
Philippe Fournier-Viger
Ahmed Hassan
Ladjel Bellatreche (Eds.)

LN
CS

 1
37

61 Model and
Data Engineering
11th International Conference, MEDI 2022
Cairo, Egypt, November 21–24, 2022
Proceedings

Lecture Notes in Computer Science 13761

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Philippe Fournier-Viger · Ahmed Hassan ·
Ladjel Bellatreche (Eds.)

Model and
Data Engineering
11th International Conference, MEDI 2022
Cairo, Egypt, November 21–24, 2022
Proceedings

Editors
Philippe Fournier-Viger
Shenzhen University
Shenzhen, Guangdong, China

Ladjel Bellatreche
ISAE-ENSMA
Poitiers, France

Ahmed Hassan
Nile University
Giza, Egypt

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-21594-0 ISBN 978-3-031-21595-7 (eBook)
https://doi.org/10.1007/978-3-031-21595-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7680-9899
https://orcid.org/0000-0001-9968-0066
https://orcid.org/0000-0002-7799-9233
https://doi.org/10.1007/978-3-031-21595-7

Preface

The International Conference on Model and Data Engineering (MEDI) is a yearly
conference that provides a platform for researchers and practitioners to present research
advances on modeling and data management, including topics such as database theory,
database systems technology, data models, advanced database applications, and data
processing. MEDI is a well-established conference, founded by researchers from Euro-
Mediterranean countries, which has been a starting point for numerous international
scientific collaborations and projects, aswell as research visits and exchanges by students
and faculty members from various institutions. MEDI has been held in various coun-
tries over the years, including France, Morocco, Spain, Greece, Cyprus, Italy, France,
Estonia, and Portugal.

This year is the 11th edition of MEDI, held during November 21–24, 2022, in
Cairo, Egypt. A total of 65 submissions were received. Each submission was rigorously
evaluated and received three to five single blind reviews from an international Program
Committee consisting of researchers from 20 different countries. Based on the result of
the evaluation, it was decided to accept 18 papers, which represents an acceptance rate of
27.6%, for full presentation at the conference and 12 papers for short presentation. The 18
full papers are published in this proceedings book, while short papers are published in a
separate volume. The accepted papers are from authors in 11 countries and include topics
such as database systems, data stream analysis, knowledge graphs, machine learning,
model-driven engineering, image processing, diagnosis, natural language processing,
optimization, and advanced applications such as the Internet of Things and healthcare.

At MEDI 2022, two well-renowned researchers were keynote speakers. Vincent
S. Tseng from the National Yang Ming Chiao Tung University gave a talk entitled
“Broad and Deep Learning of Heterogeneous Health Data forMedical AI: Opportunities
and Challenges”. The second keynote talk was given by Athman Bouguettaya from
the University of Sydney and was titled “A Service-based Approach to Drone Service
Delivery in Skyway Networks”.

MEDI 2022 was held in hybrid mode (in person and online) due to the special
circumstances related to the COVID-19 pandemic. The organizers would like to thank
all authors who submitted research papers for evaluation at MEDI 2022, as well as
all members of the Program Committee and external reviewers, who carefully evalu-
ated all contributions. Moreover, we extend our special thanks to the Local Organizing
Committee members who were a key reason for the success of this year’s edition. We
also appreciated using the EasyChair conference management system for handling all
tasks related to handling submission and the reviewing process.

October 2022 Philippe Fournier-Viger
Ahmed Hassan

Ladjel Bellatreche

Organization

General Chairs

Ahmed Hassan Nile University, Egypt
Ladjel Bellatreche ISAE-ENSMA, France

Program Committee Chairs

Ladjel Bellatreche ISAE-ENSMA, France
Philippe Fournier-Viger Shenzhen University, China

Workshop Chair

Ahmed Awad Tartu University, Estonia

Proceedings Chair

Walid Al-Atabany Nile University, Egypt

Financial Chair

Hala Zayed Nile University, Egypt

Program Committee

Antonio Corral University of Almeria, Spain
Mamoun Filali-Amine IRIT, France
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Sofian Maabout University of Bordeaux, France
Yannis Manolopoulos Open University of Cyprus, Cyprus
Milos Savic University of Novi Sad, Serbia
Alberto Cano Virginia Commonwealth University, USA
Essam Houssein Minia University, Egypt
Moulay Akhloufi Université de Moncton, Canada
Neeraj Singh University of Toulouse, France
Dominique Mery Université de Lorraine, Loria, France
Duy-Tai Dinh Japan Advanced Institute of Science and

Technology, Japan
Giuseppe Polese University of Salerno, Italy

viii Organization

M. Saqib Nawaz Peking University, China
Jérôme Rocheteau Icam Nantes, France
Mourad Nouioua Hunan University, China
Ivan Luković University of Belgrade, Serbia
Jaroslav Frnda University of Zilina, Slovakia
Radwa El Shawi Tartu University, Estonia
Enrico Gallinucci University of Bologna, Italy
Anirban Mondal University of Tokyo, Japan
Pinar Karagoz Middle East Technical University (METU),

Turkey
El Hassan Abdelwahed Cadi Ayyad University, Morocco
Irena Holubova Charles University in Prague, Czech Republic
Georgios Evangelidis University of Macedonia, Greece
Panos Vassiliadis University of Ioannina, Greece
Mohamed Mosbah LaBRI, University of Bordeaux, France
Patricia Derler Palo Alto Research Center, USA
Idir Ait Sadoune LRI, CentraleSupélec, France
Goce Trajcevski Iowa State University, USA
Jerry Chun-Wei Lin Western Norway University of Applied Sciences,

Norway
Yassine Ouhammou LIAS, ISAE-ENSMA, France
Srikumar Krishnamoorthy Indian Institute of Management Ahmedabad,

India
Mirjana Ivanovic University of Novi Sad, Serbia
Yves Ledru Université Grenoble Alpes, France
Raju Halder Indian Institute of Technology Patna, India
Orlando Belo University of Minho, Portugal
Stefania Dumbrava ENSIIE Paris-Evry, France
Chokri Mraidha CEA LIST, France
Amirat Hanane Universiy of Laghoaut, Algeria
Javier Tuya Universidad de Oviedo, Spain
Luis Iribarne University of Almería, Spain
Elvinia Riccobene University of Milan, Italy
Regine Laleau Paris-Est Créteil University, France
Jaroslav Pokorný Charles University in Prague, Czech Republic
Oscar Romero Universitat Politècnica de Catalunya, Spain

Organization Committee

Mohamed El Helw Nile University, Egypt
Islam Tharwat Nile University, Egypt
Sahar Selim Nile University, Egypt
Passant El Kafrawy Nile University, Egypt

Organization ix

Sahar Fawzy Nile University, Egypt
Nashwa Abdelbaki Nile University, Egypt
Wala Medhat Nile University, Egypt
Heba Aslan Nile University, Egypt
Mohamed El Hadidi Nile University, Egypt
Mostafa El Attar Nile University, Egypt

Abstracts of Invited Talks

A Service-Based Approach to Drone Service Delivery
in Skyway Networks

Athman Bouguettaya

University of Sydney, Australia
athman.bouguettaya@sydney.edu.au

Abstract.We propose a novel service framework to effectively provision
drone-based delivery services in a skyway network. This service frame-
work provides a high-level service-oriented architecture and an abstrac-
tion to model the drone service from both functional and non-functional
perspectives. We focus on spatio-temporal aspects as key parameters to
query the drone services under a range of requirements, including drone
capabilities, flight duration, and payloads. We propose to reformulate the
problem of drone package delivery as finding an optimal composition of
drone delivery services from a designated take-off station (e.g., a ware-
house rooftop) to a landing station (e.g., a recipient’s landing pad). We
select and compose those drone services that provide the best quality
of delivery service in terms of payload, time, and cost under a range of
intrinsic and extrinsic environmental (i.e., context-aware) factors, such
as battery life, range, wind conditions, drone formation, etc. This talk
will overview the key challenges and propose solutions in the context of
single drones and swarms of drones for service delivery.

Bio: Athman Bouguettaya is Professor and previous Head of School of Computer Sci-
ence, at the University of Sydney, Australia. He was also previously Professor and Head
of School of Computer Science and IT at RMIT University, Melbourne, Australia. He
received his PhD inComputer Science from theUniversity ofColorado at Boulder (USA)
in 1992. He was previously Science Leader in Service Computing at the CSIRO ICT
Centre (now DATA61), Canberra. Australia. Before that, he was a tenured faculty mem-
ber and Program director in the Computer Science department at Virginia Polytechnic
Institute and State University (commonly known as Virginia Tech) (USA). He is a found-
ing member and past President of the Service Science Society, a non-profit organization
that aims at forming a community of service scientists for the advancement of service
science. He is or has been on the editorial boards of several journals including, the IEEE
Transactions on Services Computing, IEEE Transactions on Knowledge and Data Engi-
neering, ACM Transactions on Internet Technology, the International Journal on Next
Generation Computing, VLDB Journal, Distributed and Parallel Databases Journal, and
the International Journal of Cooperative Information Systems. He is also the Editor-in-
Chief of the Springer-Verlag book series on Services Science. He served as a guest editor
of a number of special issues including the special issue of the ACM Transactions on
Internet Technology on Semantic Web services, a special issue the IEEE Transactions

xiv A. Bouguettaya

on Services Computing on Service Query Models, and a special issue of IEEE Internet
Computing on Database Technology on the Web. He was the General Chair of the IEEE
ICWS for 2021 and 2022. He was also General Chair of ICSOC for 2020. He served
as a Program Chair of the 2017 WISE Conference, the 2012 International Conference
onWeb and Information System Engineering, the 2009 and 2010 Australasian Database
Conference, 2008 International Conference on Service Oriented Computing (ICSOC)
and the IEEE RIDE Workshop on Web Services for E-Commerce and E-Government
(RIDE-WS-ECEG’04). He also served on the IEEE Fellow Nomination Committee. He
has published more than 300 books, book chapters, and articles in journals and confer-
ences in the area of databases and service computing (e.g., the IEEE Transactions on
Knowledge and Data Engineering, the ACM Transactions on the Web, WWW Journal,
VLDB Journal, SIGMOD, ICDE, VLDB, and EDBT). He was the recipient of several
federally competitive grants in Australia (e.g., ARC), the US (e.g., NSF, NIH), Qatar
(NPRP). EU (FP7), and China (NSFC). He also won major industry grants from compa-
nies likeHP and SunMicrosystems (nowOracle). He is a Fellow of the IEEE,Member of
the Academia Europaea (Honoris Causa) (MAE) (HON), WISE Fellow, AAIA Fellow,
and Distinguished Scientist of the ACM.

Broad and Deep Learning of Big Heterogeneous Health
Data for Medical AI: Opportunities and Challenges

Vincent S. Tseng

National Yang Ming Chiao Tung University, Taiwan
vtseng@cs.nctu.edu.tw

Abstract. In healthcare domains, large-scale heterogeneous types of
data like medical images, vital signs, electronic health records (EHR),
genome, etc., have been collected constantly, forming the valuable big
health data. Broad and deep learning of these big heterogeneous biomed-
ical data can enable innovative applications for Medical AI with rich
research lines/challenges arisen. In this talk, I will introduce recent devel-
opments and ongoing projects on the topic of Medical AI, especially
in intelligent diagnostic decision support and disease risk prediction by
using various advanced data mining/deep learning techniques including
image analysis(for medical images), multivariate time-series analysis(for
vital signs like ECG/EEG), patterns mining (for EHR), text mining (for
medical notes), sensory analysis (for sensory data like air quality) as
well as fusion methods for integrated modelling. Some innovative appli-
cations on Medical AI with breakthrough results based on the devel-
oped techniques, as well as the underlying challenging issues and open
opportunities, will be addressed too at the end.

Bio:Vincent S. Tseng is currently a Chair Professor at Department of Computer Science
inNationalYangMingChiao TungUniversity (NYCU).He served as the founding direc-
tor for Institute of Data Science and Engineering in NYCU during 2017–2020, chair for
IEEECIS Tainan Chapter during 2013–2015, the president of Taiwanese Association for
Artificial Intelligence during 2011–2012 and the director for Institute of Medical Infor-
matics of National Cheng Kung University during 2008 and 2011. Dr. Tseng received
his Ph.D. degree with major in computer science from National Chiao Tung University,
Taiwan, in 1997. After that, he joined Computer Science Division of EECS Department
in University of California at Berkeley as a postdoctoral research fellow during 1998–
1999. He has published more than 400 research papers, which have been cited by more
than 13,000 times with H-Index 60 by Google Scholar. He has been on the editorial
board of a number of top journals including IEEE Transactions on Knowledge and Data
Engineering (TKDE), IEEE Journal of Biomedical andHealth Informatics (JBHI), IEEE
Computational Intelligence Magazine (CIM), ACMTransactions on Knowledge Discov-
ery from Data (TKDD), etc. He has also served as chairs/program committee members
for a number of premier international conferences related to data mining/machine learn-
ing, and currently he is the SteeringCommittee Chair forPAKDD. Dr. Tseng has received
a number of prestigious awards, including IICM Medal of Honor (2021), Outstanding

xvi V. S. Tseng

Research Award (2019 & 2015) by Ministry of Science and Technology Taiwan, 2018
Outstanding I.T. Elite Award, 2018 FutureTech Breakthrough Award, and 2014 K. T. Li
Breakthrough Award. He is also a Fellow of IEEE and Distinguished Member of ACM.

Contents

Image Processing and Diagnosis

Chaos-Based Image Encryption Using DNA Manipulation and a Modified
Arnold Transform . 3
Marwan A. Fetteha, Wafaa S. Sayed, Lobna A. Said,
and Ahmed G. Radwan

Rice Plant Disease Detection and Diagnosis Using Deep Convolutional
Neural Networks and Multispectral Imaging . 16
Yara Ali Alnaggar, Ahmad Sebaq, Karim Amer, ElSayed Naeem,
and Mohamed Elhelw

A Novel Diagnostic Model for Early Detection of Alzheimer’s Disease
Based on Clinical and Neuroimaging Features . 26
Eyad Gad, Aya Gamal, Mustafa Elattar, and Sahar Selim

Machine Learning and Optimization

Benchmarking Concept Drift Detectors for Online Machine Learning 43
Mahmoud Mahgoub, Hassan Moharram, Passent Elkafrawy,
and Ahmed Awad

Computational Microarray Gene Selection Model Using Metaheuristic
Optimization Algorithm for Imbalanced Microarrays Based on Bagging
and Boosting Techniques . 58
Rana Hossam Elden, Vidan Fathi Ghoneim, Marwa M. A. Hadhoud,
and Walid Al-Atabany

Fuzzing-Based Grammar Inference . 72
Hannes Sochor, Flavio Ferrarotti, and Daniela Kaufmann

Natural Language Processing

In the Identification of Arabic Dialects: A Loss Function Ensemble
Learning Based-Approach . 89
Salma Jamal, Salma Khaled, Aly M. Kassem, Ayaalla Eltabey,
Alaa Osama, Samah Mohamed, and Mustafa A. Elattar

xviii Contents

Emotion Recognition System for Arabic Speech: Case Study Egyptian
Accent . 102
Mai El Seknedy and Sahar Ali Fawzi

Modelling

Towards the Strengthening of Capella Modeling Semantics by Integrating
Event-B: A Rigorous Model-Based Approach for Safety-Critical Systems 119
Khaoula Bouba, Abderrahim Ait Wakrime, Yassine Ouhammou,
and Redouane Benaini

A Reverse Design Framework for Modifiable-off-the-Shelf Embedded
Systems: Application to Open-Source Autopilots . 133
Soulimane Kamni, Yassine Ouhammou, Emmanuel Grolleau,
Antoine Bertout, and Gautier Hattenberger

Efficient Checking of Timed Ordered Anti-patterns over Graph-Encoded
Event Logs . 147
Nesma M. Zaki, Iman M. A. Helal, Ehab E. Hassanein, and Ahmed Awad

Trans-Compiler-Based Database Code Conversion Model for Native
Platforms and Languages . 162
Rameez Barakat, Moataz-Bellah A. Radwan, Walaa M. Medhat,
and Ahmed H. Yousef

MDMSD4IoT a Model Driven Microservice Development for IoT Systems 176
Meriem Belguidoum, Aya Gourari, and Ines Sehili

Database Systems

Parallel Skyline Query Processing of Massive Incomplete
Activity-Trajectories Data . 193
Amina Belhassena and Wang Hongzhi

Compact Data Structures for Efficient Processing of Distance-Based Join
Queries . 207
Guillermo de Bernardo, Miguel R. Penabad, Antonio Corral,
and Nieves R. Brisaboa

Towards a Complete Direct Mapping from Relational Databases
to Property Graphs . 222
Abdelkrim Boudaoud, Houari Mahfoud, and Azeddine Chikh

Contents xix

A Matching Approach to Confer Semantics over Tabular Data Based
on Knowledge Graphs . 236
Wiem Baazouzi, Marouen Kachroudi, and Sami Faiz

τ JUpdate: A Temporal Update Language for JSON Data . 250
Zouhaier Brahmia, Fabio Grandi, Safa Brahmia, and Rafik Bouaziz

Author Index . 265

Image Processing and Diagnosis

Chaos-Based Image Encryption Using
DNA Manipulation and a Modified

Arnold Transform

Marwan A. Fetteha1(B), Wafaa S. Sayed2, Lobna A. Said1,
and Ahmed G. Radwan2,3

1 Nanoelectronics Integrated Systems Center (NISC),
Nile University, Giza 12588, Egypt

M.Ahmed2129@nu.edu.eg
2 Engineering Mathematics Department, Faculty of Engineering,

Cairo University, Giza 12613, Egypt
3 School of Engineering and Applied Sciences, Nile University, Giza 12588, Egypt

Abstract. Digital images, which we store and communicate everyday,
may contain confidential information that must not be exposed to oth-
ers. Numerous researches are interested in encryption, which protects the
images from ending up in the hands of unauthorized third parties. This
paper proposes an image encryption scheme using chaotic systems, DNA
manipulation, and a modified Arnold transform. Both DNA manipula-
tion and hyperchaotic Lorenz system are utilized in the substitution of
the images’ pixel values. An additional role of hyperchaotic Lorenz sys-
tem is that it generates the random numbers required within the DNA
manipulation steps. DNA cycling is implemented based on simple DNA
coding rules and DNA addition and subtraction rules with modulus oper-
ation. The modified Arnold transform alters the pixels’ positions, where it
guarantees effective pixel permutation that never outputs the same input
pixels arrangement again. The proposed design is simple and amenable
for hardware realization. Several well established performance evaluation
tests including statistical properties of the encrypted image, key space, and
differential attack analysis were conducted for several images. The pro-
posed scheme passed the tests and demonstrated good results compared
to several recent chaos-based image encryption schemes.

Keywords: Arnold transform · Chaos · DNA · Image encryption

1 Introduction

Communication methods have undergone significant changes in the recent few
decades due to the quick development of computer and network technology.
The need for secure communication of media and exchanged information has
gradually developed [1]. Specifically, image encryption has been the topic of
numerous researches to protect the user’s privacy [2]. The strong correlation
and redundancy between neighbouring pixels of an image require devising new
encryption schemes rather than the typical ones [3].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 3–15, 2023.
https://doi.org/10.1007/978-3-031-21595-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_1

4 M. A. Fetteha et al.

Chaotic systems are good candidates for image encryption systems because
of their pseudorandomness, initial value sensitivity, parameter sensitivity, and
unpredictability, among other qualities, which increase the security level [4–
6]. Both Deoxyribonucleic acid (DNA) encoding and Arnold permutation have
appeared in recent works as well. In [7], an image encryption algorithm based
on bit-level Arnold transform and hyperchaotic maps was proposed. The algo-
rithm divides the grayscale image into 8 binary images. Then, a chaotic sequence
is used to shift the images. Afterwards, Arnold transform is applied. Finally,
image diffusion is applied using the hyper chaotic map. The system requires
image division, which increases the system’s complexity and may halt it from
being optimized to applicable hardware design. In [6], Luo et al. used double
chaotic systems, where two-dimensional Baker chaotic map is used to set the
state variables and system parameters of the logistic chaotic map. In [8], Ismail
et al. developed a generalised double humped logistic map, which is used in gray
scale image encryption. In [9], a chaotic system and true random number gener-
ator were utilized for image encryption. The presence of both the chaotic system
and true random number generator increases the system’s complexity making it
less suitable for hardware implementation. In [1], a plaintext-related encryption
scheme that utilises two chaotic systems and DNA manipulation was presented.
The system depends on the values of some pixels for the encryption process,
which threatens image restoration if they are changed.

This paper proposes an image encryption algorithm that uses hyperchaotic
Lorenz system, an optimized DNA manipulation system and a new method for
applying Arnold transform, which is more suitable for encryption applications.
The rest of the paper is organized as follows: Sect. 2 provides a brief explana-
tion of the utilized methods. Section 3 demonstrates the proposed encryption
and decryption algorithms. Section 4 validates their good performance. Finally,
Sect. 5 concludes the work.

2 Preliminaries

Generally, encryption systems require a source of randomness that can be regen-
erated in the decryption process. This section explains the main sources of ran-
domness that are employed in the proposed scheme.

2.1 Hyperchaotic Lorenz System

Hyperchaotic Lorenz system [10] provides the randomness needed for encryption.
The system is solved using Euler’s method:

xi+1 = xi + h(a(yi − xi) + wi), (1a)
yi+1 = yi + h(cxi − yi − xizi), (1b)
zi+1 = zi + h(xiyi − bzi), (1c)
wi+1 = wi + h(yizi + rwi), (1d)

where h = 0.01, a = 10, b = 8/3, c = 28, and r = −1. Figure 1 shows the output
results with initial conditions x0 = 0.23, y0 = 0, z0 = 0.7, and w0 = 0.11.

Image Encryption Using Chaos, DNA and Modified Arnold Transform 5

Fig. 1. Output of hyperchaotic Lorenz system.

Table 1. DNA binary codes

DNA base Binary code

G 00

A 01

T 10

C 11

2.2 DNA Coding

DNA coding [11] is used to change the bit values according to some set of rules.
This is done to enhance the security of the algorithm. DNA consists of 4 bases,
which are Adenine (A), Thymine (T), Cytosine (C), and Guanine (G). The
relation between these bases is that ‘A’ is complementary to ‘T’ and ‘G’ is
complementary to ‘C’. Table 1 shows the used binary code for each DNA base.

Based on these relations, we can apply rules to manipulate the data as long
as the relation between these bases does not change. Table 2 shows the list of
all possible rules that are used in the encryption algorithm, where a random
number is used to select the rule and then the two input bits are replaced with
the corresponding DNA base. For example, if the chosen rule is 6 and the input
is ‘T’, then the output will be ‘C’, which is equal to ‘11’.

Table 3 shows the results of DNA addition and subtraction, which can be
done using simple operations on the DNA bases if the binary representation of
Table 1 is used. The DNA sequence has a cyclic behavior, where each base is
repeated every 4 cycles (i.e., T, C, G, A, T, C, . . .). This enables performing
‘DNA cycling’ by dividing the number of cycles by 4 and then referring to Table 4.

6 M. A. Fetteha et al.

Table 2. DNA encoding and decoding rules

Rules

1 2 3 4 5 6 7 8

A A C C T T G A G

T T G G A A C T C

G G T A G C A C T

C C A T C G T G A

Table 3. DNA addition and subtraction rules

+ G A T C − G A T C

G G A T C G G C T A

A A T C G A A G C T

T T C G A T T A G C

C C G A T C C T A G

Table 4. DNA cycling

Number of cycles T C G A

4n+0 T C G A

4n+1 C G A T

4n+2 G A T C

4n+3 A T C G

2.3 Arnold Transform

Arnold transform [12] is used to permute the pixels positions of the image. Arnold
transform and the inverse operation are defined as follows:

[
x

′

y
′

]
= mod

([
1 1
1 2

] [
x
y

]
,M2

)
, (2a)

[
x
y

]
= mod

([
2 −1

−1 1

] [
x

′

y
′

]
,M2

)
. (2b)

where (x, y) represents the original pixel position and
(
x

′
, y

′
)

represents the
new pixel position after applying the transform on an M × M image.

Arnold transform is a periodic transform [12], which means that at a specific
iteration or cycle, the permuted image becomes the same as the original image.
The period of the transform depends on M as shown in Table 5 [12].

If the number of cycles of Arnold transform is random, the image will not be
permuted if this random number happens to be 0 or P , where P is the Arnold
transform period of image dimensions M × M shown in Table 5. To overcome

Image Encryption Using Chaos, DNA and Modified Arnold Transform 7

Table 5. Arnold transform (2) period with different M

M 32 64 128 256 512

Period 24 48 96 192 384

this periodicity, we propose a modified Arnold transform, where the image will
be permuted for any number of cycles chosen.

3 Proposed Algorithm

The proposed algorithm for encryption and decryption is shown in Fig. 2. The
proposed modified Arnold transform is explained, after that the encryption and
decryption process.

3.1 Modified Arnold Transform

To guarantee image permutation for any number of cycles, the number of cycles
(Cyc) of the Arnold transform must not equal to 0 or P . Hence, we apply the
following equation:

G = mod (Cyc, P − 2) + 1. (3)

This will make the effective number of cycles G be in the range of 1 → (P − 1),
which avoids these two cases and eliminates the chances of periodicity.

3.2 Encryption Process

Step 1: The 4 input sub keys (K1, K2, K3, and K4) are converted from hex-
adecimal to decimal representation to set the initial state of each variable of the
hyperchaotic Lorenz system (1), x0, y0, z0, and w0. To make the initial condi-
tions bounded by the chaotic system’s basin of attraction, they are computed
as:

x0 =
(

K1

A/40

)
− 20, (4a)

y0 =
(

K2

A/40

)
− 20, (4b)

z0 =
(

K3

A/50

)
, (4c)

w0 =
(

K4

A/200

)
− 100, (4d)

where A = 252. Then, the 4 chaotic sequences x, y, z and w are generated with
length equals M2 + 1000.

8 M. A. Fetteha et al.

F
ig
.
2
.
(a

)
E

n
cr

y
p
ti

o
n

a
n
d

(b
)

D
ec

ry
p
ti

o
n

b
lo

ck
d
ia

g
ra

m
s.

Image Encryption Using Chaos, DNA and Modified Arnold Transform 9

Step 2: The first 1000 iterations are removed from the four chaotic sequences
to generate Xh, Yh, Zh and Wh. Then, the vectors U1, U2, U3, U4, U5, and U6

are generated by the following equations:

U1 = mod(
⌈
Xh × 1013

⌉
, 8) + 1, (5a)

U2 = mod(
⌈
(U − �U�) × 1013

⌉
,M2), (5b)

U3 = mod(
⌈
Wh × 1013

⌉
, 8) + 1, (5c)

U4 = mod(
⌈
(Xh + Yh) × 1013

⌉
, 256) + 1, (5d)

U5 = mod(
⌈
Yh × 1013

⌉
, 8) + 1, (5e)

U6 = mod(
⌈
(Wh + Zh) × 1013

⌉
, 256), (5f)

where � � is the ceiling operator, and U = [Xh, Yh, Zh,Wh].
Step 3: U1 is used to select the DNA rule to encode the input image according
to Table 2.
Step 4: U2 is used to perform DNA cycling on S1. The result of mod(U2, 4)
chooses how many times the data is shifted according to Table 4.
Step 5: U3 is used to DNA encode U4 to generate Q. Then, according to Table 3,
the following equations are applied on S2:

q = Q(1) − Q(M2), (6a)
S3(1) = S2(1) + Q(1) + q, (6b)
S3(i) = S2(i − 1) + S2(i) + Q(i). (6c)

Step 6: U5 is used to select the rule for DNA decoding for S3 according to
Table 2.
Step 7: Every byte of S4 is accumulated to calculate ‘datasum’. The proposed
modified Arnold transform (3) is applied on S4 to generate S5, where cyc =
datasum.
Step 8: S5 is then XORed with the U6 to generate the encrypted image.

3.3 Decryption Process

Steps 1 and 2: The same as the encryption process.
Step 3: The input encrypted image is XORed with U6.
Step 4: The same as step 7 in the encryption process. The only difference is using
Arnold inverse transform (2b), instead of Arnold transform. This step is possible
even though we are taking the ‘datasum’ before the Arnold inverse transform,
which is not symmetric with the encryption process. This is because Arnold
Transform does not change the pixels values, it only changes their positions.
Step 5: U5 is used to select the DNA coding rule for S4.
Step 6: U3 is used to DNA encode U4 to generate Q. Then, according to Table 3,
the following equations are applied:

q = Q(1) − Q(M2), (7a)
S2(1) = S3(1) − Q(1) − q, (7b)
S2(i) = S3(i) − Q(i) − S3(i − 1). (7c)

10 M. A. Fetteha et al.

Step 7: U2 is used to cyclic shift S2, which is done by checking the result of
mod(U2, 4) to choose how many times the data is shifted.
Step 8: U1 is used to select the DNA decoding rule for S1 to restore the original
image.

4 Performance Evaluation

The proposed system is tested using the gray-scale ‘Lena’ (256 × 256), ‘Baboon’
(512 × 512), and ‘Pepper’ (512 × 512) images.

4.1 Encryption Quality Metrics

Figure 3 shows the histogram of the original and encrypted images, which indi-
cate flat and uniform distribution. Mean Square Error (MSE) [13] and Peak
Signal-to-Noise Ratio (PSNR) [14] are used to test encryption quality and are
given by:

MSE =
1

M2

M∑
i=1

M∑
j=1

[Oi,j − Ei,j]
2
, (8a)

PSNR = 10 log10
(2n − 1)2

MSE
, (8b)

where Oi,j and Ei,j are the original and encrypted image at position (i, j) respec-
tively and n is the number of bits per pixel. MSE and PSNR ∈ [0,∞], where
high MSE and low PSNR values indicate huge difference between the original
and encrypted images. Table 6 shows that the proposed system gives similar
MSE and PSNR values compared to other researches.

4.2 Correlation Analysis

The correlation coefficient is given by:

ρ =
Cov(x, y)√
D(x)

√
D(y)

, (9a)

Cov(x, y) =
1

M2

M2∑
i=1

(xi − 1
M2

M2∑
i=j

xj)(yi − 1
M2

M2∑
i=j

yj), (9b)

D(x) =
1

M2

M2∑
i=1

(xi − 1
M2

M2∑
i=j

xj)2, (9c)

D(y) =
1

M2

M2∑
i=1

(yi − 1
M2

M2∑
i=j

yj)2, (9d)

Image Encryption Using Chaos, DNA and Modified Arnold Transform 11

Fig. 3. Histogram of the original image (left), and encrypted image (right) for Lena,
Baboon, and Pepper in (a), (b), and (c), respectively.

where Cov(x, y) is the covariance between pixels x and y, and D is the standard
deviation. The values of the correlation coefficients for the encrypted images must
be close to 0, which means that even the neighbouring pixels are uncorrelated.
The results in Table 6 show that the correlation coefficients are close to 0 and

12 M. A. Fetteha et al.

Fig. 4. (a) Horizontal, (b) vertical, and (c) diagonal correlation of Baboon image (left)
and encrypted Baboon image (right).

comparable to other works. Figure 4 further indicates that the original image
pixel values are grouped in a region, which shows that they are correlated. On
the contrary, the encrypted image pixel values are spread all over.

Image Encryption Using Chaos, DNA and Modified Arnold Transform 13

4.3 Information Entropy

Information entropy is the average amount of information conveyed by each
pixel [14] and is given by:

Entropy = −
255∑
i=0

P (i)log2P (i), (10)

where P (i) is the probability of occurrence of i. For an 8 bit image, the ideal
value is 8, which means that the information is distributed uniformly over all
pixel values. The results in Table 6 shows that the entropy of the encrypted
images successfully approach 8.

4.4 Key Space and Sensitivity Analysis

The proposed system has a total number of 4 sub keys, each represented by
52 bits, where K1 = (FF123FF0567EF)16, K2 = (F655FF000FFFF)16, K3 =
(FFAB0957FFFFF)16 and K4 = (46FF0108F214F)16 are the values for the sub
keys used. This results in a key space equals 2208 ≈ 1063, which is large enough to
resist brute force attacks [1,15]. In addition, the key must have high sensitivity
such that any slight change in the decryption key (single bit) prevents recovering
the original image. Figure 5 shows the original image of ‘Baboon’ and the wrong
decrypted image when changing the least significant bit of the first sub key.

Fig. 5. Original Baboon image (left) and wrong decrypted image (right).

4.5 Robustness Against Differential Attacks

This test is done by changing the least significant bit of a random pixel in
the original image and comparing the newly encrypted image to the original
encrypted image using Number of Pixels Change Rate (NPCR) and Unified
Average Changing Intensity (UACI) [16], which are given by:

14 M. A. Fetteha et al.

NPCR =
1

M2

M∑
i=1

M∑
j=1

DE(i, j) × 100%, (11a)

UACI =
1

M2

M∑
i=1

M∑
j=1

| E1(i, j) − E2(i, j) |
255

× 100%, (11b)

DE(i, j) =

{
0, if E1(i, j) = E2(i, j),
1, if E1(i, j) �= E2(i, j),

(11c)

where the difference between corresponding pixels in the encrypted versions of
the original image E1(i, j) and the modified image E2(i, j) is DE(i, j). The
NPCR and UACI values are calculated as the average values of 50 iterations
and given in Table 6. They are close to the ideal values 99.61% and 33.46%,
respectively, [17] and comparable to recent works,

Table 6. Performance analysis

Ref. Encrypted image Encryption

quality metrics

Correlation (×102) Entropy Robustness against

differential attacks

MSE PSNR H V D NPCR (%) UACI (%)

This paper Lena 7828 9.1943 0.42 0.12 0.01 7.9973 99.6042 33.4204

Baboon 7289 9.5041 −0.18 −0.07 −0.01 7.9993 99.6091 33.4791

Pepper 8390 8.8931 0.17 −0.08 0.39 7.9991 99.6086 33.4612

[1] Lena 7793 9.21 −0.18 0.11 −0.09 7.9975 99.6147 33.4723

Baboon 7285 9.52 0.19 −0.41 −0.99 7.9992 99.6063 33.4565

Pepper 8436 8.86 −0.63 −0.06 −0.46 7.9993 99.6112 33.4776

[9] Lena – 9.2645 −0.03 −0.07 −0.01 7.9977 99.60 33.45

[7] Lena – – −0.06 −0.39 0.16 7.9978 – –

Baboon – – −0.23 −0.00 −0.15 7.9982 99.6056 33.4282

5 Conclusion

This paper presented an encryption algorithm, utilizes hyperchaotic system,
DNA manipulation, and a modified Arnold transform. The modified Arnold
transform enhances the encryption process by eliminating the cases at which
pixel permutation is cancelled. The performance evaluation for the proposed
system shows that it is reliable for image encryption compared to recent similar
schemes. The design is simple and amenable for real life application hardware
realization. For future work, it can be applied on colored images for each channel
separately rather than grayscale images only.

Acknowledgment. This paper is based upon work supported by Science, Technology,
and Innovation Funding Authority (STIFA) under grant number (#38161).

Image Encryption Using Chaos, DNA and Modified Arnold Transform 15

References

1. Li, M., Wang, M., Fan, H., An, K., Liu, G.: A novel plaintext-related chaotic
image encryption scheme with no additional plaintext information. Chaos, Solitons
Fractals 158, 111989 (2022)

2. Xian, Y., Wang, X.: Fractal sorting matrix and its application on chaotic image
encryption. Inf. Sci. 547, 1154–1169 (2021)

3. Li, T., Shi, J., Li, X., Wu, J., Pan, F.: Image encryption based on pixel-level
diffusion with dynamic filtering and DNA-level permutation with 3D Latin cubes.
Entropy 21(3), 319 (2019)

4. Alawida, M., Samsudin, A., Teh, J.S., Alkhawaldeh, R.S.: A new hybrid digital
chaotic system with applications in image encryption. Sig. Process. 160, 45–58
(2019)

5. Belazi, A., Abd El-Latif, A.A., Belghith, S.: A novel image encryption scheme
based on substitution-permutation network and chaos. Sig. Process. 128, 155–170
(2016)

6. Luo, Y., Yu, J., Lai, W., Liu, L.: A novel chaotic image encryption algorithm
based on improved baker map and logistic map. Multimed. Tools Appl. 78(15),
22023–22043 (2019). https://doi.org/10.1007/s11042-019-7453-3

7. Ni, Z., Kang, X., Wang, L.: A novel image encryption algorithm based on bit-level
improved Arnold transform and hyper chaotic map. In: 2016 IEEE International
Conference on Signal and Image Processing (ICSIP), pp. 156–160. IEEE (2016)

8. Ismail, S.M., Said, L.A., Radwan, A.G., Madian, A.H., Abu-Elyazeed, M.F.: Gen-
eralized double-humped logistic map-based medical image encryption. J. Adv. Res.
10, 85–98 (2018)

9. Zhou, S., Wang, X., Zhang, Y., Ge, B., Wang, M., Gao, S.: A novel image encryp-
tion cryptosystem based on true random numbers and chaotic systems. Multimed.
Syst. 28(1), 95–112 (2022). https://doi.org/10.1007/s00530-021-00803-8

10. Wang, X., Wang, M.: A hyperchaos generated from Lorenz system. Phys. A
387(14), 3751–3758 (2008)

11. Wu, J., Liao, X., Yang, B.: Image encryption using 2D Hénon-Sine map and DNA
approach. Sig. Process. 153, 11–23 (2018)

12. Wu, L., Zhang, J., Deng, W., He, D.: Arnold transformation algorithm and anti-
Arnold transformation algorithm. In: 2009 First International Conference on Infor-
mation Science and Engineering, pp. 1164–1167. IEEE (2009)

13. Mehra, I., Nishchal, N.K.: Optical asymmetric image encryption using gyrator
wavelet transform. Opt. Commun. 354, 344–352 (2015)

14. Kaur, M., Kumar, V.: A comprehensive review on image encryption techniques.
Arch. Comput. Methods Eng. 27(1), 15–43 (2020). https://doi.org/10.1007/
s11831-018-9298-8

15. Ghebleh, M., Kanso, A., Noura, H.: An image encryption scheme based on irregu-
larly decimated chaotic maps. Sig. Process. Image Commun. 29(5), 618–627 (2014)

16. Wu, Y., Noonan, J.P., Agaian, S., et al.: NPCR and UACI randomness tests for
image encryption. Cyber J. Multidisc. J. Sci. Technol. J. Sel. Areas Telecommuni.
(JSAT) 1(2), 31–38 (2011)

17. Alghafis, A., Munir, N., Khan, M., Hussain, I.: An encryption scheme based on
discrete quantum map and continuous chaotic system. Int. J. Theor. Phys. 59(4),
1227–1240 (2020). https://doi.org/10.1007/s10773-020-04402-7

https://doi.org/10.1007/s11042-019-7453-3
https://doi.org/10.1007/s00530-021-00803-8
https://doi.org/10.1007/s11831-018-9298-8
https://doi.org/10.1007/s11831-018-9298-8
https://doi.org/10.1007/s10773-020-04402-7

Rice Plant Disease Detection
and Diagnosis Using Deep Convolutional

Neural Networks and Multispectral
Imaging

Yara Ali Alnaggar1, Ahmad Sebaq1, Karim Amer1(B), ElSayed Naeem2,
and Mohamed Elhelw1

1 Center for Informatics Science, Nile University, Giza, Egypt
{y.ali,a.sebaq,k.amer,melhelw}@nu.edu.eg

2 Rice Research Institute, Kafr ElSheikh, Egypt

Abstract. Rice is considered a strategic crop in Egypt as it is regu-
larly consumed in the Egyptian people’s diet. Even though Egypt is the
highest rice producer in Africa with a share of 6 million tons per year
[5], it still imports rice to satisfy its local needs due to production loss,
especially due to rice disease. Rice blast disease is responsible for 30%
loss in rice production worldwide [9]. Therefore, it is crucial to target
limiting yield damage by detecting rice crops diseases in its early stages.
This paper introduces a public multispectral and RGB images dataset
and a deep learning pipeline for rice plant disease detection using multi-
modal data. The collected multispectral images consist of Red, Green
and Near-Infrared channels and we show that using multispectral along
with RGB channels as input archives a higher F1 accuracy compared to
using RGB input only.

Keywords: Deep learning · Computer vision · Multispectral imagery

1 Introduction

In Egypt, rice is important in Egyptian agriculture sector, as Egypt is the largest
rice producer in Africa. The total area used for rice cultivation in Egypt is about
600 thousand ha or approximately 22% of all cultivated area in Egypt during
the summer. As a result, it is critical to address the causes of rice production
loss to minimize the gap between supply and consumption. Rice plant diseases
contribute mostly to this loss, especially rice blast disease. According to [9], rice
blast disease causes 30% worldwide of the total loss of rice production. Thus,
rice crops diseases detection, mainly rice blast disease, in the early stages can
play a great role in restraining rice production loss.

Early detection of rice crops diseases is a challenging task. One of the main
challenges of early detection of such disease is that it can be misclassified as the

Supported by Data Science Africa.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 16–25, 2023.
https://doi.org/10.1007/978-3-031-21595-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_2&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_2

Rice Plant Disease Detection and Diagnosis 17

brown spot disease by less experienced agriculture extension officers (as both are
fungal diseases and have similar appearances in their early stage) which can lead
to wrong treatment. Given the current scarcity of experienced extension officers
in the country, there is a pressing need and opportunity for utilising recent tech-
nological advances in imaging modalities and computer vision/artificial intelli-
gence to help in early diagnosis of the rice blast disease. Recently, multispectral
photography has been deployed in agricultural tasks such as precision agricul-
ture [3], food safety evaluation [11]. Multispectral cameras could capture images
in Red, Red-Edge, Green and Near-Infrared bands wavebands, which captures
what the naked eye can’t see. Integrating the multispectral technology with deep
learning approaches would improve crops diseases identification capability. How-
ever, it would be required to collect multispectral images in large numbers.

In this paper, we propose a public multispectral and RGB images dataset
and a deep learning pipeline for rice plant disease detection. First, the dataset we
present contains 3815 pairs of multispectral and RGB images for rice crop blast,
brown spot and healthy leaves. Second, we developed a deep learning pipeline
trained on our dataset which calculates the Normalised Difference Vegetation
Index (NDVI) channel from the multispectral image channels and concatenates
it along its RGB image channels. We show that using NDVI+RGB as input
archives a higher F1 score by 1% compared to using RGB input only.

2 Literature Review

Deep learning has emerged to tackle problems in different tasks and fields. Nowa-
days, it is being adopted to solve the challenge of crop disease identification. For
example, Mohanty et al. [8] trained a deep learning model to classify plant crop
type and its disease based on images. Furthermore, [1] proposed a deep learning-
based approach for banana leaf diseases classification.

Furthermore, multispectral sensors have proven its capability as a new modal-
ity to detect crop fields issues and diseases. Some approaches use multispectral
images for disease detection and quantification. Cui et al. [4] developed an image
processing-based method for quantitatively detecting soybean rust severity using
multi-spectral images. Also, [12] utilize digital and multispectral images captured
using quadrotor unmanned aerial vehicles (UAV) to collect high-spatial resolu-
tion imagery data to detect the ShB disease in rice.

After the reliable and outstanding results deep learning models could achieve
on rgb images, some approaches were developed to use deep learning on multi-
spectral images, especially of crops and plants. [10] proposed a deep learning-
based approach for weed detection in lettuce crops trained on multispectral
images. In addition, Ampatzidis et al. [2] collects multispectral images of citrus
fields using UVA for crop phenotyping and deploys a deep learning detection
model to identify trees.

18 Y. A. Alnaggar et al.

3 Methodology

3.1 Hardware Components

We used a MAPIR Survey3N camera, shown in Fig. 1 to collect our dataset.
This camera model captures ground-level multispectral images of red, green and
NIR channels. It was chosen in favour of its convenient cost and easy integration
with smartphones. In addition, we used the Samsung Galaxy M51 mobile phone
camera to capture RGB images, paired with the MAPIR camera.

Fig. 1. MAPIR Survey3N camera.

We Designed a holder gadget to combine the mobile phone, MAPIR camera
and a power bank in a single tool, as seen in Fig. 2, to facilitate the data acqui-
sition operation for the officers. It was designed using SolidWorks software and
manufactured by a 3D printer.

3.2 Data Collection Mobile Application

An android frontend application was also developed to enable the officers who
collect the dataset to control the multispectral and the smartphone cameras
for capturing dual RGNIR/RGB images simultaneously while providing fea-
tures such as image labelling, imaging session management, and Geo-tagging.
The mobile application is developed with Flutter and uses Firebase real-time
database to store and synchronise the captured data including photos and meta-
data. Furthermore, Hive local storage database is used within the application to
maintain a local backup of the data.

Rice Plant Disease Detection and Diagnosis 19

Fig. 2. Holder gadget.

3.3 Analytics Engine Module

Our engine is based on ResNet18 [6] architecture which consists of 18 layers and
it utilize the power of residual network, see Fig. 3, residual network help us avoid
the vanishing gradient problem.

We can see how layers are configured in the ResNet-18 architecture. The
architecture starts with a convolution layer with 7 × 7 kernel size and stride
of 2. Next we begin with the skip connection. The input from here is added to
the output that is achieved by 3 × 3 max pool layer and two convolution layers
with kernel size 3 × 3, 64 kernels each. This is the first residual block.

The output of this residual block is added to the output of two convolution
layers with kernel size 3 × 3 and 128 such filters. This constituted the second
residual block. Then the third residual block involves the output of the second
block through skip connection and the output of two convolution layers with
filter size 3 × 3 and 256 such filters. The fourth and final residual block involves
output of third block through skip connections and output of two convolution
layers with same filter size of 3 × 3 and 512 such filters.

Finally, average pooling is applied on the output of the final residual block
and received feature map is given to the fully connected layers followed by soft-
max function to receive the final output.

The vanishing gradient is a problem which happens when training artificial
neural networks that involved gradient based learning and backpropagation. We
use gradients to update the weights in a network. But sometimes what happens
is that the gradient becomes very small, effectively preventing the weights to be
updated. This leads to network to stop training. To solve such problem, residual
neural networks are used.

20 Y. A. Alnaggar et al.

Fig. 3. ResNet18 original architecture

Residual neural networks are the type of neural network that applies identity
mapping. What this means is that the input to some layer is passed directly or
as a shortcut to some other layer. If x is the input, in our case its an image or
a feature map, and F (x) is the output from the layer, then the output of the
residual block can be given as F (x) + x as shown in Fig. 4.

We changed the input shape to be 256 × 256 instead of 224 × 244, also we
replaced the last layer in the original architecture with a fully connected layer
where the output size was modified to three to accommodate our task labels.

Fig. 4. Residual block

Rice Plant Disease Detection and Diagnosis 21

4 Experimental Evaluation

4.1 Dataset

We have collected 3815 samples of rice crops of three labels: blast disease, brown
spot disease and healthy leaves distributed, shown in Fig. 5, as the following:
2135, 1095 and 585, respectively. Each sample is composed of a pair of (RGB)
and (R-G-NIR) images as seen in Fig. 6, which were captured simultaneously.
Figure 7 shows samples of the three classes in our dataset.

Fig. 5. Collected dataset distribution.

Fig. 6. On the left is the RGB image and on the right is its R-G-NIR pair.

22 Y. A. Alnaggar et al.

Fig. 7. (a) Blast class sample. (b) Brown spot class sample. (c) Healthy class sample.

4.2 Training Configuration

In this section, we explain our pipeline for training data preparation and pre-
processing. Also, we mention our deep learning models training configuration for
loss functions and hyperparameters.

Rice Plant Disease Detection and Diagnosis 23

Data Preparation

RGB Images Registration. Since the image sample of our collected dataset con-
sists of a pair of RGB and R-G-NIR images, the two images are expected to
have a similar field of view. However, the phone and MAPIR camera have dif-
ferent field of view parameters that the mapir camera has a 41◦ FOV compared
to the phone camera with 123◦ FOV. As a result, we register the rgb image
to the r-g-nir image using the OpenCV library. The registration task starts by
applying an ORB detector over the two images to extract 10K features. Next,
we use a brute force with Hamming distance matcher between the two images
extracted features. Based on the calculated distances for the matches, we sort
them descendingly and drop the last 10%. Finally, the homography matrix is
calculated using the matched points in the two images to be applied over the
RGB images. Figure 8 shows an RGB image before and after registration.

Fig. 8. On the left is an RGB image before calibration and on the right is after regis-
tration.

MAPIR Camera Calibration. The MAPIR camera sensor captures the reflected
light which lies in the Wavelengths in the Visible and Near Infrared spectrum
from about 400–1100 n and saves the percentage of reflectance. After this step,
calibration of each pixel is applied to ensure that it is correct. This calibration
is performed before every round of images captured using the MAPIR Camera
Reflectance Calibration Ground Target board, which consists of 4 targets with
known reflectance values, as shown in Fig. 9.

Models Training Configuration. We trained our models for 50 epochs with a
batch size of 16 using Adam optimizer and Cosine Annealing with restart sched-
uler [7] with cycle length 10 epochs and learning rate of 0.05. For the loss func-
tion, we used a weighted cross entropy to mitigate the imbalance of the training
dataset. Images were resized to dimension 256 × 256.

24 Y. A. Alnaggar et al.

Fig. 9. MAPIR camera reflectance calibration ground target board.

Results. For training the deep learning model using RGB and R-G-NIR pairs,
we generate a NDVI channel, using Eq. 1, and concatenate it to the RGB image.
Our study shows that incorporating the NDVI channel improves the model capa-
bility to classify the rice crops diseases. Our model could achieve a F1 score with
5-kFold of 84.9% when using RGB+NDVI as input compared to using only RGB
image which could obtain a F1 score of 83.9%. Detailed results are presented in
Table 1.

NDV I =
NIR−Red

NIR + Red
(1)

Table 1. F1 score over our collected dataset achieved by using RGB as input versus
RGB+NDVI.

Class RGB RGB+NDVI

Blast 89.64% 90.02%

Spot 82.64% 83.26%

Healthy 79.08% 81.54%

5 Conclusion

We presented our public dataset and deep learning pipeline for rice plant disease
detection. We showed that employing multispectral imagery with RGB improves
the model capability of disease identification by 1% compared to using solely
RGB imagery. We believe using a larger number of images for training would
enhance current results also considering a larger number of images when using
a deeper model this will result in better results. In addition, more investigation

Rice Plant Disease Detection and Diagnosis 25

on how to fuse multispectral imagery with RGB for training could be applied,
for example we can calculate NDVI from the blue channel instead of the red this
may also boost the model performance.

Acknowledgements. This work has been done with the Data Science Africa support.

References

1. Amara, J., Bouaziz, B., Algergawy, A.: A deep learning-based approach for banana
leaf diseases classification. Datenbanksysteme für Business, Technologie und Web
(BTW 2017)-Workshopband (2017)

2. Ampatzidis, Y., Partel, V.: UAV-based high throughput phenotyping in citrus
utilizing multispectral imaging and artificial intelligence. Remote Sens. 11(4), 410
(2019)

3. Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., Gattelli, M.: Evaluating
multispectral images and vegetation indices for precision farming applications from
UAV images. Remote Sens. 7(4), 4026–4047 (2015)

4. Cui, D., Zhang, Q., Li, M., Hartman, G.L., Zhao, Y.: Image processing methods
for quantitatively detecting soybean rust from multispectral images. Biosys. Eng.
107(3), 186–193 (2010)

5. Elbasiouny, H., Elbehiry, F.: Rice production in Egypt: the challenges of climate
change and water deficiency. In: Ewis Omran, E.-S., Negm, A.M. (eds.) Climate
Change Impacts on Agriculture and Food Security in Egypt. SW, pp. 295–319.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41629-4 14

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

7. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

8. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based
plant disease detection. Front. Plant Sci. 7, 1419 (2016)

9. Nalley, L., Tsiboe, F., Durand-Morat, A., Shew, A., Thoma, G.: Economic and
environmental impact of rice blast pathogen (magnaporthe oryzae) alleviation in
the united states. PLoS ONE 11(12), e0167295 (2016)

10. Osorio, K., Puerto, A., Pedraza, C., Jamaica, D., Rodŕıguez, L.: A deep learning
approach for weed detection in lettuce crops using multispectral images. AgriEngi-
neering 2(3), 471–488 (2020)

11. Qin, J., Chao, K., Kim, M.S., Lu, R., Burks, T.F.: Hyperspectral and
multispectral imaging for evaluating food safety and quality. J. Food Eng.
118(2), 157–171 (2013). https://doi.org/10.1016/j.jfoodeng.2013.04.001, https://
www.sciencedirect.com/science/article/pii/S0260877413001659

12. Zhang, D., Zhou, X., Zhang, J., Lan, Y., Xu, C., Liang, D.: Detection of rice
sheath blight using an unmanned aerial system with high-resolution color and
multispectral imaging. PLoS ONE 13(5), e0187470 (2018)

https://doi.org/10.1007/978-3-030-41629-4_14
http://arxiv.org/abs/1608.03983
https://doi.org/10.1016/j.jfoodeng.2013.04.001
https://www.sciencedirect.com/science/article/pii/S0260877413001659
https://www.sciencedirect.com/science/article/pii/S0260877413001659

A Novel Diagnostic Model for Early Detection
of Alzheimer’s Disease Based on Clinical

and Neuroimaging Features

Eyad Gad1(B) , Aya Gamal2 , Mustafa Elattar2,3 , and Sahar Selim2,3(B)

1 School of Engineering and Applied Sciences, Nile University, Giza, Egypt
e.gad@nu.edu.eg

2 Medical Imaging and Image Processing Research Group, Center for Informatics Science, Nile
University, Giza, Egypt
sselim@nu.edu.eg

3 School of Information Technology and Computer Science, Nile University, Giza, Egypt

Abstract. Alzheimer’s Disease (AD) is a dangerous disease that is known for
its characteristics of eroding memory and destroying the brain. The classification
of Alzheimer’s disease is an important topic that has recently been addressed by
many studies using Machine Learning (ML) and Deep Learning (DL) methods.
Most research papers tackling early diagnosis ofADuse thesemethods as a feature
extractor for neuroimaging data. In our research paper, the proposed algorithm is to
optimize the performance of the prediction of early diagnosis from themultimodal
dataset by a multi-step framework that uses a Deep Neural Network (DNN) as
an optimization technique to extract features and train these features by Random
Forest (RF) classifier. The results of the proposed algorithm showed that using only
demographic and clinical data results in a balanced accuracy of 88% and an area
under the curve (AUC) of 94.6. Ultimately, combining clinical and neuroimaging
features, prediction results improved further to a balanced accuracy of 92% and an
AUC of 97%. This study successfully outperformed other studies for both clinical
and the combination of clinical and neuroimaging data, proving that multimodal
data is efficient in the early diagnosis of AD.

Keywords: Alzheimer’s disease (AD) ·Machine learning (ML) · Deep learning
(DL) · Random Forest (RF) ·Mild cognitive impairment (MCI)

1 Introduction

Alzheimer’s Disease is an extremely dangerous disease that is known for its properties
of memory erosion and brain destruction [1]. The disease itself is the degradation of grey
matter and memory function in the brain causing a person with Alzheimer’s disease to
exhibit “abnormal behavior” compared to their normal self. Greymatter degradation will
lead to mild cognitive impairment (MCI) on several levels, most notably the inability to
concentrate and short-term memory loss if the disease is in its early stages to complete
personality distortion and halting of response to external stimuli. Alzheimer’s disease

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 26–39, 2023.
https://doi.org/10.1007/978-3-031-21595-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_3&domain=pdf
http://orcid.org/0000-0003-0982-3065
http://orcid.org/0000-0002-8175-4554
http://orcid.org/0000-0001-7936-3522
http://orcid.org/0000-0002-9886-1364
https://doi.org/10.1007/978-3-031-21595-7_3

A Novel Diagnostic Model for Early Detection of Alzheimer’s Disease 27

is existed throughout human history, mainly known for its effect on the elderly in terms
of cognitive impairment, dementia, and other symptoms such as violent outbreaks and
severe short- and long-term memory loss [2]. Many of the disease’s causes, such as
contact sports head injuries, and ageing, lead to the deterioration of gray matter in the
brain. AD occurs in old age due to a lack of neurogenesis or an increase in brain cells.
After a certain age, the brain stops producing new cells, as a result of which all brain
cells remain active for most of their lives, which can lead to deterioration due to the
virtue of time. As the disease normally manifests in 20 million people per year making
it dangerous as it cannot be contracted nor easily predicted at an early age [2].

Anticipating this disease before it causes any harm is a necessity in daily life, as
without predicting the possibility of developing the disease, countermeasures to reduce
symptoms will be greatly delayed. The classification of AD has been a very active topic
in the past decade, based on variousmethodologies mainly usingML andDL approaches
[3]. This is due to the importance of the research as with newer experiments and research
results the possibility of understanding the disease increases, decreasing the harm to
mankind. These studies are based on data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), which provides data frommultiple modalities. Intuitively, models that
integrate data from different modalities outperform their monomodal counterparts.

Gonzalez et al. [1] presented a multimodal ML approach for early diagnosis of AD,
which allows an objective comparison of the models used since the dataset and pipeline
are the same for all models. Their proposed approach is to use a support vector machine
(SVM) and RF on a combination of clinical and neuroimaging data, which would allow a
high degree of data diversitywhilemaintaining a suitable degree of bias and variance. For
accurate measurements of the performance of the models, the researchers constructed
two SVM rating scores for each subject. These scores are added along with the clinical
data features into the RF classifier and evaluated using 10k fold cross-validation. The
results of the paper showed that using only demographic and clinical data results in a
balanced accuracy of 76% with AUC reaching 85%. Ultimately, by combining clinical
and neuroimaging features, prediction results improved to a balanced accuracy of 79%,
and an AUC of 89%.

Venugopalan et al., presented a research paper [4], which presented a DL approach
to predict AD by using integrated multimodal systems relying on data from Magnetic
Resonance Imaging (MRI), genetics focusing on single nucleotide polymorphisms and
electronic health records, to classify patients into suffering from AD, MCI or Cognitive
Normal (CN) where the average healthy individual is CN. The researchers proposed
an algorithm where stacked denoising auto-encoders are used to extract features from
clinical and genetic data and 3D CNN with MRI data to aid the prediction. Then the
extracted features are concatenated into a fully connected layer followed by RF for
classification. The results of the internal 10-fold cross-validation showed an accuracy of
88% and a recall of 85%.

El-Sappagh et al. presented an interesting new concept for the implantation in the
research paper [5], where amultilayeredmultimodal system for the detection and predic-
tion of AD was used. The model integrates 11 modalities of the ADNI dataset, making
precise decisions along with a set of interpretations for each decision to make the model
more robust and accurate. The model has two layers to classify and predicts the target

28 E. Gad et al.

class with minimal errors, the first layer performs multi-class classification for early
diagnosis of AD, while the second layer performs binary classification to detect poten-
tial progression fromMCI to AD within three years of baseline diagnosis. The designed
model achieves a cross-validation accuracy of 93.95% in the first layer, while it achieves
a cross-validation accuracy of 87.08% in the second layer.

The prediction and progression of AD have been extensively studied, however,
research studies on early diagnosis using DL as feature extractors for single modal-
ity systems, especially neuroimaging, are less efficient for predicting the progression
of AD [6]. Based on the paper [1], We address the challenges of the dataset as it has
an unequal distribution of classes in the training dataset and outliers, which affects the
accuracy of the classifier. Therefore, in our research paper, we optimize the performance
of the prediction of early diagnosis from the multimodal dataset of clinical data and
neuroimaging scores that were used in the paper [1] by:

1. Using the Synthetic Minority Oversampling Technique (SMOTE) in the dataset to
build larger decision areas containing the points of nearby minority groups.

2. Amulti-step framework that uses DL as an optimization technique to extract features
of the multimodal dataset and train these features by RF model.

The goal of this paper is to predict the possibility of developing AD given the person
is classified as MCI as opposed to CN as people who are in the CN state are hard to
predict unless a family history is available. The model will be used to rationalize the
state of those suffering from MCI to distinguish the person’s nature, and are the closest
to CN or AD. If the patient is closer to CN, then the patient is stable (sMCI) however if
the patient is closer to AD, then the patient is progressive (pMCI).

2 Materials and Methods

In this section, we first explain the proposed approach as a model, followed by defining
the materials to be used, and finally explain our work in steps.

2.1 Proposed Model

The experimental analysis in this work contains four steps (see Fig. 1). The first is to split
the data set into test and training data, then balance the training data with SMOTE and
create different feature sets. The second step is to extractmost of themain features of each
feature set using the DNN and experiment with the extracted features using different ML
classifiers. The third step is to calculate the different performance metrics for the feature
sets and compare each set with these metrics to choose the most appropriate model.
Finally, Cross-Validation is applied to estimate the performance of the ML classifiers
and to optimize the hyperparameters of each, thus, obtaining the best model which
achieves the best accuracy of prediction.

A Novel Diagnostic Model for Early Detection of Alzheimer’s Disease 29

Fig. 1. Overview of the proposed approach.

2.2 Dataset

In previous studies, the data were obtained from ADNI, which is a public dataset. This
dataset was released in 2003, with the main goal of measuring the progression of MCI
and early AD using a combination of imaging, biological markers, clinical, and neu-
ropsychological assessments. The three main subject classes which are CN (normal),
AD and MCI had to have two fundamental tests composed of a mini-mental state exam-
ination (MMSE) and clinical dementia rating (CDR) with a range of values that define
each class or else they would be ruled out of the data [3, 7]. In this study, we study the
performance of the prediction of progression to AD at 36 months, All the data used in
the preparation are obtained from ADNI, and the same group of features as in this study
[1] was used.

We include 15 different models of the dataset (see Table 1), each of which con-
sists of a base level model which holds demographic details (sex, education_level) plus
the MMSE which is a questionnaire that is used to measure cognitive impairment and
CDR sum of boxes used to accurately stage the severity of Alzheimer’s dementia and
MCI. This data is used as the baseline for our model, to classify those who are MCI
as either progressive or stable, where pMCI will progress to AD while those who are
sMCI will not. In each of the upcoming feature sets, we add a different mix of features
with the defined base model. The log memory test which is a standardized assessment of
narrative episodic memory is used in the next model. Rey auditory verbal learning test
(RAVLT) neuropsychological tool used to assess functions like attention and memory
[1]. We also have a series of AD assessment scale cognitive (ADAS) breakdown features
that help in the assessment of memory, language, concentration, and praxis at its core
(adas_memory, adas_language, adas_concentration, adas_praxis), providing thorough
information regarding patient condition. Another critical feature that is taken into con-
sideration is the Apolipoprotein ε4 (APOE4) which increases the risk for AD and is

30 E. Gad et al.

also associated with an earlier age of disease onset. Having one or two APOE ε4 alle-
les increases the risk of developing AD. The final sets include imaging feature scores,
MRI-T1 and Fluorodeoxyglucose scores (T1_scores, fdg_score), convoluted with the
previously mentioned features to obtain different perspectives that would help in gain-
ing an increased accuracy. These scores were extracted from the imaging data using
SVM in the study [1], and we used them back in this study.

Table 1. Description of each feature set

Modality Feature set name Selected features

Demographic & Clinical base sex, education_level, MMSE,
cdr_sb

base_logmem sex, education_level, MMSE,
cdr_sb, logmem_delay,
logmem_imm

base_ravlt sex, education_level, MMSE,
cdr_sb, ravlt_immediate

base_logmem_ravlt sex, education_level, MMSE,
cdr_sb, ravlt_immediate,
logmem_delay, logmem_imm

base_adas sex, education_level, MMSE,
cdr_sb, adas_memory,
adas_language,
adas_concentration, adas_praxis

base_ravlt_adas sex, education_level, MMSE,
cdr_sb, adas_memory,
adas_language,
adas_concentration, adas_praxis,
ravlt_immediate

base_ravlt_apoe sex, education_level, MMSE,
cdr_sb, apoe4, ravlt_immediate

base_adas_apoe sex, education_level, MMSE,
cdr_sb, apoe4, adas_memory,
adas_language,
adas_concentration, adas_praxis

base_ravlt_adas_apoe sex, education_level, MMSE,
cdr_sb, apoe4, adas_memory,
adas_language,
adas_concentration, adas_praxis,
ravlt_immediate

(continued)

A Novel Diagnostic Model for Early Detection of Alzheimer’s Disease 31

Table 1. (continued)

Modality Feature set name Selected features

Demographic, Clinical &
imaging

base_t1score sex, education_level, MMSE,
cdr_sb, T1_score

base_fdgscore sex, education_level, MMSE,
cdr_sb, fdg_score

base_scores sex, education_level, MMSE,
cdr_sb, T1_score, fdg_score

base_ravlt_scores sex, education_level, MMSE,
cdr_sb, ravlt_immediate,
T1_score, fdg_score

base_adas_scores sex, education_level, MMSE,
cdr_sb, adas_memory,
adas_language,
adas_concentration, adas_praxis,
T1_score

base_adas_memtest_scores sex, education_level, MMSE,
cdr_sb, adas_memory,
adas_language,
adas_concentration, adas_prxis,
ravlt_immediate, T1_score,
fdg_score

2.3 Data Preprocessing

SMOTE is a method used when the dataset used is imbalanced. SMOTE is most used
when the class or target is imbalanced with a severely underrepresented class of data [8].
The algorithm could be separated into multiple steps which can be defined separately to
produce the effect of data multiplication. The first step undergone is the under-sampling
of the data to trim all the outliers and any possible noise in the minority due to the nature
of the algorithm being more complex than merely reiterating or copying and pasting
the data back into the data set, for the SMOTE algorithm uses the feature space, or the
local area of the minority if graphed. Meaning the feature space will be constructed
for the target class in the minority. After the feature space is constructed, the SMOTE
algorithm adds new points within the area, mainly near other points in the area using the
same protocol as K-nearest neighbors (KNN) [9]. The algorithm can use the Euclidean
or the Manhattan distance in constructing the feature space. In our study, we used the
Euclidean distance, as it can be used in any space to calculate distance. Since the data
points can be represented in any dimension, it is the more viable option. The Euclidean
distance is depicted in (1) by taking two or more points to find the squared difference

32 E. Gad et al.

and then calculating the square root of the result.
√
√
√
√

k
∑

i=1

(

xi − yi
)2 (1)

Although creating virtual data points may seem a source of severe errors, the samples
become more general with the increase in data points, preventing bias and variance
from occurring. The most crucial step is the increase of data, where the amount of data
increase required is determined through the parameters of the SMOTE algorithm. The
first parameter is the sampling strategy (ss) where the parameter identifies which class
is iterated, whether it is the minority or otherwise. The parameter k is the number of
nearest neighbors used to synthesize new data. Furthermore, The out_step parameter
determines the step size during calculations in the designated SMOTE algorithm. After
setting the parameters (ss = minority, k = 5, out_step = 0.6), the data is inputted into
the SMOTE algorithm for synthesizing the new data points.

Fig. 2. Scatter plots of two random features of the dataset. (a) and (b) plots illustrate the data
points before and after SMOTE is applied respectively.

After splitting the data set, the training data has 310 pMCI and 107 sMCI representing
purple and yellow respectively (see Fig. 2), the minority class in the data set is sMCI.
As a result of SMOTE, the training data set is balanced to have 310 data points of sMCI.

2.4 Feature Extraction

The process of translating raw data into numerical features that may be processed while
keeping the information from the original data set is referred to as feature extraction.
Feature extraction can be done manually or automatically through the aid of a Deep
Neural Network, which will be more effective and valuable when converting raw data
into machine learning algorithms [9].

The DNN is divided into three primary layers, each with its own set of neurons: an
input layer, an output layer, and a hidden layer. For the input layer, each node is given

A Novel Diagnostic Model for Early Detection of Alzheimer’s Disease 33

the set of characteristics we already obtained from the dataset, and random weights are
assigned to the synapses that are vital for attaining the proper outcome in the training
phase; weights with a significant positive or negative value will have a substantial influ-
ence on the output of the future neuron. These synapses are then linked to neurons in the
hidden layer. The hidden layer interprets significant elements from the input data that
are predictive of the outputs. A DNN architecture has 3 hidden layers, which have 1,000
neurons, 500 neurons, and 200 neurons respectively and a drop-out layer, however, the
output layer has half the number of input features or attributes of the model. As for
the optimization algorithm used, the Adam optimizer is used as it is a stochastic gra-
dient descent replacement optimization technique for DL model training, its technique
is based on the adaptive approximation of first- and second-order moments [9]. Adam
combines the strongest features of the Adaptive Gradient Algorithm and Root Mean
Squared Propagation to create an optimization algorithm.

2.5 Classification Approaches

This section explains the basic principle of the classification approaches used in this
study. Three different classifiers have been used; Random Forest, Extreme Gradient
Boosting, and Logistic Regression.

2.5.1 Random Forest

RF is the set that uses a combination of decision-based trees and data subsets. it is a
classification and regression tree or CART that will train on different sets of introduc-
tory datasets [10]. For group testing, out-of-bag (OOB) errors are used. The reason OOB
was used was due to the RF technique using bagging as a training method. The main
principle behind the bagging method is that combining learning models improves the
end outcome. In order to obtain a more precise and consistent forecast, RF generates
many decision trees and blends them. The main advantage of RF is that it can be applied
to both classification and regression problems, which make up the majority of contem-
porary machine learning systems. The hyperparameters of RF are quite similar to those
of a decision tree or a bagging classifier. Fortunately, using the classifier-class of RF
eliminates the requirement to combine a decision tree with a bagging classifier.

While the trees are developing, the RF adds more randomness to the model. When
dividing a node, it looks for the best feature from a random subset of features rather than
the most crucial one. A better model is often produced as a result of the great diversity
this causes. As a result, the process for splitting a node in a RF only considers a random
subset of the features. By applying random thresholds for each feature in addition to
the best available thresholds, the randomness of the trees can even be increased. The
RF also makes it very simple to gauge the relative contribution of each feature to the
prediction. For data categorization accuracy, each tree receives a vote, and the forest
selects the votes with the most classifications.

2.5.2 Extreme Gradient Boosting

ExtremeGradient Boosting orXGBoost is an ensemble learning technique, whichmeans
it uses the findings of several models, known as base learners, to create a prediction. Just

34 E. Gad et al.

like in RFs, XGBoost uses decision trees as base learners. Individual decision Trees have
high-variance, low-biasmodels. They are extremely effective at detecting associations in
any form of training data, but they struggle to extrapolate well to new data. Furthermore,
the trees employed by XGBoost are not standard decision trees [11], CARTs hold real-
value scores of whether an instance belongs to a group rather than a single judgement in
each leaf node. When the tree has reached its maximum depth, the choice may be made
by transforming the scores into categories based on a specific threshold.

2.5.3 Logistic Regression

Logistic Regression (LR) is a ML method that utilizes the sigmoid function to classify
the data given to it. LR by nature is a binary classification system where the data is either
classified as one or zero, where the two possibilities are arbitrarily assigned. There
are other forms of logistic regression, namely Nominal Logistic Regression (NLR) and
Ordinal Logistic Regression (OLR). NLR categorizes a data point into one of three
or more categories with the categories being unorganized or without a higher priority
than another category. OLR categorises the data in a priority or importance level. This
is important to note due to the nature of the method as the method can predetermine
the possibility earlier if OLR was used instead of Bayesian Linear Regression (BLR),
however since our current purposes require an accuracy of 95% or higher, we used BLR,
furthermore the processing time of BLR is shorter than the OLRmethod making it more
time efficient as OLR has more categories to fit the data point.

The probability of the outcome will be between the values of 0 and 1 but the outcome
will normally collapse either 0 or 1 due to the nature of the sigmoid function.By using this
function, we can calculate the probability of an individual developing AD as opposed to
remaining in a stable state of mind. Furthermore, themaximum likelihood of an outcome
can be calculated by estimating unknown variables and displaying it on a parabolic line.

2.6 Performance Evaluation

In machine intelligence, a viable and trustworthy method of calculating accuracy is the
confusion matrix which can produce a receiver operator characteristic (ROC) curve. In
such a case the area under the ROC curve is referred to as the AUC. AUC is the best
intuitive performance measure and is frequently used to compare different classification
algorithms by calculating the probability of ascertaining a given data point in its true
class. This is done by measuring the full 2D area under the entire ROC curve through
either discrete or continuous methods such as geometric calculations or integration.
Since a predetermined resolution threshold is required to report accuracy, the AUC can
be used to indicate a more accurate measure of accuracy, which gives an indication of
the effectiveness of the chosen model by determining the ratio presented by the ROC
graph in a simple and intuitive way which can be identified by any individual [3].

Measures of a test’s ability to determine whether a person has or does not have a
disease include specificity and sensitivity which are different measurements compared
to accuracy allowing different incite in the same information presented by a confusion
matrix. Sensitivity relates to the ability of a test to identify a positive result for a person

A Novel Diagnostic Model for Early Detection of Alzheimer’s Disease 35

with a disease, it measures the true positive rate of classification making a more inter-
esting value compared to the accuracy (2). In this case, a highly sensitive test means that
fewer cases of a disease are missed because there are fewer false negatives.

sensitivity = TruePostive

TruePostive + Falsenegative
(2)

Moreover, anothermeasurement used is the specificity confusionmatrixwhich calcu-
lates the classified individuals who do not have a disease as negative, as such it measures
the true negative rate of classification (3). The test’s high specificity means that there
are few false positives. The use of a measurement method with low screening specificity
may not be viable, since many people without this condition may test positive and may
undergo unnecessary diagnostic procedures.

specificity = Truenegative

Truenegative + FalsePostive
(3)

Lastly, Balanced accuracy is used to measure the efficiency of binary and multi-
category classification and is particularly useful when there is an imbalance between
classes, meaning that one of the classes appears more frequently than the other. This
often occurs in many places where abnormalities and diseases are detected. Balanced
accuracy is the arithmetic mean of sensitivity and specificity (4).

BalancedAccuracy = sensitivity + specificity

2
(4)

2.7 Performance Optimization

Based on the previously mentioned performance metrics, the best model is selected,
and its accuracy is further optimized through Cross-validation. In our research paper
Cross-validation is a necessity in any model where a part of the dataset is used to train
the model while the remaining is used to test the model, then the validation will use
the complementary subset of the data set and repeat the operation for proper validation.
Cross-validation was applied to all trials: results were on average 250 iterations of
stratified random splits with 80% of the samples used for training and the remaining
20% for testing. Random Forest classifier was trained with fixed hyperparameters: 100
trees, the tree depth was set at 5 levels, and only the square root of the total number of
features is considered when looking for a split [1]. As an evaluation of the classification,
we report the results of the mentioned performance metrics and the predicted class for
each subject.

3 Results

For each model of the feature set, DNN is applied to perform feature engineering to
extract the key features. The number of extracted features for each model is the same as
the number of neurons in the output layer, thus reducing the dimensionality of the input

36 E. Gad et al.

data by removing the redundant data. Taking the first model (base) as an example, its
dimensions are (620, 4) which means 620 data points of 4 features; thus, the dimensions
of the extracted model should be (620, 2). 60% of each model is set as a training set, 20%
as a validation set, and the last 20% as a test set. Table 2 shows the validation accuracy
of the best epoch of DNN.

Table 2. Validation accuracy and number of extracted features of DNN

base

base_logm
em

base_ravlt

base_logm
em

_ravlt

base_adas

base_ravlt_adas

base_ravlt_apoe

base_adas_apoe

base_ravlt_adas
_apoe

base_t1score

base_fdgscore

base_scores

base_ravlt_scores

base_adas_scores

base_adas_m
em

test
_scores

Val. Acc. 63.4 72 83.5 72.8 76.2 86.7 77.1 93.7 89.5 80.4 83.6 90.8 87.0 91.6 90.6
Ex. feat. 2 3 2 3 4 4 3 4 5 2 2 3 3 4 5

To test our approach, we investigated the performance of different three classifiers,
to obtain the best accuracy. The three classifiers are applied to the extracted features and
their hyperparameters are optimized using 10-fold cross-validation. For each classifier,
a confusion matrix is obtained, and the results are calculated using four metrics; AUC,
sensitivity, specificity, and balanced accuracy.

Logistic regression is the first experiment applied and the performance metrics are
calculated for eachmodel.As the results show,weobtained the highest balanced accuracy
of 88% and an AUC of 94.5% in model base_adas_scores that contains the clinical and
neuroimaging features (Table 3).

Table 3. Results of logistic regression

base

base_logm
em

base_ravlt

base_logm
em

_ravlt

base_adas

base_ravlt_adas

base_ravlt_apoe

base_adas_apoe

base_ravlt_adas
_apoe

base_t1score

base_fdgscore

base_scores

base_ravlt_scores

base_adas_scores

base_adas_m
em

test
_scores

Specificity 65.1 78.7 70 74 79.2 72.6 74.9 83.9 79.7 76.4 85.3 80.5 74.1 87.2 73.4
Sensitivity 69 70.2 87.5 80.7 82.6 89.3 84.4 91.6 88.3 71.1 73.8 76.6 86 89.4 93.7

Bal. Acc. 67.1 74.4 78.7 77.3 80.9 80.9 79.6 87.7 84 73.7 79.6 78.5 80 88.3 83.6
AUC 75 81.8 88.6 86.7 89.3 90.9 88.7 94.3 90.8 83.2 87.7 87.2 90.6 94.5 91.4

For the second experiment, XGBoost is used. The results looked similar to the results
of the first experiment (see Table 4). XGBoost showed a balanced accuracy of 78% and
an AUC of 95% in the same model (base_adas_scores) of the first experiment. In further
analysis, the sensitivity was observed to be higher for each model. A negative result on a
test with high sensitivity is useful for ruling out disease. A high sensitivity test is reliable
when its result is negative since it rarely misdiagnoses those who have the disease.

A Novel Diagnostic Model for Early Detection of Alzheimer’s Disease 37

Table 4. Results of XGBoost

base

base_logm
em

base_ravlt

base_logm
em

_ravlt

base_adas

base_ravlt_adas

base_ravlt_apoe

base_adas_apoe

base_ravlt_adas
_apoe

base_t1score

base_fdgscore

base_scores

base_ravlt_scores

base_adas_scores

base_adas_m
em

test
_scores

Specificity 55.5 69.1 69.7 70.7 76.8 73.3 72 79.9 73.1 67 74.3 71 72.7 81.9 79.1
Sensitivity 88 90.5 93.8 94.8 93.9 93.9 93.9 95 93 89.7 92.3 92.3 93.2 92.8 95.5
Bal. Acc. 51.6 62.5 62.9 67.8 67.5 69.7 68.6 69.2 71.5 61.6 70.8 75.3 76.9 78.4 78.4

AUC 81.2 89.1 91.1 91.2 92.3 91.6 92.4 94.4 92.2 87 91.3 89.9 91.9 94.9 92.9

Finally, for the last experiment, RF is used. Random Forest achieved higher results
in all the feature sets (see Table 5). The RF algorithm avoids and prevents overfit-
ting by using multiple trees, this gives accurate and precise results. As a result, the
experiment showed a balanced accuracy of 92% and AUC of 97% in a different model
(base_ravlt_scores), but it has both clinical and neuroimaging features.

Table 5. Results of random forest

base

base_logm
em

base_ravlt

base_logm
em

_ravlt

base_adas

base_ravlt_adas

base_ravlt_apoe

base_adas_apoe

base_ravlt_adas
_apoe

base_t1score

base_fdgscore

base_scores

base_ravlt_scores

base_adas_scores

base_adas_m
em

test
_scores

Specificity 74.6 87.1 88.6 90.8 90.2 90.4 90.2 92.6 93.5 76.4 86.3 84.7 96.5 84.8 90.5
Sensitivity 68.6 89.4 71.1 79.4 82.7 74.1 76.9 79.8 74.1 74.8 83.6 79.7 87.2 85.4 81.5
Bal. Acc. 71.6 88.2 79.9 85.1 86.5 82.2 83.6 86.2 83.8 75.6 85.0 82.2 91.9 85.1 86.0

AUC 79.8 94.6 88.8 93.9 93.3 90.3 91.3 92.4 90.8 84.7 92.2 89.3 97.3 93.2 92.9

As a comparison of the experiments, apparently, the RF has the highest results among
the other two classifiers (see Table 6). It is the appropriate classifier as it is robust to
outliers and generalizes the data in an efficient way. As a result, we proved the reliability
of the proposed approach and optimized the performance of the prediction of early
diagnosis by proposing a novel approach using SMOTE and DL to extract features from
multimodal data.

Table 6. AUC comparison of the classifiers

AUC Clinical Clinical &
neuroimaging

Logistic regression 94.3% 94.5%

XGBoost 94.4% 95.0%

Random Forest 94.6% 97.0%

38 E. Gad et al.

4 Conclusion

In this paper, we outperformed the research paper findings [1] for both clinical and the
combination of clinical and neuroimaging data, as the below table shows (Table 7).

Table 7. AUC comparison between paper [1] and the proposed approach

AUC Clinical Clinical &
neuroimaging

Paper [1] 85.0% 89.0%

The proposed
approach

94.6% 97.0%

We proposed a novel diagnostic model for early detection of Alzheimer’s disease
based on clinical and neuroimaging features. As we tackled the challenges of the dataset,
we used SMOTE as preprocessing technique for balancing the dataset, we also used
Deep Neural Network as feature extractor for both clinical and neuroimaging features.
We tested the reliability of our approach using three classifiers, and they outperformed
in their accuracy compared to paper [1], based on both clinical data and combination of
clinical and neuroimaging data. The results obtained using this approach can serve as a
basis for comparing further approaches in the future.

References

1. Samper-Gonzalez, J., et al.: Reproducible evaluation of methods for predicting progression
to Alzheimer’s disease from clinical and neuroimaging data. In: SPIEMedical Imaging 2019,
San Diego, USA (2019)

2. Alzheimer’s Association.: 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement.
12(4), 459–509 (2016)

3. Afzal, S., et al.: Alzheimer disease detection techniques andmethods: a review. Int. J. Interact.
Multim. Artif. Intell. (In press, 2021)

4. Venugopalan, J., Ton, L., Hassanzadeh, H.R.D., Wang, M.: Multimodal deep learning models
for early detection of Alzheimer’s disease stage. Sci. Rep. 11, 3254 (2021)

5. El-Sappagh, S., et al.: A multilayer multimodal detection and prediction model based on
explainable artificial intelligence for Alzheimer’s disease. Sci. Rep. 11, 2660 (2021)

6. Sheng, J., Xin, Y., Zhang, Q., et al.: Predictive classification of Alzheimer’s disease using
brain imaging and genetic data. Sci. Rep. 12, 2405 (2022)

7. Zhu, Q., et al.: Classification of Alzheimer’s disease based on abnormal hippocampal
functional connectivity and machine learning. Front. Aging Neurosci. (2022)

8. Fujiwara, K., et al.: Over- and under-sampling approach for extremely imbalanced and small
minority data problem in health record analysis. Front. Public Health 8, 178 (2020)

9. Notley, S., Magdon-Ismail, M.: Examining the use of neural networks for feature extraction:
a comparative analysis using deep learning, support vector machines, and K-nearest neighbor
classifiers (2018)

A Novel Diagnostic Model for Early Detection of Alzheimer’s Disease 39

10. Alam, M., Rahman, M., Rahman, M.: A Random Forest based predictor for medical data
classification using feature ranking, Informat. Med. 15, 100180(2019)

11. Budholiya, K., Shrivastava, S., Sharma, V.: An optimized XGBoost based diagnostic system
for effective prediction of heart disease. J. King Saud Univ. 34(7), 4514–4523 (2022)

Machine Learning and Optimization

Benchmarking Concept Drift Detectors
for Online Machine Learning

Mahmoud Mahgoub1, Hassan Moharram1, Passent Elkafrawy1,
and Ahmed Awad2,3(B)

1 Nile University, Giza, Egypt
{m.mahgoub,h.thabet,p.elkafrawy}@nu.edu.eg

2 University of Tartu, Tartu, Estonia
ahmed.awad@ut.ee

3 Cairo University, Giza, Egypt

Abstract. Concept drift detection is an essential step to maintain the
accuracy of online machine learning. The main task is to detect changes
in data distribution that might cause changes in the decision bound-
aries for a classification algorithm. Upon drift detection, the classifica-
tion algorithm may reset its model or concurrently grow a new learning
model. Over the past fifteen years, several drift detection methods have
been proposed. Most of these methods have been implemented within
the Massive Online Analysis (MOA). Moreover, a couple of studies have
compared the drift detectors. However, such studies have merely focused
on comparing the detection accuracy. Moreover, most of these studies are
focused on synthetic data sets only. Additionally, these studies do not
consider drift detectors not integrated into MOA. Furthermore, None of
the studies have considered other metrics like resource consumption and
runtime characteristics. These metrics are of utmost importance from an
operational point of view.

In this paper, we fill this gap. Namely, this paper evaluates the perfor-
mance of sixteen different drift detection methods using three different
metrics: accuracy, runtime, and memory usage. To guarantee a fair com-
parison, MOA is used. Fourteen algorithms are implemented in MOA.
We integrate two new algorithms (ADWIN++ and SDDM) into MOA.

Keywords: Online machine learning · Concept drifts · Benchmarking

1 Introduction

Nowadays machine learning is considered essential for almost every industry in
the world, e.g. healthcare, finance, and manufacturing, to name just a few. Clas-
sical machine learning models are designed to act in static environments where
data distributions are constant over time. However, with the recent complex sys-
tems in real-life, this is not valid anymore. In real applications, generated data
distribution is changing over time. We need new techniques to deal with this
fact. In addition to that, the massive explosion in the generated data volumes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 43–57, 2023.
https://doi.org/10.1007/978-3-031-21595-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_4

44 M. Mahgoub et al.

due to IoT technology shifts machine learning from being offline to an online and
continuous learning task. Thus, rather than learning from static data, classifiers
need to learn from data streams. In such learning mode, training and predic-
tion are interweaved [5]. In the meantime, the learning approach cannot keep all
the data due to the infinite nature of data streams. Due to the dynamic nature
of the data, the latent data distribution learned by online ML algorithms might
change over time. If this change goes unnoticed by ML algorithms, the prediction
accuracy of the model degrades over time.

The change of the underlying data distribution is known as concept drift [30,
36]. To maintain the prediction accuracy of online ML algorithms, drift detection
techniques have been developed [1,2,4,11,18,21,22]. These techniques vary in
their underlying detection approach (more details in Sect. 2.1). However, they
agree on the input they receive, the classification prediction, and the feedback on
that prediction. Upon detection of a drift in the data distribution, the detector
raises a flag that is received by the online ML system to take corrective action
to restore the prediction accuracy. The latter is out of the scope of the drift
detector task.

With the growth of drift detectors, a number of studies over the past decade
have compared such drift detectors [3,12,13,15,20]. These studies evaluate drift
detection algorithms implemented within MOA [6], the state-of-the-art frame-
work for online ML. The evaluation is mostly focused on drift detection accuracy
on synthetic data. Other metrics such as runtime and memory consumption are
not addressed. Moreover, detection algorithms not integrated in MOA are not
included.

In this paper, we fill this gap in the evaluation and the comparison of the drift
detection algorithms. In addition to the fourteen detection algorithms in MOA,
we integrate two more algorithms. Namely ADWIN++ [22] and SDDM [21].
Moreover, we cover detection accuracy, detection latency, runtime, and memory
consumption. The latter two metrics are of utmost importance from a data
engineering and operational points of view.

The rest of this paper is organized as follows. Section 2 briefly describes the
background concepts and definitions related to concept drift and discusses the
related work. The contribution of the paper is split into two sections. Section 3
describes the benchmark setup. Results and the comparison of the drift detection
algorithms are detailed in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Background and Related Work

We start with a background about the different techniques for concept drift
detection on data streams. Next, we discuss related work on the comparative
evaluation of such techniques.

2.1 Background

Data Streams, Concept Drifts, and Their Types. A data stream can
be defined as an unbounded sequence in which the instances have timestamps

Benchmark Drift Detectors Online ML 45

with various granularity [12,36]. The process that generates the stream can be
considered as a random variable X from which the objects x ∈ domain(X)
are drawn. In a classification learning context, a target (or class) variable y ∈
domain(Y) is available, where Y denotes a random variable over the targets.
Thus, the data stream is comprised of instances (x1, y1), (x2, y2) . . . (xt, yt),
where (xt, yt) represents an instance in time t, xt represents the vector of feature
values and yt represents the target for that particular instance. In practice, yt is
not necessarily known at time t where the features xt was observed. yt is usually
known at a later time t + n.

As stated in the Bayesian Decision theory [9], the process of classification
can be described by the prior probabilities of the targets P (Y), and the target
conditional probability density function P (X|Y). The classification decision is
made based on the posterior probabilities of the targets, which can be obtained
from:

P (Y|X) =
P (Y) · P (X|Y)

P (X)
(1)

Since P (Y) and P (X|Y) uniquely determine the joint distribution P (X,Y),
concepts can be defined as the joint distribution P (X,Y) [12]. A concept at
point of time t will be denoted as Pt(X,Y). In practice, concept drifts occur due
to changes in user tastes. For example, changes in trends on Twitter that might
make a tweet recommendation obsolete for the user. Mathematically, a concept
drift occurs due to the change in the generating random variable X that leads
a change in the data distribution. Based on the definition of concept, concept
drift between data at point of time t and data at point of time u can formally
be defined as a difference in the distributions of the data in these time points:

∃X : Pt(X,Y) �= Pu(X,Y), where t, u ∈ Z (2)

According to [12], the popular patterns of concept drift are the following:

– Abrupt drift : when the a learned concept is suddenly replaced by a new con-
cept (Fig. 1a).

– Gradual drift : when the change is not abrupt, but goes back and forth between
the original and the new concept (Fig. 1b).

– Incremental drift : when, as time passes, the probability of sampling from the
original concept distribution decreases and the probability of sampling from
the new concept increases (Fig. 1c).

Families of Drift Detectors. There are various families of drift detectors.
Each family has a different underlying condition to cope with concept drifts. In
many cases, the detector utilizes the classification error of an online classifier.
In general, there are three families of drift detectors [35]: statistical models,
window-based models, and ensemble-based models.

46 M. Mahgoub et al.

(a) Abrupt drift (b) Gradual drift (c) Incremental drift

Fig. 1. Patterns of concept drift, X-axis: time, Y-axis: the mean of the data

Statistical detectors are categorized based on the underlying statistical test. The
Sequential Probability Ratio Test (SPRT) [33] detects and monitors the change
in data using a sequential hypothesis test. Page [24] developed two memory-less
models based on SPRT, the Cumulative Sum (CUSUM) and the Page-Hinckley
(PH) test. A drawback of the SPRT-based models is that it only depends on
two metrics when deciding a concept drift: false alarm and missed detection
rates [12]. Another statistical test is the Fisher’s Exact test which is employed
when the number of errors or correct predictions is small. A model that uses
this test is the Fisher Proportions Drift Detector (FPDD) presented by de Lima
Cabral and de Barros [18] extending it with the Fisher-based Statistical Drift
Detectors (FSDD) and Fisher Test Drift Detector (FTDD). Some models use
McDiarmid’s inequality for detecting concept drifts such as the McDiarmid Drift
Detection Methods (MDDMs) proposed by Pesaranghader et al. [26]. This model
uses a weighting scheme represented in a sliding window over prediction results
assigning weights to stream elements with higher weights to the most recent
ones. A concept drift occurs when there is a significant difference between two
weighted means. Three drift detectors are developed after this model depending
on the weighting scheme type: MDDM-A model (arithmetic), MDDM-G model
(geometric), and MDDME model (Euler).

Some detectors use a base learner (classifier) to classify the future stream ele-
ments. The Drift Detection Method (DDM) [11] is the first algorithm to use this
concept. Several methods are extended from DDM such as the Early Drift Detec-
tion Method (EDDM) [1], and the Reactive Drift Detection Method (RDDM) [2].
The Statistical Drift Detection Method (SDDM) [21], however, does not require
feedback from the learner (classifier) to decide about drifts.

Window-Based Detectors. In this family, detectors monitor a sliding window
instead of individual stream tuples. The window represents the model’s internal
memory and varies in size. Some detectors are based on the Very Fast Decision
Tree (VFDT) algorithm [8]. The Concept adapting Very Fast Decision Tree
(CVFDT) [8] detector is the first to be built on VFDT. It was optimized covering
more types of concept drifts through the Efficient Concept-Adapting Very Fast
Decision Tree (E-CVFDT) [19] detector.

The Adaptive Window (ADWIN) [4] is considered state-of-the-art in this
category. ADWIN almost requires no parameters for its operation except assign-
ing the sensitivity level to change in the data. Moreover, the window expands

Benchmark Drift Detectors Online ML 47

and shrinks depending on the stream state. By the arrival of a stream element,
the internal window is split into two sub-windows covering the whole stream
tuples and deciding a drift when a significant difference in the means of the
two sub-windows occurs, leading to dropping the oldest elements till no further
change is detected. A number of efficient implementations and enhancements
have been presented in the literature. Grulich et al. [14] extend ADWIN by pre-
senting three variants: Serial, HalfCut, and Optimistic, making ADWIN more
scalable by optimizing its throughput using parallel adaptive windowing tech-
niques. Another optimization is presented in [22] to account for the unbounded
growth of the internal window size with steady streams, i.e., streams that have
a low frequency of drifts.

Ensemble-Based Detectors. Similar to ensembles of classifiers, an ensemble of
drift detectors can be formed to opt for the highest accuracy possible in detecting
drifts. Ensemble drift detectors can be divided into two classes: Block-based and
Incremental detectors.

The Block-based ensemble detectors processes stream elements in chunks
or blocks affected by chunk size. The earliest model to use this concept is the
Streaming Ensemble Algorithm (SEA) [32] then it improved by Wang et al. [34]
through the Accuracy Weighted Ensemble (AWE) model which replaces the weak-
performing classifiers with better-selected ones. Brzeziński and Stefanowski [7]
continued the work on AWE presenting the Accuracy Updated Ensemble (AUE)
algorithm by improving the memory consumption and accuracy.

Incremental ensemble detectors tend to process stream elements individually
in a sequential manner, unlike in chunks. Kolter and Maloof [17] introduced
Dynamic Weighted Majority (DWM), the first Incremental ensemble detector.
Based on stream state has concept drifts or not, DWM adds or removes the
weighted classifiers which are referred as experts. The Learn++ algorithm family
is a grouping of Incremental ensemble detectors which uses machine learning to
handle concept drifts with imbalanced data [35].

2.2 Related Work

Gama et al. [12] present a comprehensive review on concept drift adaptation.
Drift detection is one pillar in adapting to concept drifts. The survey is on a high
level discussing the different theories behind drift detection. Wares et al. [35]
provide a more recent critical review on concept drift detectors. They conclude
their review with several shortcomings in the study of drift detectors. Among
these shortcomings are outdated drift detection methods and their comparison
and the lack of benchmark setup and real-world data sets for the evaluation-the
work we report in this paper addresses these two shortcomings. Lu et al. [20] is
another intensive review of concept drift detectors that partially addresses the
shortcomings reported in [35]. Namely, the public availability of real-world data
sets to evaluate drift detectors.

To the best of our knowledge, the first benchmarking study of drift detectors
is presented by Gonçalves et al. [13]. The evaluation covered DDM, EDDM,

48 M. Mahgoub et al.

ECDD, PHT, STEPD, PL, ADWIN, and DOF. Naive Bayes was used as the
base learner. The authors used both synthetic and real-world data sets. However,
the synthetic data sets covered only abrupt and gradual drifts. The evaluation of
the detectors was focused on accuracy-related aspects. A more recent benchmark
is presented by Barros et al. [3]. The evaluation setup largely follows the one
in [13]. It includes more detectors such as: HDDM, RDDM, WSTD and SeqDr.
Moreover, it uses VFDT as another base learner. The evaluation is concerned
with accuracy aspects only.

In this paper, we extend and complement the evaluation done in [3,13] by: –
Including more recent drift detectors, namely: SDDM [21] and ADWIN++ [22],
– Using synthetic data sets that address all drift types in addition to real-world
data sets, – Reporting about operational metrics of runtime, latency and memory
consumption in addition to drift detection accuracy measures.

3 Benchmark Setup

In this section, we describe benchmarking, the datasets, the algorithm bench-
marked, the parametrization used in the drift detectors, metrics computed, and
the evaluation methodology.

3.1 Datasets

Both synthetic and real-world datasets are used for this experiment. The syn-
thetic data are generated using the generator from [14]. This data simulates
incremental, gradual, and abrupt concept drifts. Instances in this data represent
the prediction made by a Näıve Bayes base learner so they can be applied directly
on the concept drift detection methods without the need for a base learner. This
helps in focusing on benchmarking the concept drift detection methods them-
selves without taking into consideration base learners and their possible delays
or effects on the experiments. Each dataset in this group consists of two million
instances. The incremental dataset (Inc1554) contains 1554 drifts. The gradual
dataset (Grad1738) contains 1738 drifts. The abrupt one (Abr1283) contains
1283 drifts.

The second group contains real-world datasets. There are three datasets:
Airlines (539383 records), Electricity (45312 records), and INSECTS-Abrupt
(balanced) (52848 records). The first two datasets are common in the literature
and are publicly available on MOA [6] website. The last dataset is one of many
new datasets introduced in [31]. The dataset can be used in benchmarking as
its characteristics and pattern are known and avoid the challenges related to the
other real-life datasets, i.e. the lack of ground truth about when drift occurred,
so we choose to include it in this paper.

3.2 Benchmarked Algorithms

We used all the available algorithms from MOA: DDM [11], EDDM [1],
RDDM [2], STEPD [23], SeqDrift1 [25], SeqDrift2 [29], SEED [16], PageHink-
leyDM (PH) [24], HDDM A Test (HDDMA), HDDM W Test (HDDMW) [10],

Benchmark Drift Detectors Online ML 49

GeometricMovingAverageDM (GMA) [27], EWMAChartDM (EWMA) [28],
CusumDM (CUSUM) [24] and ADWIN [4]. In addition, we have integrated
ADWIN++ [22] and SDDM [21] within MOA to have a fair comparison between
the different detection methods. ADWIN++ is written in Java so the integra-
tion within MOA was straightforward. On the other hand, SDDM is written in
Python, so we had to port it to Java and implement the respective interfaces in
MOA. However, as SDDM does not require a base learner, the change detector
interface of MOA had to be modified to read the full instance data (features and
target class). Initially, it supports only reading the target class. Finally, we have
defined a new class that implements the change detector interface. The source
code for the changes and the benchmark is available on Github1

Each drift detection algorithm has a set of hyperparameters that affect detec-
tion accuracy as well as other operational aspects. Table 1 lists the chosen hyper-
parameter values of the respective algorithms that would deliver the highest sen-
sitivity to change in the data. we have chosen those values using grid search tun-
ing. It is worth mentioning that we report only parameters for which we changed
their default values. If an algorithm has other parameters not mentioned in the
table, they were left with their default values.

3.3 Metrics

In addition to prediction accuracy, we record the runtime and memory usage
of each algorithm. Detection accuracy is measured by counting the number of
drifts detected by each algorithm. For the synthetic datasets where ground truth
drifts are known, we report detection delay which represents the distance, in data
instances, from the actual occurrence of the drift to its detection.

To measure the operational metrics, i.e., runtime and memory consumption,
we have used the Java Microbenchmark Harness (JMH) toolkit2. JMH provides
results with 99.9% confidence. JMH has several parameters that can be set to
customize the benchmarking: – Warmup: the number of iterations the code runs
to warmup. Warmup iterations are very important to avoid variations due to the
transient period at the JVM starting. They do not contribute to the measurement
results. – Measurement: actual code benchmark execution. The code is run for
a number of iterations and the output of these iterations is used to generate
the JMH benchmark result. – Benchmark Mode: type of benchmark to be run.
Possible types are • Average Time: the average time for executing the code •
Throughput: it measures the number of times a code is executed in a certain
period of time.

For our benchmarkprovidesve used the following values: – Warmup iterations
= 5 – Measurement iterations = 20 – Benchmark Mode = Average Time.

1 https://github.com/mahmoudmahgoub/moa.
2 https://github.com/openjdk/jmh.

https://github.com/mahmoudmahgoub/moa
https://github.com/openjdk/jmh

50 M. Mahgoub et al.

Table 1. Drift detectors tuned hyperparameters

Algorithm Parameters Description Values

DDM outcontrolLevel Change the threshold needed to detect a drift.

Smaller values mean the algorithm is more senstive and

detects more drifts

1.9

RDDM driftLevel Similar to “DDM” outcontrolLevel parameter 1.82

STEPD alphaDrift Similar to “DDM” outcontrolLevel parameter 0.045

SeqDrift1 deltaSeqDrift1 Configure the size of the sliding window of the algorithm

The size of the window inversely proportional to its value

1

deltaWarning A warning level that is raised when the difference

between these two estimations is approaching the drift

level

1

SeqDrift2 deltaSeqDrift2 Used to calculate epsilon value that determine the drifts 1

SEED deltaSEED Used to calculate epsilon value that determine the drifts 1

HDDMA driftConfidence Configure drift level 0.0015

HDDMW driftConfidence Configure drift level 0.0006

ADWIN MOA deltaAdwin Similar to “DDM” outcontrolLevel parameter 1

ADWIN++ safe lim Fixed minimum ADwin window size limit (buckets) 15

min lim Moving minimum ADwin window size limit (buckets) 51

max lim Fixed maximum ADwin window size limit (buckets) 60

Theta Sliding change of min lim (elements) 70000

omega Number of elements to wait after detecting main drift to

perform the adaptive buckets dropping

40000

SDDM driftThreshold Determine the threshold of drift magnitudates to adress

a drift

0.04

Window size Configure the window size 500

Window step Configure the sliding step of the window 50

To choose those values, we increased the warmup and the measurement itera-
tions value by one unit until the metric values stabilized, i.e. they are not affected
by change in warmup and measurement iterations.

Although memory usage can be calculated using different methods, such
as using the Java MemoryMXBean interface to calculate the memory before and
after running the drift detector methods, we preferred to use VisualVM3, an
external profiling tool. VisualVM gives an accurate measurement for memory
consumption that are unaffected by the garbage collector calls in the JVM.

4 Results

We report about the metrics discussed in the previous section for the sixteen
algorithms using the respective hyperparameter values reported in Table 1. We
have conducted the experiments on a computer with an Intel Core i5-8250U
processor having 12 GB of RAM and running Windows 11 operating system
using Java 8. For measuring runtime and memory consumption, we report the
Inc1554 dataset only due to paper length limitation. However, each algorithm
followed a similar behavior on the other datasets.
3 https://visualvm.github.io/.

https://visualvm.github.io/

Benchmark Drift Detectors Online ML 51

4.1 Drift Detection Accuracy

Table 2. Accuracy (number of detected drifts)

Datasets Inc1554 Grad1738 Abr1283 Electricity Airlines Insects

ADWIN MOA 1554 1738 1283 2636 5016 373

ADWIN++ 1554 1738 1283 2636 5016 373

HDDMW 1478 1490 1509 281 859 2169

RDDM 1221 1149 1310 261 1465 0

STEPD 1298 1345 1245 33206 28004 31132

HDDMA 955 1101 998 481 405 6335

EDDM 629 1741 298 626 688 92

SDDM 644 604 588 570 10778 1047

DDM 493 3190 8785 615 2725 0

SEED 50 68 83 541 1311 86

SeqDrift2 26 47 21 139 544 0

CUSUM 4 11 8 11 101 30

SeqDrift1 1 2 2 62 53 1

EWMA 1 0 0 0 738 0

PH 0 0 0 0 0 0

GMA 0 0 0 0 0 0

Table 2 presents the accuracy results for the sixteen methods. For the synthetic
data, ADWIN MOA and ADWIN++ have the highest accuracy as they detect
the exact number of the existing drifts in the three synthetic datasets.

RDDM, STEPD, HDDMA, and HDDMW have relatively good performance
when they are used on synthetic data. EDDM has modest accuracy for the
incremental and abrupt datasets whereas its accuracy is much higher for the
gradual dataset. SDDM accuracy is close ti EDDM. Yet, it does not seem to be
affected by the drift type. DDM gives a lot of false positives for the gradual and
abrupt datasets. SeqDrift1, SeqDrift2, SEED, PH, GMA, EWMA, and CUSUM
have the worst accuracy. The reason can be attributed to their memory-less
nature. Thus, they learn the least about the data distribution. This is further
evidenced when we discuss memory consumption.

For the real-world datasets, we do not know exactly the number of drifts nor
their location in the data. As ADIWN has the highest accuracy in drift detection
on the synthetic dataset, we have used it as a reference to compare the accuracy
of the other methods on real-world data sets. The methods have very different
results compared to ADWIN. For instance, RDDM has poor accuracy on the real-
world data set, 10% on Electricity, 30% on Airlines, and 0% on Insects. HDDMW

has a similar behavior as RDDM, except for the Insects dataset. STEPD has
a steady huge rate of false positives. Memory-less methods, the last group in

52 M. Mahgoub et al.

(a) Incremental dataset

(b) Gradual dataset

(c) Abrupt dataset

Fig. 2. Drift detection in the first 1000 instances of the synthetic datasets. X-axis
represent the progress of the stream, y-axis shows when a drift is detected.

Table 2, continue to perform poorly on the real-world data set, the best accuracy
is 25% reached by SEED on the Airlines dataset.

Benchmark Drift Detectors Online ML 53

Figure 2 shows the detected drifts in the first 1000 instances of the synthetic
datasets. We can notice that for the algorithms with a good or modest perfor-
mance, mentioned previously, only ADWIN MOA and ADWIN++ detect them
at the correct time, whereas others have detection delays in addition to false
positives. The DDM family, including SDDM, depends on some statistical test
to monitor the number of errors produced by a model learned on the previous
stream items. So, it may be too slow in responding to changes because it may
take many observations after the change to detect a drift. The same can be said
about memory-less detectors.

On the other hand, ADWIN makes instantiations call of the drift. For
instance, upon the arrival of a new stream element, a cut detection is made
immediately by splitting the main window into two sliding windows looking for
a possible drift. A drift is called when there is a significant difference between
the means of these two windows.

4.2 Runtime

Fig. 3. Average runtime in milliseconds using a loga-
rithmic scale

Figure 3 shows the aver-
age runtime of the differ-
ent methods. SDDM and
ADWIN MOA are the
slowest methods. SDDM
has a high algorithmic com-
plexity in deciding whether
drift is detected due to the
internal bucketing and dis-
tance measured used [21].
For ADWIN MOA, we have
investigated the reason for
slowness, and we found
that setting the mintClock
hidden parameter value to
1 is the reason for this
slowness. By increasing
mintClock we get more
speed, but accuracy becomes lower. For example, setting mintClock to 32 and
using the Inc1554 dataset, the execution time drops to 2712.246 ms. However,
the number of detected drifts drops to 57. ADWIN++ is better in that sense as
it is faster and it preserves its accuracy. In fact, that is the main improvement
it brings [22].

4.3 Memory Consumption

Figure 4 shows the consumed memory over the time. All the algorithms almost
need the same small amount of memory expect for SDDM that consumes almost

54 M. Mahgoub et al.

Fig. 4. Consumed memory overtime using a logarithmic scale

about three orders of magnitude higher than the rest of the methods. It almost
consumes 1.6 GB.

Apart from ADWIN variants and SDDM, other algorithms tend to consume
almost a constant amount of memory as they decide on a drift based on some
statistical calculations which monitor the number of errors counted after a pre-
vious drift so they accumulate on existing values and no need to keep a window
of previous stream elements.

The memory consumption of ADWIN MOA is particularly interesting. It goes
high over time if the number of drifts is small. This is because the size of the
window keeps increasing over. The accuracy/latency trade-off of ADWIN MOA
are affected by the internal window size, i.e., the memory consumed. ADWIN++
comes into the picture to save the memory consumption as low as the other
methods, shown as “Others” in Fig. 4 and keep the accuracy and latency of
ADWIN MOA. it achieves that by controlling the window size [22] even in the
case of not detecting drifts.

SDDM memory consumption is very high because of the many internal
parameters of the algorithm that need to be optimized. For example, the bucket
size, the distance measure, and the number of features to compute drifts for
all affect the accuracy, memory consumption and thus latency of drift detec-
tion. The algorithm implementation needs to be optimized. These parameters
are orthogonal to those listed in Table 1 for SDDM. The optimization of such
parameters is out of scope of the current paper.

5 Conclusion and Future Work

In this paper, we present a comprehensive benchmark for sixteen drift detectors.
Fourteen drift detectors are already implemented within MOA. Two other detec-
tors were implemented in Java and integrated into MOA. The benchmark mea-
sures and compares detection accuracy on various data sets and two operational
metrics, runtime and memory consumption. Overall, ADWIN shows the best

Benchmark Drift Detectors Online ML 55

accuracy on the synthetic data sets. Namely, ADWIN++ maintains the accuracy
of ADWIN while improving runtime and memory consumption. Memory-less
detectors are not useful and are not recommended for use in real-life scenarios.

Taking ADWIN as a reference point, we notice a considerable difference in the
performance of the other algorithms on real-life data sets. This calls for further
investigation on which of those methods delivers the best accuracy. This is the
target for future studies. From memory consumption results, more improvements
for SDDM implementation are needed.

Acknowledgments. The work of Ahmed Awad is funded by the European Regional
Development Funds (Mobilitas Plus Programme grant MOBTT75).

References

1. Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R.,
Morales-Bueno, R.: Early drift detection method. In: Fourth International Work-
shop on Knowledge Discovery from Data Streams, vol. 6, pp. 77–86 (2006)

2. de Barros, R.S.M., de Lima Cabral, D.R., Gonçalves Jr, P.M.G., de Carvalho San-
tos, S.G.T.: RDDM: reactive drift detection method. Expert Syst. Appl. 90, 344–
355 (2017)

3. Barros, R.S.M., Santos, S.G.T.C.: A large-scale comparison of concept drift detec-
tors. Inf. Sci. 451–452, 348–370 (2018)

4. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.
In: ICDM, pp. 443–448. SIAM (2007)

5. Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine Learning for Data
Streams with Practical Examples in MOA. MIT Press, Cambridge (2018)

6. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

7. Brzeziński, D., Stefanowski, J.: Accuracy updated ensemble for data streams with
concept drift. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011.
LNCS (LNAI), vol. 6679, pp. 155–163. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21222-2 19

8. Domingos, P.M., Hulten, G.: Mining high-speed data streams. In: SIGKDD, pp.
71–80. ACM (2000)

9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2001)
10. Fŕıas-Blanco, I., del Campo-Ávila, J., Ramos-Jiménez, G., Morales-Bueno, R.,

Ortiz-Dı́az, A., Caballero-Mota, Y.: Online and non-parametric drift detection
methods based on Hoeffding’s bounds. IEEE Trans. Knowl. Data Eng. 27(3), 810–
823 (2015)

11. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:
Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5 29

12. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

13. Gonçalves, P.M., de Carvalho Santos, S.G., Barros, R.S., Vieira, D.C.: A com-
parative study on concept drift detectors. Expert Syst. Appl. 41(18), 8144–8156
(2014)

https://doi.org/10.1007/978-3-642-21222-2_19
https://doi.org/10.1007/978-3-642-21222-2_19
https://doi.org/10.1007/978-3-540-28645-5_29

56 M. Mahgoub et al.

14. Grulich, P.M., Saitenmacher, R., Traub, J., Breß, S., Rabl, T., Markl, V.: Scalable
detection of concept drifts on data streams with parallel adaptive windowing. In:
EDBT, pp. 477–480. OpenProceedings.org (2018)

15. Han, M., Chen, Z., Li, M., Wu, H., Zhang, X.: A survey of active and passive
concept drift handling methods. Comput. Intell. 38(4), 1492–1535 (2022)

16. Huang, D.T.J., Koh, Y.S., Dobbie, G., Pears, R.: Detecting volatility shift in data
streams, pp. 863–868 (2014)

17. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: a new ensemble method
for tracking concept drift. In: ICDM, pp. 123–130. IEEE (2003)

18. de Lima Cabral, D.R., de Barros, R.S.M.: Concept drift detection based on Fisher’s
Exact test. Inf. Sci. 442, 220–234 (2018)

19. Liu, G., Cheng, H.R., Qin, Z.G., Liu, Q., Liu, C.X.: E-CVFDT: an improving
CVFDT method for concept drift data stream. In: ICCCAS, vol. 1, pp. 315–318.
IEEE (2013)

20. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept
drift: a review. IEEE TKDE 31(12), 2346–2363 (2019)

21. Micevska, S., Awad, A., Sakr, S.: SDDM: an interpretable statistical concept drift
detection method for data streams. J. Intell. Inf. Syst. 56(3), 459–484 (2021).
https://doi.org/10.1007/s10844-020-00634-5

22. Moharram, H., Awad, A., El-Kafrawy, P.M.: Optimizing ADWIN for steady
streams. In: ACM/SIGAPP SAC, pp. 450–459. ACM (2022)

23. Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In:
Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp.
264–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75488-
6 27

24. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954).
https://doi.org/10.1093/biomet/41.1-2.100

25. Pears, R., Sripirakas, S., Koh, Y.S.: Detecting concept change in dynamic data
streams. Mach. Learn. 97, 259–293 (2014). https://doi.org/10.1007/s10994-013-
5433-9

26. Pesaranghader, A., Viktor, H.L., Paquet, E.: McDiarmid drift detection methods
for evolving data streams. In: IJCNN, pp. 1–9. IEEE (2018)

27. Roberts, S.W.: Control chart tests based on geometric moving averages. Techno-
metrics 1(3), 239–250 (1959). http://www.jstor.org/stable/1266443

28. Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Exponentially weighted mov-
ing average charts for detecting concept drift. Pattern Recogn. Lett. 33(2), 191–198
(2012). https://www.sciencedirect.com/science/article/pii/S0167865511002704

29. Sakthithasan, S., Pears, R., Koh, Y.S.: One pass concept change detection for data
streams. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013.
LNCS (LNAI), vol. 7819, pp. 461–472. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37456-2 39

30. Sobolewski, P., Wozniak, M.: Enhancing concept drift detection with simulated
recurrence. In: Pechenizkiy, M., Wojciechowski, M. (eds.) New Trends in Databases
and Information Systems. AISC, vol. 185, pp. 153–162. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32518-2 15

31. Souza, V.M.A., dos Reis, D.M., Maletzke, A.G., Batista, G.E.A.P.A.: Challenges in
benchmarking stream learning algorithms with real-world data. Data Min. Knowl.
Discov. 34(6), 1805–1858 (2020). https://doi.org/10.1007/s10618-020-00698-5

32. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale clas-
sification. In: SIGKDD, pp. 377–382. ACM (2001)

https://doi.org/10.1007/s10844-020-00634-5
https://doi.org/10.1007/978-3-540-75488-6_27
https://doi.org/10.1007/978-3-540-75488-6_27
https://doi.org/10.1093/biomet/41.1-2.100
https://doi.org/10.1007/s10994-013-5433-9
https://doi.org/10.1007/s10994-013-5433-9
http://www.jstor.org/stable/1266443
https://www.sciencedirect.com/science/article/pii/S0167865511002704
https://doi.org/10.1007/978-3-642-37456-2_39
https://doi.org/10.1007/978-3-642-37456-2_39
https://doi.org/10.1007/978-3-642-32518-2_15
https://doi.org/10.1007/s10618-020-00698-5

Benchmark Drift Detectors Online ML 57

33. Wald, A.: Sequential Analysis. Courier Corporation (1973)
34. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using

ensemble classifiers. In: SIGKDD, pp. 226–235. ACM (2003)
35. Wares, S., Isaacs, J., Elyan, E.: Data stream mining: methods and challenges for

handling concept drift. SN Appl. Sci. 1(11), 1–19 (2019). https://doi.org/10.1007/
s42452-019-1433-0

36. Webb, G.I., Lee, L.K., Petitjean, F., Goethals, B.: Understanding concept drift.
CoRR abs/1704.00362 (2017)

https://doi.org/10.1007/s42452-019-1433-0
https://doi.org/10.1007/s42452-019-1433-0

Computational Microarray Gene Selection
Model Using Metaheuristic Optimization

Algorithm for Imbalanced Microarrays Based
on Bagging and Boosting Techniques

Rana Hossam Elden1(B), Vidan Fathi Ghoneim1, Marwa M. A. Hadhoud1,
and Walid Al-Atabany2,1

1 Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt
{ranahossamelden,vidanfathighoneim,
marwa_hadhoud}@h-eng.helwan.edu.eg

2 Information Technology and Computer Science School, Nile University, Giza, Egypt
w.al-atabany@nu.edu.eg

Abstract. Genomic microarray databases encompass complex high dimensional
gene expression samples. Imbalancedmicroarray datasets refer to uneven distribu-
tion of genomic samples among different contributed classes which can negatively
affect the classification performance. Therefore, gene selection from imbalanced
microarray dataset can give rise to misleading, and inconsistent nominated genes
that would alter the classification performance. Such unsatisfactory classification
performance is due to the skewed distribution of the samples across the microar-
rays toward the majority class. In this paper, we propose a modified version of
Emperor Penguin Optimization (EPO) algorithm combined with Random Forest
(RF) of Bagging and Boosting Classification named by EPO-RF to select the most
informative genes based on classification accuracy using imbalanced microarray
datasets. The modified version of EPO was built to be based on decision trees that
takes in consideration the criterion of tree splitting weights to handle the imbal-
anced microarray datasets. Average gene expression binary values are used as a
preliminary step for exploring disease trajectories with the aid of metaheuristic
optimization feature selection algorithms. Results show that the proposed model
revealed its superiority compared to well-known established metaheuristic opti-
mization algorithms, e.g., Harris Hawks Optimization (HHO), Grey Wolf Opti-
mization (GWO), Salp Swarm Optimization (SSO), Particle Swarm Optimization
(PSO), and Genetic Algorithms (GA’s) using several pediatric sepsis microarray
datasets for patients who admitted to the Intensive Care Unit (ICU) for the first
24 h.

Keywords: Gene selection · Imbalanced microarray · Metaheuristic ·
Oversampling · Random Forest

1 Introduction

Affymetrixmicroarray datasets represent a powerful analysis tool used for determination
of disease-relevant gene through the analysis of mRNA expression profile of thousands

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 58–71, 2023.
https://doi.org/10.1007/978-3-031-21595-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_5&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_5

Computational Microarray Gene Selection Model 59

of genes. Unfortunately, not all assorted microarray genes are expressed in all tissues
needed to be removed as they aren’t related to the state of the disease and represent
irrelevant and redundant that mislead the machine learning algorithms [1, 2]. There-
fore, relevant informative gene selection is a matter of concern needed to enhance the
classification performance of the diseases trajectories [3, 4]. Classification imbalanced
microarray datasets poses a challenge for machine learning predictive modeling as the
distribution of samples across the assorted classes is biased or skewed [5]. Therefore,
recently, considerable attention has been paid for tackling the imbalanced datasets. Tang
et al. [5] proposed granular Support Vector Machines repetitive cost-sensitive learning
undersampling algorithm (GSVM-RU) that minimize the negative impact of informa-
tion loss while maximizing the positive effect of data filtering within the undersampling
process using less number of support vectors. While Krawczyk et al. [6] introduced
an effective ensemble of cost-sensitive Decision Trees (DT) for imbalanced classifica-
tion. Sáez et al. [7] suggested Synthetic Minority Oversampling Technique (SMOTE)
combined with Iterative-Partitioning Filter (IPF) used for balancing the biased datasets.
The study was based on synthetizing new samples not correlated with noisy and bor-
derline samples. Xiao et al. [8] analyzed the effectiveness of a novel class-specific cost
regulation extreme learning machine (CCR-ELM) that based on determination of class-
specific regulation cost for handling misclassification of each class in the performance
index to be not sensitive to the dispersion degree of the utilized dataset. Lopez-Garcia
et al. [9] suggest a hybrid metaheuristic feature selection algorithm named by Genetic
Algorithm (GA) with a cross entropy (CE) based on ensembles called Adaptive Splitting
and Selection (AdaSS) that partitions the feature space into clusters. AdaSS establishes
a different classifier for each partition through adjusting the weights of the different base
classifiers using the discriminant function of the collective decision-making method.
Krawczyk et al. [10] confirmed the robustness of boosting strategy combined with evo-
lutionary undersampling in handling imbalanced datasets using an enhanced ensemble
classifier named EUSBoost. Aljarah et al. [11] introduced whale optimization algorithm
(WOA) as a novel metaheuristic optimization algorithm trained with multilayer per-
ceptron (MLP) neural networks classifier. WOA was utilized to determine the optimal
values for weights and biases to minimize the mean square error (MSE) fitness function
of MLP to overcome the problem of imbalanced datasets. Whereas Aljarah et al. [12]
implemented a machine learning algorithm based on radial basis function (RBF) neu-
ral networks using Biogeography-Based Optimizer. Likewise, Roshan and Asadi [13]
implemented an ensemble of bagging classifiers with evolutionary undersampling tech-
niques. On the other hand, some chaotic metaheuristic approaches and machine learning
algorithms applied on these problems [14–17] but classification performance is a matter
of concern.

In spite of many studies in the field of handling imbalanced datasets classifica-
tion, they were restricted to undersampling the datasets which results in information
loss. Therefore, the present study deploys a modified version of a novel metaheuristic
algorithm known as Emperor Penguin Optimization (EPO) for training a supervised
Random Forest (RF) classifier of bagging and boosting ensembles to overcome the
problem of imbalanced dataset classification. The results were assessed using discovery
imbalanced sepsis microarray datasets from the same platform GPL570 by conducting

60 R. H. Elden et al.

statistical analysis of the experimental results through the calculation of the classification
accuracy.

2 Methodology

The preprocessed microarray dataset which encompasses the average gene expression
values undergoes binary conversion to be adaptable forEPOalgorithm. Since imbalanced
microarray dataset can alter the classification performance based on the improper gene
selection, an oversampling strategy was applied for synthesizing new sampling to adjust
the class distribution of the utilized dataset. Thereafter, the most informative genes were
extracted from the preprocessed dataset using Emperor Penguin Optimization algorithm
based on the best classification performance achieved by the internal embedded RF
classifier within EPO algorithm. The performance of the selected genes in differentiating
were further evaluated using supervised machine learning algorithms to confirm the
robustness of the proposed modified EPO model. Figure 1 depicts the outline of the
proposed architecture of the modified version of EPO algorithm for gene selection from
imbalanced datasets.

2.1 Emperor Penguin Optimization (EPO)

A novel nature based metaheuristic optimization algorithm known as Emperor Penguin
Optimization (EPO) [18] was applied to nominate the most informative genes used for
the early predication of the disease trajectories. EPO imitates the huddling behavior of
Aptenodytes Forsteri emperor penguins for warmth and protection. The mathematical
formulation model of EPO encompasses: Identification the huddle boundary, compute
temperature around the huddle, determining the distance, and find an effective mover.

Two dimensional L-shape polygon plane was suggested as the huddle plane in which
emperor penguins position themselves randomly which exemplify the assorted microar-
ray genes. Each microarray gene at least is surrounded by two gene neighbors which
chosen randomly. After that, each microarray gene tries to update its position randomly
towards the position of central microarray gene situated in the center of L-shaped poly-
gon region which is characterized by the highest effective fitness rate during the current
iteration as shown in Fig. 2. The reason of huddle behavior of emperor penguins to
conserve energy and maximize the temperature in the huddle for surviving against cold.
In order to find the huddle boundary, the wind velocity around it which is much greater
than the movement velocity of penguins determined using the following equation:

Ψ = ∇Φ (1)

where, Φ represents the wind velocity, and Ψ determines the gradient of the wind
velocity.

The temperate profile of the huddle is mathematical modeled using the following
equation:

T
′ =

(
T − Maxiteration

x − Maxiteration

)
T =

{
0, if R > 1
1, if R < 1

(2)

Computational Microarray Gene Selection Model 61

Fig. 1. System architecture of the modified version of EPO algorithm for imbalanced microarray
gene selection.

where, T represents the temperature, R is the radius of the polygon, x depicts the current
iteration, and Maxiteration defines the maximum number of iterations.

Thereafter, we will calculate the distances between assorted genes which means that
genes update their positions according to the best emperor penguin position which is
mathematically defined as follows:

−→
Dep = Abs

(
S
(−→
A

)
· −→
P (x) − −→

C · −→
Pep(x)

)
(3)

−→
A =

(
M ∗

(
T

′ + Pgrid (Accuracy)
)

∗ Rand()
)

− T ′ (4)

62 R. H. Elden et al.

Fig. 2. The huddling behavior of the emperor penguins [17].

Pgrid (Accuracy) = Abs(
−→
P − −→

Peq) (5)

S
(−→
A

)
=

(√
f · e− x

l − e−x

)2

(6)

−→
C = Rand() (7)

where
−→
Dep represents the distance between the current gene candidate and best selected

gene whose fitness value is minimum, x indicates the current iteration.
−→
A , and

−→
C are

used to avoid the collision between gene candidates.
−→
P defines the best selected gene,−→

Peq indicates the position vector of the current gene candidate. S() defines the social
forces responsible to move towards the direction of best solution. M represents the
movement parameter that preserves a gap between search agents for collision avoidance
not to create a tight or loose huddle. Pgrid (Accuracy) defines the polygon grid accuracy
by comparing the difference between genes, while Rand() is a random value lies in
the range of [0, 1]. e defines the expression function. f and l are control parameters for
better exploration and exploitation.

Meanwhile, the positions of emperor penguins are updated according to the best
obtained optimal solution as follows:

−→
Peq(x + 1) = −→

P (x) − −→
A · −→

Dep (8)

where
−→
Peq(x + 1) represents updated position of gene candidate.

2.2 Adaptive Synthetic Sampling Approach (ADASYN)

Unfortunately, imbalanced microarray datasets pose a challenge for classification pre-
dictive model due to the skewed distribution of assorted samples toward the majority
class. Resampling techniques represent thewidely adopted technique for handling imbal-
anced datasets. It encompasses undersampling algorithms for removing samples from
the majority class and oversampling algorithms for synthetizing more samples for the

Computational Microarray Gene Selection Model 63

minority class. Despite, undersampling represents a main core of resampling strategies
for the imbalanced datasets but involves removing random records from the majority
class, which can cause loss of information. Therefore, we have resorted to the over-
ssampling strategies. Two common oversampling techniques are used to handle the
imbalanced microarrays which they are; Synthetic Minority Oversampling Technique
(SMOTE) [19], which is based on synthesizing new data points for the minority class by
randomly selecting a data point at first and finding out its K nearest neighbors and the
Adaptive Synthetic Sampling method (ADASYN) [20], which is a modified version of
SMOTE featured by its dependence on the density distribution of the minority class that
analyzes the samples of the minority class found in spaces dominated by the majority
class that are difficult to classify, this in order to generate samples in the lower density
areas of the minority class. Hence, ADASYN has been adopted in our proposed algo-
rithm to handle the microarray dataset to be adaptable for gene selection using EPO
algorithm. The mathematical model of ADASYN is as follows:

Suppose the training dataset contains N samples {Xi,Yi}, i = 1, 2, 3,,N, where
Xi represents the microarray samples and Yi is the class labels related to the assorted
samples. We need to determine the degree of class imbalance:

d = mmin
/
mmaj

mmin ≤ mmaj

mmin + mmaj = N
(9)

where mmin, and mmaj represent the minority and majority class samples, respectively.
After that, the total number of the new synthetic data that need to be generated for the
minority class to handle unbalancing are needed to be determined using the following
equation:

G = (mmin − mmaj) × β (10)

where β is a real number whose ε[0, 1] value used to specify the desired balance level
after generation of the synthetic data. For each microarray samples in the minority class,
K nearest neighbor’s samples based on the Euclidean distance in the search space are
detected as follows:

ri = �i

k
, i = 1, 2,,mmin (11)

where �i is the number of examples in the K nearest neighbors of the present samples
from themajority class. And then, we need to normalize the values of ri over theminority
samples as follows:

ri
∧ = ri∑mmin

i=1 ri
(12)

After determining the number of K-nearest neighbors for each randomly selected
sample Xi. The number of synthetic data samples for each minority example are needed
to be determined from which a balanced density distribution can be achieved using the
following equation:

gi = ri
∧ × G (13)

64 R. H. Elden et al.

Finally, the synthetic data samples are generated using the following mathematical
model:

si = Xi + (Xzi − Xi) × λ (14)

where Xzi represents the K-nearest neighbors samples from Xi, while λ is a random real
number ε[0, 1].

2.3 Random Forest Classifier (RF)

Random Forest classifier (RF) [21] is one of the most popular supervised machine learn-
ing that was built algorithm based on an ensemble of DT trained through bagging or
bootstrap aggregating. The classification performance of RF depends on the majority
voting of the ensemble trees, therefore increasing the number of trees increases the preci-
sion of the classification outcome and reduces the overfitting of microarray datasets. RF
utilizes two ensemble techniques; Bagging or Boosting algorithms. Bagging technique is
based on generating a different training subset from training samples with replacement,
and the final output is based on majority voting while Boosting combines weak learners
to get strong learners through creating sequential models.

2.4 EPO for Feature Selection

Themodified version of EPO for gene selection from the imbalancedmicroarray datasets
is assembled based on three successive stages:

Initialization
The initial population of the microarray genes are represented in the suggested L-shape
polygon using in which each data point represents the average gene expression level
value. Before evaluation the fitness value of each gene candidate, we have performed
binary conversion using the sigmoidal transfer function as follows the same as in [22]:

Trans.Fun(V (x)) = 1
1+e−V (x)

−→
Peq(x + 1) =

{
1 Rand < T (Y (x + 1))
0 Rand ≥ T (Y (x + 1))

(15)

where V (x) represents the velocity at iteration of the gene candidate. Using Eq. (15), if−→
Peq(x + 1) is 1, this means that such gene candidate are highly selected and otherwise
will not selected.

Updating Solutions
After the binary conversion of the gene candidate, the fitness value is evaluated to deter-
mine the best solution. This step is terminated after the maximum number of iterations
reached.

Supervised Classification
The best selected gene candidates have been randomly divided using hold-out strategy in
which 80% are used for the training set and 20% are used for testing. RF classifier trained

Computational Microarray Gene Selection Model 65

using bagging and boosting algorithms is used the main supervised machine learning
algorithm for evaluating the effectiveness of EPO algorithm in imbalances microar-
rays gene selection. The classification performance was assessed through determining
accuracy, sensitivity, and specificity of the classification phase [23].

3 Experimental Results and Discussion

To confirm the validity of the proposed EPO-RF, 2 sepsis microarray datasets validated
using MATLAB program (R2021b) on computing environment with Intel® Core™ i5
(2.50 GHz) CPU with RAM 8GB and operating system Microsoft Windows 7. The
optimal ensemble model of the RF classifier has been selected based on achieving the
minimumnumber of selected genes and highest accuracy performance. And then, a com-
parative study was performed to validate the robustness of the proposed model versus
five well-known established metaheuristic optimization algorithms, e.g., Harris Hawks
Optimization (HHO) [24], Grey Wolf Optimization (GWO) [25], Salp Swarm Opti-
mization (SSO) [26], Particle Swarm Optimization (PSO) [27], and Genetic Algorithms
(GA’s) [28]. The description of the utilized microarray datasets in terms of number of
samples, and data categories are declared in Table 1. The microarray dataset with the
accession number (GSE66099) has been used to benchmark the performance of the
selected ensemble of the proposed algorithm in differentiating the subtypes of sepsis to
be further used as the main ensemble of EPO-RF algorithm. Table 2 outlines the perfor-
mance of the proposed modified algorithm in terms of the number of selected genes and
Accuracy (ACC.) using SVM with RBF executed for 20 runs of 5-fold cross validation
with the maximum number of iteration was 100. Results stated that the attribute bagging
named by Random Subspace represents the optimal ensemble technique in dealing such
imbalanced datasets as it enhances the performance of the machine learning algorithm
by avoiding the overfitting of the dataset through eliminating the correlation between
estimators in an ensemble by training them on random data samples of features with
replacement instead of thewhole entire feature set. For further confirmation the outstand-
ing performance of the proposed algorithm, a comparative study was conducted versus
the aforementioned well-known metaheuristic optimization algorithms. The results of
the competitive algorithms with the parameters settings are listed in Table 3 that con-
firms the robustness of the selected EPO-RF algorithm with less number of informative
selected genes.

Table 1. List of the utilized microarray datasets with their clinical description.

Dataset Population Samples CO SIRS SP SPS

GSE66099 Pediatric 276 47 30 18 181

GSE13904 139 18 22 32 67

66 R. H. Elden et al.

Table 2. The performance of the ensemble techniques of EPO-RF in gene selection.

Dataset Ensemble method Ensemble problem support Type ACC

GSE66099 Subspace Random subspace Bagging 98.67

AdaBoostM1 Adaptive boosting Boosting 97.80

GentleBoost Gentle adaptive boosting Boosting 97.30

LogitBoost Adaptive logistic regression Boosting 96.80

Bag Bagging Bagging 97.09

LpBoost Linear programming boosting Boosting 96.86

RobustBoost Robust boosting Boosting 97.03

RusBoost Random undersampling boosting Boosting 97.49

TotalBoost Totally corrective boosting Boosting 97.05

Table 3. Performance evaluation and parameters setting of competitormetaheuristic optimization
algorithms using microarray dataset GSE66099.

Method Selected genes Parameters GSE66099

Proposed method 236 M = 2, f = 3, l = 1 98.67

HHO 226 – 78.45

GWO 3223 – 78.16

SSO 10403 L = 1 74.52

PSO 10148 Cognitive factor = 2
Social factor = 2
Inertia weight = 0.9

78.13

GA’s 9822 Crossover rate = 0.08
Mutation rate = 0.01

78.05

To emphasize that the proposed model is adaptable to other microarray datasets, the
performance of gene selection was evaluated through the analysis of the aforementioned
microarrays that listed in Table 4. From the table, it’s evident that the proposed algorithm
achieved the highest classification performance and showed the exploitation capability
of the proposed algorithm.

Computational Microarray Gene Selection Model 67

In terms of average statistical evaluation metrics for the overall classification model,
Table 5 depicts the average accuracy performance of the competitive metaheuristic
optimization algorithms using SVM classifier implemented in the same experimental
environment. By analyzing the aforementioned table, we can conclude that the proposed
model outperforms other suggested optimizers in 24 classificationmodels out of 25 ones.
To summarize, Fig. 3 and Fig. 4 depict the average confusion matrices for the EPO-RF
and other compared algorithms. Figures allow us to determine the best optimizer which
maximized the accuracy.

Table 4. Statistical evaluation results of the proposed algorithm using SVM classifier with 20
runs of fivefold cross-validation procedure. Acc., Accuracy; Spec., Specificity; Sens., Sensitivity;
Prec., Precision.

Dataset Classification model Class Acc. Sens. Spec. Prec.

GSE66099 CO vs. SIRS vs. SP vs. SPS CO 98.67 98.86 99.98 99.94

SIRS 91.13 99.70 99.11

SP 99.73 99.63 99.88

SPS 99.11 98.60 95.78

GSE13904 CO 91.84 100.00 96.46 88.76

SIRS 100.00 98.00 93.84

SP 97.85 95.23 84.75

SPS 77.29 100.00 100.00

Table 5. Average accuracy performance of the competitive optimization algorithms using SVM
classifier with 20 runs of fivefold cross-validation procedure.

Dataset EPO-RF PSO SSO GWO HHO GA’s

GSE66099 98.67 78.13 74.52 78.16 78.45 78.05

GSE13904 91.84 57.36 77.03 57.94 55.74 57.11

68 R. H. Elden et al.

Fig. 3. (A−F) The average confusion matrix of the EPO-RF algorithm in comparison with other
metaheuristic algorithms for GSE66099 A) EPO, B) PSO, C) GWO, D) SSA, E) HHO, and F)
GA’s.

Computational Microarray Gene Selection Model 69

Fig. 4. (A−F) The average confusion matrix of the EPO-RF algorithm in comparison with other
metaheuristic algorithms for GSE13904 A) EPO, B) PSO, C) GWO, D) SSA, E) HHO, and F)
GA’s.

4 Conclusion

A modified version of a nature inspired metaheuristic optimization algorithm named by
EPO-RF has been suggested for informative gene selected from imbalanced microarray
datasets. The performance of the proposed algorithm was conducted using two real
world microarray datasets. The average experimental results confirmed the robustness
of EPO-RF in comparison to existing PSO, SSO, GWO, HHO, and GA’s well known

70 R. H. Elden et al.

metaheuristic optimization techniques after 20 runs of fivefold cross validations. Further
this work can be extended to evaluate proposed algorithm with other metaheuristic
optimization algorithms to be popularized as a novel technique for handling imbalanced
datasets.

References

1. Mao, Z., Cai, W., Shao, X.: Selecting significant genes by randomization test for cancer
classification using gene expression data. J. Biomed. Inform. 46, 594–601 (2013)

2. Zhang, H.-J., Li, H., Li, X., Zhao, B., Ma, Z.-F., Yang, J.: Influence of pyrolyzing atmosphere
on the catalytic activity and structure of Co-based catalysts for oxygen reduction reaction.
Electrochim. Acta 115, 1–9 (2014)

3. Chen, Y., Wang, L., Li, L., Zhang, H., Yuan, Z.: Informative gene selection and the direct
classification of tumors based on relative simplicity. BMC Bioinform. 17, 44 (2016)

4. Liu, H., Liu, L., Zhang, H.: Ensemble gene selection for cancer classification. Pattern
Recognit. 43, 2763–2772 (2010)

5. Tang, Y., Zhang, Y., Chawla, N.V., Krasser, S.: SVMs modeling for highly imbalanced
classification. IEEE Trans. Syst. Man Cybern. 39, 281–288 (2009)

6. Krawczyk, B.,Woźniak,M., Schaefer, G.: Cost-sensitive decision tree ensembles for effective
imbalanced classification. Appl. Soft Comput. 14, 554–562 (2014)

7. Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F.: SMOTE–IPF: addressing the noisy and
borderline examples problem in imbalanced classification by a re-sampling method with
filtering. Inf. Sci. 291, 184–203 (2015)

8. Xiao,W., Zhang, J., Li,Y., Zhang, S.,Yang,W.:Class-specific cost regulation extreme learning
machine for imbalanced classification. Neurocomputing 261, 70–82 (2017)

9. Lopez-Garcia, P.,Masegosa,A.D.,Osaba, E.,Onieva, E., Perallos,A.: Ensemble classification
for imbalanceddata basedon feature spacepartitioning andhybridmetaheuristics.Appl. Intell.
49(8), 2807–2822 (2019). https://doi.org/10.1007/s10489-019-01423-6

10. Krawczyk, B., Galar, M., Jeleń, Ł, Herrera, F.: Evolutionary undersampling boosting for
imbalanced classification of breast cancer malignancy. Appl. Soft Comput. 38, 714–726
(2016)

11. Aljarah, I., Faris, H., Mirjalili, S.: Optimizing connection weights in neural networks using
the whale optimization algorithm. Soft. Comput. 22(1), 1–15 (2016). https://doi.org/10.1007/
s00500-016-2442-1

12. Aljarah, I., Faris, H., Mirjalili, S., Al-Madi, N.: Training radial basis function networks using
biogeography-based optimizer. Neural Comput. Appl. 29(7), 529–553 (2016). https://doi.org/
10.1007/s00521-016-2559-2

13. Roshan, S.E.,Asadi, S.: Improvement of bagging performance for classification of imbalanced
datasets using evolutionary multi-objective optimization. Eng. Appl. Artif. Intell. 87, 103319
(2020)

14. Hashim, F., Mabrouk, M.S., Al-Atabany, W.: GWOMF: Grey Wolf Optimization for motif
finding. In: 2017 13th International Computer Engineering Conference (ICENCO), pp. 141–
146 (2017)

15. Elden, R.H., Ghoneim, V.F., Al-Atabany,W.: A computer aided diagnosis system for the early
detection of neurodegenerative diseases using linear and non-linear analysis. In: 2018 IEEE
4th Middle East Conference on Biomedical Engineering (MECBME), pp. 116–121 (2018)

16. Elden, R.H., Ghoneim,V.F., Hadhoud,M.M.A., Al-Atabany,W.: Studying genes related to the
survival rate of pediatric septic shock. In: 2021 3rd Novel Intelligent and Leading Emerging
Sciences Conference (NILES), pp. 93–96 (2021)

https://doi.org/10.1007/s10489-019-01423-6
https://doi.org/10.1007/s00500-016-2442-1
https://doi.org/10.1007/s00521-016-2559-2

Computational Microarray Gene Selection Model 71

17. Abdelnaby, M., Alfonse, M., Roushdy, M.: A hybrid mutual information-LASSO-genetic
algorithm selection approach for classifying breast cancer (2021)

18. Dhiman, G., Kumar, V.: Emperor penguin optimizer: a bio-inspired algorithm for engineering
problems. Knowl. Based Syst. 159, 20–50 (2018)

19. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer,W.: SMOTE: syntheticminority over-sampling
technique. J. Artif. Intell. Res. 16, 321–357 (2002)

20. Haibo, H., Yang, B., Garcia, E.A., Shutao, L.: ADASYN: adaptive synthetic sampling app-
roach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008)

21. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
22. Dhiman, G., et al.: BEPO: a novel binary emperor penguin optimizer for automatic feature

selection. Knowl. Based Syst. 211, 106560 (2021)
23. Prince John, R., Lewall David, B.: Sensitivity, specificity, and predictive accuracy asmeasures

of efficacy of diagnostic tests. Ann. Saudi Med. 1, 13–18 (1981)
24. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks

optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019)
25. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61

(2014)
26. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm

algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114,
163–191 (2017)

27. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 -
International Conference on Neural Networks, vol. 1944, pp. 1942–1948 (1998)

28. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994)

Fuzzing-Based Grammar Inference

Hannes Sochor(B) , Flavio Ferrarotti , and Daniela Kaufmann

Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria
{hannes.sochor,flavio.ferrarotti,daniela.kaufmann}@scch.at

Abstract. In this paper we propose and suggest a novel approach for
grammar inference that is based on grammar-based fuzzing. While exe-
cuting a target program with random inputs, our method identifies the
program input language as a human-readable context-free grammar. Our
strategy, which integrates machine learning techniques with program
analysis of call trees, uses a far smaller set of seed inputs than earlier
work. As a further contribution we also combine the processes of gram-
mar inference and grammar-based fuzzing to incorporate random sample
information into our inference technique. Our evaluation shows that our
technique is effective in practice and that the input languages of tested
recursive-descending parser are correctly inferred.

Keywords: Fuzzing · Grammar-based fuzzing · Software testing ·
Grammar inference · Grammar learning · Program analysis

1 Introduction

Software testing is one of the most important phases of the software lifecy-
cle. This includes testing not only for functional correctness but also for safety
and security. Finding bugs and security vulnerabilities presents a difficult task
when facing complex software architectures. An integral part of software test-
ing is fuzzing software with more or less random input and tracking how the
software reacts. Having knowledge about the input structure of the software
under test enables the fuzzer to generate more targeted inputs which signif-
icantly increases the chance to uncover bugs and vulnerabilities by reaching
deeper program states.

As such the most successful fuzzers all come with some sort of model that
describes the input structure of the target program. One of the most promis-
ing methods poses grammar-based fuzzing, where inputs are generated based
on a context-free grammar which fully covers the so-called input language of
a program. This makes it possible for the grammar-based fuzzer to produce
inputs that are valid or near-valid, considerably raising its success rate. Although
grammar-based fuzzing is a very successful method, in most cases such a precise
description of the input language is not available.

The automation of learning input languages for a program, in our instance
in the form of a synthesized context-free grammar, is still an issue in current
grammar-based fuzzing techniques and is not completely resolved yet. With these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 72–86, 2023.
https://doi.org/10.1007/978-3-031-21595-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_6&domain=pdf
http://orcid.org/0000-0001-6238-6293
http://orcid.org/0000-0003-2278-8233
http://orcid.org/0000-0002-5645-0292
https://doi.org/10.1007/978-3-031-21595-7_6

Fuzzing-Based Grammar Inference 73

capabilities, we would be able to apply grammar-based fuzzing to a wider range
of problems. Additionally it would be possible to utilize the inferred model for
additional security analysis, such as comparing the inferred grammars of different
implementations to determine whether they are equivalent.

While some current grammar-based fuzzing tools can be used more broadly
but suffer from mistakes as a result, others are connected to specific programming
paradigms or languages. In addition, state of the art grammar inference tools
heavily depend on a good starting set of seed inputs to be able to correctly
infer a grammar [8,10]. However, a good set of inputs is frequently not available,
which leaves much room for improvement. Especially in the setting of security
analysis that includes grammar-based fuzzing, a proper set of seeds is vital, as
the inferred grammar has to be as accurate as possible.

In this paper we propose a novel automated method for grammar-based
fuzzing, which automatically learns the grammar that is later used for fuzzing.
In our technique we start from an incomplete seed grammar that is extracted
from a small set of seed inputs. While fuzzing the target program, we actively
learn and continuously enhance this grammar. These improvements in the gram-
mar are based on information that we gain while executing our target program
with randomly generated inputs and observing the response of the program. Our
method makes use of a machine learning algorithm in combination with program
analysis, more precisely, by extracting the call tree of some executed inputs. Our
approach is generic and may be utilized regardless of the programming language
of the target program because the learning process we use is black-box and the
extraction of call trees is not based on a particular programming language. In
addition, the input set needed for our approach is significantly smaller than in
state of the art grammar inference tools [8,10]. The fundamental disadvantage of
our approach is that it is restricted to recursive top-down parsers, which account
for up to 80% of all parsers in use today [12]. Most grammatical inference tools
also share this restriction, according to [8,10].

Our experimental results show that our fuzzing-based grammar inference
method enables us to learn a context-free grammar from tested recursive top-
down parsers with the maximum possible accuracy in every case that we consid-
ered. Our technique accomplishes this in a relatively quick time while employing
a simple program analysis technique. We further generate a human-readable
grammar that may be applied to further security analysis.

The paper is structured as follows: We provide background information on
formal definitions and learnability in language theory in Sect. 2. Our main con-
tribution can be found in Sect. 3 where we present our method in detail, followed
by an experimental evaluation of our approach in Sect. 4 as well as an in-depth
discussion on related work in Sect. 5. We give our conclusion in Sect. 6.

2 Preliminaries

In this section we introduce the necessary notation and theory for the rest of the
paper. We assume the reader is familiar with basic concepts of language theory.
An excellent reference for that is the classical book by Hopcroft and Ullman [9].

74 H. Sochor et al.

Let Σ be an alphabet, i.e., a finite set of symbols. A finite sequence of symbols
taken from Σ is called a word or string over Σ. The free monoid of Σ, i.e., the
set of all (finite) strings over Σ plus the empty string λ, is denoted as Σ∗ and
known as the Kleene star of Σ. If v, w ∈ Σ∗, then vw ∈ Σ∗ is the concatenation
of v and w and |vw| = |v| + |w| is its length. If u = vw, then v is a prefix of u
and w is a suffix. A language is any subset of Σ∗.

A grammar is formally defined as a 4-tuple G = (N,Σ,P, S), where N and Σ
are finite disjoint sets of nonterminal and terminal symbols respectively, S ∈ N
is the start symbol and P is a finite set of production rules, each of the form:

(Σ ∪ N)∗N(Σ ∪ N)∗ → (Σ ∪ N)∗.

We say G derives (or equivalently produces) a string y from a string x in
one step, denoted x ⇒ y, iff there are u, v, p, q ∈ (Σ ∪ N)∗ such that x = upv,
p → q ∈ P and y = uqv. We write x ⇒∗ y if y can be derived in zero or
more steps from x, i.e., ⇒∗ denotes the reflexive and transitive closure of the
relation ⇒.

The language of G, denoted as L(G), is the set of all strings in Σ∗ that can
be derived in a finite number of steps from the start symbol S. In symbols,

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

In this work, Σ always denotes the “input” alphabet (e.g., the set of ASCII
characters) of a given executable (binary) program p. The set of valid inputs of p
is defined as the subset of Σ∗ formed by all well formed inputs for p. In symbols:

validInputs(p) = {w ∈ Σ∗ | w is a well formed input for p}

The definition of a well formed input for a given program p depends on the
application at hand. In our setting we only need to assume that it is possible to
determine whether a given input string w is well formed or not for a program p
by simply running p with input w.

As usual, we assume that validInputs(p) is a context-free language. Conse-
quently, there is a context-free grammar Gp such that L(Gp) = validInputs(p).
Recall that a grammar is context-free if its production rules are of the form
A → α with A a single nonterminal symbol and α a possibly empty string of
terminals and/or nonterminals.

Our main contribution in this paper is a novel algorithm that takes as input
a program p and a finite (small) subset I of validInputs(p), and infers a gram-
mar Gp such that L(Gp) approximates validInputs(p). I is usually called seed
input. We say “approximates” since it is not decidable in our setting (see [5])
whether L(Gp) = validInputs(p). To evaluate how well L(Gp) approximates
validInputs(p), we measure the precision and recall of L(Gp) w.r.t. validInputs(p)
as in [2], among others.

In our setting we first fix a procedure to calculate the probability distribution
of a language, starting from its corresponding grammar. Following [2] we use
random sampling of strings. Let G = (N,Σ,P, S) be a context-free grammar.

Fuzzing-Based Grammar Inference 75

As a first step, G is converted to a probabilistic context-free grammar by assigning
a discrete distribution DA to each nonterminal A ∈ N . As usual, DA is of size
|PA|, where PA is the subset of productions in P of the form A → α. Here, we
assume that DA is uniform. We can then randomly sample a string x from the
language L(G,A) = {wi ∈ Σ | A ⇒∗ wi}, denoted x ∼ PL(G,A), as follows:

– Using DA select randomly a production A → A1 · · · Ak ∈ PA.
– For i = 1, . . . , k, recursively sample xi ∼ PL(G,Ai) if Ai ∈ N ; otherwise let

xi = Ai.
– Return x = x1 · · · xk.

The probability distribution PL(G) of the language L(G) is simply defined as
the probability PL(G,S) induced by sampling strings in the probabilistic version
of G defined above.

We can now measure the quality of a learned (or inferred) language L′ with
respect to the target language L in terms of precision and recall.

– The precision of L′ w.r.t. L, denoted precision(L′,L), is defined as the prob-
ability that a randomly sampled string w ∼ PL′ belongs to L. In symbols,
Prw∼PL′ [w ∈ L].

– Conversely, the recall of L′ w.r.t. L, denoted recall(L′,L), is defined as
Prw∼PL [w ∈ L′].

We say that L′ is a good approximation to L if it has both, high precision and
high recall. Note that, a language L′ = {w}, where w ∈ L, has perfect precision,
but most likely has also very low recall. On the other hand, L′ = Σ∗ has perfect
recall, but probably low precision.

It is well known that there are effective algorithms that can infer a finite
automaton (and hence also a regular grammar or regular expression) to recognize
regular languages L. These algorithms need however a “teacher” that can answer
membership and equivalence queries w.r.t. L. The first and most well known
algorithm of this kind was introduced by Dana Angluin [1] and is known as L∗.

The membership query inquires as to whether a provided string is a part
of the target language. Since it pertains to determining if a particular input
to a program p belongs to validInputs(p), this can obviously be addressed in
our context. The equivalence query tests if the target language exactly matches
the language that a given automaton (or grammar in our example) recognizes.
Otherwise, the “teacher” ought to be able to offer a counterexample.

We leverage the approach NL∗ presented in [4] as part of our strategy (i.e.
as a subroutine) in our algorithm to infer context free grammars from program
input samples. This approach is based on L∗ and helps learning regular languages
efficiently, although it learns residual-finite state machines as opposed to deter-
ministic finite automata. The assumption is the same as for L∗: a ”teacher” who
is able to respond to membership and equivalence questions. However, because
we are unable to answer the equivalency question in our environment, we must
instead rely on statistical sampling to look for counterexamples.

76 H. Sochor et al.

Algorithm 1: Fuzzing-based Grammar Inference Algorithm
Input : Seed inputs I ⊆ validInputs(p), set of terminals Σ and program p
Output: Inferred grammar G′

p

1 Gs := findSeedGrammar(I, p);
2 Ns := Gs.getNonTerminals();
3 G′

p := Gs.clone();
4 for A ∈ Ns do
5 c := null;
6 repeat
7 M := runNL∗(p, A, Σ, Ns, c);
8 c := searchForCounterexample(M, p, A, Gs, 1000, 10) � See Algorithm 2;

9 until c = null ;
10 α := M.toRegularExpression();
11 G′

p.add(“A → α”)

12 return G′
p

3 Algorithm

The goal of our approach is to infer a context-free grammar G′
p given a program p,

a set of terminal symbols Σ as well as some valid seed inputs I. Ideally the
language L(G′

p) produced by our inferred grammar G′
p should be able to produce

the input language validInputs(p) of p such that L(G′
p) = validInputs(p). To

achieve our goal, we apply the following steps:

1. Seed Grammar Extraction: First we extract a seed grammar Gs from p
using the valid seed inputs in I.

2. Seed Grammar Expansion: Next we continuously expand the rules of Gs

to achieve a better coverage of validInputs(p). We do this by utilizing the NL∗

algorithm. While learning the rules of G′
p, we apply grammar-based fuzzing

to find counterexamples needed during the learning process.
3. Grammar-based fuzzing: At some point we have inferred a grammar G′

p

where finding a counterexample is hard because we have, or nearly have,
identified validInputs(p). We can run our grammar-based fuzzer indefinitely
at this point until we uncover another counterexample, if one exists.

In this section we first give a formal description of our algorithm, followed by
an example to better illustrate the learning process. Finally, we briefly discuss
how our algorithm may be applied in a grammar-based fuzzing setting.

3.1 Learning Context-Free Grammars

Assume we have a program p. We want to learn a grammar Gp such that L(Gp)
approximates validInputs(p) as well as possible in terms of precision and recall
(see preliminaries). As usual, the set of terminal symbols Σ of the target gram-
mar Gp, or equivalently the set of characters accepted by p, is assumed to be
known. We further assume an initial (finite) subset I of validInputs(p). Our

Fuzzing-Based Grammar Inference 77

Algorithm 2: Adapted Equivalence Query
Function: searchForCounterexample(M, p, A, Gs, n, m)
Input : Automaton M , program p, Seed Grammar Gs, NonTerminal A, Set

of parse Trees T and maximum number n and m of trials and
mutations per trial, respectively.

Output : Counterexample string if found. Otherwise, null .
1 G := M.toGrammar();
2 for (i := 0; i < n; i + +) do
3 w := G.generateString();
4 if ¬membershipQuery(Gs, w, A, T , p) return w � See Algorithm 3;
5 for (j := 0; j < m; j + +) do
6 w′ := w.applyMutation();
7 if w′ /∈ L(G) ∧ membershipQuery(Gs, w

′, A, T , p) return w′;

8 return null

Algorithm 3: Adapted Membership Query
Function: membershipQuery(G, w, A, T , p)
Input : Grammar G = (N, Σ, P, S), w ∈ (N ∪ Σ)∗, A ∈ N \ {S}, set T of

parse trees, program p.
Output : true if A → w is deemed to be a good candidate for extending the

productions of G. Otherwise false.
1 if ¬∃Tx(T ∈ T ∧ x ∈ nodes(T) ∧ label(x) = A) return false;
2 s := deriveString(w, G) � Derives s ∈ Σ∗ from w using G ;
3 TA := parseTree(A, w, s, G) � Using left-most derivation and A → w ;
4 for each T ∈ T do
5 for each x ∈ nodes(T) with label(x) = A do
6 T.replaceSubTree(x, TA) � Subtree rooted at node x;

7 input := T.toString();
8 if input /∈ validInputs(p) return false;
9 else

10 if p.parseTree(input) = T return true else return false;

strategy is based on extracting a seed grammar from p using I, and then expand-
ing it using grammar-based fuzzing of p until we obtain a good approximation of
validInputs(p). Grammar-based fuzzing of p means that we execute p with ran-
domly sampled inputs produced from a given grammar. The concrete strategy
is described in Algorithm 1.

The seed grammar extraction is done by the function findSeedGrammar(I, p)
(line 1 in Algorithm 1). The set of non-terminals Ns of the seed grammar Gs is
formed by the names of all functions called by executing p with inputs from I
(line 2 in Algorithm 1). The set of productions Ps of Gs is obtained as follows.
For each u ∈ I,

1. Extract from p and u a parse tree Tu for u, where the internal nodes of Tu are
labelled by non-terminals in Ns and the leaves are labelled by terminals in Σ.

78 H. Sochor et al.

2. For each internal node e of Tu with children c1, . . . , cn ordered from left to
right, add the rule A → L1 . . . Ln to Ps, where A,L1, . . . , Ln are the labels of
the nodes e, c1, . . . , cn, respectively.

The extraction of the parse trees Tu simply requires to track the function
calls during an execution of p with input u. This can be done in multiple ways.
In our case, we use the dynamic symbolic execution framework in our eknows
platform [13]. A perfectly good alternative is to use dynamic tainting as in [8].
We omit here the technical details of this process as they are well known.

By construction, I ⊆ L(Gs). Furthermore, if we assume that p uses a recur-
sive descent parsing technique where each procedure/function implements one
of the nonterminals of a grammar Gp such that L(Gp) = validInputs(p), then
L(Gs) ⊆ validInputs(p). Moreover, for every nonterminal symbol A of Gs, we
have that L(Gs, A) = {w ∈ Σ | A ⇒∗ w} is non empty, i.e., for every non-
terminal A of the seed grammar there is at least one finite derivation that starts
with A and produces a word in Σ∗.

Next the algorithm tries to augment the set of productions in Gs, i.e., in the
seed grammar, to better approximate validInputs(p) (line 4–11 in Algorithm 1).
It proceeds by considering, for every non-terminal symbol A ∈ Ns, a new rule
of the form A → α, where α is a regular expression such that L(α) ⊆ (Ns ∪
Σ)∗. We search for a suitable α using the NL∗ algorithm [4] couple with the
procedure described in Algorithm 3 and 2 to answer the necessary membership
and equivalence queries, respectively. At the end of this process, we obtain α
by translating (following the well known standard procedure) the automaton
returned by NL∗ into an equivalent regular expression (line 10).

Each time NL∗ needs to answer a membership query for a string w ∈ NS ∪ Σ,
it calls the procedure described in Algorithm 3 with the following parameters:

– Seed grammar Gs.
– String w.
– Non-terminal A.
– Set T of parse trees such that Tu ∈ T iff u ∈ I and Tu is the tree extracted

in the previous stage (i.e., during the inference process of the seed grammar
Gs) by tracking the function calls in the run of p with input u.

– Program p.

The function deriveString in line 2 of Algorithm 3 produces a string s ∈ Σ∗

starting from w by applying the rules of G with a grammar-based fuzzing tech-
nique. Note that the function parseTree(A,w, s,G) in line 3 returns the parse
tree corresponding to the left-most derivation A ⇒ w ⇒∗ s of G. On the other
hand, p.parseTree(input) in line 10 returns the parse tree obtained by track-
ing the function calls in the run of p with input , using the procedure explained
earlier. The remaining parts of this algorithm are self-explanatory.

Whenever NL∗ needs answer to the equivalence query for an automaton M ,
we apply the heuristic described in Algorithm 2. Notice, that we do not have
in this context a properly defined regular language that NL∗ needs to learn.
Instead, we search for a counterexample string in L(M) that does not satisfy

Fuzzing-Based Grammar Inference 79

parse → expr

expr → term | term+term | term−term

term → factor | factor∗factor | factor/factor
factor → 1 | 2 | 3 | (expr)

Listing 1. Target Grammar

the (adapted) membership query expressed by Algorithm 3, or vice versa. The
search for a counterexample is performed until one is found or a maximum num-
ber of trials n has been reached. In each trial, the algorithm first derives a string
w ∈ (Ns ∪Σ) by applying grammar-based fuzzing with a grammar G equivalent
to the automaton M (line 3). If w does not satisfy the (adapted) membership
query, the algorithm returns w as a counterexample (line 4). Otherwise, it gen-
erates a mutation w′ of w (line 6). If w′ is not in the language recognized by
G (or equivalently M) but satisfies the (adapted) membership query, then the
algorithm returns w′ as a counterexample (line 7). Otherwise, it tries different
mutations of w up to a maximum number m. For the cases considered in the
experiments reported in this paper, n = 1000 and m = 10 gives us optimal
results and good performance.

3.2 Example

We will provide an example run of our algorithm to give a better understanding
of the formal definition above. We will use the example grammar provided in
Listing 1 as Gp. Assume we have a parser p where validInput(p) = L(Gp). We
know the set of terminals Σ = {1, 2, 3, (,),+,−, ∗, /} as well as the initial set of
seed inputs I = {“1”}. We start extracting a seed grammar Gs by tracking p
while executing u ∈ I. This returns a parse tree Tu. Figure 1 displays Tu as well
as the result of transforming Tu to Gs.

Next we want to expand the rules of Gs. At this point we will use the expan-
sion process of the rule factor → 1 as a showcase example. To expand the rule,
we want to learn factor → αfactor. First we have to identify which symbols are
used by αfactor. We do this by using static analysis to identify which functions
are called by factor and add the according non-terminals as well as Σ. In our
case the set of symbols is {Σ∪expr}. Now we can apply NL* to learn αfactor. To
do so, we have to answer both membership-queries as well as equivalence-queries.
First we will give some examples on how membership-queries are answered while
learning the rules expr → αexpr as well as factor → αfactor:

1. w ∈ L(αexpr) for w = term term: We start by replacing the children of expr in
Tu with w. Next we replace left non-terminals in the tree by applying the rules
of Gs. This process is illustrated in Fig. 2. Finally, we transform the newly
built parse tree to w′ = 11 and execute p with w′. As w′ /∈ validInputs(p),
we return w /∈ L(αexpr).

2. w ∈ L(αexpr) for w = “term+term”: Again, we start by replacing the children
of expr in Tu with w. Next we replace left non-terminals in the tree by

80 H. Sochor et al.

parse

expr

term

factor

1

parse expr

expr term

term factor

factor 1

Fig. 1. From parse tree to grammar

parse

expr

term

factor

1

parse

expr

term term

parse

expr

term

factor

1

term

factor

1

Fig. 2. Parse tree evolution of query 1

parse

expr

term

factor

1

parse

expr

term + term

parse

expr

term

factor

1

+ term

factor

1

Fig. 3. Parse tree evolution of query 2

parse

expr

term

factor

1

parse

expr

term

factor

expr

parse

expr

term

factor

expr

term

factor

1

parse

expr

term

factor

1

Fig. 4. Parse tree evolution of query 3

applying the rules of Gs as illustrated in Fig. 3. When we execute p with
input w′ = 1+1 we see that w′ ∈ validInputs(p). Now we check the call tree
of the execution and see that it is equivalent to the parse tree of w′, so we
return w ∈ L(αexpr).

3. w ∈ L(αfactor) for w = “expr”: Again, we replace the children of expr in Tu

with w and resolve left non-terminals with Gs. This leads to the trees shown
in Fig. 4. Executing p with input w′ = 1 shows that w′ ∈ validInputs(p). Note
that the call tree of executing w′ (see the most right tree in Fig. 4) is not
equivalent to the parse tree of w′ so we return w /∈ L(αfactor).

Next we provide an example on how we will answer an equivalence-query
while learning the rule expr → α. We convert the given automaton M to a
regular expression α = term | term + term. Next we build a new grammar Gα

containing a single rule of the form S → term | term + term with S being the
start symbol. We continue by searching for a counterexample by generating new
words using a grammar-based fuzzer using Gα. Assume we find a counterexample
c = term − term by applying a mutation to a generated word term + term. We
return c and continue to answer membership-queries until the next equivalence-
query is performed. In our case, the next automaton would translate to the
regular expression α = term | term(−term | +term | ε). As this already is

Fuzzing-Based Grammar Inference 81

parse → expr

expr → term | term (−term | +term | ε)
term → factor | factor (/factor | ∗factor | ε)

factor → 1 | 2 | 3 | (expr)

Listing 2. Learned Grammar

Table 1. Experiment results

Target Precision Recall MQ EQ Time

ExprParser 1.0 1.0 6 898 7 14 s

MailParser 1.0 1.0 8 482 6 1m 42 s

HelloParser 1.0 1.0 7 168 2 1m 09 s

AdvExprParser 1.0 1.0 22 984 8 1m 47 s

JsonParser 1.0 1.0 35 058 35 3m 23 s

the correct α, we will not be able to find another counterexample and stop
fuzzing when the maximum specified amount of tries is reached. Finally, we add
expr → term | term(−term | +term | ε) to G′

p. We repeat the process described
above for every non-terminal in Gs. The resulting grammar G′

p is shown in
Listing 2. This grammar is equivalent to Gp given in Fig. 1.

3.3 Application in Grammar-Based Fuzzing

While learning a rule A → α we systematically explore a small part of p, more
specifically we explore the function which is contributed to the non-terminal A.
When an arbitrary membership-query is executed, we guide the parser to the
exact part of the code where the query is parsed by executing the query in a
known context. This has the effect that, while performing an equivalence query,
we can effectively fuzz exactly that part of the code until we find a counterexam-
ple. Additionally, a positive side effect is that the mutations we insert will most
likely explore border-line cases within the context of A which reduces the search
space effectively. As the learning of a rule A → α is completely independent
from learning another, we may learn all the rules simultaneously. This enables
us to run one grammar-based fuzzer targeting each function of p separately for
as long as we need, pausing fuzzing only when we are able to fine-tune the used
grammar by a deterministic search with NL*.

4 Experiments and Evaluation

In this section we evaluate the performance of our fuzzing-based grammar infer-
ence method. Given a single input word, we apply our technique to different
parsers and calculate the precision and recall of the inferred grammar. For
each test run we start with a given target grammar Gp and automatically

82 H. Sochor et al.

0 0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

Membership Queries (104)

Precision
Recall

Fig. 5. Json Learning process

generate a parser p that accepts our target grammar Gp using the compiler-
compiler Coco/R1. We apply our fuzzing-based grammar inference algorithm
on this setup. If a specified maximum amount of allowed membership queries
has been reached without finding a counterexample, execution is stopped and
the current state of the inferred grammar G′

p is returned. Finally, we calculate
precision(L(G′

p), L(Gp)) and recall(L(G′
p), L(Gp)) by randomly sampling 1 000

words each.
Table 1 displays the results, with the first column indicating the targeted

parser. The second and third columns show the resulting precision and recall of
our extracted grammar, followed by the total amount of unique membership-
queries (MQ) performed, the total number of equivalence-queries (EQ) per-
formed, and the time elapsed. In contrast to previous approaches that rely on a
good number of representative seed inputs to perform appropriately (cf. Sect. 5),
we have used sets I with no more than two seed inputs each. Our results in
Table 1 show that we are able to recover a grammar that perfectly matches the
target grammar for the 1 000 inputs examined. This shows that our approach is
indeed robust to recover context-free grammars from recursive top-down parsers.

In the following we provide more details for the experiment “JsonParser”.
The target grammar is given in Listing 3. Listing 4 shows our learned grammar.
Additionally Fig. 5 shows a more detailed analysis of the learning process for
“JsonParser”. We calculate precision(L(G′

p), L(Gp)) and recall(L(G′
p), L(Gp))

every time an equivalence query is performed, where G′
p is the current state of

the inferred grammar. Again, we use 1 000 randomly sampled words each. As
can be seen in Fig. 5, precision stays at 1 most of the time during the learning
process, due to the fact that L(Gs) ⊆ L(Gp) (see Sect. 3.1).

1 https://ssw.jku.at/Research/Projects/Coco/.

https://ssw.jku.at/Research/Projects/Coco/

Fuzzing-Based Grammar Inference 83

Initial Input: “{‘a’. 1e − 0 , ‘’ : [true, true]}”
Json → Element.

Element → Ws Value Ws.

Ws → " ".

Value → Object | Array |
String | Number |
"true" | "false" | "null".

Object → "{" Ws [String Ws ":"

Element ["," Members]] "}".

Members → Member ["," Members].

Member → Ws String Ws ":" Element.

Array → "[" Ws [Value Ws

["," Elements]] "]".

Elements → Element ["," Elements].

String → "’" Characters "’".

Characters → ε | Character Characters.

Character → "a" | "b" | "c".
Number → Integer Fraction

Exponent.

Integer → ["−"] ("0" |
Onenine [Digits]).

Digits → Digit [Digits].

Digit → "0" | Onenine.
Onenine → "1" | "2" | "3".

Fraction → ε | "." Digits.

Exponent → ε | "E" Sign Digits |
"e" Sign Digits.

Sign → ε | "+" | "−".

Listing 3. Json Target Grammar

Json → Element.

Element → Ws Value Ws.

Ws → " ".

Value → Object | Array |
String | Number |
"true" | "false" | "null".

Object → "{" (Ws "}" | Ws ("}" |
String Ws ":" (Element

"}" | Element ("}" | ","
Members "}")))).

Members → Member |
Member ("," Members | ε).

Member → Ws String Ws ":" Element.

Array → "[" (Ws "]" | Ws ("]" |
Value (Ws "]" | Ws ("]" |
"," Elements "]")))).

Elements → Element |
Element ("," Elements | ε).

String → "’" Characters "’" .

Characters → ε | Character Characters.

Character → "a" | "b" | "c".
Number → Integer Fraction

Exponent.

Integer → "0" | Onenine |
Onenine (Digits | ε) |
"−" (Onenine | Onenine
(Digits | ε) | "0").

Digits → Digit | Digit (Digits | ε).
Digit → "0" | Onenine.

Onenine → "1" | "2" | "3".
Fraction → ε | "." Digits.

Exponent → ε | "E" Sign Digits |
"e" Sign Digits.

Sign → ε | "+" | "−".

Listing 4. Json Learned Grammar

If only a portion of the desired language is accepted by the rule at the mea-
surement point, precision remains at 1. Precision may gradually drop as you
learn more rules over time. This could occur when attempting to identify the
correct body of a rule, in particular when the rule accepts a superset of the
wanted language. These inaccuracies are automatically fixed when a counterex-
ample is found. For example the drop in precision in Fig. 5 occurs while learning
a rule which consumes integers. The learned automaton accepts words containing
preceding zeros as well as words containing more than one “-” at the beginning.
Both are not accepted by the parser. As such, the precision of the learned gram-
mar was lowered to 0.5. After the drop in precision, first the issue with multiple
“-” symbols is fixed by providing a counterexample. This raises precision to 0.8.
Finally, after providing another counterexample and consequently disallowing
preceding zeros, the rule is learned correctly and precision increases back to 1.

In terms of recall, we see a consistent increase over time as the learnt grammar
is expanded, and as a result, the learned language grows significantly. When a

84 H. Sochor et al.

rule that consumes terminals is learned, the boost in recall is often greater. For
example, the final spike in recall occurs while learning the rules for parsing digits
and mathematical symbols.

We must remark that we have rarely used optimizations in our implementa-
tion, which leaves a lot of room for improvement. Possible performance improve-
ments include (i) using hash-tables to store previously seen membership-queries
instead of a plain-text list, (ii) replacing the early-parser used to determine
whether a grammar produces a given word with something more efficient, (iii)
using paralellization to speed up fuzzing, and (iv) to simultaneously learn the
different rules of the seed grammar.

5 Related Work

Extracting context-free grammars for grammar-based fuzzing is not a new idea.
Several methods exist for grammar learning which try to recover a context-free
grammar by means of membership-queries from a black-box, such as by begin-
ning with a modestly sized input language and then generalizing it to better fit
a target language [2,15]. Another approach synthesizes a grammar-like structure
during fuzzing [3]. However, this grammar-like structure has a few shortcomings,
e.g., multiple nestings that are typical in real-world systems are not represented
accurately [8]. Other methods use advanced learning techniques to derive the
input language like neural networks [7] or Markov models [6]. Although black-box
learning is generally promising, it suffers from inaccuracies and incompleteness
of learned grammars. It is shown in [1] that learning a context-free language from
a black box cannot be done in polynomial time. As a result, all pure black-box
methods must give up part of the accuracy and precision of the learnt grammars.

Due to limitations with black-box approaches there exist several white-box
methods to recover a grammar. If full access to the source code of a program is
given, described methods fall under the category of grammar inference. Known
methods for inferring a context-free language using program analysis include
autogram [10] and mimid [8]. Unlike its predecessor autogram, which relies
on data flow, mimid uses dynamic control flow to extract a human readable gram-
mar. Finally, [11] describes how a grammar can be recovered using parse-trees
of inputs, which is then improved with metrics-guided grammar refactoring. All
of the aforementioned grammar inference methods share the same flaw: They all
primarily rely on a predetermined set of inputs from which a grammar is derived
that corresponds to this precise set of inputs. If some parts of a program are not
covered by the initial set of inputs, the resulting grammar will also not cover
these parts. However there exist some methods that attempt to automatically
generate valid input for a given program, such as symbolic execution [14].

6 Conclusion

Our main contribution is a novel approach for grammar inference that com-
bines machine learning, grammar-based fuzzing and program analysis. Our app-
roach, in contrast to other efforts, reduces reliance on a good set of seed inputs

Fuzzing-Based Grammar Inference 85

while keeping other advantageous features of grammar inference techniques. This
reduction in the original input set causes us to perform more membership queries
since we need to uncover paths that we lose by randomly sampling the input
set. We exchanged some of the benefits of complex program analysis, such as
dynamic symbolic execution, for less complex program analysis, such as call tree
extraction, to speed up the execution because our approach was designed with
grammar-based fuzzing in mind. This was done in order to process such a vast
number of inputs effectively. We can cease grammar inference and resume fuzzing
the target program using the inferred grammar whenever we are certain that we
have a good enough approximation of our input language. Despite the trade-offs
outlined above, our preliminary findings show that we can still learn the target
input language accurately in a reasonable amount of time, especially for more
complicated input languages like JSON.

In the future, we aim to improve our learning technique by looking into
ways to learn context-free grammars from any program without being restricted
by recursive top-down parsers. Furthermore, we want to enhance the current
implementation with a range of performance optimizations so that we may utilize
it to uncover security problems in a real-world scenario.

References

1. Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput.
Syst. Sci. 50(2), 336–355 (1995)

2. Bastani, O., Sharma, R., Aiken, A., Liang, P.: Synthesizing program input gram-
mars. In: PLDI, pp. 95–110. ACM (2017)

3. Blazytko, T., et al.: GRIMOIRE: synthesizing structure while fuzzing. In: USENIX
Security Symposium, pp. 1985–2002. USENIX Association (2019)

4. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: IJCAI, pp. 1004–1009 (2009)

5. Gold, E.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
6. Gascon, H., Wressnegger, C., Yamaguchi, F., Arp, D., Rieck, K.: PULSAR: stateful

black-box fuzzing of proprietary network protocols. In: Thuraisingham, B., Wang,
X.F., Yegneswaran, V. (eds.) SecureComm 2015. LNICST, vol. 164, pp. 330–347.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28865-9 18

7. Godefroid, P., Peleg, H., Singh, R.: Learn& fuzz: machine learning for input fuzzing.
In: ASE, pp. 50–59. IEEE Computer Society (2017)

8. Gopinath, R., Mathis, B., Zeller, A.: Inferring input grammars from dynamic con-
trol flow. CoRR abs/1912.05937 (2019)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Languages and
Computation. Addison-Wesley, Boston (1979)

10. Höschele, M., Zeller, A.: Mining input grammars with AUTOGRAM. In: ICSE
(Companion Volume), pp. 31–34. IEEE Computer Society (2017)

11. Kraft, N., Duffy, E., Malloy, B.: Grammar recovery from parse trees and metrics-
guided grammar refactoring. IEEE Trans. Softw. Eng. 35(6), 780–794 (2009)

12. Mathis, B., Gopinath, R., Mera, M., Kampmann, A., Höschele, M., Zeller, A.:
Parser-directed fuzzing. In: PLDI, pp. 548–560. ACM (2019)

https://doi.org/10.1007/978-3-319-28865-9_18

86 H. Sochor et al.

13. Moser, M., Pichler, J.: eknows: platform for multi-language reverse engineering and
documentation generation. In: 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 559–568 (2021)

14. Moser, M., Pichler, J., Pointner, A.: Towards attribute grammar mining by sym-
bolic execution. In: SANER, pp. 811–815. IEEE (2022)

15. Wu, Z., et al.: REINAM: reinforcement learning for input-grammar inference. In:
ESEC/SIGSOFT FSE, pp. 488–498. ACM (2019)

Natural Language Processing

In the Identification of Arabic Dialects:
A Loss Function Ensemble Learning

Based-Approach

Salma Jamal1(B), Salma Khaled1, Aly M. Kassem2, Ayaalla Eltabey1,
Alaa Osama1, Samah Mohamed1, and Mustafa A. Elattar1

1 School of Information Technology and Computer Science, Nile University, Giza,
Egypt

sagamal@nu.edu.eg
2 School of Computer Science, University of Windsor, Windsor, Canada

Abstract. The automation of a system to accurately identify Arabic
dialects many natural language processing tasks, including sentiment
analysis, medical chatbots, Arabic speech recognition, machine transla-
tion, etc., will greatly benefit because it’s useful to understand the text’s
dialect before performing different tasks to it. Different Arabic-speaking
nations have adopted various dialects and writing systems. Most of the
Arab countries understand modern standard Arabic (MSA), which is the
native language of all other Arabic dialects. In this paper we propose a
method for identifying Arabic dialects Using the Arabic Online Commen-
tary dataset (AOC), which includes three Arabic dialects-Gulf, Levan-
tine, and egyptian-alongside MSA. Our approach includes two ensemble
learning strategies using two BERT-based models and different loss func-
tions such as focal loss, dice loss, and weighted cross-entropy loss. The
first strategy is between the two proposed models using the loss function
that performed best on the models, and the other is between the same
model but using different loss functions, which resulted in 83.3%, 80.1%,
85.8%, 81.45%, Precision, Recall, Accuracy and Macro-F1 on the test set
respectively.

Keywords: Arabic dialect identification · Imbalanced dataset ·
Ensemble loss functions

1 Introduction

More than 2 billion people use Arabic as their liturgical language, making it the
sixth or seventh most widely spoken language in the world. It is a member of the
Semitic language family. One of the hardest languages to learn is typically Ara-
bic. First and foremost, Arabic has a 28-symbol alphabet that can change meaning
depending on where it appears in a word. Additionally, Arabic is read from right
to left, which is completely counter-intuitive to how most westerners read. The
letters and the diacritics, which alter the sound values of the letters to which they

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 89–101, 2023.
https://doi.org/10.1007/978-3-031-21595-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_7&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_7

90 S. Jamal et al.

are attached, make it a two-dimensional language. Additionally, a word’s meaning
might vary depending on its diacritics. All printed materials are written in mod-
ern standard Arabic (MSA), which is the official language of all Arab nations.
However, each Arabic-speaking country learns a particular dialect of Arabic as
its native tongue, which is defined as the linguistic traits of a particular commu-
nity based on the region, such as Egyptian, Maghrebi, Gulf, etc. Many applica-
tions, including sentiment analysis, Arabic speech recognition, E-health chatbots,
Machine Translation, etc., can benefit if we can automate a system to detect Ara-
bic dialects accurately. Due to the task’s significance in many domains, researchers
have become interested in working on it. However, it is challenging as it’s more dif-
ficult than simply understanding a particular language.

In this paper, we propose a method for automatically identifying Arabic
dialects. We used the Arabic Online Commentary Dataset (AOC) [25], which was
produced by gathering a significant amount of reader comments on the articles
from three Arabic online newspapers. Alongside MSA, it includes three Arabic
dialects Gulf, Levantine, and Egyptian, which are representative of the nations
where the three newspapers are published. Given that MSA is the most prevalent
label in the dataset this produces a class-imbalance problem, and we focused
on finding a solution to this problem in our method. We have two alternative
ensemble learning strategies in our pipeline, but before we get there, we will
discuss the model details.

We employed Bert-based models [6], which are transformer-based models
[15] that only use the encoder part of the transformer as opposed to the origi-
nal transformer’s encoder and decoder architecture. The Transformers attention
mechanism, which finds contextual relationships between words (or subwords) in
a text, is used by the model which shows significant improvements in the results.
Additionally, the state-of-the-art results demonstrated that the language model
can understand the context and flow of language more deeply and perform better
on numerous NLP tasks.

As previously stated, our dataset had a class-imbalance problem that needed
to be addressed, thus following the literature [19] instead of utilizing the standard
Cross-Entropy loss, which is inappropriate for dealing with this kind of datasets,
we used various loss functions. We fine-tuned the MARBERT-V2 [2] pre-trained
BERT model using the weighted cross-entropy loss, Focal loss, and Dice loss on
our dataset because they have been shown to improve the results in state-of-the-
art research when working with an imbalanced dataset [19].

The findings demonstrated that some losses increased precision but not recall,
and vice versa. Therefore, we used ensemble techniques between the same model
but with different loss functions which was proposed in [12] as the initial ensem-
ble learning strategy in our pipeline, and it enhanced the results. Then, we
applied the same methodology to AraBERTv0.2-Twitter [5], a different Arabic
pre-trained BERT based-model, and the outcome was the same: employing an
ensemble of different loss functions with the same model enhances the results.
Furthermore, instead of applying an ensemble with the same model and different
loss functions, the second ensemble strategy in our pipeline was to use ensemble

In the Identification of Arabic Dialects 91

techniques between two different models with the loss function that yielded the
best results on that model and it enhanced the model performance.

The rest of the paper is organized as follows. A review of earlier Arabic
dialect identification literature is in Sect. 2. The proposed dataset is described
in Sect. 3. The methods and pipeline are in Sect. 4. The results and evaluation
are discussed in Sect. 5. Finally, we conclude in Sect. 6.

2 Related Work

A lot of work has gone into developing a method for reliably identifying Arabic
dialects, although it is more difficult than just identifying a particular language
because Arabic Dialects shares a lot of vocabulary. In recent years, the problem
received a lot of attention.

Abdelali et al. [1] discovered that a significant source of errors in their method
was caused by the naturally occurring overlap between dialects from nearby
countries. They created a dataset of 540 k tweets that contained a significant
amount of dialectical Arabic tweets by applying filtering techniques to remove
tweets that are primarily written in MSA. Employing two models, a SVM classi-
fier and a Transformer model (mBERT and AraBERT), their strategy achieved
a macro-averaged F1-score of 60.6%.

A survey on deep learning techniques for processing Arabic dialectal data as
well as an overview of the identification of Arabic dialects in text and speech
was conducted by Shoufan et al. [23].

Salameh et al. [21] proposed a method for classifying Arabic dialects using a
dataset that included 25 Arabic dialects from certain Arab cities, in addition to
Modern Standard Arabic. They experimented several Multinomial Naive Bayes
(MNB) models, and their strategy was able to achieve an accuracy of 67.9% for
sentences with an average length of 7 words.

Malmasi et al. [17] proposed a method to identify a set of four regional Arabic
dialects (Egyptian, Gulf, Levantine, and North African) and Modern Standard
Arabic (MSA) in a transcribed speech corpus that has a total of 7,619 sentences
in the training set. They achieved an F1-score of 51.0% by employing and ensem-
ble learning technique between different SVM models but with different feature
types.

Using six different deep learning techniques, including Convolution LSTM
and attention-based bidirectional recurrent neural networks, Elaraby et al. [10]
benchmarked the AOC dataset [25]. They tested the models in a variety of
scenarios, including binary and multi-way classification. Using different embed-
dings, they attained accuracy of 87.65% on the binary task (MSA vs. dialects),
87.4% on the multi-classification task (Egyptian vs. Gulf vs. Levantine), and
82.45% on the 4-way task.

As a solution to the VarDial Evaluation Campaign’s Arabic Dialect Identifica-
tion task, Mohamed Ali [4] proposed three different character-level convolutional
neural network models with the same architecture aside from the first layer to
solve the task. MSA, Egyptian, Gulf, Levantine, and North African dialects are

92 S. Jamal et al.

among the five included in the dataset. The first model used a one-hot character
representation, the second model used an embedding layer before the convolu-
tion layer, and the third model used a recurrent layer before the convolution
layer, which produced the best results 57.6% F1-score.

Obeid et al. proposed ADIDA [20], an automated method for identifying
Arabic dialects. The algorithm outputs a vector of probabilities showing the
possibility that a sentence entered is from one of 25 dialects and MSA. They
employed the Multinomial Naive Bayes (MNB) classifier that Salameh et al. [21]
proposed using the MADAR corpus. They achieved a 67.9% accuracy.

The Nuanced Arabic Dialect Identification (NADI) 2020 [3] shared task,
which was divided into two sub-tasks of country-level identification and province-
level identification, was the subject of a pipeline proposed by El Mekki et al. [9].
For sub-task one, their pipeline consisted of a voting ensemble learning approach
with two models: the first model is AraBERT [5] with a softmax classifier, and the
second model is TF-IDF with word and character n-grams to represent tweets.
They achieved a 25.99% F1-score for the first sub-task, placing them second.
They also applied a hierarchical classification strategy for the second sub-task,
fine-tuning Arabert for each country to forecast its provinces after applying the
country-level identification, and they were ranked first with an F1-score of 6.39%.

Because the self attention mechanism in the transformer models [24] captures
the long range dependencies, Lin et al. [15] assumed that using a transformed-
based Arabic Dialect identification system will improve the result rather than if
we used CNN-based system. However, they used the self attention mechanism
with down-sampling to reduce the computational complexity. They evaluated
their technique on the ADI17 dataset [22], which performed better than CNN-
based models with an accuracy of 86.29%.

Issa et al. [13], proposed a solution to the country-level Identification sub-task
in the second Nuanced Arabic Dialect Identification (NADI) [3]. They applied
two models and assessed the results. A pre-trained CBOW word embedding was
utilised with an LSTM as the first model, while linguistic features were used
in the second model as low-dimensional feature embeddings that were fed via
a simple feed-forward network. Their F1-scores were 22.10% for the first model
and 18.60% for the second, demonstrating that the use of language features did
not improve the performance.

The results of this study show that most studies relied on the standard
weighted cross-entropy loss rather than conducting further research to solve the
issue of data imbalance that most Arabic datasets suffer. They also concen-
trated on using each dialect’s unique linguistic characteristics in their pipeline.
Following the literature [19], in order to more effectively handle the issue of data
imbalance, the goal of this research is to overcome prior constraints by employ-
ing and evaluating different loss functions on the Arabic dialects identification
task.

In the Identification of Arabic Dialects 93

3 Dataset

We used a subset of the Arabic Online Commentary dataset (AOC) [25]. As
stated earlier, it was generated by gathering comments from three Arabic news
papers publications, each of which represented one of the dialects as follows:

– Al-Ghad → leventine.
– Al-Riyadh → Gulf.
– Al-Youm Al-Sabe’ → Egyptian.

The dataset was annotated using an annotation interface where random
phrases were displayed to the annotator, who had to make two statements about
it: first, its dialectal content, such as whether it is mostly dialect, does not have
any dialect, or is it mixed; and second, its dialect type, such as Leventine, Egyp-
tian, Gulf, or MSA. As expected, each newspaper contained more comments in
the local dialect of the nation in which it was published; yet, MSA predominated
in all of them, creating a problem of class imbalance that we concentrated on
resolving in our methods. The dataset contains 108,173 K comments. Figure 1
illustrates the dataset labels distribution.

Fig. 1. Distribution of the dataset labels

4 Methods

In this section, we’ll go over the steps and techniques for the proposed method,
covering everything from data prepossessing and cleaning to the pre-trained
models overviews and ensemble learning techniques to the prediction output.

94 S. Jamal et al.

4.1 Data Preprocessing

Following is a summary of the steps we took in this stage, which was to analyse
the text to make sure it was properly formatted and devoid of unnecessary
characters. Sample texts from the dataset are shown in Table 1 along with their
dialect.

– Arabic Stopwords were eliminated in order to draw attention to the text’s
most crucial information.

– In order to normalize the data, we substituted:

– We eliminated the punctuation and numerals because they’re not useful for
dialect classification.

Table 1. Different dataset examples, each with its own dialect.

4.2 Pre-trained Models

In this section, we will discuss the Transformer-based (BERT) pre-trained mod-
els that we used to tackle the problem. These models showed promising results
when tested against the state-of-the-art literature for a number of reasons. First,
BERT learns the contextual relationships between the words in a phrase (Trans-
former attention mechanism). In addition, the model reads the full sequence of
text at once, enabling it to understand the context of a word based on all of
its surroundings. This property of the model makes it a bidirectional or non-
directional model. Two pre-trained BERT models were applied:

In the Identification of Arabic Dialects 95

MARBERT-V2. One of the three models proposed in [2], but with a longer
sequence length of 512 tokens. These Transformers Language models were pre-
trained on 1 billion Arabic tweets, which were created by randomly selecting
tweets from a large dataset of approximately 6 billion tweets made up of 15.6
billion tokens, in order to improve transfer learning on most Arabic dialects
alongside MSA. The model was trained without the next sentence prediction
components but has the same network architecture as the BERT Base (masked
language model).

AraBERTv0.2-Twitter. An extension of AraBERT [5] which is another Ara-
bic BERT language model that was trained on a combination of manually
scraped articles from Arabic news website, two large Arabic corpora-the 1.5
billion words Arabic Corpus [8] with articles from 8 different countries and the
3.5 million articles from the Open Source International Arabic News Corpus
[26] with news sources from 24 Arab countries. Additionally, AraBERTv0.2-
Twitter is a refined version of AraBERT that was pre-trained on 60 million
Arabic Tweets with a maximum word length of 64 using the masked language
model method. The model’s performance was assessed using three Arabic nat-
ural language understating tasks: sentiment analysis, named entity recognition,
and question answering, the results were promising.

4.3 Loss Functions

As we previously mentioned, the proposed dataset has a class imbalance prob-
lem, following the literature [19], employing different loss functions instead of
using the standard cross-entropy loss helps improves the model performance.
Three different loss functions were employed:

Weighted Cross-Entropy loss (WCE): The standard cross-entropy loss
inherits bias toward the majority class when making predictions, and the model
becomes more confident in predicting the majority class. In addition, it fails
to pay more attention to hard examples: the ones where the model repeatedly
makes significant errors on, because it cannot differentiate between the hard and
easy examples. Consequently, we used the Weighted cross-entropy loss to try to
overcome those issues. Although it can handle the issue of class imbalance, it is
unable to differentiate between easy and hard examples.

Focal Loss (FL): Is proposed in [14]. it can deal with dataset class imbalance,
by applying a modulating term (scaling factor) to the cross entropy loss (1−pt)γ ,
which decays to zero as confidence in the correct class increases, it focuses on the
examples that the model gets wrong (hard examples) rather than the ones that
are easily classified. In the case of the misclassified examples, the pi is small,
making the modulating factor approximately or very close to 1, the loss func-
tion is therefore unaffected, acting as a Cross-Entropy loss. Additionally, this
automatically down-weights the importance of easy samples during training and

96 S. Jamal et al.

Fig. 2. The proposed ensemble learning model

focuses the model on difficult ones. We used the focal loss with label smoothing
parameter to address the issue of overconfidence.

Dice Loss (DL): The Dice coefficient [7], also known as the harmonic mean of
sensitivity and precision, is used to balance the two because they have different
denominators and true positives in the numerator. In addition, the denominator
of the dice loss equation is changed to its square form to speed up convergence
as proposed in [18].

4.4 Proposed Ensemble Learning Model

Ensemble learning techniques enhance the performance of models, due to its
ability to achieve better outcomes than any single contributing model. Addi-
tionally, it improves the robustness of the model by decreasing the spread or
dispersion of the results and predictions. Combining the prediction of different
models improves the outcome as the models that contribute to the ensemble
make different errors on the samples. Utilizing the same model with a differ-
ent loss functions was one of the two ensemble learning strategies we employed
in our pipeline. The other strategy involved using different models with the
loss function that achieved the best results on that model. The final proposed
model illustrated in Fig. 2 was an ensemble between the same BERT-based model
MARBERT-V2 but with different loss functions Focal loss (FL), Dice loss (DL)
and weighted Cross-Entropy loss (WCE).

In the Identification of Arabic Dialects 97

5 Results and Discussion

This section will outline all the experiments we conducted employing the pro-
posed pre-trained models, different loss functions, and ensemble methodologies.

5.1 Experimental Results

Different Pre-trained Models. We fine-tuned the proposed BERT-based
models with each of the different loss functions we previously described to see
which one would perform best. As indicated in Table 2, we noticed that each loss
function may yield a good recall but a poor precision, and vice versa.

Table 2. Results of fine-tuning the models using different loss functions

Model Loss function PR–RR ACC–F1

MARBERT-V2 WCE 80.2–81.0 83.7–79.8

FL 83.9–78.8 85.7–81.0

DL 82.5–78.2 83.4–80.1

AraBERTv0.2-T WCE 79.4–78.7 84.2–78.4

FL 82.1–77.6 85.8–79.4

DL 80.7–75.5 84.4–77.7

Ensemble Learning Methodologies. In an effort to improve the model per-
formance on the proposed dataset as shown in Table 3, we applied two ensemble
learning strategies as follows:

I- Different Loss Functions with the Same Model: As previously men-
tioned, the same model can achieve better results in recall but not in precision,
and vice versa using different loss functions. Therefore, following the literature
[12] we first tried an ensemble of MARBERT-V2 with the different proposed
loss functions, weighted Cross-Entropy, Focal loss, and Dice loss, and it achieved
the best results in our pipeline. Additionally, we tried the same strategy with
AraBERTv02-twitter to test that it truly works, and the results were the same.

II- Different Models: The second ensemble learning strategy was between
the two proposed pre-trained BERT models, MARBERT-V2 and AraBERTv02-
twitter, the Focal loss was used as the loss function as it achieved the best results
on both models.

98 S. Jamal et al.

Table 3. Results of applying the two ensemble learning methodologies which shows
that ensemble learning using MARBERT-V2 model with different loss function
achieved the highest MACRO-F1 score.

Model Loss function PR–RR ACC–F1

Ensemble (MARBERT-V2) FL, WCE, DL 83.3–80.1 85.8–81.45

Ensemble (AraBERTv0.2-T) FL, WCE, DL 81.9–78.5 84.5–79.80

Ensemble(MARBERT-V2, AraBERTv0.2-T) FL 84.4–79.1 85.7–81.30

5.2 Discussion

In this section will discuss the results of implementing different models, loss
functions, performance metrics, ensemble learning strategies and the result of
the proposed model compared to the previous models.

Performance Metrics: Different metrics, such as Precision and Recall, were
utilised to assess the performance of the pipeline; however, since Accuracy is is
an inappropriate metric to utilise given the imbalance class-distribution in the
dataset, we focused on the Macro-F1 score.

Loss Function: In both models, Focal Loss outperformed the other loss func-
tions in the Macro-F1 score, achieving 81.0% with MARABERTV2 and 79.4%
with AraBERTv02-t. This is due to the fact that Focal Loss down-weights the
easy examples so that, despite their huge number, their contribution to the over-
all loss is minimal, hence addressing the issue of class imbalance better. As shown
in Table 4, the proposed ensemble learning model combined with different loss
functions such as Focal-loss and Dice-Loss outperformed the previous models
with a significant margin even with including the four dialects.

BERT-Based Models: MARBERT-V2 surpassed AraBERTv02-t in terms of
Macro-F1 score when fine-tuned on the dataset with all of the proposed loss func-
tions, possibly because the model pre-training data was similar to the proposed
dataset as well as the fact that the model was pre-trained on a longer sequence
length than AraBERTv02-t and the proposed dataset has a long sequence length
thus, allowing it to capture the meaningful contextual meanings.

Ensemble Learning Strategies: Employing ensemble learning technique
between the two proposed pre-trained models enhanced the results, because each
model was pre-trained on a different dataset, it may have produced different
embedding for the same text and, consequently, different error. Furthermore,
using ensemble learning with the same model but with different loss functions
improved the performance because each loss function learns differently and gen-
erates errors differently. As a result, using ensemble learning will improve the
average prediction performance as well as, it will lower the variance element of
the prediction errors generated by the contributing models of the ensemble.

In the Identification of Arabic Dialects 99

Table 4. Results Of Different Systems On AOC Dataset

System Loss function Included dialectics Accuracy

Elaraby and Abdul-Mageed [10] N/A MSA, EGY, LEV, GLF 82.45%

Zaidan and Callison-Burch [25] N/A MSA, EGY, LEV, GLF 69.40%

Elfardy and Diab [11] N/A MSA, EGY 85.50%

Lulu and Elnagar [16] N/A EGY, LEV, GLF 71.40%

Proposed Ensemble Model FL,WCE,DL MSA, EGY, LEV, GLF 85.80%

6 Conclusion and Future Works

In this paper, we proposed a method to automatically identify Arabic dialects
using the Arabic online commentary dataset (AOC). Instead of utilizing the stan-
dard Cross-Entropy loss, we used different loss functions to address the problem
of data imbalance as proposed in [19]. Additionally, we used two ensemble learn-
ing strategies to enhance the model performance. Our final proposed ensemble
BERT-based model achieved 83.3%, 80.1%, 85.8%, 81.45%, Precision, Recall,
Accuracy and Macro-F1 on the test set respectively. In the future work, we
intend to evaluate the effectiveness of our pipeline using different datasets as
well as the Country-level dialect identification problem as it is more complex.

Acknowledgments. This research is supported by the Vector Scholarship in Artificial
Intelligence, provided through the Vector Institute.

References

1. Abdelali, A., Mubarak, H., Samih, Y., Hassan, S., Darwish, K.: QADI: arabic
dialect identification in the wild. In: Proceedings of the Sixth Arabic Natural Lan-
guage Processing Workshop, pp. 1–10 (2021)

2. Abdul-Mageed, M., Elmadany, A., Nagoudi, E.M.B.: Arbert & marbert: deep bidi-
rectional transformers for arabic. arXiv preprint arXiv:2101.01785 (2020)

3. Abdul-Mageed, M., Zhang, C., Bouamor, H., Habash, N.: Nadi 2020: The first
nuanced Arabic dialect identification shared task. In: Proceedings of the Fifth
Arabic Natural Language Processing Workshop, pp. 97–110 (2020)

4. Ali, M.: Character level convolutional neural network for Arabic dialect identi-
fication. In: Proceedings of the Fifth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial 2018), pp. 122–127 (2018)

5. Antoun, W., Baly, F., Hajj, H.: Arabert: transformer-based model for Arabic lan-
guage understanding. arXiv preprint arXiv:2003.00104 (2020)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

7. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology
26(3), 297–302 (1945)

8. El-Khair, I.A.: 1.5 billion words Arabic corpus. arXiv preprint arXiv:1611.04033
(2016)

http://arxiv.org/abs/2101.01785
http://arxiv.org/abs/2003.00104
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1611.04033

100 S. Jamal et al.

9. El Mekki, A., Alami, A., Alami, H., Khoumsi, A., Berrada, I.: Weighted combi-
nation of BERT and n-gram features for nuanced Arabic dialect identification.
In: Proceedings of the Fifth Arabic Natural Language Processing Workshop, pp.
268–274 (2020)

10. Elaraby, M., Abdul-Mageed, M.: Deep models for Arabic dialect identification on
benchmarked data. In: Proceedings of the Fifth Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial 2018), pp. 263–274 (2018)

11. Elfardy, H., Diab, M.: Sentence level dialect identification in Arabic. In: Proceed-
ings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pp. 456–461 (2013)

12. Hajiabadi, H., Molla-Aliod, D., Monsefi, R., Yazdi, H.S.: Combination of loss func-
tions for deep text classification. Int. J. Mach. Learn. Cybern. 11(4), 751–761
(2020)

13. Issa, E., AlShakhori, M., Al-Bahrani, R., Hahn-Powell, G.: Country-level Arabic
dialect identification using RNNs with and without linguistic features. In: Pro-
ceedings of the Sixth Arabic Natural Language Processing Workshop, pp. 276–281
(2021)

14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988 (2017)

15. Lin, W., Madhavi, M., Das, R.K., Li, H.: Transformer-based Arabic dialect identi-
fication. In: 2020 International Conference on Asian Language Processing (IALP),
pp. 192–196. IEEE (2020)

16. Lulu, L., Elnagar, A.: Automatic Arabic dialect classification using deep learning
models. Proc. Comput. Sci. 142, 262–269 (2018)

17. Malmasi, S., Zampieri, M.: Arabic dialect identification in speech transcripts. In:
Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and
Dialects (VarDial3), pp. 106–113 (2016)

18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 Fourth International Confer-
ence on 3D Vision (3DV), pp. 565–571. IEEE (2016)

19. Mostafa, A., Mohamed, O., Ashraf, A.: GOF at Arabic hate speech 2022: breaking
the loss function convention for data-imbalanced Arabic offensive text detection. In:
Proceedings of the 5th Workshop on Open-Source Arabic Corpora and Processing
Tools with Shared Tasks on Qur’an QA and Fine-Grained Hate Speech Detec-
tion, pp. 167–175. European Language Resources Association, Marseille, France,
June 2022. http://www.lrec-conf.org/proceedings/lrec2022/workshops/OSACT/
pdf/2022.osact-1.21.pdf

20. Obeid, O., Salameh, M., Bouamor, H., Habash, N.: ADIDA: automatic dialect iden-
tification for Arabic. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics (Demonstrations), pp.
6–11 (2019)

21. Salameh, M., Bouamor, H., Habash, N.: Fine-grained Arabic dialect identification.
In: Proceedings of the 27th International Conference on Computational Linguistics,
pp. 1332–1344 (2018)

22. Shon, S., Ali, A., Samih, Y., Mubarak, H., Glass, J.: Adi17: a fine-grained Ara-
bic dialect identification dataset. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8244–8248 (2020)

23. Shoufan, A., Alameri, S.: Natural language processing for dialectical Arabic: a
survey. In: Proceedings of the Second Workshop on Arabic Natural Language Pro-
cessing, pp. 36–48 (2015)

http://www.lrec-conf.org/proceedings/lrec2022/workshops/OSACT/pdf/2022.osact-1.21.pdf
http://www.lrec-conf.org/proceedings/lrec2022/workshops/OSACT/pdf/2022.osact-1.21.pdf

In the Identification of Arabic Dialects 101

24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

25. Zaidan, O.F., Callison-Burch, C.: Arabic dialect identification. Comput. Linguist.
40(1), 171–202 (2014)

26. Zeroual, I., Goldhahn, D., Eckart, T., Lakhouaja, A.: OSIAN: open source
international Arabic news corpus-preparation and integration into the Clarin-
infrastructure. In: Proceedings of the Fourth Arabic Natural Language Processing
Workshop, pp. 175–182 (2019)

Emotion Recognition System for Arabic Speech:
Case Study Egyptian Accent

Mai El Seknedy1(B) and Sahar Ali Fawzi1,2

1 Nile University, Giza, Egypt
{Mai.Magdy,sfawzi}@nu.edu.eg

2 Faculty of Engineering, Cairo University, Giza, Egypt
saharfawzi@eng1.cu.edu.eg

Abstract. Speech Emotion Recognition (SER) systems are widely regarded as
essential human-computer interface applications. Extracting emotional content
from voice signals enhances the communication between humans and machines.
Despite the rapid advancement of Speech Emotion Recognition systems for sev-
eral languages, there is still a gap in SER research for the Arabic language. The
goal of this research is to build an Arabic-based SER system using a feature set
that has both high performance and low computational cost. Two novel feature sets
were created using a mix of spectral and prosodic features, which were evaluated
on the Arabic corpus (EYASE) constructed from a drama series. EYASE is the
Egyptian Arabic Semi-natural Emotion speech dataset that consists of 579 utter-
ances representing happy, sad, angry, and neutral emotions, uttered by 3 male and
3 female professional actors. To verify the emotions’ recognition results, surveys
were conducted by Arabic and non-Arabic speakers to analyze the dataset con-
stituents. The survey results show that recognition of anger, sadness, and happiness
are sometimes misclassified as neutral. Machine learning classifiers Multi-Layer
Perceptron, Support Vector Machine, Random Forest, Logistic Regression, and
Ensemble learning were applied. For valence (happy/angry) emotions classifi-
cation, Ensemble learning showed best results of 87.59% using the 2 proposed
feature sets. Featureset-2 had the highest recognition accuracy with all classifiers.
For multi-emotions classification, Support Vector Machine had the highest recog-
nition accuracy of 64% using featureset-2 and benchmarked Interspeech feature
sets. The computational cost of featureset-2 was the lowest for all classifiers, either
for training or testing.

Keywords: Speech emotion recognition · Arabic corpus ·Mel frequency
cepstral coefficients · Prosodic features ·Mel-spectrogram features

1 Introduction

Emotion expression is an important component of human communication as it helps
in transferring feelings and offering feedback. Recently, high interest in speech emo-
tion recognition systems (SER) evolved. Speech emotion recognition systems attempt to
detect desired emotions using voice signals regardless of semantic content [1]. Advances

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 102–115, 2023.
https://doi.org/10.1007/978-3-031-21595-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_8&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_8

Emotion Recognition System for Arabic Speech 103

in artificial intelligence technology have an impact on human-machine interacting appli-
cations as SER systems. Nowadays, SER is taking a significant role in our digital world
as being adopted in many applications like call centers [2], computer gaming [3], online
e-learning [4], autonomous vehicles, police criminal investigations, and medical diag-
nosis as in psychological diseases analysis [5]. SER proved to have a high impact to the
medical sector as represented by the authors of research [6]. They proved a psychophysi-
ological alternative mode for analyzing emotions through speech using SER systems for
patients suffering from Autism Spectrum Disorder (ASD) patients who usually suffer
from defects in facial expressions.

The number of speech emotion databases is growing for different languages as
English, German, French, Italian Spanish, Urdu, Mandarin, Turkish, Japanese, Hindi,
and Korean [7–10]. Although Arabic is the fifth most spoken language, with 274 million
speakers worldwide, the available Arabic datasets with the different Arabic dialects are
very limited [11]. An Arabic language semi-natural emotion speech dataset (EYASE)
with an Egyptian dialect have been developed by Abdel-Hamid et al. [12].

The objective of this research is to develop SER model for identifying the Egyp-
tian Arabic speaker’s emotional state. The proposed SER model uses novel feature set
combinations that provide high classification accuracies and low computational time.

Different supervised machine learning models is included for classification.
This paper is organized as follows: a literature review with advances in SER is

presented in Sect. 2, the methodology is introduced in Sect. 3 including the dataset used,
features extraction, the machine learning models and the experimental setup, Sect. 4
presents the results of the experiments and finally, Sect. 5 introduces the conclusion and
future work.

2 Literature Review

SER systems undergo enormous evolution over the past decade. The systemmethodolo-
gies depend on the dataset used. Dataset types can be acted, elicited and non-acted [7].
Furthermore, the datasets differ based on the speaker’s gender, age [8].

Features used to describe the utterances are the key players in SER systems. The
set of features related to the emotions description can greatly enhance the recognition
success rate. Features of different domains are used in SER systems. Prosodic features
which describe the intonation and rhythmof the speech signal such as pitch, intensity, and
fundamental frequency F0 [7, 8, 13]. Spectral features represented byMel spectrograms
andMel-frequency cepstral coefficients (MFCC) arewidely used in SER [14]. Advanced
techniques as deep neural networks depend on MFCCs and spectrogram images to
train the system using CNN and LSTM [15]. Furthermore, there are linear prediction
coefficients (LPC) based features and Voice Quality Features as Jitter and Shimmer.
Selected sets of features for precise emotion recognition depends on the corpus used,
the language and the classification algorithm [10].

INTERSPEECH 2009 Emotion Challenge feature set (IS09) [16] and INTER-
SPEECH 2010 Paralinguistic Challenge Paralinguistic Challenge feature set (IS10) [17]
are considered as benchmark for many SER systems. A feature set IS09-10 generated
from combining IS09 and IS10 features, was introduced by Klaylat et al. [10], results in
improvement in some cases.

104 M. El Seknedy and S. A. Fawzi

A wide variety of machine learning algorithms are used for classification in SER
domain as HiddenMarkov models (HMM), Gaussian Mixture Models (GMM), Support
Vector Machine (SVM), tree-based models as Random Forest (RF), K-Nearest Neigh-
bor (K-NN), Logistic regression (LR), and recently Artificial Neural Networks (ANN).
Advantages and limitations of these algorithms are surveyed by El Ayadi et al. [8] and
Koolagudi et al. [18]. Recent research focuses on ensemble learning and majority voting
combining the advantages of different classifiers to create a model capable of enhancing
the prediction results [19].

Artificial neural networks are being explored in SER. Literatures showed that deep
neural networks needmore optimization to be included in the speech emotion recognition
field. No significant improvement was reported using the features sets as input to the
deep neural networks [20].

3 Methodology

The SER system includes three basic building phases, as shown in Fig. 1. First phase
focuses on the chosen Arabic dataset (EYASE). Phase two comprises the construction of
the two proposed feature sets, features’ normalization, and features selection analysis.
The third phase focuses on classification, and it employs five machine learning models:
MLP, SVM, Random Forest, Logistic Regression, and Ensemble Learning.

Fig. 1. The proposes SER system phases

3.1 Datasets

EYASE: Egyptian Arabic Semi-natural Emotion speech database is created from a
drama series and consists of 3 male and 3 female aged 22–45 years old actors with 12
to 22 years of professional experience. It includes four basic emotions: angry, happy,
neutral, and sad. A total of 579 wav files with a sampling rate of 44.1 kHz [12].

Emotion Recognition System for Arabic Speech 105

3.2 Features Extraction

Different features have been extracted and used in SER systems, but there is no generic
or precise set of features that can be used for the best results [21]. Features’ sets generally
includes different prosodic and spectral features [7].

Two new features sets were developed based on previous work experiences.
Featureset-1 consists of MFCCs, Mel-spectrogram, spectral contrast, root mean square,
the tonal centroid features, chroma features using 2 statistical functions. An enhanced
featureset-2 included more prosodic features as F0, zero-crossing rate and reduced
MFCCs coefficients to the first 14 and 8 Mel spectrogram filters. The statistical func-
tions were increased to 6 functions. Python library Librosa [22] was used to implement
features extraction algorithms. Features sets details are displayed in Table 1. OpenSmile
toolkit [23] was used to generate benchmarked features sets IS09, IS10 and IS09-10 to
compare their performance on EYASE dataset.

Table 1. Shows the set of features used during our research, the statistical functions used, and
the tools used in feature extraction.

Feature Description Statistical functions Tool

Featureset-1
Total features: 194

40 MFCC, 128
Mel-spectrogram, 12
Chroma, Tonnetz, 8
Contrast, and RMS

Mean and standard
deviation

Librosa (python
library)

Featureset-2
Total features: 122

14 MFCC, 8
Mel-spectrogram, RMS,
12 Chroma, Tonnetz, 8
Contrast, Zero crossing
rate, Fundamental
frequency (F0), Pitch
Contour, and Signal’s
low-frequency band mean
energy (SLFME)

Min, max, standard
deviation, mean,
range, and percentile
(25, 50, 75,90)

Librosa +
pYAAPT (pitch
tracking algorithm
in python)

IS09 (INTERSPEECH
2009 Emotion
Challenge feature set)
[79]
Total features: 384

RMS, 12 MFCC, ZCR,
Voicing probability, and
F0

Min, max, standard
deviation, mean,
range, maxPos,
minPos, linregc1,
linregc2, linregerrQ,
skewness, and
kurtosis

Opensmile tool

(continued)

106 M. El Seknedy and S. A. Fawzi

Table 1. (continued)

Feature Description Statistical functions Tool

IS10 (INTERSPEECH
2010 Paralinguistic
Challenge feature set)
[80]
Total features: 1582

Pcm loudness, 14 MFCC,
Log Mel Freq Band, lsp
Freq, F0 Env, Voicing
final unclipped,
JitterLocal, JitterDDP,
Shimmer local, and
Shimmer DDP

Min, max, standard
deviation, mean,
range, maxPos,
minPos, linregc1,
linregc2, linregerrQ,
skewness, kurtosis,
quartiles (1–3), iqr
(1–3), percentile,
and pctlrange0–1

Opensmile tool

IS09-10 [9]
Total features: 816

RMS, 14 MFCC, ZCR,
Pcm loudness, Log Mel
Freq Band, lsp Freq, F0
Env, Voicing final
unclipped, JitterLocal,
JitterDDP, Shimmer local,
and Shimmer DDP

Min, max, standard
deviation, mean,
range, maxPos,
minPos, linregc1,
linregc2, linregerrQ,
skewness, kurtosis,
quartiles (1–3), iqr
(1–3), percentile,
and pctlrange0–1

Opensmile tool

3.3 Features Importance

Choosing the most suitable features to detect emotions from the speech signal is consid-
ered a key player in enhancing SER performance. Two algorithms were applied to rank
features according to their impact on classification model used.

1. Information Gain: It uses entropy (randomness of data) to measure the information
gained with each iteration or tree split of the machine learning model used [24].

2. Permutation Importance: It estimates and ranks feature importance based on the
impact of each feature on the trained model predictions [25]. Table 2 represents the
top 10 features for each classifier.

Table 2. Features importance for used models

Classifier Features

MLP Spectral contrast (1), Chroma (4), RMS(1), MFCC(2), F0(1), Pitch Contour (1)

SVM Chroma (2), MFCC (3), Spectral contrast (3), RMS(2)

RF Mel spectrogram (6), MFCC (2), RMS (1), Chroma (1)

LR Chroma (4), Spectral contrast (1), MFCC (3), Pitch Contour (1), RMS(1)

Emotion Recognition System for Arabic Speech 107

Results show that, MFCC is the most dominant feature across all the classifiers.
Mel-Spectrogram features are highest with random forest which supports Information
gain results.

3.4 Feature Scaling

Machine learning algorithms have better performance when features are normalized.
This reduces the effect of speakers’ variabilities, different languages and recordings con-
ditions on the recognition process. Normalization techniques includes Standard Scaler,
Minimum and Maximum Scaler (MMS) and Maximum Absolute Scaler (MAS) [26,
27]. MMS is used in this work to normalize features to a 0-1 range applying Eq. 1. Both
MMS and Standard scaler were applied and by comparing results, MMS showed better
results.

Xscaled = (X −min)/(max−min) (1)

whereX is the input features, min is the features’minimumvalue andmax is the features’
maximum value.

Shapiro-Wilk test was performed on featureset-2 to accept or reject the null hypoth-
esis (H0) that the data had a normal distribution using the estimated p-value [10]. The
majority of the 122 features rejected the H0 as the p-values were less than the accepted
confidence 0.05. Histograms’ visualization concluded that the data is more skewed than
normally distributed as in Fig. 2.

Fig. 2. Represents samples of the features histograms (ZCR and MFCC)

3.5 Machine Learning Models

Five classification techniques were considered based on their performance in previ-
ous literature. SVM proved to have good performance with multi-dimensional data and
accurate results [7, 27, 28]. Random forest, Logistic regression, andMulti-Layer Percep-
tron (MLP) classifiers are widely used in SER systems [10, 27, 29]. Finally, Ensemble
learning is performed integrating the fourmentioned classifiers using themajority voting
technique. GridSearchCVmethodwas used to fine-tune classifier’s parameters (Table 3).

108 M. El Seknedy and S. A. Fawzi

Table 3. Hyper parameters tuning for classifiers

Model Hyper parameters

Multi-layer perceptron alpha = 0.0001, batch_size = 5, solver = ‘adam’, hidden_layer_sizes
= (400), learning_rate = constant, max_iter = 300

SVM kernel = ‘rbf’, C = 10, gamma = 0.001, decision_function_shape =
‘ovr’

Random forest criterion = ‘entropy’, n_estimators = 500,max_depth = 20

Logistic regression C = 1.0, solver = ‘lbfgs’, penalty = ‘l2’, max_iter = 1000

3.6 Evaluation Metrics

10-fold cross-validation was applied to ensure statistical stability and generalization of
the model. Where, in 10-fold cross-validation, the database is randomly partitioned into
10 equal size subsamples. Of the 10 subsamples, 1 subsample which is 10% of the
database is considered as the testing data to validate the classification model, and the
remaining 9 subsamples are used as training data. The reported accuracy is the average
of the 10 folds tests. We used 4 evaluation metrics during our experiments. Accuracy:
where it gives an overall measure of the percentage of correctly classified instances.

Accuracy = Tp+ Tn

Tp+ Tn+ Fp+ Fn
(2)

where, Tp is True positive, Tn is True negative, Fp is False positive, Fn is False negative

Precision: is how many of the correctly predicted emotional classes were positive.

Precision = Tp

Tp+ Fp
(3)

Recall: is how many of the actual positive emotional classes were correctly predicted.

Recall = Tp

Tp+ Fn
(4)

Confusion Matrix: is another way to analyze how many samples were miss-classified
by the model by giving a comparison between actual and predicted labels.

4 Results and Discussions

This section presents the findings and discussions of the Arabic SER experiments. First,
the results of theArabic dataset analysis survey are introduced then the SERperformance
with different classifiers discussed. In addition, a comparison with the previous research
conducted by Abdel-Hamid et al. [12].

Emotion Recognition System for Arabic Speech 109

4.1 Corpus Survey Analysis

To validate the recently released Arabic dataset AYASE, 2 surveys were conducted on
a sample of utterances representing the different emotions. The participants of the first
survey were 64 Arabic speakers while 20 non-Arabic speakers participated in the second
one. Figure 3 shows the surveys’ results which emphasizes the ambiguity of defining
the happy emotion for most participants. Furthermore, eliminating the semantic sense
of the utterances in second survey, led to identify ‘happy’ as neutral for all the sample
utterances used and angry emotions were also misidentified as neutral.

Fig. 3. Survey Analysis results, the percentage of each emotion participant’s votes for Arabic and
non-Arabic speakers

4.2 Speech Emotion Recognition Experiments

The recognition performance was analyzed using MLP, SVM, Random Forest, Logistic
Regression, and ensemble learning classifiers. Evaluation criteria were done using 10
folds to capture the generalization model performance as well as the accuracy, precision,

110 M. El Seknedy and S. A. Fawzi

and recall. Three experiments were performed: Valence-Arousal classification, Anger
emotional classification, and Multi emotion classification.

1. Valence-Arousal classification

Valence and arousal are the two main dimensions defining emotions, as shown in Fig. 4
[30, 31].

Fig. 4. The 2D valence-arousal model of emotion proposed by Russel [31]

The valence-arousal recognition results are represented in Table 4, showing each
classifier and feature set. It was found that the ensemble learning classifier approach
achieved the best results for valence classification, with an accuracy of 87.59% for
featureset-1 and featureset-2. The arousal classification result of 95.62% was obtained
using ensemble learning and featreset-2 and IS10.

Table 4. Valence and arousal classification results

Feature-set Valence MLP SVM Random
forest

Logistic
regression

Ensemble
learning

Arousal MLP SVM Random
forest

Logistic
regression

Ensemble
learning

Featureset-1 Acc
pre
rec

81.3
81.8
82.2

84.1
84.5
84.8

80.5
81.2
81.0

78.4
79.2
79.3

87.6
88
87.5

Acc
pre
rec

93.3
93.3
93.6

94.3
94.3
94.4

92.9
93.0
93.4

92.9
93.1
93.2

93.9
94.0
94.2

Featureset-2 Acc
Pre
rec

85.1
85.0
85.0

86.5
86.2
86.3

85.8
85.9
85.8

82.3
82.1
82.3

87.6
88.0
87.5

Acc
pre
rec

94.6
94.7
94.4

95.3
95.3
95.2

93.6
93.7
93.7

92.6
92.7
92.6

95.6
95.8
95.4

IS10 Acc
pre
rec

79.1
79.2
78.7

84.4
84.2
84.7

79.8
80.0
79.8

82.2
81.8
82.2

83.7
83.8
83.5

Acc
pre
rec

95.0
95.4
94.7

95
95.4
94.7

93.3
93.4
93.0

95.6
96
95.4

95.6
96
95.4

IS-09 Acc
Pre
rec

82.3
82.3
82.8

83.7
83.3
84.2

82.3
82.4
91.8

82.0
81.6
82.5

83.4
83.0
83.4

Acc
pre
rec

91.6
92.6
92.3

92.3
92.6
92.3

89.6
89.5
89.5

92.0
92.3
91.8

92.2
92.8
92.0

IS-09-10 Acc
Pre
rec

78.7
79.0
79.2

82.3
82.3
82.9

82.0
81.6
82.0

78.4
78.6
79.0

81.2
81.5
81.5

Acc
pre
rec

94.6
94.6
94.8

94
93.6
93.7

94.0
93.8
94.0

95.3
95.1
95.5

95.0
94.8
95.1

Emotion Recognition System for Arabic Speech 111

2. Anger Detection

The most essential need in emotion detection applications is anger emotion recognition.
Anger detection is one of the most significant emotions to detect since it is commonly
utilized in contact centers and retail businesses to measure client happiness. As well
as in the medical field, such as recognizing if a patient is in an angry state based on
his voice signal. The Anger classification results are shown in Table 5, showing that
SVM and IS09-10 had the greatest accuracy of 91.33%, MLP and featureset-2 had the
same accuracy of 91%, and feature-set surpassed other features using ensemble learning
approach with an accuracy of 90.00%. Across all of the featuresets, SVM has the best
average accuracy. Angry classification rate ranges vary from 84% to 91%.

Table 5. Anger classification results

Feature-set Anger MLP SVM Random forest Logistic regressin Ensemble
learning

Featureset-1 Acc
pre
rec

86.3
87.1
83

86.3
86.9
86.8

84.3
85
85.2

86.3
87.3
86.8

86
86.9
86.5

Featureset-2 Acc
Pre
rec

91
91
91.7

90.7
90.7
91.2

88
88.9
88.8

82.3
82.1
82.3

90
90.5
90.5

IS10 Acc
pre
rec

87.3
87
87.7

89
89
89.4

86.7
86.3
87

89.2
81.8
82.2

88.7
83.8
83.5

IS-09 Acc
Pre
rec

86
86
86

83.7
83.3
84.2

82.3
82.4
86.8

86.0
81.6
82.5

88.4
83.0
83.4

IS-09-10 Acc
Pre
rec

89.3
89.4
89.4

91.3
91.2
91.7

86.7
87.6
82.0

88.4
88.6
89.0

89.2
81.5
81.5

3. Multi emotion classification

Multi-emotion classification performancewas tested by incorporating the four emotions:
angry, happy, neutral, and sad.

InTable 6. The greatest accuracywas determined to be 65%whenutilizing featureset-
1 and the ensemble learning approach. In addition, SVM outperformed other classifiers
in terms of average accuracy, except ensemble learning approach and overall feature
sets, where it attained an accuracy of 64% for featureset-2, 64.6% for IS09, 64% for
IS10, and 63% for IS09-10.

From previous results, it was concluded that featureset-2 results are generally higher
than the other feature sets (IS09, IS10, and IS09-10). Featureset-2 superseded other

112 M. El Seknedy and S. A. Fawzi

Table 6. Multi-emotion classification (Angry/Happy/Neutral/Sad)

Feature-set MLP SVM Random forest Logistic regressin Ensemble learning

Featureset-1 62.4
63
62

50.6
52.3
50

62.3
61.3
61.4

62.9
62.6
62.3

65
64.6
64

Featureset-2 64.6
64.7
64.9

64
62.7
63

62.5
60
61

61.3
60.3
60.4

64
62.8
63

IS10 61
60
60

64.6
64.5
63.7

59
57
58

61.5
60.6
60.7

63
62
62

IS-09 59
58
58.8

64
63.5
63.7

60
58.3
59

60.5
59.6
60

62,7
61.5
62

IS-09-10 59
58
58

63
62.5
62.6

60.8
58.6
59.5

59
58.5
58.7

61.5
60.7
60.8

features using MLP where it achieved a performance improvement of 4% compared to
IS09, 5.36% to IS10 and IS09-10. Ensemble learning showed good results in featureset-
1 and featureset-2 compared to other classifiers with accuracies 65.11% and 64.08%
respectively whereas in IS09, IS10 and IS09-10. From the recognition results, featureset-
2 gives the best performance overall classifiers either showing enhancement as in MLP,
random forest and logistic regression or nearly similar results as in SVM and ensemble
learning. Overall performance concerning performance accuracy, precise featureset size,
and running time, featureset-2 proved to be the best choice.

4. Arabic SER - Previous work comparison

Table 7 introduces a comparison between the proposed models using featureset-2 and
previous results by Abdel-Hamid who introduced the Egyptian dataset “EYASE” [12].
Using the same dataset ensures measuring the models’ performance. She used a feature
set composing of prosodic, spectral and wavelet features of a total of 49 features, as well
as using linear SVM classifier and KNN for classification.

The arousal classification of the proposed model achieved 1% enhancement using
SVM classifier. An enhancement of 2.2% was achieved when comparing KNN results.

For valence classification, we achieved nearly the same result in the case of both
SER systems using SVM and an enhancement of 1.39% when ensemble learning was
used technique versus their SVM SER. Leading to improvement of 4% when compared
their results using knn versus our model using either SVM or ensemble learning. For
Anger classification, Lamia [8] used many features combined for anger detection ending
up with the best result of 91% using Prosodic, LTAS, and Wavelet features and the
lowest result of 81% using MFCC and Formants features. Compared with our model,

Emotion Recognition System for Arabic Speech 113

which achieved 91% using MLP and featureset-2 and 90% using ensemble learning and
SVM. ForMulti classification, Lamia achieved 66.8% using SVM and 61.7% using Knn
compared with our model results of 64.61% using SVM and 64.07% using ensemble
learning. So, we were able to achieve enhancement over their Knn model with 3% but
they superseded by 2% for SVM classifier. The justification here is that the LTAS and
wavelet features are very effective with the Arabic language in the case of multi-emotion
classification. That was concluded by Lamia as well when exploring feature importance
in multi-classification as LTAS took a high rank among other features. That’s why it was
concluded that inMulti-classification the absence ofLTASdiffers a bit in the performance
but still, our target during research is to have a baseline featureset for cross-corpus not
just Arabic and to not be computationally expensive.

Table 7. Comparison between our work using featureset-2 and previous SER research work

Paper Emotion
category

Classifier Accuracy Evaluation
criteria

Abdel-Hamid [1] Arousal SVM 94.3% 10-K folds

KNN 93.3%

Valence SVM 86.2%

KNN 83.7%

Multi
classification

SVM 66.8%

KNN 61.7%

Anger
classification

SVM 91.00%

Proposed models Arousal Ensemble-learning 95.62% 10-K folds

Valence SVM 86.50%

Ensemble-learning 87.59%

Multi
classification

Ensemble-learning 64.07%

MLP 64.61%

Anger
classification

MLP 91.00%

Ensemble-learning/SVM 90.00%

5 Conclusion

Different speech feature sets were used to train five different machine learning models.
The correlation between each feature and the classifier was investigated, as well as
which feature has the greatest impact on each classifier. It was found that MFCC is one
of the most dominant features across the four classifiers. In comparison to the previous
SER, our model improved Arabic results by 1–2%. SVM showed best classification
results in many cases. MLP is a highly promising classifier that verifies the current

114 M. El Seknedy and S. A. Fawzi

research trend of neural networks and their different forms. Furthermore, Ensemble
learning was effective and was highly sensitive to the overall other 4 models predication
rates, reflecting multiple classifier point of view. The new state-of-the-art featureset-
2 created and implemented as a mix of spectral and prosodic features, outperformed
previous benchmarked feature sets such as Interspeech feature sets IS09, IS10, and
IS09-10. Furthermore, featureset-2 has the lowest computational time to train themodels
compared to other feature sets.

In the future, there’s a lot of opportunity for supplementing themodel with additional
multilingual data and expanding the input dataset as much as possible. Apply novel
methods such as Convolutional neural network (CNN), LSTM, and transfer learning, as
well as deep learning methods. Furthermore, consider feeding the voice stream straight
into the neural network model without first extracting speech characteristics, which
might speed up the process. Implementing the transfer learning approach by considering
spectrogram images as an input feature to the CNN model.

References

1. Likitha, M.S., Gupta, S.R.R., Hasitha, K., Raju, A.U.: Speech based human emotion recog-
nition using MFCC. In: 2017 International Conference on Wireless Communications, Signal
Processing andNetworking (WiSPNET), pp. 2257–2260 (2017). https://doi.org/10.1109/WiS
PNET.2017.8300161

2. Blumentals, E., Salimbajevs, A.: Emotion recognition in real-world support call center data
for latvian language. In: CEUR Workshop Proceedings, vol. 3124 (2022)

3. Stankova, M., Mihova, P., Kamenski, T., Mehandjiiska, K.: Emotional understanding skills
training using educational computer game in children with autism spectrum disorder (ASD)
- case study. In: 2021 44th International Convention on Information, Communication and
Electronic Technology, MIPRO 2021 – Proceedings, pp. 672–677 (2021). https://doi.org/10.
23919/MIPRO52101.2021.9596882

4. Du, Y., Crespo, R.G., Martínez, O.S.: Human emotion recognition for enhanced performance
evaluation in e-learning. Prog. Artif. Intell. 1–13 (2022). https://doi.org/10.1007/S13748-022-
00278-2

5. Roberts, L.: Understanding the Mel Spectrogram (2020). https://medium.com/analyticsvid
hya/understanding-the-mel-spectrogram-fca2afa2ce53

6. Rashidan,M.A., et al.: Technology-assisted emotion recognition for autism spectrum disorder
(ASD) children: a systematic literature review. IEEE Access 9, 33638–33653 (2021)

7. Akçay, M.B., Oğuz, K.: Speech emotion recognition: emotional models, databases, features,
preprocessing methods, supporting modalities, and classifiers. Speech Commun. 116, 56–76
(2020)

8. El Ayadi, M., Kamel, M.S., Karray, F.: Survey on speech emotion recognition: features,
classification schemes, and databases. Pattern Recognit. 44(3), 572–587 (2011)

9. Mori, S., et al.: Emotional speech synthesis using subspace constraints in prosody. In: 2006
IEEE International Conference on Multimedia and Expo, pp. 1093–1096 (2006)

10. Klaylat, S., Osman, Z., Hamandi, L., Zantout, R.: Emotion recognition in Arabic speech.
Analog Integr. Circ. Sig. Process. 96(2), 337–351 (2018)

11. Szmigiera, M.: The most spoken languages worldwide 2021. https://www.statista.com/statis
tics/266808/the-most-spoken-languages-worldwide/

12. Abdel-Hamid, L.: Egyptian Arabic speech emotion recognition using prosodic, spectral and
wavelet features. Speech Commun. 122, 19–30 (2020)

https://doi.org/10.1109/WiSPNET.2017.8300161
https://doi.org/10.23919/MIPRO52101.2021.9596882
https://doi.org/10.1007/S13748-022-00278-2
https://medium.com/analyticsvidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://www.statista.com/statistics/266808/the-most-spoken-languages-worldwide/

Emotion Recognition System for Arabic Speech 115

13. Mirsamadi, S., Barsoum,E., Zhang,C.:Automatic speech emotion recognition using recurrent
neural networks with local attention. In: 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2227–2231 (2017)

14. Lalitha, S., Geyasruti, D., Narayanan, R., Shravani, M.: Emotion detection using MFCC and
cepstrum features. Procedia Comput. Sci. 70, 29–35 (2015)

15. Araño, K.A., Gloor, P., Orsenigo, C., Vercellis, C.: When old meets new: emotion recognition
from speech signals. Cogn. Comput. 13(3), 771–783 (2021). https://doi.org/10.1007/s12559-
021-09865-2

16. Schuller, B., Steidl, S., Batliner, A.: The interspeech 2009 emotion challenge. In: INTER-
SPEECH (2010)

17. Schuller, B., et al.: The INTERSPEECH 2010 paralinguistic challenge. In: INTERSPEECH
(2010)

18. Koolagudi, S.G., Murthy, Y.V.S., Bhaskar, S.P.: Choice of a classifier, based on properties
of a dataset: case study-speech emotion recognition. Int. J. Speech Technol. 21(1), 167–183
(2018). https://doi.org/10.1007/s10772-018-9495-8

19. Bhavan,A., Chauhan, P., Shah,R.R.: Bagged support vectormachines for emotion recognition
from speech. Knowl.-Based Syst. 184, 104886 (2019)

20. Yadav, S.P., Zaidi, S., Mishra, A., et al.: Survey on machine learning in speech emotion
recognition and vision systems using a recurrent neural network (RNN). Arch. Comput.
Methods Eng. 29, 1753–1770 (2022)

21. Langari, S., Marvi, H., Zahedi, M.: Efficient speech emotion recognition using modified
feature extraction. Inform. Med. Unlocked 20, 100424 (2020)

22. https://librosa.org/doc/latest/index.html
23. About openSMILE—openSMILE Documentation. https://audeering.github.io/opensmile/

about.html#capabilities. Accessed 18 May 2021
24. https://machinelearningmastery.com/information-gain-and-mutual-information/. Accessed

10 Dec 2020
25. Permutation feature importance with scikit-learn. https://scikit-learn.org/stable/modules/per

mutation_importance.html. Accessed 18 May 2021
26. Sefara, T.J.: The effects of normalisation methods on speech emotion recognition. In: Pro-

ceedings - 2019 International Multidisciplinary Information Technology and Engineering
Conference, IMITEC 2019 (2019)

27. Zehra, W., Javed, A.R., Jalil, Z., Khan, H.U., Gadekallu, T.R.: Cross corpus multi-lingual
speech emotion recognition using ensemble learning. Complex Intell. Syst. 7(4), 1845–1854
(2021)

28. Koduru, A., Valiveti, H.B., Budati, A.K.: Feature extraction algorithms to improve the speech
emotion recognition rate. Int. J. SpeechTechnol. 23(1), 45–55 (2020). https://doi.org/10.1007/
s10772-020-09672-4

29. Matsane, L., Jadhav, A., Ajoodha, R.: The use of automatic speech recognition in education
for identifying attitudes of the speakers. In: IEEE Asia-Pacific (2020)

30. Bestelmeyer, P.E.G., Kotz, S.A., Belin, P.: Effects of emotional valence and arousal on the
voice perception network. Soc. Cogn. Affect. Neurosci. 12(8), 1351–1358 (2017). https://doi.
org/10.1093/scan/nsx059. PMID: 28449127; PMCID: PMC5597854

31. Russell, J.A.: A circumplex model of affect. J. Personal Soc. Psychol. 39(6), 1161–1178
(1980)

https://doi.org/10.1007/s12559-021-09865-2
https://doi.org/10.1007/s10772-018-9495-8
https://librosa.org/doc/latest/index.html
https://audeering.github.io/opensmile/about.html#capabilities
https://machinelearningmastery.com/information-gain-and-mutual-information/
https://scikit-learn.org/stable/modules/permutation_importance.html
https://doi.org/10.1007/s10772-020-09672-4
https://doi.org/10.1093/scan/nsx059

Modelling

Towards the Strengthening of Capella
Modeling Semantics by Integrating
Event-B: A Rigorous Model-Based

Approach for Safety-Critical Systems

Khaoula Bouba1(B), Abderrahim Ait Wakrime1, Yassine Ouhammou2,
and Redouane Benaini1

1 Computer Science Department, Faculty of Sciences,
Mohammed V University in Rabat, Rabat, Morocco

khaoula.bouba@um5r.ac.ma,

{abderrahim.aitwakrime,redouane.benaini}@fsr.um5.ac.ma
2 LIAS/ISAE - ENSMA, 86961 Futuroscope Chasseneuil Cedex,

Chasseneuil-du-Poitou, France
yassine.ouhammou@ensma.fr

Abstract. Safety-critical systems are increasingly model-based, since
model-based system engineering (MBSE) paradigm reduces the time-to-
market and allows evolving systems at different abstraction levels. Dif-
ferent languages have been proposed recently enabling to facilitate the
modeling process and shorten the development life-cycle. However, these
languages may be used at one or many modeling steps regarding the
semantics of their artefacts. Capella language is one of these languages
that gained popularity recently. It is dedicated to system engineering and
its use may very beneficial for safety-critical system. However, designing
with Capella is considered as semi-formal. Thus, the approach presented
in this paper stands for systematic formal verification of Capella’s behav-
ioral models using Event-B method in a transparent way. Our proposal
translates Capella models into Event-B specifications using automatic
model-to-model transformations dedicated to Capella designers. The ver-
ification of correctness of the transformed models is provided by the ProB
model-checker. An automatic lighting system is treated as a case study
to validate of our contribution.

Keywords: Model-based system engineering · Formal methods ·
Capella/arcadia · Event-b · Meta-model · Operational analysis

1 Introduction

With the rapid pace of change in our world, safety-critical systems became more
and more complex, and the traditional engineering practices that are mostly
document-driven are no longer adequate to address increasing complexity in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 119–132, 2023.
https://doi.org/10.1007/978-3-031-21595-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_9&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_9

120 K. Bouba et al.

systems architecture. Modeling is the first step in the software development pro-
cess for understanding requirements relative to the system. As a result, partial
models of the structure and behavior of the system are created, allowing the
developers to work at various abstraction levels before beginning the program-
ming process. The second step is the consistency verification, that must also be
performed at an early design phase, meaning that each refined model must be
consistent with itself, with the previous models, and with global constraints.

The core of the MBSE is to construct the appropriate models regarding
given system specifications. For this reason, Capella [1] was a turning point
for engineering environments such as energy, aerospace, and automotive indus-
tries, which in recent years has become increasingly recommended for modeling.
Capella provides better architecture quality, expresses the systems in five differ-
ent abstraction levels, each one is a refinement of the previous. These levels are
Operational Analysis (OA), System Analysis (SA), Logical Architecture (LA),
Physical Architecture (PA), and End Product Breakdown Structure (EPBS). In
addition to that, Capella offers an automatic traceability between its various lev-
els and supports an easier integration of structure and behaviour. In this paper,
we focus on the first modeling level, which captures the relevant stakeholders of
the operational context in which the system will be integrated. In this phase, we
chose the Operational Architecture (OAB) diagram, that allocates the activities
to the entities and actors in order to present a conceptual overview. The benefit
of this diagram is that it groups both the functional and behavioral decomposi-
tions of the system. Hence, a rigorous model-based approach for safety-critical
systems starting from OAB models is needful.

So, in our work, we address an innovative challenge which is the automatic
transformation of Capella modeling to Event-B [2] models, so that Capella mod-
els can be verified using model checking, which is an important step towards
establishing a reliable development process. Hence, the present solution starts
with identifying the system requirements and presenting them as a Capella dia-
gram. Then, a model transformation is applied to transform automatically the
Capella models into Event-B specifications. Also, to the best of our knowledge,
the proposed formalization, based on model transformation of a Capella OAB
diagram to Event-B, presented in this paper has not been developed so far.

The reminder to the paper is organised as follows. The next section presents
the state-of-the-art, followed by presenting the running example adopted in this
work. Section 3 is devoted to explain the process and the methodology of our
approach, in addition of the verification process of our case study. Section 4 is
dedicated to the tooling of a proof of concept. Finally, Sect. 5 concludes the paper
and presents the future work.

2 Related Works and Preliminaries

In this section we first start by discussing some existing related works, then we
present briefly Capella and Event-B. We also present an example that will be
treated in our contribution to facilitate the explanation.

A Rigorous Model-Based Approach for Safety-Critical Systems 121

2.1 Background

Software development methodologies, such as Model-Driven Engineering (MDE)
[3], are considered an effective method to simplify the design process. Towards
developing more abstract and more automated systems, MDE makes extensive
and consistent use of models at different levels of abstraction while designing
systems. By using models, it becomes possible to eliminate some useless details
as well as to break down complicated systems into smaller, simpler and manage-
able units. Due to a separation between the business and technical components
of the application, MDE automates the generation of applications following the
modification of the target platforms. In this context, the [4] focuses on transform-
ing an adaptive run-time system model interpreted with MARTE [5] elements
to Event-B concepts using the Acceleo [6] transformation engine. The [7] sug-
gests a Sewerage System which is represented by a UML activity diagram, and
further converted into Nondeterministic Finite Automata (NFA) [8] to describe
the system’s behavior of water effectively. In the following step, a formal model
is created from the automata model using TLA+ [9], which will be checked
and validated by TLC, a model checking feature included in TLA+. The work
proposed in [10] presents the formalization of a system called Railway Signal-
ing System European Rail Traffic Management System/European Train Control
System (ERTMS/ETCS). The functionalities and relationships of its several sub-
systems are modelled via UML, and then translated to Event-B language. The
proof of correctness of the end code is provided by ProB [11].

Contrary to previous researches, the research proposed in [12] proposes
Capella as a modeling tool for Distributed Integrated Modular Avionics (DIMA).
The choice of Capella was due to the increasing maturity of the system, which
makes the DIMA system architects confront several issues face several problems
during the design process due to the high number of functions, such as func-
tions allocation and device physical allocation. The authors in [13] offer a set
of constructions and principles in order to abstract heterogeneous models with
the intention of being able to synchronize and compare them; They trusted the
System Structure Modeling Language [14] (S2ML) to ensure the consistency
between system architecture models designed with Capella and safety models
written in AltaRica 3.0 [15] of the power supply system. The [16] introduces a
transformation approach from Capella physical architecture to software archi-
tecture in AADL [17] using the Acceleo plugin, that was applied and validated
on a robotic demonstrator called TwIRTee, developed within the INGEQUIP
project. Besides, each element of the source architecture is mapped to a new
concept of the target architecture. The work in [18] shows a model-to-model
transformation application, which aims to verify the dynamic behavior model of
Capella systems using Simulink [19]. The use case chosen for this research is the
“clock radio” system, which will be interpreted in the form of a Capella data-
flow diagram (physical architecture data-flow), and subsequently transformed
into an executable simulink model. Unlike the researches mentioned above, we
propose through this paper, a new approach which consists of formalizing a
Capella model, one of the most useful modeling solutions, to Event-B, one of
the formal languages more used.

122 K. Bouba et al.

2.2 Overview of Capella and Event-B

Capella is model-based engineering tool originally implemented by Thales, that
has been successfully implemented in many industrial contexts. It was inspired
by UML/SysML and NAF standards, and provides rich methodological guidance
to system, software and hardware architects using of ARChitecture Analysis and
Design Integrated Approach (Arcadia), a model-based engineering method that
relies on functional analysis and on the allocation of functions to architecture
components. Considering that the Capella tool embeds the Arcadia Method,
one of the biggest challenges of Capella Modeling is that in a sense it cannot be
regarded as a general-purpose modelling language. As a result, it makes more
difficult for users to transition from an existing SE process based on document-
based approaches. Also, system engineers must maintain consistency with the
Capella transition mechanism to meet the user’s requirements.

Event-B is a state formal-method for modeling systems and analysis, based
on set theory and predicate logic. It has two main features: The first one is the
refinement, which describes the system at a high level of abstraction, and then
making it more and more precise by adding new concepts and details in suc-
cessively understandable steps. And the second one is the consistency checking,
which ensures the validity of system properties via mathematical proof obliga-
tions. Formal models are particularly challenging because they require additional
argumentation about their correctness and well-definedness.

2.3 Motivating Example: Adaptive Exterior Light System

We introduce an example that is inspired from a real-world system and available
in many recent cars, called the adaptive exterior light system. We will discuss
a case study that was proposed during the ABZ2020 conference [20]. The sys-
tem outlines the many available lights and the conditions under which they are
turned on/off in order to improve the driver’s vision without blinding oncoming
motorists. The system can be considered as a lights controller that reads various
data from accessible sensors (key state, outside luminosity, etc.) and performs
appropriate actions by acting on the light actuators to guarantee good visibility
for the driver based on the data read. Also, we will introduce another aspect
that is particularly relevant to the driver’s modeling behavior [21], which was
not included in the use case, but it will allow us to use cameras to examine
drivers’ conditions, such as their level of attention and interest, driving skills,
aiming to improve transportation safety.

3 Proposed Approach

Our approach contains two steps: (i) Preparatory step and (ii) Transformation
step. First, we start by defining the needs of the stakeholders and the system func-
tionality requirements. Next, we switch these informal requirements to Capella
model. During this stage, it is possible for users to inject rules into the model
through constraints, which must be preserved by each state of the system.

A Rigorous Model-Based Approach for Safety-Critical Systems 123

Once the Capella model and the translation implementation are ready, we
can proceed to the transformation step. As input for our generator, we pass a
specific file containing the model without the graphical part. Some of the Capella
components will not be formalized later, because so far they do not participate
in the state/transition behavior of the system. As soon as our formal Event-B
model is generated, it must be validated and verified. In summary, our approach
is depicted in Fig. 1.

Fig. 1. Overview of the model transformation approach.

The manual construction of formal models is time-consuming, prone to error,
and intractable for large systems. Therefore, automating model construction
would make formal methods more effective for ensuring system correctness.

3.1 Preparatory Step

Operational Analysis Meta-model. The Capella meta-model is defined in
ecore format, it is captured in an Ecore files (.ecore), which are basically a XML
files that conforms to the XSD of Ecore. These files depend on each-other as
elements frequently build on top of each-other via Generalization relationship. In
our paper, we’ll be focusing only on the Operational Analysis meta-model. It will
contain only the classes that can be directly mapped to the target meta-model as
showed in Fig. 2, which shows the main concepts of OA meta-model. We have the
Entity class that represents an entity in the real world which is ready to interact
with the system or its users. These entities could have a role in the system, for this
reason, we could assign characters to them by associating them with roles, such
as driver, pilot, etc. In addition to that, they can perform operational activities
to achieve a specific objective, linked together by operational interactions that
can present exchanges of information. Constraints are cross-perspective elements
in the sense that they can be applied to components in multiple perspectives.
These constraints help the users to inject the model with rules that should hold in
each reachable state of the system. Finally, the operational processes are series of
activities and interactions that are carried out successively to achieve a purpose.

124 K. Bouba et al.

Fig. 2. Extract of Operational Analysis meta-model.

OABDiagram: Adaptive Exterior Light System. We started by creating a
model that describes the lighting system of cars, and we were keen that it contains
all the components of the palette offered by the Capella workbench. The system’s
behaviour is described in a Capella operational architecture diagram by a set of
actors/entities, interactions, constraints and operational activities. At this cur-
rent stage, we have three entities and one actor to which we assign a role called
Driver. We have also allocated them some activities, and these activities have dif-
ferent interactions with each other. Next, we assigned to them and to the activities
different constraints. Each constraint have a specific interpretation, that we will
discuss later. Also, we have an operational process that present a set of activities
which are rolled out successively as shown in our diagram with the blue line; First
and foremost, the car must be started so that the lights can turn on, or we can
rely on the front camera detecting the condition of the driver as normal, so that
he can adjust the parameters to set the state of lights. The Fig. 3 represents an
operational architecture diagram of the adaptive exterior light.

A Rigorous Model-Based Approach for Safety-Critical Systems 125

Fig. 3. Operational architecture diagram of the adaptive exterior light.

3.2 Transformation Step

Event-B Meta-model. An Event-B model [22] is composed of a machine,
which models dynamic data and behavior, and zero or more contexts, which
model static data structures or configurations. Events consist of guards and
actions, provide the state transition mechanism for the machine’s variables. The
guard is a condition on the machine variables that determines whether or not an
event is enabled; It is only enabled if all its guards are true. The action is to apply
an update on a state variable. The invariants are state predicates that define the
types of variables, specify properties of correctness that must always be true, and
any violation of these invariants will cause the system to be inconsistent. The
INITIALIZATION event is used to set the variables’ initial values. The Fig. 4
represents the meta-model of Event-B that shows clearly Event-B meta-classes
and structures.

126 K. Bouba et al.

Fig. 4. Event-B meta-model.

Mapping of Capella/Event-B Concepts. Combining the two specification
techniques Capella and Event-B is a well-studied topic. Our Capella to Event-
B approach validates formally the modeled system’s expected scenarios, and
describes a simultaneous construction strategy that provides for more flexibility
and the capacity to develop the specification while maintaining coherence and
traceability between the two models. The Table 1 describes the mapping of the
transformation between Capella and Event-B meta-models. The transformation
process follows specific rules which are generally applied on the source model in
order to generate the appropriate target model with respecting the mapping cho-
sen above. For every Event-B component, we present its equivalent in the Capella
side : MACHINE: The name of the Capella diagram is mapped as the machine
name in Event-B. SETS: Each entity/actor or role element that contains at least
one operational activity considered as the target of an operational interaction, is
considered as a set (meaning that these activities have inputs). The elements of
this set will be the values of the operational interactions coming to the activities
of the entity/actor or role in question. VARIABLES: The concatenation of the
constant “Var ” with the names of the selected entities/actors or roles (according
to the aforementioned rule) forms the list of variables. INVARIANTS: con-
straints linked to entities/actors or roles, and beginning with the character “:”
are automatically translated into invariants. INITIALISATION: constraints
linked to entities/actors or roles, and beginning with the character “=”, form the

A Rigorous Model-Based Approach for Safety-Critical Systems 127

Table 1. Concept mapping between Operational Analysis and Event-B meta-models.

Graphical Capella element Capella concept Event-B concept

Operational Entity/Actor Set,Variable

Role Set, Variable

Operational Activity Event

Operational Interaction Set’s Element

Constraint Invariant, Initialisation

list of initializations. EVENTS: Operational activities that have at least one
operational interaction as input are transformed into events. The inputs arriving
at the activities form the post-conditions of its equivalent events. The precon-
dition under which an event can occur is the conjunction of the postconditions
of its previous activity (by default), but if the precondition have a specific logic
(combination of the conjunctions and disjunctions operations), we must define
a constraint associated with the activity, which carries the appropriate guard
expression.

There is no mapping for the Operational Process component, because as
we have already explained, it is a succession of activities carried out in a spe-
cific order, and we have also translated the activities into events (according to
Table 1), therefore intuitively it is transformed into a series of events, which will
be executed in a specific order (It will not be possible to execute the second event
unless the first has already been executed). This order of execution is controlled
by the the correctness of the precondition of the events (the precondition of the
second event is the post-condition of the first).

Generated Results. The Fig. 5 shows an extract of the different parts of the
generated Event-B model. Our case study is quite large, so we focused on a
specific sub-systems for a clearer explanation.

In our case study, we have an entity called CAR LIGHTS, which is respon-
sible for turning on/off the vehicle lights. It includes a couple of activities, so
for this reason a set denominated “CAR LIGHTS” composed of two elements
{activeLigts, inactiveLights}, a variable called “VAR CAR LIGHTS”, an invari-
ant indicating that the variable created belongs to the set (membership pred-
icate), named “VAR CAR LIGHTS : CAR LIGHTS”, and initialisation event,

128 K. Bouba et al.

Fig. 5. An extract of the generated Event-B model.

denominated “Var CAR LIGHTS := inactiveLights”, indicating the initial value
of our variable are created in the MACHINE; Afterward, two events are created:
the first one to active the lights of the engine, named “ActivateLights”, with a
disjunction expression “Var VEHICLE = engineON or Var DRIVER = INCon-
trol” as guard and “Var CAR LIGHTS := activeLights” as action, indicating
that the lights can be activated only if the car is started (engineOn) or with
the driver intervention (in Control). Here the guard is defined in a constraint,
because as we explained it before, the default operation between the conditions
of the guard is the conjunction, but in this case we have some peculiarities related
to the semantics of the lights activation process (see Fig. 7).

The invariant that expresses a predicate that must stay true during the whole
execution must contain the character “>>”. For the “VEHICLE” entity, we
associated to it two invariants; The first one indicates that if the engine is off,
the state of the lights and the driver frontal camera is also off, and the second
expresses a safety property whose purpose is to protect the driver if its condition
does not allow him to drive (see Fig. 6). It should be noted that the fifth and
sixth invariants are not included in the approved case study (see Fig. 5). Never-
theless, we created them in order to have a sufficient number of invariants for the

Fig. 6. The invariant concept of the VEHICLE sub-system.

A Rigorous Model-Based Approach for Safety-Critical Systems 129

verification simulation, and complete implementation grouping all the elements
of the diagram (we added two concepts : the driver and the frontal camera that
captures his actual state).

Fig. 7. The mapping of the Car Lights sub-system elements into Event-B concepts.

Validation and Verification. Validating the Event-B model and ensuring that
the invariants (typing and safety properties invariants) are preserved across all
events is our intention in this section. It consists of checking whether a finite-
state model of a system meets certain specifications. Also, there is no addition
of new instances of the sets defined earlier in the model, so the objects set
remains constant. To test whether our Event-B model is valid, we applied it to
a simplified scenario derived from the use case study illustrated in Sect. 2.3. We
launch our scenario by starting the engine, which activates the driver’s front
camera. This camera is used to predict the driver’s state and fatigue levels. If
the state of the driver is “normal”, then he can change the settings of the car to
turn on the lights, and as a consequence, his state is changed to “in Control”.
On the other hand, if the detected state is “drowsy”, which means that he’s not
capable of driving anymore, the vehicle, the lights and the frontal camera are
turned off (to prevent accidents for example). For the purpose of demonstrating
that the formal specifications of the adaptive exterior lighting model are correct,
we’ll use ProB in order to validate the Event-B model. Model checking is used
here instead of theorem proving, since that requires more effort and training.
Nevertheless, the model checking is sufficient to check system properties for a
given initial state, since the system has a finite state space.

A - Verification Using Model Checking. Model-Checking [23] is a for-
mal verification method that automatically and systematically checks whether
a system description conforms specified properties. The behavior of the system
is modeled formally, and the specifications expressing the expected properties
(safety, security, etc.) of the system are also expressed formally using the first-
order logic formulas. All experiments were conducted on a 64-bit PC, Windows
10 operating system, an Intel Core i7, 2.9 GHz Processor with 2 cores and 8 GB

130 K. Bouba et al.

RAM. Using the ProB model-checker and based on mixed breadth and depth
search strategy, we have explored all states: 100% of checked states with 7 dis-
tinct states and 20 transitions. No invariant violation was found, and all the
operations were covered. This verification ensures that invariants are preserved
by each event. Otherwise, a counter-example would be generated.

B - Validation by Animation. ProB can function as a complement to a
model-checker and as an animator. The use of animations during verification is
very important and can detect a range of problems that can be avoided in the
future, including unexpected behavior of a model. The behavior of an Event-
B machine can be dynamically visualized with ProB animator using different
operational scenarios; Besides it can analyze all of the accessible states of the
machine to check the demonstrated properties. Based on the animation of these
scenarios, we can conclude that our specification has been tested and validated.
Alternatively, if this is not the case, we must go back to the initial specification to
find the conflicts, correct the unacceptable behaviors and re-apply the animation
to ensure the specification is aligned with the requirements.

4 Tooling

The Fig. 8 represents each step of our approach with its equivalent tool. The
preparatory step is devoted to the construction of the operational analysis model
using the Capella studio tool. The transformation step is dedicated for the trans-
formation of Capella model to Event-B model using Acceleo. The last step is
committed to the Event-B textual specification and to the verification of this
using ProB.

Fig. 8. The tools corresponding to each step of the proposed approach

With Capella Studio, extensions for Capella MBSE can be developed in an
integrated development environment. It is based on Kitalpha, which is designed

A Rigorous Model-Based Approach for Safety-Critical Systems 131

for creating model-based workbenches. Also, users can enhance and customize
the Capella development artefacts (meta-models, diagrams) using the Capella
development artefacts. There are many add-ons and viewpoints that are already
integrated in the Capella studio. It includes EMF technology for the models man-
agement which are defined in the Ecore format. Ecore is a framework composed
of a set of concepts, that can be manipulated by EMF to build a meta-model.

Ecore shares a lot of similarities with the class diagram of UML, that’s why
it can basically be seen as UML packages. Every package contains ontology
elements (or UML Classes) and “local” element relationships (Associations).
Moreover, it includes as well the Acceleo add-on, which is a language based
on templates for creating code-generation templates. In addition to supporting
OCL, this language provides a number of operations useful for working with
text-based documents. There is a set of powerful tools bundled with Acceleo,
including an editor, a code completion and refactoring tools, a debugger, error
detection and a traceability API.

5 Conclusion and Future Works

This paper proposes the formalization and verification of a Capella Diagram
named Operational Architecture Diagram using Event-B in order to develop a
mechanism for automatic verification of these diagrams, with the potential to
bring the benefits of formal methods to industrial practitioners. We used the
Capella model to describe how components interact and the overall behavior
of our system. Then, the Capella model is transformed into Event-B in order
to ensure the validity of the functional properties of the system. The output
of model transformation is verified using the ProB model-checker to monitor
the invariants preservation for a given initial state. In our future work, we plan
to make the construction of the invariants more automatic without the need
of any constraint. Also, we are going to present a refinement methodology of
Capella and Event-B models. Using this approach, the system is incrementally
developed starting from a very abstract model that may be considered as a
system specifications. The model of the system is gradually developed (using
correct-by-construction process) by adding more details in a concrete model that
must maintain the properties and functionality of the previous abstract models.

References

1. Roques P.: Modélisation architecturale des systèmes avec la méthode Arcadia:
guide pratique de Capella, vol. 2, ISTE Group, 2018

2. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

3. Schmidt, C.: D.: Model-driven engineering. Computer-IEEE Computer Society-
39(2), 25 (2006)

4. Fredj, N., Hadj Kacem, Y., Abid, M.: An event-based approach for formally veri-
fying runtime adaptive real-time systems. The Journal of Supercomputing 77(3),
3110–3143 (2021)

132 K. Bouba et al.

5. The ProMARTE consortium, UML profile for MARTE, beta 2, June 2008, OMG
document number : ptc/08-06-08

6. Brambilla, M., Cabot, J., Wimmer, M.: Model driven software engineering in prac-
tice. SynthLect. Softw. Eng. 3(1), 1–207 (2012)

7. Latif, S., Rehman, A., Zafar, N.A.: Modeling of sewerage system linking UML,
automata and TLA+. In 2018 International Conference on Computing, Electronic
and Electrical Engineering (ICE Cube), pp 1–6. IEEE (2018)

8. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Language and Computation, Addison-Wesley, Reading (2001)

9. Cristiá, M.: A TLA+ encoding of DEVS models. In: Proceedings of the Interna-
tional Modeling and Simulation Multiconference, pp. 17–22 (2007)

10. Ait Wakrime, A., Ben Ayed, R., Collart-Dutilleul, S., Ledru, Y., Idani, A.: For-
malizing railway signaling system ERTMS/ETCS using UML/Event-B. In: Abdel-
wahed, E.H., Bellatreche, L., Golfarelli, M., Méry, D., Ordonez, C. (eds.) MEDI
2018. LNCS, vol. 11163, pp. 321–330. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00856-7 21

11. Leuschel, M., Butler, M.: Prob: an automated analysis toolset for the b method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

12. Batista, L., Hammami, O.: Capella based system engineering modelling and multi-
objective optimization of avionics systems. In: IEEE International Symposium on
Systems Engineering (ISSE), pp. 1–8. IEEE (2016)

13. Batteux, M., Prosvirnova, T., Rauzy, A.: Model synchronization: a formal frame-
work for the management of heterogeneous models. In: Papadopoulos, Y., Aslanse-
fat, K., Katsaros, P., Bozzano, M. (eds.) IMBSA 2019. LNCS, vol. 11842, pp.
157–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32872-6 11

14. Batteux, M., Prosvirnova, T., Rauzy, A.: System Structure Modeling Language
(S2ML) (2015)

15. Batteux, M., Prosvirnova, T., Rauzy, A.: Altarica 3.0 in 10 modeling patterns. Int.
J. Critic. Comput. Based Syst. (IJCCBS). 9, 133 (2019). https://doi.org/10.1504/
IJCCBS.2019.10020023

16. Ouni, B, Gaufillet, P., Jenn, E., Hugues, J.: Model driven engineering with Capella
and aadl. In: ERTSS 2016 (2016)

17. Architecture Analysis and Design Language (AADL), SAE standards .http://
standards.sae.org/as5506/

18. Duhil, C., Babau, J.P., Lépicier, E., Voirin, J.L., Navas, J.: Chaining model trans-
formations for system model verification: application to verify Capella model with
Simulink. In: 8th International Conference on Model-Driven Engineering and Soft-
ware Development, pp. 279–286. SCITEPRESS-Science and Technology Publica-
tions (2020)

19. Klee, H., Allen, R.: Simulation of Dynamic Systems with MATLAB and Simulink.
CRC Press, Boca Raton, February 2011

20. Houdek, F., Raschke, A.: Adaptive exterior light and speed control system. In:
Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 281–
301. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6 24

21. AbuAli, N., Abou-zeid, H.: Driver behavior modeling: Developments and future
directions. Int. J. Veh. Technol. 2016, 1–12 (2016)

22. Weixuan, S., Hong, Z., Chao, F., Yangzhen, F.: A method based on meta-model for
the translation from UML into Event-B. In: 2016 IEEE International Conference
on Software Quality, Reliability and Security Companion, pp. 271–277 (2016)

23. M Clarke Jr., E., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model checking.
Cyber Physical Systems Series (2018)

https://doi.org/10.1007/978-3-030-00856-7_21
https://doi.org/10.1007/978-3-030-00856-7_21
https://doi.org/10.1007/978-3-030-32872-6_11
https://doi.org/10.1504/IJCCBS.2019.10020023
https://doi.org/10.1504/IJCCBS.2019.10020023
http://standards.sae.org/as5506/
http://standards.sae.org/as5506/
https://doi.org/10.1007/978-3-030-48077-6_24

A Reverse Design Framework
for Modifiable-off-the-Shelf Embedded
Systems: Application to Open-Source

Autopilots

Soulimane Kamni1(B), Yassine Ouhammou1, Emmanuel Grolleau1,
Antoine Bertout2, and Gautier Hattenberger3

1 LIAS, ISAE-ENSMA, Futuroscope, France
{soulimane.kamni,yassine.ouhammou,grolleau}@ensma.fr

2 Université de Poitiers, Futuroscope, France
antoine.bertout@univ-poitiers.fr

3 Ecole Nationale de l’Aviation Civile, Université de Toulouse, Toulouse, France
gautier.hattenberger@enac.fr

Abstract. The development of real-time embedded systems is usually
preceded by an important design phase to ensure that functional and
behavioural constraints are met. However, the modification of some sys-
tems, especially Unmanned Air Vehicles that need to be frequently cus-
tomised, is typically done in an ad-hoc way. Indeed, the design infor-
mation may not be available, which may affect the proper functioning
of the system. This paper aims to propose a framework helping reverse-
engineering a Modifiable Off-The-Shelf (MOTS) embedded system in
order to be able to ease its modification. In other words, our objective
is to point out where modifications have to happen, and allow smooth
use of third-party analysis and/or architecture exploration tools to re-
analyse non-functional properties (safety, performances, etc.) regarding
the customisation. This framework extracts functional-chains from the
source code and represents them visually as a model-based design by
using model-driven engineering settings.

Keywords: MOTS · Reverse engineering · Capella · Model-based
design

1 Introduction

Nowadays, the re-usability is an aspect that becomes more and more requested
when developing new systems. Indeed, many systems are being constructed by
integrated existing independent systems, of different stakeholders, leading to new
system of systems (SoS), like in UAV (Unmanned Air Vehicles) domain.

There is a growing interest in open and flexible architecture for UAV sys-
tems. A lot of small and medium stakeholders propose new drone-based inno-
vative services by customising hardware and/or software parts. Moreover, from
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 133–146, 2023.
https://doi.org/10.1007/978-3-031-21595-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_10&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_10

134 S. Kamni et al.

bare-metal autopilots executed on small microcontrollers, the hardware evolu-
tion of embedded systems on a chip allows multiprocessor chips to be embed-
ded and used as hardware platforms for autopilots [1–3]. These platforms may
also rely on companion boards to add extra and specialised computing perfor-
mance, such as GPUs (Graphics Processing Unit) to execute machine learning
methods. Sensors are also rapidly evolving, as well as many types of frames are
available: fixed wings, helicopter, tri, quad, hexa, hepta or octo-copters, vertical
take-off and landing vehicles, etc. As a result, the autopilot has to cope with
fast-growing orthogonal dimensions: over a dozen of types of frames, dozens of
hardware computing platforms, supporting different operating systems (or none
at all), hundreds of different sensors and actuators, and an infinite number of
customised functions. All these elements should be embedded as a payload or
directly integrated in the heart of the autopilot. Starting the software develop-
ment of an autopilot from scratch, unless supported by dozens of developers, is
a lost cause against fast evolution in each of these dimensions [4]. It is therefore
no surprise to observe that drone manufacturers which are mostly SME (small
and medium-sized enterprises) are relying on existing open-source autopilots and
adapt them to their needs.

One of the first open source autopilots were Paparazzi [3], Ardupilot (initially
meant to target Arduino-based platforms) [1], and PX4 [2]. They all benefited
from contributions from dozens to hundreds of users and developers. These open
source autopilots have been designed in order to be portable as much as pos-
sible. For example, Paparazzi can be executed on bare metal platforms, but
also on POSIX [5] compliant operating systems, while PX4 can be deployed on
Nuttx Operating Systems [6] (OS) as well as on POSIX ones. Every specifica-
tion depends on a specific frame, on a specific target hardware platform and on
a specific operating system, on specific sensors and actuators, leads to a final
customised autopilot, that can be considered as an instance of the original open
source autopilot.

Since innovation relies on differentiation compared to the market, then cus-
tom behaviours, purely software or requiring specific hardware, have to be added
to the autopilot instead of communicating with it as a black-box. This is the
reason open-source autopilots should be considered as MOTS (Modifiable Off-
The-Shelf).

In this paper, we propose a reverse design framework that allows engineers
to understand and to modify the MOTS software easily. In other words, we
propose an extraction of the open-source code and its visualisation as design
models. These models enable to have an overview of the developed code and
allows analysing the schedulability and timing performance of a modified design
draft before being implemented and integrated. Our framework is model-based
and implemented using model-driven engineering settings. It is equipped with a
parsing engine, which extracts data and generates XML models. Those models
are hence visualised using a specific Capella [7] view-point dedicated to embed-
ded systems. In this paper, we consider mostly open-source autopilots as target
MOTS, but we believe that the proposed methodology can be extended to other
kinds of MOTS software.

A Reverse Design Framework 135

The rest of this paper is organised as follows. Section 2 presents the background
and motivations of this work. Section 3 presents our contribution. Section 4 and
5 present respectively the developed framework and its validation via Paparazzi
autopilot. Finally, a conclusion and some perspectives are given.

2 Background and Work Positioning

This section aims to define the main concepts that are related to this work such
as the UAVs, COTS and MOTS, and reverse engineering.

2.1 COTS and MOTS

Commercial off-the-shelf (COTS) software corresponds to products that are
ready to use after configuration (without any code modification) by the user.
Thus, they can be straightly integrated into a composite application, or used
standalone. This facility has the disadvantage of being a source of potential
security failure when it is used as a black box. Furthermore, its extension (e.g.,
adding functionalities) or customisation may be difficult, if not impossible. Even
if the source code is available, an extension or modification may require impor-
tant efforts to fully understand the design of the application. Raising the level
of abstraction, by using reverse engineering, may be a key solution when design
documentation is not provided. In contrast, a Modifiable off-the-shelf (MOTS)
product is a software whose source code is modifiable and/or adapted. It requires
design and documentation efforts from the vendor, but is adapted to the require-
ments or potential needs of the customer [8,9].

2.2 Autopilots of Unmanned Aerial Vehicles

These days, Unmanned Aerial Vehicles (UAV), or drones, are widespread and
are used in both the civilian and military sectors. As explained in the previous
section, open source autopilots are highly configurable, and are frameworks able
to generate specific autopilots, which are meant to be extended with custom
functions, software and/or hardware. In this regard, they are MOTS. Modify-
ing such autopilots requires therefore a high expertise in computer science and
knowledge of the source code of the autopilots. Integrating new sensors is made
easy for the non-expert, with the usually well documented process of integrat-
ing modules conforming to an interface. Nevertheless, modifying the behaviour
of the UAV, and especially modifying any functionality having to take place
between the state estimation and the actuation is a very tedious process, with
possible dangerous side effects.

Figure 1 represents the loop which is the core of a typical autopilot: at a
frequency depending on the aircraft’s inherent stability, a setpoint defines the
wanted state of the drone. The setpoint can be given in some modes by the user,
such as in assisted flight modes, or can be given in more autonomous modes by
another loop, the flight guidance, which makes the trajectory of the UAV comply

136 S. Kamni et al.

error Angular
Accel.

Surfaces &
Motors cmd

Estimated state Sensors readings

+

ActuationFlight control

Correction
(PID,INDI)

Actuators
(ESC,servos)

State estimation
(EKF)

Mixing
setpoint

Drone

Sensors

Fig. 1. Internal stability loop in an autopilot

to a plan. Giving the sensors readings, an estimation of the actual state is done.
A state can be, for example, the angular speeds on each of the three-dimensional
axis, as well as air and/or ground horizontal speeds, climb rate speed, as well as,
for some specific cases, actual angle values on the three-dimensional axis. The
difference between estimated state and setpoint is the error, which is usually
corrected by several PID (Proportional, Integrator, Derivative) or PD, and more
recently using INDI (Incremental Non-Linear Dynamic Inversion) controllers.
These controllers compute torques to apply on each axis, converted to individual
positions of surfaces or commands of rotors through a mixing process. This allows
controllers to be relatively independent of the frame geometry.

2.3 UAV Autopilot Design

The design methods of a custom autopilot are thus different from what we
observe for other embedded systems. Most other embedded systems use a top-
down approach in their design life-cycle: from requirements, a functional decom-
position can be derived independently of the hardware. Then the functions are
mapped onto executable entities, at the low-level corresponding to processes and
threads, themselves mapped to CPU, either with or without an operating sys-
tem. This top-down approach has been used for decades now in several fields of
embedded systems. Several methodologies are based on this top-down approach,
starting with Structured Analysis for Real-Time (SA/RT) [10] in the 1980s,
to Model-Driven Architecture (MDA) [11] launched by the Object Management
Group (OMG) in the early 2000s, or the ARCADIA method tooled by Capella in
the 2010s [12]. We also find this top-down approach in the automotive standard
AUTOSAR [13], as well as in avionics with the DO-178C standards [14].

The development of UAV does not fit the top-down approach. It is usually
requiring an instance of an autopilot, which implies a hardware platform sup-
ported by the chosen autopilot, an OS (or no OS) supported by the platform and
the autopilot, compatible and supported sensors and actuators, a frame which
can be completely custom-made or based on an existing Commercial off-the-
shelf (COTS) frame. Then the added value can range from the specificity of the
frame, to additional functions which are not implemented in the open source
autopilot, to specific hardware. The development efforts consist in extending the
instance of the autopilot to support the custom parts. In some cases, for some

A Reverse Design Framework 137

autopilots, this extension can be easy to integrate. The problem is that some
custom parts are not only difficult to integrate, but may also compromise the
smooth operation of the original autopilot or cause it to stop working.

2.4 Reverse Engineering

Chikofsky et al. [15] define reverse engineering as the process of analysing a
system to identify its components and the relationships between them, and to
create presentations at a higher level of abstraction. In computer science, espe-
cially for software, reverse engineering may be employed to retrieve source code
from an executable, with the help of a decompiler. However, decompilers are
generally not able to exactly reconstruct the original source code. This task is
even more complex when the code has been obfuscated. Embedded systems soft-
ware are mainly written in compiled languages (as C) which are then decompiled
(disassembled) to low level and platform dependent assembly code.

When the source code is available, it can also be used to obtain a visualisation
of the software design, for example via graphical modelling languages [16,17].
Several methods have been proposed in the 2000s s to represent abstract syntax
trees of C/C++ code [18], and more recently, a lot of authors addressed the prob-
lem of getting this information from a binary. Nevertheless, we are interested in
the multi-threaded program, and the ability to distinguish between native func-
tions (e.g., operating system functions, drivers, low level input/output functions)
and functions that embed functionality (e.g., navigation). For this, it is neces-
sary to find the right level of granularity to obtain a model that is readable by
a human.

2.5 Capella in a Nutshell

ARCADIA (Architecture Analysis & Design Integrated Approach) is a system
and software architecture engineering method, based on the use of models with
a focus on the collaborative definition, evaluation, and exploitation of its archi-
tecture. ARCADIA consists of four phases, as depicted in Fig. 2:

– Customer operational requirements analysis: defines the system users
needs to be accomplished.

– System requirements analysis: defines what the system must accomplish
for its users.

– Logical architecture: defines how the system will work to satisfy the system
requirements.

– Physical architecture: defines how the system will be built.

The Capella workbench [7] is an open-source Eclipse application (Polarsys
project). Capella implements the ARCADIA method, providing both a DSML
(Domain Specific Modeling Language) and a dedicated toolset. It offers an entry
point as a methodological guide of the ARCADIA method. This solution is used
mainly for modeling complex and safety-critical systems development such as
aerospace, avionics, transportation, space, communications, and security and
automotive.

138 S. Kamni et al.

Fig. 2. ARCADIA engineering phases [12]

3 Model-Based Reverse-Engineering Framework

3.1 Overview

This section is dedicated to present a framework which is able, from a simply
modified Makefile and C/C++ code, to extract from GNU SIMPLE (GIMPLE)
[19] files generated during the compilation process, to represent in a Domain
Specific Language (DSL) close to AADL [20], the set of threads, as well as
their internal functions. In the process, middleware accesses are identified and
represented. To echo the classic granularity problem in reverse engineering, some
modules are considered as important modules, while others are considered as
service modules. Service modules (e.g., module implementing functions to read
and write on a serial bus) present functions seen as services, that should not
be decomposed in sub-functions. On the contrary, important modules contain
functions that are in general worth decomposing onto their sub-functions to
allow the end-user to understand which functions are called. Choosing, for each
module, if it is important or service, is done by hand once and for all for an
autopilot framework by an expert.

By the following, we present our two contributions (see Fig. 3) based on the
use of Model-Driven Engineering (MDE) tools, namely the customisation of the
grammar and the extraction of the parse tree from the code behind the autopi-
lots, and the transformation of the necessary elements of the code into compo-
nents compatible with Capella and AADL-like extension in order to visualise
them in a Capella diagram.

A Reverse Design Framework 139

Extraction Visualisation

autopilot source code

Low level code (Gimple files)

Extraction of the parse tree

Traversal of the parse tree
and code transformation

Visualisation of the functional
architecture of the autopilot

output

input

Fig. 3. Illustration of the framework’s contributions

3.2 Extraction

After configuration of the target hardware and frame, COTS autopilots binaries
are generated from C/C++ source code. In order to model an autopilot, it is
thus necessary to extract a model from source code. The extraction step con-
sists in retrieving the necessary information from the source code, in the form
of a parse tree, for the purpose of visualisation. To retrieve the parse tree, it
is necessary to parse the code with a parser such as Lex and Yacc, or more
recent technologies such as Xtext, ANTLR, etc., that generate parsers directly
by giving them as input a grammar expressed with a compatible DSL. Once
the parser is set up, we input the code and generate the parse tree. The code
behind the autopilots contains several C/C++ (.c/.cpp) and header (.h) files.
This makes the task of extracting the information needed for visualisation diffi-
cult. To overcome this problem, we use the GCC compiler to generate GIMPLE
code, the low-level three-address abstract code generated during the compilation
process, that contains all the necessary information, including metadata about
the functions at the time of their definition, inside files with the same extension
which is “.lower”.

3.3 Visualisation

This step consists in visualising the multithreaded and functional composition as
well as the execution dataflow of the functions by showing the communications
between them. It takes as input the parse tree generated at the end of the
extraction step and gives as output a model that shows the set of threads, the
set of functions and their sub-functions, the order of the function calls and the
communications that happen between them.

The visualisation requires a text-to-model (T2M) transformation of the code,
and this must be done all along the traversal of the parse tree. As the tree is
being traversed, the elements of the tree are evaluated, and they are transformed
into equivalent model elements compatible with the chosen visualisation tool.
The objective of the visualisation is not for graphical aspects only but to also
be able to analyse the modified code and check if it meets the non-functional
requirements (like deadlines, end-to-end delays, etc.)

140 S. Kamni et al.

4 The Framework Implementation

In this section, we present an implementation of our framework presented earlier.
Figure 4 shows an overview of the framework implementation. The details of the
implementation are discussed in hereafter.

4.1 Extraction Part

Our framework is based on ANTLR [21](ANother Tool for Language Recogni-
tion). It is a parser generator for reading, processing, executing, or translating
structured text or binary files. It’s widely used to build languages, tools, and
frameworks. From a grammar, ANTLR generates a parser that can build and
walk parse trees.

The framework is composed of a parsing engine, which is the program that
is responsible for the traversal and the transformation of the parse tree. The

LexerTokens

Parse tree building

Parse tree traversal and transformation

Parser

grammar
files

paparazzi
gimple
files

Listeners

processing part

generate

input

Code

XML injection

& AADL-Like

code visualisation

Model

XML
for

Capella

Custom grammar

respect

generate

input

Fig. 4. Overview of the framework implementation

A Reverse Design Framework 141

processing consists of three layers. From top to bottom, the program that per-
forms the tree traversal and its text-to-text transformation layer. This program
is built on top of the two other layers, which are provided by ANTLR, namely
the built parse tree as well as the generated bricks (lexer, parser, tokens, and
the listeners).

Building the parse tree consists in parsing the GIMPLE code (e.g., Paparazzi
GIMPLE files) that is conforming to the GIMPLE grammar (see Listing 1.1) and
requires the three given components of the first layer, namely the Parser, the
Lexer, and the Tokens. Once the parse tree is built, it is then transformed into
XML code. This process requires the generated listeners of the first layer.

1 . . .
2 f u n c t i o nDe f i n i t i o n
3 : a t t r i b u t e Sp e c i f i e r S e q ? d e c l S p e c i f i e r S e q ? d e c l a r a t o r

v i r t u a l S p e c i f i e r S e q ? functionBody
4 | gimplePreamble ? d e c l a r a t o r v i r t u a l S p e c i f i e r S e q ?

functionBody
5 ;
6

7 functionBody :
8 c o n s t r u c t o r I n i t i a l i z e r ? compoundStatement
9 | funct ionTryBlock | Assign (Defau l t | Delete) Semi ;

10 . . .
11 }

Listing 1.1. Code snippet of the GIMPLE grammar.

4.2 Visualisation Part

As basis, we opt for Capella [7] as a tool to represent function decomposition,
since it has a lot of facilities. Moreover, it is a tool implementing the ARCADIA
[12] method, a well adopted top-down approach for designing embedded systems.
It allows the creation of specific viewpoints. The choice of Capella also relies on
the observation that in the embedded industry in France, this tool and supported
methodology is increasingly used. We claim that one of its limitations is that the
physical point of view (threads, processes, CPUs, networks) is not as readable
as an AADL representation.

We therefore created an AADL viewpoint, since this DSL is an Architecture
Description Language well suited to describe software and hardware architec-
tures. Compared to the standard AADL, we added some specific modelling arte-
facts related to autopilot architectures, such as an abstract view of middlewares
inputs and outputs.

The metamodel of the AADL-Like view point is shown in Fig. 5. This meta-
model extends the metamodel of Capella by leveraging the existing concepts such
as the Physical component, and it introduces the AADL elements, namely the
AADLProcess, AADLThread, AADLFunction, AADLThread ports, AADLFunction
ports, etc.

142 S. Kamni et al.

Physical Architecture

PhyscialComponent

AADLFunction

AADLTProcess

AADLThread

AADLFunctionOutputPort

AADLFunctionInputPort

AADLThreadInputPort AADLThreadOutputPort

activationMode
timeBudget
activationPeriod

portType portType

PortTypeEnum

data
event
eventData

hybrid / timed

periodic / sporadic
aperiodic / background

ActivationModeEunm
SoftwareBusInputPort

SoftwareBusOutputPort

Fig. 5. AADL-Like metamodel

Table 1 summarises the mapping relationships between the GIMPLE state-
ments and Capella concepts.

Table 1. Transformation mapping table

GIMPLE statement Capella concept

pthread create AADLThread

pthread create 3rd parameter AADLFunction

Function call inside function definition Sub-function (AADLFunction)

Global variable write access SoftwareBusOutputPort

Global variable read access SoftwareBusInputPort

Global variable read and write access in the same function FunctionExchange

The tool palette shown in Fig. 6 is inspired from the graphical aspect of
AADL [20]. It consists of some Capella existing artefacts such as the physical
component that we consider as a processing unit, the physical actor or device
which represents the sensors and actuators, and the physical link. It provides
the AADL-like artefacts such as threads with different variants (periodic, spo-
radic, aperiodic, etc.), the different inter-thread communications (synchronous,
asynchronous, and reset), the function component or sub-program as well as the
functional exchange that connects two different functions.

A Reverse Design Framework 143

Fig. 6. AADL-like tool palette

The software bus is a newly introduced concept coming from the
Comp4Drones European project. It does not exist in AADL, yet it is an impor-
tant and widely used in the existing autopilots. This latter must exist in the dia-
gram, since it represents a special kind of communication between functions. The
last element is the smart connection, which creates the connection between the
different components (thread-thread, function-thread, function-function, port-
port, etc.) two functions that belong to two different threads can be connected
simply by selecting the source and then destination functions, which will create
different ports and different edges, thus the whole connection.

Other concepts missing from most existing ADLs, which have been identified
by the members of the Comp4Drones European project, are mainly the lack of
a description of a non-preemptive cyclic executive at the core of the autopilot,
including “tasks” (function synchronous calls) which have a period of several
cycles of the executive. Another important missing concept is the lack of an
ontology used to classify functions in corresponding classic autopilots’ blocks.
We did not yet address this latter part in our framework.

The viewpoint allows a multi-level functional breakdown, i.e., functions can
have a set of sub-functions, and every sub-function can be composed of another
set of sub-functions and so on. Indeed, this functionality is not supported by
Capella at the physical architecture level, it is necessary to show the different
levels of function calls.

The visualisation is performed in the physical architecture step of the ARCA-
DIA method inside a Physical Architecture Blank diagram (PAB). It requires
the activation of the layer provided by the AADL-like viewpoint. The graphi-
cal representation consists of the physical component, which we consider as the
processor. The process, the threads, the functions, software buses and different
exchanges.

The processor is composed of the process that is executed on top of it.
The process is composed of threads. The threads are composed of functions or

144 S. Kamni et al.

subprograms that are executed by the threads. The functions have ports that
constitute the functional exchanges, i.e. the means of communication between
the functions. Threads also have ports for inter-thread communication.

In the next section, we present how our GIMPLE interpreter creates an
AADL model from a Makefile, and illustrate it with examples obtained from
retro-engineering Paparazzi autopilot.

5 Validation

This work has been tested on Paparazzi autopilot for validation purposes with
the research group of National School of Civil Aviation1 (ENAC) and the
Paparazzi founders as part of the European Comp4Drones project2. The devel-
opers believe that the autopilot instances customisation using the framework
presented in this work will be much easier than by direct accessing to the code.
We present hereafter some excerpts of our framework utilisation to modify the
Paparazzi code.

The diagram elements are extracted along the traversal of the parsing tree.
This operation requires the recognition of the code statements corresponding to
the diagram elements. For instance, the statement pthread create () (see Line
2, Listing 1.2) responsible for the creation of the POSIX thread will be translated
to a thread in the diagram. The created thread takes the name of the function
executed by the thread designated by the third argument of the pthread create
() statement. Once the thread is created, the function is created inside it. To
create the sub-functions, the definition of this later must be found first. Then,
every function call is transformed into a sub-function (see Listing 1.2, Lines 5–9).

1 // i 2 c th r e ad thread c r e a t i on
2 1 = pthr ead c r ea t e (&tid , 0B, i 2 c th read , p) ;
3 . . .
4 // i 2 c th r e ad func t i on exectued by the thread
5 i 2 c th r e ad (void ∗ data) {
6 // sub−f unc t i on
7 g e t r t p r i o () ;
8 . . .
9 }

Listing 1.2. GIMPLE code to be transformed

Figure 7 shows the result of the reverse engineering process applied to the
Paparazzi code. It consists of multiple threads, where each thread is composed
of interconnected functions. Due to space limitations, the figure cannot be pre-
sented in its entirety in this article. However, we have zoomed in to show some
details.

1 http://optim.recherche.enac.fr/.
2 https://www.comp4drones.eu/.

http://optim.recherche.enac.fr/
https://www.comp4drones.eu/

A Reverse Design Framework 145

Fig. 7. Result of the reverse engineering process under Capella.

6 Conclusion

This paper presented a model-based framework for reverse engineering allowing
the visualisation of the functional structure of a given input source code and
more precisely the source code of autopilots. The objective behind this work is
to make autopilots MOTS, i.e., software that can be customised according to
the user’s needs. Indeed, the source code of an autopilot can be visualised to be
well understood and to analyse the performance and non-functional properties
of the modification at an early design step. We believe that this framework
can shorten sharply the design process of MOTS software. The framework has
been demonstrated on a concrete example, namely the open source autopilot
Paparazzi, in the context of the European project Comp4drones.

Acknowledgement. This work has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement N. 826610.

References

1. Bin, H., Justice, A.: The design of an unmanned aerial vehicle based on the ardupi-
lot. Indian J. Sci. Technol. 2(4), 12–15 (2009)

2. Meier, L., Honegger, D., Pollefeys, M.: PX4: a node-based multithreaded open
source robotics framework for deeply embedded platforms. In: 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 6235–6240. IEEE
(2015)

146 S. Kamni et al.

3. Brisset, P., Drouin, A., Gorraz, M., Huard, P.-S., Tyler, J.: The paparazzi solu-
tion. In: MAV 2006, 2nd US-European Competition and Workshop on Micro Air
Vehicles. Citeseer (2006)

4. Nouacer, R., Hussein, M., Espinoza, H., Ouhammou, Y., Ladeira, M., Castiñeira,
R.: Towards a framework of key technologies for drones. Microprocess. Microsyst.
77, 103142 (2020)

5. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley Professional,
Boston (1997)

6. Nutt, G.: Nuttx operating system user’s manual (2014)
7. Capella: open source solution for model-based systems engineering. https://www.

polarsys.org/capella/. Accessed 01 Aug 2022
8. Feng, Q., Mookerjee, V.S., Sethi, S.P.: Application development using modifiable

off-the-shelf software: a model and extensions (2005)
9. Mousavidin, E., Silva, L.: Theorizing the configuration of modifiable off-the-shelf

software. Inf. Technol. People (2017)
10. Ross, D.T.: Structured analysis (SA): a language for communicating ideas. IEEE

Trans. Softw. Eng. SE-3(1), 16–34 (1977)
11. Brown, A.W.: Model driven architecture: principles and practice. Softw. Syst.

Model. 3(4), 314–327 (2004)
12. ARCADIA: a model-based engineering method. https://www.eclipse.org/capella/

arcadia.html. Accessed 01 Aug 2022
13. AUTOSAR. The standardized software framework for intelligent mobility
14. Brosgol, B.: DO-178C: the next avionics safety standard. ACM SIGAda Ada Lett.

31(3), 5–6 (2011)
15. Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: a taxonomy.

IEEE Softw. 7(1), 13–17 (1990)
16. Booch, G., Rumbaugh, J., Jackobson, I.: UML: unified modeling language. Versão

(1997)
17. Wood, J., Silver, D.: Joint Application Development. Wiley, Hoboken (1995)
18. Ferenc, R., Sim, S.E., Holt, R.C., Koschke, R., Gyimóthy, T.: Towards a stan-

dard schema for C/C++. In: Proceedings Eighth Working Conference on Reverse
Engineering, pp. 49–58. IEEE (2001)

19. Gimple (GNU compiler collection (GCC) internals). Accessed 01 Aug 2022
20. SAE. SAE. Architecture analysis and design language V2.0 (AS5506), Septem-

ber 2008. https://www.sei.cmu.edu/our-work/projects/display.cfm?customel
datapageid 4050=191439www.aadl.info

21. ANTLR (another tool for language recognition). https://www.antlr.org/. Accessed
01 Aug 2022

https://www.polarsys.org/capella/
https://www.polarsys.org/capella/
https://www.eclipse.org/capella/arcadia.html
https://www.eclipse.org/capella/arcadia.html
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439www.aadl.info
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=191439www.aadl.info
https://www.antlr.org/

Efficient Checking of Timed Ordered
Anti-patterns over Graph-Encoded Event

Logs

Nesma M. Zaki1, Iman M. A. Helal1 , Ehab E. Hassanein1,
and Ahmed Awad1,2(B)

1 Cairo University, Giza, Egypt
{n.mostafa,i.helal,e.ezat,a.gaafar}@fci-cu.edu.eg

2 University of Tartu, Tartu, Estonia

Abstract. Event logs are used for a plethora of process analytics and
mining techniques. A class of these mining activities is conformance
(compliance) checking. The goal is to identify the violation of such
patterns, i.e., anti-patterns. Several approaches have been proposed to
tackle this analysis task. These approaches have been based on differ-
ent data models and storage technologies of the event log including rela-
tional databases, graph databases, and proprietary formats. Graph-based
encoding of event logs is a promising direction that turns several process
analytic tasks into queries on the underlying graph. Compliance checking
is one class of such analysis tasks.

In this paper, we argue that encoding log data as graphs alone is
not enough to guarantee efficient processing of queries on this data. Effi-
ciency is important due to the interactive nature of compliance checking.
Thus, anti-pattern detection would benefit from sub-linear scanning of
the data. Moreover, as more data are added, e.g., new batches of logs
arrive, the data size should grow sub-linearly to optimize both the space
of storage and time for querying. We propose two encoding methods using
graph representations, realized in Neo4J & SQL Graph Database, and
show the benefits of these encoding on a special class of queries, namely
timed ordered anti-patterns. Compared to several baseline encoding, our
experiments show up to 5x speed up in the querying time as well as a
3x reduction in the graph size.

Keywords: Anti pattern detection · Process mining · Graph-encoded
event logs

1 Introduction

Organizations strive to enhance their business processes to achieve several goals:
increase customer satisfaction, gain more market share, reduce costs, and show
adherence to regulations among other goals. Process mining techniques [1] col-
lectively help organizations achieve these goals by analyzing execution logs
of organizations’ information systems. Execution logs, a.k.a. event logs, group
events representing the execution of process steps into process instances (cases).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 147–161, 2023.
https://doi.org/10.1007/978-3-031-21595-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_11&domain=pdf
http://orcid.org/0000-0001-8434-7551
http://orcid.org/0000-0003-1879-1026
https://doi.org/10.1007/978-3-031-21595-7_11

148 N. M. Zaki et al.

Conformance checking [6], in specific, provides techniques to analyze the deviation
of the recorded behavior against a predefined process model.

Compliance checking [22] is a specialization of conformance checking in which
event logs are checked against compliance rules that might restrict process behav-
ior w.r.t control flow, data, resources, and timing. Moreover, such rules are of a
local nature. That is, they are not concerned with the end-to-end conformance
of the process instance. Rather, they refer to the execution ordering of a sub-
set of the activities and their timing constraints. For example, in a ticketing
system, there might be a rule that the time taken by creating a ticket and the
first contact with the client should not exceed three hours. Compliance checking
is an interactive and repetitive task by nature due to changes in the compli-
ance requirements. Compliance rules usually follow common patterns [22]. The
objective of compliance checking is to identify process instances that violate the
rules. As compliance checking is an interactive process, event logs should be
stored following data models that allow efficient access. Moreover, user-friendly
domain-specific languages, e.g., declarative query languages, allow non-technical
users to access and analyze the data. Recently, the graph data model has been
investigated to store and query event logs [5,9,14].

In this paper, we adopt the graph data model to represent event logs. Namely,
we use the labeled property graph model [13]. We propose an encoding method
of event logs as graphs that can efficiently check compliance by translating com-
pliance rules into queries. We address a special type (pattern) of rules: order
patterns. However, our graph representation can address the rest of the pat-
terns. We leave this discussion out due to space limitations. Namely, we make
the following contributions: – We propose a graph representation of event logs
that help efficiently check for compliance with order rules, – We realize our
encoding on top of two graph databases, Neo4J as a native graph database and
graph extensions of Microsoft SQL Server, a layer on top of relational tables.
– We empirically evaluate our method against a baseline graph representation
and relational data models on a set of four real-life event logs, – We discuss
the improvements in the stored graph sizes and the simplification of the queries
to check compliance. Overall, the compliance checking, i.e., querying time is
improved by 3x to 5x whereas the sizes of the graphs are ∼ 3x reduced com-
pared to the baseline method.

The rest of this paper is organized as follows: Sect. 2 briefly discusses some
of the background concepts and techniques that are used throughout the paper.
Related work is discussed in Sect. 3. Section 4 presents our approach. In Sect. 5,
we evaluate the proposed approach against the existing one.

2 Background

2.1 Events, Traces, Logs, and Graphs

We formalize the concepts of events, traces, logs and graphs to help in under-
standing the formalization introduced later in the paper.

Efficient Checking of Anti-patterns over Graph-Encoded Event Logs 149

Definition 1 (Event). An event e is a tuple (a1, a2, . . . , an) where ai is an
attribute value drawn from a respective domain ai ∈ Di. At least three domains
and their respective values must be defined for each event e: Dc, the set of case
identifiers, Da, the set of activity identifiers, and Dt, the set of timestamps.
We denote these properties as e.c, e.a, and e.t respectively. Other properties and
domains are optional such as Dr, the resources who perform the tasks, Dl, the
lifecycle phase of the activity.

We reserve the first three properties in the event tuple to reflect the case, the
activity label, and the timestamp properties.

Definition 2 (Trace). A trace is a finite sequence of events σ =
〈e1, e2, . . . , em〉 where ei is an event, 1 ≤ i ≤ m is a unique position for the
event that identifies the event ei in σ and explicitly positions it, and for any
ei, ej ∈ σ : ei.c = ej .c

Definition 3 (Event log). An event log is a finite sequence of events L =
〈e1, e2, . . . , em〉 where events are ordered by their timestamps for any ei and
ei+1 : ei.t ≤ ei+1.t.

In general, graph data models can be classified into two major groups [13]:
directed edge-labeled graphs, e.g., RDF, and labeled property graphs. In the
context of this paper, we are interested in labeled property graphs as they provide
a richer model that represents the same data in a smaller graph size.

Definition 4 (Labeled property graph). Let L, K, and V be the
sets of labels, keys, and values, respectively. A labeled property graph G =
(N,E, label, prop) tuple, where N is a non-empty set of nodes, E ⊆ N × N
is the set of edges. label : (N ∪ E) → 2L is a labeling function to nodes and
edges. prop : (N ∪ E) × K → V is a function that assigns key-value pairs to
either nodes or edges.

When mapping from logs to graphs, we assume overloading of a function
node() that identifies the corresponding node in the graph to the input parameter
of the function. For instance for an event e, Definition 1, node(e) returns the
corresponding node n in G.N that represents the encoding of e. Similarly, for
the case identifier e.c, node(e.c) returns the node that corresponds to the case
in the graph. Finally, for the activity label e.a, node(e.a) returns the node that
corresponds to the respective activity label.

2.2 Activity Order Patterns

A trace is compared to a process model in traditional conformance checking [6]
to quantify the deviation between the required behavior (the model) and the
observed behavior (the trace). In many circumstances, checking deviations at a
finer granularity, such as on the level of activities may be required, e.g., absence,
existence, or pairs of activities, such as co-existence, mutual exclusion, along
with time window constraints. Such finer granularity checks are referred to as

150 N. M. Zaki et al.

compliance checking, and compliance patterns are used for categorizing the types
of compliance requirements [22].

Occurrence patterns are concerned with activities having been executed
(Existence) or not (Absence) within a process instance. Order patterns are con-
cerned with the execution order between pairs of activities. The Response pattern
(e.g., Response(A, B)) states that if the execution of activity A is observed at
some point in a process instance, the execution of activity B must be observed
at some future point of the same case before the process instance is terminated.
A temporal window can further restrict these patterns. For instance, we need
to observe B after A in no more than a certain amount of time. Alternatively,
we need to observe B after observing A, where at least a certain amount of
time has elapsed. Both patterns can be further restricted by so-called exclude
constraint [4]. That is, between the observations of A and B, it is prohibited
to observe any of the activities listed in the exclude constraint. Definition 5
formalizes the Response pattern.

Definition 5. Response – Given two activities a and b and a trace τ =
〈e1, e2, . . . , en〉, τ ∈ L, we say that τ |= Response(a, b, S,Δt, θ) if and only if
∀ei ∈ τ : ei.a = a ∃ ej ∈ τ : ej .b = b∧ei.t ≤ ej .t∧(ej .t−ei.t) θ Δt∧∀ek where i <
k < j : ek.a /∈ S, where Δt represents the time window between occurrences of
a and b, θ ∈ {<,=, >,≤,≥} represents when (e.g., after, before, or exactly at)
we expect the observation of B after A with respect to Δt, and S is the set of
excluded activities between a and b.

Conversely, the Precedes pattern (e.g., Precedes(A,B)) states that if the exe-
cution of activity B is observed at some point in the trace, A must have been
observed before (Definition 6).

Definition 6. Precedence – Given two activities a and b and a trace τ =
〈e1, e2, . . . , en〉, τ ∈ L, we say that τ |= Precedes(a, b, S,Δt, θ) if and only if
∀ei ∈ τ : ei.b = b ∃ ej ∈ τ : ej .a = b∧ej .t ≤ ei.t∧(ej .t−ei.t) θ Δt∧∀ek where i <
k < j : ek.a /∈ S. where Δt represents the time window between occurrences of
a and b, θ ∈ {<,=, >,≤,≥} represents when (e.g., after, before, or exactly at)
we expect the observation of A before B with respect to Δt, and S is the set of
excluded activities between a and b.

Note that we get the unrestricted form of both patterns by setting Δt to a
very large value and θ is set to ≤. That is, in Response(A,B, φ,∞,≤), B has to
eventually be observed after A with no further restrictions on the time window
nor restrictions on activities observed in between.

Response and precedence patterns cover the occurrence and absence pat-
terns. For instance, if we reserve special activities, start and end, to indicate the
beginning and the termination of a case respectively, we can model the occur-
rence pattern of some activity A as Response(start, A, φ,∞,≤). Similarly, we
can specify it as Precedence(A, end, φ,∞,≤). We can specify the absence pat-
tern as Response(start, end, {A},∞,≤). That is, we require not observing any
event whose activity is A from the beginning to the end of the trace. In litera-
ture, the precedence and response patterns are indeed families of patterns [18,22].

Efficient Checking of Anti-patterns over Graph-Encoded Event Logs 151

However, in this paper, we focus on the core response and precedence patterns,
due to space limitations.

When checking for compliance, analysts are interested in identifying process
instances, i.e., cases that contain a violation, rather than those that are compli-
ant. Therefore, it is common in the literature about compliance checking to use
the term “anti-pattern” [16]. In the rest of this paper, we refer to anti-patterns
rather than patterns when presenting our approach to detecting violations over
graph-encoded event logs.

3 Related Work

There is vast literature about the business process compliance checking domain.
For our purposes, we focus on compliance checking over event logs; we refer to
this as auditing. For more details, the reader can check the survey in [12].

Auditing can be categorized in basic terms based on the perspective of the
process, including control flow, data, resources, or time. We can also split these
categories based on the formalism and technology that underpins them. Agrawal
et al. [3] presented one of the first works on compliance auditing, in which process
execution data is imported into relational databases and compliance is verified by
recognizing anomalous behavior. Control-flow-related topics are covered by the
technique.

Validating process logs against control-flow and resource-aware compliance
requirements has been proposed while applying model checking techniques [2].
For control-flow and temporal rules, Ramezani et al. [19,20] suggest alignment-
based detection of compliance violations.

De Murillas et al. [17] present a metamodel and toolset for extracting process-
related data from operational systems logs, such as relational databases, and popu-
lating their metamodel. The authors show how different queries can be translated
into SQL. However, such queries are complex (using nesting, joins, and unions).
Relational databases have also been used for declarative process mining [23], which
can be seen as an option for checking logs against compliance rules.

Compliance violations, i.e. anti-patterns can be checked by Match Recognize
(MR), the ANSI SQL operator. MR verifies patterns as regular expressions, where
the tuples of a table are the symbols of the string to search for matches within. MR
runs linearly through the number of tuples in the table. In our case, the tuples are
the events in the log. In practice, the operational time can be enhanced by paral-
lelizing the processing, e.g., partitioning the tuples by the case identifier. Still, this
does not change the linearity of the match concerning the number of tuples in the
table. A recent work speeds up MR by using indexes in relational databases [15] for
strict contiguity patterns, i.e., patterns where events are in strict sequence. Order
compliance patterns frequently refer to eventuality rather than strict order, limit-
ing the use of indexes to accelerate the matching process.

Storing and querying event data into an integrated graph-based data struc-
ture has also been investigated. Esser et al. [9] provide a rich data model for
multi-dimensional event data using labeled property graphs realized on Neo4j as
a graph database engine. To check for compliance, the authors use path queries.

152 N. M. Zaki et al.

Such queries suffer from performance degradation when the distance between
activities in the trace gets longer and when the whole graph size gets larger.

4 Graph-Encoded Event Logs for Efficient Compliance
Checking

Graph representation of event logs is a promising approach for event logs analy-
sis [5], especially for compliance checking [9]. This is due to the richness of this
graph representation model, mature database engines supporting it, e.g., Neo4J1,
and the declarative style of the query languages embraced by such engines, e.g.,
Cypher2. In this sense, compliance checking can be mapped to queries against
the encoded log to identify violations.

We show how encoding of the event log has a significant effect on the efficiency
of answering compliance queries. We start from a baseline approach (Sect. 4.1)
and propose a graph encoding method, Sect. 4.2, that leverages the finite nature
of event logs to store the same event log in a smaller graph and answer compliance
queries faster.

Table 1 shows an excerpt of a log that serves as the input to the differ-
ent encoding methods. In the “Optional details” columns, the “StartTime” and
“CompleteTime” columns are converted to Unix timestamp.

Table 1. Sample event log with additional attributes

C.ID Activity Resource StartTime CompleteTime Position
1 A Jack 1612172052 1612373652 1
1 B John 1612360812 1612458012 2
2 A Mark 1609491612 1609866012 1
1 E Smith 1612602012 1612778412 3
3 A George 1614589212 1614682812 1
2 C Albert 1609678812 1609866012 2
1 D Mark 1612954800 1613131200 4
2 E Smith 1611838812 1612026012 3
3 E Albert 1614934800 1615374000 2
3 C Jack 1615107612 1615374012 3
2 D John 1612256400 1612346400 4
3 E Mark 1615539600 1615719600 4
3 D George 1615546812 1615640412 5
...

...
...

...
...

...

Minimum details Optional details Added detail

1 https://neo4j.com/.
2 Cypher for Neo4J is like SQL for relational databases.

https://neo4j.com/

Efficient Checking of Anti-patterns over Graph-Encoded Event Logs 153

4.1 Baseline: Multi-dimensional Graph Modeling (BM)

Esser at al. [9] proposed a multi-dimensional graph data model to represent
event logs. It uses labeled property graphs, cf. Definition 4, for the representa-
tion. Multi-dimensionality is proposed as a flexible definition of a case notion.
However, for the scope of this paper, we will stick to the traditional definition of
the case identifier. Yet, this simplification does not limit our contribution. Our
proposed encoding methods can be generalized to any case notion embraced in
the context of a specific compliance checking practice.

:Event
Activity: STRING

Resource: STRING
Start time: DATETIME

Complete time: DATETIME
Position: INTEGER

:Event
:Directly-Follows

:Case

Activity: STRING
Resource: STRING

Start time: DATETIME
Complete time: DATETIME

Position: INTEGER

(a) Nodes, edges, labels, and properties

A
E

3

C

:E
ve

nt
-t

o-
ca

se

E

D

(b) Representation of the log excerpt in Ta-
ble 1

Fig. 1. Baseline graph representation

Events and cases constitute the nodes of the graph. Node types, i.e., events,
cases, etc., are distinguished through labels. Edges represent either structural
or behavioral relations. Structural relations represent event-to-case relations.
Behavioral relations represent the execution order among events in the same
case, referred to as directly-follows relationships. Activity labels, resource names,
activity lifecycle status, and timestamps are modeled as properties of the event
nodes. Similarly, case-level attributes are modeled as case node properties.
Figure 1a shows the representation of the Baseline graph.

Formally, for each log L, cf. Definition 3, a labeled property graph G, cf.
Definition 4, is constructed by Esser et al. [9] approach as follows:

1. Labels for the graph elements are constituted of four literals. Formally, L =
{event, case, event to case, directly follows},

2. Keys for properties are the domain names from which values of the different
event attributes are drawn. Formally, K =

⋃m
i=1{name(Di)} ∪ {ID},

3. For each unique case in the log, there is a node in the graph that is labeled
as “case” and has a property ID that takes the value of the case identifier.
Formally, ∀c ∈ Dc ∃ n ∈ G.N : {case} ∈ label(n) ∧ prop(n, ID) = c,

4. For each event in the log, there is a node in the graph that is labeled as
“event” and inherits this event’s properties. Formally, ∀e = (p1, p2, . . . , pm) ∈
L ∃ n ∈ G.N : {event} ∈ label(n) ∧ ∀2≤i≤mDi : prop(n, name(Di)) = pi,

154 N. M. Zaki et al.

5. The structural relation between an event and its case is represented by a
labeled relation. Formally, ∀e ∈ L,∃ r ∈ G.E : r = (node(e), node(e.c)) ∧
{event to case} ∈ label(r),

6. The behavioral relationship between a pair of successive events in a trace is
represented by a labeled relation between their respective nodes. Formally,
for ei, ei+1 ∈ τ ∃ r ∈ G.E : r = (node(ei), node(ei+1)) ∧ {directly follows} ∈
label(r)

In the following we adopt Cypher’s notation to reflect on nodes, their labels,
and their properties. We use the notation : Label to refer the “label” of a graph
element. For example, : Event refers to the label “event”. Figure 1b visualizes
the graph representation of the log excerpt given in Table 1 with the minimum
details columns.

Assume that we want to check a compliance rule that every execution of
activity E must be preceded by an execution of activity B, i.e., Precedes(E,B, φ,
∞, <). A violation of this rule is to find at least one execution of E that
is not preceded by B from the beginning of a trace. The query in List-
ing 1 expresses this anti-pattern using Cypher. Basically, the query first
identifies the beginning of each trace (start:Event{activity:‘A’}). Then
the sequence of nodes constituting a path from each node of activity E to
the start activity A, in the same case, is constructed. The path is con-
structed by traversing the transitive closure of the :Directly follows relation,
path=(e1:Event{activity:‘E’}<-[:Directly follows*]- (start)). If the
path does not include any node whose activity property refers to B, as in line 3,
a violation exists, and this case is reported.

Listing 1. Precedes anti-pattern query using the baseline encoding

1| Match (c1:Case) <-[:Event_to_case]- (start:Event{activity:'A'})
2| Match path = (e1:Event{activity:'E'}<-[: Directly_follows *]-(start))
3| where none (n in nodes(path) where n.activity='B')
4| return c.ID

Although the query is expressive and captures the semantics of the violation,
it is expensive to evaluate. To resolve those nodes, the processing engine must
scan the :Directly follows relation linearly. Another problem is the linear growth
of the graph size w.r.t. the log size. In Fig. 1b, we observe that each time an
activity occurs in the log, a distinct node is created in the graph.

In the following subsection, we propose a concise representation of the event
log that improves both the space and time required to store and query the log.

4.2 Unique Activities (UA) Encoding

Many compliance patterns are concern is constructed in the same cases in process
execution and their ordering. When checking such rules against event traces, we
can exploit the finiteness of these traces and the positions of events within traces

Efficient Checking of Anti-patterns over Graph-Encoded Event Logs 155

to simplify the queries and speed up their evaluation by utilizing indexes and
skipping the linear scan of the :Directly follows relation among events. So, we
extend the baseline mapping by explicitly assigning a position property to each
event node. Table 1 has a highlighted column, tagged as added detail column,
where we assign each event to a position in the case (trace). For instance, the
fourth row in Table 1 records that activity ‘E’ has been the third activity to
be executed in case 1. Thus, the position property value is 3. We can observe
that the check for ordering explicitly refers to the position property of the event
nodes without the expensive transitive closure traversal. We follows the same
formalism shown in Sect. 4.1, except for encoding the directly follows relation
as we add the explicit position property to event nodes. The dropping of such a
relation positively affects the graph size.

Although the position property simplifies the processing of compliance
queries, it inherits the linear growth of the graph size w.r.t the log size. To fur-
ther limit the growth of the graph size, we modify the construction of the labeled
property graph. This section’s proposed encoding ensures a linear growth with
the size of the set of activity labels, i.e., Da. We generate a separate edge con-
necting a case node to the corresponding node representing the activity a ∈ Da

and add properties to the edges that reflect the position, timestamp, resource,
etc. These events’ properties represent the activity’s execution in the respective
case. Formally, for each log L, a labeled property graph G is constructed as
follows:

1. Labels for the graph elements are constituted of case and activity labels.
Formally, L = {case, event to case} ∪ Da,

2. Keys for properties are the domain names from which values of the different
event attributes are drawn. Formally, K =

⋃m
i=1{name(Di)} ∪ {ID} ,

3. For each unique case in the log, there is a node in the graph labeled as
“case” with a property ID that takes the value of the case identifier. Formally,
∀c ∈ Dc ∃ n ∈ G.N : {case} ∈ label(n) ∧ prop(n, ID) = c,

4. For each unique activity in the log, there is a node in the graph labeled as
“activity”. Formally, ∀a ∈ Da ∃ n ∈ G.N : {activity} ∈ label(n),

5. The structural relation between an event and its case is represented by
a labeled relation between the activity node of the event’s activity and
the case node. Additionally, all event-level properties are mapped to prop-
erties on edge. Formally, ∀e = (p1, p2, . . . , pm) ∈ L ∃ r ∈ G.E :
r = (node(e.a), node(e.c)) ∧ {event to case} ∈ label(r) ∧ ∀3≤i≤mDi :
prop(r, name(Di)) = pi.

Figure 2 visualizes the graph resulting from encoding the log excerpt in
Table 1 using the unique activities method. For example, for activity E, there is
only one node and four different edges connecting to cases 1, 2, and 3. Two of
these edges connect case 3, as activity E was executed twice in this case.

156 N. M. Zaki et al.

A

3

1

B

Activity: C

Resource: John
StartTime: 1612256400
CompleteTime: 1612346400
Position: 4

Resource: Mark
StartTime: 1615539600
CompleteTime: 1615719600
Position: 4

Activity: B
Resource: Albert
StartTime: 1614934800
CompleteTime: 1615374000
Position: 2

Fig. 2. UA Encoding of Table 1 log

Listing 2 shows the mod-
ification on the Precedence
anti-pattern query. The query
checks the ordering of the
events using the position
property, which is accessed
in Line 2. With this encod-
ing, the graph size grows
sub-linearly w.r.t the log. In
fact, the size, i.e., the num-
ber of nodes in the graph,
grows linearly w.r.t |Dc|,
the set of case identifiers,
which is significantly smaller
than the number of events
recorded in the log. However, for compliance checking purposes, queries mostly
refer to activity labels to resolve nodes.

Looking at the query in Listing 2, the database engine will handle this query
by first binding variables e3 and b3 referring to activity labels ‘E’ and ‘B’, respec-
tively. This binding would result in a single binding to explore for each variable.
Next, relation variables r1 and r2 will be bound. The database engine can use
the bindings of e3 and b3 and indexes on relation (edge) properties to prune
the list of edges candidates for binding. Compared to the query in Listing 1,
the node variable e1 will have as many bindings as there are events executed
for activity ‘E’. The activity label ‘B’ filter cannot be used to prune the nodes
traversed and stored in the path variable.

Listing 2. Precedence anti-pattern query using unique activities encoding

1| Match (c3:Case)
2| where ((c3:Case) <-[r1:Event_to_Case]-(e3:Event{event:'E'}) and (c3:case)

<-[r2:Event_to_Case]-(b3:Event{event:'B'}) and r2.position >
r1.position) or (not exists((c3) <-[:Event_to_Case]-(:Event{event:'B'}))

3| return c.ID

Theoretically, the UA method outperforms the BM method; the evaluation
results empirically prove that. In such situation, if migrating the data to the
UA encoding is prohibitive, event nodes in the graph can be updated with the
position property so that all queries related to comparing positions of the nodes
within the trace, e.g., compliance queries, can be processed efficiently.

5 Evaluation

This section reports the evaluation of the method we proposed to encode event
logs as graphs. We compare our method, UA, against the baseline method BM.
In addition, we compare the storage of event logs in relational databases. The
relational table consists of four columns to store the case ID, the activity, the
timestamp of the event and the position of each event within a case. To detect
compliance violations, we evaluate two approaches. The first uses common SQL

Efficient Checking of Anti-patterns over Graph-Encoded Event Logs 157

operators such as joins and nested queries (NQ). The second uses the analytical
Match Recognize (MR) operator.

Table 2. Logs characteristics
Logs #Traces #Events #UA

BPIC’12 13087 262200 24

BPIC’14 41353 369485 9

BPIC’19 220810 979942 8

RTFMP 150370 561470 11

We selected four real life logs: three logs
from the BPI challenges to evaluate our
experiments, namely: BPIC’12 [8], BPIC’14
[7], BPIC’19 [10] and the log namely:
RTFMP [21]. We considered these logs as
they expose different characteristics as sum-
marized in Table 2.

5.1 Implementation and Experimental Setup

We have implemented the UA encoding method using Neo4j version 4.3.1 as a
graph database and Cypher to query the logs. Neo4J was instantiated with the
default configuration of 2 GB of heap maximum size and a page cache size of
512 MB. Also, we use the SQL Server graph database extension (SGD) version
15.0.2000. To evaluate the MR implementation, we use Oracle 12c3. The instance
was given 1 GB of RAM with default configurations of the storage engine. The
experiments were run on a laptop running Windows 10 64-bit with an Intel Core
i7 processor and 16 GB of RAM.

We prepared queries for Response and Precedence anti-patterns. For each
pattern, we created two variants. The two variants enforce a time limit with an
upper and lower bound on the time window. For instance, in case of a response
query, we have Response(A,B, φ,Δt,<), and Response(A,B, φ,Δt,>)4. There-
fore, in total, we have four queries for each log. The actual values for A, B, and
Δt vary depending on the log. The anti-pattern queries for each variant are
translated to Cypher and SQL for the respective encoding method to test. All
the details for the patterns (queries) variants and run details of experiments are
available on Github5.

5.2 Results and Discussion

In the first experiment, we report on the loading time of the logs following the
respective encoding, i.e., loading into Neo4J, SQL graph database (SGD), and
the relational database (RDB). For each log, we report the loading time and the
number of nodes and edges created in the graph database (Table 3).

Loading large logs following the BM method, Neo4J crashed with an out-of-
memory error due to the large amount of data. This is the case for the BPIC’14,
BPIC’19, and the RTFMP logs. We have examined several subsets of these logs.
The number of cases reported in Table 3 corresponds to the maximum size that
could be loaded using the Neo4J configuration we mentioned earlier. For the UA,
SGD, and RDB encoding, all the data are loaded into the database for the full
log sizes. For the common log sizes, graph-based encoding using SGD is superior

3 SQL Server does not support Match Recognize. Thus, we used Oracle.
4 We will report later on experiments with exclude property, i.e. S �= φ.
5 https://github.com/nesmayoussef/Graph-Encoded-Methods.

https://github.com/nesmayoussef/Graph-Encoded-Methods

158 N. M. Zaki et al.

Table 3. Loading time (seconds) for each encoding method. [LT: Loading Time, # N:
number of nodes, # E: number of edges]

BM UA
Methods

Graph Details Neo4j SGD Graph Details Neo4j SGD
RDB

Logs # Cases #N #E LT LT #N #E LT LT LT

BPIC’12 13087 177597 315933 16 56.6 13111 164510 6.7 17.4 1641

15000 148883 252766 13 3.7 15009 133883 9.9 1.2 890
BPIC’14

41353 410833 697607 — 11.7 41362 369480 9.4 2.9 2447

25000 135933 196866 13 2.3 25008 110933 4.9 1.3 960
BPIC’19

220810 1197804 1733178 — 49 220818 976994 19.7 11.8 8153

50000 236633 323266 21 3.8 50011 186633 10 1.7 1250
RTFMP

150370 711810 972510 — 55.9 150011 560046 19 6.7 3731

to the relational database and Neo4J. Additionally, UA is the fastest in graph
encoding methods due to the smaller number of nodes and edges compared to
the BM method.

Turning to graph sizes, we can observe the reduction of their sizes when
encoding with the UA method. It reduces the number of edges, as it does not
store edges for the directly follows relation and reduces the size of the nodes.

In the second experiment, we run the four compliance anti-pattern queries
against the respective logs, two for response and two for precedes. We have run
the queries five times and report the average execution time of the Precedes and
Response anti-pattern queries for the different encoding methods in Table 4 and
Table 5, respectively. Overall, the execution time is reduced using the proposed
encoding method, especially Neo4J, compared to the baseline method BM, NQ,
and MR methods. The magnitude of gain differs, though.

Table 4. Execution time (msec) for the variants of the Precedes queries [B: Before
time window, W: Within time window]

SGD Neo4J
Methods

BM UA BM UA
NQ MR

Logs # Cases B W B W B W B W B W B W

BPIC’12 13087 668 665 309 296 74 138 47 30 124 251 571 723

15000 526 775 281 351 253 85 58 28 137 178 432 633
BPIC’14

41373 1354 1626 596 762 — — 17 29 352 925 1202 1759

25000 694 668 575 174 76 68 36 54 206 96 1006 634
BPIC’19

220810 6112 5885 3638 2519 — — 12 78 2355 813 9154 57704

50000 1015 778 437 378 138 118 61 92 203 187 1106 477
RTFMP

150370 3584 2551 1403 1087 71 219 649 484 3352 1447

For the precedence anti-patterns, in the case of the UA method, the reduction
of execution time goes up to 14x, as in the case of the BPIC’12 log for the Before

Efficient Checking of Anti-patterns over Graph-Encoded Event Logs 159

Table 5. Execution time (msec) for the variants of the Response queries [A: After time
window, W: Within time window]

SGD Neo4J
Methods

BM UA BM UA
NQ MR

Logs # Cases A W A W A W A W A W A W

BPIC’12 13087 374 381 274 484 112 39 59 12 1374 293 747 953

15000 391 399 291 278 71 46 17 26 307 151 425 712
BPIC’14

41373 962 1122 651 824 — — 28 32 838 366 1181 1979

25000 554 412 315 275 29 20 12 16 6077 93 1267 931
BPIC’19

220810 4874 3629 3544 2814 — — 54 123 824 1009 11523 8461

50000 1362 542 931 368 62 91 14 31 916 147 1433 942
RTFMP

150370 4357 1669 2082 1062 — — 51 121 1355 434 4345 2824

time limit, B, query in Table 4 compared to execution time of SGD, MR and
NQ. In NQ, we use nested queries and self joins which leads the query engine to
perform additional tasks to retrieve data. In SGD, querying tables works much
the same way as querying relational tables in NQ. Using MR, the database has
to scan all the records and match them to the non-deterministic finite automata
(NFA) to check for matches. Comparing UA to the BM graph encoding, we still
get an improvement in query time. In Neo4J, the gain goes up to 2x as in the
case of BPIC’14 log for the W query.

For the response anti-patterns, in BPIC’12 log, for within time window, W,
SGD, MR and NQ perform worse than the other methods, Table 5. The improve-
ment in query time goes up to 79x comparing UA in Neo4J to MR. The lowest
improvement is about 3x, comparing UA in Neo4J to other graph encoding
methods. Note that this gain is on a small subset of the log. It is not clear how
fast the processing would be if the full log was loaded using the BM method.
This is left as a future work when testing with higher hardware specification.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

201 646 670 949

Pr
oc

es
sin

g
Ti

m
e

(s
ec

.)

of cases

NQ MR BM-Neo4J UA-Neo4J BM-SGD UA-SGD

(a) No time window

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

127 430 646 942

Pr
oc

es
sin

g
Ti

m
e

(s
ec

.)

of cases

NQ MR BM-Neo4J UA-Neo4J BM-SGD UA-SGD

(b) With time window

Fig. 3. Comparing the results of Exclude queries

Comparing the Neo4J to SGD, Neo4J is faster. The best gain of UA in Neo4J
compared to SGD is 303x in the case of the BPIC’19 log for the Before time
window and 65x in the case of the BPIC’19 log for the After time window,

160 N. M. Zaki et al.

Table 4 and Table 5, respectively. This shows the superiority of the native graph
databases compared to graph extension of relational databases.

In the third experiment, we run Response with exclude, i.e., Response
(A,B, {C},Δt,<) anti-pattern queries against BPIC’15 [11] log. This log con-
tains 1199 cases with 52217 events and 398 unique activities. We chose this log
due to its large number of unique activities. We empirically validate that the
proposed method still gives the best execution time. This experiment was run
five times with different activities and time windows for the different encoding
methods/storage engines.

Figures 3a and b report the execution time of the queries, with and without
time window, respectively. We show on the x-axis the query results sorted by the
matching number of cases. Obviously, the UA method shows the best scalability
as the number of matching cases (process instances) is a function in both the
input log size and the anti-pattern query.

Overall, for the different types of anti-pattern queries, the graph-based encod-
ing of event logs outperforms the relational database encoding. This aligns with
recent directions to employ graph databases for process analytics [9]. Addition-
ally, the UA encoding method we propose improves query time and storage space
against the baseline BM graph encoding method.

6 Conclusion and Future Work

We propose a graph-based encoding method for event logs to efficiently check
their compliance with timed order patterns. The encoding enhances checking
time and reduces the size of the stored graphs. Experimental evaluation empiri-
cally confirms the gain in both directions. In addition, the evaluation shows the
superiority of graph encoding of event logs over relational encoding. Moreover,
native graph databases, e.g. Neo4J, outperform graph extensions over relational
databases, e.g. MS SQL Server.

A limitation of this work is that it has been evaluated using Neo4J only as a
native graph database engine. We intend to address this limitation in our future
work. Another direction for future work is to evaluate the encoding method on
more compliance patterns and more event logs.

References

1. van der Aalst, W.: Process Mining. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and
verification of properties: an approach based on temporal logic. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg
(2005). https://doi.org/10.1007/11575771 11

3. Agrawal, R., et al.: Taming compliance with sarbanes-oxley internal controls using
database technology. In: ICDE, pp. 92–92. IEEE (2006)

4. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and
explaining their violations for business processes. J. Vis. Lang. Comput. 22(1),
30–55 (2011)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/11575771_11

Efficient Checking of Anti-patterns over Graph-Encoded Event Logs 161

5. Beheshti, A., Benatallah, B., Motahari-Nezhad, H.R.: Processatlas: a scalable and
extensible platform for business process analytics. Softw. Pract. Exp. 48(4), 842–
866 (2018)

6. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

7. van Dongen, B.B.: BPI Challenge 2014 (2014). https://doi.org/10.4121/uuid:
c3e5d162-0cfd-4bb0-bd82-af5268819c35

8. van Dongen, B.: BPI Challenge 2012 (2012). https://doi.org/10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f

9. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data
Semant. 10(1), 109–141 (2021)

10. Fahland, D.: Event Graph of BPI Challenge 2019 (2021). https://doi.org/10.4121/
14169614.v1

11. Fahland, D., Esser, S.: Event Graph of BPI Challenge 2015 (2021). https://doi.
org/10.4121/14169569.v1

12. Hashmi, M., Governatori, G., Lam, H.-P., Wynn, M.T.: Are we done with business
process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1),
79–133 (2018). https://doi.org/10.1007/s10115-017-1142-1

13. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4), 1–37 (2022)
14. Jalali, A.: Graph-based process mining. arXiv preprint arXiv:2007.09352 (2020)
15. Körber, M., Glombiewski, N., Seeger, B.: Index-accelerated pattern matching in

event stores. In: SIGMOD, pp. 1023–1036. ACM (2021)
16. Koschmider, A., Laue, R., Fellmann, M.: Business process model anti-patterns: a

bibliography and taxonomy of published work. In: ECIS (2019)
17. González López de Murillas, E., Reijers, H., van der Aalst, W.: Connecting

databases with process mining: a meta model and toolset. Softw. Syst. Model.
18(2), 1209–1247 (2019)

18. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: EDOC, pp. 287–300. IEEE (2007)

19. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i misbehave? Diag-
nostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E.
(eds.) BPM 2012. LNCS, vol. 7481, pp. 262–278. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32885-5 21

20. Ramezani Taghiabadi, E., Fahland, D., van Dongen, B.F., van der Aalst, W.M.P.:
Diagnostic information for compliance checking of temporal compliance require-
ments. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol.
7908, pp. 304–320. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38709-8 20

21. Reissner, D.: Public benchmark dataset for Conformance Checking in Process Min-
ing (2022). https://doi.org/10.26188/5cd91d0d3adaa

22. Saralaya, S., Saralaya, V., D’Souza, R.: Compliance management in business pro-
cesses. In: Patnaik, S., Yang, X.-S., Tavana, M., Popentiu-Vlădicescu, F., Qiao,
F. (eds.) Digital Business. LNDECT, vol. 21, pp. 53–91. Springer, Cham (2019).
https://doi.org/10.1007/978-3-319-93940-7 3

23. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient
and customisable declarative process mining with SQL. In: Nurcan, S., Soffer, P.,
Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 290–305. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39696-5 18

https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/14169614.v1
https://doi.org/10.4121/14169614.v1
https://doi.org/10.4121/14169569.v1
https://doi.org/10.4121/14169569.v1
https://doi.org/10.1007/s10115-017-1142-1
http://arxiv.org/abs/2007.09352
https://doi.org/10.1007/978-3-642-32885-5_21
https://doi.org/10.1007/978-3-642-38709-8_20
https://doi.org/10.1007/978-3-642-38709-8_20
https://doi.org/10.26188/5cd91d0d3adaa
https://doi.org/10.1007/978-3-319-93940-7_3
https://doi.org/10.1007/978-3-319-39696-5_18

Trans-Compiler-Based Database Code
Conversion Model for Native Platforms

and Languages

Rameez Barakat1,2(B), Moataz-Bellah A. Radwan1,2, Walaa M. Medhat1,2,4,
and Ahmed H. Yousef1,3

1 School of Information Technology and Computer Science, Nile University, Giza, Egypt
{rbarakat,Mo.Radwan,wmedhat,ahassan}@nu.edu.eg

2 Center for Informatics Science, Nile University, Giza, Egypt
3 Department of Computer and Systems, Faculty of Engineering, Ain Shams University,

Cairo, Egypt
ahassan@eng.asu.edu.eg

4 Faculty of computers and artificial intelligence, Benha University, Banha, Egypt
walaa.medhat@fci.bu.edu.eg

Abstract. Cross-platform mobile application development frameworks are now
widely used among software companies and developers. Despite their time and
cost-effectiveness, they still lack the performance and experience of natively devel-
oped applications. Many research tools have been proposed to solve this problem
by converting a natively developed application from one platform to another. The
Trans-Compiler Based Android to iOS Converter (TCAIOSC) was proposed to
convert the front-end and back-end code ofAndroid Java applications to iOS appli-
cations. Since databases are essential for mobile applications, this paper proposes
a new database code conversion model based on trans-compilation and pattern
matching. It proposes a model that can be used to support database code conver-
sion between native languages and platforms and applies the proposed model to
support the conversion of Firebase Firestore database code from Android (Java)
to iOS (Swift) using TCAIOSC. The enhanced tool’s results show high accu-
racy for the converted database code and a noticeable improvement in the overall
conversion results for TCAIOSC.

Keywords: Cross-platform mobile development · Trans-compilation approach ·
Databases · Firebase · Firestore · Android · iOS

1 Introduction

Mobile application development is one of the most highly required and demanded areas
in information technology. This is a result of the huge number of smartphones and tablets
that have created a huge and competitive market for mobile applications. Consequently,
the demand for mobile application developers is increasing all over the world [1]. As a
result of the variety of mobile operating systems and the need for the mobile application

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 162–175, 2023.
https://doi.org/10.1007/978-3-031-21595-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_12&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_12

Trans-Compiler-Based Database Code Conversion Model 163

to operate similarly on all these operating systems, there exist different cross-platform
solutions that enable developers to write their application once and run it on different
platforms.

Although they are time and cost-effective, cross-platform solutions are known for
their relatively low performancewhen compared to native applications. Several commer-
cial/research tools have been introduced as a solution for cross-platform development
[2–6]. In [5] Salama et al. proposed a trans-compiler-based approach for converting
native Android applications’ source code to native IOS applications’ source code. How-
ever, they only succeeded in converting the backend Java source code to swift source
code without including Android features, which resulted in a low conversion rate. In [6]
the solution in [5] was enhanced to support some of the Android features like connecting
UI views to the backend, responding to user events, and Android intents.

However, the enhanced solution did not support converting database connections,
which is an essential module in most of our daily used mobile applications. According
to [7], the number of available mobile applications until the first quarter of 2021 on
the two main big app stores (Google play and Apple app store) are 3.48 million and
2.22 million, respectively. Out of these millions of apps in the app stores, it would be
difficult to find one that does not require a database or some sort of storing or handling
data in a particular way. Therefore, almost all our daily used mobile applications require
storage and management of data including querying the stored data to retrieve certain
information.

Hence, mobile databases are considered an essential part of most mobile application
development. Therefore, a native mobile application converter tool that does not sup-
port database connections’ conversion is missing an essential functionality for mobile
applications.

Enhancing the existing solution to support database connections’ conversion will
noticeably enhance the performance of the converter and will help make the needed
human modifications to the converted code minimal.

The contribution of this paper is to propose a new trans-compiler-based database
code conversion model that aims to extend the solutions in [5] and [6] to support the
conversion of Firebase Firestore [8] database connections, evaluating the conversion
accuracy results and the improvement achieved from the proposed solution extension.

The outline structure for the rest of this paper is as follows: Sect. 2 represents the
related work. Section 3 gives a background on mobile databases. Section 4 presents the
methodology for developing the proposed model and applying it to enhance TCAIOSC.
Section 5 presents the results for the database code conversion model and the effect of
these results on the solution performance. Finally, Sect. 6 presents the conclusion and
future work.

2 Literature Reviews

There are many papers that present and categorize either the mobile application devel-
opment approaches [9–15] or the different mobile application types [15–18] or evalu-
ate different approaches, tools, or solutions [12, 19–24]. His section presents common
approaches and application types for mobile application development. Then it mentions
the former attempts at supporting database-related code conversion for tools converting
native-to-native applications.

164 R. Barakat et al.

2.1 Cross-platform Development Approaches

Much work has been done to identify and describe the different approaches in
mobile application development. Many papers describe the main approaches and sub-
approaches for mobile development. The following are the main and most common
approaches among these papers.

Compilation Approach. In this approach, the application code is transformed from one
high-level language to another (trans-compilation) or executable code is generated for a
platform other than the platform on which the compiler is running (cross-compilation).

Modeling Driven Approach. In this approach, the model-driven development (MDD)
methodology is adopted where abstract models are developed based on the system’s
requirements using a domain-specific modelling language. Then, a platform-specific
mobile application is generated from these models.

Eric and Marco [25] surveyed model-driven based approaches in mobile develop-
ment and defined and classified them based on a defined classification schema. This
classification included research approaches in MDD like MD2 [26] where a textual
model for the application is first defined using a textual modelling language; then, a
platform-specific code generator transforms the model into the required platform.

SInterpretation Approach. In this approach, a common language is used to write the
code, then an interpreter translates this code, and the native code for each intended plat-
form is generated. An abstract layer is used to provide the native features for each
platform that interprets the code during runtime and provides the platform-specific
features.

2.2 Cross-platform Native-to-Native Tools Supporting Database Conversion

J2ObjC [4] which is an open-source command-line tool developed by Google using the
trans-compilation approach, provides SQLcode conversion by supporting the conversion
of Java.sql. The source and destination for J2ObjC are different from TCAIOSC as it
translates a source code written in Java to the equivalent source code in Objective-C,
which is different than the scope of TCAIOSC.Also, J2ObjCdoesn’t provide any support
for converting user interfaces.

MechDome [27] was a commercial tool that converted applications from native
Android to native iOS. It operated at the level of the binary executables, not the source
code itself, which is different from the way TCAIOSC operates. It supported some of
the Google Firebase APIs, like the Realtime database and authentication. However, it
has been folded since 2018, two years after it was founded and is no longer available.

ICPMD [13, 14], a proposed tool by El-Kassas et al., succeeded in converting shared
preferences, which is a way of storing local data in Android. They also proposed a
methodology that combines different development approaches and enhanced it by using
a new conversion approach using XSLT and regular expressions. However, ICPMD
converted applications fromWindows Phone to Android, which is not in the same scope
as TCAIOSC, in addition to the fact thatWindows Phone is no longer used and no longer
supported by Microsoft.

Trans-Compiler-Based Database Code Conversion Model 165

3 Background

There are two main types of databases that are used in mobile application development
which are SQL and NoSQL databases. Each type has its own advantages and disadvan-
tages. Therefore, selecting the right database for a mobile application depends on the
type of developed application. Table 1 shows the advantages and disadvantages of each
type.

Table 1. Advantages and disadvantages of databases used in mobile application development.

Comparison SQL databases (Relational
databases)

NoSQL databases

Schema Fixed schema Flexible schema

Data storage Store data in tables with fixed
columns and rows

Store data as documents

Data duplication Less duplication of data More duplication of data

Scaling Vertical scaling Horizontal scaling

Update queries Faster for update -heavy
applications

Slower for update-heavy
applications

Read/write queries Relatively slower for read/write
heavy applications

Faster for read/write heavy
applications

Examples PostgreSQL, SQLite, MySQL Firebase, MongoDB,
Realm, Neo4j

77
.0

5

68
.4

4

2.
18

1.
03

0.
83

87
.9

83
.2

1.
38

0.
97 2.
08

A N D R O I D
A R C H I T E C T U R E
C O M P O N E N T S

F I R E B A S E R E A L M O R M L I T E G R E E N D A O

% of Apps % of installs

Fig. 1. Percentages of used Android database libraries in total apps and total number of installs
on play store

166 R. Barakat et al.

In the world of Android and iOS development, there are many database frameworks
under different database types like SQLite, Realm, Firebase, CoreData (iOS), and others.
According to AppBrain [9], among database libraries used in Android applications on
the play store, Firebase came in second place after theAndroidArchitecture Components
with a percentage of 68.44% of apps and 83.20% of installs on the play store. Therefore,
converting Firebase Firestore database code to test the applicability of the solution was
chosen over the other libraries. Figure 1 shows the AppBrain statistics for the most used
database libraries in Android.

4 Methodology

TCAIOSC has successfully provided two code conversion units, one for backend code
conversion and the other for UI code conversion. These code conversion units have
proven to successfully convert backend and frontend code when tested to convert simple
applications that didn’t use database connections from Android to iOS. Although the
architecture for TCAIOSC implies that these converters can be easily extended to support
any library/API, this supposition is built on the assumption that theAndroid and iOS code
will always have a one-to-one lexical mapping. In this section, the enhanced methodol-
ogy to support database libraries and the proposed enhanced solution’s architecture are
presented.

4.1 Proposed Enhanced Methodology

In practice, mapping between the two platforms or languages is not always a direct one-
to-one relationship. For example, an Android Java code to achieve a simple functionality
such as initializing an instance of Cloud Firestore, from a compiler’s perspective, can
be implemented as a variable declaration including a method call in Java while it is
implemented in Swift as a method call followed by a variable declaration including a
method call as shown in Table 2.

Table 2. Difference between initializing an instance of cloud Firestore in different platforms

Platform Initialize an instance of Cloud Firestore

Android (Java) FirebaseFirestore db = FirebaseFirestore.getInstance();

iOS (Swift) FirebaseApp.configure()
let db = Firestore.firestore()

The proposed methodology for database code conversion merges between direct
(one-to-one) mapping and indirect (one-to-many or many-to-many) pattern matching.
In this approach, a set of patterns for the database library are collected from the Firebase
Firestore official documentation [28] and predefined to match the input source code
against.

Trans-Compiler-Based Database Code Conversion Model 167

Whenever a database-related statement is detected in the input source code, first a
one-to-one mapping is attempted in TCAIOSC’s backend code conversion unit. If there
was no direct match, then a pattern matching is attempted against a predefined set of
patterns. If there was no pattern matching, finally, the input code is commented as a
non-converted code in the generated output source code.

Table 3 shows an example of each of the three mapping types. In the first example
(one-to-one), the compiler translates the Java statement consisting of a Firestore object
followed by twomethod calls to the corresponding Swift code consisting of the Firestore
object followed by the corresponding two method calls in Swift. This type of mapping
is handled completely by the trans-compiler without the need for pattern matching.

Table 3. Examples for direct and indirect mapping between Android and iOS

Mapping Type Android (Java) iOS (Swift)

Direct
(one-to-one)

db.collection("users").add(user) db.collection("users").addDocument(data:
user)

Indirect
(one-to-many)

FirebaseFirestore db =
FirebaseFirestore.getInstance();

FirebaseApp.configure()
let db = Firestore.firestore()

Indirect
(many-to-many)

db.collection("users").add(user)
.addOnSuccessListener(new

OnSuccessListener<DocumentReference>()
{
@Override

public void
onSuccess(DocumentReference
documentReference) {
 Log.d(TAG, "DocumentSnapshot
added with ID: " +
documentReference.getId());
 }
 })
.addOnFailureListener(new
OnFailureListener() {

@Override
public void onFailure(@NonNull

Exception e) {
Log.w(TAG, "Error adding

document", e);
}

});

ref =
db.collection("users").addDocument(data:
user
) { err in

if let err = err {
 print("Error adding document:
\(err)")

} else {
 print("Document added with ID:
\(ref!.documentID)")

}
}

In the second example (one-to-many), the trans-compiler first tries to convert the
statement as a normal variable declaration, including a method call. It will check the
variable type and used method against the compiler’s defined data types and methods
to get the corresponding data type and method in Swift. Then, the pattern matcher will
attempt to match the statement against the defined patterns and add the app configuration
statement in Swift.

168 R. Barakat et al.

In the third example (many-to-many), the trans-compiler will try to convert the
statement using normal trans-compilation. It will match the object type and methods
against the compiler’s defined data types and methods. Then, it will reach the listener
statements with no equivalent direct mapping. Then, the pattern matcher module will
read the pattern and match it to the defined corresponding pattern in Swift.

4.2 Proposed Enhanced Solution Architecture

The enhanced solution’s architecture, illustrated in Fig. 2, consists of the following
components:

Controller. The Controller is an interface unit which handles all communication
between different components. It is responsible for receiving the source project files,
categorizing the files into backend and UI files, and then passing the files to either the
code conversion unit or UI conversion unit based on the file category. Finally, the con-
troller collects the generated output files, packages them, and generates the output iOS
Swift project.

Java Lexer and Parser. The Java lexer and parser components are generated using
ANTLR (ANother Tool for Language Recognition) [29], which is a parser generating
tool that is passed the grammar file for the Java language to produce the source language
tokens. The generated tokens are passed to the parser, which constructs the parse tree
according to the grammar file and generates interfaces that are used in the backend
converter to traverse the parse tree during the backend code conversion process.

Backend Converter. The backend converter implements the interfaces generated by
the parser to perform the backend code generation from the source language (Java) to
the destination language (Swift). During the process of code generation, the backend
converter interacts with the database to get the mapped data types, operators, built-in
functions,…etc. from Java to Swift.

During the backend code conversion, the backend converter uses a firebase detector
module to detect whether a certain statement is a Firestore statement. If a statement is
detected as a Firestore, firstly, the code converter checks for an equivalent code using the
available Firestore mappings for functions, data types, or classes in the database (one-to-
one mapping); secondly, if the first approach didn’t find a match, the backend converter
interacts with the firebase pattern matching module which matches the statement against
predefined patterns (one-to-many mapping); thirdly, if the second approach didn’t find
a match, the backend converter interacts with the firebase detector to check whether the
current statement is a part of a larger set of consecutive Firestore statements, if found
true, the backend converter interacts with the firebase pattern matching module to match
a larger set of statements against predefined patterns (many-to-many mapping); lastly,
if no match was found, the statement is marked as non-converted code and commented
in the output code file.

The backend converter takes as an input all the backend code files of the project, then
processes these files one by one to convert the code files from the source platform to the
target platform, then passes the converted files to the controller unit. It also produces

Trans-Compiler-Based Database Code Conversion Model 169

UI-related information found in activity files that are used by the UI converter during
UI code conversion.

Firebase Pattern Matching Module. This module is introduced as a solution for indi-
rect Firestore statements’ mapping. It uses a set of predefined Firestore patterns in Java
and their equivalent Firestore code patterns in Swift. If a Firestore statement or statements
were not converted using direct mapping, they are passed from the backend converter to
the pattern matching module to be checked for one-to-many or many-to-many mapping.

Firebase Detector. The firebase detector has two main roles, one concerning the con-
version of the code itself and the other concerning the testing and evaluation of the con-
verted Firestore code and calculating the improvement rate for the tool after supporting
the Firestore conversion.

This module is used by the backend converter to determine whether a certain state-
ment is firestore-related or not. Whenever a statement is passed to the detector, it checks
keywords in the statement against a set of firestore keywords that have been previously
defined by a developer and stored in the database. This set of keywords includes one-
level keywords like library names and data types and two-level keywords like methods
that belong under a certain library, where the method name is considered the first level
and the parent library is considered the second level.

The advantage of this module’s design is that it is generic and extensible as it can
be easily extended to be a general database statement detector that detects any database
statement not only firestore by simply extending the set of keywords by adding keywords
for other database frameworks that has keywords up to any number of levels.

XML Lexer and Parser. The XML lexer and parser components are also generated
using ANTLR using the grammar file for XML language. Then it generates tokens that
are passed to the parser, which constructs the XML parse tree and generates interfaces
that are used in the UI converter to traverse the parse tree during the UI code conversion
process.

UI Converter. The UI converter maps each XML file that represents an activity in the
Android project into a scene in the iOS project. The different scenes resulting from
different XML activity files are then grouped together into one Storyboard file by the
UI converter and passed to the control unit.

For the UI converter to convert the UI code, it needs both the UI parse tree and the
backend parse tree in order to handle the UI-related code that existed in the backend
(.JAVA) code files and was previously identified by the backend converter.

The UI converter, much like the backend converter, is responsible for implementing
the interfaces that are produced by the XML parser. This implementation is then used
to build the output UI code for iOS, which is then passed to the controller unit.

Databases. The database contains all the necessary mapping data to complete the back-
end, UI, and Firestore conversions. It includes mappings for data types, methods and
their signatures (parameters and their types), methods return types, libraries, operators,
static built-in functions, UI data types, observers, and a defined set of Firestore key-
words that the Firestore detector module uses to determine whether a given statement is
a Firestore statement.

170 R. Barakat et al.

Fig. 2. Enhanced solution’s architecture after supporting Firestore conversion

5 Results and Discussion

In this section, three evaluation requirements are presented. The first is to evaluate the
success in converting the database code; the second is to evaluate different applications’
code conversion rates before and after applying the proposed enhancement to measure
the size of the enhancement; and the third is to compare the runtime of the solution on
different applications before and after integrating the proposed enhancement.

A set of open-source native Android applications were selected from GitHub to test
the solution. Table 4 lists the sample applications that are used to test the solution. The
criteria for selecting the test applications set were:

Selecting Most Recent Open-Source Applications. To guarantee that the test samples
include the most recent Firestore features and avoid deprecated code in old applications,
all the selected applications were published on GitHub after 2019.

Selecting Applications from Different Categories. To test the tool’s performance for
different and broad types of applications and to test the generalization of the results.

Selecting Android Java Applications Only. Since TCAIOSC only supports the con-
version of Android Java applications, not Kotlin.

Trans-Compiler-Based Database Code Conversion Model 171

Table 4. List of sample test applications

Application name Application URL

Quiz App https://github.com/tayyabmughal676/QuizAppJava

FirebaseFiresore Android https://github.com/lspusta/FirebaseFirestoreAndr
oidJava

StPreacher-SignUp-With-PhoneNumber https://github.com/StPreacher/StPreacher-SignUp-
With-PhoneNumber-using-FirebaseCloudFirestore

NotesAppWithFireStore https://github.com/mohamed00736/NotesAppWith
FireStore

Trigger Push Notification https://github.com/moataz-bellah/Firestore-And
roid-Trigger-Push-Notification

FitMe https://github.com/brapana/FitMe

Firestore demo Android Java https://github.com/mirodone/Firestore-demo-
Android-Java

Shopping App https://github.com/developersamuelakram/Shoppi
ngApp-Firestore-MVVM-Navigation

5.1 The Percentage of the Successful Conversion of Firestore Code

The same metric used by TCAIOSC to calculate the percentage of converted code was
adopted, that is, the percentage of successfully converted statements. This was done
to establish consistency between TCAIOSC and the enhanced solution. Also, it was
adopted to keep the integrity of the results when calculating the improvement in the
second part of the evaluation. Table 5 presents the percentage of successfully converted
statements for the set of test applications. The equation for calculating this percentage
is as follows:

Firestore Conversion % = Number of converted firestore statments

Total number of firestorestataments
× 100 (1)

After analyzing the results for converting Firestore statements, the statements that
were not converted were due to:

• UsingConsecutiveMultipleListeners inAndroid: This pattern has no direct equivalent
in iOS.

• PartiallyConverted Statements: Some statementswere partially convertedwhereas the
Firestore part of the statement was converted. However, the statement uses another
unsupported feature/data type in TCAIOSC, which results in the whole statement
being counted as not converted.

• Unmatched Statements: Some Firestore statements did not match any of the defined
patterns (this can be improved by adding more patterns to the set of predefined
patterns).

https://github.com/tayyabmughal676/QuizAppJava
https://github.com/lspusta/FirebaseFirestoreAndroidJava
https://github.com/StPreacher/StPreacher-SignUp-With-PhoneNumber-using-FirebaseCloudFirestore
https://github.com/mohamed00736/NotesAppWithFireStore
https://github.com/moataz-bellah/Firestore-Android-Trigger-Push-Notification
https://github.com/brapana/FitMe
https://github.com/mirodone/Firestore-demo
https://github.com/developersamuelakram/ShoppingApp-Firestore-MVVM-Navigation

172 R. Barakat et al.

Table 5. Percentage of successfully converted firestore statements

Application name Converted firestore statements (%)

Quiz App 100%

FirebaseFiresore Android 83%

StPreacher-SignUp-With-PhoneNumber 80%

NotesAppWithFireStore 75%

Trigger Push Notification 100%

FitMe 84.3%

Firestore demo Android Java 89%

Shopping App 71.75%

5.2 The Improvement of the Overall Conversion Rate for an Entire Application

The overall improvement in the conversion rate was calculated by converting the same
set of test applications by TCAIOSC before and after the support of Firestore. Table 6
compares the backend conversion results for TCAIOSC before and after supporting the
Firestore library.

Table 6. Comparison between TCAIOSC’s results before and after supporting firestore

Application name Conversion (%) before
supporting Firestore

Conversion (%) After
Supporting Firestore

Quiz App 23% 26.5%

FirebaseFiresore Android 59% 63%

StPreacher-SignUp-With-PhoneNumber 73% 89%

NotesAppWithFireStore 68% 70%

Trigger Push Notification 29% 44%

FitMe 47% 50%

Firestore demo Android Java 79% 84.5%

Shopping App 52% 63%

5.3 Comparison Between Conversion Runtime Before and After Supporting
Firestore Code Conversion

A comparison for the runtime of TCAIOSC to generate the converted code for the list
of test applications is presented in Table 7. The comparison shows that the conver-
sion runtime after supporting Firestore is relatively higher with a minimum and maxi-
mum increases of approximately 1% and 30% respectively depending on the size of the
application and the size of firestore-related statements per application.

Trans-Compiler-Based Database Code Conversion Model 173

Considering that the application conversion process is a one-time process that will
be executed once, the observed increase could be accepted since the total conversion
time is still found relatively small for producing a mobile application source code in
seconds.

Table 7. Comparison between TCAIOSC’s runtime before and after supporting Firestore

Application name Runtime before
supporting Firestore
(milliseconds)

Runtime After
supporting Firestore
(milliseconds)

Quiz App 10,675.1 13,709.2

FirebaseFiresore Android 10,779.5 12,959.1

StPreacher-SignUp-With-PhoneNumber 11,947.2 12,151.7

NotesAppWithFireStore 11,215.1 11,782

Trigger Push Notification 13,143.1 14,688.2

FitMe 13,911 18,053.3

Firestore demo Android Java 13,182.1 16,233.3

Shopping App 11,260.9 14701.3

6 Conclusion and Future Work

Since mobile databases are an essential part of mobile applications, database-related
code exists in most mobile application source codes. The proposed model to enhance the
TCAIOSC solution after supporting Firebase Firestore code from native Android (Java)
to native iOS (Swift) shows a reasonable improvement rate in the overall successful code
conversion for the application.

SThe proposed methodology succeeded in converting the selected database frame-
work (firebase Firestore) and resulted in a relatively high conversion rate for the database-
related code. However, it didn’t achieve full conversion for all applications due to the
following limitations:

• Using Consecutive Multiple Listeners in Android: the impact of this limitation can be
minimized by defining a standardized way for the tool to handle certain code in the
source language or platform that has no equivalent in the target language or platform.

• Partially Converted Statements: this can be solved/minimized by supporting more
backend features in the original tool of TCAIOSC.

• Unmatched Statements: can be improved by defining and adding more patterns to the
set of predefined patterns.

174 R. Barakat et al.

The future work includes:

• Generalizing the proposed enhanced solution to be database framework type-
independent and testing this generalization by applying it to other tools.

• Extending the pre-defined pattern matching set to include more patterns by analyzing
more source code patterns in Android projects.

• Developing a handling method to handle the issue of code with no equivalent between
different platforms.

• Publicating the solution as an open-source project on GitHub to encourage developers
to contribute other codemethods/patterns that may not be widely used or documented.

References

1. Montandon, J.E., Politowski, C., Silva, L.L., Valente, M.T., Petrillo, F., Guéhéneuc, Y.G.:
What skills do IT companies look for in new developers? A study with stack overflow jobs.
Inf. Softw. Technol. 129(August), 2021 (2020). https://doi.org/10.1016/j.infsof.2020.106429

2. Cordova. https://cordova.apache.org/
3. xamarin. https://dotnet.microsoft.com/en-us/apps/xamarin
4. J2OBJC. https://developers.google.com/j2objc
5. Salama, D.I., Hamza, R.B., Kamel, M.I., Muhammad, A.A., Yousef, A.H.: TCAIOSC: Trans-

compiler based android to iOS converter. In: Hassanien, A.E., Shaalan, K., Tolba, M.F. (eds.)
AISI 2019. AISC, vol. 1058, pp. 842–851. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-31129-2_77

6. Hamza,R.B., Salama,D.I.,Kamel,M.I.,Yousef,A.H.:CAIOSC: application code conversion.
In: 2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES), vol. 1,
pp. 230–234 (2019). https://doi.org/10.1109/NILES.2019.8909207

7. Google Play Store: number of apps 2021 | Statista. https://www.statista.com/statistics/266
210/number-of-available-applications-in-the-google-play-store/ (accessed Sep. 04, 2021)

8. Firebase. https://firebase.google.com/
9. Perchat, J., Desertot, M., Lecomte, S.: Component based framework to create mobile cross-

platform applications. Procedia Comput. Sci. 19, 1004–1011 (2013). https://doi.org/10.1016/
j.procs.2013.06.140

10. Rahul Raj, C.P., Tolety, S.B.: A study on approaches to build cross-platform mobile appli-
cations and criteria to select appropriate approach. In: 2012 Annual IEEE India Conference
INDICON 2012, pp. 625–629 (2012). https://doi.org/10.1109/INDCON.2012.6420693

11. Ribeiro, A., Da Silva, A.R.: Survey on cross-platforms and languages for mobile apps. In:
Proceedings of 2012 8th International Conference on Quality Information Communication
Technology QUATIC 2012, pp. 255–260 (2012). https://doi.org/10.1109/QUATIC.2012.56

12. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Evaluating cross-platform development
approaches for mobile applications. In: Web Information Systems and Technologies,
pp. 120–138 (2013)

13. El-Kassas,W.S.,Abdullah,B.A.,Yousef,A.H.,Wahba,A.: ICPMD: integrated cross-platform
mobile development solution. In: Proceedings of 2014 9th IEEE International Conference on
Computer Engineering and Systems, ICCES 2014, pp. 307–317 (2014). https://doi.org/10.
1109/ICCES.2014.7030977

14. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M.: Enhanced code conversion
approach for the Integrated Cross-Platform Mobile Development (ICPMD). IEEE Trans.
Softw. Eng. 42(11), 1036–1053 (2016). https://doi.org/10.1109/TSE.2016.2543223

https://doi.org/10.1016/j.infsof.2020.106429
https://cordova.apache.org/
https://dotnet.microsoft.com/en-us/apps/xamarin
https://developers.google.com/j2objc
https://doi.org/10.1007/978-3-030-31129-2_77
https://doi.org/10.1109/NILES.2019.8909207
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://firebase.google.com/
https://doi.org/10.1016/j.procs.2013.06.140
https://doi.org/10.1109/INDCON.2012.6420693
https://doi.org/10.1109/QUATIC.2012.56
https://doi.org/10.1109/ICCES.2014.7030977
https://doi.org/10.1109/TSE.2016.2543223

Trans-Compiler-Based Database Code Conversion Model 175

15. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M.: Taxonomy of cross-platform
mobile applications development approaches. Ain Shams Eng. J. 8(2), 163–190 (2017).
https://doi.org/10.1016/j.asej.2015.08.004

16. Smutný, P.: Mobile development tools and cross-platform solutions. In: 2012 13th Interna-
tional Carpathian Control Conferenc, ICCC 2012, pp. 653–656 (2012). https://doi.org/10.
1109/CarpathianCC.2012.6228727

17. Ohrt, J., Turau, V.: Cross-platform development tools for smartphone applications. Comput.
(Long. Beach. Calif) 45(9), 72–79 (2012). https://doi.org/10.1109/MC.2012.121

18. Xanthopoulos, S., Xinogalos, S.: A comparative analysis of cross-platform development
approaches for mobile applications. In: BCI 2013: Proceedings of the 6th Balkan Conference
in Informatics, September 2013. https://doi.org/10.1145/2490257.2490292

19. Rieger, C., Majchrzak, T.A.: Weighted evaluation framework for cross-platform app develop-
ment approaches. In: Wrycza, S. (ed.) SIGSAND/PLAIS 2016. LNBIP, vol. 264, pp. 18–39.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46642-2_2

20. Rieger, C., Majchrzak, T.A.: Towards the definitive evaluation framework for cross-platform
app development approaches. J. Syst. Softw. 153, 175–199 (2019). https://doi.org/10.1016/j.
jss.2019.04.001

21. Jobe, W.: Native apps Vs. mobile web apps. Int. J. Interact. Mob. Technol. 7(4), 27 (2013).
https://doi.org/10.3991/ijim.v7i4.3226

22. Mohammadi, F., Jahid, J.: Comparing native and hybrid applications with focus on features.
p. 49 (2016)

23. Pulasthi, L.K., Gunawardhana, D.: Native or web or Hybridwhich is better for mobile
application. Turkish J. Comput. Math. Educ. Res. Artic. 12(6), 4643–4649 (2021)

24. Nawrocki, P., Wrona, K., Marczak, M., Sniezynski, B.: A comparison of native and cross-
platform frameworks for mobile applications. Comput. (Long. Beach. Calif). 54(3), 18–27
(2021). https://doi.org/10.1109/MC.2020.2983893

25. Umuhoza, E., Brambilla, M.: Model driven development approaches for mobile applications:
a survey. In: Younas, M., Awan, I., Kryvinska, N., Strauss, C., Thanh, D.V. (eds.) MobiWIS
2016. LNCS, vol. 9847, pp. 93–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-44215-0_8

26. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven development of
mobile applicationswithMD2. In: Proceedings onACMSymposium onApplied Computing.
SAC, pp. 526–533 (2013). https://doi.org/10.1145/2480362.2480464

27. Mechdome. http://www.mechdome.com/
28. Firestore. https://firebase.google.com/docs/firestore
29. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013)

https://doi.org/10.1016/j.asej.2015.08.004
https://doi.org/10.1109/CarpathianCC.2012.6228727
https://doi.org/10.1109/MC.2012.121
https://doi.org/10.1145/2490257.2490292
https://doi.org/10.1007/978-3-319-46642-2_2
https://doi.org/10.1016/j.jss.2019.04.001
https://doi.org/10.3991/ijim.v7i4.3226
https://doi.org/10.1109/MC.2020.2983893
https://doi.org/10.1007/978-3-319-44215-0_8
https://doi.org/10.1145/2480362.2480464
http://www.mechdome.com/
https://firebase.google.com/docs/firestore

MDMSD4IoT a Model Driven
Microservice Development for IoT

Systems

Meriem Belguidoum(B), Aya Gourari, and Ines Sehili

LIRE Laboratory University of Constantine 2, Algiers, Algeria
{meriem.belguidoum,aya.gourari,ines.sehili}@univ-constantine2.dz

Abstract. Nowadays, IoT systems are widely used, they are embedded
with sensors, software, and technologies enabling communication and
automated control. The development of such applications is a complex
task. Therefore, we have to use a simplified methodology and a flex-
ible and scalable architecture to build and run such applications. On
the one hand, Model-driven development (MDD) provides significant
advantages over traditional development methods in terms of abstrac-
tion, automation, and ease of conception. On the other hand, microser-
vice architecture (MSA) is one of the booming concepts for large-scale
and complex IoT systems, it promises quick and flawless software man-
agement compared to monolithic architectures. In this paper, we present
MDMSD4IoT, Model-driven Microservice architecture development for
IoT based on the profile SysML4IoT and combined Model Driven Devel-
opment and microservice architecture. We illustrate our contribution
through a smart classroom case study.

Keywords: Internet of Things · Model driven development · Model
driven architecture · SysML · Microservice architecture · M2T
transformation · Smart classroom

1 Introduction

The field of IoT is growing exponentially and has sparked a revolution in the
industrial world [16]. It refers to an emerging paradigm that allows the intercon-
nection of physical devices equipped with sensing, networking, and processing
capabilities to collect and exchange data. These things connected to each other
form a much larger system and enable new ubiquitous and pervasive comput-
ing services [23]. Therefore, the development of IoT systems is very challenging
due to their complexity [6] and the lack of IoT development methodologies and
appropriate application architecture style.

Several modeling languages and tools based on the Model Development Engi-
neering approach [26] have been proposed to design and develop complex soft-
ware systems through meta-modeling, model transformation, code generation,
and automatic execution. Thus, Model-Driven Development (MDD) [24] and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 176–189, 2023.
https://doi.org/10.1007/978-3-031-21595-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_13&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_13

MDMSD4IoT a Model Driven Microservice Development for IoT Systems 177

Model Driven Architecture (MDA) [5] are classified as Model Driven Engineer-
ing (MDE) [25], MDD is a development paradigm that uses models as the pri-
mary artifact of the development process and is a subset of MDE, MDA is a
subset of MDD and relies on the use of OMG standards [4]. This latter proposes
several specification languages, the most relevant one for IoT-based applications
is the OMG System Modeling Language SySML [12], it is a general purpose
graphical modelling language for specifying, analyzing, designing, and verifying
complex systems that may include hardware, software, information, etc. It has
been conceived as a profile of UML [13].

Furthermore, IoT requires heavy integration between devices, data, and
applications. This integration is becoming increasingly costly, complex, and time-
consuming, especially with a monolithic architecture. These problems could be
reduced considerably by using microservices architecture since it structures an
application as a collection of services as small, modular, independently deploy-
able, and loosely-coupled services [14,22].

In order to provide some solutions to these IoT systems engineering issues,
we believe that we have to take advantage of the most convenient and relevant
approaches, methodologies, languages, and tools for IoT application development
and combine them in an original way. Therefore, our proposed approach is based
on: 1) SysML profile for IoT [18] based on the architecture reference model IoT-
ARM [3,8], 2) microservices architecture (MSA) [20], 3) Model Driven Architec-
ture [5] and 4) a methodology for IoT development process adopted in recent IoT
projects [7]. Our approach is called MDMSD4IoT for Model Driven Microservices
Architecture Development for IoT systems. It aims to design and develop IoT sys-
tems in an efficient and flexible way. Indeed, firstly, Systems Modeling Language
(SysML) [18] is the most popular tool for model-based development, it allows
modeling physical aspects like hardware, sensors, etc. Secondly, the microser-
vices architecture [20] defines an application as a set of small autonomous ser-
vices, which is very suitable for IoT systems thanks to its characteristics such as
weak coupling, modularity, flexibility, independent deployment, and resilience.
Thirdly, model-driven architecture (MDA) [5] is a paradigm that promotes the
use of models to solve software engineering problems through techniques such as
abstraction and automation. Finally, IoT Design Methodology proposed in [7,18]
is a useful methodology that consists of a set of development steps and is based
on the Architecture Reference Model (ARM) [8]. In this paper, we extended this
design methodology with two steps related to the definition and the specification
of microservices.

We illustrate our approach through the development of “UC2Smart
Classroom” using the fingerprint module for secure access and automatic
resource management, eg. smart lighting, etc. in our university.

This paper is outlined as follows: Sect. 2 presents a summary of some related
work. Section 3 describes the MDMSD4IoT approach. Section 5 illustrates the
proposed approach through UC2SmartClassroom case study which is a smart
classroom prototype for the University of Constantine 2. Finally, we conclude
the paper and present some future work.

178 M. Belguidoum et al.

2 Related Work

In order to address the above-mentioned challenges and be able to develop effi-
ciently IoT applications, we focus on the most relevant related work, namely
based on: IoT Architecture Reference Model, SysML4IoT profile, Microservice
Architecture (MSA), and Model Driven Development (MDD).

The goal of the IoT Architectural Reference Model project [3] is to provide
developers with common technical basics and a set of guidelines for building
interoperable IoT systems. The architectural reference model (ARM) [8] pro-
vides the highest level of abstraction for the definition of IoT systems. Besides
models, the IoT domain model provides the concepts and definitions on which
IoT architectures can be built.

In [11] IDeA (IoT DevProcess & IoT AppFramework) is proposed as a model-
based systems engineering methodology for IoT application development. It
focuses on modelling and considers the model as the primary artifact for systems
development. The main objective of this methodology is to provide a high-level
abstraction to deal with the heterogeneity of software and hardware components.

IDeA is composed of a method, called IoT DevProcess, and a support tool,
called IoT AppFramework. The IoT DevProcess is used for the design of IoT
applications, to support IoT DevProcess activities, the IoT AppFramework pro-
vides a SysML profile for IoT applications called SysML4IoT [11], which is
strongly based on the IoT-ARM domain model presented previously.

In [19], a model-driven approach is proposed to ease the modeling and real-
ization of adaptive IoT systems, it is based on SysML4IoT (an extension of the
SysML) to specify the system functions and adaptations, the generated code
is deployed later on to the hardware platform of the system, a smart lighting
system is developed.

A model-driven environment called CHESSIoT is presented in [21] to design
and analysis of industrial IoT systems. It follows a multi-view, component-based
modeling approach with a comprehensive way to perform event-based modeling
on system components for code generation purposes employing an intermediate
ThingML model [17]. An Industrial real-time safety use case is designed and
analysed.

The authors of [7] have proposed a generic design methodology for IoT sys-
tems independent from the specific product, service, or programming language
and allow designers to compare various alternatives for loT system components.
The presented methodology is generally based on the IoT-ARM reference model
[8], it focuses on the domain model to describe the main concepts of the system
to be designed and to help designers understand the IoT domain for which the
system must be designed. The methodology consists of the specification of objec-
tives and requirements, the process, the domain model, the information model
service, IoT level, functional view, operational view, integration of devices and
components, and finally, application development.

MDMSD4IoT a Model Driven Microservice Development for IoT Systems 179

Authors in [9] propose the FloWare approach and its toolchain, it combines
Software Product Line and Flow-Based Programming paradigms to manage the
complexity in the various stages of the IoT application development process.
The final IoT application and the executable Node-RED flow are generated
using an automatic transformation procedure starting from a configuration of
the designed Feature Models.

In [10] a model-driven integrated approach is provided to exploit traceability
relationships between the monitored data of a microservice-based running sys-
tem and its architectural model to derive recommended refactoring actions that
lead to performance improvement. The approach has been applied and validated
on e-commerce and ticket reservation, and the architectural models have been
designed in UML profiled with MARTE.

In [15], the authors explained how typical Microservice Service Architecture
problems can be addressed using Model Driven Development such as abstraction,
model transformation, and modelling viewpoints. Indeed, MDD offers several
advantages in terms of service development, integration and migration. However,
MDD is rarely applied in SOA engineering. Nonetheless, the authors claim that
the use of MSA greatly facilitates and fosters the usage of MDD in microservice
development processes. They list these characteristics according to Newman [22]
and correlates them with the means of MDD, for example, Service Identification
is supported by model transformation, Technology Heterogeneity is supported
by abstraction and code generation techniques, while Organizational Alignment
is supported by modelling viewpoints.

Table 1 presents a comparison with some related work. We have classified
them according to the following four criteria: IoT context, Model driven devel-
opment and MDA approach, microservice architecture style, and modelling with
SysML language. We noticed that none of the existing approaches takes into
account the four criteria at the same time, namely the architecture of microser-
vices with the SysML modelling (for the IoT hardware parts, etc.) and the use
of the MDA approach.

Table 1. Comparison with some related work

Work IoT MDD Microservices SysML

[8] ✓ ✓

[11] ✓ ✓ ✓

[7] ✓

[15] ✓ ✓

[19] ✓ ✓ ✓

[21] ✓ ✓

[9] ✓ ✓

[10] ✓ ✓

Our approach ✓ ✓ ✓ ✓

180 M. Belguidoum et al.

3 The MDMSD4IoT Approach

MDMSD4IoT is a model-driven approach based on microservice architecture for
the development of IoT systems. First, depending on the system requirements,
a design model is specified, this model captures the functionalities of the sys-
tem that are modelled with an extended SysML profile based on microservices
and IoT concepts. Then, the design model is transformed into an IoT platform-
specific model to generate the system implementation stubs. The code gener-
ation (M2T transformation) can interpret the models and generate the source
code. At last, the generated code is deployed on a hardware platform to have
a functional software system. MDMSD4IoT is composed of: a SysML profile
called SysML4IoTMSA, a development method called IoTMSADev and a code
generator called SysML2IoTMSA (see Fig. 1).

The SysML4IoTMSA profile (SysML for IoT systems based on microser-
vice architecture) is a SysML extension inspired by the SysML4IoT profile [11],
which is based on the IoT-ARM domain model. SysML4IoTMSA encompasses
both the concepts of the IoT domain and those of the microservice architec-
ture to provide high-level abstractions. To create the SysML4IoTMSA, we used
Papyrus [2] which is an open-source plugin for the Eclipse platform, which pro-
vides SysML compliant meta-modelling functionalities. While the IoTMSADev
method includes a set of steps, that represent an MDA approach based on the
microservice architecture for IoT system development. This latter is inspired by
the methodology proposed in [7], we proposed an extended method to be able
to develop microservices and to use SysML diagrams. This method is supported
by the SysML4IoTMSA profile to elaborate the models, and by the code gen-
erator to perform M2T transformations. The SysML2IoTMSA code generator
is an Eclipse plugin based on the Acceleo tool, which is an open-source code
generator. It uses elaborate models as input and generates text files based on a
programming language as output.

3.1 SysML4IoTMSA Profile

MDMSD4IoT facilitates the specification and the design of complex IoT systems
through the SysML4IoTMSA profile. This profile provides stereotypes to repre-
sent the concepts of IoT and microservices and their associations. According to
SysML4IoTMSA, a microservices-based IoT system is made up of four parts:
user, microservices, environment, and hardware. Figure 2 details the stereotypes
defined in the profile. SysML Block is the principal extended element since
SysML conceptualizes it as a modular unit of the system that is used to define
a type of software, hardware, or data elements of the system or its composition
of them [11]. The user part (with the yellow color) represents the users of the
system (client-side application). The environment and materials part (with the
green color) represents the physical and hardware aspects. It is related to the
application domain concepts. For example, the building automation domain is
expressed in terms of floors and rooms. The main concepts are as follows:

MDMSD4IoT a Model Driven Microservice Development for IoT Systems 181

Fig. 1. The MDMSD4IoT approach

– PhysicalEntity zone: is a region, which has an observable and controllable
property called phenomenon. A typical example is a room with the value of
its temperature.

– PhysicalEntity Device: is a device in PhysicalEntity zone, which has an
attribute that describes its state. For example an air conditioner with its
state (ON or OFF).

– Sensor : is used to detect changes in the environment. The sensor observes
a phenomenon of a PhysicalEntity zone. For instance, a temperature sensor
observes the room temperature phenomenon.

– Actuator : is used to make changes in the environment through action. Heat-
ing or cooling elements are examples of actuators. The actuator affects the
phenomenon of a PhysicalEntity zone by performing actions. For instance, a
heater is set to control a room temperature level.

– ComputingDevice is a hardware component that hosts resources, sends the
collected data, and receives commands. An Arduino or raspberry card are
examples of ComputingDevice.

Microservice part (with the pink color) represents the logical aspect of the
application. A system consists of multiple Microservices which are either Func-
tional (FunctionalMS), which realize business capabilities, or Infrastructure
(InfrastructureMS), which provide the system architecture with infrastructure
properties such as configuration and registration.

– A FunctionalMS consist of: Entity, Interface and Service.
– VirtualEntity zone and VirtualEntity Device represent respectively Physi-

calEntity zone with its phenomenon and PhysicalEntity Device with its state.

182 M. Belguidoum et al.

Fig. 2. The SysML4IoTMSA profile

– Resource represents the sensor and the actuator.
– A Service encapsulates a set of Operations and represents the web service

provided by the microservice. For example, SwitchOnLED is an operation of
LuminosityService.

– A Controller is a processing element that encapsulates a set of functionalities.
It consumes one or more units of information as inputs, processes them, and
generates an output. It runs on ComputingDevice and interacts with web
services, the controller sends the collected data to the web service and receives
commands from the application (through web services) to control hardware
or trigger actions.

– A Driver is a computer program that acts as a translator between a Com-
putingDevice and the Controller. For example, if a java code does not work
directly on an Arduino board, it must use the JArduino (a Java API and an
Arduino firmware) which is in our case the Driver.

MDMSD4IoT a Model Driven Microservice Development for IoT Systems 183

3.2 IoTMSADev Method

In our approach, we have extended the methodology for the development of IoT
proposed in [7] by adding new steps related to microservices (step D : Definition
of the microservice architecture and step E : Microservice specifications) using
SysML diagrams. In the following, we briefly explain the development steps:

a) Objective and requirements analysis: the first step is to define the objective
and the main requirements of the system. In this step, we describe our system,
why it is designed, and its expected functionalities.
b) Requirement specification: in this step, the use cases of the IoT system
are described and derived from the first step. It consists of extracting the
functional requirements of the system and modelling them with the SysML
requirement diagram. In this step, the system functionalities are grouped into
domains.
c) Process specification: describes the behavioral aspect of the system, and
how it works through SysML activity diagram.
d) Definition of the microservice architecture: the fourth step is to define the
logical architecture of the system. Designers must break down the system
into fundamental architecture building blocks that represent microservices,
each one is highly cohesive and encapsulates a unique business capability. A
microservice can be a functional type or an infrastructure type. This step
represents the interactions between the different microservices according to
the topology of the architecture.
e) Microservice Specification: consists of defining the microservice specifica-
tions. It models each functional microservice within and architecture (defined
in the previous step) using a definition block diagram and describes the main
concepts (interface, entities, service, operations, and the relationships between
them), in order to understand each microservice domain.
f) Functional View Specification: defines the Functional View (FV). It defines
the different functionalities of the IoT system grouped into functional groups
(FG). In this step the system is represented in layers, each layer will be
mapped to one or more groups (FG) according to its functionalities.
g) Operational view specification : consists of defining the operational view.
The various options related to the deployment and the system operation are
defined, such as the options of hosting services, storage, and devices.
h) Integration of devices and components: it installs and integrates the various
devices.
i) Application Development : this step involves developing the entire IoT appli-
cation (backend and frontend), testing it and deploying it.

184 M. Belguidoum et al.

3.3 SysML2IoTMSA Code Generator

The proposed SysML2IoTMSA code generator is presented in Fig. 3, it is respon-
sible for transforming the models developed in step “E. Microservice specifica-
tion” into source code. The generator is an Eclipse plugin based on the Papyrus
and Acceleo Framework for an M2C (Model to Code) transformation. Acceleo [1]
is an implementation of the MTL (Model-to-Text Language) standard, defined
by the OMG. It uses a transformation by the template approach. A template is
a text containing reserved spaces in which information is taken from the input
model. These placeholders are generally expressions specified on the entities that
will be used in the model from which information is extracted. Templates are
written in modules, a module corresponds to a .mtl file and it contains a set of
templates and queries. The .mtl file specifies the name of the module and the
type of the meta-model used.

The generated code related to the microservices is based on Spring Boot
and Spring Cloud frameworks. SysML2oTMSA is based on the SysML meta-
model, which is available in the Papyrus plugin. Finally, SysML2IoTMSA aims
to strengthen reuse to facilitate the development of the MSA in order to avoid
heavy and redundant coding.

Fig. 3. The SysML2IoTMSA code generator

MDMSD4IoT a Model Driven Microservice Development for IoT Systems 185

To generate the code related to the microservice architecture, we created
an Acceleo project with two modules (two .mtl files): FunctionalMSgenerator
for the generation of the code related to the functional microservices type and
InfrastructureMSgenerator for the one related to the infrastructure microservices
type. Each module:

– Specifies the metamodel types using (SysML).
– Consists of a set of templates (generateEntity, generateRestService, generate-

Discovery, etc.) which is called by the main template at runtime.
– Queries written in AQL (Acceleo Query Language), a language used to nav-

igate and query an EMF model. Their syntax is very similar to OCL syntax.
For example, the query hasStereotype (value: String) tests whether the ele-
ment has the stereotype passed as a parameter.

– The input of the FunctionalMSgenerator is the SysML block definition dia-
gram of the microservice.

– The input of the InfrastructureMSgenerator is the SysML block definition
diagram of the overall system structure.

– The output is .java files and configuration files.

4 A Case Study: UC2SmartClassroom

To illustrate our proposed approach, we have used it to develop a prototype
of a smart classroom system called UC2SmartClassroom for the University of
Constantine 2 as a part of our master’s project.

This system aims to ensure a certain degree of comfort, security and energy
saving within the university, through:

– Access control using fingerprints;
– Resource management;
– Reducing energy consumption through the concept of smart lighting.

For the efficient management of classroom resources (lighting, heating, air
conditioning, and data show), each teacher can access the classroom that it
is assigned to him in his schedule. A sensor fingerprint allows him to open the
door of the classroom and turn on its materials and devices, once he finished, the
system will automatically turn off these resources. Each classroom is equipped
with a touch screen tablet attached near the teacher’s desk, allowing the control
of the main devices.

The system automatically configures the lighting and temperature levels
inside the classrooms according to the light and temperature values captured
through different sensors and actuators.

The design and the development of UC2SmartClassroom system rely on the
MDMSD4IoT approach. Thus, the SysML4IoTMSA profile is used to specify
and model the system functionalities according to the IoTMSADev steps (from
step a) to i)) and the SysML2IoTMSA code generator to get the system imple-
mentation stubs.

186 M. Belguidoum et al.

4.1 Modelling Microservices-based IoT Systems

Following the SysML4IoTMSA profile, we modeled the UC2SmartClassrooms
system as a composed structure. The structure of the system through a SysML
block definition diagram specifies the following entities:

– a set of functional microservices (LuminosityMS, TemperatureMS, AccessMS
and ResourceMS)

– a set of infrastructure microservices (ConfigurationMS, DiscoveryMS and
Getway MS)

– a set of devices (LuminosityDevice, TemperatureDevice, AccessDevice
and RessourceDevice) which are microcontrollers. Each microcontroller is
attached to its corresponding sensor (LumSensor, TemSensor, Finger-
printSensor, MotionSensor) and its actuator (Relay, InfraRed LED, Servo-
Motor).

The system interacts with the classroom environment and with the system
administrator or the teacher.

Microservices allow making the correspondence between each service with its
corresponding resources and devices (sensors and actuators) in order to carry
out this service. For each functional microservice, we develop a block definition
diagram, to extract the offered services and to define the responsibilities, i.e.,
associate services with their required resources. The microservices specification
also shows the devices that host the resources.

4.2 Microservice Architecture Implementation

In this part, we present the different technical steps to implement microservices
architecture based on Spring Boot, Spring Cloud and Netflix OSS (Eureka, zuul)
for our UC2SmartClassrooms system. Figure 4 shows the technical architecture.
As mentionned before, we have four microservices which represent the functional
aspect of the system through REST APIs. To ensure horizontal scalability
(adding additional nodes) and fault tolerance, multiple instances of the same
microservice can be started simultaneously. Each functional microservice:

– has its own database;
– is an application in the SpringBoot framework;
– has its own Maven module containing some Java classes and configuration

files.

To operate in a distributed environment, microservices rely on a set of tools
offered by Spring Cloud: centralized configuration management, automated dis-
covery of other microservices, load balancing, and API routing. The front-end
part is developed with Angular. The Gateway API is a microservice responsible
for routing a request from one microservice instance to another one. This latter
centralizes browser invocations. Although it can play an aggregator role, most
calls go directly to functional microservices.

MDMSD4IoT a Model Driven Microservice Development for IoT Systems 187

Fig. 4. The technical architecture of microservices

Spring Cloud Netflix offers to use Zuul proxy to forward requests received
by the Gateway API to functional microservices. In a microservices architecture
hosted in the Cloud, it is difficult to anticipate the number of instances of the
same microservice (depending on the load) or even where they will be deployed
(and therefore on which IP and which port they will be accessible). The role
of Eureka server, is to connect microservices. Each microservice will register
and retrieve the address of its adhesion. The microservices (as well as the other
servers) will load their application configuration from the Config Server, whose
role is to centralize the configuration files of microservices in a single place.

The configuration files are versioned on a git directory containing a common
configuration for all microservices and a specific configuration for each microser-
vice (in this case the Git Bash tool is used as a version manager). Changing the
configuration no longer requires rebuilding applications or redeploying them, a
simple restart is sufficient.

5 Conclusion and Future Work

In this paper, we have proposed a Model Driven MicroServices Architecture
Development for IoT systems (MDMSD4IoT) based on microservices architec-
ture (MSA) and driven by models. We opted for the MDA approach for its
efficiency in modelling complex software systems through its sophisticated tech-
niques including abstraction and automation. In addition, the microservices

188 M. Belguidoum et al.

architecture is important due to its characteristics such as weak coupling, mod-
ularity, flexibility, independent deployment, and resilience. MDMSD4IoT app-
roach is based on three basic concepts that perfectly meet the needs of IoT
systems: the SysMl4IoTMSA profile (based on the IoT-ARM domain model),
IoT development methodology (based on the architecture reference model), and
SysML2IoTMSA code generator (based on Microservices architecture, Spring-
Boot, and SpringCloud frameworks). The approach is illustrated through the
development of a smart classroom system called UC2SmartClassrooms. The nov-
elty of our contribution is its extensibility in terms of adding new steps in the
design methodology or adding new functionality, modifying existing microser-
vices, generating other languages, using other platforms, and agility. It represents
a Master’s project and was used as a prototype in a classroom at the university
of Constantine 2.

However, some limitations remain in this Master project and appear due to
time constraints. Therefore, we plan to improve our proposed approach with the
following aspects:

– evaluate the contribution by measuring exactly the scalability, reusability,
performance and fault tolerance and compare with other approaches

– extend the proposed SysMl4IoTMSA profile with other aspects such as secu-
rity;

– analyse data and create a predictive model for forecasting future events in
smart buildings

– validate and verify our system by transforming our meta-model to another
formal language

– develop a DSL that integrates SysMl4IoTMSA profile as an input model with
other IoT aspects and other Code generators.

References

1. Acceleo. https://www.eclipse.org/acceleo/
2. Eclipse papyrus. https://www.eclipse.org/papyrus/
3. Iot-a: internet of things architecture. https://portal.effra.eu/project/1470
4. Object management group (omg). https://www.omg.org/
5. OMG: object management group MDA (Model Driven Architecture) Guide Version

1.0.1. http://www.omg.org/mda/ (2001)
6. Aguilar-Calderón, J.A., Tripp-Barba, C., Zald́ıvar-Colado, A., Aguilar-Calderón,

P.A.: Requirements engineering for internet of things (loT) software systems devel-
opment: a systematic mapping study. Appl. Sci. 12(15), 7582 (2022)

7. Bahga, A., Madisetti, V.: Internet of things: a hands-on approach, chap. 5, pp.
99–115. Bahga and Madisetti (2014)

8. Bassi, A., et al.: Enabling Things to Talk: Designing IoT Solutions with the IoT
Architectural Reference Model. 1st edn. Springer, Berlin (2013). https://doi.org/
10.1007/978-3-642-40403-0

9. Corradini, F., Fedeli, A., Fornari, F., Polini, A., Re, B.: FloWare: an approach for
IoT support and application development. In: Augusto, A., Gill, A., Nurcan, S.,
Reinhartz-Berger, I., Schmidt, R., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2021.
LNBIP, vol. 421, pp. 350–365. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-79186-5 23

https://www.eclipse.org/acceleo/
https://www.eclipse.org/papyrus/
https://portal.effra.eu/project/1470
https://www.omg.org/
http://www.omg.org/mda/
https://doi.org/10.1007/978-3-642-40403-0
https://doi.org/10.1007/978-3-642-40403-0
https://doi.org/10.1007/978-3-030-79186-5_23
https://doi.org/10.1007/978-3-030-79186-5_23

MDMSD4IoT a Model Driven Microservice Development for IoT Systems 189

10. Cortellessa, V., Pompeo, D.D., Eramo, R., Tucci, M.: A model-driven approach for
continuous performance engineering in microservice-based systems. J. Syst. Softw.
183, 111084 (2022). https://doi.org/10.1016/j.jss.2021.111084

11. Costa, B., Pires, P., Delicato, F.: Modeling IoT Applications with SysML4IoT. In:
42th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 157–164 (2016)

12. Debbabi, M., Hassäıne, F., Jarraya, Y., Soeanu, A., Alawneh, L.: Verification and
Validation in Systems Engineering. Springer, Berlin (2010). https://doi.org/10.
1007/978-3-642-15228-3

13. Delsing, J., Kulcsár, G., Haugen, Ø.: SysML modeling of service-oriented system-
of-systems. Innov. Syst. Softw. Eng. (2022). https://doi.org/10.1007/s11334-022-
00455-5

14. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

15. F. Rademacher, J. Sorgalla, P.W.S.S., Zundorf, A.: Microservice architecture and
model-driven development: yet singles, soon married (?). In: Proceedings of the
19th International Conference on Agile Software Development: Companion, p. 5,
No. 23, ACM, New York, USA (2018)

16. Giannelli, C., Picone, M.: Editorial industrial IoT as it and OT convergence: chal-
lenges and opportunities. IoT 3(1), 259–261 (2022)

17. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: a language and code
generation framework for heterogeneous targets. In: Proceedings of the 19th Inter-
national Conference on Model Driven Engineering Languages and Systems, pp.
125–135. ACM (2016)

18. Holt, J., Perry, S.: SysML for Systems Engineering. 2nd edn. The Institution of
Engineering and Technology, London (2013)

19. Hussein, M., Li, S., Radermacher, A.: Model-driven development of adaptive IoT
systems. In: MoDELS (2017)

20. Nadareishvili, I.R., Mitra, M.M., Amundsen, M.: Microservice Architecture. 1st
edn. O’Reilly Media, Sebastopol (2016)

21. Ihirwe, F., Ruscio, D.D., Mazzini, S., Pierantonio, A.: Towards a modeling and
analysis environment for industrial IoT systems. In: Iovino, L., Kristensen, L.M.
(eds.) STAF 2021 Software Technologies: Applications and Foundations. CEUR
Workshop Proceedings, vol. 2999, pp. 90–104. CEUR-WS.org (2021). http://ceur-
ws.org/Vol-2999/messpaper1.pdf

22. Newman, S.: Building Microservices. O’Reilly Media, Sebastopol (2015)
23. Sethi, P., Sarangi, S.: Internet of things: architectures, protocols, and applications.

J. Electr. Comput. Eng. 1, 1–25 (2017)
24. Picek, R., Strahonja, V.: Model driven development - future or failure of software

development? (2007)
25. da Silva, A.R.: Model-driven engineering: a survey supported by the unified con-

ceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015)
26. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Tech-

nology, Engineering. Management. Wiley, Hoboken (2006)

https://doi.org/10.1016/j.jss.2021.111084
https://doi.org/10.1007/978-3-642-15228-3
https://doi.org/10.1007/978-3-642-15228-3
https://doi.org/10.1007/s11334-022-00455-5
https://doi.org/10.1007/s11334-022-00455-5
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
http://ceur-ws.org/Vol-2999/messpaper1.pdf
http://ceur-ws.org/Vol-2999/messpaper1.pdf

Database Systems

Parallel Skyline Query Processing
of Massive Incomplete

Activity-Trajectories Data

Amina Belhassena1(B) and Wang Hongzhi2

1 Audensiel Technologies, Boulogne-Billancourt, France
a.belhassena@audensiel.fr

2 Harbin Institute of Technology, Heilongjiang, China

wangzh@hit.edu.cn

Abstract. The big spatial temporal data captured from technology tools
produce massive amount of trajectories data collected from GPS devices.
The top-k query was proposed by many researchers, on which they used
distance and text parameters for processing. However, the information
related to text parameter like activity is always not presented due to some
reason like lack internet connection. Furthermore, with massive amount of
keyword semantic activity-trajectories, user may enter the wrong activ-
ity to find its activity-trajectory. Therefore, it’s hard to return the desir-
able results based on the exact keyword activity. Our previous work pro-
posed an efficient algorithm to handle the trajectory fuzzy problem based
on edit distance and activity weight. However, the algorithm proposed
does not work with incomplete Trajectory DataBases (TDBs). There-
fore, the present investigation focuses on handling the trajectory skyline
problem based on distance and frequent activities in incomplete TDB. To
accelerate the query processing, the massive trajectory objects is man-
aged through Distributed Mining Trajectory R-Tree (DMTR-Tree index)
based on R-tree indexes and inverted lists. Afterward, an efficient algo-
rithm is developed to handle the query. For a rapid computation, a cluster-
computing framework of Apache Spark with MapReduce is used. Theoret-
ical analysis and the experimental results show a well agreement and both
attest on the higher efficiency of the proposed algorithm.

Keywords: Distributed processing · Incomplete data · Skyline
trajectory · Fuzzy · Top-k spatial keyword queries

1 Introduction

Nowadays, more and more spatial temporal data are produced by means of new
sensors and smartphones, etc., which embedded with GPS (Global Positioning
System) produce huge volumes of trajectories data. To discover the knowledge
and support the decision-making, these moving objects are usually stored and
archived in TraJectory DataBases (TDBs) for in-depth analysis and process-
ing [1]. Several application domains such as animal breeding, traffic jam, etc.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 193–206, 2023.
https://doi.org/10.1007/978-3-031-21595-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_14&domain=pdf
https://doi.org/10.1007/978-3-031-21595-7_14

194 A. Belhassena and W. Hongzhi

exploit these massive TDBs. In particular, TDBs have been successfully applied
to the tourism and marketing application domains, since end-users are usually
equipped with smart phones, or GPS embedded vehicles, which are able to track
the movements of these people at detailed spatial and temporal scales. The anal-
ysis of these human activities providing semantic trajectories data could be then
used to improve the quality of offered services. Indeed, end-users can manually
add to the trajectory data some description about their activities like shopping,
working, etc. when they arrive at Point of Interest (POI) locations. This crowd-
sourcing approach allowing people to comment, edit POIs is very common, and
adopted by commercial services enterprises (such as Google) or free platforms
like Wikipedia. Although, these GPS datasets become more and more massive,
data concerning the end-users activities is not always present, and does not asso-
ciated to the GPS points, for different reasons: lack of internet connection, the
end-user does not want publish the data for privacy issues, lack of time, etc. Such
kinds of applications using POIs can also be translated in other contexts where
the POI is a location with a particular relevance such as drinking points in the
bravery applications, energy recharge points for agricultural and cars vehicles,
etc. This makes the proposal of this paper open to different application domains
different from the tourism one described in the next of the paper.

A real common and used query type on these trajectories datasets annotated
with activities consists in finding out the frequent shortest activity-trajectory,
near to user location including a set of preferable activities. For example, “What
is the shortest activity-trajectory to reach Eiffel tower from La Bastille (in Paris)
and do some shopping at the same time?” For such a challenging query, fre-
quent mining activity-trajectory algorithms used for top-k queries are not trivial.
Indeed, efficient similarity measures among activity-trajectories are necessary.
Moreover, the huge volume of this data needs efficient computation and stor-
age methods such as distributed indexes. Finally, the lack of some activity data
must also be taken into account. So, due to some reasons like: lack adaptation for
tactile tablets, users may make mistakes while inputting their activity queries.
Thus, it’s hard to return the desirable activity-trajectory based on the exact
keyword activity. Indeed, approximate keyword search has to be considered.

Some efforts have been done about the top-k trajectory similarity with activ-
ities like [2], others have used some indexing methods like hybrid grid index [3].
However, to the best of our knowledge, processing the top-k frequent activity-
trajectories query with missing data has not been researched so far. Therefore,
the proposals of our work aim to process the top-k query based on the similarity
of the spatial distance and the full activity information by taking into account
the problems of missing data and approximate activity keywords search. In par-
ticular, to solve the incomplete information problem in top-k queries, we will use
an optimized method of skyline queries. Skyline query is a database query where
the skyline operator answers to an optimization problem, used to filter results
and keep only those objects that are not worse than any other. In our context,
a skyline query is based on both spatial and textual (i.e. activities) dimensions.
Furthermore, our solution is promoted also to process the fuzzy problem for
approximate activities in POI using edit distance and activity weights [4]. To

Parallel Skyline Query Processing 195

answer the skyline query mentioned above, which returns the activity-trajectory
that is not dominated by others based on the massive historical trajectory data,
it’s hard to process this query without passing by an efficient storage method
as well as a distributed parallel computing approach. Therefore, we use our pre-
vious method to organize the massive trajectory data into Distributed Mining
Trajectory R-Tree index (DMTR-TREE) [5,6], which is based on distributed R-
tree indexes and inverted lists. Using an aggregate of data through distributed
parallel operations, we have developed a new algorithm for skyline query pro-
cessing. This algorithm is performed using a distributed cluster based on Spark
and MapReduce model to accelerate the process of large data trajectories. The
contributions of our paper are:

– The proposal of some new functions to evaluate the multi-frequent activity
and distance between similar trajectories in TDB and the query.

– Based on our previous distributed index, an effective new algorithm in order
to solve the trajectory skyline and incomplete data problems efficiently.

The remaining of our paper is organized as follows: Sect. 2 presents the related
work. Section 3 presents the overview of our index. Section 4 introduce a set of
functions that used for query processing. Section 5 explains the query algorithm
proposed. Section 6 describes our experimental studies.

2 Related Work

Recently, many researchers have widely studied the top-k trajectory query pro-
cessing on trajectory data [3,7–9]. In [10] they integrated social activity data into
the spatial keyword query of semantic trajectory. Furthermore, to process the
top-k trajectory queries, an efficient indexing method can be necessary. Recently,
many studied have proposed to index massive data through spatial access meth-
ods like R-Tree index [11], which is more suitable to index the spatial movement
objects. However, as data is rapidly increased, the indexing methods based on
a single node are insufficient. Therefore, some researchers have proposed dis-
tributed indexes to handle the limitation of centralized methods based on clus-
ters [12,13], where authors have used h-base. To perform MapReduce to index
the massive spatial data, in [14], they have developed an efficient framework
called SpatialHadoop. In order to improve the MapReduce limitation, GeoSpark
[12] have been proposed to support spatial access methods.

Furthermore, the distance of semantic trajectories have to be considered.
Thus, it is hard to process top-k query based on both approximate semantic key-
words and distance. Such a problem could be solved using skyline query. Authors
in [16] have firstly proposed the skyline query by introducing the skyline operator
for a relational database system based on the B-Tree index. In trajectory data pro-
cessing, authors in [17] addressed the problem of trajectory planning by exploring
the skyline concept. [18] have proposed an efficient algorithm to retrieve stochas-
tic skyline routes for a given source-destination pair and a start time. Recently,

196 A. Belhassena and W. Hongzhi

[19] applied the skyline queries method for a personalized travel route recommen-
dation scheme using the mining of the collected check-in data. [20] combined the
skyline query and top-k method to recommend travel routes that cover different
landscape categories and meet user preferences. With the important contributions
made by the aforementioned work, none of them take into consideration the miss-
ing semantic trajectory data for skyline query processing.

3 DMTR-Tree Index Overview

To support the process of both spatial objects and textual activity information.
The Distributed Mining Trajectory DMTR-Tree constructed distributed R-Tree
indexes with mining inverted lists based on MapReduce model, in which the
process is carried out by the Spark cluster. The master node interconnects with
each slave in the cluster, on which each slave has an R-tree index [5,21]. We
build the indexes in three phases:

a. Partition method. Consider TD trajectory data sets. The total number of
partitions in the cluster is n =

∑m
1 n, where m is the total number of slave

machines in the cluster and n is the maximum partition number in each slave.
The trajectory POIi.T = {poi.key.T, poi.s.T, poi.a.T} are composed of spatial
and non-spatial data. Each point POIi is defined by a unique key poi.key.T ,
representing its spatial location poi.s.T (the longitude and the latitude), and
activity keywords poi.a.T that are holding in POIi. To efficiently store the points
POIi with their activities in the indexes, the purpose of this phase is to assign
each point of TD to one partition according to poi.key.T based on the range
partition. We solved the skewing data problem, by re-configuring the ranges of
all the partitions in the same slave. Denoting n as the maximum number of
partitions and e as the maximum number of trajectory points in n. ideally, each
partition should have e/n elements.

b. Local construction. The RDD mapped in the first phase is used to split
the data set TD into N partitions. Since, N small R-tree indexes are then built
separately at the same time by N reducers in each slave. Thus, each worker’s
machine constructs an index for each partition, on which, the index uses the
Minimum Bounding Rectangles MBRs for POIi storage.

c. Inverted list phase. To extract the frequent activities practiced by previous
users, we have implemented the frequent mining algorithm “Apriori Algorithm”
on each point. The results of the algorithm were stored in the mining inverted
lists, where each point has its own inverted list. To obtain the whole inverted
list, all the object’ lists were combined together. Finally, to optimize the query
when traversing the whole list, we have reduced the lists’ number by collecting
the objects that are belonged to the same trajectory in the same inverted list.

4 Problem Statement of Skyline Trajectory Query

The trajectory object oi has two dimensions. The first dimension is the distance
dimension, which represents the geographic similarity measured between the

Parallel Skyline Query Processing 197

query q and an activity trajectory T or q and an activity sub-trajectory subT .
The second dimension is the activity dimension, which represents the activity
keywords similarity measured between q and T or q and subT . During query
processing, in the case when T candidate has incomplete data, which is related
to frequent activity set, the distance dimension will be calculated between T and
other closest trajectory object candidates. Further, the activity dimension will
also be measured between q and other closest trajectory objects candidates. Let
us consider an example of TDB, depicted in Fig. 1, which contains three activity-
trajectories: T1, T2, T3. Each activity-trajectory has a set of points of interest.
Each POI has a set of associated activities. For example, the activity-trajectory
T1 is composed of two different shopping centers denoted by P2 and P3, and a
sports club denoted by P4, and {Shop, Hair − Cut, Restaurant} are activities
involved in the POI P2. A trajectory skyline query is also depicted in Fig. 1,
that is characterized by a user location point, user destination point, a distance
threshold, and a set of activities. Here, a tourist in a new city wants to know the
frequent shortest trajectories, which are close to its location. She/he aims not
only to visit the POIs of the specific trajectory but, she/he wants to practice
some activities (i.e. {Hair − Cut, Restaurant, Fitness}) that are evaluated by
previous users, included in this trajectory and doesn’t exceed 3 km. To answer
this query, the system evaluates the trajectories {T1, T2, T3} and returns the
best one. T3 has a shortest distance to the user position, however it does not
include all the required activities. T1 has a short distance than T2, and it presents
all the asked activities. The solution to this problem has already been presented
in our previous work [6]. However, since the activity set is also important for
the user, some users prefer to choose the trajectory with an ordered sequence of
activities, even if the trajectory chosen is not the shortest one (e.g. the user could
prefer T1 or T2 to T3). Besides, the incomplete information of some activities in
the trajectory POIs may occur while archiving data into TDB, as discussed in
the previous section. In this case, the system cannot process the query without
full information. Under this circumstance, our previous work [6] does not apply.
For example, some activities are missing in the POI P3 of T1. Therefore, the
system must sort another trajectory similar to T1. As T2 is good in the distance
dimension compared to T3. Further, T2 is better than T1 and T3 in the textual
dimension. Thus, T2 is not dominated by either T1 neither T3. Therefore, T2 is
the best choice that could be returned to the user.

To handle the trajectory skyline problem efficiently, we have developed two
functions based on distance and activity dimensions

a. The distance function: F is a function, which aims to estimate the sim-
ilarity distance between q and T . Assuming q(L,D) is the query determining
by a user location point L, and a user destination point D. To measure the
shortest distance, we have used the Euclidean distance due to its lightweight
computation. The distance function F ∈ [0, 1] is represented by the formula 1:

F (q, T) = 1 − N (L.q.oi.T) +
∑n

i=1[d(oi.T,oi+1,T)]+M(Ti, Tj)+d(on.T, D.q)

d̂
(1)

198 A. Belhassena and W. Hongzhi

Fig. 1. Trajectory query motivating example

In the formula 1, d̂ is a distance threshold, the function N(L.q.oi.T)
is used to extract the nearest Activity-Trajectory object T between user
location L in q and the first object o1 in each T . This function could
be calculated using the following formula: N (L.q.oi.T) = 1 − d(L.q.oi.T)

d̂
.

N could be calculated using the Euclidean distance table (Fig. 1). Assum-
ing, the activity-trajectory query q is presented by the start point and
the end point. We start by evaluating the trajectory T1. The function
N(q, T1)=1- 0.1/3=0.96. Concerning the distance between the oi in T ,
n∑

i=1

[d (oi.T, oi+1.T)] we could calculate it using the Euclidean distance table as:
n∑

i=1

[d (oi.T1, oi+1.T1)] = d(p1, p2) + d(p2, p3) + d(p3, p4) + d(p4, p5) = 0.6+

0.6 + 0.5 + 0.7 = 2.4 To handle the missing activity problem in the Activity-
Trajectory candidate Ti, the function M (Ti, Tj) is used to estimate the sim-
ilar closest trajectory Tj , M (Ti, Tj) = minDis (o.Ti, o.Tj) . We specify,
M (Ti, Tj) > 0 . we have specified, M (Ti, Tj) > 0 to prune out the trajec-
tories those are in the opposite direction. Finally, d (on.T, D.q) is the distance
computed between the last trajectory object on in T and D.

b. The activity function represented by G, which it aims to estimate the
similarity of activity keywords. Initially, using edit distance [22], G allows the
multi-keywords similarity query as is adopted in [15]. It aims to measure the
similarity between the activities holding in the trajectory object of T and the
activity keywords of q. This solution allows us to process the fuzzy query.

Given an example of an aged user who is not familiar with the sys-
tem. Assuming, this user inputs in the system some desired activities like
{shopp,Hair − Cut,Restaurant}, such activities are presented in the P1 of T1

(Fig. 1). As noticed, the user inputs the activity {shopp} instead of {shop}. Here,
we set the threshold of the distance to 3. The threshold of the distance on which
the distance between two keywords is less or equal to it is set in advance. Here,
the edit distance of two keywords: {shop} and {shopp} is 1, we should delete
{p} in {shopp} to transform the string {shopp} into {shop}. Thus, these two

Parallel Skyline Query Processing 199

keywords are considered to be approximately similar. However, the threshold
should change as the length of keywords varies. [4] proposed a method to handle
the problem of edit distance threshold. They presented a function to quantify
the text relevance between geo-textual objects and the query based on the edit
distance and the keyword weight instead of setting the threshold in advance.
This function is adopted in our paper.

Assuming the activity-query q lacks some activity that is involved in such
a POI like is presented in P3 of T1 (Fig. 1). To efficiently handle the problem,
the activities holding in the other trajectory candidates should be similar to
q. Considering we have two activity-trajectories Tj and Tk with POIx, POIy.,
respectively. Each POI has its own activities ϕi. The activity-trajectory q has
multiple activity keywords on which ϕi.q = {ϕ1, ϕ2, ...ϕi}.

ed (ϕi.POIx.Tj , ϕi.q) represents the edit distance between activities hold-
ing in POIx Tj candidate and the query q. The weights of ϕi is presented
by w (ϕ̄i.POIx.Tj). ed (ϕi.POIx.Tj , ϕi.POIy.Tk) represents the edit distance
between activities holding in POIx, POIy of Tj and Tk., respectively. We used
formula 2 to estimate the activity function between activities ϕi.T of T candi-
dates and the query activity ϕi.q

G (ϕi.T, ϕi.q) =
n∑

i=1

w(ϕ̄i.T)∗(1 − ed(ϕi.q,ϕ̄i.T)
li

∗ 1
n + ed (ϕi.Tj, ϕi.Tk) (2)

In the formula 2, ϕ̄i.T ∈ ϕi.t are activities in T , which have a minimum
edit distance with the query activity keyword ϕi.q, w (ϕ̄i) represents its weight.
ed (ϕi, ϕ̄i) is the edit distance between ϕi and ϕ̄i, li is the length of ϕi. The
number of activities is varied from 1 to n.

This formula is adopted from [4], but we have performed it adding the edit
distance ed(ϕi.Tj , ϕi.Tk) = ed(ϕi.POIx.Tj , ϕi.POIy.Tk) to handle the missing
activity data problem between activity-trajectory candidates.

5 An Optimized Trajectory Skyline Algorithm

To process the skyline activity-trajectory query and solve the incomplete infor-
mation activity problem, we present a parallel skyline algorithm for activity-
trajectory data (Algorithm 1). The query q to be processed aims to find the
frequent shortest activity-trajectory including the whole frequent activities ϕi

located on POIs with distance no more than the distance threshold d̂.
Initially, q is sent to the master node in the cluster with S and E as the

start and the end points of q. In Algorithm 1, to obtain the activity-trajectory
involved in q, we start by traversing the DMTR-tree index to find the Minimum
Bounding Rectangles MBRs overlapping q. Each index is stored in HDFS files
based on the partition method as is explained previously. To find which index
partition should be visited and which node should be selected, this method
may visit all the nodes of all the trees in the cluster. Thus, we have noticed
that this process occurs at a high cost while computing the distance between
each node and q. To accelerate the computation, we have efficiently pruned the

200 A. Belhassena and W. Hongzhi

Algorithm 1. Trajectory skyline query processing
Input:

– q(S, E, ϕi, ̂d), List L < idi, indi >
Output:

– List D
1: L′ = 〈idj , indi〉
2: for each indi in L do
3: overlap(S, indi)

4: for each indj in L′ do
5: overlap(E, indj)

6: if dis[(S, indi)+ dis(indj , E)]<= ̂d then
7: Return indi, indj

8: if i=j then
9: Algorithm 2 //short trajectory case

10: else
11: Algorithm 7 // long trajectory case

search space by using a list to store all keys of partitions with their MBRs (line
1). This list is in the master node in the cluster. Then, to select the covered
MBRs (lines 2–5), the master node computes the distance between the query
points and the MBRs before starting any traversing of the distributed indexes.
The search space is pruned based on this distance formula: dis(MBR, q) =
dis(S,MBR) + dis(MBR,E) (line 6). Moreover, based on trajectory lengths
and partition method, we have classified the activity-trajectories into two classes.
The first class comprises the short trajectories (lines 8–9) while the second class
comprises the long trajectories (line 10–11). In the following, we will explain the
process of both classes.

5.1 Short Trajectories Class

In this class, the activity-trajectory matching is short, i.e., this trajectory belongs
to one partition and is organized through one R-tree index. We have developed
algorithm 2 to process the short activity-trajectory query. In algorithm 2, ini-
tially, we simultaneously start traversing the index partition. Using an RDD
spark, we can read the activity-trajectory data from this tree (line 2). Then,
based on this RDD, we process another RDD filters using a function FILTER
to prune the search space and return the activity-trajectory candidates (line 3).

For the pseudo-code of the function FILTER presented in Algorithm 3, the
distance σ is computed between R-tree and the query q (line 3). It aims to select
the node that should be visited by pruning the search space while traversing
along the tree (lines 5–9). In the end, we return a list of the nodes, which
include the activity-trajectory objects (line 9). In the case when the activity-set
information is missing in the selected node (lines 11), using the distance function,
another node with a minimal distance has to be found (lines 12–15). This new
node returned must contain similar activity-set keywords of q (lines 16–17).

Parallel Skyline Query Processing 201

Algorithm 2. Short Trajectory processing
Input:

q(S, E, ϕi, ̂d), List L
Output:

– List D
1: D <>= ∅
2: RDDtree = sc.parallelize(R[]).mapV alue(R.Entry)
3: RDDfilters = Tree.F ilter(tree).collect()
4: RDDresults[] = filters.Primary − Trajectory()

Using the activity function, the SIMILAR function [6] is invoked in line 16.
It allows multi-activity similarity based on the edit distance [4]. As the leaf node
in the tree may store multiple activities of the same POI, this function aims to
return the activity which has the minimum edit distance with the keywords of
q. Afterward, the list K is updated (line 17). In the opposite case, i.e., when we
have full activities, we just compare the similarity between activity-set holding
in the visited node and q (line 19). Then, we return the new list K (line 20).

Algorithm 3. Function: FILTER
1: function FILTER(Tree tree)
2: e: entry in tree,
3: σ = dis(e, q)

4: if σ <= ̂d then
5: if e is a non-leaf then
6: for each child e′ of e do
7: e′.F ILTER() � recursively

8: else
9: Update K < ei, ϕi > � Updating the list of POI stored in e

10: for each ei in K do
11: if ϕi of ei is null then � missing activity-set information
12: minD=dis(ei, ei+1) � distance dimension
13: if 0 < minD < σ then
14: σ = minD
15: return ei+1

16: if SIMILAR(ϕi.ei+1, ϕj .q) =true then
17: Update K < ei+1, ϕi >

18:
19: if SIMILAR(ϕi.ei, ϕj .q) =true then
20: Update K < ei, ϕi >

21: else
22: T does not exist � the activity-trajectory matching does not exist

To return the final result to user, we processed the data mining algorithm
to choose the best top-k activity trajectories. We used Apriori algorithm to

202 A. Belhassena and W. Hongzhi

calculate the support Sup and the confidence Conf of activities and stored them
in the inverted lists. This method helps us to traverse the inverted list of each
activity-trajectory candidate T and extract the Sup and Conf of its activity-set.
To collect T objects (the POI with activities), we use the Primary-Trajectory
function [6] (line 4 in Algorithm 2) that is presented in Algorithm 4. It aims to
return a list D (lines 2–8) containing collected activity-trajectories. The frequent
trajectory is a trajectory on which its activity set has a higher Sup and a higher
Conf . To extract the frequent activity-trajectory from the activity-trajectory
candidates obtained in the previous step, which are stored in the list D, we need
just to return the trajectory with a best Sup and Conf .

Algorithm 4. Function: Primary-Trajectory
1: function Primary-Trajectory(RDD filters: tn)
2: for each tn ∈ T do
3: while tn.POIj ∈ POI do � Browsing the POI of each tn candidate.
4: s=

∑

[Sup(ϕi)]
5: r= extract the rules of ϕi

6: c=
∑

[Conf(r)]

7: put s, c, tn in D <>
8: return D <>

5.2 Long Trajectories Class

In this class, the activity-trajectory has to be visited is long, i.e., it could
be divided into sub-trajectories belonging to several index partitions. While
query processing, if there is missing activity information, another similar long
activity-trajectory should be extracted. Therefore, using Algorithm 5, we effi-
ciently handle the long activity-trajectory problem. Initially, we extract the sub-
activity-trajectories using FILTER, and Primary-Trajectory functions (lines 3–
5) explained previously in Algorithms 3, 4, respectively. Then, we collect the
sub-activity-trajectories to obtain the whole activity-trajectory candidates (lines
6–7). Afterward, we return the final activity-trajectory matching to the user.

6 Experimental Evaluation

We organized a series of experiments to evaluate the performance of the algo-
rithm presented in the previous section. The experiments aim at:

– Evaluating the number of trajectory visited.
– Evaluating the effectiveness of the activity keywords.
– Evaluating the effectiveness of the distance threshold.

Parallel Skyline Query Processing 203

Algorithm 5. Long Trajectory processing
Input:

– q(S, E, ai, ̂d), List Ri

Output:
– List D

1: for each i do
2: RDDR1 = sc.parallelize(Ri[]).mapV alue(Ri.Entry)
3: RDDfilters = Tree.FILTER(R1).collect()

4: for each subT of T do
5: RDDPR[] = filters.Primary − Trajectory()

6: for each element e of PR do
7: D = find − duplicate(element[e])
8: Return D

These experiments were implemented on Spark-1.6, using HDFS (version 2.6.0)
and Hadoop (version 2.6.0). All experiments are conducted on a cluster of ten
machines. Each machine has 32 GB (4*8 GB) RAM, 64-bit quad-core i7 pro-
cessor, and four 7200 rpm SATA Disks (4*1TB). The computing cores are all
running on UBUNTU (version 14.02) and Java 1.8 with Maven (3.0.4).

For these experiments, we used two historical Microsoft datasets with differ-
ent characteristics: a short trajectory dataset called as GEO LIFE, and a long
trajectory dataset of T-DRIVE. In the other hand, in database management sys-
tem, adding, deleting or modifying tables or rows can be performed in a simple
manner using some open source software like the couple of MySQL and Php-
MyAdmin. These tools helped us to modify the above datasets adding new row
representing the activity-set by the following way. Assuming that each file of the
dataset is a table containing id, latitude, longitude as columns. As there is no
open data in the net including the frequent activities, we used another dataset
to fill the activity data rows. This dataset represents the frequent item-sets. [4
5 6 7] represents an example data row of this data. Using SQL statements, we
added the activity row as another column in the table. Thus, each row represents
a point in a tuple (id, latitude, longitude, activities).

6.1 The Performance of the Run-Time and Trajectory Visited
Based on the Activity Keywords Number

To evaluate the effectiveness of the activity keywords in trajectories, we varied
the activity keywords from 2 to 5 and fixed the distance threshold to 10. Figure 2
illustrates the runtime results. As noted, the runtime of the query becomes longer
when the number of activity keywords increases. Since, initially, the trajectory
query algorithm processing requires traversing more indexes, then, many inverted
lists should be visited to select frequent activities. Furthermore, to handle the
missing activity problem, other similar trajectories and sub-trajectories have to
be selected. Afterward, to sort the best trajectory matching, the results should be
collected and compared; thus, the runtime will become longer if activity keywords

204 A. Belhassena and W. Hongzhi

increase. Figure 3 illustrates the number of trajectories visited. The number of
trajectories visited becomes smaller when the keywords number increases, since
few trajectories are more likely to be candidates without incomplete activities.

6.2 The Performance of the Run-Time and Trajectory Visited
Based on the Distance Threshold

To evaluate the effectiveness of the distance threshold d̂, we varied d̂ from 1
to 5 km. Figure 4 illustrates the runtime results. The runtime of the algorithm
becomes longer when d̂ increases, since it requires traversing more indexes and
more inverted lists. In addition, if there are incomplete history activities, other
similar trajectories and sub-trajectories want to be candidates with a large d̂.
Then, the results should be collected and compared to sort the shortest trajec-
tory. Thus, the runtime will become longer when d̂ increase. Figure 5 illustrates
the number of trajectories visited. As noted, this number becomes larger when d̂
increases, since many similar trajectories, including the short and the long ones,
are more likely to be candidates with a significant distance.

Fig. 2. Query performance (a) Fig. 3. Trajectory visited (a)

Fig. 4. Query performance (b) Fig. 5. Trajectory visited (b)

Parallel Skyline Query Processing 205

7 Conclusion

In this paper, we investigated a novel problem of skyline query in massive Tra-
jectory DataBase (TDBs) with incomplete semantic trajectory. We studied the
skyline query based on both spatial and textual (i.e. activities) dimensions. In
other terms, our skyline approach aims to find out the best results based on the
spatial distance and the number of activities that compose activity-trajectories.
Further, with a massive amount of activities, such data is always not presented
due to some reason like lack of internet connection. Further, users may make mis-
takes while typing activity text in the system keyboard. Thus, such problems
make it hard to return the desirable results based on the exact keywords.

To handle the problem efficiently, we firstly re-used distributed indexes to
organize the massive activity-trajectory data based on the R-tree index. Then,
we developed a parallel activity-trajectory query algorithm based on approxi-
mate activity keywords and distance functions. These functions aim to evaluate
three points. The first point is the multi-frequent activity, where we used the
data-mining algorithm to find the frequent POI based on its activities. Further,
we were promoted also to process the fuzzy query for approximate activities in
POI using edit distance and activity weights. The second point is the distance
measured between activity-trajectories in TDB and the query. The third point
combines point 1 and point 2 to handle the missing activities problem by finding
other good similar activity-trajectory to the query. To achieve scalability and
fault tolerance, we used Apache Spark cluster to implement both distributed
indexes and the query algorithm. The algorithm proposed solved the problem
efficiently. Extensive experimental results show that our algorithm offers effi-
ciency. As future studies, we plan to use a large dataset with tera-byte size,
add more machines in our cluster, compare our work with existing methods and
handle the temporal dimension problem in semantic trajectory skyline query for
incomplete TDBs.

References

1. Htet, A.H., Long, G., Kian-Lee, T.: Mining sub-trajectory cliques to find frequent
routes. In: Proceedings of the 13th of ISASTD, Munich, vol. 8098 (2013)

2. Kong, K., et al.: Trajectory query based on trajectory segments with activities. In:
Proceedings of the 3rd ACM SIGSPATIAL ACM, pp. 1–8 (2017)

3. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity
trajectories, pp. 230–241 (2013)

4. Li, J., Wang, H., Li, J., Gao, H.: Skyline for geo-textual data. GeoInformatica
20(3), 453–469 (2016). https://doi.org/10.1007/s10707-015-0243-9

5. Belhassena, A., HongZhi, W.: Trajectory big data processing based on frequent
activity. Tsinghua Sci. Technol. 24, 317–332 (2019)

6. Belhassena, A., Wang, H.: Distributed skyline trajectory query processing. In: Pro-
ceedings of the ACM Turing 50th Celebration Conference, Shanghai (2017)

7. Chen, M., Wang, N., Lin, G., Shang, J.S.: Network-based trajectory search over
time intervals. Big Data Res. 100221 (2021)

https://doi.org/10.1007/s10707-015-0243-9

206 A. Belhassena and W. Hongzhi

8. Rocha Junior, J.B., Nørv̊ag, K.: Top-k spatial keyword queries on road networks,
USA, pp. 168–179 (2012)

9. Han, Y., Wang, L., Zhang, Y., Zhang, W., Lin, X.: Spatial keyword range search on
trajectories. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA
2015. LNCS, vol. 9050, pp. 223–240. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18123-3 14

10. Cao, K., Sun, Q., Liu, H., Liu, Y., Meng, G., Guo, J.: Social space keyword query
based on semantic trajectory. Neurocomputing 428, 340–351 (2021)

11. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of ACM SIGMOD, vol. 14, pp. 47–57 (1984)

12. Yu, J., Wu, J., Sarwat, M.: GeoSpark: a cluster computing framework for process-
ing large-scale spatial data. In: Proceedings of the ACM SIGSPATIAL GIS, USA
(2015)

13. Wang, L., Chen, B., Liu, Y.: Distributed storage and index of vector spatial data
based on h-base. In: Proceedings of Geoinformatics, pp. 1–5 (2013)

14. Eldawy, A., Mokbel, M.F.: A demonstration of spatialhadoop: an efficient mapre-
duce framework for spatial data. In: Proceedings of the VLDB, vol. 6, pp. 1230–
1233 (2013)

15. Li, G., Deng, D., Feng, J.: A partition-based method for string similarity joins with
edit-distance constraints. ACM Trans. Database Syst. 38, 1–33 (2013)

16. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
the 17th ICDE, pp. 421–430. IEEE (2001)

17. Hsu, W.T., Wen, Y.T., Wei, L.Y., Peng, W.C.: Skyline travel routes: exploring
skyline for trip planning. In: Proceedings of the 15th ICMDM, vol. 2, pp. 31–36.
IEEE (2014)

18. Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S.: Stochastic skyline route
planning under time-varying uncertainty. In: Proceedings of the 30th ICDE, pp.
136–147 (2014)

19. Jiang, B., Du, X.: Personalized travel route recommendation with skyline query.
In: Proceedings of the 9th DESSERT, pp. 549–554. IEEE (2018)

20. Ke, C.-K., Lai, S.-C., Chen, C.-Y., Huang, L.-T.: Travel route recommendation via
location-based social network and skyline query. In: Hung, J.C., Yen, N.Y., Chang,
J.-W. (eds.) FC 2019. LNEE, vol. 551, pp. 113–121. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-15-3250-4 14

21. HongZhi, W., Belhassena, A.: Parallel trajectory search based on distributed index.
Inf. Sci. 388, 62–83 (2017)

22. Ju, H., Ju, F., Guoliang, L., Shanshan, C.: Top-k fuzzy spatial keyword search.
Chin. J. Comput. 35(11), 2237–2246 (2012). (in Chinese)

https://doi.org/10.1007/978-3-319-18123-3_14
https://doi.org/10.1007/978-3-319-18123-3_14
https://doi.org/10.1007/978-981-15-3250-4_14

Compact Data Structures for Efficient
Processing of Distance-Based Join

Queries

Guillermo de Bernardo1 , Miguel R. Penabad1(B) , Antonio Corral2 ,
and Nieves R. Brisaboa1

1 Universidade da Coruña, Centro de investigación CITIC, 15071 A Coruña, Spain
{guillermo.debernardo,miguel.penabad,nieves.brisaboa}@udc.es

2 Department of Informatics, University of Almeria, 04120 Almeria, Spain
acorral@ual.es

Abstract. Compact data structures can represent data with usually a
much smaller memory footprint than its plain representation. In addition
to maintaining the data in a form that uses less space, they allow us
to efficiently access and query the data in its compact form. The k2-
tree is a self-indexed, compact data structure used to represent binary
matrices, that can also be used to represent points in a spatial dataset.
Efficient processing of the Distance-based Join Queries (DJQs) is of great
importance in spatial databases due to its wide area of application. Two
of the most representative and known DJQs are the K Closest Pairs
Query (KCPQ) and the ε Distance Join Query (εDJQ). These types of
join queries are executed over two spatial datasets and can be solved by
plane-sweep algorithms, which are efficient but with great requirements
of RAM, to be able to fit the whole datasets into main memory. In this
work, we present new and efficient algorithms to implement DJQs over
the k2-tree representation of the spatial datasets, experimentally showing
that these algorithms are competitive in query times, with much lower
memory requirements.

Keywords: k2-tree · K closest pairs · ε distance join · Spatial query
evaluation

1 Introduction

The efficient storage and management of large datasets has been a research topic
for decades. Spatial databases are an example of such datasets. Some of the meth-
ods used to efficiently manage and query them include distributed algorithms,
streaming algorithms, or efficient secondary storage management [9], frequently
accompanied by the use of indexes such as R∗-trees to speed up queries.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 207–221, 2023.
https://doi.org/10.1007/978-3-031-21595-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_15&domain=pdf
http://orcid.org/0000-0002-6020-7092
http://orcid.org/0000-0001-5455-6088
http://orcid.org/0000-0002-0069-4642
http://orcid.org/0000-0001-8025-3048
https://doi.org/10.1007/978-3-031-21595-7_15

208 G. de Bernardo et al.

Compression techniques, on the other hand, are focused on minimizing
the storage needs of such datasets, but classical techniques (for example, any
Huffman-based compressor) had a strong drawback: the datasets must usually
be decompressed from the beginning in order to access any specific item of data.
Therefore, compression has been mainly used for archival purposes, or when the
whole dataset must be processed sequentially from beginning to end (for exam-
ple, combining decompression with streaming algorithms to process the data).

Compact data structures [9] try to combine low space usage and process-
ing efficiency. They store the information in a compact (compressed) form, thus
requiring less space, and manage (query) it also in its compact form, without
having to first decompress it. In this way, it is possible to store and process
(query, navigate, and optionally modify) much larger datasets in main mem-
ory. This has the additional benefit of the higher speeds of higher levels of the
memory hierarchy (more data in processor caches, for example). An example of
such a compact data structure is the k2-tree [1], which will be further discussed
in Sect. 2.2. Initially designed to represent and query web graphs, the k2-tree
has proved to be a powerful tool to represent other kinds of graphs [4], being
especially efficient when the graph is clustered. Spatial point datasets, as well as
other raster spatial data, can also be managed by a k2-tree [2].

Distance join queries (DJQs) have received considerable attention from the
database community, due to their importance in numerous applications, such
as spatial databases and GIS, location-based systems, continuous monitoring,
etc. [8]. DJQs are costly queries because they combine two datasets taking into
account a distance metric. Two of the most used DJQs are the K Closest Pair
Query (KCPQ) and the ε Distance Join Query (εDJQ) [3]. Given two point
datasets P and Q, the KCPQ finds the K closest pairs of points from P × Q
according to a certain distance function (e.g., Manhattan, Euclidean, Chebyshev,
etc.). The εDJQ finds all the possible pairs of points from P ×Q that are within
a distance threshold ε of each other. DJQs are very useful in many applications
that use spatial data for decision making and other demanding data handling
operations. For example, we can use two spatial datasets that represent the hotels
and the monuments in a touristic city. A KCPQ (K = 10) can discover the 10
closest pairs of hotels and monuments, sorted in increasing order by distance.
On the other hand, an εDJQ (ε = 200) could return all possible pairs (hotel,
monument) that are within 200 meters of each other.

DJQs have been extensively studied, and algorithms exist to answer KCPQ,
εDJQ, and other similar queries over plain data [10], as well as taking advantage
of indexes such as R-trees or Quadtrees [7]. In this paper, we explore the advan-
tages of representing spatial data using a compact data structure, the k2-tree,
to implement DJQs, and test it with two of the most used DJQs: KCPQ and
εDJQ. Thus, the most important contributions of this paper are the following:

– A detailed description of the algorithms to answer KCPQ and εDJQ over
large datasets of points, using k2-trees as the underlying representation for
both datasets.

Compact Data Structures for Efficient Processing of DJQs 209

– The execution of a set of experiments using large real-world datasets for exam-
ining the efficiency and the scalability of the proposed strategy, considering
performance parameters and measures.

This paper is organized as follows. In Sect. 2 we present preliminary concepts
related to DJQs and k2-trees, as well as previous contributions in these areas. In
Sect. 3, the new algorithms for KCPQ and εDJQ using k2-trees are proposed.
In Sect. 4, we present the main results of our experiments, using large real-world
datasets. Finally, in Sect. 5, we provide the conclusions arising from our work
and discuss related future work directions.

2 Background and Related Work

In this section, we review some basic concepts about DJQs and the k2-tree
compact data structure, as well as a brief survey of the most representative
contributions in both fields in the context of spatial query processing.

2.1 Distance-Based Join Queries - KCPQ and εDJQ

Distance-based Join Queries are special joins where two datasets are combined,
taking into account a distance metric (dist). DJQs can be very costly when the
size of the joined datasets is large, and for this reason, they have lately been
thoroughly investigated. Two of the most representative and known DJQs are
the K Closest Pairs Query (KCPQ) and the ε Distance Join Query (εDJQ)

The KCPQ discovers the K pairs of data formed from the elements of two
datasets having the K smallest distances between them (i.e., it reports only the
top K pairs from the combination of two datasets). Formally:

Definition 1. (K Closest Pairs Query, KCPQ)
Let P = {p1, p2, · · · , pn} and Q = {q1, q2, · · · , qm} be two set of points, and a
number K ∈ N

+. Then, the result of the K Closest Pairs Query is an ordered
collection, KCPQ(P,Q,K), containing K different pairs of points from P × Q,
ordered by distance, with the K smallest distances between all possible pairs:
KCPQ(P,Q,K) = ((p1, q1), (p2, q2), · · · , (pK , qK)), (pi, qi) ∈ P × Q, 1 ≤ i ≤
K, such that for any (p, q) ∈ P × Q \ KCPQ(P,Q,K) we have dist(p1, q1) ≤
dist(p2, q2) ≤ · · · ≤ dist(pK , qK) ≤ dist(p, q).

Three properties of KCPQ are: (i) it is symmetric (i.e., KCPQ(P,Q,K) =
KCPQ(Q,P,K)); (ii) the cardinality of the query result is known beforehand
|KCPQ(P,Q,K)| = K; and (iii) the distance of the K closest pairs of points is
unknown a priori.

On the other hand, the εDJQ reports all the possible pairs of spatial objects
from two different spatial objects datasets, P and Q, having a distance not
greater than a threshold ε of each other. Formally:

210 G. de Bernardo et al.

Definition 2. (ε Distance Join Query, εDJQ)
Let P = {p1, p2, · · · , pn} and Q = {q1, q2, · · · , qm} be two set of points,
and a distance threshold ε ∈ R≥0. Then, the result of the εDJQ is the set,
εDJQ(P,Q, ε) ⊆ P × Q, containing all the possible different pairs of points
from P × Q that have a distance of each other smaller than, or equal to ε:
εDJQ(P,Q, ε) = {(pi, qj) ∈ P × Q : dist(pi, qj) ≤ ε}

The εDJQ can be considered as an extension of the KCPQ, where the dis-
tance threshold of the pairs (ε) is known beforehand and the processing strategy
(e.g., plane-sweep technique) can be the same as in the KCPQ for generating
the candidate pairs of the final result.

If both P and Q are non-indexed, the KCPQ between two point sets that
reside in main-memory can be solved using plane-sweep-based algorithms [10].
The Classic plane-sweep algorithm for KCPQ consists of two steps: (1) sorting
the entries of the two points sets, based on the coordinates of one of the axes
(e.g. X) and (2) combining the reference point of one set with all the comparison
points of the other set satisfying that their distance on the X-axis is less than δ
(distance of the Kth closest pair found so far), and choosing those pairs whose
point distance is smaller than δ. A faster variant called Reverse-Run plane-sweep
algorithm is based on the concept of run (a continuous sequence of points of the
same set that does not contain any point from the other set) and the reverse
order of processing of the comparison points with respect to the reference point.
To reduce the search space and considering the reference point, three methods are
applied in these two plane-sweep algorithms: Sliding Strip (δ on X-axis), Sliding
Window and Sliding Semi-Circle. These DJQs have been recently designed and
implemented in SpatialHadoop and LocationSpark, that are Hadoop-based and
Spark-based distributed spatial data management systems (Big Spatial Data
context) [5], respectively.

The problem of DJQs has also received research attention by the spatial
database community in scenarios where at least one of the datasets is indexed.
If both P and Q are indexed using R-Trees, the concept of synchronous tree
traversal and Depth-First (DF) or Best-First (BF) traversal order can be com-
bined for the query processing [3]. In [7], an extensive experimental study com-
paring the R*-tree and Quadtree-like index structures for DJQs together with
index construction methods was presented. In the case that only one dataset
is indexed, in [6] an algorithm is proposed for KCPQ, whose main idea is to
partition the space occupied by the dataset without an index into several cells
or subspaces (according to a grid-based data structure) and to make use of the
properties of a set of distance functions defined between two MBRs [3].

2.2 k2-tree

A k2-tree [1] is a compact data structure used to store and query a binary matrix
that can represent a graph or a set of points in discretized space. Figure 1 shows
in (a) a set of points in a 2D discrete space, and its direct translation into a
binary matrix in (b). For the k2-tree representation, choosing k = 2, (c) is the

Compact Data Structures for Efficient Processing of DJQs 211

conceptual tree and (d) the actual bitmaps that are stored. T represents the
“tree” part (non leaf nodes), and L the leaves of the conceptual tree.

·· ·· ·· ·
·· · ·
· ··
·

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 0
1 0

0 0
1 0

0 1
0 0

0 1
1 1

1 0
1 0

1 1
0 0

1 1
1 0

0 0
0 0

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 1 0 1

1 1 1 1 1 0 0 1 1 0 1 0

1010 0010 0100 0111 1010 1100 1110 0001

T = 1101 1111 1001 1010
L = 1010 0010 0100 0111 1010 1100 1110 0001

(a) (b)

(c)

(d)

Fig. 1. A 2D-space model with its binary matrix and k2-tree representations

Conceptually, the k2-tree can be seen as an unbalanced tree, where each
node has a bitmap of k2 bits and up to k2 children. This conceptual tree is
built as follows: its root node corresponds to the full matrix, which is divided
into k × k equal-sized submatrices (for k = 2, the matrix is decomposed in
k2 = 4 quadrants). For each submatrix, if there is at least one 1 in its cells, the
corresponding bit in the conceptual tree node is set to 1, and the submatrix is
included as a child of the node. If the submatrix is empty (there are no 1’s) then
the corresponding bit is set to 0 and the submatrix is discarded. See, for example,
that the root node in Fig. 1 is 1101 because quadrants 1, 2 and 4 have 1’s, but
the third quadrant is full of 0’s. The process continues recursively for all non
empty submatrices until the individual cells (that correspond to leaves in the
k2-tree) are reached. The actual k2-tree is just the bitmap that corresponds to
the breadth-first traversal of the conceptual tree (usually split in two fragments
T and L, as shown in Fig. 1(d)).

Points and regions of the original matrix can be easily found traversing the
branches of the conceptual k2-tree from the root node. This is achieved in prac-
tice using just the bitmaps by computing getChild(T, i) = rank(T, i) × k2, that
returns, for the node at position i in T , the position in T where its children are
located. The rank(T, i) operation (which counts the number of 1’s up to position
i in T) can be computed in constant time by enhancing T with a small structure
of counters.

Many variants and improvements have been proposed over the basic k2-tree
representation introduced here [1,2]. In this paper we focus on the basic k2-tree
representation described in this section, in order to provide a clear description
of the algorithms.

Regarding the use of k2-trees in the field of DJQs, in the recent work [11],
K Nearest Neighbors Query and KCPQ are proposed for k2-trees represent-
ing points of interest. It is the first algorithm in the literature for KCPQ
using k2-trees (ALBA-KCPQ). One of the main drawbacks of their paper is
that the authors used very small synthetic and real datasets in the experi-
mentation, because the maximum number of points is only 1 million for each

212 G. de Bernardo et al.

synthetic dataset and for real data the combination was 76451 × 20480 and
4499454 × 196902. Moreover, the total response time of the KCPQ experi-
ments is questionable because their implementation of (Classic) plane-sweep-
based KCPQ algorithm needed hours to solve the query, when it should be
answered in an order of ms. These surprising performance results also make
KCPQ implementations on k2-trees and their results questionable. Note also
that their implementation, basically of the same algorithm, is in Java and it is
not publicly available, and the high-level pseudo-codes provided in the journal
paper omit low-level details that are key to performance. This makes it difficult
to accurately reproduce their results from the available information. Finally, to
the best of our knowledge, εDJQ has never been tackled using k2-trees. Here we
present efficient implementations of KCPQ and εDJQ to show the interest of the
strategy of using k2-trees to represent spatial data. Our algorithms were coded
in C++ and are available to the community, and they were tested with large
real-world datasets, comparing them with Classic and Reverse-Run plane-sweep
DJQs on main memory.

3 Our Approach to DJQs Using k2-trees

We describe in this section the new algorithms for KCPQ (Algorithm 1) and
εDJQ (Algorithm 2) using k2-trees. For all the distance calculations, we have
used the Euclidean distance.

The input for Algorithm 1 consists on two matrices A and B, stored as
k2-trees (they would correspond to the P and Q datasets in the definitions
in Sect. 2.1), and the number of pairs of closest points (although we use the
name NumPairs instead of K in the pseudocode to avoid confusion with the k
parameter of k2-trees), We denote A[i] the ith bit value of the bitmap for A.
A.lastLevel is the last level of the tree, corresponding to its leaves. Levels range
from 0 to �lg(n)� − 1, being n the width of the original matrix.

The following data structures are used by Algorithm 1:

– A priority Queue PQueue that stores pairs of nodes to be processed. Each
entry in PQueue contains:

• A (sub)matrix of A, including its top-left coordinate and the offset of the
associated node in the T |L bitmap of the k2-tree.

• A (sub)matrix of B with the same information.
• The level both matrices belong to in the k2-tree conceptual trees.
• The minimum possible distance between the points of A and B. It is

computed as shown in Algorithm 3.

PQueue is a min priority queue over the distance (that is, pairs with lower min-
imum distance come first). It uses the standard methods: isEmpty(), enqueue()
and dequeue().

– An ordered list OutList with capacity for NumPairs elements (we actually
use a max binary heap to manage these elements), each one storing a pair of

Compact Data Structures for Efficient Processing of DJQs 213

points (one coming from each input matrix), and the distance between them.
The elements (pairs of points) are sorted according to their distance. It uses
the methods: length(), maxDist() and insert().

– MinDist(pA,pB,size), shown in Algorithm 3, obtains the minimum possible
(Euclidean) distance between points of the matrices A and B that have their
origins in pA and pB and are squares of size × size.

Note that the pairs of (A,B) matrices that are generated in Algorithm 1
have a special property: their origin coordinates are always multiples of size.
This allows us to compute the minimum distance more efficiently, but it would
not work to get the minimum distance between two matrices in general.

The idea behind Algorithm 1 is to recursively partition the matrices A and B
into k2 submatrices each and compare each possible pair of submatrices (down
to when they are not actually submatrices but really individual cells or points).
One of the strong points of this algorithm is that, at some point, we can stop
without processing all the remaining pairs of submatrices. This happens when
the required number of closest pairs has already been obtained, and the largest
distance between them is not larger than the minimum possible distance between
the pairs of submatrices not yet processed.

The algorithm follows a Best-First (BF) traversal. It starts by enqueuing the
whole matrices (which correspond to the level 0 of the k2-tree and have 0 as
the minimum possible distance between them). The output list OutList is also
initialized, with room for at most NumPairs elements.

Then, the priority queue is processed until it is empty, or the stop criteria are
reached. Lines 6 − 8 check if the output list already has the target NumPairs
elements. If so, and the minimum distance of the current pair of matrices is
at least the maximum distance in OutList, we can be sure that the current
and remaining matrices can be safely discarded, and the algorithm returns the
current output list.

In other case, the current matrices are partitioned (lines 11 − 20), but only
if they have children (which is tested by directly using the k2-tree bitmaps in
lines 12 for matrix A and 15 for matrix B). For each pair of child submatrices,
if they are in the last level of the k2-tree then they are actually points. So, if
there is room in OutList or its maximum distance is greater than the distance
between the current pair of points, then the pair and its distance are inserted in
order in OutList (lines 21 − 25). Recall that the insert operation may need to
remove the element with the largest distance if the output list already contains
NumPairs elements.

If the submatrices are not in the last level of the k2-tree, and if they meet
the conditions to contain candidate pairs of points (OutList is not full or the
minimum distance between the matrices is less than the maximum distance in
OutList) they are enqueued in the priority queue (lines 28 − 30).

Algorithm 2 (εDJQ) uses the same scheme as the previous one, but with some
key differences. The input consists now of the two k2-trees A and B, plus the
distance threshold ε. Since the algorithm does not limit the number of output
pairs, OutList is now an unlimited-size, unordered list. For the same reason,

214 G. de Bernardo et al.

Algorithm 1. GetKCPQ: Get the NumPairs closest points.
1: function GetKCPQ(A, B, NumPairs)
2: PQueue.enqueue({ {(0,0), 0}, {(0,0), 0}, 0, 0})
3: OutList = new OrderedList(NumPairs)
4: while not PQueue.isEmpty() do
5: Node = PQueue.dequeue()
6: if OutList.length() == NumPairs
7: and Node.minDist ≥ OutList.maxDist() then
8: return OutList
9: chLevel = Node.Level + 1

10: chSize = n/kchLevel

11: for i = 0 to k2 − 1 do � Directly access the k2-tree bitmap
12: if A[Node.A.ptr + i] == 1 then
13: chPtrA = getChild(A, Node.A.ptr + i)
14: for j = 0 to k2 − 1 do
15: if B[Node.B.ptr + j] == 1 then
16: chPtrB = getChild(B, Node.B.ptr + j)
17: childA = {(Node.A.x + chSize · (i mod k),
18: Node.A.y + chSize · �i/k�), chPtrA}
19: childB = {(Node.B.x + chSize · (j mod k),
20: Node.B.y + chSize · �j/k�), chPtrB}
21: if chLevel == A.lastLevel then � Leaf nodes
22: distance = Dist((childA.x, childA.y), (childB.x, childB.y))
23: if OutList.length() < NumPairs
24: or OutList.maxDist() > distance then
25: OutList.insert((childA.x, childA.y), (childB.x, childB.y), distance)

26: else
27: minDist = MinDist((childA.x, childA.y), (childB.x, childB.y), chSize)
28: if OutList.length() < NumPairs
29: or OutList.maxDist() > minDist then
30: PQueue.enqueue({childA, childB, chLevel, minDist})
31: return OutList

the algorithm does not have an “early exit”, and it exits only after the priority
queue is empty. Additionally, each element in the priority queue stores not only
the minimum possible distance between the matrices, but also the maximum
possible distance, computed by the function MaxDist (shown in comments in
the pseudocode of Algorithm 3). The initial MaxDist for the whole matrices is√

2n, where n is the width of each matrix.
The partitioning is done the same way, but for every pair of child submatrices

the process is different:

– At leaf level of the k2-trees (lines 18 − 21) the pair of nodes is inserted in
OutList if the distance between them is at most ε.

– If the maximum distance (MaxDist) between the two matrices is at most
ε, then all the combinations of points between the two matrices meet the
criteria. We use the rangeQuery operation of the k2-trees to get the points
and insert all possible pairs into OutList (lines 23 − 31).

– Otherwise, if the minimum distance is at most ε, we enqueue the submatrices
with the minimum and maximum distances between them (lines 32 − 33).

Compact Data Structures for Efficient Processing of DJQs 215

Algorithm 2. εDJQ: Get all pairs with a distance threshold of ε
1: function εDJQ(A, B, ε)

2: PQueue.enqueue({ {(0,0), 0}, {(0,0), 0}, 0, 0, √
2n})

3: OutList = new List()
4: while not PQueue.isEmpty() do
5: Node = PQueue.dequeue()
6: chLevel = Node.Level + 1
7: chSize = n/kchLevel

8: for i = 0 to k2 − 1 do � Directly access the k2-tree bitmap
9: if A[Node.A.ptr + i] == 1 then

10: chPtrA = getChild(A, Node.A.ptr + i)
11: for j = 0 to k2 − 1 do
12: if B[Node.B.ptr + j] == 1 then
13: chPtrB = getChild(B, Node.B.ptr + j)
14: childA = {(Node.A.x + chSize · (i mod k),
15: Node.A.y + chSize · �i/k�), chPtrA}
16: childB = {(Node.B.x + chSize · (j mod k),
17: Node.B.y + chSize · �j/k�), chPtrB}
18: if chLevel == A.lastLevel then � Leaf nodes
19: distance = Dist((childA.x, childA.y), (childB.x, childB.y))
20: if distance ≤ ε then
21: OutList.insert((childA.x, childA.y), (childB.x, childB.y), distance)

22: else
23: minDist = MinDist((childA.x, childA.y), (childB.x, childB.y), chSize)
24: maxDist = MaxDist((childA.x, childA.y), (childB.x, childB.y), chSize)
25: if maxDist ≤ ε then
26: � All pairs in the range satisfy the distance condition
27: rangeA = A.rangeQuery(A.x, A.x+chSize-1, A.y, A.y+chsize-1)
28: rangeB = B.rangeQuery(B.x, B.x+chSize-1, B.y, B.y+chsize-1)
29: for pA ∈ rangeA do
30: for pB ∈ rangeB do
31: OutList.insert(pA, pB, Dist(pA, pB))

32: else if minDist ≤ ε then
33: PQueue.enqueue({childA, childB, chLevel, minDist, maxDist})
34: return OutList

Algorithm 3. MinDist/MaxDist: min/max possible distance between 2 matri-
ces

function MinDist(pA,pB,size)
� Also MaxDist(pA,pB,size)
if pA.x = pB.x then

hdist = 0
else

hdist = |pA.x − pB.x| − (size − 1)
� For MaxDist: hdist = |pA.x − pB.x| + (size − 1)

if pA.y = pB.y then
vdist = 0

else
vdist = |pA.y − pB.y| − (size − 1)
� For MaxDist: vdist = |pA.y − pB.y| + (size − 1)

return
√

hdist2 + vdist2

216 G. de Bernardo et al.

4 Experimental Results

We have tested our DJQ algorithms using the following real-world 2D point
datasets, obtained from OpenStreetMap1: LAKES (L), that contains bound-
aries of water areas (polygons); PARKS (P), that contains boundaries of parks
or green areas (polygons); ROADS (R), which contains roads and streets around
the world (line-strings); and BUILDINGS (B), which contains boundaries of all
buildings (polygons). For each source dataset, we take all the points extracted
from the geometries of each line-string to build a large point dataset. Addition-
ally, we round coordinates to 6 decimal positions, in order to be able to transform
these values to k2-tree coordinates in a consistent manner. Table 1 summarizes
the characteristics of the original datasets and the generated point sets obtained
from them. Note that all the datasets represent worldwide data, and points are
stored as (longitude, latitude) pairs.

Table 1. Source datasets and generated point sets

Name Source dataset Generated dataset

#Records (M) Size (GiB) #Points (M) Size (GiB)

LAKES (L) 8.4 8.6 345 8.6

PARKS (P) 10 9.3 305 7.5

ROADS (R) 72 24 682 17

BUILDINGS (B) 115 26 615 14

The main performance measures that we have used in our experiments are
the space required by the data structure vs. the plain representation, and the
total execution time to run a given DJQ. We measure elapsed time, and only
consider the time necessary to run the query algorithm. This means that we
ignore time necessary to load the files, as well as time required to sort the points
for the plane-sweep algorithms.

All experiments were executed on an HP ProLiant DL380p Gen8 server with
two 6-core Intel R© Xeon R© CPU E5-2643 v2 @ 3.50 GHz processors with 256 GiB
RAM (Registered @1600 MHz), running Oracle Linux Server 7.9 with kernel
Linux 4.14.35 (64bits). Our algorithms were coded in C++ and are publicly
available2. For the k2-tree algorithms, the SDSL-Lite3 library was used.

First, we build the k2-tree for each dataset. We use the simplest variant of
k2-tree with no optimizations. In order to insert the points in the k2-tree, they
are converted to non-negative integer values. Since we are considering worldwide
coordinates in degrees, with 6 decimal places, each coordinate (x, y) is converted
to matrix coordinates (r, c) using (r, c) = ((x + 180) · 106, (y + 90) · 106). In this
1 Available at http://spatialhadoop.cs.umn.edu/datasets.html.
2 Available at https://gitlab.lbd.org.es/public-sources/djq/k2tree-djq.
3 Available at https://github.com/simongog/sdsl-lite.

http://spatialhadoop.cs.umn.edu/datasets.html
https://gitlab.lbd.org.es/public-sources/djq/k2tree-djq
https://github.com/simongog/sdsl-lite

Compact Data Structures for Efficient Processing of DJQs 217

way, the points fit into a binary matrix with 360 million rows and 160 million
columns, that is finally stored as a k2-tree.

Table 2. Space required by k2-tree representations

Dataset Plain (GiB) Binary (GiB) k2-tree (GiB) Compression ratio

LAKES (L) 8.6 2.7 1.8 0.67

PARKS (P) 7.5 2.4 1.6 0.67

ROADS (R) 17 5.3 2.3 0.43

BUILDINGS (B) 14 4.8 2.3 0.48

Table 2 shows the space required by the k2-tree representation of each dataset.
We display as a reference the plain size of the dataset, as well as a “binary size”
estimated considering that each coordinate can be represented using two 32-bit
words. Note that each coordinate component can be stored using 28–29 bits for
our datasets, but this would make data access slower, so we consider 32 bits to
be the minimum cost for a reasonable plane-sweep algorithm that works with
uncompressed data. We also display the compression ratio of the k2-tree relative
to the binary input size. Results show that the k2-tree representation is able
to efficiently represent the collection, and the compression obtained improves
with the size of the dataset. Notice also that the k2-tree version we use in our
experiments does not include any of the existing optimizations for the k2-tree to
improve compression.

We compared the performance of our KCPQ algorithm with 4 different imple-
mentations based on plane-sweep: two implementations of Classic plane-sweep,
with Sliding Strip (PS-CS) and with Sliding Semi-Circle (PS-CC) respectively,
and the equivalent implementations of Reverse-Run, with Sliding Strip (PS-
RRS) and Sliding Semi-Circle (PS-RRC). We performed our experiments check-
ing all the pairwise combinations of our datasets. Due to space constraints,
we display only the results for some combinations, denoted LxP, LxB, PxR,
RxB, and PxB. The remaining combinations yielded similar comparison results.
For each combination of datasets, we run the KCPQ algorithm for varying
K ∈ {1, 10, 102, 103, 104, 105}.

Figure 2 displays the query times obtained by our algorithm and the four
variants of plane-sweep studied. The first five plots display the results for all
variants for 5 different dataset combinations. Results clearly show that the Clas-
sic variants (PS-CS and PS-CC) are much slower than the other alternatives in
all cases (as in [10]). Therefore, we will focus on the comparison between our
proposal and the Reverse-Run variants that are competitive with it.

The point datasets used have a significantly different amount of points, and
correspond to different features, which leads to very different query times among
the plots in Fig. 2. However, results show that our algorithm always achieves the
best query times for large values of K. Particularly, for K = 105, our algorithm

218 G. de Bernardo et al.

 0

 5

 10

 15

 20

 25

 30

 1 10 10 2 10 3 10 4 10 5

Q
ue

ry
 t

im
es

 (
s/

qu
er

y)

K

LxP

k2-tree
PS-CS
PS-CC

PS-RRS
PS-RRC

 0
 100
 200
 300
 400
 500
 600
 700
 800

 1 10 10 2 10 3 10 4 10 5

K

LxB

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 10 2 10 3 10 4 10 5

K

PxR

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 10 10 2 10 3 10 4 10 5

Q
ue

ry
 t

im
es

 (
s/

qu
er

y)

K

RxB

 0

 20

 40

 60

 80

 100

 120

 1 10 10 2 10 3 10 4 10 5

K

PxB

 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 1 10 10 2 10 3 10 4

K

PxB (zoomed)

k2-tree
PS-RRS
PS-RRC

Fig. 2. Query times for KCPQ in k2-trees and plane-sweep variants, changing K.

is between 1.15 and 33 times faster than the best alternative, PS-RRC, depend-
ing on the joined datasets. Additionally, we are always the fastest option for
K ≥ 104, and in some datasets from K = 103. For smaller K, our proposal is
competitive but slightly slower than the Reverse-Run plane-sweep algorithms.
The lower right chart of Fig. 2 shows a subset of the results for the PxB join,
to better display the differences in performance for these smaller values of K.
Results are similar in the remaining experiments: for smaller K, the k2-tree algo-
rithm is 3–15% slower than PS-RRC, depending on the dataset. This evolution
with K is due to the characteristics of our algorithm: independently of K, we
need to traverse a relatively large number of regions in both k2-trees, even if
many of these regions are eventually discarded, so the base complexity of our
algorithm is comparable to that of Classic plane-sweep. On the other hand, this
means that many candidate pairs have already been expanded and enqueued,
so they can be immediately processed if more results are needed, making our
algorithm more efficient for larger values of K.

Next, we compare our algorithm for εDJQ with two plane-sweep variants,
Classic plane-sweep with Sliding Strip (εDJQ-CS) and Reverse-Run with Sliding
Semi-Circle (εDJQ-RRC). We select a representative subset of joined datasets,
namely LxP, PxR, RxB and PxB. In order to measure the scalability of the algo-
rithms, we perform tests for varying ε ∈ (7.5, 10, 25, 50, 75, 100) × 10−5 (these
values of ε are associated with the original coordinates in degrees, but recall
that in the k2-tree coordinates are scaled to integer values, so values of ε are
also scaled accordingly).

Figure 3 displays the results obtained for each join query. Our algorithm based
on k2-trees is slower for LxP, but much faster in most cases for PxR, RxB and
PxB (notice the logarithmic scale for query times). We attribute this difference

Compact Data Structures for Efficient Processing of DJQs 219

 100

 1000

 10000

 100000

7.5 10 25 50 75 100

Q
ue

ry
 t

im
es

 (
s/

qu
er

y)

ε (x10 -5)

LxP

k2-tree
εDJQ-CS

εDJQ-RRC

 1000

 10000

 100000

7.5 10 25 50 75 100

Q
ue

ry
 t

im
es

 (
s/

qu
er

y)

ε (x10 -5)

PxR

k2-tree
εDJQ-CS

εDJQ-RRC

 1000

 10000

 100000

7.5 10 25 50 75 100

Q
ue

ry
 t

im
es

 (
s/

qu
er

y)

ε (x10 -5)

RxB

k2-tree
εDJQ-CS

εDJQ-RRC

 100

 1000

 10000

 100000

7.5 10 25 50 75 100

Q
ue

ry
 t

im
es

 (
s/

qu
er

y)

ε (x10 -5)

PxB

k2-tree
εDJQ-CS

εDJQ-RRC

Fig. 3. Query times for εDJQ in k2-trees and plane-sweep variants, changing ε.

mainly to the size of the datasets: LxP joins the two smallest datasets, whereas
the remaining configurations involve one or two of the larger datasets. For these
3 larger joins, our algorithm is always much faster for the smaller values of ε. In
this case, our algorithm does not improve for larger ε, as for KCPQ, because no
early stop condition exists: we must traverse all candidate pairs as long as their
minimum distance is below ε, and for very large ε the added cost to traverse
the k2-trees to expand many individual pairs makes our proposal slower, even if
we are able to efficiently filter out many candidate regions. These queries with
smaller values of ε, in which we are much faster than plane-sweep algorithms,
are precisely the ones that would most benefit from our approach based on
compact data structures, since the number of query results increases with ε: for
ε = 100 × 10−5 we obtain over 109 results, and these results would become the
main component of memory usage. Notice that, in practice, in our experiments
we measure the time to retrieve and count the query results, but do not store
them in RAM to avoid memory issues in some query configurations.

5 Conclusions and Future Work

We have introduced two algorithms to solve DJQs on top of the k2-tree repre-
sentation of point datasets. Our proposal takes advantage of the compression
and indexing capabilities of the k2-tree to efficiently answer KCPQ and εDJQ
queries in competitive time and with significantly lower memory requirements.
Our results show that our algorithms for KCPQ queries are competitive with the

220 G. de Bernardo et al.

alternatives for small K, but become much faster than plane-sweep algorithms
for larger values of K. Our algorithm for εDJQ also achieves competitive query
times and is especially faster when the join query involves the largest datasets.

As future work, we plan to test the performance of our algorithms with other
variants of the k2-tree, that are able to obtain similar query times but require
much less space [1]. Particularly, our algorithms can be adjusted to work with
hybrid implementations of the k2-tree, that use different values of k, as well as
variants that use statistical compression in the lower levels of the conceptual
tree. Another interesting research line would be the application of these DJQ
algorithms based on k2-tree in Spark-based distributed spatial data management
systems, since they are more sensitive to memory constraints. Finally, we plan
to explore other DJQ and similar algorithms that may also take advantage of
the compression and query capabilities of k2-trees.

Acknowledgments. Guillermo de Bernardo, Miguel R. Penabad and Nieves R.
Brisaboa are partially funded by: MCIN/AEI [PDC2021-121239-C31 (FLATCITY-
POC), PDC2021-120917-C21 (SIGTRANS, NextGenerationEU/PRTR), PID2020-
114635RB-I00 (EXTRACompact), PID2019-105221RB-C41 (MAGIST)]; ED431C
2021/53 (GRC), GAIN/Xunta de Galicia; and as CITIC members are also partially
funded by ED431G 2019/01 (CSI), Xunta de Galicia, FEDER Galicia 2014–2020. The
work by Antonio Corral was partially funded by the EU ERDF and the Andalusian
Government (Spain) under the project UrbanITA (ref. PY20 00809) and the Spanish
Ministry of Science and Innovation under the R&D project HERMES (ref. PID2021-
124124OB-I00).

References

1. Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Inf. Syst. 39(1), 152–174 (2014)

2. Brisaboa, N.R., Cerdeira-Pena, A., de Bernardo, G., Navarro, G.: Óscar Pedreira:
extending general compact querieable representations to GIS applications. Inf. Sci.
506, 196–216 (2020)

3. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms
for processing k-closest-pair queries in spatial databases. Data Knowl. Eng. 49(1),
67–104 (2004)

4. Álvarez Garćıa, S., Brisaboa, N., Fernández, J.D., Mart́ınez-Prieto, M.A., Navarro,
G.: Compressed vertical partitioning for efficient RDF management. Knowl. Inf.
Syst. 44(2), 439–474 (2015)

5. Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassilakopoulos, M., Manolopoulos, Y.:
Efficient distance join query processing in distributed spatial data management
systems. Inf. Sci. 512, 985–1008 (2020)

6. Gutiérrez, G., Sáez, P.: The k closest pairs in spatial databases - when only one
set is indexed. GeoInformatica 17(4), 543–565 (2013)

7. Kim, Y.J., Patel, J.M.: Performance comparison of the R*-tree and the quadtree for
kNN and distance join queries. IEEE Trans. Knowl. Data Eng. 22(7), 1014–1027
(2010)

8. Mamoulis, N.: Spatial Data Management. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool Publishers (2012)

Compact Data Structures for Efficient Processing of DJQs 221

9. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press, USA (2016)

10. Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: A new plane-
sweep algorithm for the k-closest-pairs query. In: SOFSEM, pp. 478–490 (2014)

11. Santolaya, F., Caniupán, M., Gajardo, L., Romero, M., Torres-Avilés, R.: Effi-
cient computation of spatial queries over points stored in k2-tree compact data
structures. Theoret. Comput. Sci. 892, 108–131 (2021)

Towards a Complete Direct Mapping
from Relational Databases to Property

Graphs

Abdelkrim Boudaoud(B) , Houari Mahfoud , and Azeddine Chikh

Abou-Bekr Belkaid University & LRIT Laboratory, Tlemcen, Algeria
{abdelkrim.boudaoud,houari.mahfoud,azeddine.chikh}@univ-tlemcen.dz

Abstract. It is increasingly common to find complex data represented
through the graph model. Contrary to relational models, graphs offer a
high capacity for executing analytical tasks on complex data. Since a
huge amount of data is still presented in terms of relational tables, it
is necessary to understand how to translate this data into graphs. This
paper proposes a complete mapping process that allows transforming
any relational database (schema and instance) into a property graph
database (schema and instance). Contrary to existing mappings, our
solution preserves the three fundamental mapping properties, namely:
information preservation, semantic preservation and query preservation.
Moreover, we study mapping any SQL query into an equivalent Cypher
query, which makes our solution practical. Existing solutions are either
incomplete or based on non-practical query language. Thus, this work is
the first complete and practical solution for mapping relations to graphs.

Keywords: Direct mapping · Complete mapping · Relational
database · Graph database · SQL · Cypher

1 Introduction

Relational databases (RDs) have been widely used and studied by researchers and
practitioners for decades due to their simplicity, low data redundancy, high data
consistency, and uniform query language (SQL). Hence, the size of web data has
grown exponentially during the last two decades. The interconnections between
web data entities (e.g. interconnection between YouTube videos or people on Face-
book) are measured by billions or even trillions [6] which pushes the relational
model to quickly reach its limits as querying high interconnected web data requires
complex SQL queries which are time-consuming. To overcome this limit, the graph
database model is increasingly used on the Web due to its flexibility to present data
in a normal form, its efficiency to query a huge amount of data and its analytic
powerful. This suggests studying a mapping from RDs to graph databases (GDs)
to benefit from the aforementioned advantages. This kind of mapping has not
received more attention from researchers since only a few works [4,5,13,14] have
considered it. A real-life example of this mapping has been discussed in [13]: “inves-
tigative journalists have recently found, through graph analytics, surprising social
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 222–235, 2023.
https://doi.org/10.1007/978-3-031-21595-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_16&domain=pdf
http://orcid.org/0000-0002-0334-0321
http://orcid.org/0000-0003-0277-1928
https://doi.org/10.1007/978-3-031-21595-7_16

Complete Direct Mapping from Relational Databases to Property Graphs 223

relationships between executives of companies within the Offshore Leaks financial
social network data set, linking company officers and their companies registered in
the Bahamas. The Offshore Leaks PG was constructed as a mapping from relational
database (RDB) sources”. In a nutshell, the proposed mappings suffer from at least
one of the following limits: a) they do not study fundamental properties of map-
ping; b) they do not consider a practical query language to make the approach
more useful; c) they generate an obfuscated schema.

This paper aims to provide a complete mapping (CM) from RDs to GDs by
investigating the fundamental properties of mapping [14], namely: information
preservation (IP), query preservation (QP), and semantic preservation (SP). In
addition to data mapping, we study the mapping of SQL queries to Cypher
queries which makes our results more practical since SQL and Cypher are the
most used query languages for relational and graph data respectively.

Contributions and Road-Map. Our main contributions are as follows: 1) we
formalize a CM process that maps RDs to GDs in the presence of schema; 2) we
propose definitions of schema graph and graph consistency that are necessary for
this mapping; 3) we show that our CM preserves the three fundamental mapping
properties (IP, SM, and QP); 4) in order to prove QP, we propose an algorithm
to map SQL queries into equivalent Cypher queries. To our knowledge, this work
is the first complete effort that investigates mapping relations to graphs.

Related Work. We classify previous works as follows:

Mapping RDs to RDF Data. Squeda et al. [12] studied the mapping of RDs to
RDF graph data and relational schema to OWL ontology’s. Moreover, SQL
queries are translated into SPARQL queries. They were the first to define a set
of mapping properties: information preservation, query preservation, semantic
preservation and monotonicity preservation. They proved first that their map-
ping is information preserving and query preserving, while when it comes to the
two remaining properties, preserving semantics makes the mapping not mono-
tonicity preserving.

Mapping RDs to Graph Data. De Virgilio et al. [4,5] studied mapping a) RDs to
property graph data (PG) by considering schema both in source and target; and
b) any SQL query into a set of graph traversal operations that realize the same
semantic over the resulted graph data. We remark that the proposed mapping
obfuscates the relational schema since the resulted graph schema is difficult to
understand. Moreover, the mapping does not consider typed data. From the
practical point of view, the graph querying language considered is not really
used in practice and the proposed query mapping depends on the syntax and
semantics of this language which makes hard the application of their proposal
for another query language. In addition, they apply an aggregation process that
maps different relational tuples to the same graph vertex in order to optimize
graph traversal operations. However, this makes the mapping not information
preserving and can skew the result of some analytical tasks that one would like
to apply over the resulted data graph.

224 A. Boudaoud et al.

Table 1. Comparative table of related works.

Type Work Mapping Preserved properties Mapping rules

Schema Instance IP QP SP

RDs → RDF Sequeda et al. [12] � � � � � �
De vergillio et al. [4,5] � � �
Stoica et al. [13,14] � � � � � �

RDF → PG Angeles et al. [2] � � � � �
RDs → PG O.Orel et al. [11] � �

S.Li et al. [9] �
Our work � � � � � �

Stoica et al. [13,14] studied the mapping of RDs to GDs and any relational
query (formalized as an extension of relational algebra) into a G-core query.
Firstly, the choice of source and destination languages hinders the practicability
of the approach. Moreover, it is hard to see if the mapping is semantic preserving
since no definition of graph data consistency is given. Attributes, primary and
foreign keys are verbosely represented by the data graph, which makes this later
hard to understand and to query.

Orel et al. [11] discussed mapping relational data only into property graphs
without giving attention neither to schema nor mapping properties.

The Neo4j system provides a tool called Neo4j-ETL [1], which allows users
to import their relational data into Neo4j to be presented as property graphs.
Notice that the relational structure (both instance and schema) is not preserved
during this mapping since some tuples of the relational data (resp. relations of
the relational schema) are represented as edges for storage concerns (as done in
[5]). However, as remarked in [13], this may skew the results of some analytical
tasks (e.g. density of the generated graphs). Moreover, Neo4j-ETL does not
allow the mapping of queries. S. Li et al. [9] study an extension of Neo4j-ETL by
proposing mapping of SQL queries to Cypher queries. However, their mapping
inherits the limits of Neo4j-ETL. In addition, no detailed algorithm is given for
the query mapper which makes impossible the comparison of their proposal with
other ones. This is also the limit of [10].

Finally, Angles et al. [2] studied mappings RDF databases to property graphs
by considering both data and schema. They proved that their mapping ensures
both information and semantic preservation properties.

Table 1 summarizes most important features of related works.

Complete Direct Mapping from Relational Databases to Property Graphs 225

2 Preliminaries

This section defines the several notions that will be used throughout this paper.
Let R be an infinite set of relation names, A is an infinite set of attribute

names with a special attribute tid, T is a finite set of attribute types (String,
Date, Integer, Float, Boolean, Object), D is a countably infinite domain of data
values with a special value null.

2.1 Relational Databases

A relational schema is a tuple S = (R,A, T,Σ) where:

1. R ⊆ R is a finite set of relation names;
2. A is a function assigning a finite set of attributes for each relation r ∈ R such

that A(r) ⊆ A\{tid};
3. T is a function assigning a type for each attribute of a relation, i.e. for each

r ∈ R and each a ∈ A(r) \ {tid}, T (a) ⊆ T ;
4. Σ is a finite set of primary (PKs) and foreign keys (FKs) defined over R

and A. A primary key over a relation r ∈ R is an expression of the form
r[a1, · · · , an] where a1≤i≤n ∈ A(r). A foreign key over two relations r and s
is an expression of the form r[a1, · · · , an] → s[b1, · · · , bn] where a1≤i≤n ∈ A(r)
and s[b1, · · · , bn] ∈ Σ.

An instance I of S is an assignment to each r ∈ R of a finite set I(r) =
{t1, · · · , tn} of tuples. Each tuple ti : A(r)∪{tid} → D is identified by tid �= null
and assigns a value to each attribute a ∈ A(r). We use ti(a) (resp. ti(tid)) to
refer to the value of attribute a (resp. tid) in tuple ti. Moreover, for any tuples
ti, tj ∈ I(r), ti(tid) �= tj(tid) if i �= j.

For any instance I of a relational schema S = (R,A, T,Σ), we say that I
satisfies a primary key r[a1, · · · , an] in Σ if: 1) for each tuple t ∈ I(r), t(a1≤i≤n

) �=
null; and 2) for any t

′ ∈ I(r), if t(a1≤i≤n
) = t

′
(a1≤i≤n

) then t = t
′

must hold.
Moreover, I satisfies a foreign key r[a1, · · · , an] → s[b1, · · · , bn] in Σ if: 1) I
satisfies s[b1, · · · , bn]; and 2) for each tuple t ∈ I(r), either t(a1≤i≤n

) = null

or there exists a tuple t
′ ∈ I(s) where t(a1≤i≤n

) = t
′
(b1≤i≤n

). The instance I
satisfies all integrity constraints in Σ, denoted by I � Σ, if it satisfy all primary
keys and foreign keys in Σ.

Finally, a relational database is defined with DR = (SR, IR) where SR is a
relational schema and IR is an instance of SR.

2.2 Property Graphs

A property graph (PG) is a multi-graph structure composed of labeled and
attributed vertices and edges defined with G=(V,E,L,A) where: 1) V is a finite
set of vertices; 2) E ⊆ V × V is a finite set of directed edges where (v, v

′
) ∈ E

is an edge starting at vertex v and ending at vertex v
′
; 3) L is a function that

assigns a label to each vertex in V (resp. edge in E); and 4) A is a function
assigning a nonempty set of key-value pairs to each vertex (resp. edge). For any
edge e ∈ E, we denote by e.s (resp. e.d) the starting (resp. ending) vertex of e.

226 A. Boudaoud et al.

2.3 SQL Queries and Cypher Queries

We study in this paper the mapping of relational data into PG data. In addition,
we show that any relational query over the source data can be translated into
an equivalent graph query over the generated data graph. To this end, we model
relational queries with the SQL language [8] and the graph queries with the
Cypher language [7] since each of these languages is the most used in its category.
To establish a compromise between the expressive power of our mapping and its
processing time, we consider a simple but very practical class of SQL queries and
we define its corresponding class of Cypher queries. It is necessary to understand
the relations between basic SQL queries and basic Cypher queries before studying
all the expressive power of these languages.

The well-known syntax of SQL queries is “Select I from R where C” where:
a) I is a set of items; b) R is a set of relations names; and c) C is a set of
conditions. Intuitively, an SQL query selects first some tuples of relations in R
that satisfy conditions in C. Then, the values of some records (specified by I) of
these tuples are returned to the user.

On the other side, the Cypher queries considered in this paper have the
syntax: “Match patterns Where conditions Return items”. Notice that a Cypher
query aims to find, based on edge-isomorphism, all subgraphs in some data
graph that match the pattern specified by the query and also satisfy conditions
defined by this latter. Once found, only some parts (i.e. vertices, edges, and/or
attributes) of these subgraphs are returned, based on items specified by Return
clause. Therefore, the Match clause specifies the structure of subgraphs we are
looking for on the data graph; the Where clause specifies conditions (based on
vertices, edges and/or attributes) these subgraphs must satisfy; and finally, the
Return clause returns some parts of these subgraphs to the user as a table.

Example 1. Figure 1 depicts a data graph where vertices represent entities
(i.e. Doctor, Patient, Diagnostic and Admission); inner information (called
attributes) represent properties of this vertex (e.g. Speciality); and edges repre-
sent relationships between these entities. For instance, an Admission vertex may
be connected to some Patient, Doctor and Diagnostic vertices to specify for
some patient: a) his doctor; b) information about his admission at the hospital;
and c) diagnostics made for this patient.

The following Cypher query returns the name of each patient who is admitted
at some date:

MATCH (a : Admissions) < −[: Admissions − Patients] − (p : Patients)
WHERE a.Admi date = ”30/11/2021”
RETURN p.Name

�

Complete Direct Mapping from Relational Databases to Property Graphs 227

Fig. 1. Example of data graph.

2.4 Direct Mapping (DM)

Inspired from [12–14], We define in this section the direct mapping from a rela-
tional database into a graph database and we discuss its properties. Given a
relational database DR composed of SR and IR, a direct mapping consists of
translating each entity in DR into a graph database without any user interaction.
That is, any DR = (SR, IR) (with possibly empty SR), is translated automati-
cally into a pair of property graphs (SG, IG) (with possibly empty SG), that we
call a graph database. Let DR be an infinite set of relational databases, and DG

be an infinite set of graph databases. Based on these notions, we give the next
definition of direct mapping and its properties.

Definition 1. A direct mapping is a total function DM : DR → DG. �

Intuitively, for each DR ∈ DR, DM(DR) produces a graph database DG ∈
DG that aims to represent the source relational database (i.e. instance and
optionally schema) in terms of a graph.

We define next fundamental properties that a direct mapping must preserve
[12], namely: information preservation, query preservation and semantic preser-
vation. The two first properties ensure that the direct mapping does not lose
neither information nor semantic of the relational database being translated.
The last property ensures that the mapping does not hinder the querying capa-
bilities as any relational query can be translated into a graph query.

2.4.1 Information Preservation
A direct mapping DM is information preserving if no information is lost during
the mapping of any relational database.

228 A. Boudaoud et al.

Definition 2 (Information preservation). A direct mapping DM is infor-
mation preserving if there is a computable inverse mapping DM−1 : DG → DR

satisfying DM−1(DM(DR)) = DR for any DR ∈ DR. �

2.4.2 Query Preservation
Recall that both SQL and Cypher queries return a result modeled as a table
where columns represent entities requested by the query (using Select clause in
case of SQL, or Return clause in case of Cypher), while each row assigns values
to these entities. In addition, the result of both SQL and Cypher queries may
contain repeated rows.

Let IR be a relational instance and Qs be an SQL query expressed over IR.
We denote by [Qs]IR the result table of Qs over IR. Similarly, [Qc]IG is the result
table of a Cypher query Qc over an instance graph IG. Moreover, we denote by
[Qs]∗IR (resp. [Qc]∗IG) the refined table that has no repeated row.

A direct mapping DM is query preserving if any query over the relational
database DR can be translated into an equivalent query over the graph database
DG that results from the mapping of DR. That is, query preservation ensures
that every relational query can be evaluated using the mapped instance graph.

Since SQL and Cypher languages return results in different forms, proving
query preservation consists to define a mapping from the SQL result to the
Cypher result. This principle was proposed first in [14] between relational and
RDF queries. Therefore, we revise the definition of query preservation as follows:

Definition 3 (Query preservation). A direct mapping DM is query preserv-
ing if, for any relational database DR=(SR,IR) and any SQL query Qs, there
exists a Cypher query Qc such that: each row in [Qs]∗IR can be mapped into a row
in [Qc]∗IG∈DM(DR) and vice versa. By mapping a row r into a row r’, we assume
that r and r’ contain the same data with possibly different forms. �

2.4.3 Semantics Preservation
A direct mapping DM is semantics preserving if any consistent (resp. inconsis-
tent) relational database is translated into a consistent (resp. inconsistent) graph
database.

Definition 4 (Semantic preservation). A direct mapping DM is semantic
preserving if, for any relational database DR = (SR, IR) with a set of integrity
constraints Σ, IR |= Σ iff: DM(DR) produces a consistent graph database. �

Notice that no previous work have considered semantic preservation over data
graphs. That is, no definition of graph database consistency have been given. We
shall give later our own definition.

3 Complete Mapping (CM)

In this section, we propose a complete mapping CM that transforms a com-
plete relational database (schema and instance) into a complete graph database

Complete Direct Mapping from Relational Databases to Property Graphs 229

(schema and instance). We call our mapping Complete since some proposed
mappings (e.g. [11]) deal only with data and not schema.

Definition 5 (Complete Mapping). A complete mapping is a function CM :
DR → DG from the set of all RDs to the set of all GDs such that: for each
complete relational database DR = (SR, IR), CM(DR) generates a complete
graph database DG = (SG, IG). �

In order to produce a complete graph database, our CM process is based on
two steps, schema mapping and instance mapping, which we detail hereafter.

3.1 Schema Graph and Instance Graph

Contrary to relational data, graph data still have no schema definition standard.
Hence, we extend the property graph definition in order to introduce our schema
graph definition.

Definition 6 (Schema Graph). A schema graph is an extended property
graph defined with S

G
= (V

S
, E

S
, L

S
, A

S
, Pk, Fk) where: 1) V

S
is a finite set

of vertices; 2) E
S

⊆ V
S

× V
S

is a finite set of directed edges where (v, v
′
) ∈ E

S

is an edge starting at vertex v and ending at vertex v
′
; 3) L

S
is a function that

assigns a label to each vertex in V
S

(resp. edge in E
S
); 4) A

S
is a function assign-

ing a nonempty set of pairs (ai : ti) to each vertex (resp. edge) where ai ∈ A
and ti ∈ T ; 5) Pk is a partial function that assigns a subset of As(v) to a vertex
v; and finally 6) for each edge e ∈ E

S
, Fk(e, s) (resp. Fk(e, d)) is a subset of

A
S
(e.s) (resp. A

S
(e.d)). �

The functions Pk and Fk will be used later to incorporate integrity con-
straints over graph databases.

Definition 7 (Instance Graph). Given a schema graph S
G

= (V
S
, E

S
,

L
S
, A

S
, Pk, Fk), an instance IG of SG, called an instance graph, is given by

a property graph I
G

= (V
I
, E

I
, L

I
, A

I
) where:

1. V
I

and E
I

are the set of vertices and the set of edges as defined for schema
graph;

2. for each vertex vi ∈ V
I
, there exists a vertex vs ∈ V

S
such that: a) L

I
(vi) =

L
S
(vs); and b) for each pair (a : c) ∈ A

I
(vi) there exists a pair (a : t) ∈ A

S
(vs)

with type(c)=t. We say that vi corresponds to vs, denoted by vi ∼ vs.
3. for each edge ei = (vi, wi) in E

I
, there exists an edge es = (vs, ws) in E

S

such that: a) L
I
(ei) = L

S
(es); b) for each pair (a : c) ∈ A

I
(ei) there exists a

pair (a : t) ∈ A
S
(es) with type(c)=t; and c) vi ∼ vs and wi ∼ ws. We say

that ei corresponds to es, denoted by ei ∼ es. �

As for relational schema, a schema graph determines the structure, meta-
information and typing that instance graphs must satisfy. It is clear that an
instance IG of SG assigns a set of vertices (resp. edges) to each vertex vs (resp.
edge es) in SG that have the same label as vs (resp. es). Moreover, a vertex vi

230 A. Boudaoud et al.

(resp. edge ei) in IG corresponds to a vertex vs (resp. edge es) in SG if the value
c, attached to any attribute a of vi (resp. edge ei), respects the type t given for
a within vs (resp. es).

Fig. 2. Example of schema graph.

Example 2. Figure 2 depicts an example of a schema graph where each vertex
(resp. edge) is represented naturally with its label (e.g. vertex Admissions, edge
Admissions-Doctors) and a list of typed attributes (e.g. AdmiNo:Integer). As a
special case, the value of the attribute Pk on some vertex refers to the value of the
function Pk on this vertex (e.g. Pk:AdmiNo on vertex Admissions). Moreover,
the values of attributes s and d on some edge e refer to the values of the function
Fk(e, s) (resp. Fk(e, d)) at this edge (e.g. s : Doc No and d : DoctorNo on
edge Admissions − Doctors). The use of these special attributes (Pk, s and d)
will be detailed later. One can see that the data graph of Fig. 1 is an instance
graph of the schema graph of Fig. 2 since each vertex (resp. edge) of the former
corresponds to some vertex (resp. edge) of the latter. �

Finally, a graph database is defined with DG = (SG, IG) where SG is a schema
graph and IG is an instance of SG.

3.2 Schema Mapping (SM)

Given a relational schema SR = (R,A, T,Σ), we propose a schema mapping
(SM) process that produces a schema graph S

G
= (V

S
, E

S
, L

S
, A

S
, Pk, Fk) as

follows:

1. For each relation name r ∈ R in SR, there exists a vertex vr ∈ V
S

such that
L

S
(vr) = r;

Complete Direct Mapping from Relational Databases to Property Graphs 231

2. For each a ∈ A(r) with T (a) = t, we have a pair (a : t) ∈ AS(vr);
3. For each primary key r[a1, · · · , an] ∈ Σ, we have Pk(vr) = “a1, . . . , an”;
4. For each foreign key r[a1, · · · , an] → s[b1, · · · , bn] ∈ Σ, we have an edge

e = (vr, vs) ∈ E
S

such that : a) L
S
(e) = (s − r); b) Fk(e, s)= “a1, . . . , an”;

and c) Fk(e, d) = “b1, . . . , bn”.
5. A special pair (vid:Integer) is attached to each vertex of SG for storage

concerns.

Fig. 3. Example of schema mapping.

Example 3. Figure 3 depicts (A) a relational schema and (B) its corresponding
schema graph. One can see that our schema mapping rules are respected: 1)
each relation is mapped to a vertex that contains the label of this relation, its
primary key and a list of its typed attributes; 2) each foreign key between two
relations (e.g. relations Admissions and Patients in part A) is represented by an
edge between the vertices of these two relations (e.g. edge Admissions-Patients
in part B). �

3.3 Instance Mapping (IM)

Given a relational database DR = (SR, IR), we propose an instance mapping
(IM) process that maps the relational instance IR into an instance graph I

G
=

(V
I
, E

I
, L

I
, A

I
) as follows:

1. For each tuple t ∈ I(r), there exists a vertex vt ∈ VI with LI(vt) = r. We
denote by vt the vertex that corresponds to the tuple t;

2. For each tuple t ∈ I(r) and each attribute a with t(a) = c, we have: (a : c) ∈
AI(vt) if a �= tid; and (vid : c) ∈ AI(vt) otherwise.

3. for each foreign key r[a1, · · · , an] → s[b1, · · · , bn] defined with SG and any
tuples t ∈ I(r) and t′ ∈ I(s), if t(ai) = t′(bi) for each i ∈ [1, n], then: there is
an edge e = (vt, vt′) ∈ E

I
with L

I
(e) = r − s.

Example 4. An example of our IM process is given in Fig. 4 where part (A) is
the relational instance and part (B) is its corresponding instance graph. �

232 A. Boudaoud et al.

It is clear that the special attribute vid is used to preserve the tuples identi-
fication (i.e. the value of attribute tid) during the mapping process.

Fig. 4. Example of instance mapping.

We notice that our data mapping process is query language independent in
the sense that any query language (e.g. Cypher, Gremlin, PGQL) can be applied
over the resulting data graph.

4 Properties of CM

We show that our CM satisfies the three fundamental mapping properties [14]:
information preservation, query preservation and semantics preservation.

4.1 Information Preservation

First, we explain that CM does not lose any part of the information in the
relational instance being translated:

Theorem 1. The direct mapping CM is information preserving.

Proof. Theorem 1 can be proved easily by showing that there exists a computable
mapping CM−1 : DG → DR that reconstructs the initial relational database
from the generated graph database. Since our mapping CM is based on two
steps (schema and instance mappings), then CM−1 requires the definition of
SM−1 and IM−1 processes. Due to the space limit, the definition of CM−1 is
given in the extended version of this paper [3].

4.2 Query Preservation

Second, we show that the way CM maps relational instances into instance graphs
allows one to answer the SQL query over a relational instance by translating it
into an equivalent Cypher query over the generated graph instance.

Complete Direct Mapping from Relational Databases to Property Graphs 233

Algorithm 1. S2C Algorithm
Input: A simple SQL query Qs, A relational schema SR

Output: Its equivalent Cypher query Qc.

1: Rename relations (via AS-clause) in Qs if not applied;
2: Extract the Select-clause (SC), the From-clause (FC) and the Where-clause (WC) from Qs;
3: Generate a Match-clause (mc) from FC:

a) by translating each relation name r in SC into a vertex with label r; and
b) by representing each join in Qs with an edge in mc basing on SR;

4: Generate a Where-clause (wc) from WC by translating each condition over a relation (attribute)
in WC into a condition over the corresponding vertex (attribute);

5: Generate a Return-clause (rc) from SC by translating each relation (attribute) in SC into a
corresponding vertex (attribute);

6: Generate a Cypher query Qc by combining mc, wc and rc;
7: Return Qc;

Theorem 2. The direct mapping CM is query Preserving.

Proof. Proving Theorem 2 can be done by providing an algorithm S2C that,
for any SQL query Qs, produces an equivalent Cypher query Qc such that: for
any relation database DR = (SR, IR) and any SQL query Qs over IR, each
row in [Qs]∗IR can be mapped to a row in [Qc]∗IG where IG ∈ CM(DR) and
Qc = S2C(Qs). Our algorithm S2C is summarized in Algorithm 1. Given an SQL
query Qs in input, S2C proceeds as follows: a) analyze and extract clauses from
Qs; b) compute for any SQL clause their equivalent Cypher clause; c) combine
the resulted Cypher clauses in Qc; and d) return the final Cypher query Qc. Due
to space limit, we give a reduced version of our query mapping algorithm that
deals only with simple queries. However, one can easily extend our algorithm to
deal with composed versions (e.g. queries with IN clause). A running example
of query mapping is given in the extended version of this paper [3].

4.3 Semantic Preservation

Finally, we show that CM is semantic preserving by checking consistency (resp.
inconsistency) of relational database and graph database. Recall that a direct
mapping is semantic preserving if any consistent (resp. inconsistent) relational
database is translated into a consistent (resp. inconsistent) graph database.
While consistency of relational database is well-known, no definition is given
for graph database since there exists no standard for (schema) graph definition.
To overcome this limit, we added the functions Pk and Fk to our schema graph
definition in order to make possible the consistency checking for graph databases.

Definition 8 (Graph consistency). For any graph database DG = (SG, IG),
the instance IG is said to be consistent w.r.t SG if:

– For each vertex vs ∈ Vs with Pk(vs)= “a1, ..., an” and each vertex vi ∈ VI

that corresponds to vs: there exists no pair (ai : NULL) ∈ AI(vi) with i ∈
[1, n]. Moreover, for each v′

i ∈ VI\{vi} that corresponds to vs, the following
condition must not hold: for each i ∈ [1, n], (ai : c) ∈ AI(vi) ∩ Ai(v′

i).

234 A. Boudaoud et al.

– For each edge es ∈ Es with Fk(es, s)= “a1, ..., an” and Fk(es, d)= “b1, ...,
bn”, if ei = (v1, v2) ∈ EI is an edge that corresponds to es then we have:
(ai : c) ∈ AI(v1) and (bi : c) ∈ AI(v2) for each i ∈ [1, n]. �
Intuitively, the consistency of graph databases is inspired from that of rela-

tional databases.

Theorem 3. The direct mapping CM is semantic Preserving.

Proof. The proof of Theorem 3 is straightforward and can be done by contradic-
tion based on the mapping rules of IM (Sect. 3.3). Given a relational database
DR = (SR, IR) and let DG = (SG, IG) be its equivalent graph database gener-
ated by CM. We suppose that CM is not semantic preserving. This means that
either (A) IR is consistent and IG is inconsistent; or (B) IR is inconsistent while
IG is consistent. We give only proof of case (A) since that of case (B) can be
done in a similar way.

We suppose that IR is consistent w.r.t SR while IG is inconsistent w.r.t SG.
Based on Definition 8 IG is inconsistent if one of the following conditions holds:

1) There exists a vertex vi ∈ VI that corresponds to a vertex vs ∈ Vs where:
a) Pk(vs) = “a1, ..., an”; and b) (ai : NULL) ∈ AI(vi) for some attribute
ai∈[1,n]. Based on mapping rules of IM process, vi corresponds to some tuple t
in IR and attributes a1, ..., an correspond to a primary key defined over IR by
SG. Then (b) implies that the tuple t assigns a NULL value to the attribute
ai which makes IR inconsistent. However, we supposed that IR is consistent.
2) There are two vertices v1, v2 ∈ VI that correspond to a vertex vs ∈ Vs

where: a) Pk(vs) = “a1, ..., an”; and b) (ai : c) ∈ AI(v1) ∩ AI(v2) for each
i ∈ [1, n]. Based on mapping rules of IM process, v1 (resp. v2) corresponds to
some tuple t1 (resp. t2) in IR and attributes a1, ..., an correspond to a primary
key defined over IR by SG. Then (b) implies that the tuples t1 and t2 assign
the same value to each attribute ai which makes IR inconsistent. However,
we supposed that IR is consistent.
3) There exists an edge ei = (v1, v2) in EI that corresponds to an edge
e = (vs, vd) in Es where: a) Fk(e, s) = “a1, ..., an”; b) Fk(e, d) = “b1, ..., bn”;
and c) there exists some attribute ai∈[1,n] with (ai : c1) ∈ AI(v1), (ai :
c2) ∈ AI(v2), and c1 �= c2. Based on mapping rules of IM process, v1 (resp.
v2) corresponds to some tuple t1 (resp. t2) in IR, vs (resp. vd) corresponds
to some relation s (resp. d) in SR, the function Fk over edge e refers to a
foreign-key s[a1, ..., an] → d[b1, ..., bn] defined over IR by SG. Then (b) implies
that the tuple t1 assigns a value to some attribute ai∈[1,n] that is different
to that assigned by tuple t2 to attribute bi∈[1,n]. This means that there is a
violation of foreign-key by tuple t1 which makes IR inconsistent. However, we
supposed that IR is consistent.

Therefore, each case of IG inconsistency leads to a contradiction, which means
that if IR is consistent then its corresponding IG cannot be inconsistent.

By doing proof of part (B) in a similar way, we conclude that if IR is consistent
(resp. inconsistent) then its corresponding instance graph IG must be consistent
(resp. inconsistent). This completes the proof of Theorem 3. �

Complete Direct Mapping from Relational Databases to Property Graphs 235

5 Conclusion and Future Works

In this paper, we proposed a complete mapping process that translates any rela-
tional database into an equivalent graph database by considering both schema
and data mapping. Our mapping preserves the information and semantics of the
relational database and maps any SQL query, over the relational database, into
an equivalent Cypher query to be evaluated over the produced graph database.
We plan to extend our model to preserve another mapping property, called mono-
tonicity [14], which ensures that any update to the relational database will not
require generating the corresponding graph database from scratch. Also, we will
enrich the definition of the relational schema with more integrity constraints.
We are conducting an experimental study based on real-life databases to check
our approach’s efficiency and effectiveness.

References

1. Neo4j ETL. https://neo4j.com/developer/neo4j-etl/
2. Angles, R., Thakkar, H., Tomaszuk, D.: Mapping RDF databases to property graph

databases. IEEE Access 8, 86091–86110 (2020)
3. Boudaoud, A., Mahfoud, H., Chikh, A.: Towards a complete direct mapping from

relational databases to property graphs. CoRR abs/2210.00457 (2022). https://
doi.org/10.48550/arXiv.2210.00457

4. De Virgilio, R., Maccioni, A., Torlone, R.: Converting relational to graph databases,
p. 1 (2013)

5. De Virgilio, R., Maccioni, A., Torlone, R.: R2G: a tool for migrating relations to
graphs, pp. 640–643 (2014)

6. Fan, W., Wang, X., Yinghui, W.: Answering pattern queries using views. IEEE
Trans. Knowl. Data Eng. 28, 326–341 (2016)

7. Francis, N., et al.: Cypher: an evolving query language for property graphs, pp.
1433–1445 (2018)

8. Guagliardo, P., Libkin, L.: A formal semantics of SQL queries, its validation, and
applications. Proc. VLDB Endow. 11, 27–39 (2017)

9. Li, S., Yang, Z., Zhang, X., Zhang, W., Lin, X.: SQL2Cypher: automated data
and query migration from RDBMS to GDBMS. In: Zhang, W., Zou, L., Maamar,
Z., Chen, L. (eds.) WISE 2021. LNCS, vol. 13081, pp. 510–517. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-91560-5 39

10. Matsumoto, S., Yamanaka, R., Chiba, H.: Mapping RDF graphs to property
graphs, pp. 106–109 (2018)

11. Orel, O., Zakošek, S., Baranović, M.: Property oriented relational-to-graph
database conversion. Automatika 57, 836–845 (2017)

12. Sequeda, J.F., Arenas, M., Miranker, D.P.: On directly mapping relational
databases to RDF and OWL, pp. 649–658 (2012)

13. Stoica, R., Fletcher, G., Sequeda, J.F.: On directly mapping relational databases
to property graphs, pp. 1–4 (2019)

14. Stoica, R.-A.: R2PG-DM: a direct mapping from relational databases to property
graphs. Master’s thesis, Eindhoven University of Technology (2019)

https://neo4j.com/developer/neo4j-etl/
https://doi.org/10.48550/arXiv.2210.00457
https://doi.org/10.48550/arXiv.2210.00457
https://doi.org/10.1007/978-3-030-91560-5_39

A Matching Approach to Confer
Semantics over Tabular Data Based

on Knowledge Graphs

Wiem Baazouzi1(B), Marouen Kachroudi2, and Sami Faiz3

1 Ecole Nationale des Sciences de l’Informatique, Laboratoire de Recherche en génIe
logiciel, Application Distribuées, Systèmes décisionnels et Imagerie intelligente,

Université de la Manouba, LR99ES26 Manouba, 2010 Tunis, Tunisie
wiem.baazouzi@ensi-uma.tn

2 Faculté des Sciences de Tunis, Informatique Programmation Algorithmique
et Heuristique, Université de Tunis El Manar, LR11ES14, 2092 Tunis, Tunisie

marouen.kachroudi@fst.rnu.tn
3 Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis,

Laboratoire de Télédétection et Systèmes d’Information à Référence Spatiale,
99/UR/11-11, 2092 Tunis, Tunisie

sami.faiz@insat.rnu.tn

Abstract. In this article, we present Kepler-aSI, a matching app-
roach to overcome possible semantic gaps in tabular data by referring
to a Knowledge Graph. The task proves difficult for the machines, which
requires extra effort to deploy the cognitive ability in the matching meth-
ods. Indeed, the ultimate goal of our new method is to implement a
fast and efficient approach to annotate tabular data with features from
a Knowledge Graph. The approach combines search and filter services
combined with text pre-processing techniques. The experimental evalu-
ation was conducted in the context of the SemTab 2021 challenge and
yielded encouraging and promising results referring to its performance
and ranks held.

Keywords: Tabular data · Knowledge graph · Fair principles

1 Introduction

Consolidating and implementing the FAIR1 principles2 for data conveyed on the
Web is a real need to facilitate their management and use. Indeed, the added
value of such a process is the generation of new knowledge through the tasks
of data integration, data cleaning, data mining and machine learning. Thus, the
successful implementation of FAIR principles drastically improves the value of
data by making it: findable, accessible while overcoming semantic ambiguities.

1 FAIR stands for Findability, Accessibility, Interoperability, and Reuse.
2 https://www.go-fair.org/fair-principles/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 236–249, 2023.
https://doi.org/10.1007/978-3-031-21595-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_17&domain=pdf
https://www.go-fair.org/fair-principles/
https://doi.org/10.1007/978-3-031-21595-7_17

Kepler-aSI 237

In this register, we highlight that good data management, is not an objective
in itself, but rather the global approach leading to knowledge discovery and
acquisition, as well as to the integration and the subsequent reuse of the data
by the stakeholder community after the data publication process. Consequently,
semantic annotation is considered a specific knowledge acquisition task. Thus,
the semantic annotation process can use formal metadata resources described in
a semantic framework (i.e., one or more ontologies) based on semantic reposito-
ries use. The latest contributions on this subject demonstrate that tabular data
are carefully conveyed to the Web in various formats.
The preponderant one is tabular form (e.g., CSV (Comma-Separated Values)).
Tables on the Web are a very valuable data source, thus, injecting semantic
information into these last ones has the potential to boost a wide range of appli-
cations, such as Web searching, answering queries, and building Knowledge Bases
(KB). Research reports that there are various issues with tabular data available
on the Web, such as learning with limited labelled data, defining or updating
ontologies, exploiting prior knowledge, or scaling up existing solutions. Therefore,
this task is often difficult in practice due to missing, incomplete or ambiguous
metadata (e.g., table and column names). Over the last few years, we have iden-
tified several works that can be mainly classified as supervised (in the form of
annotated tables to carry out the learning task) [5,10] or unsupervised (tables
whose data is not dedicated to learning) [5,14]. To solve these problems, we
propose a global approach named Kepler-aSI, which addresses the challenge
of matching tabular data to Knowledge Graphs (KG).
Data annotation is a fundamental process in tabular data analysis [3], it allows to
infer the meaning of other information. Then deduce the tabular data meaning
relating to a Knowledge Graph. The data we used was based both on Wiki-
data and DBPedia. In a broader context, the data used and manipulated obey
the triples format representation: subject (S), a predicate (P), and an object
(O). This notation ensures semantic navigability across data and makes all data
manipulation more fluid, explicit, and reliable. Recent years have seen an increas-
ing number of works on Semantic Table Interpretation. In this context, SemTab
20213 has emerged as an initiative that aims at benchmarking systems dealing
with tabular annotation based on KG entities, referred to as table annotation.
SemTab is organised into three tasks, each one with several evaluation rounds.
For the 2021 edition, for instance, it involves: (i) assigning a semantic type (e.g.,
a KG class) to a column (CTA); (ii) matching a cell to a KG entity (CEA); (iii)
assigning a KG property to the relationship between two columns (CPA).

We aim for automatic on-the-fly annotation of tabular data. Thus, our anno-
tation approach is fully automated, as it does not collect upstream information
regarding entities or metadata standards. Our method is quick and easy to deploy
since it leverages existing resources like Wikidata and Dbpedia to access enti-
ties. The paper is thus organized as follows: Sect. 2 presents some key concepts,
Sect. 3 is dedicated to the state of the art, Sect. 4 presents our contribution,
Sect. 5 draws up a experimental report before concluding with the Sect. 6.

3 http://www.cs.ox.ac.uk/isg/challenges/sem-tab/2021/index.html.

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/2021/index.html

238 W. Baazouzi et al.

2 Key Notions

In what follows, some key notions relating to our studied context supported by
some examples and illustrations.

– Tabular Data : S is a two-dimensional tabular structure made up of an
ordered set of N rows and M columns, as depicted by Fig. 1. ni is a row of the
table (i = 1 ... N), mj is a column of the table (j = 1 ... M). The intersection
between a row ni and a column mj is ci,j , which is a value of the cell Si,j .
The table contents can have different types (string, date, float, number, etc.).
Thereby, we will have these structures : Target Table (S): M × N, Subject
Cell: S(i,0) (i = 1, 2 ... N) and Object Cell: S(i,j) (i = 1, 2 ... M),(j = 1, 2 ...
N).

⎛

⎜⎜⎜⎜

Col0 Coli ColN
Row1 S1,0 S1,N

...
. . .

. . .
. . .

...
Rowj Sj ,0 . . . Sj ,i . . . Sj ,N

...
. . .

. . .
. . .

...
RowM SM ,0 SM ,N

⎞

⎟⎟⎟⎟

Fig. 1. Tabular data at a glance.

– Knowledge Graph : Knowledge Graphs have been the focus of research since
2012, resulting in a wide variety of published descriptions and definitions. The
lack of a common core is a fact that was also reported by Paulheim [7] in 2015.
Paulheim listed in his survey of Knowledge Graph refinement the minimum
set of characteristics that must be present to distinguish Knowledge Graphs
from other knowledge collections, which restricts the term to any graph-based
knowledge representation. In the online review [7], authors agreed that a more
precise definition was hard to find at that point. This statement points out
the need for a closer investigation and a reflection in this area. Farber and al.
[8] defined a Knowledge Graph as a Resource Description Framework (RDF)
graph. Also, the authors stated that the KG term was coined by Google to
describe any graph-based Knowledge Base (KB).

3 Literature Review

Various research works have tackled the issue of semantic tables annotation.
They vary according to the deployed techniques as well as the adopted app-
roach. The CSV2KG system [13] consists of six phases. First, raw annotations

Kepler-aSI 239

are assigned to each cell of the table considered as input. Candidates undergo
disambiguation by similarity measures applied to each candidate’s label. Then
the column types and the properties between the columns are inferred using the
seed annotations. In the next step, the inferred column types and properties
are used to create more refined header cell annotations (the cells in the first
column of a table). Further processing uses the newly generated header cells to
correct other table cells, using property annotations. Finally, new column types
are inferred using all available corrected cells. The source code for this system
is in Python. DAGOBAH [2] is a system implemented as a set of sequential
complementary tools. The three main functionalities are: (i) the identification
of the semantic relationships between tabular data and Knowledge Graphs, (ii)
Knowledge Graphs enrichment by transforming the informational volume con-
tained in the array into triples, (iii) Metadata production that can be used for
reference, research and recommendation processes. DAGOBAH determines the
list of candidate annotations using a SPARQL query. As for the LinkingPark [4]
system, it takes a table as input, which is passed to an editor to extract entity
links as well as property links. From the entity links, said method generates
candidate entities via a cascading pipeline which becomes the input for both the
disambiguation module and the property link detection module. The authors also
integrated the property characteristics to determine the relationship between the
different rows of the starting table. Furthermore, the JenTab [1] system operates
according to 9 modules, each of which has a well-defined objective. The first
module constitutes the system core and is responsible for most matching opera-
tions. Based on the search for annotation tags, this module generates candidates
for the three tasks (CTA, CEA, and CPA) and removes unlikely candidates. The
second module attempts to retrieve missing CEA matches based on the context of
a row and a column. Indeed, this processing only applies to the cells which have
not received any matching during the first module. Subsequently, in the third
module, and the absence of candidates in the CTA task, the processing (CEA by
Row) relaxes the requirements. The fourth module focuses on the selection of
solutions. After a new stage of filtering on the CEA candidates using the context
of each row, the authors opted to select the solutions with very high confidence
values. Modules 5 and 7 attempt to fill in the gaps relating to the failure to iden-
tify potential candidates. In case new candidates are identified, modules 6 and
8 screen them again. Module 9 represents the last resort to generating solutions
for features without candidate annotations. At this level, the authors assume
that certain parts of the context are false, to re-examine each assertion. Authors
reconsider all the candidates discarded in the previous stages to find the best
solution among them. The LexMa system [12] starts with a preprocessing phase
cropping the text in the cell and converting the resulting strings to uppercase.
After that, the system retrieves the top 5 entities for each cell value from the
Wikidata search service. Subsequently, the lexical match is evaluated based on
cosine similarity. This similarity measure is applied to vectors coded and formed
from labels derived from cell values. Cell labels and values are tokenized, then
stop words are removed before creating input vectors. At this point, the authors

240 W. Baazouzi et al.

trigger an identical search on DBpedia via its dedicated search service operating
with SPARQL queries.

To sum up, all of the above approaches rely on a learning strategy. Moreover,
for the real-time context, the applications become greedy, which imposes obtain-
ing the result as quickly as possible. This scenario requires the deployment of
more logistical and technical efforts. Moreover, the applicability of these solutions
will strengthen semantic interoperability across all domains. In the following, we
present a detailed description of our contribution, namely Kepler-aSI.

4 The Kepler-aSI Approach

In this section, we describe the different stages of our system while present-
ing some basic notions to highlight the technical issues identified. To address
the SemTab challenge tasks, Kepler-aSI operates according to the work-
flow depicted by Fig. 2. There are five major complementary modules, namely:
Preprocessing, Query Engine (or eventually External Resource Consultation),
KG Candidates Filtering and Annotation and File Generation. These steps are
the same for each round, but the changes remain minimal depending on the
variations observed in each case.

Fig. 2. Overview of our approach.

4.1 Preprocessing Module

It should be noted that the content of each table can be expressed accord-
ing to different types and formats, namely: numeric, character strings, binary
data, date/time, boolean, addresses, etc. Indeed, with the great diversity of data
types, the preprocessing step is crucial. Therefore, the goal of preprocessing is
to ensure that the processing of each table is triggered without errors. The effort
is especially accentuated when the data contain spelling errors. In other words,
these issues must be resolved before we apply our approach. In order to well
carry out this step, we used several techniques and libraries such as (Textblob4,
Pyspellchecker5, etc.) to rectify and correct all the noisy textual data in the
4 https://textblob.readthedocs.io/en/dev/.
5 https://pypi.org/project/pyspellchecker/.

https://textblob.readthedocs.io/en/dev/
https://pypi.org/project/pyspellchecker/

Kepler-aSI 241

considered tables. As an example, we detect punctuation, parentheses, hyphen
and apostrophe, and also stop words by using the Pandas6 library to remove
them. Like a classic treatment in this register, we ended this phase by trans-
forming all the upper case letters into lower case. The priming is carried out by
an analysis of the processing columns, which aims to understand and delimit
the set of regular expressions which contains a set of units: the area, the cur-
rency, the density, the electric current, the energy, flow rate, force, frequency,
energy efficiency, unit of information, length, density, mass, numbers, population
density, power, pressure, speed, temperature, time, torque, voltage and volume.
This step allows identifying multiple Regextypes using regular expressions (e.g.
numbers, geographic coordinates, address, code, colour, URL). Since all values
of type text are selected, preprocessing for natural languages is performed using
the langrid7 library to detect 26 languages in our data. By the way, it’s a
novelty for this year’s SemTab campaign, i.e., which makes the task more dif-
ficult with the introduction of natural language barriers. The langrid library
is a stand-alone language detection tool. It is performed in a large number of
languages (97 currently). Doing so, correction, data type and language detection
are performed. This treatment considerably reduces execution effort and cost by
avoiding the massive repetition of these treatments for all the table cells, and
this in each subtask.

4.2 Query Engine Module

This module is the core of our contribution. We manage through a SPARQL
query to extract the candidate annotations from the Knowledge Graphs, namely
Wikidata and DBpedia. This phase allows the annotation process candidates
extraction.

Example 1. Starting from an English entity description, in what follows an
example of a SPARQL query to retrieve the label, the class name as well as
the properties from Wikidata (or eventually Dbpedia) :

endpoint_url = "https://query.wikidata.org/sparql"
query = """
SELECT ?itemLabel ?class ?property
WHERE {

?item ?itemDescription "%s"@en .
?item wdt:P31 ?class

}"""

4.3 External Resource Consultation Module

External resources consultation is a complementary process to that of querying
Knowledge Graphs. Indeed, in the case where the result of the query does not
6 https://pandas.pydata.org.
7 https://github.com/openlangrid.

https://pandas.pydata.org
https://github.com/openlangrid

242 W. Baazouzi et al.

provide candidates to perform the annotation, an external resource is used, in
search of a possible answer. Note that this consultation is generically modelled
in our system. In other words, we can couple our system with any resource in
RDF format. This step gives our contribution a great adaptability to the studied
context.

4.4 KG Candidates Filtering Module

Candidate annotations filtering is based on an efficient and fast Information
Retrieval technique. Indeed, any identified annotations are indexed and saved
in a NoSQL database, namely, MongoDB. Subsequently, we identify the final
annotation considered as the result of the matching process after querying this
database through its integrated search engine. Thus, the candidate annotation
retained is the one with the first rank and having the highest score, in accordance
with lines 10, 10 and 8 in respectively Algorithms 1, 2 and 3. We opted for the
MongoDB database for the considerable gain in execution times thanks to its
processing capabilities, i.e., scaling and search efficiency.

4.5 Annotation and File Generation Module

Assigning a Semantic Type to a Column (CTA). As depicted by Fig. 3
and following Algorithm 1, the task is to annotate each entity column with
elements from Wikidata (or possibly DBPedia) as its type identified during the
preprocessing phase.

Fig. 3. CTA task.

Each item is marked with the tag in Wikidata or DBPedia. This treatment
allows semantics identification. The CTA task is performed based on Wikidata
or DBPedia APIs to look for an item according to its description. The col-
lected information about a given entity used in our approach is an instance
list (expressed by the instanceOf primitive and accessible by the P31 code),
the subclass of (expressed by the subclassOf primitive and accessible by code
P279) and overlaps (expressed by the partOf primitive and accessible by code
P361). At this point, we can process the CTA task using a SPARQL query. The
SPARQL query is our interrogation mean fed from the entity information that
governs the choice of each data type since they are a list of instances (P31), of

Kepler-aSI 243

subclasses (P279) or a part of a class (P361). The result of the SPARQL query
may return a single type, but in some cases, the result is more than one type,
so in this case, no annotation is produced for the CTA task.

Algorithm 1: CTA task

Data: Table T
Result: Annotated Table T ′

1 i ← 0
2 while coli ∈ T do
3 class annot ← ∅
4 while cell ∈ col do
5 Label ← cell.expressionV alue
6 CorrectedLabel ← SpellCheckEngine(Label)
7 KG candidates ← QueryEngine(CorrectedLabel)
8 class annot ← KG candidates

9 end
10 Annotate(T ′.coli, getBestRankedClass(class annot))

11 end

Matching a Cell to a KG Entity (CEA). The CEA task aims to annotate
the cells of a given table to a specific entity listed on Wikidata or DBPedia.
Figure 4 and Algorithm 2 gather the CEA task that is performed based on the
same principle of the CTA task.

Fig. 4. Descriptive model of CEA task.

Our approach reuses the results of the CTA task process by introducing the
necessary modifications to the SPARQL query. If the operation returns more
than one annotation, we run a treatment based on examining the context of the
considered column, relative to what was obtained with the CTA task, to overcome
the ambiguity problem.

244 W. Baazouzi et al.

Algorithm 2: CEA task

Data: Table T
Result: Annotated Table T ′

1 i ← 0
2 while rowi ∈ T do
3 entity annot ← ∅
4 while cell ∈ row do
5 Label ← cell.expressionV alue
6 CorrectedLabel ← SpellCheckEngine(Label)
7 KG candidates ← QueryEngine(CorrectedLabel)
8 entity annot ← KG candidates;

9 end
10 Annotate(T ′.rowi,getBestRankedEntity(entity annot)

11 end

Matching a Property to a KG Entity (CPA). After having annotated the
cell values as well as the different types of each of the considered entities, we
will identify the relationships between two cells appearing on the same row via
a property using a SPARQL query, as detailed by Fig. 5 and Algorithm 3.

Fig. 5. A representation of CPA task.

Indeed, the CPA task looks for annotating the relationship between two cells
in a row via a property. Similarly, this task is performed analogously to the CTA
and CEA tasks. The only difference in the CPA task is that the SPARQL query
must select both the entity and the corresponding attributes. The properties are
easy to match since we have already determined them during CEA and CTA task
processing.

Kepler-aSI 245

Algorithm 3: CPA task

Data: Table T
Result: Annotated Table T ′

1 i ← 0 j ← 0
2 while (coli, colj) ∈ T andi �= j do
3 property annot ← ∅
4 KG class Label1 ←

Annotate(T ′.coli, getMostFrequentClass(class annot))
5 KG class Label2 ←

Annotate(T ′.colj , getMostFrequentClass(class annot))
6 KG candidates ← QueryEngine(KG class Label1,KG class Label2)
7 property annot ← KG candidates;
8 Annotate(T ′.coli,T’.colj , getBestRankedProperty(property annot)

9 end

5 Kepler-aSI Performance and Results

In this section, we will present the results of Kepler-aSI for the different match-
ing tasks in the three rounds of SemTab 2021. We report that results are pre-
sented according to two scenarios, i.e., before the deadline and after the deadline
(since the organizers allow participants 1 month before freezing the values). Val-
ues are improved after the deadlines as we finish the investigating work about
the data specifics, thus adjusting our filters for the candidates’ identification.
These results highlight the strengths of Kepler-aSI with its encouraging per-
formance despite the multiplicity of issues8. The mention “after deadline” means
that there have been optimization efforts in terms of preprocessing and the choice
of the used resource, even after the end of the round in question.

5.1 Round 1

In this first round of SemTab 2021, we have four tasks, namely: CTA-WD, CEA-WD,
CTA-DBP and CEA-DBP. The column type annotation (CTA -WD) assigns a Wiki-
data semantic type (a Wikidata entity) to a column. Cell Entity Annotation
(CEA-WD) maps a cell to a KG entity. The processing carried out to search for
correspondence on Wikidata is similarly carried out on Dbpedia. Data for the
CTA-WD and CEA-WD tasks focus on Wikidata. As we explained in Sect. 1, Wiki-
data is structured according to the RDF formalism, i.e., subject (S), predicate
(P) and Object (O). Each element considered is marked with a label in Wiki-
data, thus guaranteeing maximum advantage of its semantics. The CTA-WD and

8 All the official experimental values obtained and presented within the framework of
this study (and challenge) are available and searchable via this link: https://www.
aicrowd.com/challenges/semtab-2021. Please refer to the first author profile for a
clear and detailed overview of all metrics. Note that there are 3 Rounds.

https://www.aicrowd.com/challenges/semtab-2021
https://www.aicrowd.com/challenges/semtab-2021

246 W. Baazouzi et al.

CEA-WD task data contain 180 tables. In Table 1, we provide an input table exam-
ple. The first column contains an entity label, while the other columns contain
the associated attributes.

Table 1. An example of data fragment for a table to match with Wikidata

Col0 Col1 Col2 Col3 Col4

Libertarian Party Libertarianism 1971 4,489,221 (3.28%) 1 (0.01%)

Green Party Green Politics 2001 1,457,216 (1.07%) 0

The column type annotation (CTA -DBP) assigns a DBPedia semantic type (a
DBPedia entity) to a column. Cell Entity Annotation (CEA-DBP) matches a cell
to a Knowledge Graph entity. The CTA-DBP and CEA-DBP task data also contain
180 tables. Results are summarized in Table 2.

Table 2. Results for Round 1

F1 Score Precision Rank

CTA- WD 0.464 0.481 4

CTA-WD (after deadline) 0.746 0.758 3

CEA-WD 0.194 0.760 5

CEA-WD (after deadline) 0.663 0.818 2

CTA- DBP 0.027 0.133 5

CTA-DBP (after deadline) 0.503 0.521 1

CEA-DBP 0.110 0.644 5

CEA-DBP (after deadline) 0.602 0.604 4

In Round 1, we focused on the preprocessing phase to choose and validate the
spellchecker according to textual information, which can significantly improve
the relative results of the CEA and CTA tasks. In summary, our review led to
the use of two correctors, namely, Textblob and Pyspellchecker. Both tools are
intuitive, easy to use, and perform well in terms of Natural Language Process-
ing (NLP). During Round 1, the data size factor was impacting. We recognize
that this round highlights the limits of machines in the face of such information
volumes. Therefore, we can conclude that faced with this situation, the com-
puting power and the speed of access to the external resources representing the
Knowledge Graphs (i.e., Wikidata and DBPedia) are decisive. In addition, we
consider that the introduction of the cross-lingual aspect of this campaign has
accentuated the challenge and allowed us to approach real scenarios that open
and unlock the eventualities of the different proposed approaches applicability.
Indeed, to support the cross-lingual aspect, we acted at the level of the SPARQL

Kepler-aSI 247

query, as indicated in Example 1, to automatically change the language label,
and collect the candidates in any language. Thus, we have ensured the genericity
of our SPARQL query.

5.2 Round 2

In Round 2, despite the distinction of the data and their grouping into two dif-
ferent families, they have a biology tint. Due to advances in biological research
techniques, new data are generated in the biomedical field and published in
unstructured or tabular form. These data are delicate to be integrated semanti-
cally due to their size and the complexity of biological relationships maintained
between the entities. Summary of metrics for this round is in Table 3.

Table 3. Results for Round 2

F1 Score Precision Rank

BioTable-CTA- WD 0.811 0.811 6

BioTable-CEA-WD 0.347 0.811 6

BioTable-CEA-WD (after deadline) 0.677 0.798 6

BioTable-CPA-WD 0.853 0.880 4

HardTable-CTA-WD 0.894 0.931 5

HardTable-CEA-WD 0.707 0.919 6

HardTable-CPA-WD 0.915 0.989 5

Specifically, for tabular data annotation, the data representation can have
a significant impact on performance since each entity can be represented by
alphanumeric codes (e.g. chemical formulas or gene names) or even have multi-
ple synonyms. Therefore, the studied field would greatly benefit from automated
methods to map entities, entity types, and properties to existing datasets to
speed up the new data integrating process through the domain. In this round,
the focus was on Wikidata through two test cases: BioTable and HardTable. The
different tasks: BioTable-CTA-WD, BioTable-CEA-WD and BioTable-CPA-WD on
the one hand, to which we add Hard-CTA-WD, Hard-CEA-WD and Hard-CPA-WD,
are all carried out on 110 tables. During Round 2, we focused on the disam-
biguation problem. We have to decide when to obtain several candidates after
querying the KGs. Indeed, our approach during Round 1 was useful and allowed
us to reuse certain achievements. At this stage, we affirm that automatic ele-
ments disambiguation processing remains a tedious task, given what it generates
as an effort of semantic analysis and interpretation. Indeed, we have opted for
the use of an external resource, namely Uniprot9 [11]. UniProt integrates, inter-
prets and standardizes data from multiple selected resources to add biological
knowledge and associated metadata to protein records and acts as a central
9 https://www.uniprot.org.

https://www.uniprot.org

248 W. Baazouzi et al.

hub. UniProt was recognized as an ELIXIR core data resource in 2017 [6] and
received CoreTrustSeal certification in 2020. The data resource fully supports
Findable, Accessible, Interoperable and Reusable, thus concretizing the FAIR
data principles [9].

5.3 Round 3

Round 3 has 3 main test families: BioDiv: represented by 50 tables, GitTables:
represented by 1100 tables and HardTables: represented by 7207 tables. Note
that the stakes are the same for this round. Moreover, the evaluation is blind, i.e.,
the participants do not have access to the evaluation platform and its options.
In other words, there is no test opportunity to adjust the approach parameters
according to the characteristics of the input. In this round, we opted for Uniprot
to carry out treatments similar to those described in Round 2. Out of the 7
proposed tasks, Kepler-aSI managed to process 3. In the CTA-BioDiv task,
we ranked first. For the GIT-DBP base test, we ranked second and for CTA-HARD
we ranked sixth. For the other cases, our method produces outputs containing
duplications, whereas these correspondences do not allow us to obtain evaluation
metrics.

6 Conclusion and Outlooks

To summarize and conclude, we have presented in this paper our Kepler-aSI
approach. Our system is approaching maturity and achieving very encouraging
performance. We have succeeded in combining several strategies and treatment
techniques, which is also the strength of our system. We boosted the prepro-
cessing and spellchecking steps that got the system up and running. In addition,
despite the data size, which is quite large, we managed to get around this prob-
lem by using a kind of local dictionary, which allows us to reuse already existing
matches. Thus, we realized a considerable saving of time, which allowed us to
adjust and rectify after each execution. We also participated in all the tasks
without exception, which allowed us to test our system on all facets, i.e., to
identify its strengths and weaknesses. We tackled several proposed tasks. Our
solution is based on a generic SPARQL query using the cell content, as a given
item description. In each round, despite the time allocated by the organizers
running out, we continued the work and the improvements, having the convic-
tion that each effort counts and brings us closer to better control of the studied
field. Kepler-aSI is a promising approach, but which will be further improved:
First, we will apply several methods yet to correct spelling mistakes and other
typos in the source data (since it is considered as a limitation, in addition to
the natural language barrier). Finally, we will develop our system by integrating
new data processing techniques (some Big Data-oriented paradigms). Indeed,
the parallel implementation will allow us to circumvent the data size problem,
which is the gap for our current machines. Eventually, the idea of moving to a
data representation using indexes would be an interesting track to investigate to
master the search space, formed by the considered tabular data.

Kepler-aSI 249

References

1. Abdelmageed, N., Schindler, S.: JenTab: matching tabular data to knowledge
graphs. In: Proceedings of the Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab 2020) co-located with the 19th International
Semantic Web Conference (ISWC 2020), Virtual conference (originally planned to
be in Athens, Greece), 5 November 2020. CEUR Workshop Proceedings, vol. 2775,
pp. 40–49 (2020)

2. Chabot, Y., Labbé, T., Liu, J., Troncy, R.: DAGOBAH: an end-to-end context-
free tabular data semantic annotation system. In: Proceedings of the Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching Co-located with
the 18th International Semantic Web Conference, SemTab@ISWC 2019, Auckland,
New Zealand, 30 October 2019. CEUR Workshop Proceedings, vol. 2553, pp. 41–48
(2019)

3. Chen, J., Jiménez-Ruiz, E., Horrocks, I., Sutton, C.: Learning semantic annotations
for tabular data. arXiv preprint arXiv:1906.00781 (2019)

4. Chen, S., et al.: Linkingpark: an integrated approach for semantic table inter-
pretation. In: Proceedings of the Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab 2020) co-located with the 19th International
Semantic Web Conference (ISWC 2020), Virtual conference (originally planned to
be in Athens, Greece), 5 November 2020. CEUR Workshop Proceedings, vol. 2775,
pp. 65–74 (2020)

5. Cremaschi, M., De Paoli, F., Rula, A., Spahiu, B.: A fully automated approach
to a complete semantic table interpretation. Futur. Gener. Comput. Syst. 112,
478–500 (2020)

6. Drysdale, R., et al.: The ELIXIR core data resources: fundamental infrastructure
for the life sciences. Bioinformatic 38, 2636–2642 (2020)

7. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. SEMANTiCS
(Posters, Demos, SuCCESS) 48, 1–4 (2016)

8. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of dbpe-
dia, freebase, opencyc, wikidata, and yago. Semantic Web 9(1), 77–129 (2018)

9. Garcia, L., Bolleman, J., Gehant, S., Redaschi, N., Martin, M.: Fair adoption,
assessment and challenges at UniProt. Sci. Data 6(1), 1–4 (2019)

10. Pham, M., Alse, S., Knoblock, C.A., Szekely, P.: Semantic labeling: a domain-
independent approach. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp.
446–462. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4 27

11. Ruch, P., et al.: Uniprot. Tech. rep. (2021)
12. Tyagi, S., Jiménez-Ruiz, E.: LexMa: tabular data to knowledge graph matching

using lexical techniques. In: Proceedings of the Semantic Web Challenge on Tabu-
lar Data to Knowledge Graph Matching (SemTab 2020) co-located with the 19th
International Semantic Web Conference (ISWC 2020), Virtual conference (origi-
nally planned to be in Athens, Greece), 5 November 2020. CEUR Workshop Pro-
ceedings, vol. 2775, pp. 59–64 (2020)

13. Vandewiele, G., Steenwinckel, B., Turck, F.D., Ongenae, F.: CVS2KG: transform-
ing tabular data into semantic knowledge. In: Proceedings of the Semantic Web
Challenge on Tabular Data to Knowledge Graph Matching Co-located with the
18th International Semantic Web Conference, SemTab@ISWC 2019, Auckland,
New Zealand, 30 October 2019. CEUR Workshop Proceedings, vol. 2553, pp. 33–
40 (2019)

14. Zhang, Z.: Effective and efficient semantic table interpretation using tableminer+.
Seman. Web 8(6), 921–957 (2017)

http://arxiv.org/abs/1906.00781
https://doi.org/10.1007/978-3-319-46523-4_27

τJUpdate: A Temporal Update Language
for JSON Data

Zouhaier Brahmia1(B) , Fabio Grandi2 , Safa Brahmia1 ,
and Rafik Bouaziz1

1 University of Sfax, Sfax, Tunisia
zouhaier.brahmia@fsegs.rnu.tn, rafik.bouaziz@usf.tn

2 University of Bologna, Bologna, Italy
fabio.grandi@unibo.it

Abstract. Time-varying JSON data are being used and exchanged in
various today’s application frameworks like IoT platforms, Web services,
cloud computing, online social networks, and mobile systems. However,
in the state-of-the-art of JSON data management, there is neither a
consensual nor a standard language for updating (i.e., inserting, modi-
fying, and deleting) temporal JSON data, like the TSQL2 or SQL:2016
language for temporal relational data. Moreover, existing JSON-based
NoSQL DBMSs (e.g., MongoDB, Couchbase, CouchDB, OrientDB, and
Riak) and both commercial DBMSs (e.g., IBM DB2 12, Oracle 19c, and
MS SQL Server 2019) and open-source ones (e.g., PostgreSQL 15, and
MySQL 8.0) do not provide any support for maintaining temporal JSON
data. Also in our previously proposed temporal JSON framework, called
τJSchema, there was no feature for temporal JSON instance update. For
these reasons, we propose in this paper a temporal update language,
named τJUpdate (Temporal JUpdate), for JSON data in the τJSchema
environment. We define it as a temporal extension of our previously intro-
duced non-temporal JSON update language, named JUpdate (JSON
Update). Both the syntax and the semantics of the data modification
operations of JUpdate have been extended to support temporal aspects.
τJUpdate allows (i) to specify temporal JSON updates in a user-friendly
manner, and (ii) to efficiently execute them.

Keywords: JSON · Temporal JSON · JUpdate · Temporal JSON
data manipulation · JSON update operation · τJSchema ·
Conventional JSON instance · Temporal JSON instance

1 Introduction

The lightweight format JavaScript Object Notation (JSON) [15], which is
endorsed by the Internet Engineering Task Force (IETF), is currently being used
by various networked applications to store and exchange data. Moreover, many
of these applications running in IoT, cloud-based and mobile environments, like
Web services, online social networks, e-health, smart-city and smart-grid appli-
cations, require bookkeeping of the full history of JSON data updates so that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Fournier-Viger et al. (Eds.): MEDI 2022, LNAI 13761, pp. 250–263, 2023.
https://doi.org/10.1007/978-3-031-21595-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21595-7_18&domain=pdf
http://orcid.org/0000-0003-0577-1763
http://orcid.org/0000-0002-5780-8794
http://orcid.org/0000-0001-9304-4819
http://orcid.org/0000-0001-5398-462X
https://doi.org/10.1007/978-3-031-21595-7_18

τJUpdate: A Temporal Update Language for JSON Data 251

they can handle temporal JSON data, audit and recover past JSON document
versions, track JSON document changes over time, and answer temporal queries.

However, in the state-of-the-art of JSON data management [1,6,17,20–
22,27], there is neither a consensual nor a standard language for updating (i.e.,
inserting, modifying, and deleting) temporal JSON data, like the TSQL2 (Tem-
poral SQL2) [28] or SQL:2016 [24] language for temporal relational data. It is
worth mentioning here that the extension of the SQL language, named SQL/J-
SON [18,23,29] and standardized by ANSI to empower SQL to manage queries
and updates on JSON data, has no built-in support for updating time-varying
JSON data. In fact, even for non-temporal data, SQL/JSON is limited since it
does not support the update of a portion of a JSON document through the SQL
UPDATE statement [26].

Moreover, existing JSON-based NoSQL database management systems
(DBMSs) (e.g., MongoDB, Couchbase, CouchDB, DocumentDB, MarkLogic,
OrientDB, RethinkDB, and Riak) and both commercial DBMSs (e.g., IBM DB2
12, Oracle 19c, and Microsoft SQL Server 2019) and open-source ones (e.g.,
PostgreSQL 15, and MySQL 8.0) do not provide any support for maintaining
temporal JSON data [3,11,13].

In this context, with the aim of having an infrastructure that allows efficiently
creating and validating temporal JSON instance documents and inspired by
the τXSchema design principles [9], we have proposed in [2] a comprehensive
framework, named τJSchema (Temporal JSON Schema). In this environment,
temporal JSON data are produced from conventional (i.e., non temporal) JSON
data, by applying a set of temporal logical and physical characteristics that have
been already specified by the designer on the conventional JSON schema, that
is a JSON Schema [14] file that defines the structure of the conventional JSON
data:

– the temporal logical characteristics [2] allow designers to specify which com-
ponents (e.g., objects, object members, arrays, . . .) of the conventional JSON
schema can vary over valid and/or transaction time;

– the temporal physical characteristics [2] allow designers to specify where
timestamps should be placed and how the temporal aspects should be repre-
sented.

A temporal JSON schema is generated from a conventional JSON schema and
the set of temporal logical and physical characteristics that have been specified
for this non-temporal JSON schema. Thus, by using temporal JSON schemas
and temporal characteristics and by making a separation between conventional
JSON data and temporal JSON data, from one hand, and between conventional
JSON schema and temporal JSON schema, from the other hand, τJSchema
offers the following advantages: (i) it extends the traditional JSON world to
temporal aspects in a systematic way; (ii) it guarantees logical and physical data
independence [8] for temporal JSON data (i.e., a temporal JSON document,
having some physical representation, could be automatically transformed into
a different temporal document with a different physical representation while

252 Z. Brahmia et al.

conserving the semantics of the temporal JSON data, that is keeping the same
temporal logical characteristics); (iii) it does not require changes to existing
JSON instance/schema files nor revisions of the JSON technologies (e.g., the
IETF specification of the JSON format [15], the IETF specification of the JSON
Schema language [14], JSON-based NoSQL DBMSs, JSON editors/validators,
JSON Schema editors/generators/validators, etc.). However, there is no feature
for temporal JSON instance update in τJSchema.

With the aim of overcoming the lack of an IETF standard or recommenda-
tion for updating JSON data, we have recently proposed a powerful SQL-like
language, named JUpdate (JSON Update) [6], to allow users to perform updates
on (non-temporal) JSON data. It provides fourteen user-friendly high-level oper-
ations (HLOs) to fulfill the different JSON update requirements of users and
applications; not only simple/atomic values but also full portions (or chunks) of
JSON documents can be manipulated (i.e., inserted, modified, deleted, copied
or moved) The semantics of JUpdate is based on a minimal and complete set
of six primitives (i.e., low-level operations, which can be easily implemented)
for updating JSON documents. The data model behind JUpdate is the IETF
standard JSON data model [15]. Thus, from one hand, it is independent from
any underlying DBMSs, which simplifies its use and implementation, and, from
the other hand, it can be used to maintain generic JSON documents.

Taking into account the requirements mentioned above, we considered very
interesting to fill the evidenced gap and to propose a temporal JSON update lan-
guage that would help users in the non-trivial task of updating temporal JSON
data. Moreover, based on our previous work, we think that (i) the JUpdate lan-
guage [6] can be a good starting point for deriving such a temporal JSON update
language, and (ii) the τJSchema framework can be used as a suitable environ-
ment for defining the syntax and semantics of a user-friendly temporal update
language, mainly due to its support of logical and physical data independence.

For all these reasons, we propose in this paper a temporal update language
for JSON data named τJUpdate (Temporal JUpdate) and define it as a temporal
extension of our JUpdate language, to allow users to update (i.e., insert, modify,
and delete) JSON data in the τJSchema environment. To this purpose, both
the syntax and the semantics of the JUpdate statements have been extended
to support temporal aspects. The τJUpdate design allows users to specify in
a friendly manner and efficiently execute temporal JSON updates. In order to
motivate τJUpdate and illustrate its use, we will provide a running example.

The rest of the paper is structured as follows. The next section presents
the environment of our work and motivates our proposal. Section 3 proposes
τJUpdate, the temporal JSON instance update language for the τJSchema
framework. Section 4 illustrates the use of some operations of τJUpdate, by
means of a short example. Section 5 provides a summary of the paper and some
remarks about our future work.

τJUpdate: A Temporal Update Language for JSON Data 253

2 Background and Motivation

In this section, first we briefly describe the τJSchema framework (more details
can be found in [2]), and then we present a motivating example that (i) recalls
how temporal JSON data are represented under τJSchema, (ii) presents prob-
lems and difficulties of dealing with temporal data management using a JUpdate-
like language, and (iii) introduces our contributions.

2.1 The τJSchema Framework

τJSchema allows a NoSQL database administrator (NSDBA) to create a tem-
poral JSON schema for temporal JSON instances, from a conventional JSON
schema, some temporal logical characteristics, and some temporal physical char-
acteristics. It uses the following two principles: (i) separation between the con-
ventional JSON schema and the temporal JSON schema, and also between the
conventional JSON instances and the temporal JSON instances; (ii) use of tem-
poral logical and physical characteristics to specify temporal logical and physical
aspects, respectively, at schema level.

Since there are many techniques to make a (non-temporal) JSON document
temporal, the logical and physical independence supported by the τJSchema
framework represents a real breakthrough in temporal JSON data management,
as it separates temporal JSON data design (specified via temporal logical char-
acteristics) from implementation details (specified via temporal physical char-
acteristics). Notice that this aspect is emphasized when dealing with updating,
through a JUpdate-like language, temporal JSON documents (in the next sub-
section). In fact, in JSON documents, some JSON structuring conforming to
the conventional JSON schema is devoted to modeling the non-temporal struc-
ture of data, whereas some additional JSON structuring is needed to encode the
temporal aspects of the data modeling, actually based on some timestamped
multi-version representation. Hence, by adopting a τJSchema-based approach,
we want to also separate temporal data update specification from implemen-
tation details. We want to enable users to manipulate (i.e., insert, modify, and
delete) temporal JSON data by reasoning at the level of their conventional JSON
schema, abstracting from the knowledge of additional JSON structuring needed
to encode low-level data versioning and timestamping details. In practice, we
want the users to express their JUpdate updates exactly as if their JSON data
were not temporal. The only thing they have to add to their update high-level
statements, when dealing with valid-time data, is a VALID clause to specify the
“applicability period” of the update in case they want to explicitly manage it. It
should be mentioned that our approach in this paper is similar to that proposed
in our previous work [7], where an “XQuery Update Facility”-like language is
used to support update operations on temporal data that are recorded in XML
format, abstracting from their implementation details.

254 Z. Brahmia et al.

2.2 Motivating Example

We assume that a company uses a JSON repository for the storage of the infor-
mation about the devices that it manufactures and sells, where each device is
described by its name and cost price. For simplicity, let us consider a temporal
granularity of one day for representing the data change events (and, therefore,
for temporal data timestamping). We assume that the initial state of the device
repository, valid from February 1, 2022, can be represented as shown in Fig. 1:
it contains, in a JSON file named device1.json, data about one device called
CameraABC costing e35.

{ "devicedevices":[
{ "devicvice":{

"namname":":"CamemeraABC",
"cocostPririce ":3":35 } }]}] }

Fig. 1. The initial state of the device repository (file device1.json, on February 01,
2022).

Then, we assume that, effective from April 15, 2022, the company starts
producing a new device named CameraXYZ with a cost price of e42 and Cam-
eraABC’s cost price is raised by 8%. The new state of the device repository can
be represented in a JSON file named device2.json as shown in Fig. 2. Changed
parts are presented in red color.

{ "devices":[
{ "device":{

"name":"CameraABC",
"costPrice" 37.8} },

{ "device":{
"name":"CameraXYZ",
"costPrice":42} }] }

:

Fig. 2. A new state of the device repository (file device2.json, on April 15, 2022). (Color
figure online)

Consequently, we consider that the device repository is implemented in the
τJSchema framework and that the conventional JSON schema for our JSON
device data has been annotated so that “device” is a time-varying object for
representing the history of devices along valid time. As a result, the entire history
of the device repository can be represented in the temporal JSON document
shown in Fig. 3, composed of two slices corresponding to the repository states of
Fig. 1 and Fig. 2.

τJUpdate: A Temporal Update Language for JSON Data 255

{ "temporalJSONDocument ":{
"conventionalJSONDocument ":{
"sliceSequence":[
{"slice":{

"location":"device1.json",
"begin":"2022-02-01" } },

{"slice":{
"location":"device2.json",
"begin":"2022-04-15" } }] } } }

Fig. 3. The temporal JSON document representing the entire history of the device
repository (file deviceTJD.json, on April 15, 2022).

The temporal JSON document can also be “squashed” to obtain a self-
contained temporal JSON document, conformant to the temporal JSON schema
that can be derived from both the conventional JSON schema and the temporal
logical and physical characteristics, representing the whole devices’ history, as
shown in Fig. 4. The valid-time timestamps are presented in blue color.

Fig. 4. The squashed JSON document corresponding to the entire history of the device
repository (file deviceSJD.json, on April 15, 2022).

Notice that the squashed JSON document deviceSJD.json in Fig. 4 also cor-
responds to one of the manifold possible representations of our temporal JSON
[3] data without the τJSchema approach.

After that, let us consider that we have to record in the device repository that
the company has stopped manufacturing the device CameraABC effective from
May 25, 2022. At the state-of-the-art of JSON technology, we could use JUpdate
HLOs to directly perform the required updates on the deviceSJD.json file in
Fig. 4. A skilled developer, expert in both temporal databases and JUpdate,
and aware of the precise structure of the squashed document, will satisfy such
requirements via the following JUpdate statement:

UPDATE deviceSJD.json
PATH $.devices[@.device[@.name="CameraABC"

&& @.VTend="Forever"].VTend]
VALUE "2022-05-24" (S1)

256 Z. Brahmia et al.

In practice, deleting the device CameraABC effective from 2022-05-25 means
ending with 2022-05-24 the valid timestamp of the last version of such a device,
assuming for simplicity (and without checking) that the version valid at 2022-05-
25 is the last CameraABC’s version and, therefore, there are no future versions
to delete. Anyway, we think that this is a complex solution for what it is a simple
problem (for example, in temporal relational databases).

Thus, our first contribution is a temporal extension of the JUpdate lan-
guage. JUpdate statements will be equipped with a new VALID clause to specify
the so-called “applicability period” of the update, that is the time period in which
the update has to be in effect (e.g., from 2022-05-25 on, in our example). This
solution will allow the developer to formulate the required update as a JUpdate
deletion valid from 2022-05-25 of CameraABC’s data, relying on the temporal
semantics of the language for its correct execution, including version and times-
tamp management. Nevertheless, working on the temporal JSON document in
Fig. 4, this will mean to specify the following DeleteValue operation:

DELETE FROM deviceSJD.json
PATH $.devices[@.device[@.name="CameraABC"

&& @.VTend="Forever"]]
VALID from "2022-05-24" (S2)

Although this solution is simpler than solution (S1), it requires from the devel-
oper a detailed knowledge of the specific temporal structuring of the JSON file
including version organization and timestamping. Another consequence is that
such a solution template would not be portable to another setting in which a
different temporal structuring of JSON data is adopted.

Moreover, our second contribution is to integrate the temporal JUpdate
extension into the τJSchema framework, in order to enjoy the logical and physical
independence property. In this framework, the required update will be specified
via the following τJUpdate DeleteValue statement:

DELETE FROM deviceSJD.json
PATH $.devices[@.device[@.name="CameraABC"]]
VALID from "2022-05-24" (S3)

The update could be applied either to the temporal JSON document (i.e.,
deviceTJD.json) or to its squashed version (i.e., deviceSJD.json); the system
using the temporal logical and physical characteristics can manage both ways
correctly. Notice that, ignoring the VALID clause, the solution (S3) represents
exactly the same way we would specify the deletion of the device CameraABC’s
data in a non-temporal environment (e.g., executing it on the device2.json file in
Fig. 2). In practice, we want to allow the developer to focus on the structuring
of data simply as defined in the conventional JSON schema and not on the tem-
poral JSON schema, leaving the implementation details and their transparent
management to the system (e.g., the mapping to a squashed JSON document,
being aware of the temporal characteristics). This means, for example, that in
order to specify a cost price update, we want τJUpdate users be able to deal with
updates to the “device.costPrice” value instead of dealing with updates to the
“device.costPrice” array of objects, where each object represents a version of a
cost price and has three properties: “VTbegin” (the beginning of the valid-time

τJUpdate: A Temporal Update Language for JSON Data 257

timestamp of the version), “VTend” (the end of the valid-time timestamp of the
version), and “value” (the value of the version).

Notice that such a way in which temporal updates of JSON data will be
specified with our τJUpdate language, corresponds exactly to the way updates
of temporal relational data can be specified using a temporal query language like
TSQL2 [28] or SQL:2016 [24], that is using the same update operations that are
used in a non-temporal context augmented with a VALID clause to specify the
applicability period of each update operation.

In sum, the motivation of our approach is twofold: from one hand, (i) leverag-
ing the logical/physical independence supported by the τJSchema framework to
the JUpdate language and, from the other hand, (ii) equipping τJSchema with
a user-friendly update language, which is consistent with its design philosophy.

3 The τJUpdate Language

In this section, we propose the τJUpdate language, by showing how the JUpdate
specification [6] has to be extended. More precisely, in Sect. 3.1, we start by pre-
senting the syntax of τJUpdate high-level operations (HLOs) before defining their
semantics while considering temporal JSON documents in unsquashed form.

3.1 Syntax and Semantics of τJUpdate Update HLOs

The management of transaction time does not require any syntactic extension
to the JUpdate language: owing to the transaction time semantics, only current
data can be updated and the “applicability period” of the update is always
[Now, UntilChanged], which is implied and cannot be overridden by users. On
the contrary, the management of valid time is under the user’s responsibility.
Hence, syntactic extensions of the JUpdate language are required to allow users
to specify a valid time period representing the “applicability period” of the
update. To this purpose, the JUpdate update HLOs [6] are augmented with a
VALID clause as shown in Fig. 5.

Fig. 5. The syntax of τJUpdate HLOs.

258 Z. Brahmia et al.

Due to space limitations, we do not consider here other JUpdate HLOs (e.g.,
InsertMember, ReplaceMember, UpdateObjects) as they are used for specifying
complex updates; they will be investigated in a future work. Temporal expres-
sions “from T” and “to T”, while T is a temporal value, are used as syntactic
sugar for the temporal expressions “in [T, Forever]” and “in [Beginning, T]”,
respectively.

As far as the semantics of τJUpdate is concerned, we can define it, for the sake
of simplicity, by considering JSON update operations on the temporal JSON doc-
ument in its unsquashed form. Based on the well-known theory developed in the
temporal database field [12,19], the operational semantics of a τJUpdateHLO,
equal to a JUpdateHLO augmented with the VALID clause, can be defined as
follows:

– validTimePeriod is evaluated. The result must be a valid period specification;
otherwise a type error is raised. Let [vts, vte] be the period resulting from
the evaluation.

– Let jdoc be the temporal JSON document involved in the update; find in
jdoc all the temporal slices jdoc vers having a timestamp VTimestamp which
overlaps [vts, vte].

– For each such slice jdoc vers:
• let jdoc vers′ the result of the evaluation of JUpdateHLO on jdoc vers;
• if VTimestamp ⊂ [vts, vte] then remove the whole slice jdoc vers from

the temporal JSON document jdoc (and delete the corresponding JSON
file) else restrict to VTimestamp \ [vts, vte] the timestamp of jdoc vers
in the temporal JSON document jdoc;

• add jdoc vers′ to the temporal JSON document jdoc as a new slice with
timestamp VTimestamp ∩ [vts, vte].

– Coalesce the resulting slices in the temporal JSON document.

The last step aims at limiting the unnecessary proliferation of slices, giving
rise to redundant JSON files in the unsquashed setting. Two slices, jdoc vers1
and jdoc vers2 with timestamps VTimestamp1 and VTimestamp2, respectively,
can be coalesced when jdoc vers1 and jdoc vers2 are equal and VTimestamp1
meets VTimestamp2 [28]. In this case, coalescing produces one slice jdoc vers1
with timestamp VTimestamp1 ∪ VTimestamp2.

This definition of the τJUpdate HLO semantics, which can be easily extended
to the transaction-time or bitemporal case, is in line with the τJSchema prin-
ciples, considering a temporal JSON document as representing a sequence of
conventional JSON documents, and reuses the standard (non-temporal) JUp-
date HLOs.

Even if the temporal JSON document jdoc is physically stored in squashed
form, the above semantics can still be used to evaluate a τJUpdate HLO after
the document has been explicitly unsquashed. The results of the evaluation can
then be squashed back to finally produce an updated temporal JSON document.
Although correct from a theoretical point of view, such a procedure could be inef-
ficient in practice, in particular when the temporal JSON document is composed
of several slices. To resolve this problem, a different method can be applied for

τJUpdate: A Temporal Update Language for JSON Data 259

updating temporal JSON documents that are stored in squashed form. To this
end, the semantics of τJUpdate HLOs can be defined in an alternative way, as
shown in the next subsection (the solution is inspired from our previous work
on updates to temporal XML data [7]).

4 Running Example Reprise

In this section, we resume the motivating example introduced in Sect. 2.2 to
illustrate some of the functionalities of τJUpdate.

First of all, starting from the initial state of the device repository containing
only the slice in Fig. 1, the second slice in Fig. 2 can be added via the execution
of the following sequence of τJUpdate HLOs:

INSERT INTO deviceTJD.json
PATH $.devices[last]
VALUE { "device":{ "name":"CameraXYZ", "costPrice":42 } }
VALID from "2022-04-15";
UPDATE deviceTJD.json
PATH $.devices[device.name="CameraABC"].costPrice
VALUE $.devices[device.name="CameraABC"].costPrice * 1.08
VALID from "2022-04-15"

The first one is an example of InsertValue HLO that inserts CameraXYZ’s data,
while the second one is an example of UpdateValue HLO that increases Camer-
aABC’s cost price. The result of this HLO sequence corresponds to the temporal
JSON document in Fig. 3 completed by the slices in Fig. 1 and Fig. 2, and which
has been shown in squashed form in Fig. 4.

As an example of DeleteValue HLO, we can consider the τJUpdate HLO (S3)
in Sect. 2.2, deleting CameraABC’s data effective from 2022-05-25. As an exam-
ple of RenameMember HLO, we can consider changing the name of the “devices”
object to “products”, also valid from 2022-05-25. Notice that such an operation
could be more properly considered as a conventional JSON schema change, as it
acts on metadata rather than on data and, thus, could be better effected using the
high-level JSON schema change operation RenameProperty, acting on the conven-
tional JSON schema, we previously defined in [5], which is automatically propa-
gated to extant conventional JSON data. However, as part of τJUpdate, we can
also consider it a JSON data update that propagates indeed to the JSON schema
by means of the implicit JSON schema change mechanism that we have proposed
in [4]. The global effects in the τJSchema framework, anyway, are exactly the
same. Such updates can be performed via the following τJUpdate HLOs:

DELETE FROM deviceTJD.json
PATH $.devices[device.name="CameraABC"]
VALID from "2022-05-25";
ALTER DOCUMENT deviceTJD.json
OBJECT $.devices
RENAME MEMEBER devices TO products
VALID from "2022-05-25"

The result of this HLO sequence is the new temporal JSON document shown in
Fig. 6 with the new slice shown in Fig. 7.

260 Z. Brahmia et al.

Fig. 6. The new temporal JSON document representing the whole history of the device
repository (file deviceTJD.json).

Fig. 7. The final state of the device repository (file device3.json).

As a side effect of the RenameMember HLO requiring an implicit JSON
schema change, two conventional JSON schema versions are included in the
new temporal JSON document (without entering into the whole details,
deviceCJS1.json is the conventional JSON schema version having “devices”
as its root object, whereas deviceCJS2.json is the conventional JSON schema
version having “products” as its root object). As a consequence, squashing of
the temporal JSON document in Fig. 6 produces two squashed JSON docu-
ments: deviceSJD1.json shown in Fig. 8, which is conformant to the first con-
ventional JSON schema version deviceCJS1.json, and deviceSJD2.json shown in
Fig. 9, which is conformant to the second conventional JSON schema version
deviceCJS2.json. Changes are evidenced with red color.

τJUpdate: A Temporal Update Language for JSON Data 261

Fig. 8. The squashed JSON document (file deviceSJD1.json) corresponding to the first
conventional JSON schema version deviceCJS1.json. (Color figure online)

Fig. 9. The squashed JSON document (file deviceSJD2.json) corresponding to the
second conventional JSON schema version deviceCJS2.json. (Color figure online)

5 Conclusion

In this paper, we have proposed τJUpdate, a temporal extension of the JUpdate
language by equipping JUpdate update HLOs with a VALID clause to specify
the applicability period of the update operations, in the τJSchema framework.
Ignoring the VALID clause, any τJUpdate HLO is exactly the same as the corre-
sponding JUpdate HLO to be executed in a non-temporal environment. Indeed,
by taking advantage of the τJSchema logical and physical independence feature,
our goal was to help the users by allowing them to focus only on the data struc-
ture as defined in the conventional JSON schema, and ignore how data are struc-
tured in the temporal JSON schema. Hence, implementation details and their
transparent management are left to the system. Moreover, any τJUpdate HLO
could be specified either on the temporal JSON document or on its squashed ver-
sion; the system is able to correctly manage both ways, via the use of temporal
(logical and physical) characteristics. We have also shown in Sect. 3.1 how the
τJUpdate semantics can be defined to correctly deal with temporal JSON docu-
ments physically stored according to both forms (i.e., unsquashed and squashed
forms).

Moreover, since JSON databases [16] are document-oriented NoSQL
databases [10,25], which are in general schemaless, a JSON instance document
could be, at the end of an update operation, not conformant to its initial JSON
schema. To cover this aspect, we have also dealt with JSON data updates that
require implicit JSON schema changes (exemplified with the RenameMember

262 Z. Brahmia et al.

HLO). Hence, in such a situation, τJUpdate executes implicit changes to con-
ventional JSON schema, in a way transparent to the user, before performing
temporal updates on conventional JSON data.

In the future, we envisage to extend τJUpdate to also support updating
transaction-time and bitemporal JSON data, in τJSchema, as in the present
work we have dealt only with valid-time JSON data. Finally, we plan to develop
a tool that supports τJUpdate, in order to show the feasibility of our proposal
and to use it in the experimental evaluation of our language (e.g., involving
usability, user-friendliness and performance).

References

1. Bourhis, P., Reutter, J., Vrgoč, D.: JSON: data model and query languages. Inf.
Syst. 89, 101478 (2020)

2. Brahmia, S., Brahmia, Z., Grandi, F., Bouaziz, R.: τJSchema: a framework for
managing temporal JSON-based NoSQL databases. In: Hartmann, S., Ma, H. (eds.)
DEXA 2016. LNCS, vol. 9828, pp. 167–181. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44406-2 13

3. Brahmia, S., Brahmia, Z., Grandi, F., Bouaziz, R.: A disciplined approach to tem-
poral evolution and versioning support in JSON data stores. In: Emerging Tech-
nologies and Applications in Data Processing and Management, pp. 114–133. IGI
Global (2019)

4. Brahmia, Z., Brahmia, S., Grandi, F., Bouaziz, R.: Implicit JSON schema version-
ing driven by big data evolution in the τJSchema framework. In: Farhaoui, Y. (ed.)
BDNT 2019. LNNS, vol. 81, pp. 23–35. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-23672-4 3

5. Brahmia, Z., Brahmia, S., Grandi, F., Bouaziz, R.: Versioning schemas of JSON-
based conventional and temporal big data through high-level operations in the
τJSchema framework. Int. J. Cloud Comput. 10(5–6), 442–479 (2021)

6. Brahmia, Z., Brahmia, S., Grandi, F., Bouaziz, R.: JUpdate: a JSON update lan-
guage. Electronics 11(4), 508 (2022)

7. Brahmia, Z., Grandi, F., Bouaziz, R.: τXUF: a temporal extension of the XQuery
update facility language for the τXSchema framework. In: Proceedings of the
23rd International Symposium on Temporal Representation and Reasoning (TIME
2016), Technical University of Denmark, Copenhagen, Denmark, 17–19 October
2016, pp. 140–148 (2016)

8. Burns, T., et al.: Reference model for DBMS standardization, database architecture
framework task group (DAFTG) of the ANSI/X3/SPARC database system study
group. SIGMOD Rec. 15(1), 19–58 (1986)

9. Currim, F., Currim, S., Dyreson, C., Snodgrass, R.T.: A tale of two schemas:
creating a temporal XML schema from a snapshot schema with τXSchema. In:
Bertino, E., et al. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 348–365. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24741-8 21

10. Davoudian, A., Chen, L., Liu, M.: A survey on NoSQL stores. ACM Comput. Surv.
(CSUR) 51(2), 1–43 (2018)

11. Goyal, A., Dyreson, C.: Temporal JSON. In: 2019 IEEE 5th International Confer-
ence on Collaboration and Internet Computing (CIC 2019), pp. 135–144 (2019)

12. Grandi, F.: Temporal databases. In: Encyclopedia of Information Science and Tech-
nology, Third Edition, pp. 1914–1922. IGI Global (2015)

https://doi.org/10.1007/978-3-319-44406-2_13
https://doi.org/10.1007/978-3-319-44406-2_13
https://doi.org/10.1007/978-3-030-23672-4_3
https://doi.org/10.1007/978-3-030-23672-4_3
https://doi.org/10.1007/978-3-540-24741-8_21

τJUpdate: A Temporal Update Language for JSON Data 263

13. Hu, Z., Yan, L.: Modeling temporal information with JSON. In: Emerging Tech-
nologies and Applications in Data Processing and Management, pp. 134–153. IGI
Global (2019)

14. Internet Engineering Task Force: JSON Schema: A Media Type for Describing
JSON Documents, Internet-Draft, 19 March 2018. https://json-schema.org/latest/
json-schema-core.html

15. Internet Engineering Task Force: The JavaScript Object Notation (JSON) Data
Interchange Format, Internet Standards Track document, December 2017. https://
tools.ietf.org/html/rfc8259

16. Irshad, L., Ma, Z., Yan, L.: A survey on JSON data stores. In: Emerging Technolo-
gies and Applications in Data Processing and Management, pp. 45–69. IGI Global
(2019)

17. Irshad, L., Yan, L., Ma, Z.: Schema-based JSON data stores in relational databases.
J. Database Manag. (JDM) 30(3), 38–70 (2019)

18. ISO/IEC, Information technology − Database languages − SQL Technical Reports
− Part 6: SQL support for JavaScript Object Notation (JSON), 1st Edition, Tech-
nical report ISO/IEC TR 19075-6:2017(E), March 2017. http://standards.iso.org/
ittf/PubliclyAvailableStandards/c067367 ISO IEC TR 19075-6 2017.zip

19. Jensen, C., Snodgrass, R.: Temporal database. In: Liu, L., Özsu, M.T. (eds.) Ency-
clopedia of Database Systems, 2nd edn., pp. 3945–3949. Springer, New York (2018).
https://doi.org/10.1007/978-1-4614-8265-9 395

20. Liu, Z.: JSON data management in RDBMS. In: Emerging Technologies and Appli-
cations in Data Processing and Management, pp. 20–44. IGI Global (2019)

21. Liu, Z., Hammerschmidt, B., McMahon, D.: JSON data management: supporting
schema-less development in RDBMS. In: Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (SIGMOD 2014), Snowbird, UT,
USA, 22–27 June 2014, pp. 1247–1258 (2014)

22. Lv, T., Yan, P., Yuan, H., He, W.: Linked lists storage for JSON data. In: 2021
International Conference on Intelligent Computing, Automation and Applications
(ICAA 2021), pp. 402–405 (2021)

23. Melton, J., et al.: SQL/JSON part 1, DM32.2-2014-00024R1, 6 March 2014.
https://www.wiscorp.com/pub/DM32.2-2014-00024R1 JSON-SQL-Proposal-1.
pdf

24. Michels, J., et al.: The new and improved SQL:2016 standard. ACM SIGMOD
Rec. 47(2), 51–60 (2018)

25. NoSQL Databases List by Hosting Data − Updated 2020. https://hostingdata.co.
uk/nosql-database/

26. Petković, D.: SQL/JSON standard: properties and deficiencies. Datenbank-
Spektrum 17(3), 277–287 (2017)

27. Petković, D.: Implementation of JSON update framework in RDBMSs. Int. J.
Comput. Appl. 177, 35–39 (2020)

28. Snodgrass, R.T., et al. (eds.): The TSQL2 Temporal Query Language. Kluwer
Academic Publishing, New York (1995)

29. Zemke, F., et al.: SQL/JSON part 2 − Querying JSON, ANSI INCITS
DM32.2-2014-00025r1, 4 March 2014. https://www.wiscorp.com/pub/DM32.2-
2014-00025r1-sql-json-part-2.pdf

https://json-schema.org/latest/json-schema-core.html
https://json-schema.org/latest/json-schema-core.html
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259
http://standards.iso.org/ittf/PubliclyAvailableStandards/c067367_ISO_IEC_TR_19075-6_2017.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c067367_ISO_IEC_TR_19075-6_2017.zip
https://doi.org/10.1007/978-1-4614-8265-9_395
https://www.wiscorp.com/pub/DM32.2-2014-00024R1_JSON-SQL-Proposal-1.pdf
https://www.wiscorp.com/pub/DM32.2-2014-00024R1_JSON-SQL-Proposal-1.pdf
https://hostingdata.co.uk/nosql-database/
https://hostingdata.co.uk/nosql-database/
https://www.wiscorp.com/pub/DM32.2-2014-00025r1-sql-json-part-2.pdf
https://www.wiscorp.com/pub/DM32.2-2014-00025r1-sql-json-part-2.pdf

Author Index

Ait Wakrime, Abderrahim 119
Al-Atabany, Walid 58
Alnaggar, Yara Ali 16
Amer, Karim 16
Awad, Ahmed 43, 147

Baazouzi, Wiem 236
Barakat, Rameez 162
Belguidoum, Meriem 176
Belhassena, Amina 193
Benaini, Redouane 119
Bernardo, Guillermo de 207
Bertout, Antoine 133
Bouaziz, Rafik 250
Bouba, Khaoula 119
Boudaoud, Abdelkrim 222
Brahmia, Safa 250
Brahmia, Zouhaier 250
Brisaboa, Nieves R. 207

Chikh, Azeddine 222
Corral, Antonio 207

El Seknedy, Mai 102
Elattar, Mustafa 26
Elattar, Mustafa A. 89
Elden, Rana Hossam 58
Elhelw, Mohamed 16
Elkafrawy, Passent 43
Eltabey, Ayaalla 89

Faiz, Sami 236
Fawzi, Sahar Ali 102
Ferrarotti, Flavio 72
Fetteha, Marwan A. 3

Gad, Eyad 26
Gamal, Aya 26
Ghoneim, Vidan Fathi 58
Gourari, Aya 176

Grandi, Fabio 250
Grolleau, Emmanuel 133

Hadhoud, Marwa M. A. 58
Hassanein, Ehab E. 147
Hattenberger, Gautier 133
Helal, Iman M. A. 147
Hongzhi, Wang 193

Jamal, Salma 89

Kachroudi, Marouen 236
Kamni, Soulimane 133
Kassem, Aly M. 89
Kaufmann, Daniela 72
Khaled, Salma 89

Mahfoud, Houari 222
Mahgoub, Mahmoud 43
Medhat, Walaa M. 162
Mohamed, Samah 89
Moharram, Hassan 43

Naeem, ElSayed 16

Osama, Alaa 89
Ouhammou, Yassine 119, 133

Penabad, Miguel R. 207

Radwan, Ahmed G. 3
Radwan, Moataz-Bellah A. 162

Said, Lobna A. 3
Sayed, Wafaa S. 3
Sebaq, Ahmad 16
Sehili, Ines 176
Selim, Sahar 26
Sochor, Hannes 72

Yousef, Ahmed H. 162

Zaki, Nesma M. 147

	 Preface
	 Organization
	Abstracts of Invited Talks
	 A Service-Based Approach to Drone Service Delivery in Skyway Networks
	 Broad and Deep Learning of Big Heterogeneous Health Data for Medical AI: Opportunities and Challenges
	 Contents

	Image Processing and Diagnosis
	Chaos-Based Image Encryption Using DNA Manipulation and a Modified Arnold Transform
	1 Introduction
	2 Preliminaries
	2.1 Hyperchaotic Lorenz System
	2.2 DNA Coding
	2.3 Arnold Transform

	3 Proposed Algorithm
	3.1 Modified Arnold Transform
	3.2 Encryption Process
	3.3 Decryption Process

	4 Performance Evaluation
	4.1 Encryption Quality Metrics
	4.2 Correlation Analysis
	4.3 Information Entropy
	4.4 Key Space and Sensitivity Analysis
	4.5 Robustness Against Differential Attacks

	5 Conclusion
	References

	Rice Plant Disease Detection and Diagnosis Using Deep Convolutional Neural Networks and Multispectral Imaging
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Hardware Components
	3.2 Data Collection Mobile Application
	3.3 Analytics Engine Module

	4 Experimental Evaluation
	4.1 Dataset
	4.2 Training Configuration

	5 Conclusion
	References

	A Novel Diagnostic Model for Early Detection of Alzheimer’s Disease Based on Clinical and Neuroimaging Features
	1 Introduction
	2 Materials and Methods
	2.1 Proposed Model
	2.2 Dataset
	2.3 Data Preprocessing
	2.4 Feature Extraction
	2.5 Classification Approaches
	2.6 Performance Evaluation
	2.7 Performance Optimization

	3 Results
	4 Conclusion
	References

	Machine Learning and Optimization
	Benchmarking Concept Drift Detectors for Online Machine Learning
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Benchmark Setup
	3.1 Datasets
	3.2 Benchmarked Algorithms
	3.3 Metrics

	4 Results
	4.1 Drift Detection Accuracy
	4.2 Runtime
	4.3 Memory Consumption

	5 Conclusion and Future Work
	References

	Computational Microarray Gene Selection Model Using Metaheuristic Optimization Algorithm for Imbalanced Microarrays Based on Bagging and Boosting Techniques
	1 Introduction
	2 Methodology
	2.1 Emperor Penguin Optimization (EPO)
	2.2 Adaptive Synthetic Sampling Approach (ADASYN)
	2.3 Random Forest Classifier (RF)
	2.4 EPO for Feature Selection

	3 Experimental Results and Discussion
	4 Conclusion
	References

	Fuzzing-Based Grammar Inference
	1 Introduction
	2 Preliminaries
	3 Algorithm
	3.1 Learning Context-Free Grammars
	3.2 Example
	3.3 Application in Grammar-Based Fuzzing

	4 Experiments and Evaluation
	5 Related Work
	6 Conclusion
	References

	Natural Language Processing
	In the Identification of Arabic Dialects: A Loss Function Ensemble Learning Based-Approach
	1 Introduction
	2 Related Work
	3 Dataset
	4 Methods
	4.1 Data Preprocessing
	4.2 Pre-trained Models
	4.3 Loss Functions
	4.4 Proposed Ensemble Learning Model

	5 Results and Discussion
	5.1 Experimental Results
	5.2 Discussion

	6 Conclusion and Future Works
	References

	Emotion Recognition System for Arabic Speech: Case Study Egyptian Accent
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Datasets
	3.2 Features Extraction
	3.3 Features Importance
	3.4 Feature Scaling
	3.5 Machine Learning Models
	3.6 Evaluation Metrics

	4 Results and Discussions
	4.1 Corpus Survey Analysis
	4.2 Speech Emotion Recognition Experiments

	5 Conclusion
	References

	Modelling
	Towards the Strengthening of Capella Modeling Semantics by Integrating Event-B: A Rigorous Model-Based Approach for Safety-Critical Systems
	1 Introduction
	2 Related Works and Preliminaries
	2.1 Background
	2.2 Overview of Capella and Event-B
	2.3 Motivating Example: Adaptive Exterior Light System

	3 Proposed Approach
	3.1 Preparatory Step
	3.2 Transformation Step

	4 Tooling
	5 Conclusion and Future Works
	References

	A Reverse Design Framework for Modifiable-off-the-Shelf Embedded Systems: Application to Open-Source Autopilots
	1 Introduction
	2 Background and Work Positioning
	2.1 COTS and MOTS
	2.2 Autopilots of Unmanned Aerial Vehicles
	2.3 UAV Autopilot Design
	2.4 Reverse Engineering
	2.5 Capella in a Nutshell

	3 Model-Based Reverse-Engineering Framework
	3.1 Overview
	3.2 Extraction
	3.3 Visualisation

	4 The Framework Implementation
	4.1 Extraction Part
	4.2 Visualisation Part

	5 Validation
	6 Conclusion
	References

	Efficient Checking of Timed Ordered Anti-patterns over Graph-Encoded Event Logs
	1 Introduction
	2 Background
	2.1 Events, Traces, Logs, and Graphs
	2.2 Activity Order Patterns

	3 Related Work
	4 Graph-Encoded Event Logs for Efficient Compliance Checking
	4.1 Baseline: Multi-dimensional Graph Modeling (BM)
	4.2 Unique Activities (UA) Encoding

	5 Evaluation
	5.1 Implementation and Experimental Setup
	5.2 Results and Discussion

	6 Conclusion and Future Work
	References

	Trans-Compiler-Based Database Code Conversion Model for Native Platforms and Languages
	1 Introduction
	2 Literature Reviews
	2.1 Cross-platform Development Approaches
	2.2 Cross-platform Native-to-Native Tools Supporting Database Conversion

	3 Background
	4 Methodology
	4.1 Proposed Enhanced Methodology
	4.2 Proposed Enhanced Solution Architecture

	5 Results and Discussion
	5.1 The Percentage of the Successful Conversion of Firestore Code
	5.2 The Improvement of the Overall Conversion Rate for an Entire Application
	5.3 Comparison Between Conversion Runtime Before and After Supporting Firestore Code Conversion

	6 Conclusion and Future Work
	References

	MDMSD4IoT a Model Driven Microservice Development for IoT Systems
	1 Introduction
	2 Related Work
	3 The MDMSD4IoT Approach
	3.1 SysML4IoTMSA Profile
	3.2 IoTMSADev Method
	3.3 SysML2IoTMSA Code Generator

	4 A Case Study: UC2SmartClassroom
	4.1 Modelling Microservices-based IoT Systems
	4.2 Microservice Architecture Implementation

	5 Conclusion and Future Work
	References

	Database Systems
	Parallel Skyline Query Processing of Massive Incomplete Activity-Trajectories Data
	1 Introduction
	2 Related Work
	3 DMTR-Tree Index Overview
	4 Problem Statement of Skyline Trajectory Query
	5 An Optimized Trajectory Skyline Algorithm
	5.1 Short Trajectories Class
	5.2 Long Trajectories Class

	6 Experimental Evaluation
	6.1 The Performance of the Run-Time and Trajectory Visited Based on the Activity Keywords Number
	6.2 The Performance of the Run-Time and Trajectory Visited Based on the Distance Threshold

	7 Conclusion
	References

	Compact Data Structures for Efficient Processing of Distance-Based Join Queries
	1 Introduction
	2 Background and Related Work
	2.1 Distance-Based Join Queries - KCPQ and DJQ
	2.2 k2-tree

	3 Our Approach to DJQs Using k2-trees
	4 Experimental Results
	5 Conclusions and Future Work
	References

	Towards a Complete Direct Mapping from Relational Databases to Property Graphs
	1 Introduction
	2 Preliminaries
	2.1 Relational Databases
	2.2 Property Graphs
	2.3 SQL Queries and Cypher Queries
	2.4 Direct Mapping (DM)

	3 Complete Mapping (CM)
	3.1 Schema Graph and Instance Graph
	3.2 Schema Mapping (SM)
	3.3 Instance Mapping (IM)

	4 Properties of CM
	4.1 Information Preservation
	4.2 Query Preservation
	4.3 Semantic Preservation

	5 Conclusion and Future Works
	References

	A Matching Approach to Confer Semantics over Tabular Data Based on Knowledge Graphs
	1 Introduction
	2 Key Notions
	3 Literature Review
	4 The Kepler-aSI Approach
	4.1 Preprocessing Module
	4.2 Query Engine Module
	4.3 External Resource Consultation Module
	4.4 KG_Candidates Filtering Module
	4.5 Annotation and File Generation Module

	5 Kepler-aSI Performance and Results
	5.1 Round 1
	5.2 Round 2
	5.3 Round 3

	6 Conclusion and Outlooks
	References

	JUpdate: A Temporal Update Language for JSON Data
	1 Introduction
	2 Background and Motivation
	2.1 The JSchema Framework
	2.2 Motivating Example

	3 The JUpdate Language
	3.1 Syntax and Semantics of JUpdate Update HLOs

	4 Running Example Reprise
	5 Conclusion
	References

	Author Index

