. 2014; Kortsch et al. 2012)—including the
polar meiofauna.

In shallow polar waters, meiobenthic dynamics in response to climate changemay
bemore complex as the vicinity of land results in closer interactionwith glacial effects
such as terrestrial discharge, freshwater inflow, iceberg scouring, and drop stone
incidences, which will inevitably bring significant changes to coastal ecosystems
(Ingels et al. 2021; Rogers et al. 2020). In the sheltered bay on King George Island,
meiofauna seems to respond differently from micro- and macrofauna to climate
change effects such as glacier retreat with different functional traits responding in
a different way to newly ice-free areas (Pasotti et al. 2014). Similar evidence from
temperate environments suggests that species are feeding partly (but not necessarily
selectively) on bacteria or microalgae. The specific roles of meiofauna in food web
ecology have not yet been defined clearly, but current evidence suggests that meio-
fauna may exploit new conditions and available habitats very rapidly and benefit in
the short term from climate-induced glacial changes in shallow waters (Pasotti et al.
2012). On the other hand, increased warming will initially lead to increased iceberg
scouring, a physical disturbance which can remove more than 90% of the fauna (Lee
et al. 2001a, b). However, this major physical disturbance is also assumed to lay at
the origin of the high-latitude benthic biodiversity including the meiofauna (Peck
et al. 1999). Over the longer term, as ice continues to retreat and diminish, iceberg
presence, scouring, and the prevalence of drop stones (which can increase habitat
heterogeneity) are expected to decrease. A similar scenario is expected in the Arctic,
where latitudinal and time-series studies of Arctic fjords (Kędra et al. 2010; Syvitski
et al. 1989) suggest that climate warming and glacial retreat will eventually reduce
glacial disturbance in these fjords, yielding increased productivity and meiobenthic
biomass and diversity.

With the strong decline in sea-ice cover over the past five decades, it seems very
likely that sympagic faunawill lose significant habitat or disappear altogether (Bluhm
et al. 2017), with ramifications for sympagic-pelagic-benthic coupling (Søreide et al.
2013) and pelagic and benthic food webs supported by ice algae and sympagic fauna.
Potential shifts may have been observed already. Ehrlich et al. (2020) documented
more diverse but less abundant assemblages underneath the ice compared to in the
ice matrix in the Arctic, with 32 taxa belonging to eight phyla. However, nematodes
and flatworms were not found, an observation supported by previous extensive work
in the Arctic (Bluhm et al. 2018). Climate-driven sea-ice shifts may be behind this
contrast, because the now-dominant first-year pack ice tends to form further offshore
and harbour more pelagic-sympagic species compared to the multi-year land-fast ice
or pack-ice formed on the shallow shelves that harbour more benthic-sympagic taxa
(Ehrlich et al. 2020). This was confirmed by backtracking satellite data to investigate
the origins of the ice floes that had been studied: the shift from a system dominated
by multi-year ice with established sympagic communities to a system dominated
by annual ice and hence yearly recolonization of new ice mass seems to favour
sympagic fauna of pelagic origins. Kramer et al. (2011) supported a similar conclu-
sion by comparing sympagic meiofauna from the perennially ice-covered western
Weddell Sea and the seasonally ice-covered southern Indian Ocean: Perennial ice
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seems to be important for the establishment of abundant and diverse meiofaunal ice
communities and as the climate continues to warm and the ice retreats further these
communities are likely to impoverish as a result.

9.5 Gaps, Directions, and Methods in Polar Meiofauna
Research

Ice coverage and harsh weather conditions in winter times generally impede the
accessibility of polar regions. Althoughmeiofauna studies in theArctic andAntarctic
Oceans have steadily increased over the last decades, it is not surprising that most
sampling campaigns, whether at sea or from coastal research stations, are carried
out in the northern and southern hemisphere’s respective summer months. Hence,
information about seasonal variations inmeiobenthic communities is largelymissing.
This is especially the case for deeper waters or shallow waters far removed from
research stations.

Since polar regions are generally only accessible by means of expensive modern
infrastructure and instrumentation, multi-year time-series studies of Arctic and
Antarctic marine ecosystems are very sparse, even near research stations where
some long-term programmes do not necessarily include data on meiobenthos since
the expertise may not be generally available or studies focussing on or including
meiobenthoswere of shorter duration—a fewyears atmost (e.g. Signy, LTERPalmer,
Rothera in the Antarctic, Svalbard in the Arctic). Therefore, essential research ques-
tions such as “how does polar meiofauna survive the dark season and the greatly
reduced, altered or perhaps completely suppressed food input; and what are their
community dynamics under such conditions?” remain unanswered for the time being
and present a scientific frontier in polar meiobenthic research.

9.5.1 Future Field Work

Next generation mobile autonomous sampling devices, able to work for at least one
year on the deep seafloor, can overcome some of the challenges mentioned above.
A few vehicles which can move on the seabed, so-called benthic crawlers, already
exist (e.g. the Benthic Rover at the US Monterey Bay Aquarium Research Insti-
tute, MBARI, as well as TRAMPER and NOMAD at the German Alfred-Wegener-
Institute, AWI) (Lemburg et al. 2018; McGill et al. 2007; Wenzhöfer et al. 2016).
However, devices that sample benthos routinely (in situ sampling and preserving
sediment cores at defined local and temporal intervals for retrieval months later)
are still under development. Notwithstanding, long-term exploration is required for
assessing the roles that polar ecosystems will play in future of benthic ecosystems
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under progressing climate change conditions. At the moment, multi-year time series
of Arctic and Antarctic marine ecosystems are still in their infancy.

There is, however, one exception: The Arctic Long-Term Ecological Research
(LTER) observatoryHAUSGARTEN in the FramStrait betweenGreenland andSval-
bard so far remains the only monitoring location with long-lasting and automated
scientific work sea (Soltwedel et al. 2005, 2016). The HAUSGARTEN observatory
(about 79° N, 04° E, ∼2500 m water depth) was established in 1999 to detect and
track the effects of large-scale environmental changes on the marine ecosystem in
the transition zone between the northern North Atlantic and the central Arctic Ocean.
Repeated sampling both in the water column and at the seafloor during yearly expe-
ditions in summer months was complemented by continuous year-round sampling
and sensing using autonomous instruments on anchored and mobile devices.

Unique time-series studies at HAUSGARTEN include regular meiofauna
sampling campaigns along a depth transect with nine stations between 1280 and
5500 m water depth. Despite the inter-annual variability in meiofauna densities at
all sites, 15 years of continuous sampling showed generally declining meiofauna
numbers. This decline was most pronounced at the shallowest station and dimin-
ished towards deeper sites (Soltwedel et al. 2020)—a remarkable result that would
not have been observed with sporadic sampling only. This finding emphasizes the
importance of long-term data with sufficient temporal resolution.

9.5.2 Future Experimental Work

Rather late in the history of meiofauna research have experimental studies tried to
address specific, physiological or biochemical questions (see Giere 2019). Experi-
mental studies with polar marinemeiofauna, especially controlled field experimenta-
tion and experiments conducted during deep-sea expeditions are no exception—they
present rare, time-consuming, and costly endeavours. For example, ship-board lab
experiments with 13C-labelled food sources (e.g. bacteria, algae) were carried out
only relatively recently to study food preferences of Arctic and Antarctic deep-sea
nematodes (Guilini et al. 2010; Ingels et al. 2010), and a limited number of innovative
experiments have been carried out in and near Potter Cove on King George Island in
the Antarctic (Pasotti et al. 2012, 2014, 2015a, b; Veit-Köhler et al. 2008; Wiencke
et al. 2008) aswell as Casey station, one of theAustralianAntarctic Research Stations
in the East Antarctic (Stark et al. 2017).

To reduce artefacts in ship-borne experiments with deep-sea organisms, similar
experiments were also conducted in situ, e.g. in experimental approaches at the deep
seafloor of the Arctic LTER observatory HAUSGARTEN (Braeckman et al. 2018;
Guilini et al. 2011). Other in situ experiments with deep-sea meiofauna (and special
focus on nematode communities) at the HAUSGARTEN observatory studied the
exclusion of larger benthic organisms to reduce predation pressure (Gallucci et al.
2008a), the increase of near-bottom currents (Soltwedel et al. 2013), and local effects
of large food-falls (Soltwedel et al. 2018). All these deep-sea experiments depend
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on expensive modern instrumentation, i.e. free-falling devices (Bottom-Lander) and
Remotely Operated Vehicles (ROV) for manipulation at the deep seafloor or contin-
uous access to Antarctic research stations which have experimental facilities. Hence,
although urgently needed, future experimental work on polar meiofauna, especially
experiments simulating scenarios in changing environmental settings, will most
probably continue to be conducted to a limited extent only.

9.5.3 Tracking Ecosystem Change in Polar Regions

Perhaps most poignant in this context is the fact that the poles, once considered
the most pristine environments on Earth, are apparently undergoing the most rapid
and significant impacts by climate change. Despite increased efforts, our attempts
to achieve a complete baseline of [meiofauna] biodiversity data in the Arctic and
Antarctic will likely fail as we continue to progress through the Anthropocene.
“Future climate-induced changes in the polar oceans, sea ice, snow, and permafrost
will drive habitat and biome shifts, with associated changes in the ranges and abun-
dance of ecologically important species “ (Meredith et al. 2019). Any study aiming
at documenting species, communities, and their biology and ecology in the light of
changing environmental conditions must consider the reality that polar regions are
changing very fast, and that any establishment of a current baseline is a relative one.

Bringing to light the need for investigating dynamic baselines also highlights
the importance of assessing biodiversity, underpinned by robust morphological and
molecular species identification. Many meiobenthic species from polar regions,
particularly the deep sea, remain undocumented. Increased efforts to document
species diversity are necessary ifwe are to establish a record againstwhich tomeasure
anthropogenic change. The same predicament can be argued for our understanding
of processes and functions of meiobenthos in polar regions. Information on the roles
that meiobenthos play in the functioning and biogeochemistry of polar sedimentary
environments, typically very different habitats compared to sediments from lower
latitudes, temperate, subtropical and tropical regions, is very limited.

9.5.4 Adaptations to ‘Extreme’ Polar Environments

Meiofauna have adapted to extreme polar conditions and thus represent mean-
ingful model organisms for (eco)physiological, behavioural, developmental, and
(epi)genetic studies. The complex traits that characterize adaptations to polar envi-
ronments is unexplored formarinemeiofauna (but relativelywell known forAntarctic
terrestrial nematodes, see for instanceworks byDavidA.Wharton), yet could provide
many answers to pressing questions related to how organisms can survive and persist
in extreme conditions, with implications for our understanding of biological theory
(see Chap. 11 for more details on meiofauna research in extreme environments).
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Chapter 10
Cave Meiofauna—Models for Ecology
and Evolution

Alejandro Martínez

Abstract Caves can be used as model systems for developing and understanding
evolutionary and ecological theory. Yet, most scientists have paid little attention
to cave meiofaunal communities, thereby potentially underestimating subterranean
biodiversity. To date, meiofauna has been recorded in only 2026 caves, totalling
31% of caves for which information on aquatic fauna is available around the world.
However, these records primarily originate from Europe and the Western Mediter-
ranean and focus on target species, rather than on describing entire communities. Of
the 1856 meiofaunal species recorded in caves, 699 might be regarded as restricted
to subterranean habitats. Most of those species belong to Arthropoda, with Cope-
poda the richest species group, both in terms of the number of species recorded
and the number of taxa restricted to the subterranean world. Different models have
been proposed to explain the origin of meiofaunal cave lineages, but testing them is
hampered by the lack of phylogenetic information formost taxa.Although the current
lack of diversity data renders studies at a community level challenging, studies to date
suggest that cave meiofauna might play a central role in carbon cycling and crucially
affect the composition of the groundwater in inland and coastal aquifers. The funda-
mental ecosystem services that aquifers provide and the pivotal role groundwater
discharge attains in the chemical balance of the ocean offer new horizons for future
research on cave meiofauna. Cave meiofauna might affect our everyday life much
more than we have so far imagined.

10.1 Introduction

Caves are defined as voids in the rock matrix large enough to allow the pene-
tration of a human being. They are generally dark, extremely humid, and poor
in organic matter (Poulson and White 1969; Mammola 2019). Furthermore, most
caves harbour vertical pits and narrow passages (MacNeil and Brcic 2017), or even
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flooded passageways whose exploration demands cave diving training (Exley 1986).
Although humans may perceive cave exploration as extremely challenging, this does
not mean that the cave environment within caves is extreme for the many organisms
that complete their life cycles belowground (Mammola 2020). The anthropocen-
tric view of caves as extreme and unique environments tends to overlook the roles
caves have as ecological, spatial, and temporal subsets of their surrounding environ-
ments (Mammola 2019), and hence their utility for understanding general problems
in ecology and evolution (Poulson and White 1969; Mammola and Martínez 2020;
Mammola et al. 2020a, b, c). Indeed, many scholars have regarded caves as island-
like environments due to their discrete nature and their younger age compared to
nearby surface habitats (Dawson 2016). Caves around the world offer multiple repe-
titions of comparable processes. Yet, in contrast to islands, caves harbour distinct
and stable ecological conditions compared to those found in their surroundings; they
represent well-defined, comparable ecological filters for potential colonizers (Culver
1970; Fattorini et al. 2016).

Over the last decade, most scientists studying caves as eco-evolutionary models
have focused on relatively large animals (e.g.Moldovan et al. 2018). In contrast, little
attention has been paid to the ubiquitous meiofaunal communities that inhabit cave
environments (Table 10.1; Zeppilli et al. 2018). This is unfortunate because meio-
fauna include representatives of most described animal phyla, allowing scholars to
address general eco-evolutionary questions without the confounding effect of the
phylogeny (Giere 2009; Schmidt-Rhaesa 2020). Meiofauna are also a numerically
important component of most ecosystems on Earth (Creer et al. 2010), and there-
fore, by neglecting small organisms in caves, bioespeleologists might be overlooking
many of the species occurring in those subterranean habitats (Kennedy and Jacoby
1999). Interestingly, microscopic animals do not seem to conform with some of the
generalmacroecological patterns, insofar asmanymicroscopic species are ubiquitous
and do respond differently to environmental parameters compared to larger species
(Fontaneto 2011). Therefore, cave meiofauna might also represent useful tools to
test lineage-specific questions even for those scholars interested in macroecological
problems (Table 10.1).

Beyond summarizing our knowledge on the often disregarded cave meiofauna,
this chapter is focusing on the potential use of those organisms to address general
questions in ecology and evolution. The data presented are compiled from “Stygo-
fauna Mundi”, a public database that gathers and shares all available information
on subterranean and interstitial aquatic environments of the world, including caves
(Botosaneanu 1986; Martínez et al. 2018). This chapter covers all types of caves
(see Box 10.1): caves directly connected to the ocean (hereafter ‘marine caves’),
caves reaching phreatic saline coastal groundwaters (‘anchialine caves’), and inland
caves harbouring different types of freshwater bodies, such as phreatic or percolation
pools, rivers, or springs (‘freshwater caves’). The term meiofauna is used to refer to
the fraction of organisms retained on a 63-µmmesh and passing through a 1000-µm
mesh, so it often includes animals visible to the naked human eye (see Box 10.1).
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Table 10.1 Summary of the problems preventing a wider use of meiofauna cave animals as models
for ecology and evolution, in relation to the “eight knowledge shortfalls” (Hortal et al. 2015)

Shortfall Problems associated to cave meiofauna

Linnaean
(species identity)

Lack of taxonomists for many cave and
meiofaunal groups (Moldovan et al. 2018;
Appeltans et al. 2012)

Old or insufficiently detailed species descriptions
(Viets 1937; Riedl 1959)

A lack of reliable estimation of diversity
(Zagmajster et al. 2018)

A high prevalence of cryptic species (Delic et al.
2017b; Fontaneto et al. 2015)

A bias favouring studies on large cave animals
(Zagmajster et al. 2010) or hard-bodied
meiofaunal groups (Curini-Galletti et al. 2012)

Wallacean (species distribution) Geographically biased studies (Zagmajster et al.
2018; Fontaneto et al. 2012)

Variable ranges of endemism, from species
geographically very restricted (Iannella et al.
2020; Martínez et al. 2019), to nearly
cosmopolitan taxa (Fontaneto 2011)

A high prevalence of cryptic species, due to
conservative morphologies or lack of conspicuous
morphological characters (Delic et al. 2017a;
Mills et al. 2017; Worsaae et al. 2021a, b)

Absence of open-access database for cave species
(Gibert et al. 2004)

Darwinian (species evolutionary histories) Unknown relationships between
subterranean-surface species (Juan et al. 2010)
and meiofaunal-macrofaunal species (Laumer
et al. 2015)

A high range of variation in diversification
patterns across different lineages (Juan et al. 2010)

Difficulty in dating diversification events and
distinguishing amongst diversification
mechanisms (Morvan et al. 2013; Tiley et al. 2020)

Raunkiaeran (species ecological functions) A lack of functional traits allowing predictions of
the effects of impacts on ecosystem level (Zeppilli
et al. 2015; Ho 2020)

A lack of knowledge on life cycles in most species
because of difficulties in monitoring species’
populations in their habitats (Mammola et al.
2020b)

(continued)
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Table 10.1 (continued)

Shortfall Problems associated to cave meiofauna

A lack of biological traits predicting potentials to
disperse and colonize new habitats, such as
presence of larvae or resistance forms (Kano and
Kase 2004; Fontaneto 2019)

Prestonian (species abundances) Limited quantitative ecological studies (Ape et al.
2015; Riera et al. 2018; Mammola et al. 2020a)

A lack of reliable estimations because of
biological or habitat impediments (de Faria et al.
2018; Mammola et al. 2020a, b, c)

A lack of reliable estimations because of
difficulties of species identification (Fontaneto
et al. 2015; Mammola et al. 2020b)

An intrinsic bias of most available methods
because of low or patchy population densities
(Studinski 2005)

Eltonian (biological interaction) A lack of knowledge on the ecological networks
that help unravel the mechanisms promoting and
maintaining subterranean biodiversity (Mammola
2019; Bellisario et al. 2021)

A lack of network analyses to calculate the
resilience of subterranean environments to
anthropogenic perturbations (Saccò et al. 2020)

A lack of studies on the impact of different carbon
sources on subterranean ecosystems (Brankovits
et al. 2017; Saccò et al. 2019)

Hutchinsonian (species abiotic tolerance) Small populations are difficult to assess and most
are unsuitable for field experiments (Magagnini
1982; Mammola et al. 2020a, b, c)

Breeding species for experimental purposes is
mostly challenging (Mammola et al. 2020a, b, c)

Supporting references based on cave and meiofaunal studies are reported separately (adapted from
and inspired by Fonseca et al. 2018; Mammola et al. 2019)
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Box 10.1: Glossary
A range of terms and definitions as used in the scientific literature on cave
meiofauna (see Martínez and Mammola 2021 for a broader discussion on
terminology). The definitions adopted here are as follows:

Cave is any void large enough to allow human exploration. I considered as
caves also sinkholes, fissures, and large cracks that reach groundwater through
more or less extensive fissures, even if those do not allow human exploration
(e.g. Dahlak crack, the grietas from Galapagos, and many Mexican cenotes).
I subdivided caves into three categories:

Marine caves are voids that can be entered from the open ocean by an
average-size swimmer or diver. They are often affected by tidal or current-
driven inflows ofmarine water. Theymight be extensive enough to reach the
coastal aquifer (e.g. Caye Chapel Cave in Belize). Although some of those
caves are often considered as anchialine, I didn’t include this distinction
here
Anchialine caves are voids that open inland and reach saline groundwater
of marine origin, but whose passages have not been found connected with
the sea. They might be tidally influenced, but always experience a delay in
relation to the tides in the sea
Freshwater caves are voids that open above sea level and contain non-
haline waters of any origin, including groundwater, rivers, or percolation.
A few oligohaline caves containing saline waters without marine origin and
opening very far from the ocean are also included in this category (e.g.
Kaptar-Khana cave in Turkmenistan)

Meiofauna organisms retained on a 63-µmmesh and passing through a 1000-
µm-sized mesh. These include animals not visible by the naked eye but also
some animals that are such as primarily interstitial lineages of annelids (e.g.
) and platyhelminths (e.g. Proseriata), as well as certain crustaceans (e.g.
Trogloleleupia, Deeveya)

Subterranean meiofauna is a category that I have tailored for the purposes
of this chapter, departing from the criteria introduced in the World Register
of Cave Species (Gerovasileiou et al. 2016). I consider as subterranean meio-
fauna all species traditionally seen as stygobitic (i.e. exclusive to groundwater),
together with those that have never been recorded outside caves.
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10.2 An Overview on Cave Meiofauna

10.2.1 Regional Aspects

The data presented here originate from 2026 caves across the world, including 1577
freshwater caves, 119 marine caves, and 250 anchialine caves (see Box 10.1). This
represents only 31% of the total 6482 caves investigated for aquatic fauna (Martínez
et al. 2018). The relatively low proportion partly reflects cave scientists’ prefer-
ence to study macrofauna over meiofauna (Fig. 10.1). Amongst scientific articles on
cave meiofauna, most have focused on freshwater caves (Vandel 1965; Iliffe 1981),
whereas research in marine and anchialine cave habitats started later, in parallel with
the development of cave diving technologies (Bozanic 1997).

Geographically, most research on cave meiofauna has focused on Europe and a
large proportion of the data on cave meiofauna has been collected from Western
Europe and the Balkans, particularly from Italy, Spain, France, Slovenia, Rumania,
and Bulgaria (Fig. 10.2). These countries have also reported the highest number of
cave-exclusive meiofaunal species. In America, most records come from the Eastern

Fig. 10.1 Bibliographic
trends in cave meiofauna
research. a Number of
papers published per year on
cave aquatic species
compared to cave meiofaunal
species. b Number of new
records of cave meiofauna
species published annually at
the three different types of
caves discussed in this
chapter (see Box 10.1). c
Number of new cave records
published annually in each
continent. See text for further
explanations
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USA, the Mexican States of Yucatan and Quintana Roo, and Cuba. Other well-
investigated regions include Thailand, Vietnam, Western Australia, and the Canary
Islands. This geographic pattern parallels our general knowledge of subterranean
aquatic macrofauna (Botosaneanu 1986; Zagmajster et al. 2018). Particularly in
North America, very few meiofaunal species are known despite the long tradition of
subterranean studies in this area (Culver et al. 2000).

Marine caves have been better investigated in the Western Mediterranean
(Gerovasileiou and Voultsiadou 2014), the Macaronesia archipelagos (Freitas et al.
2019), and the Bahamas (Juberthie and Iliffe 1994; Kornicker et al. 2002), followed

Fig. 10.2 Meiofauna diversity in various cave habitats. The upper bars represent the total number
of records, species, and subterranean-exclusive species found in each habitat. The numbers within
the table correspond to the diversity of each of the groups. The grey bars on the right hand side are
proportional to the total number of species per group (see Table 10.2). Note that when the same
species has been reported in two different habitats, it is only counted once in the total
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Table 10.2 Summary of the diversity of the groups discussed in this chapter

Total
species

Total
meiofaunal
species

Total
subterranean
species

Cave
meiofauna
species

Cave-exclusive
meiofauna
species

Phylum Cnidaria > 12,000 93 1 2 0

Spiralia

Phylum Annelida > 23,000 425 119 109 19

Phylum
Gastrotricha

800 789 1 55 1

Phylum Mollusca > 85,000 500 358 17 2

Phylum Nemertea 1200 34 2 1 0

Phylum
Platyhelminthes

3000* 1700 45 60 7

Phylum Rotifera 1500 1500 0 69 0

Phylum
Gnathosthomulida

100 100 0 (2) 0

Ecdysozoa

Phylum
Kinorhyncha

350 314 4 9 4

Phylum Loricifera 31 31 2 2 2

Phylum Priapulida 21 13 10 4 0

Phylum Nematoda 20,000 4870** 29 323 10

Phylum Tardigrada > 1200 > 1200 3 69 3

Phylum Arthropoda

*** Class
Ostracoda

6600 4700 310 243 109

*** Class
Copepoda

11,300 6514 985 718 457

*** Class
Branchiopoda

800 700 8 80 3

*** Superorder
Syncarida

250 250 250 54 54

*** Order
Amphipoda

9900 60 1181 12 10

*** Order Isopoda 13,500 343 1000 12 11

(continued)
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Table 10.2 (continued)

Total
species

Total
meiofaunal
species

Total
subterranean
species

Cave
meiofauna
species

Cave-exclusive
meiofauna
species

*** Family
Halacaridae

1200 1184 20 17 7

Number of total and meiofaunal species in each group estimated from several sources. Total
subterranean species, cave species, and cave-exclusive species extracted from Stygofauna Mundi.
Columns: “total”, approximate number of species; “total meiofauna”, estimation of the number
meiofaunal species in the group; “total subterranean”, estimation of the species recorded in
subterranean habitats; “cave meiofauna”, meiofaunal species reported in caves; “cave-exclusive
meiofauna”, number of meiofaunal species restricted from cave habitats (see Box 10.1)
Notes: *Platyhelminthes correspond only to free-living species; **Nematoda only account for
marine meiobenthic species; Gnathostomulida are shown in parenthesis to indicate no reports have
been identify to species. Sources (Schmidt-Rhaesa 2020; WoRMS Editorial Board 2022)

by the Eastern Mediterranean (Bitner and Gerovasileiou 2021), the Black Sea
(Ereskovsky et al. 2015), the Caribbean (Huys and Iliffe 1998), Bermuda (Iliffe
1981; Bartsch and Iliffe 1985), and few archipelagos in the Indopacific, such as the
Maldives (Ape et al. 2015), Ryukyu Islands (Fujimoto andMiyazaki 2013; Yamasaki
2016; Jimi et al. 2020), Palau (Boxshall and Iliffe 1990; Fosshagen et al. 2001), and
Easter Island (Whatley and Jones 1999).

Within each region, the quality of information available for different caves is rather
heterogeneous. The few studies attempting to describe entire meiofaunal commu-
nities have highlighted a rich diversity in few marine and anchialine caves: in the
Indopacific (Sørensen et al. 2000; Boesgaard and Kristensen 2001; Sandulli et al.
2006; Heiner et al. 2009; Jørgensen et al. 2014), the Mediterranean (Palacin and
Masalles 1986; Todaro et al. 2006; Curini-Galletti et al. 2012; Janssen et al. 2013;
Ape et al. 2015), and the Canary Islands (Riera et al. 2018; Martínez 2019). These
studies have primarily focused on the interstitial fauna associated with sediments,
and only few have paid attention to the communities in the water column (Moscatello
and Belmonte 2007; Martínez et al. 2019). There are fewer studies describing entire
meiofaunal communities in freshwater caves, and these have mostly focused on few
hard-bodied meiofaunal groups, such as nematodes (Altherr 1938, 1971; Andrássy
1959, 1973) and copepods (Pearse and Wilson 1938; Brancelj 1987). In context
with planktonic communities inhabiting the cenotes in Yucatán Peninsula, numerous
rotifers, copepods, and ostracods have been found in entrance environments, but
only rarely in the dark sections of these cave systems (Moravec et al. 1995b, a;
Suárez-Morales et al. 2004; Vasquez-Yeomans 2005; Quiroz-Vázquez 2012).
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10.2.2 Taxonomic Composition of Cave Meiofauna: Which
Animals Are Found in Caves?

At present, most cave meiofaunal species belong to Arthropoda (1136 species),
Nematoda (323 species), and Annelida (109 species, 19 exclusive); followed
by Rotifera and Tardigrada (69 species each), Platyhelminthes (60 species), and
Gastrotricha (55 species). Mollusca (17 species) and the Scalidophora phyla (9
Kinorhyncha, 4 Priapulida, and 2 Loricifera) are represented by fewer species,
whereas Cnidaria and Nemertea are only known by two and a single species, respec-
tively (Table 10.2). The number of subterranean-exclusive species varies greatly
within each group. For example, all species of cave Loricifera might be considered
so far as cave-exclusive (Heiner et al. 2009; but see below), in contrast to all species
of Cnidaria, Nemertea, Rotifera, and Priapulida, which have also been found else-
where. Annelida, Arthropoda, Gastrotricha, Mollusca, and Platyhelminthes present
a variable percentage of cave-exclusive species (Table 10.2). Some of those so far
cave-exclusive species might be recorded elsewhere in the future, specially when
belonging to poorly studied groups, such as Loricifera.

The richness of meiofaunal arthropods in caves is unsurprising because arthro-
pods also represent major components of meiofaunal communities elsewhere (Giere
2009). Amongst cave meiofaunal arthropods, cave Copepoda consist of 794 species,
64% of which are exclusively subterranean (Galassi et al. 2009; Mercado-Salas
and Martínez 2022; George et al. 2021). Ostracoda is second in number of species
with 243 species (109 of them stygobitic), followed by Bathynellacea (54 species,
all stygobitic), Branchiopoda (80 species, only 3 stygobitic), and Halacaridae (17
species, 7 stygobitic). Cave meiofaunal Amphipoda and Isopoda are represented by
12 cave-exclusive meiofaunal species, although those numbers might vary greatly
depending on which groups within these two taxa are considered as meiofaunal
(Higgins and Thiel 1988). In fact, Amphipoda and Isopoda are amongst the most
species-rich groups in groundwater and are also very diverse in marine caves
(Navarro-Barranco et al. 2015; Borko et al. 2021). The low diversity of cave nema-
todes is somewhat surprising and likely reflects sampling bias. Published reports
suggest that nematodes are ubiquitous across different cave microhabitats, such as
guano deposits, soils (Du Preez et al. 2017), and underwater sediments (Ape et al.
2015; Riera et al. 2018; Pérez-García et al. 2018). More investigations are neces-
sary to fully understand the ecological significance of nematodes in caves compared
to the crucial roles they play in surface environments (Altherr 1938; Muschiol and
Traunspurger 2007; Traunspurger 2021).

The distribution of meiofauna sampling records and species also differs amongst
different types of caves (Fig. 10.3). However the larger number of records in fresh-
water caves might reflect the greater attention they have received historically; differ-
ences in taxonomic composition are most likely linked to the ecological processes
exerted by each type of habitat as well as the evolutionary history and phylogenetic
affinities of the different colonizing cave lineages.
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Fig. 10.3 Geographic distribution of cave meiofaunal species across the world. Anchialine and
inland freshwater caves are represented according to the biogeographic units defined by the Biodi-
versity Information Standards of the Taxonomic Database Working Group (www.tdwg.com). The
records from marine caves are represented in marine provinces (Spalding et al. 2007). Numbers are
normalized to the area of each polygon. a Number of caves with recorded meiofaunal species or
genera. b Number of records of meiofaunal species or genera in caves. c Number of meiofaunal
species recorded in caves. d Number of meiofaunal subterranean-exclusive species recorded in
caves. Source: Stygofauna Mundi (Martínez et al. 2018)

The number of meiofauna species known in each cave group is probably under-
estimated (Table 10.1). Recent cave surveys have highlighted a large diversity of
undescribed meiofaunal species (Pérez-García et al. 2018; Gonzalez et al. 2020),
even in regions or individual caves with a long tradition of meiofaunal studies (see
Curini-Galletti et al. 2012;Martínez et al. 2019). Meta-barcoding surveys might help
to estimate diversity more efficiently in those areas (Hoffman et al. 2018), but inte-
grative taxonomic studies and molecular analyses will be necessary to reveal, and
formally describe, the presumably high number of species within those habitats that
are still to be collected and described (Jugovic et al. 2012; Bilandžija et al. 2013). Our
poor knowledge of the meiofauna in many areas with caves might artificially inflate
the number of cave-exclusive species, unless research in caves is complemented by
inventories of the regional surface diversity (Martínez et al. 2019).

http://www.tdwg.com
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10.2.3 Distribution Patterns of Cave Meiofauna: Different
from Other Subterranean Organisms?

Althoughglobal patterns of cavemeiofaunadistribution oftenmirror samplingbiases,
in some areas, our better knowledge allows us to discern certain regional distribu-
tion patterns (Zagmajster et al. 2018). For example, 11–15% of freshwater European
species are restricted to groundwater, and some orders, families, and genera of Crus-
tacea are only known from those habitats (Galassi and Stoch 2010). Indeed, the
distribution patterns of European groundwater fauna have been analysed at different
spatial scales (Rouch 1988; Marmonier et al. 1993; Fiasca et al. 2014; Galassi et al.
2017), revealing a relatively high percentage of rare species in groundwater commu-
nities and emphasizing the challenge of obtaining robust knowledge of the distri-
bution of most groundwater taxa (Castellarini et al. 2007; Dole-Olivier et al. 2009;
Stoch and Galassi 2010). The fact that many species are currently considered being
rare suggests that higher sampling effort is needed to fully capture the diversity of
these areas. If larger species are rare, smaller species may be even more so, given
that many meiofaunal groups are very elusive in surface environments (e.g. the case
of Lobatocerebrum Rieger 1980).

Amongst European taxonomic groups, the distribution patterns of groundwater
copepods have been particularly well investigated. Several hotspots can be defined
by their species richness, as well as by high levels of endemicity, phylogenetic rarity,
and habitat specificity (Iannella et al. 2020, 2021). More characteristics described
for groundwater animals in Europe remain to be tested for cave meiofauna. These
include the general reduction in species number contrasting to the increase in their
distribution ranges towards northern latitudes. The marked differences in species
composition across European regions also need further scrutiny. Do they depend
on the large proportion of short-range endemic species (Stoch and Galassi 2010;
Zagmajster et al. 2014, 2018)?

Marine caves generally harbour more species than their inland counterparts, and
marine cave species tend to exhibit wider distributional ranges (Gerovasileiou and
Bianchi 2021). This has been shown for theMediterranean, where various caves were
found inhabited by the same pool of macrofaunal species with few locally endemic
species (Gerovasileiou and Voultsiadou 2014). A similar pattern seems valid for
the decapod fauna across the Indopacific when comparing caves and other anchia-
line habitats (Holthuis 1963). For small organisms, the presence of corresponding
distribution patterns remains to be investigated.

10.2.4 What Do We Know About the Phylogenetic Position
of Cave Meiofaunal Species?

Many species now regarded as cave-exclusive might just be waiting to be discovered
in non-cave environments. These discoveries are more likely to happen in areas
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poorly investigated for meiofauna, i.e. most of the world, but not only, as we have
already learned from research in Europe and the Canary Islands (Pascual et al. 1996;
Schmidt-Rhaesa et al. 2013; Andrássy 1971; Todaro and Thomas 2003). Robust
phylogenetic information on putatively endemic cave species is important not only
as a tool for tackling ecological questions from an evolutionary perspective, but
also as an essential source of scientific evidence underpinning the identification of
priority areas for species conservation, selecting model organisms, etc. (Mammola
et al. 2020b; Mammola and Martínez 2020; Wynne et al. 2021). Formal phylogenies
are missing for most meiofauna cave groups (Table 10.1; see Chap. 1). However, the
Linnaean classification of many groups, based on detailed comparative morphology
(e.g. Huys and Boxshall 1991), allows us to use it as a proxy of the phylogenetic
position of key species (see Iannella et al. 2020).

Amongst all phyla with cave meiofaunal representatives, Arthropoda comprise
the greatest number of subterranean-exclusive genera, families, and even orders and
classes (Yager 1981; Bowman et al. 1985; Huys 1988b; Fosshagen et al. 2001; Iliffe
and Kornicker 2009). The copepod order Gelyelloida is only known from ground-
water (although not yet found in caves; Huys 1988b), and about half of the described
species in the order Platicopioida and Misophrioida are restricted to anchialine and
marine caves (Huys 1988a; Boxshall et al. 2014; Gonzalez et al. 2020; Mercado-
Salas and Martínez 2022; Fig. 10.4). Subterranean-exclusive families and genera are
also common amongst the orders Cyclopoida, Calanoida (Fig. 10.4), and Harpacti-
coida, at times characterized by plesiomorphic characters, and therefore, representing
basally splitting branches within each of those orders (Boxshall and Huys 1992).

Three subterranean-exclusive families of Halocyprida (Ostracoda) are restricted
to anchialine caves (Kornicker and Iliffe 1985, 1989, 1995; Fig. 10.4), and many
more families and genera are scattered amongst Podocopida, occurring both in saline
and freshwater aquifers (Maddocks 1991, 2005; Karanovic and Pesce 2001; Kara-
novic 2007, 2012). Cave meiofaunal Amphipoda and Isopoda include the interstitial
families Ingolfiellidae and Microcerberidae (Vonk 2003; Fig. 10.4), the former with
several freshwater cave species across South Africa and Namibia and worth being
reviewed with modern methods (Barnard 1967; Griffiths 1989; but see Box 10.1).
Bathynellaceans are all restricted to fresh groundwater (Camacho and García-
Valdecasas 2008). Cave Halacaridae represent another very interesting group, often
neglected by the recent literature (Bartsch 2006). Four marine species are known
from anchialine caves in Bermuda (Bartsch and Iliffe 1985), two monotypic genera
seem restricted to caves (Walter 1931; Viets 1937), and most freshwater members of
Soldanellonyx, Lobohalacarus, Porolohmanella, and Porohalacarus are interstitial
or subterranean (Bartsch 2006). Since Halacaridae disperse poorly and present well-
defined adaptations to different types of substrate (seeMartínez et al. 2021), halacarid
mites represent interesting models for subterranean biogeography (e.g. Notenboom
1991; Rubio-López et al. 2022).

Other than arthropods, many cave-exclusive annelids have been described in
recent years (Martínez et al. 2013; Gonzalez et al. 2017). Amongst meiofaunal cave
species (Núñez et al. 1997, 2009; Martínez et al. 2017; Jimi et al. 2020), members of
Nerillidae are particularly interesting because they have apparently colonized caves
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Fig. 10.4 Cave meiofauna species. a Kinorhyncha. Ryuguderes imajimae, cave-exclusive genera
from Japan (H.Yamasaki). bRotifera.Testudinella sp.,Morske jame uKravljačici (Kornati, Croatia)
(D. Fontaneto). c Annelida. Leptonerilla diatomeophaga, Los Jameos del Agua (Lanzarote, Canary
Islands). d Platyhelminthes, Stenostumum sp., percolation pond in Grotta degli Stretti (Toscana,
Italy) (A. Martínez & U. Jondelius). e Platyhelminthes. Tyrrheniella sigillata, exclusive from
Grotta del Tuffo-Tuffo (Gulf of Napoli, Italy). f Annelida. Megadrilus pelagicus, Túnel de la
Atlántida (Lanzarote, Canary Islands). g Annelida. Fauveliopsis jameoaquensis, Los Jameos del
Agua (Lanzarote, Canary Islands). h Tardigrada. Cyaegharctus kitamurai, Daidokutsu marine cave
(Iejima, Okinawa). i Copepoda, Calanoida. Exumella n. sp., Túnel de la Atlántida (Lanzarote,
Canary Islands). jCopepoda,MisophrioidaPalpophria aestheta, cave-exclusivemisophrioid family
Palpophriidae, Túnel de laAtlántida (Lanzarote, Canary Islands).kOstracoda,Danielopolina orghi-
dani,Casimba El Brinco (Matanza, Cuba) (A.Martínez &B. Gonzalez). l Isopoda, Lepicharontidae
gen. sp. 1. Montaña de Arena (Túnel de la Atlantida, Lanzarote; Bradford-Grieve et al. 2014)
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multiple times, including the anchialine ecological radiation of the genus Speleoner-
illa (Worsaae et al. 2019a, b), the numerous marine cave species in Leptonerilla
(Núñez et al. 1997; but note Martínez et al. 2021; Fig. 10.4) and the monotypic
Nipponerilla (Worsaae et al. 2009, 2021b). Interestingly, the nerillid Troglochaetus
beranecki has been recorded from both, freshwater caves and hyporheic environ-
ments in Europe and North America, most likely representing a species complex
(Andrássy 1956; Pennak 1971; Särkkä 1998).

Kinorhyncha, Loricifera, Platyhelminthes, and Tardigrada include few, but phylo-
genetically interesting cave species (see Chap. 1). Kinorhyncha include the Japanese
endemic cave-exclusive genus Ryuguderes (Yamasaki 2016; Fig. 10.4), as well as
cave species in Japan, Mexico, and the Canary Islands belonging to marine genera
(Sánchez andMartínez 2019; Yamasaki et al. 2020). Loriciferans comprise two cave-
exclusive species (Heiner et al. 2009), including Austroloricus oculatus, one of the
few loriciferans knownwith pigmented eyes (Bang-Berthelsen et al. 2013). Amongst
the few cave platyhelminths found in marine and anchialine caves in Lanzarote and
theMediterranean (Gobert et al. 2019), Tyrrheniella sigillata (Riedl 1959; Fig. 10.4)
is particularly interesting because it presents spicules resembling those found in inter-
stitial Rhodopeomorpha (Mollusca). It might therefore represent either an interesting
case of evolutionary convergence or a misidentification. Tardigrada are known from
three cave-exclusive genera in French and Japanese marine caves (Villora-Moreno
1996; Fujimoto andMiyazaki 2013; Fujimoto 2015; Fig. 10.4). In contrast, we know
very few cave-exclusive nematodes, all of which are restricted to freshwater and
terrestrial environments and belong to otherwise epigean groups. No cave-exclusive
Nemertea, Priapulida, and Rotifera are known so far (Andrássy 1971; Schmidt-
Rhaesa et al. 2013; Fontaneto pers. comm.; Fig. 10.4). Gnathostomulida found in
caves have never been investigated in detail (Martínez et al. 2019), and all caveAcoela
andNemertodermatidamight be rather considered as belonging tomacrofauna (Riedl
1959; Curini-Galletti et al. 2012).

The presence of cave-exclusive lineage scattered across the animal tree of life
suggests that subterranean habitats might have played an important role in the evolu-
tion of several animal groups at different geological times. On the one hand, cave
meiofauna seem to be crucial to understand the morphological evolution of many
animal lineages, insofar as many cave meiofaunal species retain ancestral charac-
ters, and potentially represent basally splitting branches in relatively deep meta-
zoan lineages (Galassi et al. 2009; Mercado-Salas and Martínez 2022). More recent
cave lineages present conspicuous adaptations to survive in caves that might help to
better understandmorphological plasticity, particularly in groupswith comparatively
simple morphologies (Martínez et al. 2017; Worsaae et al. 2019a). This even relates
to many of those meiofaunal lineages that are poorly understood and sometimes only
known from their relatively old original descriptions (e.g. Viets 1937; Riedl 1959).
The status of many of these highly elusive, yet fascinating, cave species might remain
uncertain for many more years.
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10.2.5 Evolutionary Origin of Cave Meiofauna: What Do We
Know About the Processes Leading to the Origin
of Cave Meiofauna?

Inferring evolutionary processes is challenging (see Chap. 1), as it requires robust
phylogenies as well as accuratemorphological, ecological, and distributional data for
the target group. However, for most cave meiofaunal lineages, information is sparse
and fragmented. Given that the origin of cave fauna is at the core of biospeleological
literature, this chapter would be incomplete without summarizing some of the most
popular theories (Juan et al. 2010). The hypotheses discussed here are rather hetero-
geneous insofar as some of them address the origin of cave species from a hypothet-
ical non-cave ancestor (Iliffe 1986; Notenboom 1991; Boutin and Coineau 2012),
whereas others focus on how the species might have diversified from an already
subterranean ancestor (Hart et al. 1985; Danielopol et al. 1994). However, models
within both groups can be discussed together since they mostly differ regarding the
relative importance attributed to vicariant versus dispersal processes (Culver et al.
2009). After the historical tendency to progressively abandon vicariant models and
rather favour the role of active colonization and dispersal, it appears, as molecular
phylogenies have demonstrated, that the origin of cave faunas is more complex than
any single model predicts (Koenemann et al. 2007; Juan et al. 2010; Botello et al.
2012; Page et al. 2016). However, as simplified as these hypotheses might seem, they
have inspired generations of cave biologists and still remain powerful sources for
novel research questions (Iliffe and Kornicker 2009).

Many explanatory hypotheses for the origin of cave fauna have relied on tectonics
to explain the current disjunct distribution of many cave lineages. Ancient Tethyan
vicariance, for example, has been invoked to explain such patterns in several lineages
restricted to anchialine caves across continents (Koenemann et al. 2007, 2009;
Bracken et al. 2010). This hypothesis remains popular, although it cannot explain
the presence of some of these groups in relatively young oceanic islands (Bowman
and Iliffe 1986; Koenemann et al. 2009). Recent phylogenetic tests have consistently
yielded some degree of dispersal to explain the distribution of all those so-called
Tethyan anchialine groups (Jurado-Rivera et al. 2017; Page et al. 2016; Koenemann
et al. 2007). Amongst meiofauna, Tethyan-related vicariance has been proposed
for thaumatocyprid ostracods (Iglikowska and Boxshall 2013, Fig. 10.4) and is
plausible for cave nerillids distributed across the Atlantic Ocean (Worsaae et al.
2019a). Another type of tectonic vicariance, associated with the fragmentation of
Gondwana, has been proven of importance for subterraneanMilyeringidae gobiform
fish (Chakrabarty et al. 2012), and, amongst cave meiofauna, has been suggested
for bathynellaceans (Schminke 1972). On the other hand, an alternative dispersal
through fluvial networks seems more plausible for those crustaceans (Camacho and
García-Valdecasas 2008).

Vicariant events associated with sea level changes have provided another
set of explanatory hypotheses, particularly in the Mediterranean, where several
transgression-regression events have been registered after the Triassic (Notenboom
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1991). Marine transgressions have been invoked mostly for freshwater subterranean
species with a marked marine affinity, yet without extant surface relatives in fresh-
water, such as ingolfiellids,microcerberids, and harpacticoids (Coineau 1994; Boutin
and Coineau 2012; Coineau et al. 2013; Iannella et al. 2020; Fig. 10.4). Thosemodels
propose that originally littoral marine ancestors actively colonized and adapted to
littoral cave sediments, to become thereafter stranded by the regression of the Tethys,
thus, passively forced to colonize fresh groundwater (Riedl 1966; Notenboom 1991;
Boutin 1994; Holsinger 1994). A more cataclysmic variant of these models has
invoked the Messinian salinity crisis as an event triggering vicariance to explain the
origin of cave calanoids without interstitial ancestors and living in saline waters
(Carola and Razouls 1996). For Australian stygobitic species with a freshwater
affinity, a similar model based on aridification has been proposed (Humphreys 2000).

A deep-sea origin, involving dispersal and niche conservatism, has been proposed
for species associatedwith saline coastal aquifers and otherwise belonging to lineages
restricted to the ocean depths (Fuchs 1894; Racovitza 1907). The hypothesis has
been explicitly tested for macrofaunal annelids (Martínez et al. 2013; Gonzalez et al.
2018) and suggested for fish (Cohen and McCosker 1998; Springer and Johnson
2015) and crustaceans (Van der Ham 2003; Álvarez et al. 2004; Mejía-Ortiz et al.
2017). This putative deep-sea origin has been framed under the so-called darkness
syndrome (Danielopol et al. 1996), suggesting that the ecological similarity between
certain deep-sea and cave environments might have favoured similar faunas in both
habitats. Animals would have been able to disperse between both environments
through the crevicular surface present in the oceanic crust (Hart et al. 1985). Amongst
meiofaunal organisms,morphological phylogenies have suggested a deep-sea affinity
for misophrioid copepods and thaumatocyprid ostracods (Boxshall and Jaume 1999;
Danielopol and Humphreys 2005; but see Jaume et al. 2000; Boxshall and Jaume
2000). They have also been suggested for annelids (Worsaae and Rouse 2009; Núñez
et al. 1997; Jimi et al. 2020), tardigrades (Villora-Moreno 1996; Fujimoto et al.
2017; Fig. 10.4), and some basally branching lineages of calanoid, cyclopoid, and
harpacticoid copepods (Mercado-Salas and Martínez 2022, Fig. 10.4).

Finally, there are a fewmodels that involve both active colonization and ecological
shifts. The so-called zonation model proposes a progressive adaptation to subter-
ranean environments through the ecological gradients offered by caves that open
into the sea and penetrate deeply into the aquifer (see Yager 2013). The model,
first proposed for freshwater cave species with marine ancestors living on oceanic
islands (Iliffe 1986), states that marine ancestors of today’s cave-exclusive species
might have progressively entered extensive cave systems, slowly adapting to the
decreasing concentration of dissolved oxygen and particulate organic matter found
in many caves (Fichez 1991). This model was formulated for atyid shrimps of the
genus Typhlatya (Iliffe 1986; Ballou et al. 2021), and applies well to cave mysids
(Bowman 1985; Meyer-Rochow and Juberthie-Jupeau 1987). Amongst meiofaunal
groups, it has been proposed for cave calanoids of the family Epacteriscidae and
Stephidae (Fosshagen et al. 2001; Gottstein et al. 2007; Kršinić 2015). The alterna-
tive interstitial shift model applies to meiofaunal lineages that have secondarily colo-
nized the water column of anchialine caves from marine interstitial ancestors. That
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model was first proposed for the suspension feeding protodrilid Megadrilus pelag-
icus and later for the nerillid genus Speleonerilla (Martínez et al. 2017;Worsaae et al.
2019a; Fig. 10.4). Those animals present highly modified morphologies, including a
secondary development of long palps and ciliary structures used to drift or swim in
the water column. This conspicuous morphological change might be favoured by the
shift from interstitial deposit feeding to suspension feeding strategies in the water
column in those caves systems. The colonization of the water column is favoured by
the lack of porous sediments in most caves and the richer trophic resources in the
water column (Fichez 1991; Brankovits et al. 2017). Indeed, the water column of
any anchialine caves is dominated by suspension feeders, including various groups of
copepods, ostracods, amphipods, and thermosbaenaceans. However, many of those
animals are hyperbenthic outside caves (Jaume et al. 2000).

10.3 An Overview of Cave Meiofaunal Communities

We are far from understanding the functioning of cave communities, insofar as we
know very little about the factors affecting the abundance of different species or their
functional roles, ranges of tolerance, and their inter- and intraspecific interactions
(Table 10.1; also see Moldovan et al. 2018).

Cave meiofaunal communities consist of seemingly distantly related taxa, and
are characterized by high taxonomic and phylogenetic diversity. Endemism, on
the other hand, varies a lot depending on the taxonomic group and the type of
cave habitat: copepods and annelids exhibit a higher proportion of geographically
restricted species compared to nematodes (Stoch and Galassi 2010; Martínez et al.
2016; Du Preez et al. 2015, 2017), and inland freshwater caves have more endemic
species than those directly connected to the sea (Gerovasileiou andVoultsidou 2014).

Abundances of macrofaunal species are generally lower in caves than in
surrounding environments (Mammola et al. 2020b). However, the study of macro-
fauna has revealed exceptions amongst certain functional groups. For example,
sessile fauna might exhibit higher abundance (and a larger number of species) in
the twilight zone of marine caves than in other marine environments (Gerovasileiou
and Bianchi 2021). The abundance and richness in marine caves seem to be as high
as in the surrounding environments, and more dependent on the sediment granulom-
etry than on other environmental parameters (Palacin andMasalles 1986; Riera et al.
2018). In contrast, some anchialine and freshwater caves harbour clearly impover-
ished meiofaunal benthic communities (Pérez-García et al. 2018), but this might be
linked to the presence of poorly oxygenated muddy sediments in many anchialine
cave systems (Fig. 10.5). This conclusion is corroborated by data from anchialine
caves where coarse sediments are present. Here meiofauna abundance and richness
are higher (Martínez and Gonzalez 2018).

The distribution of meiofauna within a single cave depends on the presence
and nature of sediments (Martínez et al. 2019) and the quantity and quality of
trophic resources (Altherr 1938; English and EdytaBlyth 2003; Du Preez et al.
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Fig. 10.5 Cave environments relevant for cave meiofauna. a Montaña de Arena (Túnel de la
Atlantida, Lanzarote, Canary Islands) (J. Heinerth). b Entrance of an anchialine cave in Matanzas
(Cuba). c Alphonse Dean Marine Blue Hole (Long Island, Bahamas) (T. Thomsen). d Percolation
freshwater in awatermine in Lanzarote (DavidBrankovits). e Stratifiedwater column in aBahamian
inland blue hole (T. Thomsen). f Volcanic scoria and sediments in Túnel de la Atlantida, Lanzarote.
g Diatoms in the twilight zone of Los Jameos del Agua (Lanzarote). h Fine muddy sediments and
guano in Conch Bar cave (Turks and Caicos Islands, Caribbean). Concentration of organic matter
settling from the water column and facilitated by the lack of turbulence and large predators
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2015). Cave sections enriched by the excrements of larger animals (bats, birds, or
even Bonellia viridis, see Brito et al. 2009, Fig. 10.5), illuminated entrance zones,
sulphuric springs, or patches of coarse sand generally harbour higher abundances
and a larger percentage of epigean species compared to regions of dark anchialine
cave systems. The latter are poorer in species but richer in cave-adapted lineages
(Martínez et al. 2009). Nevertheless, nematodes can occur in resource-poor cave
sections (Andrássy 1965). Nematode populations of otherwise epigean speciesmight
even play a central role in isolated cave ecosystems, often coexisting with more
specialized forms (Altherr 1938, 1971; Schroeder et al. 2010; Muschiol et al. 2015;
Du Preez et al. 2017).

Caves might represent useful systems to understand the interplay between biotic
and abiotic parameters structuring biological communities (Mammola and Isaia
2018). In stable environments, biotic factors have a strong effect on structuringmeio-
fauna communities (Giere 2009). Most caves, however, harbour steep gradients of
light, organic matter availability, and often salinity and temperature, favouring an
increase in numbers of more specialized species from the entrance zone towards the
inner reaches. Valid for macrofauna, similar gradients have been found in meioben-
thic cave copepods (Janssen et al. 2013). However, these gradients disappear in
studies with a coarser taxonomic resolution (Palacin and Masalles 1986; Riera et al.
2018).

The subterranean environment has a notable ecological filtering effect on potential
colonizers, resulting in functionally and taxonomically distinct communities whose
composition is often deviating from those at the surface. There is some evidence that
this might also be the case for meiofaunal communities in some cave environments.
A good example might be anchialine systems, which are dominated by suspension
feeders, some of which exhibit secondary adaptations to this feedingmode (Martínez
et al. 2009, 2017).

Very little is known about cave trophic interactions, even amongst large animals
(Chávez-Solís et al. 2020). Studies in terrestrial caves suggest that the richness and
abundance of detritivores might act as a regulating factor for the entire cave commu-
nity through a bottom-up control mechanismwhich is strongly dependent on external
energy inputs. These inputs, in turn, limit the abundance and diversity of predators
(see Mammola and Isaia 2018 for an overview). Given that many meiofaunal species
are detritivores, research on meiofaunal distribution and richness points at mecha-
nisms regulating interactions with larger organisms and perhaps even at the factors
regulating carbon cycling in those systems (Brankovits et al. 2021). Similar to other
detritus-based food webs, the most important interspecific interactions amongst cave
fauna are competition and predation (Mammola 2019). However, the relevance of
competitionmight vary depending on the type and nature of the trophic input (Vandel
1965). Furthermore, primary producers, occurring at the entrance zone of caves, may
locally attain trophic significance, as chemolithotrophic bacteria which can become
extremely abundant at discontinuity layers between different water bodies (e.g. influx
of springs or waters enriched by certain minerals (Jones et al. 2008; Brankovits et al.
2017; Brad et al. 2021)).
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10.4 Emerging from the Dark: New Horizons for the Study
of Cave Meiofauna

For us, inhabiting the above-ground world, caves are full of surprises (Mammola
2020). Even a short visit or dive into a cave would reveal animals with conspicuous
adaptations (Martínez et al. 2017; Worsaae et al. 2019a, b), and foreign taxa not seen
in the outside world (Iliffe andKornicker 2009). Organisms belonging to new species
are not rare (Martínez et al. 2019; Gonzalez et al. 2020) often exhibiting narrow
distribution ranges (Galassi and Stoch 2010). Describing these results of evolution
is worthwhile but using them to explore general eco-evolutionary questions might
seem, as yet, unrealistic given our current limitations related to:

• Logistic constraints associated with collecting and describing cave meiofauna:
We are far from a complete inventory of subterranean faunal diversity, espe-
cially that of meiofauna, in most regions of the world (Curini-Galletti et al. 2012;
Zagmajster et al. 2018). Rectifying existing sampling is challenging, given the
biological and habitat impediments associatedwith collecting and describing cave
fauna (Mammola et al. 2020a, b, c), and meiofauna in particular (Fonseca et al.
2018) (Table 10.1).

• Geographically fragmented information on cave meiofauna: Indeed, we know
nothing about cave meiofauna from large areas of the world, and from others, the
available information remains largely fragmented. This problem, which affects
even themost basic description of cavemeiofaunal communities (i.e. species iden-
tity and distribution), limits our capacity to understand the evolutionary history of
individual cave species, their traits, and their tolerance ranges, as well as their
abundances and interactions within different cave assemblages (Hortal et al.
2015). Unfortunately, the lack of taxonomic information for many important
meiofaunal groups implies that this situation will not be alleviated within the
near future.

If, however, we focus our efforts wisely, the study of a single cave lineage
might tell us a lot about general ecological and evolutionary processes. Selecting
some scientifically and logistically suitable caves for detailed, longer-term research
will provide deeper insights into critical unknown aspects of cave meiofauna than
dispersed sampling efforts in various new caves and countries.

Studies on selected cave speciesmay be crucial to understanding the evolution and
biogeography of major animal lineages and their morphological plasticity compared
to larger-sized animals. Promising topics of interest include.

• Evolution of meiofauna under cave conditions—Identify those species that can
render particularly deep insights of evolutionary processes (e.g. some Copepoda,
Annelida, Nematoda, see Chap. 1)

• Structural, functional, and behavioural adaptations and plasticity—Compare and
contrast cave and non-cave counterparts of meiobenthic or macrobenthic size to
understand the selective demands put on cavernicolous life.
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• Biogeography—Since plate tectonics and marine transitions seem to have partic-
ularly affected cave meiofauna, the study of targeted cave meiofaunal species
might provide novel insights into the biogeography of microscopic animals in
comparison with their non-cave counterpart (Fontaneto 2011).

• Ecological adaptations to cave conditions—Design and apply experimental
approaches (e.g. “cave laboratories”) that allow testing of various factors
(including food spectra, role of bacteria in biofilms, light conditions, tempera-
ture, variations in salinity, etc.) on cave meiofauna populations and communities
and their intra- and interspecific interactions with microbes and macrofauna.

• Mediation of wider ecosystem processes and provision of ecosystem services—
Identify key cave meiofaunal activities (e.g. bioturbation, feeding) that regu-
late processes beyond the subterranean environment and potentially affect the
provision of associated ecosystem services.

Within caves, meiofauna might play a central role in carbon cycling comparable
to that in the outside world (Bonaglia et al. 2014). Thus, communities of small
organisms might crucially affect the composition of the groundwater in inland and
coastal aquifers (Saccò et al. 2019, 2022). Considering the fundamental ecosystem
services that aquifers provide to humans, and the crucial role groundwater discharge
attains in the chemical balance of the ocean (Luijendijk et al. 2020), cave micro- and
meiofauna might affect our everyday life much more than we have so far imagined.
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Chapter 11
Meiofauna—Adapted to Life
at the Limits

Jeroen Ingels, Daniela Zeppilli, and Olav Giere

Abstract Meiofauna are ubiquitous members of aquatic ecosystems worldwide.
Some of them can thrive under boundary conditions that are challenging tomost other
organisms. The discovery of well-adapted meiobenthic communities under extreme
environments (e.g., sub-glacial sediments or deep in theEarth’s crust) has opened new
insights into life under limiting conditions, insights relevant not only with respect to
distributional and physiological aspects, but also of potential importance in research
on venturous exobiological and medical frontiers. Although meiofauna do not have
pelagic dispersal stages and, therefore, are directly exposed to the limiting environ-
ment of their immediate habitat, representatives from various taxa can survive envi-
ronmental conditions often fatal to all other fauna. Typical ‘extremophiles’ belong
to the abundant and diverse group of nematodes, but also, tardigrades, rotifers, lori-
ciferans, kinorhynchs, and the protozoan foraminiferans (especially in polar regions).
In addition, some can modulate their metabolism by temporarily switching to an
‘alternate life’ where they can ‘escape in time’ (Jönsson 2005). This extraordinary
potential explains why they became preferred objects for biochemical, physiological,
medical, and even exobiological studies. Natural extremes have always occurred, but
under the present conditions of climate change, the frequency of extreme environ-
mental challenges is increasing and represents a planetary threat. Therefore, under-
standing pertinent adaptations can provide vital information on how organisms may
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survive stressful challenges such as acidification, lack of oxygen, and rising temper-
atures. Thus, research on the biology, ecology, and physiology, including genetic
studies, of these exotic meiobenthic taxa is gaining importance. As diversified as the
taxonomic affiliations of extremophiles are their adaptive patterns that have evolved
under hostile life conditions. The variety of pathways leading to their survival,
including a temporary metabolic suspension or ‘dormancy’ (see Table 11.1), points
to independent routes that have evolved repeatedly over evolutionary time. Pertinent
studies may even shed light on their evolutionary diversification and their phylo-
genetic relationship (see Chap. 1). Since, in addition to nematodes, many specific
studies are on tardigrades and rotifers, their life under extreme conditions, mostly in
freshwater and desiccating terrestrial habitats, is also considered in this chapter.

11.1 Extreme Environments and Meiofauna

Environments near the limits of ‘normal life’ cover wide areas of the Earth’s surface.
However, our perspective of normal and extreme environments differs from those of
meiofauna, particularly in the marine realm. From our perspective, the oceanic realm
is still a rather inaccessible, if not hostile world, where the inhabitants, especially
those in oceanic depths, remain ‘foreign’. Can we really transfer our understanding
of ‘extreme’ or ‘limiting survival’ tomarinemeiofauna, since these ubiquitous organ-
isms seem well adapted to sometimes the most inhospitable conditions? How then
can ‘extreme’ conditions for meiofauna be assessed in an objective way and how
should we appraise what is stressful or identify the conditions that constrain them?
There are several information sources that allow us to build this knowledge:

• From previous research data under exceptional environmental conditions,
• From studies testing comparable factors/conditions in more easily accessible

areas, or
• From experimental analyses in the laboratory.

Environmental limitations may cause stress or even death for organisms, so
these threshold conditions can be measured, compared, and evaluated. Criteria for
stress under defined conditions can be derived from death rates higher than usual,
from abnormal physiological, developmental/ontogenic, or reproductive pathways,
or from diminishing protective adaptations or responses. These can distinguish
‘extreme’ from ‘normal’ and, thus, objectify our data (see, e.g., high content of
certain stabilizers in hadal fish, Yancey et al. 2014). Assessment of these required
differentiations and objectifications is challenging, but also important to advance
our understanding of life on Earth—a major research frontier. To paraphrase and
simplify: an environment may be considered extreme ‘if one or more of the physical
or chemical variables are near the limits of what is known to be tolerable by most
known life forms’ (Zeppilli et al. 2018).

In studying extreme environmental conditions, a remarkable potential and variety
of adaptations have been revealed (Møbjerg et al. 2011; Poli et al. 2017; Rebecchi
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et al. 2020), togetherwith insights into the evolution and diversification of life (Martin
et al. 2008; McMullin et al. 2007). In extreme environments, one or several physical
or chemical variables are near the limit of what is known from other animals and
habitats, or from experiments, to be tolerable bymost life forms (e.g., extremely high
or low temperatures, pressure, oxygen or salt concentrations, or toxic compounds,
see Fig. 11.1). Also, extreme variability may characterize these habitats (Amils
et al. 2007; Ellis-Evans and Walter 2008; Rothschild and Mancinelli 2001). In
the marine realm, extreme environments are often associated with ephemeral and
unstable ecosystems (e.g., seasonal flood plains, food-falls, volcanic areas). In other
cases, conditions may remain relatively stable, yet are extreme in their range and
become hostile to the metabolism of most organisms (e.g., anoxic basins, abyssal
plains, deep hypersaline anoxic basins). Both types of biotopes can host various,
sometimes endemic, and well-adapted, meiofaunal species with high resistance to
extreme environmental conditions and hence high persistence in such biotopes.

In marine extreme ecosystems, e.g., in hypersaline areas, anoxic basins, polar ice
floes or desiccating muds, and hydrothermal vents, three meiofauna groups often
dominate: foraminiferans, nematodes, and copepods. Specific meiofauna are also

Fig. 11.1 Examples of extreme environments (from left to right): shallow-water hydrothermal vent
(Secca delle Fumose,Mediterranean Sea), deep-sea hydrothermal vent (East Pacific Rise, Copyright
IFREMER), deep-sea pockmark (REGAB, Copyright IFREMER), and deep-sea brine pool (Cheops
mud volcano, Nile Deep-Sea Fan, MEDECO Cruise 2007, Copyright IFREMER)
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found in desiccation-prone, often amphibious freshwater habitats where conditions
only intermittently allow for an active life, e.g., in ephemeral lakes or seasonal rivers
during draught periods, in frozen polar ponds, in uppermost tidal shores, or in thin
water films covering exposed grains and plants (e.g., kinorhynchs in mangroves,
nematodes and rotifers in polar ponds or within brine channels of ice, tardigrades in
mosses). For marine ecosystems, the biodiversity and ecology of ‘extreme’ meioben-
thic specialists were the main topic in a review by Zeppilli et al. (2018). For nema-
todes, tardigrades, and rotifers living in freshwater and moist terrestrial habitats,
Rebecchi et al. (2020) emphasize the physiological processes involved in adaptation.
The basic prerequisite for all adaptive pathways to persist in extreme environments
is an effective osmoregulatory potential, e.g., salt-, water-, and thermoregulation
(Wright and Newall 1980; Wharton 2007). When conditions become limiting for
‘normal’ life, it is ‘dormancy’ that can considerably expand the range of survival.
Dormancy warrants a ‘dual existence’ with an active phase where habitat conditions
(e.g.,water content) remain in the normal range and adormant phase (where active life
is reversibly suspended, e.g., extreme frostwith no liquidwater present). The predom-
inant modes of dormancy, cryptobiosis, and diapause are further differentiated (see
Table 11.1).

While cryptobiosis is under environmental control (adverse life conditions) and
may become repeatedly triggered and quickly reversed, diapause, especially encyst-
ment or production of resting eggs, is strongly regulated by endogenous stimuli
and often restricted to set developmental (cyclomorphotic) phases. Among cryptobi-
otic meiobenthos, anhydrobiosis (osmobiosis) and cryobiosis are encountered most

Table 11.1 Modes of dormancy occurring among meiofauna classified (based on Rebecchi et al.
2020) (Original)

DORMANCY—any form of resting stage in stressful environments

Cryptobiosis (‘anabiosis, quiescence’)
(also ‘hidden life’, under exogenous control, occurs in all life stages from eggs to adults, may
get quickly reversed by external stimuli)

e.g., anhydrobiosis—maintenance of a reduced form of life under extreme desiccation,
the most common and best investigated form of stress resistance

e.g., osmobiosis—maintenance of a reduced for of life under extreme salinities

e.g., cryobiosis—maintenance of a reduced form of life under extreme cold

e.g., anoxybiosis—maintenance of a reduced form of life under anoxic conditions
(with hypoxybiosis—maintenance under extremely low oxygen concentrations)

Diapause (complete suspension of growth and development, triggered by endogenous and
exogenous stimuli, with far-reaching morphological changes)

Encystment—encapsulation of organism in sheltering exuvia of cuticle (‘Russian doll
principle’, known from limnetic tardigrades, but also from the marine Echiniscoides;
typical also for many rotifer taxa)

Resting eggs—Among meiofauna mostly restricted to monogonont rotifers, usually
developing at certain developmental phases only, extremely resistant to all kinds of
stressors, often serving as mode of distribution
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frequently; anoxybiosis is restricted to habitats with reduced or even absent oxygen
supply. Some freshwater nematodes, tardigrades, and rotifers can include into their
life cycle a metabolic diapause as a reversible phase of extreme tolerance (for details,
see Rebecchi et al. 2020).

The most widespread survival strategy under extreme conditions is the capacity to
regulate the composition and water content of body fluids. Highly efficient osmoreg-
ulationmechanisms are fundamental for survival of meiofauna organisms under both
extreme salinity and temperature conditions and determine their life in polar ice (see
Chap. 9), in brackish and hypersaline waters as well as in desiccation-prone habi-
tats. However, pertinent functional studies and physiological measurements remain
scarce.Most investigations are based on reportingmeiofaunal composition and distri-
bution, while studies reporting on ecophysiological or biochemical processes often
involve macrofauna only.

The presence of meiofauna living in the sympagic channel system of sea ice has
beenwell described (Ehrlich et al. 2020;Gradinger 2001;Gradinger andBluhm2020;
Schnack-Schiel et al. 2001) with nematodes, turbellarians, rotifers, and harpacticoids
dominating. However, the pathways of maintaining an efficient osmoregulation for
survival under these extreme conditions are often based on analogous studies of the
accompanying macrobenthic Arctic amphipods. These have been found to adapt by
maintaining high concentrations of inorganic ions and specific amino acids in their
hemolymph when salinity drops to 5 PSU (Aarset 1991). The diverse meiofauna
thriving in the brine channels of ice floes prevent the formation of ice crystals in
their bodies by special hemolymph ‘antifreeze’ proteins (for details, see Sect. 11.6).

11.2 ‘Toughest Animals on Earth’ (Erdmann
and Kaczmarek 2017)

Knowledge on the mechanisms involved in facilitating ‘life at the limits’ can be
gained by focusing on three meiobenthic taxa: nematodes, ecologically the most
successful and often dominant phylum, rotifers and tardigrades. The latter, although
less dominant, are bizarre and famous for their successful excursions into outer space
(Figs. 11.2 and 11.3) although nematodes have also been used in spacemissions under
experimental conditions.1 All these phyla are well known for their ability to cope
with desiccation, extremes of temperature, hypersalinity, etc. First, we examine in
more detail the ubiquitous nematodes, and then, we will provide more details on
arguably the hardiest of meiobenthic organisms, the (freshwater) tardigrades and
rotifers.

In Antarctic dry valleys, where extreme conditions provide the bare minimum
for sustaining life, the top level of the terrestrial, ‘ephemerally aquatic’ soil food
chain is represented by nematodes (Wharton 2003). Perhaps even more astonishing

1 https://theconversation.com/all-you-need-to-know-about-the-space-travelling-nematode-a-
worm-like-no-other-47949.

https://theconversation.com/all-you-need-to-know-about-the-space-travelling-nematode-a-worm-like-no-other-47949
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Fig. 11.2 Nematode Oncholaimus dyvae, buccal cavity. Species living at deep-sea hydrothermal
vents and feeding on bacterial mats (scale bar: 10 µm) (Copyright: IFREMER)

Fig. 11.3 Immuno-fluorescence photographs of two tardigrade species. Left—Neostygarctus ocea-
nopolis, particularly abundant on deep-sea seamounts (total length incl. toes: 250 µm) (Copyrights
IFREMER); right—Hypsibius exemplaris, common in freshwater ponds and lakes, known as a
‘laboratory species’ (total length 220 µm) (Copyrights Tagide deCarvalho, USA)

are reports of nematode specimens that, according to Shatilovich et al. (2018),
were revived from permafrost soils frozen in prehistoric times. Another astounding
example of viability under extreme conditions is the finding of nematodes (Hali-
cephalobus mephisto) in rocks of the Earth’s crust in km-deep fracture water up to
12,000 years old (Borgonie et al. 2011). In marine oxygen minimum zones, areas in
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the world’s oceans characterized by very low oxygen (<0.5 ml/L), nematodes domi-
nate (up to 99.9%) the benthic realm with macrofauna and other meiofauna being
absent (Neira et al. 2018, 2001; Veit-Köhler et al. 2009).

As for tardigrades and rotifers, their extreme potential of cryptobiosis (anhydro-
biosis, cryobiosis, anoxybiosis) was reviewed by Rebecchi et al. (2020), and tardi-
grades, suppositioned as the ‘toughest animals on Earth’, are now of global interest
to astrobiologists because of their high resistance to conditions akin to the challenges
encountered in space (Erdman and Kaczmarek 2017).

11.3 Why Are Nematodes so Successful Under Extreme
Conditions?

Nematodes have been reported from every habitat, from the bottom of the deepest sea
to the top of the highest mountains, and from arid deserts to the deep Earth’s crust.
A recent paper elegantly proposes that the unique combination of five nematode
characteristics may explain their successful adaptation to extreme habitats (Sapir
2021).

These can be summarized as follows:

(i) Simple body plan (cylindrical with no appendages),
(ii) Adaptation to low concentrations of oxygen,
(iii) Minimal dietary requirements,
(iv) Various strategies for suspended animation,
(v) Pre-adaptation and tolerance across different stressors.

Freshwater and marine environments offer conditions in which nematodes have
shown exceptional aptitude to thrive, dominate, and outcompete other metazoans.
However, many of these environments expose nematodes to most variable and even
hostile conditions, such as high pressure, extreme temperatures, osmotic/ionic stress,
hypoxia, methane and carbon dioxide release, and other chemical stressors. Some
may survive for months in liquid nitrogen; others may live in vinegar, glue, or even
in soaked beer mats. What these all have in common, however, to sustain life with
active metabolic processes, is that they require some moisture. Only in the status of
‘diapause’, a number of species can survive for months or years as dry ‘aggregations’
until water re-enters their environment and revives them from the desiccated state
(Kitazume et al. 2018).

Nematodes, lacking circulatory or respiratory systems and appendages, are
structurally a simple life form, with a rather invariant body plan, comprised of
about 1000 cells in the adult stage (e.g., Caenorhabditis elegans, Sulston and
Horvitz 1977). Their body is dominated by the alimentary and reproductive systems
and mechano- and chemosensory receptors (e.g., setae, amphids). The anatomical
simplicity contrasts with their functional efficiency, evolutionary diversification, and
capacity adaptation. Nematodes exhibit complexity in many other ways, (i) morpho-
logically (body sizes from hundreds of micrometers to >6 m), (ii) life cycles (from
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parthenogenesis to complex parasitic cycles or alternating sex strategies), and (iii)
their ecology (Blaxter 2011). In addition, they possess many metabolic and devel-
opmental processes and specializations that allow them the physiological adapt-
ability to withstand stress and adverse conditions (Lee 2010; Tahseen 2012). The
key for this enormous diversification despite anatomical simplicity seems to be a
complex mechano- and chemosensory system allowing them to respond to a wide
range of environmental stimuli (Lee 2010). Numerous developmental, physiolog-
ical, and biochemical adaptations, allowing nematodes to survive under extreme
conditions (Wharton 2003, 2004, 2007), triggered investigation of the underlying
processes and genetic origins (Perry and Wharton 2011).

Nematodes can be dated back using trace fossils to the Cambrian period at least
(see Chap. 1). Hence, the evolutionary age of nematodes provides considerable time
for adapting to the diversity of (marine) ecosystems. A study using nucleotide diver-
sity confirmed that free-living nematodes conquered land before most other meta-
zoans did (Rota-Stabelli et al. 2013), allowing time for adaptations to extreme envi-
ronmental conditions to develop. In addition, the generational turnover of nematodes
is fast: Life cycles between three days and several months (although in marine nema-
todes usually not exceeding a few weeks, see Gerlach and Schrage 1971; Tietjen and
Lee 1972) allow them, with modifiable genetic material, to adapt or change rela-
tively rapidly when subjected to selective pressures. Successful habitat transitions
between marine, freshwater, and terrestrial ecosystems could be the basis for the
extensive diversification of nematodes (Holterman et al. 2019). Hence, it is probable
that different adaptations and life strategies have evolved independently and repeat-
edly also within each of the three main nematode clades Chromadoria, Enoplia, and
Dorylaimia (Blaxter 2011; De Ley 2006; De Ley and Blaxter 2002).

A deeper understanding into the survival mechanisms that make nematodes so
successful may provide important information on how organisms may respond and
adapt to increased impacts in the Anthropocene, and, even, bring some insight in the
potential of life in extreme conditions outside our Planet’s biosphere.

11.4 Adaptive Responses of Nematodes to Extreme
Environments

Survival abilities include morphological adaptations, behavioral changes (migra-
tion, dispersal, phoresis, aggregation, swarming, coiling, etc.), or resistance-adaptive
measures that are often linked to metabolic processes (Wharton 2002, 2007). Adap-
tations such as maximizing body surface/volume ratio, increasing body length, and
protective cuticle structures (providing protection to pollutants and other chemical
stressors) may be considered as general and widespread pre-adaptations in nema-
todes (see Soetaert et al. 2002; Sapir 2021). However, among nematode groups, they
seem to vary. The relatively impermeable cuticle of diplogasterids and rhabditids,
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for instance, makes themmore tolerant to pollutants, while a more permeable cuticle
in actinolaimids renders them more susceptible to pollutants (Bongers 1999).

On the genetic level, a pre-adaptation seems to be the basis for the extreme chem-
ical resistance, both in an extremophile Anuanema species from the arsenic-rich,
hypersalineMono Lake and in the ubiquitousC. elegans. Possession of a gene known
to confer arsenic resistance (Shih et al. 2019) suggests conservation of a nema-
tode trait with pre-adaptive potential in both taxa. Moreover, diverse pheromonal
substances called ‘ascarosides’ are widespread in the phylumNematoda and can vary
in number and concentration depending on the species and their diverse ecologies
(Choe et al. 2012). This would suggest that chemotaxis and the associated potential
to efficiently sense the chemical environment are features that facilitate survival in
challenging conditions.

While juvenile and adult nematodes are morphologically similar, the adaptive
physiology of their various life stages is highly diverse (Wharton 2012). Adaptations
to cope with unfavorable environmental conditions can often be linked to nematode
life cycles, to their inherent ontogenies, and ‘timingmechanisms’ of development and
growth. This includes their ability to reduce or suspendmovement,metabolic activity,
growth, and development. For example, a classic response to unfavorable environ-
mental conditions, the onset of cryptobiosis or quiescence, occurs as a temporary
metabolic slow-down in numerous extremophile nematodes (Rebecchi et al. 2020).
Normal development and growth are resumed as soon as favorable conditions return.
In other cases, nematodes can counteract conditions that would be normally lethal
in a stage of developmental suspension or ‘diapause’ (see Table 11.2). Here, under
severe or prolonged environmental stress and/or at certain phases in their life cycle,
they can bring their metabolism to a long-lasting halt, to a stop of growth and even
ageing. The metabolic rate may fall below detectable levels and ‘appears’ to cease
(Rebecchi et al. 2020; Wharton 2004).

As shown in Tables 11.1 and 11.2, a variety of environmental stress factors,
typically occurring in extreme environments, may trigger quiescence (desiccation,
draught and high temperature (anhydrobiosis), low temperature (cryobiosis), osmotic
stress (osmobiosis), and low oxygen (anoxybiosis) (Tahseen 2012). In contrast,
developmental arrest such as diapause is initiated by certain environmental stres-
sors, but also requires an ‘internal’ conditioning (e.g., photoperiod and pheromonal
stimuli) thatmay occur at a certain developmental stage (Wharton 2004). The onset of
diapause aswell as the return to active life requires specific environmental andphysio-
logical cues. For example, in response to various types of environmental or nutritional
stress in their ontogenesis, some nematodes develop ‘resting eggs’ and ‘dauer larvae’
or stay alive as cysts (Bird and Bird 2001; Wharton 2012). This status of diapause
can keep the organism alive for years by a structural change of the cuticle, a decrease
of permeability and in some cases an additional protection through encapsulation
in the previous molts (Evans et al. 1976). When conditions improve, the nematode
reverts to its normal metabolism. This has been shown by Shatilovich et al. (2018)
who reactivated specimens of the nematode Panagrolaimus detritophagus found in
permafrost-frozen cores thousands of years old.
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Table 11.2 Categories of nematode responses and adaptations to extreme conditions (Original)

Categories Characteristics and types

Morphology Cuticle (permeable or non-permeable)
Sheaths
Eggshell
Structural integrity
Body shape (miniaturization, filiform habitus to maximize
surface-volume ratios in hypoxic environments)

Behavior Aggregation, clumping, swarming, individual or group
movement, synchronous behavior, coiling
Migration over short (mm) to long (1000 s kms) distances
depending on the dispersal ability (limited active, wider
range passive) and the spatial influence of the stressor
Migration can, aside limited active moving away from the
stressor, also be in the form of phoresis and epibiosis
Can be triggered by chemotaxis using amphids or other
sensory organs (setae, eye spots)

Resilience and capacity adaptations Timing mechanisms and survival

Diapause (obligatory/facultative), developmental arrest

Quiescence, cryptobiosis, anabiosis (anhydrobiosis,
cryobiosis, osmobiosis, anoxybiosis)

Dauer stages (pheromones/chemosensory induced)

Slowing or arrested development and growth (hypobiosis)

Infective stages

Resistance adaptation

Reduced metabolism, stupor, coma

Specific proteins and enzymes (e.g., trehalose, Desc47,
COR, LEA, and interactions)
Detoxification (metals, sulfides, assimilation, and locking
away in vacuoles)
Symbioses
External and internal symbionts
Detoxification and food supply

11.4.1 Prevalent Stressors for Nematodes

The well-documented persistence of nematodes in all kinds of environments is based
on a variety of adaptations that enable their survival under harmful or lethal condi-
tions and explains their ubiquitous occurrence. For a consideration of their extreme
adaptive potential, a selected variety of limiting physical and chemical stressors is
depicted in Fig. 11.4.
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11.4.1.1 Oxygen

The worldwide increase of areas where hypoxia or anoxia and sulfides prevail is
prompting intensive research on the oxygen metabolism of organisms. The frequent
occurrence of nematodes in various oxygen-deficient and/or hydrogen sulfide-
rich biotopes is resulting in increasing information about adaptive modes specif-
ically related to oxygen stress, more than for most other stressors (Wetzel et al.
2001). Structural and biological (life-history) aspects are followed by ecological and
physiological data that can explain the extreme stress potential of nematodes.

The aerobic metabolism of nematodes, which lack respiratory and circulatory
organs, depends on the diffusion of ambient oxygen into the tissues (Lee 2010;
Lee and Atkinson 1976). The developing diffusion gradient transports oxygen into
the pseudocoelomic fluids and the central gut. Therefore, a notable morphological
adaptation is the extremely slender body of nematodes, maximizing surface-volume
ratio and enabling efficient uptake of oxygen through the cuticle into the peripherally
located muscles and nerves. As shown by Terschellingia spp., these adaptations are
particularly expressed in nematodes from deeper sediment layers, often occurring
under hypoxic, thiobiotic conditions near the redox-discontinuity layer (Steyaert
et al. 2007). The role of viscous epidermal sulfur inclusions found in the epidermis
of some thiobiotic nematodes (Thiermann et al. 2000; Vincx 1987) is, as yet, unclear,
since pathways of their effective and regular removal have so far not been found.

In addition to structural adaptations, numerous ecological adaptations help to
understand how nematodes are responding to low-oxygen/high-sulfide conditions.
Due to the limited oxygen penetration into marine and freshwater muds, hypoxia
and anoxia occur widely, yet nematodes are regularly found under these conditions.
In marine oxygen minimum zones (<0.5 ml/L), for instance, nematodes dominate
benthic communities (Neira et al. 2001; Veit-Köhler et al. 2009). Within these nema-
tode communities, many species are present under oxygen limitations, but distinct
differences between species do occur (Cook et al. 2000; Gambi et al. 2009; Levin
2003; Neira et al. 2013). The specialists among them, with their extreme tolerance
to low-oxygen and high-sulfide conditions, have ecological advantages: They can
populate the competition-reduced layers using the rich (bacterial) food supply around
the oxic/anoxic interface, the ‘discontinuity layer’ (Jensen 1986, 1987a; Losi et al.
2013; Soetaert et al. 2002, 2009; Zeppilli et al. 2018). In experiments with short-
term hypoxia, several nematode species may show resistance without differences in
community structure or diversity compared to normoxic conditions. However, under
long-term exposure (up to 305 days of anoxia), distinct species-specific responses
and mortality can occur, and survival may be community-dependent (Taheri et al.
2014). Community recovery after severe oxygen limitation can take between 30
and 90 days after the return of normoxia (Steyaert et al. 2007; Taheri et al. 2015),
indicating a relatively rapid response to ameliorating conditions. Sabatieria is one
of those genera with high densities in anoxic and strongly reduced muddy sedi-
ments. Sabatieria pulchra for instance is often found as the single remaining species
in deeper sediment layers near the redox discontinuity, but suffers mortality when
exposed to more severe oxygen limitation (Steyaert et al. 2007).
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One remarkable pathway to adapt to low-oxic or anoxic as well as sulfidic condi-
tions is found in the nematode genera Eubostrichus, Stilbonema, and Astomonema:
They developed obligate symbioses with bacteria. Ultrastructural evidence, stable
isotope values, and molecular data have shown that these gutless nematodes and
their interacting bacterial partners are capable of oxidizing toxic sulfide compounds
and can provide the hosts with food (for details, see Chap. 4 and (Giere et al. 1995;
Musat et al. 2007; Ott et al. 1982, 1991, 2004a, b; Tchesunov 2013; Tchesunov et al.
2012)).

Much less well-understood is the non-symbiotic Theristus anoxybioticus. As indi-
cated by its species name, this marine nematode is regularly found in anoxic and
sulfidic layers. In choice experiments, its juveniles even preferred staying in hypoxic
or anoxic conditions (Jensen 1995). Here, they survived for more than two weeks
in anoxic sediments. However, when exposed to oxygenated water, they died within
half an hour.

Some species that can thrive in low-oxygen sediments show specific life-history
adaptations. Under severely hypoxic conditions, some of these species reduce their
movements and enter a state of ‘suspended animation’ (Kitazume et al. 2018), effec-
tively switching to anaerobic metabolic pathways (Atkinson 1980). Or they can enter
a temporary cryptobiotic state (anoxybiosis, see above). By reducing growth during
metabolic inertia or during low-oxygen conditions, nematodes have even been found
to extend life spans of individuals and persistence of populations (Van Voorhies
and Ward 2000; Cooper Jr and Van Gundy 1970). A perhaps less spectacular but
notable example is the occurrence of ovovivipary in some nematode species such as
Geomonhystera disjuncta (Van Gaever et al. 2006) and Metachromadora vivipara
(Steyaert et al. 2007). Hatching of juveniles within the adult body is thought to
increase the survival rate and successful development of their brood in anoxic and
sulfidic environments. This reproductivemode likely allows gravid females to escape
toxic environments before releasing the juveniles.

The numerous examples where nematodes were found exposed to anoxia and high
hydrogen sulfide levels have sparked detailed research on the oxygen metabolism
of organisms. A central question remains: ‘Which physiological adaptations enable
(some) nematodes to live under these variable and hostile conditions?’ While the
preferred oxygen concentrationsmaydiffer among species and developmental stages,
many nematodes require surprisingly low oxygen tensions, even when active. Nema-
todes respond to hypoxia or anoxia by using up their glycogen reserves to exhaus-
tion (and death) or by obtaining alternative energy and retaining a cryptobiotic,
non-metabolizing state until conditions improve (Gaugler and Bilgrami 2004). The
presence of hemoglobin may support tolerance of relatively low O2 tensions (Weber
and Vinogradov 2001). The hemoglobins contained in some nematodes have a high
affinity for oxygen and can attain an oxygen-carrying or oxygen-storing capacity
(Atkinson 1980; Lee and Atkinson 1976).

The oxyhemoglobins of many nematodes become deoxygenated under anaerobic
conditions and re-oxygenate when traces of oxygen become available again. The
marine mud-feeder Enoplus brevis has high hemoglobin concentrations in its esoph-
agus, a strategy, which allows oxygen storage and release when needed. Thus, it
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can live consistently exposed to extremely low oxygen tensions and shows higher
feeding rates than its hemoglobin-lacking congener, E. communis (Atkinson 1977,
1980; Ellenby and Smith 1966b). Hemoglobin concentrations under low-oxygen
conditions can vary significantly between species and in different body regions, with
some species requiring readily available oxygen in certain body tissues (Ellenby and
Smith 1966a, b) (an insect-parasitic nematode even alternates between aerobic and
anaerobic metabolism) (Shih et al. 1996).

Formost free-living nematode species (except forC. elegans, see Baumeister et al.
2021; Horsman et al. 2019; Ng et al. 2020), the physiological pathways involved in
these adaptations to stressful low oxygen concentrations remain little understood for
now. In summary, the widespread ability of nematodes to cope with oxygen-deficient
or even anoxic conditions is based on an array of structural, ecological, life-history,
and physiological adaptations not found, or at least not as well-studied, in other
meiobenthic taxa (Bryant et al. 1983; Schiemer and Duncan 1974).

11.4.1.2 Hydrogen Sulfide

Ahigh tolerance to extremely toxic hydrogen sulfide is found inmany animals inhab-
iting the sea floor around hydrothermal vents. Here, nematodes such as Oncholaimus
spp. seem adapted to sulfide-rich and iron-rich habitats, facilitated by their specific
symbiotic internal and external bacteria (Zeppilli et al. 2018; Bellec et al. 2020).
In Oncholaimus campylocercoides, secretion of sulfur-containing droplets, when
exposed to hydrogen sulfide, presumably reduces the toxic effect of hydrogen sulfide
(Thiermann et al. 2000). Also, other species of Oncholaimus were found to live
in large populations in hydrothermal vent sediments rich in sulfur and iron. The
nematode Halomonhystera exhibits ovoviviparous reproduction in vent sediments
as well as in other extreme environments where the concentrations of sulfide and
other noxious chemicals are particularly high (Van Gaever et al. 2006; Zeppilli et al.
2015). At physiological concentrations, C. elegans even seems to experience protec-
tive effects from exogenous H2S, which even increased lifespan (Topalidou and
Miller 2017; Horsman et al. 2019).

11.4.1.3 Temperature, Desiccation, and Osmotic Stress

While most of the deep-sea floor populated by nematodes are characterized by a
relatively constant low temperature of ~2 °C, they are exposed to temperatures of up
to 50 °C around hot vents. With regards to cold temperatures in polar and sub-polar
areas, nematodes regularly tolerate temperatures around 0 °C. At lower temperatures,
all processes slow down because kinetic energy becomes reduced, ultimately leading
to suspended animation. Extreme freeze tolerance is often linked to anhydrobiotic
processes (see below). Extremes of frost may provoke stupor or even complete and
long-lasting diapause if no essential damages occurred.
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In all poikilotherms, also in nematodes, the metabolism is dependent on
temperature, since temperature affects the maintenance and stability of molecular
processes and fluidity in many biological structures, (e.g., enzymes and lipid bilayer
membranes). Therefore, prevalence of nematodes in biotopes with extreme temper-
atures (from deep frost to near boiling water) requires regulative processes struc-
turing molecular, physiological, behavioral, and reproductive pathways (Gaugler
and Bilgrami 2004; Wharton 2007; Atkinson 1980; Moens and Vincx 2000).

Cold Tolerance

Strategies mainly found in nematodes (Lee 2010; Wharton 2003, 2004; Rebecchi
et al. 2020, see also corresponding data in tardigrades):

(1) Tolerance of freezing, where animals can withstand ice formation in their
bodies and/or maintain the body fluids in a liquid phase even at temperatures
below the melting point. Some extreme freezing-tolerant Antarctic and Arctic
nematode species (e.g., Plectus antarcticus, Scottnema lindsayae, Chiloplacus
sp.) can either complete their entire life cycle at low temperatures or are able
to maintain faster development and higher reproductive rates at lower tempera-
tures compared to most other nematodes (Caldwell 1981; Overhoff et al. 1993;
Procter 1984). Freezing tolerance has been demonstrated in several species
of Antarctic nematodes (Wharton and Block 1997), with for instance Plectus
murrayi (Timm 1971) being able to survive extreme desiccation and freezing
conditions (Adhikari et al. 2009).

(2) Avoidance of freezing by supercooling effects. In supercooling, the body
fluids remain liquid below their nominal freezing point, so that lethal freezing
is avoided. In supercooling (investigated mainly in parasitic nematodes),
external ice formation can provide a sheltering layer in the cuticle (‘inocu-
lative freezing’). Thus, the species can avoid freezing of its internal tissues, but
it will die once these themselves freeze (Wharton 2007). In addition, the well-
documented production of cryoprotective compounds (trehalose, glycerol, poly-
hydric alcohols) can enhance supercooling abilities (Ash and Atkinson 1982,
1983; Behm 1997; Jagdale and Grewal 2003; Wharton 2004). Temperature
thresholds at which supercooling is triggered in several species were found to
vary with season (Pickup 1990) indicating temporal changes in their metabolic
status.

(3) Anhydrobiosis is an extreme status of complete desiccation where the animals
lose all features characteristic of a living organism. In this drastic status of non-
detectable metabolism, the animals, not alive and not dead either, can survive
frost without the risk of freezing.Without any internal water present, nematodes
have been found to survive for years (Lee 2010; Wharton 2002, 2004) and even
for millennia (Shatilovich et al. 2018). Several species of free-living nematodes
can survive periods of anhydrobiosis by desiccation (see below) (Wharton 2002,
2004, 2007).



378 J. Ingels et al.

Heat Tolerance

Heat can have destructive effects on molecules and cells and interrupt central body
functions. Protein denaturation, caused by high temperatures, often leads to subse-
quent loss (reversible or irreversible) of associated functions (Hochachka andSomero
1984; Tahseen 2012). Several species have been reported to occur in hot springs at
temperatures around 40 °C (Abebe et al. 2001; Ocaña 1991a, b), and even surviving
up to 92 °C water. In shallow-water hydrothermal vents, nematodes occurred at
sites close to the geyser point, at temperatures around 80 °C (Zeppilli and Danovaro
2009). At a deep-sea hydrothermal vent along the Mid-Atlantic Ridge, meiofauna
represented at least 50% of the total vent fauna diversity and meiofaunal communi-
ties were dominated by generalist nematodes (Zeppilli et al. 2018; Baldrighi et al.
2020). In some cases, however, nematodes can thrive in hydrothermal vent systems
owing to their symbiotic associations with prokaryotes (see Sect. 11.4).

Desiccation

A general prerequisite of desiccation-tolerant nematodes is lowered permeability
of their cuticle (Gaugler and Bilgrami 2004) and tissues becoming condensed and
packed together (Bird and Buttrose 1974) to maintain structural integrity in the anhy-
drobiotic status. A common response to ambient drought is reduction in nematode
movements mainly caused by a lack of a water film (Wharton 2004). Another phys-
ical response is coil formation requiring the coordinated contraction of all muscles
on one side of the body. Coiling minimizes the exposed surface of the cuticle, thus
reducing water loss (Gaugler and Bilgrami 2004). Certain nematode species tend to
congregate, forming lumps of ‘nematodewool’ that protect the innermost specimens.

Beside these structural/behavioral adaptations, metabolic changes during nema-
tode desiccation have been observed. Desiccation leads to a decrease of glycogen and
lipid levels and an important increase of protective agents (‘bioprotectants’) such as
trehalose and glycerol as well as certain proteins (Rebecchi et al. 2020). Trehalose
has been found to replace internally bound water, thus stabilizing membranes and
protecting cells during dehydration (Crowe et al. 1984; Womersley 1981). In combi-
nation with some desiccation-induced proteins, it forms a glassy matrix (‘bioglass’),
which prevents desiccation-induced damages (Browne et al. 2002; Solomon et al.
2000).

In the desiccated phase of ‘suspended life’, the organisms can be biostable for
months or years. For example, limnic nematodes such as Actinolaimus hintoni
and Dorylaimus keilini can survive several months of drought in temporary ponds
in Nigeria (Lee 1961), provided that water loss proceeds gradually. Dehydration
proceeding too fastwould usually killmost nematode species. Some ‘fast-desiccation
strategists’ (e.g., Plectus sp., Panagrolaimus sp. and Dytilenchus sp.) are able to
survive immediate exposure to 0% Relative Humidity (Lee 2010; Perry 1999;
Wharton 2002).

When water re-enters the body surface of desiccated nematodes, these physiolog-
ical ‘dehydration processes’ become reversed. The animals become rehydrated and
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return back to normal activity after a lag phase of hours/days between immersion and
regaining normal activity (Gaugler and Bilgrami 2004; Lee 2010; Wharton 2007).

Osmotic Stress

Most nematodes have no specialized excretory systems, and (nitrogenous) wastes
are released directly across the body wall. Most of them, especially the marine
species, are osmo-conformers: Their internal osmotic concentration more or less
follows in parallel to changing external osmotic concentrations (Willmer et al. 2009).
However, especially in coastal habitats, littoral nematodes are subjected to varying
intermittent or even longer-term phases of dehydration and rehydration. Some of
these nematode species effectively osmoregulate due to the presence of specific
excretory cells or glands. Cuticular permeability and intestinal water removal can
also play a role in nematode osmoregulation and reduction of osmotic stress (Lee
2010; Wright and Newall 1980). When exposed to hyperosmotic environmental
conditions, these ‘osmobiotic’ nematodes experience saltwater entering their bodies.
Excretion of salts can lower the osmotic gradient (Oglesby 1981). In brackish, hypo-
osmotic conditions, nematodes experience water loss (Lee 2010). One example is
Enoplus brevis, which is able to regulate its volume and adapt to unstable environment
such as salt marshes and estuaries (Wharton 2004, 2007). The Antarctic nematode
Panagrolaimus davidi maintains its higher internal osmotic concentration above the
environmental level by effectively acting as hyperosmotic regulator (Wharton 2010).

11.4.1.4 Pressure

Marine nematodes, surprisingly numerous in hadal ecosystems (Zeppilli et al. 2018),
seem naturally adapted to high hydrostatic pressure. However, nematode genera
reported from hadal trenches are also found in a wide range of other deep-sea
and shallow-water ecosystems, probably indicating that only minor adaptations are
required for their survival under extreme water pressure (Gambi et al. 2003; Kita-
hashi et al. 2012, 2013; Tietjen 1989). Conversely, marine nematodes may survive
rapid decompression: Oncholaimus dyvae, retrieved from water depth of 1700 m in
hydrothermal vents of the Mid-Atlantic Ridge, not only survived hauling up, but
remained alive in laboratory conditions for up to 4 months and juveniles showed
normal growth at atmospheric pressure. Other oncholaimid species stayed alive for
up to 48 h after retrieving them from 5000 m water depth (Zeppilli, unpublished).

11.4.1.5 CO2 and pH

In times of rapid global climate change, aquatic as well as terrestrial animals and
ecosystems have to cope with rising CO2 concentrations. A large spectrum of nema-
tode behavioral responses to CO2 has been described, emphasizing the fundamental
role of CO2 in nematode life (Banerjee and Hallem 2019 and references therein).
In both marine and terrestrial nematodes, high CO2 levels may provoke different
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behavioral and physiological responses (signals for food, predators, pathogens, or
conspecifics, see Banerjee and Hallem 2019; Carrillo and Hallem 2015). Free-living
nematodes (Acrobeloides sp.) isolated from a volcanic vent could survive in the
laboratory for five days at full CO2-saturation, even at extremely low oxygen content
(Pilz and Hohberg 2015; Pilz et al. 2017). Concerning acidification, pH seems not
to be a decisive factor for most aquatic nematodes (Gaugler and Bilgrami 2004).

Some species even favour CO2 enrichment (Hale et al. 2011; Ingels et al. 2018;
Kurihara et al. 2007; Meadows et al. 2015). CO2 enrichment is involved in food-
searching behavior of nematodes: The marine nematode Adoncholaimus thalas-
sophygas was attracted to CO2 enrichment produced by bacteria associated with
decomposing carcasses (Riemann and Schrage 1978). In this case, CO2 acted indi-
rectly by indicating bacteria aggregations that served as the main food. Under natural
conditions, Caenorhabditis elegans lives in rotting vegetation where O2 and CO2

levels are fluctuating (Félix and Braendle 2010; Schulenburg and Félix 2017). In
this complex habitat, O2- and CO2-sensing pathways are used for orientation and
foraging (Bendesky et al. 2011; Juozaityte et al. 2017; Milward et al. 2011). Dauer-
larvae ofC. eleganswere attracted to CO2, probably because this might enhance their
chances to find bacterial sources (Banerjee and Hallem 2019). In contrast, starved
adults shifted from repulsion to attraction by CO2 (Rengarajan et al. 2019). However,
if well-fed, nematodes avoided high levels of CO2 (Bretscher et al. 2008; Hallem
and Sternberg 2008). Dependent on its nutritional status, C. elegans reduced or even
stopped pharyngeal pumping when exposed to high concentration of CO2 (Sharabi
et al. 2009). This is in line with other observations on C. elegans that the first effect
after high CO2 exposure was an overall decrease in locomotion (Dunsenbery 1985).
Exposure to chronically high concentration of CO2 caused movement deficiencies
and serious damages to the muscular morphology (Sharabi et al. 2009). Also, under-
nourished specimens avoided high levels of CO2 (Bretscher et al. 2008; Hallem and
Sternberg 2008). High concentrations of CO2 in laboratory experiments can impact
the development of nematodes (C. elegans): The laying of eggs becomes inhibited at
high CO2 concentrations (Fenk and de Bono 2015). A delay in the development of
embryoswas also recordedwhenCO2 levelswere above 9% (Sharabi et al. 2009). The
brood size of the freshwater nematode Panagrellus redivivus increased in response
to an increase in CO2 concentration (Hansen and Buecher 1970).

However, in general, and judging from experimental evidence mostly using C.
elegans as model organism, nematodes do not seem adversely affected by real-
istically increased CO2 levels. This refers also to marine nematodes (and other
marine meiofauna), which seem to be fairly insensitive to the globally increasing
CO2 concentrations and, linked to this, the decrease in pH (Ingels et al. 2018; Kuri-
hara et al. 2007; Gaugler and Bilgrami 2004). Even at concentrations to be expected
in the remote future, results from experimental studies indicated limited to no acute
effects. However, so far very little research has been conducted that investigates
the cost of maintaining metabolism and energy expenditure, as well as behavioral
changes that may affect ecological interactions under increased acidification stress
in meiofauna organisms.
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11.4.1.6 Chemical Stressors

As shown above, chemosensation is fundamental for regulating food availability,
reproductive partners, and predation or other dangers. Chemical stressors can be
defined as exogenous, environmental compounds. In general, exposure to chemical
stressors causes diverse effects ranging from reduction of movements over inactivity
to toxicity, which can either end in resistance or death (Kaminsky 2003). This is
principally valid for feared notorious and widespread environmental toxins, arsenic,
and heavy metals (see also Chap. 7).

Arsenic (As): Environments with high contents of arsenic are usually lethal for
most metazoan organisms. However, regarding nematodes, Auanema sp. survived
concentrations up to 500 times the human lethal dose. This nematode expressed the
gene dbt, known to confer arsenic resistance (Shih et al. 2019).

Heavy metals: As shown by the rich literature on pollution, many nematode
species, both marine and freshwater, do not seem to be very sensitive to moderate,
often even high concentrations of heavy metals, including the marine species Diplo-
laimella dievengatensis and Halomonhystera disjuncta (Gyedu-Ababio et al. 1999;
Vranken andHeip 1986; Vranken et al. 1991). Some of themwere even found to store
metals in their subcutaneous tissues (Howell 1983) and gastrointestinal tract (Harvey
and Luoma 1985). Marine species can accumulate heavy metals in their mucus
(Decho 1990; Jensen 1987b; Riemann and Schrage 1978). The genera Monhystera
and Theristus, dominating in estuarine sites contaminated by various heavy metals,
have even been considered as ‘indicators for polluted sediments’ (Gyedu-Ababio
et al. 1999).

11.4.2 Interaction Between Stress Factors

In general, studies on nematode adaptations, and their response, to extreme conditions
are still based on single-factor systems. However, in nature, nematodes are exposed
to more than one stress type at the same time. The relatively few existing multi-
stressor experiments have revealed complex biological interactions. For example,
the combined impact of low temperatures and osmotic stress may result in another
stress factor, ice crystal formation in the cell liquids (Lee 2010). In addition, desic-
cation in its extreme form (anhydrobiosis) is mostly integrated in the complex of
cryoprotective dehydration. Specialized nematodes can dehydrate because the vapor
pressure of water in their tissues exceeds that of the surrounding ice (Smith et al.
2008). The presence of a sheltering ice sheath can be an alternative to prevent
inoculative freezing in nematodes (Wharton 2002, 2004).

One of the best studied extremophile nematodes that exhibits cryoprotective
dehydration is the Antarctic Panagrolaimus davidi (Timm 1971). It is able to with-
stand freezing temperatures over nine months of the year and exhibits both freeze-
avoidance and freeze-tolerance strategies (Gaugler and Bilgrami 2004). P. davidi can
undergo cryoprotective dehydration and even survive cellular ice crystallization in
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all its intracellular compartments (Wharton and Brown 1991; Wharton and Ferns
1995). This freezing can occur via the excretory pore while initiating a molting
phase at the onset of the freezing process. P. davidi is also characterized by a higher
(82%) and faster (0.21 s) conversion of body water into ice when compared to other
animals (usually hours/days) (Wharton and Ferns 1995; Wharton and Block 1997).
Such rapid and simultaneous freezing avoids osmotic stress to occur when different
body compartments would freeze at different times. While P. davidi produces abun-
dant cryoprotectant trehalose during cold acclimation, a number of genes related
to survival are active during freezing and cause production of, among others, the
protease Neprilysin and various proteins involved in initiating ice formation, in the
antioxidant metabolism, and in prevention of ice nucleation (Thorne et al. 2014;
Wharton et al. 2005). Further research into the specificity of the genes and the associ-
ated processes and products at themolecular level is needed, but first insights indicate
that adaptations and tolerances to very low temperatures may be specific and distinct
from those that developed as a general response to stressors (Thorne et al. 2017).
Within thegenusPanagrolaimus, there is a continuumof strains, ranging from(i) slow
desiccation strategists, through (ii) strains that have a limited ability to survive rapid
desiccation, to (iii) strains of fast-desiccation strategists (P. superbus) that can readily
survive immediate desiccation. The strongly anhydrobiotic strains of Panagrolaimus
represent one phylogenetic lineage, distinct from the weakly anhydrobiotic strains.
The latter are also phylogenetically divergent from each other (Shannon et al. 2005).
Panagrolaimus can freeze entirely and, once thawed, even reproduce again. Other
extreme cases have been documented: The resuscitation of the nematode Tylenchus
polyhypnus, n.sp., after almost 39 years of dormancy was reported by Steiner and
Albin (1946). The first data demonstrating the capability of multicellular organisms
for long-term cryobiosis belong to two nematodes Panagrolaimus aff. detritoph-
agus and Plectus parvus isolated and revived from the 40.000-year-old Pleistocene
permafrost deposits of the Kolyma River Lowland (Shatilovich et al. 2018).

During anhydrobiosis, nematodes may survive extreme temperatures. However,
if simultaneously exposed to stress, e.g., by hostile chemicals, lethal conditions may
develop (Barrett 1991). Temperature is also controllingCO2 perception and tolerance
in nematodes (Banerjee and Hallem 2020), and oxygen levels have been found to
influence the CO2 tolerance in nematodes. If accustomed to an environment with low
O2 levels, they avoided increased CO2 concentrations compared to those living under
high O2 conditions (Carrillo et al. 2013; Kodama-Namba et al. 2013). The hypoxia-
inducible factor gene hif-1 suppresses CO2 protection in nematodes (Bretscher et al.
2008). Nematodes sampled in water rich in natural CO2 showed a species-specific
respiratory ability even under low oxygen levels and high CO2 concentrations (Pilz
et al. 2017).

Longer-term experiments under close-to-natural conditions are another example
of how complex and multimodal stress factors usually interact. Petroleum hydro-
carbons can illustrate this: As each variety of ‘oil’ is a complex and continuously
changing mixture of toxic hydrocarbons that becomes continuously modified by
oxidative decomposition, the specific toxicant responsible for a resulting impact on
a specific meiofauna is difficult to identify. As details of this complex are given in
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Chap. 7, we give a single example here where nematodes in microcosms with natural
sediment have been tested for the effects of diesel oil (Mahmoudi et al. 2005): While
most species, even the hardy Oncholaimus campylocercoides, became negatively
affected, other species, such as Marylynnia stekhoveni, increased their populations,
even at highoil concentrations. Since noxious effects are never unimodal, the question
of how to interpret these effects remains. Was this increase due to higher tolerance or
to an increase in bacterial populations in combination with decreasing competition,
or both? Therefore, any interpretation of close-to-natural experiments with several
(nematode) species remains vague. General conclusions from such experiments are
impossible to obtain, and differentiation is needed. Also here, we have to overcome
the descriptive level and step to the level of deeper understanding. It is time to leave
behind the ‘what-phase’ and broaden the ‘why-horizon’!

11.4.3 A Better Survival with Partners? Nematodes and Their
Microbiomes

In many nematodes from extreme habitats, functioning and fitness fundamentally
depend on mutualistic microbiomes. While research on obligate symbioses of meio-
fauna, especially nematodes, with bacteria has reached the biochemical and genomic
level and iswell documented (Dubilier et al. 2015; Foster et al. 2017; Sogin et al. 2020;
see Chap. 4), some bacterial associations of nematodeswith a varying degree of inter-
dependence between host and microbial partner shall be described here. One rela-
tively well-documented example is the symbiotic relationship between Oncholaim-
idae and bacteria, which occur in extreme environments of varying water depth, from
polluted harbor muds to deep-sea vents. All of these oncholaimid species possess
specific prokaryotic associations, which most likely enhance the survival capacities
of nematodes in these extreme environments.

• The anoxic and sulfidic sediments in the harbor of Roscoff (France) are dominated
by Metoncholaimus albidus representing >90% of the local nematofauna (Bellec
et al. 2019). The striking appearance of this species (Fig. 11.5) is due to its
conspicuous ‘head cover’ with ectosymbiotic bacteria (Campylobacterota and
Gammaproteobacteria) involved in sulfur metabolism.

• In a shallow-water vent field (Gulf of Naples, Italy), the sediment around a solitary
hydrothermal geyser (hydrothermal fluid temperature ~80 °C) is dominated by an
undescribed species of Oncholaimus with numerous specific bacteria in the intes-
tine involved in sulfur-oxidizing/sulfur-reducingmetabolic pathways and bacteria
of the iron cycle (Bellec et al. 2020).

• In the hydrothermally active deep-sea vent field of ‘Lucky Strike’, the nematode
Oncholaimus dyvae is particularly abundant. O. dyvae is associated with sulfur-
oxidizing bacteria related to Epsilonproteobacteria and Gammaproteobacteria on
its cuticle, in the digestive cavity and in its intestine (Bellec et al. 2018). Indicated
by stable isotope ratios, it feeds on and in mats consisting of thiotrophic and
methanotrophic bacteria (Zeppilli et al. 2019).
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Fig. 11.5 Metoncholaimus albidus, with its mantle of filamentous ectosymbionts (Bellec et al.
2019, CCA 4.0; Copyrights IFREMER). In blue: anterior body region; in yellow: dense cover of
Eubacteria

A second exampleworth noting is theAstomonematinae (Monhysterida: Siphono-
laimidae), very long and slender nematodeswhich possess symbiotic bacteria located
inside the body (Ott et al. 1982; Giere et al. 1995; Musat et al. 2007). Dependence
of Astomonematines on their symbionts is obvious because these nematodes lack a
mouth. These nematodes are usually associated with reduced conditions in shallow
waters (Ott et al. 1982; Austen et al. 1993). Members of this group have also been
recovered from the deep sea (Tchesunov et al. 2012; Ingels et al. 2011). Molecular
characterization of the symbionts associated with Astomonematines has shown them
to be known sulfur-oxidizing bacteria (Musat et al. 2007).
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11.5 Meiofauna Surviving at the Limits

It is not surprising that the group of meiobenthic taxa adapted to extreme envi-
ronments with various kinds of extreme stress is restricted. Beside the dominating
nematodes, presented above, there are primarily Tardigrada to be mentioned here,
the most bizarre masters of survival and revival potential. Also, Rotifera from fresh-
water habitats contain specialized species that can endure environmental extremes.
They possess exceptional resistance and adaptations to various kinds of environ-
mental stress, such as draught, frost, and noxious radiation. Less known, though
frequently found in extreme marine habitats, are Foraminifera, protozoans which
can have a complex calcareous shell. A new physiological dimension of extreme life
in free-living multicellular animals has been discovered in Mediterranean sediments
(Danovaro et al. 2010): some Loricifera, which lack mitochondria and live under
permanently anoxic conditions.

11.5.1 Tardigrada

‘Water bears’ gainedworldwide attention in publicmedia because some of them (e.g.,
Paramacrobiotus richtersi, Milnesium tardigradum) have survived travels through
the vacuum of our orbit during space missions (Jönsson et al. 2008) both in an active
and in an anhydrobiotic state. Later experiments showed that under anhydrobiosis
they could survive not only temperature extremes near absolute zero, but also solar
ultraviolet and ionizing radiation.

From the orbit back to Earth: In lab experiments, tardigrades survived (for varying
experimental time periods) −273 °C as well as +150 °C, Arctic soil conditions
(−80 °C) up to 6 years, extremes of pressure, and high doses of radiation including
X-rays. If not restricted to physical extremes, they tolerated high concentrations of
hydrogen sulfide, ethanol, and CO2 (Erdmann and Kaczmarek 2017). However, not
all genera and species of tardigrades show this extreme resistance to drying out, and
differences can occur even between populations. Many are well adapted to survive
the frequent summer droughts; others are more resistant to polluting agents.

One feature is common to all these extreme adaptations, both in tardigrades and
in rotifers (see below): Exposure to the stress factor (dryness, cold, heat, chemi-
cals) has to be in physiologically adequate steps. Slowing down unbearable stress
increase attenuates impacts of morphological and physiological changes and avoids
detrimental effects or shocks too rapid for an adaptive response. But what about the
extremes mentioned above? Beside the cryptobiosis already described, many tardi-
grades (and rotifers as well, see below) developed a specialized form of resistance,
encystment in a ‘diapause’, also called ‘suspended life’ (see Table 11.1). This unique
adaptation entails a ‘dual existence’ of the animals (Rebecchi et al. 2020).
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The start of the complex process towards diapause is a gradual shrinkage, a folding
of the body in a specific and coordinated way to reduce the exposed surface area,
followed by enclosing the body with several protective internal cuticle layers, and
ending in the formation of a shrunken ‘tun’ (see Figs. 11.6 and 11.7), a cyst stage
in which movements have ceased and body water becomes reduced by 97%. More
strikingly, the body organization changes profoundly: In Hypsibius exemplaris, the
body cells not only become compacted, but they also secrete a specific (protective)
layer and enhance the density of the endoplasmic reticulum while the number of
mitochondria is reduced (see Fig. 11.6). The entire epidermal layer has even been
observed to detach from the cuticle, which gets wrinkled in a regulated way. While
the musculature contracts, hard structures such as pharynx and claws become soft-
ened and withdrawn into the trunk (Rebecchi et al. 2020; Richaud et al. 2020). As a
tun, the tardigrade can survive extremes such as polar cold or complete dryness for a
sufficiently long time to get a chance to return to ‘normal’ conditions again. Several
years of dormancy are normal; longer lasting records are debated (see nematodes,
this chapter). Hence, the potential of dormancy in all the taxa discussed here has
been described as an ‘escape in time’ avoiding hostile periods ‘in loco’ by remaining

Fig. 11.6 Comparison of cellular reactions in tun and hydrated individuals ofHypsibius exemplaris
(Copyrights M. Richaud, Montpellier, France; Open Access 2020, https://doi.org/10.1038/s41598-
020-61165-1)

https://doi.org/10.1038/s41598-020-61165-1
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stationary without the need of active dispersal (Kaczmarek et al. 2019). Internally,
bioprotectant physiological processes accompany all morphological changes. Very
relevant is the production of some sugars (disaccharides such as trehalose), but also
of specialized proteins (e.g., anti-heat shock, anti-dehydration) and various antiox-
idants protecting from DNA damage (Rebecchi et al. 2020). In contrast to anhy-
drobiosis, this suspension of life as a cyst is triggered by a combination of external
and internal factors. Similar resting phases may also occur during early development
when ‘resting eggs’ are formed. And yet, despite this complex and extensive conver-
sion of the body structure and tissues, it takes tardigrades only a few hours to days
to rehydrate their body and end their diapause. Hence, after repositioning of their
pharynx, claws andmouthparts tardigrades can re-start active life again—a structural
and physiological ‘wonder’.

However, long phases of cryptobiosis and diapause seem to act as physiological
stressors. The considerable energetic costs of both anhydrobiosis and diapause can
extend to metabolic and molecular damages that need mechanisms of repair with the
onset of revival; e.g., expression of DNA-repair molecules becomes enhanced. So, in
general, the extreme tolerance and potential survival seem to be an energetic trade-
off: Considerable physiological costs and genetic modifications must be weighed up
against ecological advantages such as persistence and longevity (see Jönsson 2005).
The aspect of longevity is underlined by the fact that in several species capable of
dormancy, the process of aging seems to be slowed down or halted (the ‘Sleeping
Beauty’ model). Based on various molecular changes, even the term ‘rejuvenation’
has been used since some dormant rotifers were waking up with a better fitness than
before. However much debated this ‘biological wonder’ may be, it needs detailed
studies from all the groups considered here and preferably on a molecular basis.

11.5.2 Rotifera

Less famous and less in the public spotlight are rotifers, or commonly named wheel
animals. Especially, species of the class Bdelloidea have the potential to live at
extreme limits, under hostile conditions like those endured by some tardigrades
and nematodes. Almost all the adaptations to dormancy described before, anabiosis,
diapause, chemical and radiation resistance, and tun formation (see Fig. 11.7), have
also been found to occur in these tiny meiobenthic forms living in freshwater and
moist terrestrial habitats. Bdelloids have also survived orbital extremes on space
excursions; even the extreme longevity over thousands of years, reported for some
nematodes (see above), is paralleled by the recent finding of specimens of Adineta
which were successfully revived from 24,000-year-old permafrost ice (Shmakova
et al. 2021). Hence, especially studies on aging and juvenation (see above) are based
on findings in bdelloid rotifers.
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Fig. 11.7 Bdelloid rotifer Adineta tuberculosa, left: active phase, right: ‘tun stage’. Note different
scale (left 20 µm, right 10 µm); courtesy of D. Fontaneto, Italy

However, there are also differences compared to the other ‘extreme taxa’, and
some of them are even unique:

• Bdelloid rotifers can resist hostile conditions at any life stage, but only by cryp-
tobiosis, while the monogonont rotifers can only survive extremes as resting eggs
(see Table 11.1).

• Metabolic pathways when entering cryptobiosis differ from those in tardigrades
(e.g., no trehalose as protectant).

• For millions of years, so cytogenetic studies suggest, it seems bisexual reproduc-
tion is lacking in bdelloid rotifers and only females exist (Welch and Meselson
2000). Hence, reproduction is by parthenogenesis only. This ‘asexual’ situation
invited an entire branch of studies on the evolution and nature of sex.

• Parthenogenesis may enable benthic rotifers to escape limiting conditions. A
limited genetic selection and high reproduction rates combined with resistance to
adverse conditions may facilitate survival in refugia not available to less-adapted
competitors. This combination of features might enable a wide geographical
distribution by colonizing regions otherwise hostile to life (see Fontaneto et al.
2008).

• High rates of horizontal transfer of ‘foreign genes’ have been found in some bdel-
loid genomes (Gladyshev et al. 2008)—at that time considered unique among free-
living metazoans. These genes probably have been incorporated from bacteria,
fungi, and plants. Since they mainly code for protective and repair processes, they
may enable effective resistance to desiccation by anhydrobiosis.
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11.5.3 Foraminifera

The frequent occurrence of Foraminifera in sediments regularly exposed to hypoxia
and even anoxia suggests that this protozoan taxon is particularly adapted to
oxygen capture (Gooday et al. 2000; Levin 2003). The main adaptation to survive
hypoxia/anoxia and colonize areas hostile to most free-living organisms seems to be
the ability of nitrate respiration, common in Foraminifera (Koho and Piña-Ochoa,
2012). Additionally, the capacity of many species to exist under minimal oxygen
concentrations seemsmarkedly enhanced by frequent presence of bacterial endosym-
bionts. Some foraminiferans can also sequester chloroplasts or proliferate perox-
isomes and mitochondria for a metabolism of oxygen-rich H2O2 (Bernhard and
Bowser 2008). Some foraminiferans from 600 m water depth retained chloroplasts
derived from diatoms they had incorporated (Grzymski et al. 2002). These chloro-
plasts might enable them to become photosynthetically active and to meet their
nitrogen demands by assimilation.

11.5.4 Loricifera

Continuing the series of aberrant metazoans that can exist under unique condi-
tions, we have to emphasize the Loricifera, a meiofauna phylum only discovered
in 1983, and later studied in more detail. Some of them (e.g., Spinoloricus sp.) have
been shown to master most extraordinary and hostile conditions in the deep sea
(Danovaro et al. 2010). Aside from their exotic appearance (see Fig. 11.8), these
Loriciferans were the first meiobenthic animals that have been proven to persist
in permanently hypersaline deep water (Atalante Basin) where molecular oxygen
is entirely absent and no other live fauna could be found. In at least one of the
Spinoloricus-species studied so far, there is a structural feature entailing physio-
logical pathways new to free-living metazoans: presence of hydrogenosome-like
structures substituting mitochondria with their ribosomes. Due to this unique loss of
the central organelles for oxidative metabolism, new respiratory pathways had to be
‘invented’: Hydrogenosome-like organelles have hitherto been reported from cili-
ates living in permanently anaerobic sediments (Müller et al. 2012). Future studies
focusingmainly on functional, physiological, andmolecular aspects should elucidate
the relation between loriciferan and protozoan hydrogenosomes and clarify processes
underlying the evolution of these organelles.
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Fig. 11.8 Physiologically extreme Loricifera. Left: Nanaloricus mysticus – the first described
loriciferan; total width 70 µm (microphotograph of allotype, courtesy R.M. Kristensen).
Right: Spinoloricus cinziae; scale bar 50 µm (original line-art drawing of holotype by Stine Elle,
courtesy R.C. Neves and R.M. Kristensen; see also Neves et al. 2014)

11.6 Advantages of Extremobionts and Why to Study
Them? New Horizons and Some Conclusions

It does not lack a certain irony that the hardiest, most numerous, and ubiquitous
metazoans belong to the smallest ones—the meiofauna. This may not be accidental.
Small animals are usually physically unprotected and cannot readily change their
habitat positionor forcefullymodify their environment. Theyhave tofind their niches,
have to struggle, and adapt rather than conquer. Through millions of years, they were
exposed to new and often extreme conditions. As their adaptive ‘solutions’, e.g.,
dormancy or anhydrobiosis, developed independently in different taxa and phyla,
under various types of stress and unrelated to geographic distribution, they seem to
have evolved in independent phylogenetic, ecological, and physiological lines.

The study ofmeiofauna living and thriving under what appears to humans extreme
and hostile environmental conditions poses several biologically relevant questions
for which they have found sometimes incredible answers:
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• How to survive in adverse environments with low oxygen, extreme cold or heat, or
with devastating droughts? Develop specialized biochemical, physiological, and
structural pathways, so that all activities can become suspended in dormancy.

• How to maintain an extremely wide distribution despite minimal mobility? Rely
on powerful distributors such as currents, tectonic forces, even air transport, and
transport through flora and fauna (see Chap. 6).

• How to compete against powerful and large competitors?Focus onubiquitous food
sources like bacteria and diatoms. Search for refuges without (many) competi-
tors, such as in the polar sympagic systems. Produce high numbers of offspring
outweighing their loss rates.

Research on these adaptive frontiers will not only lead to a deeper understanding,
but it will also open novel insights pointing to innovating pathways, which may shed
light on the diverse, yet hidden world of meiofauna. For over a century we have
known about this small world, we have been appreciating its inhabitants as beautiful
and exciting, and we have been learning about their successful, hidden life. However,
amazement aside, regarding the biological success of these ‘meiofauna at the limits’
we can envisage many aspects of essential value, highly beneficial to mankind. We
can see many novel applications for our own future—an intriguing challenge for
biologists.

• Of course, first the eternal quest for rejuvenation reducing the process of aging,
even for the secret of life—conservation and stabilization of cells, membranes
and proteins, and development of bioprotective molecules,

• Stabilization of various cells including spermato- and oocytes and stable transport
of vaccines,

• Research on stress, e.g., from radiation and chemical stressors,
• Understanding and optimizing the phenomenon of biological fitness and health,
• Ecological and evolutionary effects of increasing temperatures and droughts and

their implications,
• Potentials of extraterrestrial life. In the phase of ‘suspended life’ tardigrades,

rotifers and nematodes are candidates to bridge planetary distances.

Asmuch as the ‘extremophile meiofauna’ can fascinate with their amazing capac-
ities and characteristics, we know little about the physiological and molecular path-
ways involved, but we are certain about one fact: No astounding adaptation, no
single molecule or protectant, and no individual pathway of repair alone will be
found responsible for these structural and physiological ‘wonders’ of survival under
extreme conditions. It always needs coordinated developments to elaborate these
almost unimaginable processes in minute meiobenthic animals, and it will always
need our coordinated research effort to understand them. But perhaps most impor-
tantly, in doing this we must modestly acknowledge: As much as we may expand
our human sphere toward unforeseen limits—the limits of meiofauna in their world
are wider.
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Meiobenthology, the microscopic branch of ‘classical’ benthology, is gaining
increasing importance and traction through the development of innovative
approaches and the application of novel methods. These not only provide new,
broader insights into the amazingly diversifiedmorphological structures of meioben-
thos and their adaptive potential, but also help to identify new links between the
microbial and our visible world.

Following these promising developments, we are, however, under the impres-
sion that in recent years, the rapidly growing body of new and detailed research that
touches on novel and specialised aspects of meiobenthology has expanded and diver-
sified into numerous, and at times disparate, niches. The diversification is reaching a
level where unifying concepts and research lines appear to be dwindling. This risks
losing the common perspective, the integrating ‘meiobenthic thread’ that prevents
the various interesting facets of relevant research and knowledge from getting lost
in diversity. Therefore, an important aim of this book was to provide an updated
account of knowledge of meiobenthos on contemporary topics, but doing so from
a broad ecosystem perspective. This allowed us to identify new horizons for future
scientific research.

Outlining ‘future meiobenthology’, the present book may be seen as part of a
triadic complex, based on the monographic textbook ‘Meiobenthology. The Micro-
scopic Motile Fauna of Aquatic Sediments’ (Giere 2009). More recent aspects in
meiobenthology that presently prevail (the state of the art) are highlighted in a short
reflection entitled ‘Perspectives in Meiobenthology’ (Giere 2019), a booklet that
attempts to indicate critical knowledgegaps and to outline perspectives andpromising
avenues to be pursued in future meiobenthology. The booklet intended to stimulate
thoughts by asking: Where to focus future meiofauna research? Both publications
are aptly complemented by the recent classification and identification guide edited
by Schmidt-Rhaesa (2020).

The present book on new horizons in meiobenthos research, written by leading
specialists in the field ofmeiobenthology, is a compilation of promising new thinking,
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data, methods, and approaches in many relevant fields of meiobenthos research, all
driven by the vision of advancing knowledge and understanding of benthic ecosys-
tems. This requires a focus on the ‘bigger picture’, on the processes and aspects
that connect the hidden world of meiobenthos with that of the more conspicuous
macroscopic fauna. Why is this important? These faunas are connected by common,
general principles that determine the limits and potential of the benthic realm.
Stronger connections between the research fields that study these interconnected
faunaswill undoubtedly open newopportunities to investigate, and better understand,
how benthic ecosystems respond to environmental dynamics and global change.

All authors of this treatiseworked toward these goals under the aggravatingCovid-
19 pandemic, alongside their professional duties and private commitments, which
made editing this book a challenging undertaking. United by the idea of shaping
an exciting, meaningful, and successful future for meiobenthology, this book is the
result of our shared passion and determination. The editors and authors hope that the
work presented here will direct and influence meiobenthology for some time.
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