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Abstract. A theoretical analysis of the models of inhomogeneous piezotexture,
describing bending deformations in an external electric field is carried out. Pre-
liminary studies of bending quasi-static deformations and bending vibrations,
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been performed. Comparisons of theoretical and experimental characteristics are
carried out. Estimates of the parameters of surface layers are given.
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1 Introduction

Bending vibrations of inhomogeneous ferropiezoelectric plates (bimorphs and
monomorphs) have attracted the attention of researchers in solving scientific problems
(in particular, mathematical modeling) and important practical applications. Mathe-
matical and finite element models of non-uniform polarized piezotransducer are dis-
cussed, including implementation in finite-element (FE) package ACELAN. The results
of numerical studies of single-layer and multilayered transducers are present. The devel-
oped modeling workflow was designed relative to manufacturing process of multi-
layered transducers. The results were compared with theoretical model of piezoplate
and numerical experiments, performed in ANSYS [1]. Non-uniformly polarized piezo-
ceramic materials can be used in effective energy harvesting devices. Axisymmetric
and plane models of electric elastic bodies were studied using applied theory and finite
element method (FEM). Applied theory for devices made of parts with longitudinal and
transverse polarization was developed. It was based on bending of electric elastic plates
models [2]. Based on the applied theory of oscillations of a multilayer plate, which takes
into account the nonlinear distribution of the electric potential in the piezoelectric layers,
a study of the stress-strain state and electric field of the cantilever bimorph was carried
out. Such a nonlinear dependence arises when solving problems of finding the natural
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resonance frequencies and modes of vibration, or in the case of forced vibrations during
mechanical excitation, for some electrical boundary conditions [3].

An applied theory of cylindrical bending vibrations of a bimorph plate is devel-
oped, which takes into account the nonlinear distribution of the electric potential in
piezoelectric layers. Finite-element analysis of this problem showed that such a distri-
bution takes place by solving the problems of calculating the resonance frequencies and
vibration modes or in the case of forced oscillations caused by mechanical excitation,
when the electric potentials on the electrodes are zero. The quadratic distribution of
the electric potential, adopted in the work, showed good consistency of the results with
finite-element calculations for natural and steady-state oscillations for a given potential
difference when the electric potential distribution is close to linear [4].

In this study, the presence of piezotexture inhomogeneities is detected by bending
deformations, excited by an electric field. In this regard, we have undertaken studies of
bending deformations and bending vibrations, excited by an electric field in nominally
homogeneous piezoceramic plates. The results of the research are presented in this arti-
cle. Bending resonant oscillations, depending on temperature, the amplitude of exciting
field, the state of surface during polarization switching and aging are studied. Methods
for estimating the parameters of surface layers, according to experimental studies, have
been developed.

1.1 Research Purpose

The results of the study of bending vibrations of initially homogeneous ferroceramic
plates under the action of alternating electric fields are presented. The theoretical anal-
ysis of models of inhomogeneous piezotexture, describing bending deformations of
ferroplates in an external electric field, is carried out. The model [5] is considered in
detail, according to which bending deformations are caused by the presence of counter-
polarized near-electrode layers in the plate. Such layers can be formed in the area of
the rectifying contact by processing the sample with a strong alternating field. The
disadvantages of such a model are discussed.

1.2 Research Scope

At this study, we consider the following frameworks of the problem:

(i) description of bending deformations of piezoactive plates;
(ii) development of a model for describing bending deformations.

2 Research Method

2.1 Continuous Formulation of the Problem (First Model)

According to [5], the possibility of obtaining bending deformations of initially homo-
geneous piezoceramic plates is due to their semiconductor properties. The presence of
a metal (electrode)—semiconductor contact leads to the application of a potential dif-
ference to the electrodes of a ferroceramic plate (monomorph). It causes the appearance
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of an inhomogeneous electric field in thickness, the intensity of which increases sig-
nificantly near one of the electrodes (depending on the sign of the field and the type
of conductivity). With sufficiently strong fields, the near-electrode layer is polarized.
Obviously, the processing of such a sample with both AC and polarizing DC field leads
to the formation of counter-polarized near-electrode layers (an analogue of a bimorph),
with which the occurrence of bending deformations is associated.

1. Let us assume that bending deformations under the action of an electric field are due
to the inhomogeneous distribution over the thickness of the sample of the piezomodule
d31. In the case of the condition: d31(−z) = − d31(z), satisfied for the function d31(z),
the application of an electric field will lead to a clean bending of the plate (without
deformation of the median plane).

Let us consider, in accordance with [6], the case of a long thin rectangular plate. The
deformation at an arbitrary point, located at a distance z from the median plane (due to
bending), is equal to.

u11 = −z
∂2w

∂x2
, (1)

where w(x) is the displacement of the median plane in the direction of the z-axis. We
assume that a potential difference is set on the electrodes of the plate:

V = φ

(
h

2

)
− φ

(
−h

2

)
, (2)

where h is the thickness of the plate.
In this case, the induction and the field in the plate satisfy the equations:

div
−→
D = 0,

−→
E = gradφ, (3)

moreover, for the length of a rectangular plate, the field component E2 = 0. We will
also neglect the field component E1, assuming that the bending vibrations are small and,
therefore, E1/E3 << 1, (the estimates show this result for an oscillating plate), E1/E3
≈ h/l, where h and l are the thickness and length of the plate, respectively. Thus, Eq. (3)
take the form:

∂D3

∂z
= 0; E3 = −∂φ

∂z
. (4)

From (4), in particular, it follows:

D3 = D3(x);
∫ h

2

− h
2

E3dz = −V . (5)

Let us now consider induction, field strength and mechanical moment in the plate
using a system of piezoelectric effect equations:

D3 = εσ
33E3 + d31σ11;

u11 = d31E3 + sE
11σ11.

(6)



136 E. Sitalo et al.

Excluding σ 11 from the first Eq. (6) and integrating the resulting equation with
respect to z, taking into account (1), (5) we find:

D3(x) = − V

sE
11a

− b

sE
11a

∂2w

∂x2
, (7)

where the designations are introduced:

a =
∫ h/ 2

−h/ 2

dz

�(z)
; b =

∫ h/ 2

−h/ 2

zd31(z)

�(z)
dz; �(z) = εσ

33sE
11 − d2

31(z). (8)

The moment in the plate per plate of unit width is defined as M1(x) = ∫ h/2
−h/2zσ11dz.

. Using (6) and performing the necessary calculations, we find:

M1(x) = −εσ
33λ

∂2w

∂x2
− bD3(x), (9)

where

λ =
∫ h/2

−h/2

z2

�(z)
dz. (10)

Substituting in (9) the expression for D3 from (7), we finally find the expression for
the moment:

M1 = −DV ∂2w

∂x2
+ gV , (11)

where the designations are introduced:

DV = εσ
33λ − b2

asE
11

; g = b

asE
11

. (12)

The DV coefficient characterizes the cylindrical rigidity of the plate with a fixed
potential difference at its electrodes.

The expression for E3 can be derived from (6) by using (7) in the form:

E3(x, z) = − 1

a�(z)
+ 1

�(z)

[
zd31(z) − b

a

∂2w

∂x2

]
. (13)

The coefficientsDV and g are the main parameters, characterizing the bending defor-
mations of piezoceramic plates. We give their expressions for some special cases of the
function d31(z).

2. For a plate with counter-polarized layers and a total thickness hS , the function
d31(Z) has the form:

d31(z) =

⎧⎪⎨
⎪⎩

−d31, − h
2 ≤ z ≤ − h

2 + hS
2 ;

0, − h
2 + hS

2 ≤ z ≤ h
2 − hS

2 ;
d31,

h
2 − hS

2 ≤ z ≤ h
2 .

(14)
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The expressions for DV and g have the form:

(15)

For the bimorph, hS = h and from (15), we obtain:

DV = h3

12sE
11

· 1 − 3
4K2

1 − K2 ; g = d31
sE
11

· h

4
(16)

In the case of thin layers hS << h, τ = 1 − δ at δ << 1, we have:

DV = h3

12sE
11

·
(
1 + 3δK2

1 − K2

)
; g = d31

sE
11

· h

4
· 2δ

1 − K2 (17)

Here and further, it is assumed that the permittivity and elastic compliance do not depend
on z. For the linear dependence: d31(z) = (2d31/h)z, we get:

DV = h3

4sE
11

· 1

K2

⎡
⎣1 − 2K

ln
(
1+K
1−K

)
⎤
⎦ ; g = d31

sE
11

· h

2K2

⎡
⎣1 − 2K

ln
(
1+K
1−K

)
⎤
⎦ (18)

With weak piezoactivity, when K << 1, DV = h3

12sE
11

; g = d31
sE
11

· h
6 ,where d31 is the

value of the piezo module near the electrode.
As can be seen from the above expressions, the cylindrical rigidity of the plate

depends on the distribution function of the piezo module d31 over the thickness of the
sample. At K = 0, all expressions for DV transform to the usual expression for the
cylindrical stiffness of a non-piezoactive plate.

3. Consider the static bending of a cantilever plate. We will assume that a constant
potential difference is applied to its electrodes V. The equilibrium equation of the plate
has the form:

∂2M1

∂x2
= 0. (19)

We have from (11):

∂4w

∂x4
= 0. (20)

Solving this equation together with boundary conditions:

w(0) = 0 ; M1(l) = 0 ;

∂w

∂x
|0 = 0 ;

∂M1

∂x
|l = 0, (21)
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we find an expression for the displacement of the median plane of the plate:

w = gV0

2DV
x2. (22)

From (13) and (22), in particular, it follows that E3 is a function only of z, and the
condition: E1 = 0 is exactly fulfilled in the case of static bending. For the free edge of
the plate, we have:

w = gl2

2DV
V0. (23)

Thus, for themodel under consideration, the displacement of the plate edge is directly
proportional to the potential difference applied to the electrodes, provided that g and DV

do not depend on V0.
4. Let us now consider the bending vibrations of the plate under the action of AC

voltage. The equation of plate vibrations has the form:

ρ
∂2w

∂t2
− 1

h

∂2M1

∂x2
= 0. (24)

Substituting expression (11) in (24) and considering that for steady-state oscillations
w = w(x)exp(iωt), we find the equation for w(x):

∂4w

∂x4
− κ4w = 0; κ4 = ρh

DV
ω2. (25)

Solving (25) together with the boundary conditions (21), we find for w(x):

w(x) = − gV

2κ2DV

(cosκl + chκl)(cosαl − chκx) + (sinκl − shκl)(sinκx − shκx)

1 + cosκl · chκl
(26)

For the plate boundary x = l, we have:

w(x) = − gV

κ2DV
· sinκl · shκl

1 + cosκl · chκl
(27)

From (25) and replacing κl = η, we get:

w(x) = −gVl2

DV
· 1

η2
· sinηshη

1 + cosη · chη . (28)

The expression for resonance frequencies has the form:

2π fn = ωn = η2n
l2

·
(

DV

ρn

)
, where ηn are roots of the equation cosη·chη + 1 = 0.

For the first four harmonics we obtain: η1 = 0.59687π, η2 = 1.49417π, η3 =
2.50025π, η4 = 3.49999π. Replacing DV through the resonance frequency, we will
finally find:

w(l) = gV

ρhl2 · 4π2f 2n
· η4n

η2
· sinη · shη
1 + cosη · chη . (29)
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In the presence of internal viscous friction, the oscillation equation will have the
form:

ρ
∂2w

∂t2
= 1

h

∂2M1

∂x2
− β

∂w

∂t
, (30)

where β is a coefficient of viscous friction. Substituting the expression for the moment
and introducing the notation: 2α = β/ρ (α is an attenuation coefficient), we find the
equation:

∂2w

∂t2
− 2α

∂w

∂t
+ DV

ρh
· ∂4w

∂x4
= 0, (31)

which must be supplemented with boundary conditions of the form (21). In the steady-
state oscillation mode (31), we have: w(x, t) = w(x)exp(iωt), where ω is the frequency
of the exciting field. Substituting expressions for w(x, t) into (31), we find:

∂4w

∂x4
− κ4w = 0, (32)

where the designation is entered:

κ4 = ρhω2

DV

(
1 − i

2α

ω

)
. (33)

Thus, it is possible to introduce a complex value:

κ = κ1 − iκ2, where κ4 = ρhω2

DV
, and κ2 = κ1

α

2ω
.

On the other hand, assuming that the losses in the sample at the resonance of bend-
ing vibrations are purely mechanical in nature, it is possible to introduce complex
compliance:

s11E = (s11E)/ − i(s11E)// or without indices, s = s1 – is2. Then it follows from (25)
that κ2/κ1 ~ 1/4; s2/s1 = 1/4QM , where QM is the mechanical Q factor. Recall that for
the first resonance κ1l ≈ 0.6π at QM ≈ 50 (for PZT-19), κ2/κ1 ~ 1/200 and κ2l < 0.01.
Introducing the complex value κ into (27) and taking into account the smallness of κ2l,
we obtain for the maximum w(l):

wM (l) = 0.141gVQM

ρhl2f 21
. (34)

The mechanical Q factor can be calculated in the usual way by using the shape of
the resonance curve: QM = f 1/2Δf , where 2Δf is the “width” of the resonance curve at
the level w = (1/

√
2)wM . Thus, by using the experimental resonance curve, it is possible

to determine QM , f 1, wM with following calculation of the cylindrical stiffness DV and
the value g, and according to these values, the distribution of the piezomodule d31 over
the plate thickness. The complex conductivity of the plate is determined by the ratio:

Y = I

V
= l1 ∫l

0 D3dx

V
, (35)
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where l is the width of the plate.
Using (7) and (26), we find:

Y = − iωl1l

asE
11

·
(
1 + ag2sE

11

κDV ll1
· cos η · shη + sin η · chη

1 + cos η · chη

)
= Y0 + Y1. (36)

Here Y0 is the capacitive part of the conductivity, Y1 is the resonant term. For thin layers

Y = Y0[1 + 3K2δ2(
1 − K2

)
ηl1

· cos η · shη + sin η · chη
1 + cos η · chη

]
(37)

The resonant term is proportional to the square of the relative thickness of the layer,
δ = hS/h. For PZT-19 ferroceramics with electrodes made of burnt silver (h = 0.4 mm,
l = 40 mm, l1 = 6 mm), it was found that hS = 5 μm. Near resonance:∣∣∣∣ Y

Y0
− 1

∣∣∣∣ = 12QM K2δ2

(1 − K2)η21
· tgη1 + thη1
tgη1 − thη1

. (38)

Assuming QM ≈ 70 and K = 0.4, we find (Y /Y0 − 1) ≈ 30δ2 or for δ ≈ 1/80, (Y/Y0
− 1) ≈ 4.7 × 10−3. Such a weak anomaly is characteristic of bending vibrations.

The formation of counter-polarized layers occurs when a strong AC field is applied
to the sample, which can be associated, as already stated above, with the presence
of a rectifying metal (electrode)—semiconductor (ceramic) contact. However, bending
vibrations of ferroceramic plates in weak fields are observed, as a rule, without their
pretreatment by a strong AC field. In addition, there is no clear correlation between the
amplitude of bending vibrations and themagnitude of the piezomodule that characterizes
this type of ceramics. For example, sufficiently large oscillation amplitudes are given by
the samples, based onmodified lead titanate, forwhich the piezomodule d31 is practically
zero. In this regard, the models describing the contribution of deformations, caused by
electrostriction to bending vibrations, were considered [7].

By investigating the dependence of the resonance frequency of bending vibrations on
the temperature, the amplitude of the alternating exciting field, its changes by switching
the polarization [8], and comparing experimental data with the theoretical models con-
sidered, we canmake conclusion on a significant contribution to the bending deformation
of the oscillatory motion of 90°-domain walls. It opens up opportunities for studying the
mobility of domain boundaries by bending deformations, excited by an electric field.

Thus, the study of bending deformations can be a powerful tool for controlling the
homogeneity of a ferroelectric sample and themobility of ferroelastic domain boundaries
in it. There are wide opportunities for the construction of ferroelectric monomorphs,
based on several complementary phenomena, leading to the bending of a ferroelectric
plate in an electric field.

2.2 Continuous Formulation of the Problem (Second Model)

As it will be shown later, in all cases, the presence of bending deformations in the external
field indicates the existence of inhomogeneities of various types in ferroceramics. There-
fore, the development of research methods and theoretical analysis of bending deforma-
tions in ferroceramics opens up new possibilities for studying the processes, occurring
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in ferroceramic materials and accompanied by the appearance of inhomogeneities. The
results of studies of inhomogeneous deformations are also of great practical importance,
since they allow optimizing the constant combinations of various transducers using
bending deformations.

This paper presents a theoretical consideration of bending deformations and
describes the results of experimental studies. The formation of counter-polarized layers
occurs, when a strong AC field is applied to the sample andmay be due to the presence of
a rectifying metal (electrode) – semiconductor (ceramic) contact [9]. However, bending
vibrations of ferroceramic plates in weak fields are observed, as a rule, without their
pretreatment by a strong belt field. In addition, there is no clear correlation between
the amplitude of bending vibrations and the value of the piezoelectric module, which
characterizes this type of ceramics. For example, sufficiently large oscillation ampli-
tudes are given by samples based on modified lead titanate, for which the piezomodule
d31 is actually zero. In this regard, it is of interest to consider models, describing the
contribution to bending vibrations of deformations, caused by electrostriction. We will
assume that Schottky-type layers with a thickness hs/2 and a charge density σ = eN are
formed near the electrodes in the plate, where e is a unit charge, N is the number of
charges per unit volume (the sign of the charge depends on the type of conductivity in
ceramics, as well as on the ratio between the electron work functions for ceramics and
electrode material). The distribution of the field over the thickness of the plate in this
case will have the following form:

E0(z) =
⎧⎨
⎩

β
(

z + h
2 − hs

2

)
,

β
(

z − h
2 − hs

2

)
,

−h

2
≤ z ≤ −h

2
+ hs

2
;

−h

2
+ hs

2
≤ z ≤ h

2
− hs

2
;

h

2
− hs

2
≤ z ≤ h

2
.

(39)

Hereβ = Ne/ε, ε is the permittivity in the layer.Wewill assume that the charge relaxation
time is long, so that a weak external AC field does not lead to the destruction of the layers
(their thickness and charge density are preserved). Such layers are similar to chemical
layers with a constant charge density in them, and, consequently, a linear dependence of
the field on the coordinate inside the layer. When an external field E is applied, the total
field in the plate is E3 = E0 + E. In the absence of residual polarization, the original
system of equations has the form:

D3 = ε33E3

u11 = sE
11σ11 + M12E2

3

(40)

Hence the bending moment in the plate is:

M1 = −Dv
∂w

∂x2
− M12

sE
11

∫ h
2

− h
2

zE2
3dz = −DV ∂w

∂x2
+ g

′
V , (41)

where V = E*h is the external voltage,

DV = h3

12sE
11

; g′ = M12

sE
11

βh2δ2
(
1 − 1

3
δ

)
, δ = hs

h
. (42)
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In this case, the constant g’ is determined by the magnitude of the electrostrictive
modulus M12, the thickness of the layers, and the charge density in the layer. In the case
of non-equivalent layers, the value of g’ in Eq. (41) will be equal to:

g
′ = M12

sE
11

h2

8

[
β1δ

1
2

(
1 − 1

3
δ1

)
+ β2δ

2
2

(
1 − 1

3
δ2

)]
. (43)

As follows from the calculation, the strictionmodel for this case gives a displacement
value w(I) proportional to the first power of the applied stress until the parameters of
the near-surface layers change (values β1, β2, δ1, δ2). However, in all cases, there will
be no anomaly in the conductivity (so far, the dependence ε33(σ ) can be neglected) at
the resonance of bending vibrations.

Bending vibrations of a striction nature can also be observed in the case of a nonuni-
form distribution of the external applied field over the thickness of the sample. Any
inhomogeneity of properties in the sample, which almost always takes place, can lead
to such a distribution. Significant inhomogeneity of properties (for example, conductiv-
ity or polarization) over the thickness of the sample can be caused, for example, by its
preliminary treatment with a strong constant field (polarization).

With an inhomogeneous distribution of the external field, the displacement amplitude
will be proportional to the square of the applied voltage, and the frequency ofmechanical
oscillations should be equal to the doubled frequency of the exciting field (frequency
doubling effect). In particular, the resonance of such oscillations (with a resonance
frequency w1) should be observed when an alternating field of half frequency 0.5w1 is
applied to the sample.

Let us assume that another plate (made of the same material) of thickness b without
electrodes is glued to one of the electrodes of the investigated non-polarized plate of
thickness h. Let us consider oscillations of the same combined plate under the assump-
tion that the external voltage is still applied only to the electrodes of the original plate.
Obviously, in this way, we artificially simulate a system with an inhomogeneous dis-
tribution of the external field E over the thickness of the sample (the field is zero at
thickness b and different from zero at thickness h of the combined plate). We will also
assume that Schottky-type charge layers with a constant linear field distribution over
their thickness have formed near the electrodes of the initial plate.

Let us denote via H the total thickness of the plate (H = h + b) and place the origin
of the coordinate system in the center of the plate. Accordingly, the function describing
the distribution of the field in the plate will also change (39). Calculate the moment in
the plate. Replacing h by H and integrating over the thickness of the plate, we find:

M1 = −Dv ∂2w

∂x2
+ g1V − g2V 2, Dv = H 3

12sE
11

(44)

where

g1 = M12

SE
11

βH 2δ2
1 − 2

3δ − θ

1 − θ

g2 = 1

2

M12

SE
11

θ

1 − θ
, δ = hs

H
, θ = b

H
(45)
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The presence of a term proportional to V in (44) is due to the existence of charge
layers in the initial plate, the term proportional to V2 arises due to the inhomogeneous
distribution of the field over the thickness of the combined sample. Solving the oscillation
equations separately for each of these terms, we find the displacements:

ω1 = g1
k2DV

V
sinkl · shkl

1 + coskl · chkl
, k4 = ρH

DV
ω2

ω2 = g2
k2DV

V 2 sinkl · shkl

1 + coskl · chkl
, k4 = ρH

DV
(2ω)2 (46)

where ω is the frequency of the incident field, and the resonance of the plate vibrations,
caused by the inhomogeneous distribution of the field over the thickness of the sample
(ω2), will be excited at the field frequency ω2 = 0.5 ω1. Since the resonance frequencies
of mechanical vibrations of both types coincide, it can be expected that the Q-values for
these vibrations will be the same.

The value of the coefficient M12 can be estimated from g1, calculated from the
experimental values of w, and Qm in resonance at the fundamental frequency or from g2
at half frequency.

Let us consider a two-layer friction model, according to which there is a polarization
P1 in the layer: − h/2 < z < h/2, and in the rest of the sample (h/2 < z < h/2 + hs/2; −
h/2 − hs/2 < z < − h/2) there is a polarization P2. Then for the bending moment of the
plate, we have:

M1 = −DV ∂2w

∂x2
+ h2Q13

2SE
11

δ(1 − δ)
(

P2
1 − P2

2

)
(47)

where Q13 is a constant of electrostriction, δ = hs/h.
Let, further, the polarizations P1 and P2 contain slowly changing quasi-static parts

P01 and P02 excited by a strong repolarizing field E0, and a variable part δE. The
inhomogeneity in thickness is caused by the difference between P01 and P02 (there
should be a volume charge at the boundary of the layers due to the difference P01 −
P02). Assuming P1 = P01 + δE and P2 = P02 + δE, we get:

M1 = −DV ∂2w

∂x2
+ h2Q13

2SE
11

δ(1 − δ)
(

P2
01 − P2

02

)
+ 1

SE
11

hQ13δ(1 − δ)
(

P2
01 − P2

02

)
δV

(48)

Accordingly, the bending deformation of the plate will consist of two parts: quasi-
static one, w0, and variable (resonant) one, w1:

w0 = h2Q13

4SE
11DV

δ(1 − δ)l2
(

P2
01 − P2

02

)
(49)

it vanishes at P01 = ± P02, and

ω1 = h2Q13

k2SE
11DV

δ(1 − δ)(P01 − P02)δV
sinkl · shkl

1 + coskl · chkl
(50)
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it vanishes at P01 = P02.
It follows from (49) and (50) that if the static deformation is determined by the differ-

ence of the polarization squares in the sample volume and layer, the variable (resonant)
deformation depends on the difference of the first degrees (P01 − P02). When value
of (P01 − P02) changes, for example, under the action of a DC polarizing field, it will
remain to be unchanged (with unchanged values of SE

11, Qm, V ), until the volume charge
at the boundary of the layer, determined by the difference (P01 − P02), does not change.
At the same time, the static deformation in this case will vary proportionally to P01 +
P02 over a wide range and vanish at P01 = − P02. In general case, when both P01 and
P02 change, the value of w0 passes through zero twice (at P01 = ±P02), and w1 – only
once, when P01 = P02. At the same time, due to the relaxation of the volume charge,
relatively slow changes in w1 and w0 will be observed.

The above examples indicate a fairly wide class of phenomena leading to bending
deformations of ferroelectric plates. All of them are somehow related to the inhomo-
geneity of the ferroelectric state in thickness. Below, some results of an experimental
study of bending deformations in ferroceramic plates are present.

According to the above models, the mechanisms of such a destruction can be:

(i) a decrease in the piezoactivity of the surface layers due to the decay of the polarized
state (it is known that piezomodules of polarized ceramics begin to decrease at
temperatures T < TC);

(ii) reduction of spontaneous polarization and its magnitude in the surface layer;
(iii) changing the parameters of Schottky layers with temperature.

2.3 Technology of Piezoelement Preparation and Polarization

Piezoceramic plates of two standard sizes were studied: 31.5 × 6.0 × 0.4 mm3 and 46.4
× 3.0 × 0.4 mm3. Bending deformations were studied for PCR-1, PCR-8, PCR-7M,
PZT-19 and TBC-3 ceramics. The audio frequency voltage was applied to the sample
from a G3–109 generator, the voltage value V (in the range of 5− 200 V) was measured
with a digital voltmeter V7–40, and the frequency f was measured with a frequency
meter CH-64. The influences of temperature (20 − 210 °C) on the oscillation amplitude
(at the fundamental frequency) wM and resonance frequency f P for ceramics TBC-3
(TC ~ 105 ºC) and PCR-7M (TC ~ 170 °C) were studied. The dependences of wM and
f P on the amplitude of the excitation voltage V are studied, too. Changes in w0, wM

and f P were studied for PZT-19 ceramics during repolarization of samples in a stepwise
changing electric field E0 (in the range from − 600 to + 600 V). For the same ceramics,
preliminary studies of the surface state and electrode material were carried out.

3 Results and Discussion

An increase in the ferroceramic plate temperature is accompanied by an increase in
the oscillation amplitude wM and a decrease in the resonance frequency f P. The oscil-
lation amplitude reaches its maximum at temperatures Tm on 15–20 °C below TC ,
corresponding to the maximum permittivity. After passing through the maximum wM ,
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it decreases sharply even at temperatures, exceeding TC on 15–20 °C, not fixed by the
device (wM = 1.5 μm). The resonance frequency passes through a minimum at T2 <
Tm and then increases again. As the excitation voltage amplitudes increase Tm and T2
decrease slightly. Figure 1 shows the temperature dependences of the capacity C of the
TBC-3 sample at a frequency of 1 kHz (curve 1), the inverse square of the resonant
frequency f −2

P (curves 2 and 2’), and the bending efficiency gQM (curves 3 and 3’) for
two values of the applied voltage (V = 46.5 V, corresponding to curves 2 and 3; V =
98 V, corresponding to curves 2’ and 3’).

Fig. 1 Temperature dependence of the parameters of bending vibrations

The inverse square of the resonant frequency according to [10] is proportional to
the compliance of ceramics sE.

11. As the temperature increases, this value increases and
passes through a maximum in the region of rapid increase in the sample capacity; this
region is known to be characterized by the maximum mobility of domain boundaries.
The possible contribution of the movement of domain boundaries to sE

11 is also indicated
by an increase of sE

11 with an increase in the amplitude of the exciting voltage, and this
increase is most pronounced in the vicinity of sE

11.With a further increase in temperature,
the value of sE

11 decreases rather sharply and at the same time the dependence of sE
11 on

the exciting voltage is significantly weakened. The value of gQM also has a maximum in
the region of increasing capacitance; the subsequent decrease in this value with temper-
ature can be caused by two reasons: (i) an increase in mechanical losses with increased
mobility of 90°-domain boundaries and (ii) the destruction of the inhomogeneous struc-
ture responsible for bending vibrations. According to the considered models [7, 10], the
mechanisms of such destruction can be:

(i) Reduction of piezoactivity of surface layers due to the decay of the polarized state (it is
known that piezoelectricmodules of polarized ceramics begin to decrease at temperatures
T < TC [12]);
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(ii) Reduction of spontaneous polarization and its value in the surface layer;
(iii) Changing the parameters of Schottky layers with temperature.

The effect of the excitation voltage amplitude was studied for PCR-1, PCR-7M,
PZT-19, and TBC-3 ceramics. In all cases considered, the dependence wM (V ) was close
to linear. At large oscillation amplitudes (wM > 100 μm), a transition to saturation was
observed. The resonance frequency f P in all cases decreased with increasing V. In the
voltage range of V = 5 − 150 V, the relative change �f P/f P ranged from 8 to 15%. The
value of gQM , as a rule, decreases with increasing V. For pre-aged ceramics that were not
exposed to external influences and for ceramics aged after polarization for 7 months, the
value of gQM was practically independent of the field. A decrease f P with an increase
V can be caused by two main mechanisms:

(i) For models of inhomogeneous piezoactivity [10], f P can decrease due to a decrease
in the electromechanical coupling coefficient of the surface layer (K), or due to a
decrease in the layer thickness hs. However, the maximum relative changes in f P

in this case (from a bimorph to an unpolarized sample) for the studied ceramics do
not exceed 4%;

(ii) The second reasonmay be an increase sE
11 in the variable field due to the contribution

of domain walls separating ferroelastic domains (for example, 90°-domains in the
tetragonal phase).

In Table 1, data on changes in the frequency of resonant vibrations (�f = f 0– f min)
and the amplitude wm at V = 150 V are presented for a sample of PZT-19 ferroceramics
with electrodes, obtained by burning silver paste.

Table 1 Characteristics of the studied samples

Sample Value Initial state After
polarization

After 14 days After
2 months

After
7 months

PZT-19 f 0, Hz 140.1 141.1 141.8 138.1 104.6

f min, Hz 120.0 125.9 127.4 123.6 20.5

�f/f 0, % 14.3 10.8 10.2 10.5 13.5

wm, μm 30 21.4 41 42.4 26.7

Calculation of the value of gQM for the sample from the table as a function of V
shows that this value, slightly decreasing with increasing V for V ≤ 40 V, for higher
values, V remains virtually constant. The dependence gQM (V ) has a similar form for the
same sample, aged after polarization for 7 months. However, in both cases, the decrease
in f P with increasing V remains significant. Therefore, taking into account the decrease
of Qm with increasing V, which will be discussed below, we must recognize that the
decrease of f P with increasing V is not determined by the change in the parameters of
the surface layers.
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After polarization (TP = 20 ºC, τP = 1 h, E0 = 17.5 kV/cm), the value of wM

decreases. These data show that if we assume that the main mechanism leading to the
change f P is the movement of 90°-domain boundaries, then it should be recognized that
their contribution to the bendingmoment is probably not decisive, and the contribution of
sE
11 is not determined by the amplitude of vibrations of the sample as a whole. The value
of g, according to [10], includes the ratio d31/s11E , so the mobility contributions of 90°-
domain boundaries to d31 and sE

11 can both increase and decrease g. Their contribution to
wM remains small. It also follows fromTable 1 that in the aging process after polarization,
�f/f P first decreases, and then begins to increase. Apparently, there are two competitive
processes acting here. One of them is undoubtedly the general stabilization of the domain
structure, which leads to a decrease in the contribution of domain boundaries to sE.

11. The
increase in this contribution is probably related to the rearrangement of the residual
mechanical stresses after polarization.

Fig. 2 Temperature dependence of the parameters of bending deformations

Then the resonance curves of flexural vibrations of ferroelectric plates were studied
(Fig. 2). The Q-factor calculation from the dependence w(f ) shows that the QM value
decreases significantly. For the curves in Fig. 2, the following values are obtained: 39.2;
36.0 and 25.0 for the value V of 30, 60 and 90 V (curves 1, 2, 3), respectively. In
the resonance region, the electric field exerts a certain formative effect on the surface
layers, as evidenced by the static deflection of samples in the resonance region shown
in Fig. 2. However, as the figure shows, it is reversible. Attention is drawn to the strong
asymmetry of the resonance curves, which reflects an increase of sE

11 with an increase in
the oscillation amplitude. At relatively weak amplitudes, the asymmetry is not detected,
but wm increases it with the growth; for wM = 80 – 100 μm, it is most pronounced,
then it weakens with the blurring of the resonance curves. For V from 2 V to 9 V, QM

values from 84 to 67 were obtained using the capacitive probe method. In general, taking
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into account changes in QM , we find that the parameter g after 60 days aging shows a
tendency to increasewith increasingV, and the constancy of value of gQM after 7months
of aging indicates an increase in this trend.

To assess the effect of the surface state on bending deformations, a comparison of
samples of PZT-19 with one-sided polishing, with two-sided polishing and with two-
sided polishing and a layer of PbTiO3 on one of the sides was carried out. The electrodes
in all cases were graphite (lacosage). It is established that the amplitude of vibrations
increases during one-sided polishing; the static displacement w0 with an increase in the
amplitude of the alternating voltageV is insignificant (within 5μm, for polished surfaces
within 1 μm). The amplitude of vibrations increases sharply (by more than 2 times) for
a sample with both surfaces polished. At the same time, the static offset also becomes
noticeable (it is 36μmat 150V). However, applying a thin (several microns of thickness)
PbTiO3 film to one of the surfaces leads to 2.5 times decrease in the oscillation amplitude
and a sharp increase in the static displacement (330 μm), for example, directed towards
the surface not covered with PbTiO3. Pyroelectric probing revealed that the sample was
polarized (

−→
Pr is directed towards the PbTiO3-coated surface). Thus, in this case, there is

a rectifying contact in the layer with PbTiO3. The value (f 0/f min)2, which is proportional
sE
11, increases by 30% for a polished sample, by 36% for one-side polishing, and by 61%
for two-side polishing, but by 32% for a sample with a PbTiO3 sublayer, which also
indicates a decrease in the contribution of domain boundaries with increasing constant
voltage due to the rectification effect.

The influence of a repolarizing, stepwise changing field E0 on the parameters of
bending deformations of the PZT-19 in an AC field of constant amplitude is studied.
The field E0 was changed in increments of 1.25 kV/cm in the range from −15 to +
15 kV/cm. In E0 ≈ Ek , the increment was reduced to 0.25 kV/cm. Exposure time at each
point was up to 10 min. The amplitude of vibrations in the resonance at the fundamental
frequency (wM ), the resonance frequency (f P), and the static displacement (w0) were
measured. Measurements were carried out for three values of AC voltage of 0.75, 1.5
and 3.0 kV/cm.

Figure 3 shows the curves wM (E0), w0(E0) for a sample whose polished surfaces
are coated with Ag electrodes, obtained by burning silver paste. The dependence f P(E0)
is represented by a dashed line. It follows from the figure that with a primary increase
of E0, the values of wM and f P increase, and the static bend goes towards the cathode.
The subsequent decrease of E0 is accompanied by a further increase wM , but f P and w0
decrease, and at E0 = 0, the static bending remains quite significant. An increase of E0
in the opposite direction is accompanied by a decrease of wm, which is initially slow,
then faster. In the region of repolarization, wm changes in time at an almost constant E0
and passes through a sharp minimum (wm ≈ 0), and then increases again. The resonance
frequency also passes through a minimum at E0 < Ek . In the region of the minimum of
wm, it increases sharply, passes through two closely located, weakly expressed extrema
and then gradually increases. The static deflection w0 decreases, passes through zero,
changes its sign, reaches amaximum atE0 ≈ Ek , then decreases, and passes through zero
again to the initial voltage. With a subsequent decrease in the field E0, wM practically
remains constant, f p decreases almost linearly with E0, wm initially remains constant,
then (at |E0| < 5 kV/cm) it begins to slowly decrease. When changing the sign and
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repolarizing to the original direction, wM again passes through zero at E0 ≈ Ek , f P has
a minimum at E0 < Ek , and the static deflection w0 passes through zero twice. The
unipolarity of the characteristics is noteworthy. Since the Ag electrodes were burned
into the ground surfaces, it can be expected that the unipolarity is determined here by
the primary polarization.

Fig. 3 Field dependencies of the wm, w0 and f P (Ag)

An increase of V by half is accompanied by a decrease of ratio wM /V, the minima of
wM become more blurred, the dependences wm(E0), w0(E0) and f P(E0) become more
symmetric with respect to the sign of E0. The static deflection in strong fields decreases,
and themaxima ofw0 in the region of the repolarizations are becomingmore pronounced.
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Additional maxima on the dependence f P(E0) become more clearly defined. At V =
3.0 kV/cm, there are a further decrease wM /V, a further blurring of the minima wM ,
a slight decrease Ek , weakening of the unipolarity of wm(E0) and the extremes on the
curve f P(E0) are blurred. The unipolarity of the curves f P(E0), w0(E0) is preserved.

It is noteworthy that the main minimum of f P, corresponding to the maximum of
sE
11, always precedes the minimum of wM . The fact that wM vanishes at the minimum,
associated with repolarization, is confirmed by the study of the dynamic pyroelectric
effect in these samples in a similar mode of the change of E0 that leads to that for E0 −
Ek there is a maximum of temporary changes in the parameters.

It is known that in c-domain crystals of BaTiO3, containing single a-domains, the lat-
ter, when the crystals are repolarized, reach the maximum volume in the fields preceding
the switching of the c-domain regions. Therefore, it is logical to associate the minimum
of f P with an increase of sE

11 due to themobility of 90°-domainwalls. Additional maxima
on the curves f P(E0) also seem to reflect the irregular nature of the movement of the
domain walls.

Figure 4 shows the switching characteristics for a PZT-19 plate with aquadag elec-
trodes (at a voltage of 0.75 and 3.0 kV/cm). In contrast to the sample with reburned
silver electrodes, wM wasmore pronounced here. A sharp increase inwM after switching
polarization is noteworthy. Zero value of wM coincides with zero w0; a sharp increase
wM coincides with a sharp increase f P and a sharp change of w0. All curves have a
sharp unipolarity and additional maxima f P(E0) are weakly expressed. As the ampli-
tude increases, a decrease wM /V is observed, the switching remains quite sharp, and
additional maxima are detected on the curve f P(E0); however, the main maxima are
strongly blurred. When Ek decreases noticeably, the AC voltage significantly affects the
repolarization in field E0.

It should be noted that these repolarization characteristics are well described by
the friction model of a polarized surface layer [11]: w0 passes through zero twice; in a
weaker field, when P01 = − P02 and the difference P01 – P02 is preserved, w0 = 0, but
when the oscillation amplitude wM �= 0, and the volume charge at the layer boundary
does not relax, the temporary changes are practically absent. At E0 ≈ Ek , P01 = − P02,
which corresponds to wM = w0 = 0, the volume charge at the layer boundary changes
sign. It shows that strong temporary changes in the parameters of bending deformations
are observed.

Figure 5 shows the switching characteristics for the PZT-19 sample, one side ofwhich
was polished and the other side was polished (the electrodes were painted). The dashed
lines show the dependence f P(E0). The positive direction E0 corresponds to a plus on a
polished surface. The switching characteristics show strong unipolarity: switching in the
“forward” direction occurs at smaller fields than in the reverse direction. ThenwM for the
“forward” direction is significantly larger than for the reverse direction, static bending in
the opposite direction is stronger and decreases for the forward direction. The unipolarity
of the curves f P(E0) is noteworthy: minimum of f P for the previous repolarization
turns out is much deeper for the reverse direction, than for the “forward” one. If we
assume that the minimum of f P reflects the maximum of sE

11, due to the contribution
of the movement of 90°-domain boundaries, then it follows that the “inhibition” of
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Fig. 4 Field dependencies (aquadag)

180°-domain switching in the opposite direction is accompanied by an increase in 90°-
domain switching. Increasing V from 0.75 kV/cm to 3.0 kV/cm slightly weakens the
unipolarity of the wm(E0), while at the same time, it increases the unipolarity of w0(E0)
and f P(E0). The hysteresis decreases sharplywith changes ofE0 in the forward direction;
the difference between theminima of f P for the forward and reverse directions increases.

An experimental study of bending deformations in nominally homogeneous ferro-
ceramic plates allowed us to establish the following. By studying the dependence of
the resonance frequency of bending vibrations on the temperature and amplitude of the
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Fig. 5 Field dependences for unipolar sample

AC exciting field, as well as its changes during polarization switching, we can conclude
that the oscillatory motion of 90°-domain walls significantly contributes to the bending
deformation, which opens up opportunities for studying the mobility of domain bound-
aries by the method of bending deformations, excited by an electric field. This can be a
powerful tool for monitoring the homogeneity of a ferroelectric sample and the mobility
of ferroelastic domain boundaries in it. This opens up a wide range of possibilities for
constructing ferroelectric monomorphs, based on several complementary phenomena
that lead to bending of a ferroelectric plate in an electric field.
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4 Conclusion

In this paper, devoted to the study of bending deformations in nominally homogeneous
ferroceramic plates, we have for the first time carried out theoretical modeling of such
processes, based on the presence of thickness inhomogeneities (piezomodule d31, polar-
ization P3, contact fields (Schottky-type layer). It is clearly shown that in the case of
thin layers sufficient, however, to excite noticeable resonances of bending vibrations,
their contribution to admittance is vanishingly small, which sometimes allows such
resonances defined in the literature as purely mechanical.

Investigating the dependence of the resonance frequency of bending vibrations on
temperature, the amplitude of the AC exciting field, and its changes during switch-
ing of polarization, we came to the conclusion about a significant contribution to the
bending deformations of the oscillatory motion of 90°-domain walls, which opens up
opportunities for studying the mobility of domain boundaries by the method of bending
deformations, excited by an electric field.

Thus, the study of bending deformations can be a powerful tool for controlling the
homogeneity of a ferroelectric sample and themobility of ferroelastic domain boundaries
in it.

There arewide opportunities for the construction of ferroelectricmonomorphs, based
on several complementary phenomena leading to the bending of a ferroelectric plate in
an electric field.
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