
Zero-Point Energy of Compressed Rare-Gas
Crystals in the Model of Deformable Atoms

Ie. Ie. Gorbenko1, E. A. Pilipenko2(B), I. A. Verbenko3, and E. V. Glazunova3

1 Lugansk State Pedagogical University, Lugansk, Ukraine
2 Donetsk A. A. Galkin Physics and Technology Institute, Donetsk, Ukraine

pilipenko.katerina@mail.ru
3 Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia

Abstract. The lattice dynamics of compressed rare-gas crystals is theoretically
investigated in themodel of deformable and polarizable atoms, taking into account
the three-body interaction and deformation of the electron shells of dipole-type
atomswithin the pair and three-body approximations. Calculations of the energy of
phonons and zero-point vibrations for compressed rare-gas crystals are performed
at two and ten main value points of the Chadi-Cohen method in a wide range
of pressures. It is shown that the contribution of three-body forces due to the
overlapping of the electron shells of neighboring atoms is insignificant even at
high pressure and most noticeable for Xe. At the same time, the contribution of
the deformation of electron shells within the pair and three-body approximations
is more significant and increase with an increase in pressure.

Keywords: Rare-gas crystals (RGCs) · Three-body interaction · Electron shell
deformation · Phonon frequencies · Zero-point energy · High pressure

1 Introduction

Rare-gas crystals (RGCs) combine such features of ionic and valence crystals as the
closedness of atomic shells and at the same time the absence of charges in them. Thus, the
main role in the formation of bonds is played by the relatively weak van derWaals forces.
As an experiment showed, all RGCs under normal pressure are crystallized into the fcc
structure [1]. In contrast to Ne, which retains the fcc structure up to the metallization
pressure, heavier RGCs Ar, Kr and Xe, undergo structural fcc–hcp transitions under
pressure.However, early theoretical studies based on pair potentials, such as theLennard-
Jones potential, unambiguously predict the hexagonal close-packed (hcp) structure for
all RGCs [2, 3], resulting to the well-known “problem of RGCs structure” [4, 5]. The
difficulty of this problem is due to insignificant differences in energies between fcc and
hcp structures (≈ 0.01%of the binding energy) [6]. The use ofmore accurate potentials in
calculations still leads to a preference for the hcp structure even after taking into account
the three-body interaction, and only the inclusion of the zero-point energy changes the
situation in favor of the fcc structure [7–10].
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Not much better is obtained in ab initio calculations, based on the density func-
tional theory, although some of them have shown the fcc structure to be energetically
profitable at normal pressure [11–13]. This is due to the fact that the density functional
theory uses a model of rigid spherical atoms and does not take into account the polar-
izability. Therefore, the DFT is not able to calculate with sufficient accuracy two types
of dispersion forces: the long-range van der Waals interaction and the overlap effects in
the short-range interaction [14, 15]. At the same time, the quantum-theoretical method
provides an adequate description of both types of interaction with a sufficiently high
accuracy. In the work [16, 17] for Ne and Ar, an equation of state P(V ,T ) was obtained
using two- and three-, and four-body forces, as well as an anharmonic approximation
for lattice vibrations and temperature effects in the Einstein model.

Trombach et al. [18, 19], studied the formation of a solid structure from a gas or
liquid phase based on the Lennard-Jones potential. It has been shown that the extended
Lennard-Jones potential chosen based on the calculations of related clusters for rare-
gas dimer leads to an increase in the number of non-isomorphic clusters. The authors
believe that there is still a big discrepancy between theory and experiment, despite all
the advances in cluster physics.

Therefore, it is importantwhen ab initio calculating the zero-point energy, to take into
account both the many-body interaction in the short-range repulsion potential and long-
range van der Waals interaction, which is the result of mutual deforming and polarizing
actions of atoms.

In the work [20] a dynamic matrix was constructed in the model of deformable and
polarizable atoms (Tolpygo’s model see [21] and references there) taking into account
the three- body forces due to the overlap of electron shells, and the deformation of
the dipole type electron shells in the pair and three-body approximation. This made it
possible in the present work to calculate the phonon frequencies at the desired points in
the Brillouin zone and, using the Chadi-Cohen method, the zero-point energy of RGC
in a wide pressure range.

2 Dynamic Matrix of Rare-Gas Crystals

The potential energy U of the lattice obtained in the Tolpygo model (see overview [21]
and references there) have the form:
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The first two terms describe the deformation of electron shells in the dipole approx-
imation (α is the polarizability coefficient of the atom). The next term gives the van
der Waals forces. K characterizes the Coulomb (in the classical sense) interaction of all
dipoles Pl with each other. The last term in (1) is the short-range repulsion Esr , which
contains the three-body interaction due to the deformation of atomic electron shells and
their overlap [22].
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The equations of lattice vibrations for the displacements of atoms ul and their dipole
moments Pl can be written as

meü
l
α = − ∂U

∂ulα
,

∂U

∂Pl
α

= 0, (2)

where me is the mass of electron. Differentiating Eq. (2), substituting all variables pl =
eul, Pl in the form of plane waves exp{ikr − iωt}, and summing over l′l′′′, one can
obtain an equation for amplitudes pα, Pα with the inclusion of the considered three-body
interaction.

Equation (2) for determining the eigenfrequencies ωλk, are conveniently written as
two groups of equations

Mω2
λkpα =

∑

β

(Aαβpβ + BαβPβ), (3)

mω2
λkPα =

∑

β

(
B∗

βαpβ + CαβPβ

)
, (4)

where M is the atomic mass and m is some “fictive” mass on the order of the electron
shell mass, which is introduced only for the calculation convenience, because the diago-
nalization of a 6-by-6 matrix is technically simpler than the procedure for excluding all
dipoles P from the second group of equations at m = 0, as is required by the adiabatic
approximation.

Thus, it is convenient to introduce a matrix:

D =
(
D(1) D(2)

D(2) D(3)

)
, (5)

each element of which is a 3-by-3 matrix:

D(1) =
⎛

⎝
A11(k) A12(k) A13(k)

A21(k) A22(k) A23(k)

A31(k) A32(k) A33(k)

⎞

⎠. (6)

Similarly, for matrices D(2)
(
Bαβ(k)

)
and D(3)

(
Cαβ(k)

)
(see details [20]).

As an example, we present the elements of the matrix D(1), in which taken into
account the three-body forces in the short-range repulsive potential due to the overlap
of atomic electron shells. The diagonal matrix elements have the form:

A11(k) = Axx(k) = e2

a3
[(H0 + δH )μ(k) + (G0 + δG)νx(k) + Fξ(k) + Eζx(k) + Vtϑx(k) + Bχxx(k)],

(7)
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and similarly, for the other matrix elements, bearing in mind that 1 → x, 2 → y and
3 → z, 4 → x, etc. The off-diagonal elements are

A12(k) = A21(k) = Axy(k) = e2

a3
[
(G0 + δG)τxy(k) + Bχxy(k)

]
,

A13(k) = A31(k) = Axz(k) = e2

a3
[(G0 + δG)τxz(k) + Bχxz(k)],

A23(k) = A32(k) = Ayz(k) = e2

a3
[
(G0 + δG)τyz(k) + Bχyz(k)

]
.

(8)

μ(k) = 3 − 1

2

∑

γ �=δ

cos kγ cos kδ; να(k) = 2 − cos kα

∑

γ �=α

cos kγ ; ταβ(k) = sin kα sin kβ ;

ξ(k) = 3 −
∑

γ

cos 2kγ ; ζα(k) = 1 − cos 2kα; ϑα(k) = 1 − cos kα+1 cos kα+2; k = a K = πq.

Here, k is the dimensionless wave vector; H0(a
√
2) and G0(a

√
2) are, respectively, the

first and second derivatives of the short-range repulsion pair potential for the equilibrium
distances of the first neighbors; by analogy, for the second neighbors F = H0(2a) and
E = G0(2a); B determines the van der Waals interaction. Parameters δG, δH and Vt

describe the three-body short-range forces due to the electron shell overlap of atoms (see
[21] and references therein). χαβ(k) are the functions of the wave vector k originated
from the van der Waals forces. They do not depend on specific parameters of crystal and
are identical for all materials with the same lattice type. The exactly calculated sums of
χαβ(k) for two and ten mean-value points were presented in [23].

Note that elements of thematrixD(2) contain the deformation of the electron shell for
dipole-type atoms within the pair and three-body approximations. Thus, diagonalization
of the dynamic matrix D will give us phonon frequencies at any point in the Brillouin
zone, for example at the mean-value points of the Chadi–Kohen method [24].

3 Phonon Frequencies at the Mean-Value Points

All parameters of the short-range action, both pair and three-body, are calculated exactly
[21]. When determining the van der Waals constant, one should take into account the
equilibrium condition:

H0 + δH + 2F − 2Rt = 0.30112B, (9)

where
Rt = − a

6e2
dW3(a)

da ;W3(a) = −24S2(a
√
2)f (

√
6
2 a); S is the overlapping integral.

The paper [22] presents the values of the parameters of pair short-range action G0,
H0, E, F, three-body interaction δH , δG, Vt , dipole deformation, and van der Waals
parameter B under various compressions u = �V /V0, �V = V0 − V (p) (where V0 is
the volume at p = 0) for the Ne – Xe series.

The phonon frequencies �ωλ(ki) calculated within the models MT0 (the three-body
interaction due to the electron shell overlapping is taken into account and the deformation
of atomic electron shells is disregarded) and MT2 (the three-body forces due to the
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Table 1 Phonon frequencies �ωλk [meV] in models MT0 and MT2 and relative contribution
of the effects of electron shell deformation within the pair and three-body approximations γ 1 at
different degrees of compression u for Ar at the ten mean-value points of the Chadi-Kohenmethod

Theory �ωλk in model MT0 �ωλk in model MT2 γ1, %

0 0.3 0.6 0.71 0 0.3 0.6 0.71 0 0.3 0.6 0.71

k, λ p, GPa

0 4.4 97.92 405.2 0 4.4 97.92 405.2 0 4.4 97.92 405.2

k1[7/8;3/8;1/8] 5.30 12.83 40.66 74.48 5.29 12.8 40.42 54.41 0.12 0.27 0.59 26.95

6.62 16.39 52.16 94.75 6.59 16.17 47.85 71.15 0.4 1.3 8.27 24.9

7.71 19.41 62.36 113.46 7.66 18.97 52.74 74.78 0.66 2.24 15.41 34.09

k2[7/8;1/8;1/8] 5.46 13.14 41.06 74.39 5.45 13.09 40.57 45.17 0.15 0.37 1.2 39.28

5.91 14.42 45.49 82.55 5.9 14.32 43.82 73.04 0.24 0.72 3.66 11.52

8.16 20.65 66.54 121.14 8.1 20.12 54.76 75.1 0.76 2.58 17.71 38

k3[5/8;5/8;1/8] 4.53 10.76 33.82 62.15 4.53 10.75 33.67 50.68 0.03 0.02 0.44 18.46

6.33 15.71 50.07 90.96 6.31 15.53 46.24 58.8 0.36 1.19 7.65 35.36

7.76 19.69 63.77 116.56 7.71 19.22 53.44 72.2 0.71 2.39 16.2 38.06

k4[5/8;3/8;3/8] 4.14 9.78 30.63 56.21 4.14 9.78 30.34 33.63 0.02 0 0.94 40.16

4.57 11.01 34.82 63.81 4.56 10.99 34.81 51.13 0.06 0.11 0.03 19.88

8.25 21.18 69.02 126.37 8.18 20.57 55.46 63.67 0.86 2.88 19.65 49.62

k5[5/8;3/8;1/8] 4.49 10.46 32.6 59.8 4.49 10.46 32.49 57.33 0.04 0.03 0.32 4.12

5.63 13.65 42.88 77.56 5.62 13.55 41.05 57.78 0.23 0.72 4.28 25.5

7.92 19.71 63.5 116.06 7.88 19.28 53.98 70.46 0.62 2.21 14.99 39.29

k6[5/8;1/8;1/8] 4.61 11.18 34.8 62.84 4.65 11.15 34.53 62.13 0.79 0.26 0.8 1.13

4.81 11.77 36.97 67 4.85 11.73 36.35 63.37 0.79 0.38 1.68 5.41

7.04 18.29 59.67 109.44 7.09 17.93 52.19 69.56 0.65 1.95 12.53 36.44

k7[3/8;3/8;3/8] 3.52 8.25 25.86 47.72 3.52 8.25 25.23 38.49 0 0.02 2.43 19.34

3.52 8.25 25.86 47.72 3.52 8.25 25.23 38.49 0 0.02 2.43 19.34

7.8 20.13 65.84 120.67 7.74 19.61 54.38 50.23 0.79 2.61 17.41 58.38

k8[3/8;3/8;1/8] 3.01 7.01 22.2 41.62 3.01 7 21.15 26.74 0 0.1 4.75 35.75

4.22 10.24 32.05 57.85 4.22 10.21 31.59 55.32 0.11 0.3 1.41 4.37

6.68 17.27 56.56 103.83 6.39 16.94 49.78 67.27 0.57 1.86 11.98 35.22

k9[3/8;1/8;1/8] 3.01 7.21 22.7 41.5 3.01 7.21 22.69 41.18 0.02 0.03 0.05 0.77

3.2 7.64 23.68 42.65 3.2 7.64 23.64 42.62 0.04 0.09 0.17 0.06

5.31 13.83 45.53 83.86 5.3 13.67 42.26 66.91 0.36 1.15 7.18 20.21

k10[1/8;1/8;1/8] 1.46 3.42 10.72 19.77 1.46 3.42 10.67 19.08 0.01 0 0.45 3.53

1.46 3.42 10.72 19.77 1.46 3.42 10.67 19.08 0.01 0 0.45 3.53

3.16 8.27 27.18 49.87 3.16 8.24 26.46 1012.3 0.14 0.44 2.65 6.98

Avarage value 0.44 0.87 5.92 23.19
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electron shell overlapping and electron shell deformation for dipole-type atoms within
the pair and three-body approximations are taken into account) for Ar at compression
ratios in the range from 0 to 0.71 are listed in the Table 1.

γ1 = [|ω(MT0) − ω(MT2)|/ω(MT0)] · 100%
As can be seen from the Table 1, the phonon frequencies are quite sensitive to

the addition of the contribution of electron shell deformation in pair and three-body
approximations γ 1. It is varied, depending on the point in the Brillouin zone, from
0.06% to 58.38% at compression u = 0.71; however, its average value is 23.2%. Similar
tendency is observed for the other RGCs. The average value of γ 1 for Ne is 17% at u
= 0.76; 16.50% at u = 0.68 for Kr and 11.53% at u = 0.6 for Xe. The compression
limitations ui = 0.76; 0.71; 0.68; 0.6 are caused by the absolute instability of the fcc
lattice for Ne, Ar, Kr, and Xe, respectively [25].

4 Zero-Point Energy of Compressed Rare-gas Crystals

The binding energy of the crystals in the harmonic approximation are described by the
standard formulas:

Ecoh = Ezp + E∗ = NA�

(2π)3

∑

λ

∫
d3k�ωλ(k)

[
1

2
+ nλ(k)

]
.; nλ(k) = [

exp(�ωλ(k)/kBT ) − 1
]−1

(10)

Here, Ezp is the zero-point energy (it corresponds to the term of 1/2 in parentheses in
(10)), NA is the Avogadro number, � = 2a3 is the RGC unit-cell volume in the fcc
phase, a is the lattice parameter equal to a half of the cube edge, and kB is the Boltzmann
constant.

The integrals over the Brillouin zone are calculated with the use of the Chadi–Cohen
method [24]. This the method consists in replacing the integral over the Brillouin zone
by the sum of the values of the integrand at special points (the mean-value points)
determined by group-theoretical methods [26].

In work [24] proposed the method for generating these points with the use of two
mean-value points k1 and k2 in order to determine f(k) for the crystal:

f (k) = 1

4

[
3f (k1) + f (k2)

]
,k1 =

[
3

4
; 1
4
; 1
4

]
,k2 =

[
1

4
; 1
4
; 1
4

]
(11)

Then, the zero-point energy calculated according to the two-point scheme (11) of
the Chadi Cohen method has the form:

Ezp = 1

2

[
3

4

∑

λ

�ωλ(k1) + 1

4

∑

λ

�ωλ(k2)

]
. (12)

Figure 1 shows the dependences of the energy of zero-point energy Ezp on the
compression ratio of crystals from the Ne – Xe series according to calculations in the
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MT0 model without regard for the electron shell deformation and the MT2 model with
due regard for the electron shell deformation for dipole-type atoms within the pair and
three-body approximations.

It can be seen that the largest difference between themodels is observed for crystalline
Ar and manifests itself at u > 0.5 for Ne, Ar, and Kr. For Xe, it is insignificant for the
entire compression range.

Table 2 presents the calculation of the zero-point energy according to the two-point
Chadi-Cohen scheme in models M3 (pair interaction in the short-range repulsion poten-
tial without taking into account the deformation of the atomic electron shells), M3a (pair
interaction taking into account the deformation of the atomic electron shells within the
pair approximation), MT0 and MT2. As can be seen with increasing pressure (compres-
sion), the contribution of the deformation of the electron shells of dipole type atoms
within the pair and three-body approximation (γ1) to the zero-point energy increases.
Comparisons of the calculation results in the models M3, MT0 (γ2) and M3a, MT2 (γ3)
shows that the relative contributions from three-body forces due to the overlap of the
electron shells (γ2) are small and increase slightly with an increase in pressure only for
Kr and Xe. The effect of both types of the three-body interaction on Ezp is more signifi-
cantly γ3 > γ2 for the entire compression interval. The behavior of γi for the zero-point

Fig. 1 Dependence of the zero-point energy Ezp on compression u for (1) Ne, (2) Ar, (3) Kr, and
(4) Xe; Ezp values are calculated in (1 – 4) model MT0 and (1’ – 4’) model MT2
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Table 2 Zero-point energy Ezp [K], calculated according to the two-point Chadi – Kohen scheme
in models M3, M3a, MT0, and MT2 and relative contributions of the three-body interaction and
effects of electron shell deformation γ i [%] at different degrees of compression for Ne – Xe series

u Ezp γ1 γ2 γ3

MT0 MT2 M3 M3a

Ne

0 79.309 79.185 79.457 79.356 0.34 0.19 0.22

0.3 205.261 204.203 205.473 204.597 0.51 0.1 0.19

0.6 695.224 669.079 696.367 674.852 3.75 0.16 0.86

0.7 1200.4 1081.43 1203.27 1106.64 9.69 0.24 2.28

0.76 1767.08 1386.29 1771.79 1474.12 21.76 0.27 5.96

Ar

0 96.758 96.39 97.401 97.122 0,380 0,661 0,754

0.3 239.766 236.757 241.35 239.073 1,255 0,657 0,969

0.5 493.283 474.079 497.186 482.733 3,893 0,785 1,793

0.6 766.364 703.433 772.878 726.082 8,212 0,843 3,119

0.71 1399.43 1021.53 1410.92 1152.17 27,004 0,814 11,339

Kr

0 73.152 72.641 73.967 73.639 0,699 1,101 1,355

0.3 166.604 163.271 168.854 166.722 2,001 1,333 2,070

0.5 313.05 296.977 318.69 308.519 5,134 1,770 3,741

0.6 457.506 413.889 466.756 439.682 9,534 1,982 5,866

0.68 656.201 533.5 670.137 597.387 18,699 2,079 10,694

Xe

0 63.074 62.823 64.045 63.895 0,398 1,516 1,678

0.3 133.725 131.364 135.78 135.074 1,766 1,514 2,747

0.4 169.86 167.74 174.988 173.734 1,248 2,930 3,450

0.5 218.946 214.531 227.526 224.997 2,017 3,771 4,651

0.6 286.495 271.761 300.993 293.426 5,143 4,817 7,384

γ1 = [∣∣Ezp(MT0) − Ezp(MT2)
∣∣/Ezp(MT0)

] · 100% is the contribution from the electron shell
deformation within the pair and three-body approximations;

γ2 = [∣∣Ezp(M 3) − Ezp(MT0)
∣∣/Ezp(M 3)

] · 100% is the contribution from three-body forces
related to the electron shell overlapping;

γ3 = [∣∣Ezp(M 3a) − Ezp(MT2)
∣∣/Ezp(M 3a)

] · 100% is the contribution from both types of three-
body forces due to the electron shell overlapping and deformation.
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energy Ezp of compressed RGCs is close to that of the average γi, values obtained in
calculations of the phonon frequency energy.

Unfortunately, we know experimental data on the zero-point energy Ezp for Ne, Ar
and Kr only at p = 0 [27, 28]. In our work, the zero-point energy Ezp in model MT2
for Ne is 79.185 K. The experimental zero-point energy for Ne is Ezp = 78.5 [28]. The
error in our calculations as compared to the experimental value is approximately equal
to 1.4%.

The experimental zero-point energy is Ezp = 86.1 ± 2.5 K for Ar [27] (the discrep-
ancy is γ = 11.95%) and 67.4 ± 3 K for Kr [27] (the discrepancy is γ = 7.77%). The
worst consistency between our and experimental Ezp values is for Ar; although, it should
be taken into account that the experimental error is 3% for Ar and 4% for Kr.

The zero-point energy was calculated in [9] for the entire Ne – Xe series in the
Debye model from the formula: (9/8)kBTDebye [29] (the Debye temperature was taken
from [30]) at p = 0. The discrepancy between the calculated and experimental values
was obtained for Ne (Ezp = 267 μHartree (μH) = 84.312 K (1 H = 2 Ry = 31.5777
× 104 K)); Ar (Ezp = 328 μH = 103.6 K) and Kr (Ezp = 257 μH = 81.16 K). It was
equal to 7%, 20%, 20%, respectively, that is, it was in much worse agreement with the
experiment as compared to our values.

Note that our best the zero-point energy Ezp value were obtained in model MT2,
which take into account the three-body interaction and deformation of dipole-type atomic
electron shells within the pair and three-body approximations.

5 Conclusions

Schwerdtfeger et al. [16], using the quantum-theoretical method, conducted studies of
the influence of the many-body forces, the energy of zero-point vibration and anhar-
monism on the equation of state of crystalline Ar. The dynamic part was calculated in
the approximation of Debye and Einstein. The quantitative analysis showed that pair
forces make the greatest influence, regardless of pressure. It was also found that it is
enough to take into account the contribution of three-body forces at pressures up to 20
GPa to obtain good agreement with the experiment. At the same time, at high pressure,
the situation is different. A significant discrepancy between theoretical and experimental
data is observed at a pressure of 20–100 GPa, which may indicate the need to include
four-, five- and more body forces. This contradicts the authors’ previous results obtained
in the calculation of the equations of state for Ne [17], where for good agreement with
the experimental data, it is sufficient to confine oneself to the consideration of pair and
three-body forces.

Our study of phonon frequencies for Ar at ten mean-value points showed that the
contribution of three-body forces due to the electron shells overlap was small against
the background of pair interaction, and the effects of electron shell deformations within
the pair and three-body approximation (γ1) differ for different main-value points. As
can be seen from Table. 1 the contribution for electron shell deformations is varied
from 0% to 0.86% under compression u = p = 0, and from 0.06% to 58.4% at u =
0.71. Note that the average value of the contribution increases with increase in pressure
from 0.44% to 23.9%. Since the zero-point energy is an integral function of phonon
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frequencies, the contribution of the electron shell deformations within the pair and three-
body approximation is close to the average contribution to phonon frequencies.

In conclusion, it is worth noting that the influence of electron shells deformation on
the zero-point vibrations energy is not as pronounced as, for example, when softening
phonon frequencies at the “critical” points of the Brillouin zone [25]. However, taking
into account the deformation of electron shells is fundamentally important for a correct
description of the van der Waals attraction potential.
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