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Abstract. Given the increasingly dynamic nature of knowledge in the
era of Web-based information exchange, techniques to revise recorded
knowledge – such as knowledge graphs or ontologies – with respect to
new findings are more important than ever. For knowledge representa-
tion approaches based on formal logics, the AGM belief revision postu-
lates by Alchourrón, Gärdenfors, and Makinson continue to represent a
cornerstone in research related to belief change. Katsuno and Mendel-
zon (K&M) adopted the AGM postulates for changing belief bases and
characterized AGM belief base revision in propositional logic over finite
signatures. We generalize K&M’s approach to (multiple) base revision
in arbitrary Tarskian logics, covering all logics with a classical model-
theoretic semantics and hence a wide variety of logics used in knowledge
representation and beyond. Our generic formulation applies to various
notions of “base”; such as belief sets, arbitrary or finite sets of sentences,
or single sentences. The core result is a representation theorem showing
a two-way correspondence between AGM base revision operators and
certain “assignments”: functions mapping belief bases to total — yet not
transitive — “preference” relations between interpretations. We also pro-
vide a characterization of all Tarskian logics for which our result can be
strengthened to assignments producing transitive preference relations as
in K&M’s original work.

Keywords: Belief revision · Tarskian logics · Semantic
characterization

1 Introduction

The question of how a rational agent should change her beliefs in the light of
new information is crucial to AI systems. It gave rise to the area of belief change,
which has been massively influenced by the AGM paradigm of Alchourrón, Gär-
denfors, and Makinson [2]. The AGM theory assumes that an agent’s beliefs are
represented by a deductively closed set of sentences (commonly referred to as
a belief set). A change operator for belief sets is required to satisfy appropriate
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postulates in order to qualify as a rational change operator. While the contri-
bution of AGM is widely accepted as solid and inspiring foundation, it lacks
support for certain relevant aspects: it provides no immediate solution on how
to deal with multiple inputs (i.e., several sentences instead of just one), with
bases (i.e., arbitrary collections of sentences, not necessarily deductively closed),
or with the problem of iterated belief changes.

Katsuno and Mendelzon [14] – henceforth abbreviated K&M – deal with the
issues of belief bases and multiple inputs in an elegant way: as in propositional
logic, every set of sentences (including an infinite one) is equivalent to one single
sentence, belief states and multiple inputs are considered as such single sentences.
In this setting, K&M provide the following set of postulates, derived from the
AGM revision postulates, where ϕ,ϕ1, ϕ2, α, and β are propositional sentences,
and ◦ is a base change operator:

(KM1) ϕ ◦ α |= α.
(KM2) If ϕ ∧ α is consistent, then ϕ ◦ α ≡ ϕ ∧ α.
(KM3) If α is consistent, then ϕ ◦ α is consistent.
(KM4) If ϕ1 ≡ ϕ2 and α ≡ β, then ϕ1 ◦ α ≡ ϕ2 ◦ β.
(KM5) (ϕ ◦ α) ∧ β |= ϕ ◦ (α ∧ β).
(KM6) If (ϕ ◦ α) ∧ β is consistent, then ϕ ◦ (α ∧ β) |= (ϕ ◦ α) ∧ β.

The postulates (KM1)–(KM6) together are equivalent to the AGM revision pos-
tulates, thus they also yield minimal change with respect to the initial beliefs.
Note that, in this setting, the semantic content of the revision result is fully
determined by the semantic contents of the prior base and the new incoming
information; syntactic variations are irrelevant. This sets K&M’s approach apart
from other prominent lines of work, where revision is performed on a syntactic
level and thus the syntactic form of the input may have a semantic effect on
the result. A prominent example for such syntactic approaches is base change
according to Hansson [13].

While the AGM paradigm is axiomatic, much of its success originated from
operationalizations via representation theorems. Yet, most existing characteri-
zations of AGM revision impose additional assumptions on the underlying logic
such as compactness, closure under standard connectives, deduction, or supra-
classicality [22]. Leaving the safe grounds of these assumptions complicates mat-
ters; representation theorems do not easily generalize to arbitrary logics. This
has sparked investigations into tailored characterizations of AGM belief change
for specific logics, such as Horn logic [6], temporal logics [3], action logics [25],
first-order logic [28], and description logics [8,12,19]. More general approaches
to revision in non-classical logics were given by Ribeiro, Wassermann, and col-
leagues [20–22], Delgrande, Peppas, and Woltran [7], Pardo, Dellunde, and Godo
[17], or Aiguier et al. [1].

In this article, we consider (multiple) base revision in arbitrary Tarskian
logics, i.e., logics exhibiting a classically defined model theory. We thereby refine
and generalize the popular approach by Katsuno and Mendelzon [14] which was
tailored to belief base revision in propositional logic with a finite signature.
K&M start out from belief bases, assigning to each a total preorder on the
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interpretations, which expresses – intuitively speaking – which interpretation
is “closer to being a model”. The models of the result of any AGM revision
then coincide with the preferred (i.e., preorder-minimal) models of the injected
information.

We consider base revision in base logics, which provides an abstraction that
elegantly captures different notions of bases. Our approach extends the idea of
preferences over interpretations from the propositional to the general setting of
Tarskian logics. This requires to adjust the nature of the assignments indicating
the degree of model-alikeness: We have to explicitly require that minimal models
always exist (min-completeness) and that they can be described in the logic
(min-expressibility). Moreover, we show that demanding preference relations to
be preorders is infeasible in the general setting; we have to waive transitivity
and retain only a weaker property (min-retractivity).

The main contributions of this article are the following:

– We introduce the notion of base logics to uniformly capture various popular
ways of defining belief states by certain sets of sentences over Tarskian logics.
Among others, this includes the cases where belief states are arbitrary sets of
sentences and where belief states are belief sets.

– We extend K&M’s semantic approach from the setting of singular base revi-
sion in propositional logic to multiple base revision in arbitrary base logics.

– For this setting, we provide a representation theorem characterizing AGM
belief change operators via appropriate assignments.

– We characterize all those logics for which every AGM operator can even
be captured by preorder assignments (i.e., in the classical K&M way). In
particular, this condition applies to all logics supporting disjunction and hence
all classical logics. For those logics, we provide one representation theorem
for the syntax-independent and one for the syntax-dependent setting.

Detailed proofs, illustrative examples and comprehensive discussions on
related aspects can be found in the extended online version of the paper [9].

2 Preliminaries

In this section, we introduce the logical and algebraic notions used in the paper.

2.1 Logics with Classical Model-Theoretic Semantics

We consider logics endowed with a classical model-theoretic semantics. The syn-
tax of such a logic L is given syntactically by a (possibly infinite) set L of sen-
tences, while its model theory is provided by specifying a (potentially infinite)
class Ω of interpretations (also called worlds) and a binary relation |= between
Ω and L where ω |= ϕ indicates that ω is a model of ϕ. Hence, a logic L is
identified by the triple (L,Ω, |=). We let �ϕ� = {ω ∈ Ω | ω |= ϕ} denote the set
of all models of ϕ ∈ L. Logical entailment is defined as usual (overloading “ |=")
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via models: for two sentences ϕ and ψ we say ϕ entails ψ (written ϕ |= ψ) if
�ϕ� ⊆ �ψ�.

Notions of modelhood and entailment are easily lifted from single sentences
to sets. We obtain the models of a set K ⊆ L of sentences via �K� =

⋂
ϕ∈K�ϕ�.

For K ⊆ L and K′ ⊆ L we say K entails K′ (written K |= K′) if �K� ⊆ �K′�. We
write K ≡ K′ to express �K� = �K′�. A (set of) sentence(s) is called consistent
with another (set of) sentence(s) if the two have models in common. Unlike many
other belief revision frameworks, we impose no further requirements on L (like
closure under certain operators or compactness).

The existence of such a classical model-theoretic semantics ensures that the
logic is Tarskian, meaning that taking all consequences is a closure operator
[24,26], which also implies the monotonicity condition: if K1 |= ϕ and K1 ⊆
K2, then K2 |= ϕ. Besides many well-known classical logics, the model-theoretic
framework assumed by us captures many more (and more expressive) logics, e.g.
first-order and second-order predicate logic, modal logics, and description logics.
Our considerations do, however, not apply to non-monotonic formalisms, such
as default logic, circumscription, or logic programming using negation as failure.

2.2 Relations over Interpretations

For describing belief revision on the semantic level, it is purposeful to endow
the interpretation space Ω with some structure. In particular, we will employ
binary relations � over Ω (formally: � ⊆ Ω × Ω), where the intuitive meaning
of ω1 � ω2 is that ω1 is “equally good or better” than ω2 when it comes to
serving as a model. We call � total if ω1 � ω2 or ω2 � ω1 for any ω1, ω2 ∈ Ω
holds. We write ω1 ≺ ω2 as a shorthand, whenever ω1 � ω2 and ω2 	� ω1 (the
intuition being that ω1 is “strictly better” than ω2). For a selection Ω′ ⊆ Ω of
interpretations, an ω ∈ Ω′ is called �-minimal in Ω′ if ω � ω′ for all ω′ ∈ Ω′.1
We let min(Ω′,�) denote the set of �-minimal interpretations in Ω′. We call �
a preorder if it is transitive and reflexive.

2.3 Bases

This article addresses the AGM revision of and by bases. In the belief revision
community, the term of base commonly denotes an arbitrary (possibly infinite)
set of sentences [10]. However, in certain scenarios, other assumptions might be
more appropriate. Hence, for the sake of generality, we decided to define the
notion of a base on an abstract level with minimal requirements (just as we
introduced our notion of logic), allowing for its instantiation in many ways.

Definition 1. A base logic is a quintuple B = (L,Ω, |=,B,�), where

– (L,Ω, |=) is a logic,
– B ⊆ P(L) is a family of sets of sentences, called bases, and

1 If � is total, this definition is equivalent to the absence of any ω′′ ∈ Ω′ with ω′′ ≺ ω.
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– � : B × B → B is a binary operator over bases, called the abstract union,
satisfying �B1 � B2� = �B1� ∩ �B2�.

Next, we will demonstrate how, for some logic L = (L,Ω, |=), a corresponding
base logic can be chosen depending on one’s preferred notion of base.

Arbitrary Sets. If all (finite and infinite) sets of sentences should qualify as bases,
one can simply set B = P(L). In that case, � can be instantiated by set union
∪, then the claimed behavior follows by definition.

Finite Sets. In some settings, it is more convenient to assume bases to be finite
(e.g. when computational properties or implementations are to be investigated).
In such cases, one can set B = Pfin(L), i.e., all (and only) the finite sets of
sentences are bases. Again, � can be instantiated by set union ∪ (as a union of
two finite sets will still be finite).

Belief Sets. This setting is closer to the original framework, where the “knowledge
states” to be modified were assumed to be deductively closed sets of sentences.
We can capture such situations by accordingly letting B = {B ⊆ L | ∀ϕ ∈ L :
B |= ϕ ⇒ ϕ ∈ B}. In this case, the abstract union operator needs to be defined
via B1 � B2 = {ϕ ∈ L | B1 ∪ B2 |= ϕ}.

Single Sentences. In this popular setting, one prefers to operate on single sen-
tences only (rather than on proper collections of those). For this to work prop-
erly, an additional assumption needs to be made about the underlying logic
L = (L,Ω, |=): it must be possible to express conjunction on a sentence level,
either through the explicit presence of the Boolean operator ∧ or by some
other means. Formally, we say that L = (L,Ω, |=) supports conjunction, if for
any two sentences ϕ,ψ ∈ L there exists some sentence ϕ � ψ ∈ L satisfying
�ϕ � ψ� = �ϕ� ∩ �ψ� (if ∧ is available within the logic, we would simply have
ϕ�ψ = ϕ∧ψ). For such a logic, we can “implement” the single-sentence setting
by letting B = {{ϕ} | ϕ ∈ L} and defining {ϕ} � {ψ} = {ϕ � ψ}.

For any of the four different notions of bases, one can additionally choose to
disallow or allow the empty set as a base, while maintaining the required closure
under abstract union. In the following, we will always operate on the abstract
level of “base logics”; our notions, results and proofs will only make use of the
few general properties specified for these. This guarantees that our results are
generically applicable to any of the four described (and any other) instantiations,
and hence, are independent of the question what the right notion of bases ought
to be. The cognitive overload caused by this abstraction should be minimal; e.g.,
readers only interested in the case of arbitrary sets can safely assume B = P(L)
and mentally replace any � by ∪.

2.4 Base Change Operators

In this paper, we use base change operators to model multiple revision, which
is the process of incorporating multiple new beliefs into the present beliefs held
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by an agent, in a consistent way (whenever that is possible). We define change
operators over a base logic as follows.

Definition 2. Let B = (L,Ω, |=,B,�) be a base logic. A function ◦ : B×B → B
is called a multiple base change operator over B.

We will use multiple base change operators in the “standard” way of the belief
change community: the first parameter represents the actual beliefs of an agent,
the second parameter contains the new beliefs. The operator then yields the
agent’s revised beliefs. The term “multiple” references the fact that the second
input to ◦ is not just a single sentence, but a belief base that may consist of
several sentences. For convenience, we will henceforth drop the term “multiple”
and simply speak of base change operators instead.

So far, the pure notion of base change operator is unconstrained and can
be instantiated by an arbitrary binary function over bases. Obviously, this does
not reflect the requirements or expectations one might have when speaking of a
revision operator. Hence, in line with the traditional approach, we will consider
additional constraints (called “postulates”) for base change operators, in order
to capture the gist of revisions.

2.5 Postulates for Revision

We consider multiple revision, focusing on package semantics for revision, which
is that all given sentences have to be incorporated, i.e. given a base K and new
information Γ (also a base here), we demand success of revision, i.e. K ◦ Γ |= Γ.

Besides the success condition, the belief change community has brought up
and discussed several further requirements for belief change operators to make
them rational [10,13]. This has led to the now famous AGM approach of revision
[2], originally proposed through a set of rationality postulates, which correspond
to the postulates (KM1)–(KM6) by K&M presented in the introduction. In our
article, we will make use of the K&M version of the AGM postulates adjusted
to our generic notion of a base logic B = (L,Ω, |=,B,�):

(G1) K ◦ Γ |= Γ.
(G2) If �K � Γ� 	= ∅ then K ◦ Γ ≡ K � Γ.
(G3) If �Γ� 	= ∅ then �K ◦ Γ� 	= ∅.
(G4) If K1 ≡ K2 and Γ1 ≡ Γ2 then K1 ◦ Γ1 ≡ K2 ◦ Γ2.
(G5) (K ◦ Γ1) � Γ2 |= K ◦ (Γ1 � Γ2).
(G6) If �(K ◦ Γ1) � Γ2� 	= ∅ then K ◦ (Γ1 � Γ2) |= (K ◦ Γ1) � Γ2.

Together, the postulates implement the paradigm of minimal change, stating
that a rational agent should change her beliefs as little as possible in the process
of belief revision. We consider the postulates in more detail: (G1) guarantees
that the newly added belief must be a logical consequence of the result of the
revision. (G2) says that if the expansion of K by Γ is consistent, then the result
of the revision is equivalent to the expansion of K by Γ. (G3) guarantees the
consistency of the revision result if the newly added belief is consistent. (G4) is
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the principle of the irrelevance of the syntax, stating that the revision operation
is independent of the syntactic form of the bases. (G5) and (G6) ensure more
careful handling of (abstract) unions of belief bases. In particular, together, they
enforce that K ◦ (Γ1 � Γ2) ≡ (K ◦ Γ1) � Γ2, unless Γ2 contradicts K ◦ Γ1.

We can see that, item by item, (G1)–(G6) tightly correspond to (KM1)–
(KM6) presented in the introduction. Note also that further formulations similar
to (G1)–(G6) are given in multiple particular contexts, e.g. in the context of belief
base revision specifically for Description Logics [19], for parallel revision [5] and
investigations on multiple revision [15,18,27]. An advantage of the specific form
of the postulates (G1)–(G6) chosen for our presentation is that it does not require
L to support conjunction (while, of course, conjunction on the sentence level is
still implicitly supported via (abstract) union of bases).

3 Base Revision in Propositional Logic

A well-known and by now popular characterization of base revision has been
described by Katsuno and Mendelzon [14] for the special case of propositional
logic. To be more specific and apply our terminology, K&M’s approach applies
to the base logic

PLn = (LPLn
,ΩPLn

, |=PLn
,Pfin(LPLn

),∪)

for arbitrary, but fixed n, where LPLn contains all propositional formulae over
the atom set {p1, . . . , pn} and ΩPLn

consists of all functions mapping {p1, . . . , pn}
to {true, false} and |=PLn

is the usual satisfaction relation of propositional
logic. The requirement that the number of propositional atoms must be finite
is not overtly explicit in K&M’s paper, but it becomes apparent upon investi-
gating their arguments and proofs, and their characterization fails as soon as
this assumption is dropped. K&M’s approach also hinges on other particulari-
ties of this setting: As discussed earlier, any propositional belief base K can be
equivalently written as a single propositional sentence. Consequently, in their
approach, belief bases are actually represented by single sentences, without loss
of expressivity.

One key contribution of K&M is to provide an alternative characterization
of the propositional base revision operators satisfying (KM1)–(KM6) by model-
theoretic means, i.e. through comparisons between propositional interpretations.
We next present their results in a formulation that facilitates later generalization.
One central notion for the characterization is the notion of faithful assignment.

Definition 3 (assignment, faithful). Let B = (L,Ω, |=,B,�) be a base logic.
An assignment for B is a function �(.): B → P(Ω×Ω) that assigns to each belief
base K ∈ B a total binary relation �K over Ω. An assignment �(.) for B is called
faithful if it satisfies the following conditions for all ω, ω′ ∈ Ω and all K,K′ ∈ B:

(F1) If ω, ω′ |= K, then ω ≺K ω′ does not hold.
(F2) If ω |= K and ω′ 	|= K, then ω ≺K ω′.
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(F3) If K ≡ K′, then �K =�K′ .

An assignment �(.) is called a preorder assignment if �K is a preorder for every
K ∈ B.

Intuitively, faithful assignments provide information about which of the two
interpretations is “closer to K-modelhood”. Consequently, the actual K-models
are �K-minimal. The next definition captures the idea of an assignment ade-
quately representing the behaviour of a revision operator.

Definition 4 (compatible). Let B = (L,Ω, |=,B,�) a base logic. A base
change operator ◦ for B is called compatible with some assignment �(.) for B if
it satisfies �K ◦ Γ� = min(�Γ�,�K) for all bases K and Γ from B.

With these notions in place, K&M’s representation result can be smoothly
expressed as follows:

Theorem 1 (Katsuno and Mendelzon [14]). A base change operator ◦ for
PLn satisfies (G1)–(G6) if and only if it is compatible with some faithful preorder
assignment for PLn.

In the next section, we discuss and provide a generalization of this charac-
terization to the setting of arbitrary base logics.

4 Approach for Arbitrary Base Logics

In this section, we prepare our main result by revisiting K&M’s concepts for
propositional logic and investigating their suitability for our general setting of
base logics. The result by Katsuno and Mendelzon established an elegant combi-
nation of the notions of preorder assignments, faithfulness, and compatibility in
order to semantically characterize AGM base change operators. However, as we
mentioned before, K&M’s characterization hinges on features of signature-finite
propositional logic that do not generally hold for Tarskian logics. Here we go
further, by extending the K&M approach by novel notions to the very general
setting of base logics.

4.1 First Problem: Non-existence of Minima

The first issue with K&M’s original characterization when generalizing to arbi-
trary base logics is the possible absence of �K-minimal elements in �Γ�: for arbi-
trary base logics, the minimum from Definition 4, required in Theorem 1, might
be empty. To remedy this problem, one needs to impose the requirement that
minima exist whenever needed, as specified in the notion of min-completeness,
defined next.

Definition 5 (min-complete). Let B = (L,Ω, |=,B,�) be a base logic. A
binary relation � over Ω is called min-complete (for B) if min(�Γ�,�) 	= ∅
holds for every Γ ∈ B with �Γ� 	= ∅.



Semantic Characterizations of AGM Revision for Tarskian Logics 103

In the special case of � being transitive and total, min-completeness triv-
ially holds whenever Ω is finite (as, e.g., in the case of propositional logic over n
propositional atoms). In the infinite case, however, it might need to be explic-
itly imposed, as already noted in earlier works [7] (cf. also the notion of limit
assumption by Lewis [16]). Note that min-completeness does not entirely disal-
low infinite descending chains (as well-foundedness would), it only ensures that
minima exist inside all model sets of consistent belief bases.

4.2 Second Problem: Transitivity of Preorder

When generalizing from the setting of propositional to arbitrary base logics,
the requirement that assignments must produce preorders (and hence transitive
relations) turns out to be too restrictive.

In fact, it has been observed before that the incompatibility between tran-
sitivity and K&M’s approach already arises for propositional Horn logic [6]. As
a consequence, we cannot help but waive transitivity (and hence the property
of the assignment providing a preorder) if we want our characterization result
to hold for all Tarskian logics. However, for our result, we need to retain a new,
weaker property (which is implied by transitivity) defined next.

Definition 6 (min-retractive). Let B = (L,Ω, |=,B,�) be a base logic. A
binary relation � over Ω is called min-retractive (for B) if, for every Γ ∈ B and
ω′, ω ∈ �Γ� with ω′ � ω, ω ∈ min(�Γ�,�) implies ω′ ∈ min(�Γ�,�).

We conveniently unite the two identified properties into one notion.

Definition 7 (min-friendly). Let B = (L,Ω, |=,B,�) be a base logic. A binary
relation � over Ω is called min-friendly (for B) if it is both min-retractive and
min-complete. An assignment �(.): B → P(Ω × Ω) is called min-friendly if �K
is min-friendly for all K ∈ B.

5 One-way Representation Theorem

We are now ready to generalize K&M’s representation theorem from proposi-
tional to arbitrary Tarskian logics, by employing the notion of compatible min-
friendly faithful assignments.

Theorem 2. Let ◦ be a base change operator for some base logic B. Then, ◦
satisfies (G1)–(G6) if and only if it is compatible with some min-friendly faithful
assignment for B.

For the “if” direction, we show that the notion of min-friendly compatible
assignment is sufficient to enforce that any compatible base revision operator
satisfies (G1)–(G6).

For the more involved “only if” direction, we provide a canonical way of
obtaining an assignment for a given revision operator and show that our con-
struction indeed yields a compatible min-friendly faithful assignment. To this
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end, we suggest the following construction, which we consider one of this paper’s
core contributions. It realizes the idea that one should (strictly) prefer ω1 over
ω2 only if there is a witness belief base Γ that certifies that ◦ prefers ω1 over ω2.
Should no such witness exist, ω1 and ω2 will be deemed equally preferable.

Definition 8. Let B = (L,Ω, |=,B,�) be a base logic, let ◦ be a base change
operator for B and let K ∈ B be a belief base. The relation �◦

K over Ω is defined
by ω1 �◦

K ω2 if ω2 |= K◦Γ implies ω1 |= K◦Γ for all Γ ∈ B with ω1, ω2 ∈ �Γ�.

Definition 8 already yields an adequate encoding strategy for many base
logics. However, to also properly cope with certain “degenerate” base logics, we
have to hard-code that the prior beliefs of an agent are prioritized in all cases,
that is, only models of the prior beliefs are minimal. The following relation builds
upon the relation �◦

K and takes explicit care of handling prior beliefs, which is
strong enough for always obtaining a relation that is total and reflexive.

Definition 9. Let B = (L,Ω, |=,B,�) be a base logic, let ◦ be a base change
operator for B and let K ∈ B be a belief base. The relation �◦

K over Ω is then
defined by ω1 �◦

K ω2 if ω1 |= K or ( ω1, ω2 	|= K and ω1 �◦
K ω2 ). Let �◦

(.):
B → P(Ω × Ω) denote the mapping K �→ �◦

K.

6 Two-way Representation Theorem

Theorem 2 establishes the correspondence between operators and assignments
under the assumption that ◦ is given and therefore known to exist. What remains
unsettled is the question if generally every min-friendly faithful assignment is
compatible with some base change operator that satisfies (G1)–(G6). As this is
not the case, a full, two-way correspondence, requires an additional condition on
assignments, capturing operator existence. More specifically, it is essential that
any minimal model set of a belief base obtained from an assignment corresponds
to some belief base, a property which is formalized by the following notion.

Definition 10 (min-expressible). Let B = (L,Ω, |=,B,�) be a base logic. A
binary relation � over Ω is called min-expressible if for each Γ ∈ B there exists
a belief base BΓ,� ∈ B such that �BΓ,��= min(�Γ�,�). An assignment �(.) will
be called min-expressible, if for each K ∈ B, the relation �K is min-expressible.
Given a min-expressible assignment �(.), let ◦�(.)

denote the base change operator
defined by K ◦�(.)

Γ = BΓ,�K .

It should be noted that min-expressibility is a straightforward generalization
of the notion of regularity by Delgrande and colleagues [7] to base logics. By
virtue of this extra notion, we now find the following bidirectional relationship
between assignments and operators, amounting to a full characterization.

Theorem 3. Let B be a base logic. Then the following hold:

– Every base change operator for B satisfying (G1)–(G6) is compatible with
some min-expressible min-friendly faithful assignment.
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– Every min-expressible min-friendly faithful assignment for B is compatible
with some base change operator satisfying (G1)–(G6).

As an aside, note that the above theorem also implies that every min-
expressible min-friendly faithful assignment is compatible only with AGM base
change operators. This is because, one the one hand, any such assignment
fully determines the corresponding compatible base change operator model-
theoretically and, on the other hand, (G1)–(G6) are purely model-theoretic con-
ditions.

7 Total-Preorder-Representability

As we have shown, regrettably, not every AGM belief revision operator in every
Tarskian logic can be described by a total preorder assignment. Yet, we also saw
that, for some logics (like PLn), this correspondence does indeed hold. Conse-
quently, this section is dedicated to finding a characterization of precisely those
logics wherein every AGM base change operator is representable by a compatible
min-complete faithful preorder assignment. The following definition captures the
notion of operators that are well-behaved in that sense.

Definition 11 (total-preorder-representable). A base change operator ◦
for some base logic is called total-preorder-representable if there is a min-
complete faithful preorder assignment compatible with ◦.

Recall that transitivity implies min-retractivity, and thus, every min-
complete preorder is automatically min-friendly. The following definition
describes the occurrence of a certain relationship between several bases. Such
an occurrence will turn out to be the one and only reason to prevent total-
preorder-representability.

Definition 12 (critical loop). Let B = (L,Ω, |=,B,�) be a base logic. Three
or more bases Γ0,1,Γ1,2, . . . ,Γn,0 ∈ B are said to form a critical loop of length
(n + 1) if there are a base K ∈ B and consistent bases Γ0, . . . ,Γn ∈ B such that

(1) �K � Γi,i⊕1� = ∅ for every i ∈ {0, . . . , n}, where ⊕ is addition mod (n + 1),
(2) �Γi�∪�Γi⊕1� ⊆ �Γi,i⊕1� and �Γj �Γi� = ∅ for each i, j ∈ {0, . . . , n} with i 	= j,

and
(3) for each Γ� ∈ B that is consistent with at least three bases from Γ0, . . . ,Γn,

there is a Γ′
� ∈ B such that �Γ′

�� 	= ∅ and �Γ′
�� ⊆ �Γ�� \ (�Γ0,1� ∪ . . . ∪ �Γn,0�).

The three conditions in Definition 12, illustrated in Fig. 1, describe the
canonic situation brought about by some bases Γ0,1, . . . ,Γn,0 allowing for the
construction of a revision operator that unavoidably gives rise to a circular com-
patible relation. Note that due to Condition (3), every three of Γ0,1,Γ1,2, . . . ,Γn,0

together are inconsistent, but each two of them which have an index in common
are consistent, i.e. Γi,i⊕1 � Γi⊕1,i⊕2 is consistent for each i ∈ {0, . . . , n}.

The next theorem is the central result of this section, confirming that the
notion of critical loop captures exactly those base logics for which some operator
exists that is not total-preorder-representable.
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Fig. 1. Illustrations of Conditions (1)–(3) of a critical loop from Definition 12.

Theorem 4. Let B be a base logic which does not admit a critical loop. Then
the following hold:

– Every base change operator for B satisfying (G1)–(G6) is compatible with
some min-expressible min-complete faithful preorder assignment.

– Every min-expressible min-complete faithful preorder assignment for B is com-
patible with some base change operator satisfying (G1)–(G6).

We close this section with an important implication of Theorem 4. A base logic
B= (L,Ω, |=, B,�) is called disjunctive, if for every two bases Γ1,Γ2 ∈ B there
is a base Γ1 � Γ2 ∈ B such that �Γ1 � Γ2� = �Γ1� ∪ �Γ2�. This includes the case
of any (base) logic allowing disjunction to be expressed on the sentence level,
i.e., when for every γ, δ ∈ L there exists some γ � δ ∈ L with �γ � δ� = �γ�∪ �δ�,
such that Γ1 � Γ2 can be obtained as {γ � δ | γ ∈ Γ1, δ ∈ Γ2}.

Corollary 1. In a disjunctive base logic, every belief change operator satisfying
(G1)–(G6) is total-preorder-representable.

As a consequence, for a vast amount of well-known logics, including all clas-
sical logics such as first-order and second order predicate logic, one directly
obtains total-preorder-representablility of every AGM base change operator by
Corollary 1.

8 Related Work

In settings beyond propositional logic, we are aware of three closely related
approaches that propose model-based frameworks for revision of belief bases (or



Semantic Characterizations of AGM Revision for Tarskian Logics 107

sets) without fixing a particular logic or the internal structure of interpretations,
and characterize revision operators via minimal models à la K&M with some
additional assumptions.

One semantic-based approach related to the one of K&M was proposed by
Grove [11] in the setting of Boolean-closed logics. He originally characterized
AGM revision operators via systems of spheres, collections S of sets of interpre-
tations satisfying certain conditions. Delgrande and colleagues [7] then reformu-
lated Grove’s representation theorem stating that (expressed in our terminology)
any AGM revision operator can be obtained from a compatible min-complete
faithful preorder assignment, provided the set of interpretations is Ω-expressible,
i.e. for any subset Ω′ ⊆ Ω there exists a base Γ such that �Γ� = Ω′. In this
formulation, Groves result also holds for logics with infinite Ω. Grove’s result
constitutes a special case of our representation theorem: from the assumption
of Boolean-closedness, it follows that the considered logics are disjunctive and
therefore free of critical loops (cf. Theorem 4 and Corollary 1). The assumption
of Ω-expressibility immediately implies min-expressibility for all relations.

The representation result of Delgrande et al. [7] confines the considered log-
ics to those where the set Ω of interpretations (or possible worlds) is finite2 and
where any two different interpretations ω, ω′ ∈ Ω can be distinguished by some
sentence ϕ ∈ L, i.e., ω ∈ �ϕ� and ω′ 	∈ �ϕ�. Moreover, they extend the AGM
postulates by the following extra one, denoted (Acyc). With these ingredients in
place, they [7] establish that, for the logics they consider, there is a two-way cor-
respondence between those AGM revision operators satisfying (Acyc) and min-
expressible faithful preorder assignments. Instead of the term “min-expressible”,
they use the term regular. The approach of Delgrande et al. [7] can be seen as
complementary to ours. While our proposal is to relinquish the requirement of
using preorders, their (Acyc) postulate allows for a preorder characterization
even in logics with critical loops by disallowing some “unnatural” AGM revision
operators.

The approach of Aiguier et al. [1] considers AGM belief base revision in
logics with a possibly infinite set Ω of interpretations. Notably, they propose
to consider certain bases, that actually do have models, as inconsistent (and
thus in need of revision). While, in our view, this is at odds with the foun-
dational assumptions of belief revision (revision should be union/conjunction
unless facing unsatisfiability), this appears to be a design choice immaterial to
the established results. As far as the postulates are concerned, Aiguier et al. [1]
decide to rule out (KM4)/(G4), arguing in favor of syntax-dependence. Like us,
they [1] propose to drop the requirement that assignments have to yield pre-
orders. In addition to the standard notion of compatibiliy, their result hinges on
an additional correspondence between the assignment and the preorder (third
bullet point).

2 Note that this precondition excludes not only more complex logics such as first-
order or modal logics and most of their fragments, but also propositional logic with
infinite signature. On the positive side, this choice guarantees min-completeness of
any preorder.
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9 Conclusion

The central objective of our treatise was to provide an exact model-theoretic
characterization of AGM belief revision in the most general reasonable sense,
i.e., one that uniformly applies to every logic with a classical model theory (i.e.,
every Tarskian logic), to any notion of bases that allows for taking some kind
of “unions” (including the cases of belief sets, sets of sentences, finite sets of
sentences, and single sentences), and to all base change operators adhering to
the unaltered AGM postulates (without imposing further restrictions through
additional postulates).

We found that in the general case considered by us, the original result of
K&M for signature-finite propositional logic fails in many ways and needs sub-
stantial adaptations. In particular, aside from delivering total relations and being
faithful, the assignment now needs to satisfy (i) min-expressibility, guaranteeing
existence of a describing base for any model set obtained by taking minimal
interpretations among some base’s models, (ii) min-completeness, ensuring that
minimal interpretations exist in every base’s model set, and (iii) min-retractivity
instead of transitivity, making sure that minimality is inherited to more prefer-
able elements.

While the first two adjustments have been recognized and described in prior
work, the notion of min-retractivity (and the decision to replace transitivity
by this weaker notion and thus give up on the requirement that preferences
be preorders) seems to be novel. Yet, it turns out to be the missing piece for
establishing the desired two-way compatibility-correspondency between AGM
revision operators and preference assignments of the described kind (cf. Theorem
3).

Conceding that transitivity is a rather natural choice for preferences and
preorder assignments might be held dear by members of the belief revision com-
munity, we went on to investigate for which logics our general result holds even
if assignments are required to yield preorders. We managed to pinpoint a spe-
cific logical phenomenon (called critical loop), the absence of which in a logic
is necessary and sufficient for total-preorder-representability. While the criterion
by itself maybe somewhat technical and unwieldy, it can be shown to subsume
all logics featuring disjunction and therefore all classical logics.

Next to advancing the general model-theoretic understanding of AGM belief
revision for the vast class of Tarskian logics, our research also opens up more
concrete opportunities: Among others, it allows for the definition of novel AGM
belief revision operators from a model-theoretic perspective, through the design
of an appropriate assignment. Another interesting direction may be to study
the potential relationship between our notion of min-retractivity and notions of
quasi-transitivity and Suzumura-consistency in social choice theory [4] or interval
orders in belief set contraction [23].
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