
43

Chapter 3
Catchment Scale Modeling of Land Use 
and Land Cover Dynamics

P. Dinagarapandi, K. Saravanan, and K. Mohan

Abstract  The dynamic of Land Use and Land Cover (LULC) at the Chittar catch-
ment is to obtain the spatial deviation for the historical and forecast period from 
2001 to 2026. Spatial deviation occurred within the five LULC features such as the 
agricultural land, urban land, wasteland, forest, and water bodies which are classi-
fied and mapped at the spatial distribution from the years 2001, 2006, 2011, and 
2016 using supervised classification. Then, LULC forecasts 2021 and 2026 using 
the Artificial Neural Network-based Cellular Automata (ANN_CA) method. The 
catchment scale LULC changes; 2001 and 2006 data are used as base maps to deter-
mine the transition potential model. Then ANN_CA is supported to simulate the 
LULC for the year 2011. The level of spatial matching between the simulated and 
field LULC for the year 2011 is measured using kappa statistics. The overall spatial 
matching between the two LULC is 92%, and the kappa coefficient value is 0.88. 
Twenty-six years of average percentage in areal contribution for agricultural, forest, 
urban, water bodies, and wasteland is 58%, 16%, 7.5%, 3.5%, and 15%, respec-
tively. This LULC change data is most significant in the applications of hydrologi-
cal modeling, irrigation management, urban planning, land and water resource 
management, etc.

Keywords  LULC · ANN_CA · Change detection · Kappa statistics · Chittar 
catchment · Thamirabarani basin

1 � Introduction

The phrase Land Use and Land Cover (LULC) generally refers to the spatial map-
ping of natural and anthropogenic sources of materials on the landscape within a 
definite time. Land cover is the physical process that generally covers the earth’s 
surface. Land use is to describe how the land is utilized. LULC changes are one of 
the important parameters that affect the global environment. The LULC change also 
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helps to model environmental problems such as flooding, landslides, biodiversity 
loss, climate change, etc. (Mousavi et al., 2019). Thus, LULC change also causes 
the socio-economic problem due to improper land management (Reis, 2008). 
Mapping and forecasting of LULC are important for environmental monitoring 
studies which include:

•	 Sustainable natural resource development and management.
•	 Land and water resource development and management.
•	 Wildlife habitat protection.
•	 Baseline mapping for many hydrological modeling studies.
•	 Urban planning.
•	 Coastal management.
•	 Urban growth modeling.
•	 Transport planning and management.
•	 Damage delineation (such as earthquake, drought, flood, forest fire, etc.)
•	 Guiding the real estate business investment and development.
•	 Target detection-identification of school, hotel, hospital, water bodies.
•	 Deforestation and forest conservation.

The LULC changes occur within its own features of LULC wherein the environ-
mental hazards occur due to urbanization (alteration of cropland to an urban area), 
for instance, the rotation of crops in accordance with the seasons. There is a direct 
impact on the social-economic development with the conversion of the seasonal 
cropland to the uncultivated, which is the effect of the water scarcity that the fluc-
tuation has led in seasons during the semiarid conditions. The key research for most 
of the developing countries revolves around water resources, as most of the research-
ers are centered on the changes of LULC and their impacts on the water and land 
resources. The findings of the availability of water present either as seasonally or 
annually can be achieved by the morphological analysis of the surface water body, 
which is led mainly by the changes in LULC; also, this LULC changes to aid in 
developing the hydrological model, which analyzes the hydrological response impact.

This study explores the historical and future LULC changes over the Chittar 
catchment of Thamirabarani Basin, Tamil Nadu (Fig. 3.1). It aligns in a semiarid 
climate. The catchment has been divided into five LULC classes’ descriptions as 
shown in Table 3.1, viz., agricultural land, urban land, wasteland, forest, and water 
bodies (Roy & Inamdar, 2019). The historical period maps are developed from 
Landsat 5 Thermal Mapper, Landsat 7 Enhanced Thematic Mapper, and Landsat 8 
Operational Land Imager in Geographical Information System (GIS) platform for 
the years 2001, 2006, 2011, and 2016. The commercially available LULC forecast 
model packages include CA_MARKO, Dyna-CLUE, and ANN_CA (Aarthi & 
Gnanappazham, 2018). This study uses an Artificial Neural Network-based Cellular 
Automata (ANN_CA) model to forecast the LULC over the Chittar catchment. The 
ANN_CA model is to learn the transition of LULC over Chittar catchment from 
historical data for the years 2001 and 2006 which are used to forecast LULC in 
2011. The forecasted LULC in 2011 is validated with 2011 field data using kappa 

P. Dinagarapandi et al.



45

Fig. 3.1  Chittar River catchment of South Tamil Nadu, India

Table 3.1  LULC feature description

LULC 
features Description

Urban land It is an area having cluster of buildings along with human footprint such as 
railway station, airport, roads and streets, water bodies, park, vegetation, vacant 
land, and other utility area

Agricultural 
land

These are the lands primarily suitable for farming, which includes food, 
commercial and horticultural crops, dairy and animal husbandry, temporarily 
fallow and pasture land, etc.

Waste land This lands which are not suitable/used for cultivation or build on or any other 
way. Major portion of this land possible to reclaim with reasonable effort and 
specific technology

Water bodies These are natural and manmade structures to store and transport water over the 
earth surface. It includes wetland, reservoir, pond, channel, canal, river, etc.

Forest The FAO defining the forest as a dense native or introduced vegetation cover 
with area more than 5000 m2 and height more than 5 m with minimum 10% 
canopy cover. It does not include other predominant land uses like agricultural, 
urban land, etc.

statistics (Al-Fares, 2013). The LULC is part of the hydrological response unit, 
which induces the finding the certain water balance and runoff component estima-
tions such as manning roughness coefficient and SCS-CN. By these parameters it 
evolves the WBC, such as runoff and infiltration. The LULC also evolves the  
water balance components such as interception, depression storage, and 
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evapotranspiration. LULC is dynamic in nature, caused by anthropogenic activity or 
natural causes. This concept is applied to the different time periods of LULC that 
link with the suitable land features with their standard parameter available in the 
default geodatabase.

2 � Study Area

The Chittar River originated from the Courtallam hills in the southern part of 
Western Ghats and is one of the major tributaries of the Thamirabarani basin. Its 
area spans about 1300  km2 with latitude and longitude varying from 8°45′N to 
9°15′N and 77°10′E to 77°50′E, respectively (Fig. 3.1). The length of the river trav-
els about 82 km to reach the main river. The dividing line of the catchment separates 
the Kerala and Tamil Nadu border. It lies in a semiarid climate zone with tempera-
tures ranging from 25 to 40 °C. Northeast monsoon of the Chittar catchment starts 
from October to December and receives a 50% of annual rainfall; the Southwest 
monsoon starts from the month of June to August and receives a 30% of rainfall. 
The total rainfall of the Chittar catchment is about 880 mm. The catchment relief 
varies from 25 to 1710 m above MSL. The upper catchment is very steep, with a 
slope of more than 15%. The downstream side of the catchment is generally plain, 
with an average elevation of about 60–80 m and a slope of less than 1%.

3 � Methodology

The LULC map is delineated from Landsat imagery (URL: glovis.usgs.gov). 
Landsat is a multispectral image with 30 m of spatial resolution jointly released by 
NASA and USGS (details shown in Fig .3.1). The visible near-infrared (VNIR) 
region has three bands with a spectral range of blue (0.45–0.52  μm), green 
(0.52–0.60 μm), and red (0.63–0.69 μm) which were captured using multispectral 
satellite sensors. Using three bands of Landsat imagery, LULC features were delin-
eated in the GIS environment (Trujillo-Jiménez et al., 2022). The Resources-2 is 
available only within India and has a succession of 5.8 m VNIR by the Indian Space 
Research Organization, Government of India. The Landsat 8 OLI is launched with 
30 m VNIR by the Earth Resources Observation and Science Center, NASA; it’s 
available worldwide and has its finest provision on the coastal zone regulations and 
surface water resources. The Sentinel 2 was launched by European Space Agency to 
monitoring the morphology of land with 13 spectral bands. The Landsat satellite 
program series provides enormous information about LULC data. This is one of the 
world’s largest collections of global land resources data, which is the available free 
and open Internet.

The Landsat imagery has a temporal resolution of 8 days starting from 1970 to 
the present. Lone and Mayer (2019) used the IRS LISS III and P6 to classify the 
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Table 3.2  Imagery data description

S. no. Year Type Path/row Resolution Source

1 2001 Landsat TM 143/54 30 × 30 USGS
2 2006 Landsat TM 143/54 30 × 30 USGS
3 2011 Landsat ETM 143/54 30 × 30 USGS
4 2016 Landsat OLI_TIRS 143/54 30 × 30 USGS

LULC features using supervised classification. The series of Landsat imagery, as 
mentioned in Table 3.2, are used in this study. The Landsat imagery data are pro-
jected by Universal Transverse Mercator (UTM) zone 44 N in the World Geodetic 
System (WGS) datum named WGS_1984_UTM_Zone_44N to certify the consis-
tency between the datasets during analysis. The Level 1 of the National Remote 
Sensing Centre classification system is used in this study (NRSC, 2014). The LULC 
Level 1 consists of five features (Roy & Inamdar, 2019): land use considers the 
urban land and agricultural land, and land cover considers wasteland, forest, and 
water bodies (Table 3.2). The given features are classified with the supervised clas-
sification (Vivekananda et al., 2021). The maximum likelihood classifier is one of 
the popular supervised classification systems that gather each trained pixel informa-
tion from Landsat imagery (Lone & Mayer, 2019). Trained pixels are processed in 
the maximum likelihood classifier per the equation below to classify the LULC 
features. The maximum likelihood classifier is one of the popular algorithms for the 
classification of satellite images, in which a pixel with the maximum likelihood 
(MLA) is classified into the corresponding class:

	
MLA A AP A x X x X� � � � � �� � �� ��ln ln

1

2

1

2
1

�� � �
	 (3.1)

where A = features; x = number of bands in dimensional; p(A) = probability of all 
features; |ΣA|  =  determinant of the covariance matrix in features; ΣA

−1  =  inverse 
matrix; and X = mean vector.

The maximum likelihood classifier is used in this study, which is one of the 
popular satellite data processing methods. The LULC data for the years 2001, 2006, 
2011, and 2016 over the Chittar catchment are prepared and used for ANN model 
training.

The concepts of Cellular Automata (CA) were jointly induced by two great 
mathematicians Alan Turing and John von Neumann, during 1930s. The CA is a 
very popular method applied for modeling the LULC and its changes, estimating 
the pixel value according to its initial state. The pixel value determines according to 
their surrounding neighborhood effects and transition rules. A CA only effectively 
models the nonlinear spatially stochastic LULC change processes. The LULC is 
delineated in the GIS environment and prepared for the year 2001, 2006, 2011, and 
2016, respectively. Here, the ANN_CA model is capable of predicting the future 
LULC from the transition from the previous state of LULC. Artificial Neural 
Network (ANN) is used for training to find the transition potential within LULC 
features (Mas et al., 2014). Again, the CA technique is used to simulate future data 
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by adopting the transition potential. Finally, ANN_CA is supported to forecast the 
future LULC (Li & Yeh, 2002; Qiang & Lam, 2015). Using Kappa statistics, ANN_
CA-predicted 2011 LULC is validated with field 2011 LULC through the multi-
resolution budget. The final model is used to forecast the LULC for the years 2021 
and 2026. A flow chart of methodology to forecast LULC for 2021 and 2026 by 
using historical 5-year intervals of LULC is shown in Fig. 3.2.

Commercially available LULC forecasting model package includes CA_
MARKOV, Dyna-CLUE, and ANN_CA. Here, the Chittar catchment is used to 
forecast the LULC using the ANN_CA model package (Basse et al., 2014; Qiang & 
Lam, 2015). Forecast LULC data for the years 2021 and 2026 are adopted for the 
methodology shown in Fig.  3.2. Modules for Land Use Change Simulations 
(MOLUSCE) is accessed as an open-source QGIS plugin to process the ANN_CA 
LULC change model (Measho et al., 2020). Input variables of ANN training datas-
ets are of five stages: neighborhood pixels, learning rate, momentum, maximum 
iterations number, and hidden layers using multilayer perceptron. The number of 
hidden layers and neurons in each hidden layer has arrived arbitrarily. Input neurons 
are carried out as

	
C N R Nf b f b�� � �� � � �� �1 2 1 2 1

2 2

	 (3.2)

Fig. 3.2  Methodology of flow chart
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Fig. 3.3  Validation of 2011 LULC with multi-resolution budget method using ten iterations

where Cf = count of attained LULC features; Nb = neighborhood pixels size spec-
ified by the initial data; and Rf = summary band count of factor raster. Output neu-
rons (M) usually are a count of unique features in the change map (Cf

2). The classic 
back propagation algorithm with momentum is used to train the ANN model. 
Trained data rectification is performed as

	
X n D n M D nr x x�� � � � � � �� �� �1 1L

	 (3.3)

where X = vector of neuron trained data; Dx = vector of trained LULC changes; 
n = iteration number; Lr = learning rate; and M = momentum.

The initial and final LULC datasets are used to delineate the transition potential. 
The transition potential is mapping the areal changes between the LULC features. 
The ANN is used in training to find out the transition potential of LULC features 
(Mas et al., 2014). Transition potential is trained between the years of 2001 and 
2006 of LULC. Again, CA is the technique used for the simulation of future data by 
incorporating the modeled transition potential. Finally, the ANN_CA is supported 
to predict the 2011 LULC. Multi-resolution budget validates the two datasets on the 
five categories of plots (Fig. 3.3). These plots are based upon the quantity and loca-
tion where perfect location information and perfect quantity information plots for 
ten iterations have reached a high value with others. It has achieved 88% of correct-
ness with the historical 2011 LULC. Similarly, LULC of 2011 and 2016 is used for 
the ANN_CA to forecast LULC data for 2021. Further, the LULC of 2026 is fore-
casted from the LULC of 2016 and 2021.

4 � Results and Discussions

The LULC change analysis is interpreted for 2001, 2006, 2011, and 2016 (Fig. 3.4). 
Thus, the process of LULC change analyzes the area contribution in km2 as shown 
in Fig. 3.5. Over the Chittar catchment, about 74% of the area is jointly covered by 
agricultural and forest land (Fig.  3.5). The remaining 26% area is covered by 
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Fig. 3.4  LULC dynamics map of (a) 2001, (b) 2006, (c) 2011, and (d) 2016

Fig. 3.5  LULC Distribution
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wasteland (20%), water bodies (4%), and urban land (2%). During the 20 years 
from 2001 to 2021, about 22 km2 of agricultural land gradually increased, and in the 
same period, 27  km2 of wasteland decreased. The increase in farming activities 
reclaims the wasteland over the Chittar catchment (Awotwi et  al., 2015). 
Approximately 1% of the forest was converted to wasteland between 2001 and 
2016, resulting in increased runoff in the foothills (Danáčová et al., 2020). About 
20 km2 (i.e., 78% area) of urban land is increased from 2001 to 2016, and it’s driven 
by population growth. It is observed that agricultural and wastelands are converted 
into urban land to meet the sheltering needs of the increasing population. The 16% 
of water bodies in the Chittar catchment decreased between the periods of 2001 to 
2016. The change of agricultural and urban land leads to causes critical environ-
mental issues, likely flooding, landslides, etc., along the catchment.

The ANN_CA is used to delineate the LULC transition between 2001 and 2006. 
The trained ANN_CA model is used to forecast 2021 with the LULC data for 2011 
and 2016. In the subsequent year 2016 and 2021, data are used to forecast 2026 
LULC (Fig. 3.5). This model is further used to forecast 2011 from 2001 and 2006. 
A kappa value seems to be location matching with two spatial data. Here, this is 
matched up to approximately 88% of the area between the simulated 2011 and field 
2011 LULC data. The validation results for ten iterations are shown in Fig. 3.3. 
Then the 2021 and 2026 LULC is forecasted using ANN_CA. From 2001 to 2026, 
about 6% of wasteland decreases, and alternately 3% of agricultural land is increased 
in the same period. Over the middle and lower portions of the Chittar watershed, 
agricultural land is being maintained to its greatest extent. Forest covers the upper 
part of the Chittar catchment. From 2001 to 2016, the forest decreased by 3.5% area 
was converted to a wasteland. The wasteland covers all parts of the catchment and 
scatters very well. Thus, a wasteland in 2016 was converted into agricultural land 
(about 1.5%) due to farming practices. Then agricultural land converts into an urban 
area (about 0.5%) in 2026 due to the rising of the population (Fig. 3.4). The maxi-
mum urban is the low region of forest area. They are Tenkasi, Shencottai, Courtallam, 
Kadaiyanallur, Alangulam, etc. Finally, 2026 water bodies continuously decrease 
up to 26% from 2001 over the Chittar catchment. Because of human activity, water 
bodies are being converted to urban and agricultural land.

Forecast LULC of 2026 shows fewer areal changes compared to the historical 
LULC; the areal changes of 2011 to 2016 show the frequent variation from 2001 to 
2011 in agricultural and wasteland. The ANN_CA model is achieved by the neural 
systems that delineate areal changes between the LULC features. After 2016 LULC 
of area contribution describes the rise in the wasteland, and drop down from the 
agricultural land directly denotes the conversion of wasteland to agricultural. The 
wasteland is mostly a salt-affected region with low productivity. Again in 2026 
LULC, it achieves the gain of agricultural land of approximately 5 km2 and a loss in 
the wasteland of about 13 km2. So, it seems to be a rise in moisture content due to 
climate change (Fig. 3.6). If the reduction of agricultural land happens within the 
catchments, it leads to an impact on the social and economic effects. Agriculture is 
the main source of increase in the national economy. In a historically agricultural 
community, a rise in uncultivated land creates social instability and conflict. 
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Fig. 3.6  LULC dynamics map of study area for (a) 2021 and (b) 2026

Table 3.3  Change detection for the ten years

LULC types
Ten years
2001–2011 2006–2016 2011–2021 2016–2026

Agricultural land +20 +12 +2 -2
Waste land −27 −11 0 +14
Forest −1 −7 −2 −5
Water bodies −5 −5 −6 −6
Urban land +15 +11 +5 0

Furthermore, the fall in agricultural productivity raises the likelihood of food pro-
duction security threats (Rasool et al., 2021).

5 � Change Detection

Change detection is the proper technique for estimating the spatial deviation 
between the two datasets. It can be calculated with the area units in km2. Change 
detection is the technique to analyze the mapped spatiotemporal LULC changes 
between the multi-temporal images. The change defection analysis is carried out for 
the period 2001 to 2026 between five subclasses over the Chittar catchment. 
Table 3.3 summarizes the area of increase (+) or decrease (−) in km2 during the 
consecutive 10-year periods. The 10 years of LULC maximum change is detection 
that occurred between agricultural and wasteland. Forest, urban land, and water 
bodies do not change much in 10 years. Due to the dominance of agricultural land, 
indirectly, the Chittar catchment indicates the water resources gained by their sub-
surface, i.e., groundwater or its surface, led by the irrigation practices. Forest is the 
only feature not disturbed by other features. Even though water bodies and urban 
land contribute at a minor level at this LULC change detection, efficiency is larger 
than any other features.
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It shows the maximum gain of 20 km2 from 2011 to 2021 and 12 km2 from 
2006 to 2016 for the agricultural land. Gain and loss of agricultural land denote 
the amount of food productivity. Loss of wasteland continuously changes by more 
than 5 km2 per decade. Suddenly, the increase of wasteland between 2016 and 
2026 is 14 km2 due to the reduction of agricultural land. These changes occurred 
mainly due to soil degradation, land rehabilitation, and land productivity. Then, 
2016 to 2026 has low gain/loss in LULC changes. Minimum LULC change hap-
pens in the forest and water bodies that range less than 10 km2. Agricultural and 
urban land was steadily incremented up to 2001–2026 and proportionally reduced 
in water bodies. It leads to the declination of water bodies as the massive increase 
in agricultural productivity in the riverbed. Similarly, the trend of 10 years is quite 
the same as 30 years also. The loss happened in the wasteland, forest, and water 
bodies and followed by gain happen in urban and agricultural land. The LULC 
change has been detected for 30 years and has a major impact on the hydrologi-
cal model.

6 � Conclusion

In the tropical climate of south India, it behaves as a seasonal variation in the 
temperature as well as the rainfall reflected in the landscape. In the Chittar catch-
ment, hot weather (temperature) happens for 6 months in an annum, so it causes 
more evaporation and evapotranspiration in the agricultural land (70%) due to this 
solar energy; also, it converts the surface water bodies to dry land. However, sur-
face irrigation completely stopped after 2011, as shown in the LULC dynamics 
map. Further, the probability of water resources purely depends upon rainfall and 
groundwater. The rest of the period leads to the direct supply of water (rainfall) 
into soil derived from the runoff, infiltration, and percolation characteristics over 
the catchments. As per the Chittar catchment, 16% of water bodies’ decline is 
visualized in 2001–2026 LULC dynamic map. The 40% of 2001 urban area rises 
to 2026 LULC map. Here, 58% of agricultural land is mapped along with the 
uncultivated land also, so the contribution of agricultural land has a meager 
change in the Chittar catchment. Uncultivated land has directed the wasteland, 
i.e., scrubland. Due to the source of groundwater potential site, agricultural activi-
ties still have achieved their best level in this Chittar catchment. Wasteland of 
25 years has contributed to all the other features. The spatial distribution of waste-
land is easier to interpret from the LULC dynamics map. Change detection helps 
to compare the LULC features in km2, where it interprets the major change 
between the agricultural land and wasteland. Other features are less contributed. 
Thus, the landscape phenomenon is attained by the combination of soil, LULC, 
and slope (i.e., HRU) of the Chittar catchment, which leads to a response of 
hydrologic characteristics in it. The HRU is the basis for many hydrological mod-
els at the catchment scale.
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