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Abstract. LegalRuleML is a comprehensive XML-based representation
framework for modeling and exchanging normative rules. The TPTP
input and output formats, on the other hand, are general-purpose stan-
dards for the interaction with automated reasoning systems. In this paper
we provide a bridge between the two communities by (i) defining a logic-
pluralistic normative reasoning language based on the TPTP format,
(ii) providing a translation scheme between relevant fragments of Legal-
RuleML and this language, and (iii) proposing a flexible architecture
for automated normative reasoning based on this translation. We exem-
plarily instantiate and demonstrate the approach with three different
normative logics.
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1 Introduction

Automated theorem proving (ATP) systems are computer programs that, given
a set A of assumptions and a conjecture C as input, try to prove that C is a
logical consequence of A, i.e., that it is impossible for C to be false whenever
every formula from A holds. ATP systems conduct the whole reasoning process
automatically, so that no user interaction is necessary during proof search.

In normative reasoning, logical formalisms are employed to represent and
reason about different notions of norms, including obligations, permissions and
prohibitions. In automated normative reasoning, the goal is hence to automate
the reasoning process in the context of normative discourse by employing suitable
logical systems. LegalRuleML [2,3] is a comprehensive XML-based representa-
tion framework for modeling and exchanging normative rules, e.g., legal norms
originating from national laws of some particular country. The LegalRuleML
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standard comes with fine-grained and expressive means for representing (pos-
sibly legal) norms in an isomorphic [4] fashion with respect to their original
source(s). At the same time, LegalRuleML is semantically underspecified, in the
sense that it deliberately does not prescribe a specific logic (or semantics) in
which the represented norms are to be interpreted.

LegalRuleML has been employed by Robaldo et al. to provide an exhaus-
tive formalization of the General Data Protection Regulation (GDPR) [24].
Palmirani and Governatori combine LegalRuleML with further technologies and
approaches to present an integrated framework for compliance checking with
legal rules, but also focusing on GDPR applications [22]. Still, there exist only
comparably few systems that, in fact, automate reasoning processes based on
normative knowledge. Notable examples are provided by Liu et al. who inter-
pret legal norms in a defeasible deontic logic and provide automation for it [19],
and the SPINdle prover [17] for propositional (modal) defeasible reasoning that
has been used in multiple works in the normative application domain.

In contrast, there are many general-purpose ATP systems available for clas-
sical logics, e.g., for propositional logic, first-order predicate logic, and more
recently for higher-order logic. These systems are being continuously improved
and are increasingly becoming more effective, as witnessed by the results of the
annual ATP system competition CASC [30]. The development of general-purpose
ATP systems for normative reasoning is, on the other hand, complicated by the
fact that there is no single logic acting as the de-facto standard formalism for
normative reasoning. In general, the design and implementation of practically
effective ATP systems is a non-trivial task and very laborious; and so it is easy
to see that developing custom ATP systems for each distinct normative formal-
ism is a quite unfeasible undertaking, in particular since, as witnessed in deontic
logic (see Sect. 2.2), those formalisms behave as moving targets.

In this paper, we therefore propose to employ for this task general-purpose
ATP systems for classical higher-order logic, and thus to reduce normative rea-
soning tasks to classical ATP problems in a general way. For this, we bridge
between LegalRuleML and the TPTP language standard for ATP systems [31],
so that any TPTP-compliant ATP system for higher-order logic can be reused
as a reasoning backend for a wide range of normative logics.

The contributions of this paper are as follows:

– We define a logic-pluralistic domain specific language (DSL) for normative
reasoning with TPTP-compliant ATP systems.

– We show how the DSL can be mechanically translated into ATP reasoning
problems in different concrete normative logics.

– We describe a reasoning architecture that provides flexible means of automa-
tion for these normative logics.

– We present a prototypical implementation of the whole reasoning tool chain
that is available as open-source code.

The remainder of this paper is structured as follows: In Sect. 2 we briefly
survey the TPTP and the LegalRuleML standards, together with a very brief
exposition of deontic logics as specific systems for normative reasoning. In Sect. 3,
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we discuss the role of logical pluralism in normative reasoning, which is one of
the key motivations of this work. Subsequently, Sect. 4 presents the utilization
of a TPTP format for normative rules. In Sect. 5 we then present a flexible and
uniform approach for automating normative reasoning using general purpose
ATP systems. Finally, Sect. 6 concludes and sketches further work.

An extended version of this paper is available on arXiv [27].

Related Work. Automation approaches by translation have been studied by Lam
and Hashmi, where they translate LegalRuleML statements into a defeasible
modal logic for which an automated reasoning tool exists [18]. Their approach is,
however, fixed to one specific logic formalism as opposed to the logic-pluralistic
view that we put forward in this work. Similarly, Boley et al. translate RuleML
information to modal logic in TPTP format [9]. However, simple modal logics are
not fully adequate for normative reasoning, see the brief discussion in Sect. 2.2.
Our approach is in line with the LogiKEy methodology proposed by Benzmüller
et al. [6], which makes use of expressive higher-order logics for flexibly encoding,
reasoning, and experimenting with normative theories.

2 Preliminaries

2.1 The TPTP Infrastructure for ATP Systems

The Thousands of Problems for Theorem Proving (TPTP) library and infras-
tructure [31] is the core platform for contemporary ATP system development and
evaluation. It provides (i) a comprehensive collection of benchmark problems for
ATP systems; (ii) a set of utility tools for problem and solution inspection, pre-
and post-processing, and verification; and (iii) a comprehensive syntax standard
for ATP system input and output.

The TPTP specifies different ATP system languages varying in their expres-
sivity [31]: The first-order form (FOF) represents unsorted first-order logic, the
typed first-order form (TFF) represents many-sorted first-order logic, and typed
higher-order form (THF) represents classical higher-order logic. An ATP prob-
lem generally consists of symbol declarations (if the language is typed), con-
textual definitions and premises of the reasoning task (usually referred to as
axioms), and a conjecture that is to be proved or refuted in the given context.
The core building block of the ATP problem files in TPTP languages are so-
called annotated formulas of form . . .

language(name,role,formula[,source[,annotations]]).
Here, language is a three-letter identifier for the intended language in which

the annotated formula is expressed (fof, tff or thf). The name is a unique
identifier for referencing to the annotated formula but has no other effect on
the interpretation of it. The role field specifies whether the formula should be
interpreted, among others, as an assumption (role axiom), a type declaration
(role type), a definition (role definition) or as formula to be proved (role
conjecture). The formula is an ASCII representation of the respective logical
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expression, where predicate and function symbols are denoted by strings that
begin with a lower-case letter, variables are denoted by strings starting with an
upper-case letter, the logical connectives ¬, ∧, ∨, →, ↔ are represented by ~,
&, |, => and <=>, respectively. Quantifiers ∀ and ∃ are expressed by ! and ?,
respectively, followed by a list of variables bound by it. The TPTP defines sev-
eral interpreted constants starting with a $-sign, including $true and $false for
truth and falsehood, respectively. In typed languages, such as TFF and THF,
the type $i represents the type of individuals and $o is the type of Booleans.
In TFF, explicit types of symbols may be dropped and default to n-ary func-
tion types ($i * ... * $i) > $i and n-ary predicate types ($i * ... * $i)
> $o depending on their occurrence. Finally, the source and annotations are
optional extra-logical information, e.g., about its origin, its relevance, or other
properties. An example in TFF is as follows:

tff(union_def, axiom, ! [S, T, X]: (
member(X, union(S,T)) <=>

( member(X, S) | member(X, T) ) ),
source(’definitions.ax’),
[relevance(1.0)]).

In this example, a TFF annotated formula of name union_def is given that
describes an axiom giving a fundamental property of set union and some aux-
iliary information about it. A complete description of the TPTP infrastructure
and its input languages, including the syntax BNF, is provided by Sutcliffe [31]
and the TPTP web page (tptp.org).

2.2 Deontic Logics and LegalRuleML

Deontic logics are logical systems intended to formally represent normative
notions, such as obligations, permissions and prohibitions, their relationships,
and their properties [14]. An early deontic logic, today still referred to as stan-
dard deontic logic (SDL), is based on simple modal logic D. In this context, the
modal operators are usually denoted O (for obligation) and P (for permission),
where Oϕ ↔ ¬P¬ϕ holds, and every instance of Oϕ → Pϕ is validated.

In normative reasoning contexts, usually other deontic logics are employed
today. Dyadic deontic logics specifically address conditional norms of the form
O(ϕ|ψ) (read: It ought to be ϕ given ψ) [23], defeasible deontic logics address
non-monotonic reasoning patterns with defeasible norms [15], and norm-based
deontic logics model norms separately from factual expressions [20].

A prominent example illustrating the shortcomings of SDL related to condi-
tional norms is Chisholm’s paradox [13], paraphrased as follows:
Assume that your neighbors are in trouble (and you like them), then . . .

(1) You ought to go help your neighbors.
(2) If you go help your neighbors, you ought to tell them you are coming over.
(3) If you do not go help your neighbors, you ought not to tell them you are

coming over.

http://tptp.org
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(4) You do not go help your neighbors.

The sentences (1) – (4) above appear to describe a plausible situation, and,
intuitively, they also constitute a both logically consistent and independent set
of sentences. Hence, arguably, an adequate formalization should respect these
constraints. Chisholm’s paradox here mainly serves as a running example that
highlights the significant effects of interpreting normative information under dif-
ferent logical systems.

Table 1. Some possible formalizations of Chisholm’s paradox.

Natural language SDL-v1 SDL-v2 SDL-v3 DDL

You ought to go help your neighbors Oh O h O h O h

If you go help your neighbors, you ought to
tell them you are coming over

O (h → t) O (h → t) h → O t O (t|h)

If you do not go help your neighbors, you
ought not to tell them you are coming over

¬h → O¬t O (¬h → ¬t) ¬h → O¬t O (¬t|¬h)

You do not go help your neighbors ¬h ¬h ¬h ¬h

Table 1 shows several different interpretations for Chisholm’s scenario; three
of them formalized using SDL, and the fourth formalized using a dyadic deontic
logic (DDL) where h represents “helping your neighbors” and t represents “telling
them you are coming over”. As it happens, the set of formulas corresponding
to the first SDL-formalization variant (SDL-v1) is inconsistent, thus allowing
the derivation of every formula and, in particular, every obligation (e.g., O k
where k could represent “killing your neighbor”). In fact, the next two SDL-
formalizations are not logically independent, and thus inadequate, see [16, §8.5]
for a discussion. In dyadic deontic logics the conditional norms from above are
represented using dyadic obligation operators as in O(t|h) resp. O(¬t|¬h) instead
of material implications. These logic systems are specifically conceived in order
to remedy shortcomings of SDL in addressing the so-called ‘paradoxes’ of deontic
logic related to conditional obligations. Unsurprisingly, no logic formalism has
yet been found which successfully addresses all of the many different deontic
paradoxes and deficiencies, see [16, §8] for an exhaustive overview.

LegalRuleML. [2] is a comprehensive XML-based representation framework for
modeling and exchanging normative rules. It extends the general RuleML stan-
dard [10] with specialized concepts and features for normative rules, legal con-
texts, interpretations, etc. In LegalRuleML, conditional deontic norms are rep-
resented using specialized rules called PrescriptiveStatements of the form . . .

<lrml:PrescriptiveStatement>
<ruleml:Rule closure="universal">

<ruleml:if> ... </ruleml:if>
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<ruleml:then> ... </ruleml:then>
</ruleml:Rule>

</lrml:PrescriptiveStatement>

where both the if-node (the body) and the then-node (the head) may contain
the LegalRuleML deontic operators Obligation, Permission and Prohibition,
and combinations thereof using the usual connectives. The semantics of the deon-
tic operators is left underspecified by LegalRuleML, so that any deontic logic may
be assumed, e.g., via the appliesModality edge element, to interpret the rep-
resented norms. ConstitutiveStatements represent so-called counts-as norms,
and they cannot have deontic operators in their head.

For a thorough introduction to LegalRuleML we refer to the literature [2,3].

2.3 Domain-Specific Languages

Domain-specific languages (DSLs) are formal languages (e.g. programming or
logical languages) that have been designed for use in a particular domain. Their
expressivity is deliberately restricted to allow for a higher degree of abstraction,
and thus to better leverage specialized domain knowledge of their users.

DSLs can be divided into stand-alone and embedded. The former provide
their own custom syntax and semantics, thus allowing for a maximal level of
customization, but represent a significant implementation effort by requiring
the provision of a complete compilation tool chain (parser, type-checker, etc.).
The latter consist essentially in a collection of definitions encoded using a more
expressive ‘host’ language; this way the existing infrastructure and tools of the
host environment can be reused for the DSL. In this case we often speak of an
object language (the DSL) that has been embedded into the host language.

In the context of embedded DSLs, one can further differentiate between two
embedding techniques, termed deep and shallow embeddings. In a deep embed-
ding, the terms of the object language are encoded as inductive data structures
in the host language, i.e., as its abstract syntax tree (AST), and term interpreta-
tion functions (providing the semantics) can then be defined inductively, e.g. for
evaluation/execution or optimization. In contrast, terms in shallow embeddings
correspond to syntactic abbreviations of the host language, and thus directly
encode the intended semantics of object-language expressions. Hence, evaluation
in a shallow embedding corresponds to evaluation in its host language, bypassing
the need for defining and inductively traversing an AST. In the context of (non-
classical) logic a special technique, termed shallow semantical embeddings [5],
has been developed to harness shallow embeddings to encode (quantified) non-
classical logics into classical higher-order logic.

3 Logical Pluralism in Normative Reasoning

3.1 The Problem of Formalization

In computer science, the idea of mechanistically computing formal representa-
tions of natural language in a purely compositional way, made popular through
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the seminal work of Richard Montague [21], has been pursued with the help
of automated reasoners during the last thirty or so years in the area known as
computational semantics [7]. One of the main insights has been that the expres-
sions in natural language are semantically underspecified in the sense that not
enough information can be extracted from them to construct the sort of mean-
ing representations Montague was dreaming of, that is, formulas in some formal
logical language. Thus, interpreting ordinary sentences can lead to an unfeasible
number of different meaning representations [11].

Among the main determinants behind this underspecification phenomenon,
we find ambiguity (syntactic and semantic) and the lack of background knowl-
edge. Among the proposed solutions to tackle the first issue, several kinds of
underspecified semantic representations have been proposed. However, they have
been seen as challenging the application of automated reasoning methods, since
disambiguation often results in different formalizations licensing disparate sets
of inferences [8]. This has been seen commonly as a problem according to the
traditional conception that each natural-language statement shall be correlated
with one most adequate (‘correct’) formalization.

On the other hand, the available (formalized) background knowledge is also
a degree of freedom determining which inferences are to be drawn from a formal-
ized set of sentences. This knowledge can be of a linguistic nature (e.g. lexica)
or more domain-specific (e.g. ontologies and knowledge bases). In fact, the avail-
ability of adequate sources for background knowledge is a well-known bottleneck
in the computational semantics endeavor. In this respect, RuleML and related
knowledge representation and interchange standards, in particular LegalRuleML,
play a fundamental role in enabling the interfacing with available normative
knowledge sources and ontologies.

3.2 Formalizing Normative Discourse

The problem of formalization depicted above applies notably to the logical encod-
ing of normative discourse. This has been experienced with particular intensity
in the area of deontic logic. An example of the above is the Chisholm’s paradox,
as presented in Sect. 2.2, where we could appreciate how the task of adequately
formalizing a set of simple natural-language sentences can give rise not only to
different logical forms, but also to different ways of interpreting logical connec-
tives, such as conditionals, (deontic) modalities, etc.

In this work, we aim at doing justice to the complex problem of formaliz-
ing normative discourse, and thus suggest to employ normative domain-specific
languages (DSLs) as an intermediate representation format to encode norma-
tive knowledge in a semantic underspecified fashion, even reaching to the level
of the logical connectives themselves, which thus require further specification
for subsequent reasoning tasks. This introduces a component of logical pluralism
into our approach, since (semantically underspecified) logical operators can (and
will) be given concrete interpretations in different non-classical logics, see Sect. 5.
Moreover, we aim at showing not only that such a DSL can (and should) be of
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a formal logical nature, but also that it can at the same time be fully machine-
readable for subsequent consumption by automated reasoning tools. Hence we
introduce an illustrative normative DSL embedded in a suitable TPTP language
below.

4 Normative Knowledge Representation in the TPTP

TPTP traditionally focused on classical logic, e.g., standards and benchmark
sets for classical propositional and (first- and higher-order) predicate logic for-
malisms. Only recently there have been some ongoing efforts on extending TPTP
towards non-classical logics as well [29]. For this purpose, the TFF language has
been extended with expressions of the form . . .

{connective_name} @ (arg1,. . . ,argn)
where connective_name is either a TPTP-defined name (starting with a $ sign)
or a user-defined name (starting with two $ signs) for a non-classical operator,
and the argi are terms or formulas to which the operator is applied. TPTP-
defined connectives have a fixed meaning and are documented by the TPTP;
the interpretation of user-defined connectives is provided by third-party sys-
tems, environments, or documentation. Non-classical operators may optionally
be parameterized with key-value arguments (see below for exemplary use). The
so enriched TPTP language is denoted NXF (non-classical extended first-order
form). An analogous extension of THF, called NHF (non-classical higher-order
form), has been introduced as well (not discussed here).

Non-classical logic languages often come with different logics (e.g., different
semantics) associated with them. A prominent example are modal logic lan-
guages in which the properties of the box operator � depend on the concrete
modal logic at hand. For example, in modal logic S5 all instances of �ϕ → ϕ
are tautologies, while this is not the case in modal logic K – still both logics
share the same vocabulary. In order to resolve these ambiguities and to specify
the exact logic under consideration, non-classical TPTP adds logic specifications
to the language [29]. They are annotated formulas of form (here: in NXF) . . .

tff(name, logic, logic_name == [options] ).
where logic is the TPTP role, logic_name is a TPTP-defined or user-defined
designator for a logical language and options are comma-separated key-value
pairs that fix the specific logic based on that language. Of course, changing the
logic specification may change the provability/validity of the underlying reason-
ing problem.

The NXF problem representing the formalization (SDL-v3) of Chisholm’s
paradox, as introduced in Sect. 2.2, in simple modal logic D is as follows (where
{$box} represents the modal box operator, denoted O in SDL):

tff(spec, logic, $modal == [$modalities == $modal_system_D, ...]
tff(norm1, axiom, {$box} @ (help)).
tff(norm2, axiom, help => {$box} @ (tell)).
tff(norm3, axiom, ~help => {$box} @ (~tell)).
tff(fact1, axiom, ~help).
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The first line specifies the modal logic to be used (here, modal logic D), while the
remaining four lines encode the formulas from Sect. 2.2. For illustration purposes,
not all of the logic parameters are shown in the logic specification. A list of logics
supported by the TPTP so far, their parameters, and their representation is
available in the literature [29].

4.1 NMF: A Normative DSL in TPTP

The non-classical TPTP formats introduced above allow for encoding non-
classical logics for use with generic ATP systems. Nevertheless, each problem
representation in that format needs to have a fixed underlying logic as specified
by the logic specification. In the present work we want to allow for working with
many different normative logics in a uniform way; for this sake we introduce
an embedded DSL (Sect. 2.3) hosted on top of non-classical TPTP formats, and
referred to as Normative Meta Form (NMF) in the remainder. This way, every
file represented in NMF will be syntactically well-formed TPTP, and hence we
can use standard TPTP tools, such as syntax checkers, for processing them.
Also, available software packages for ATP systems, e.g. parsers, can be reused.

More specifically, NMF extends NXF from above as follows: The operator
names $$obligation, $$permission, $$prohibition, and $$constitutive are
introduced. They are binary operators, and interpreted as follows . . .

– {$$obligation} @ (body, head) encodes “head is obligatory given body”,
– {$$permission} @ (body, head) encodes “head is permitted given body”,
– {$$prohibition} @ (body, head) encodes “head is prohibited given body”,
– each of the three deontic operators may optionally be parameterized with

the bearer option, e.g. {$$obligation(bearer := x) @ (body, head), to
denote a directed deontic statement towards entity x, and

– {$$constitutive} @ (body, head) encodes a constitutive norm (counts-as
norm) that establishes the institutional fact that body counts as head.

Since NMF extends NXF, it does not come with a fixed logic and is thus
semantically underspecified. We can choose a concrete interpretation of the
underspecified deontic operators using the logic specification as follows ...

tff(name, logic, $$normative == [ $$logic == target_logic ]).
where target_logic is some deontic logic identifier. We will describe the target
logics currently supported in Sect. 5. For the time being, it is important to high-
light that the description of the encoded norms will remain the same, regardless
of which target logic we choose, and we only need to give a logic specification
for the desired logic. Note that some deontic logics, such as SDL, do not come
with built-in operators for conditional deontic expressions. Hence, our norma-
tive DSL (NMF) has been designed to abstract away the deontic operators of
concrete logics, and we show in Sect. 5 how to translate from NMF to concrete
deontic logics.

The running example of Chisholm’s paradox can be encoded in NMF in a
logically underspecified way (i.e. without a logic specification) as follows:
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tff(norm1, axiom, {$$obligation} @ ($true, help)).
tff(norm2, axiom, {$$obligation} @ (help, tell)).
tff(norm3, axiom, {$$obligation} @ (~help, ~tell)).
tff(fact1, axiom, ~help).

Recall that NMF is defined on top of NXF and, as such, offers first-order
quantification, predicate symbols and function symbols. An even more expres-
sive, higher-order quantified, variant of NMF could be defined analogously on
top of NHF (not discussed here).

4.2 Conversion from LegalRuleML to NMF

The top-level LegalRuleML statements are translated into NMF as presented in
Table 2. Note that we are currently addressing only a small fragment of Legal-
RuleML with this translation; many important metadata present in the Legal-
RuleML documentation are not yet considered. In this initial stage we primarily
target automation of normative codes as formalized using deontic logics. In par-
ticular, suborder lists are currently not supported, and also strengths/exception
specifications of deontic statements are not yet captured.

The translation process recursively translates the prescriptive statements,
constitutive statements and factual statements of LegalRuleML into formulas in
NMF. For identification purposes, key references from LegalRuleML are kept as
formula names in the TPTP representation, and additional (legal) references and
associations, expressed via <lrml:LegalReferences> or <lrml:References>
blocks, and assigned by <lrml:Associations> blocks, respectively, are kept
during the translation as TPTP annotations (not shown in Table 2). If a deontic
operator in LegalRuleML comes with a <lrml:Bearer> node, this is mirrored
in NMF as sketched in Sect. 4.1.

The translation from LegalRuleML to the proposed logic-pluralistic TPTP-
based DSL is prototypically implemented as part of the tptp-utils tool, available
at GitHub1. tptp-utils will produce a NMF file according to the above transla-
tion scheme but without a logic specification. The latter can be added by the
user in order to assume concrete interpretations of the normative statements,
see Sect. 5. A logic specification could also be created automatically from the
LegalRuleML document, deriving from respective appliesModality edges; this
is an interesting venue for further work.

5 TPTP-Based Normative Reasoning Backends

The translation of LegalRuleML statements into a representation in the TPTP-
based DSL introduced above does not yet allow the utilization of automated
reasoning tools for automated normative reasoning. It does give, though, an
abstract representation of the encoded information in a format that we can use
to provide means for automation via the general TPTP automated reasoning
1 See https://github.com/leoprover/tptp-utils and its README there.

https://github.com/leoprover/tptp-utils
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Table 2. Translation scheme from a fragment of LegalRuleML to NMF. In each case
except the last one the quantification closure of the formula is explicitly added to the
TPTP translation; so that {V1, . . . , Vn} = fv(formula1) ∪ fv(formula2) and Q = ! if
cl = universal and Q = ? if cl = existential. The explicit quantification is omitted
if n = 0. tr(.) is an adequate mapping from RuleML formulas to TPTP formulas.

LegalRuleML NMF

<lrml:PrescriptiveStatement key="id">
<ruleml:Rule closure ="cl">

<ruleml:if> formula1 </ruleml:if>
<ruleml:then >

<lrml:Obligation >
formula2

</lrml:Obligation >
</ruleml:then >

</ruleml:Rule >
</lrml:PrescriptiveStatement >

tff(id , axiom ,
Q [V1, . . ., Vn] :

{$$obligation} @ (
tr(formula1),
tr(formula2) ) ).

<lrml:PrescriptiveStatement key="id">
<ruleml:Rule closure ="cl">

<ruleml:if> formula1 </ruleml:if>
<ruleml:then >

<lrml:Permission >
formula2

</lrml:Permission >
</ruleml:then >

</ruleml:Rule >
</lrml:PrescriptiveStatement >

tff(id , axiom ,
Q [V1, . . ., Vn] :

{$$permission} @ (
tr(formula1),
tr(formula2) ) ).

<lrml:PrescriptiveStatement key="id">
<ruleml:Rule closure ="cl">

<ruleml:if> formula1 </ruleml:if>
<ruleml:then >

<lrml:Prohibition >
formula2

</lrml:Prohibition >
</ruleml:then >

</ruleml:Rule >
</lrml:PrescriptiveStatement >

tff(id , axiom ,
Q [V1, . . ., Vn] :

{$$prohibition} @ (
tr(formula1),
tr(formula2) ) ).

<lrml:ConstitutiveStatement key="id">
<ruleml:Rule closure ="cl">

<ruleml:if> formula1 </ruleml:if>
<ruleml:then >

formula2
</ruleml:then >

</ruleml:Rule >
</lrml:ConstitutiveStatement >

tff(id , axiom ,
Q [V1, . . ., Vn] :

{$$constitutive} @ (
tr(formula1),
tr(formula2) ) ).

<lrml:FactualStatement key="id">
formula1

</lrml:FactualStatement >
tff(id , axiom , tr(formula1) ).

infrastructure. To this end, two steps are necessary: (i) The transformation of the
encoded norms into a concrete (deontic) logical formalism, and (ii) the provision
of ATP systems that can reason within the respective logics.
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Fig. 1. Visualization of the transformation and automation process. One LegalRuleML
file can be translated into multiple different TPTP reasoning problems which, in turn,
can be reduced to classical reasoning problems in HOL for automation, if no special-
purpose prover of the desired target logic is available.

The overall approach for logic-pluralistic automated reasoning presented in
this paper is visualized in Fig. 1. The translation of LegalRuleML into NMF con-
nects normative knowledge representation to the TPTP infrastructure, where
both LegalRuleML and NMF are logically underspecified. Subsequently, the
NMF representation is translated to multiple concrete logic problems formu-
lated in (standard) non-classical TPTP. These problems are not logically under-
specified anymore, as they have been encoded into specific deontic logics. Then,
the resulting non-classical problems are automated using the shallow semantical
embeddings approach [5,25], in which the problems are encoded into classical
higher-order logic (HOL). This way, general purpose HOL ATP solvers can be
employed for normative reasoning. Of course, also specialized ATP systems for
the respective deontic logic could be employed. However, for many quantified
non-classical logics there are no ATP systems available.

The NMF representation is interpreted with respect to a concrete logic by
adding a logic specification to it. It is of form . . .
tff(name, logic, $$normative == [$$logic == target_logic]).

where target_logic is one of ...

– $$sdl, representing SDL as introduced above,
– $$aqvistE, representing Åqvist dyadic deontic logic E [1], and
– $$carmoJones, representing the dyadic deontic logic of Carmo and Jones [12].

Of course, this list can be extended with many more concrete logics for deontic
reasoning. For the proof-of-concept presented in this paper, we restrict ourselves
to these logics for the time being. An NMF problem with a logic specification
can then be translated to a non-classical TPTP representation of the respectively
chosen logic. The translation schemes for translating NMF into SDL and into
DDL are presented in Tables 3 and 4.
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Table 3. Translation of deontic operators from NMF to SDL based on the SDL-v3
scheme from Sect. 2.2 (narrow scope). Directed deontic operators are modeled, in each
case, via $box(#x) resp. $dia(#x) where x is the bearer of the modality.

NMF SDL
{$$obligation} @ (body, head) body => {$box} @ (head)
{$$permission} @ (body, head) body => {$dia} @ (head)
{$$prohibition} @ (body, head) body => {$box} @ (~head)
{$$constitutive} @ (body, head) body => head

Table 4. Translation of deontic operators from NMF to DDL. Directed deontic oper-
ators are not yet supported.

NMF DDL
{$$obligation} @ (body, head) {$$obl} @ (head, body)
{$$permission} @ (body, head) ~{$$obl} @ (~head, body)
{$$prohibition} @ (body, head) {$$obl} @ (~head, body)
{$$constitutive} @ (body, head) body => head

In SDL the obligation operator is expressed using the modal logic � operator;
and the logic is specified to be modal logic D (as usual for SDL). Since SDL
does not have any dyadic deontic operators, conditional norms are expressed
via a material implication. DDL does provide a dyadic deontic operator that
captures conditional norms, so the mapping is more natural here. Note that,
for simplicity, the translation scheme currently follows the interpretation variant
SDL-v3 (see Sect. 2.2) using a narrow-scope translation. It is planned to add
further parameters to the translation so that the translation scheme can be
chosen individually for each norm.

For the running example of Chisholm’s paradox, as formalized in NMF in
Sect. 4.1, the concrete output for SDL as reasoning target is as follows:

tff(target, logic, $modal == [$quantification == $constant,
$constants == $rigid,
$modalities == $modal_system_D]).

tff(norm1-sdl, axiom, {$box} @ (help)).
tff(norm2-sdl, axiom, help => {$box} @ (tell)).
tff(norm3-sdl, axiom, ~help => {$box} @ (~tell)).
tff(fact1-sdl, axiom, ~help).

In Åqvist system E the resulting representation is (note the different order
of parameters in the dyadic deontic operator) . . .

tff(target, logic, $$ddl == [$$system == $$aqvistE]).
tff(norm1-ddl, axiom, {$$obl} @ (help,$true)).
tff(norm2-ddl, axiom, {$$obl} @ (tell,help)).
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tff(norm3-ddl, axiom, {$$obl} @ (~tell,~help)).
tff(fact1-ddl, axiom, ~help).

For the DDL of Carmo and Jones, the output is identical except that the
logic specification gives $$carmoJones instead of $$aqvistE. For details on the
non-classical logics supported by the TPTP and the deontic logics used above,
we refer to the literature [25,29]. Note that in all three cases, the problems have
a fixed semantics and can thus be processed by ATP systems. The presented
translation process from NMF to the deontic logics is implemented in the LET
tool for logic embeddings [25].

In a second step, the NXF problems are embedded into classical HOL prob-
lems, represented in the THF TPTP-format. This is also done via the LET
tool. The automation of normative reasoning via shallow embedding into HOL,
as illustrated by Benzmüller et al. via their LogiKEy methodology [6], has been
successful for a broad range of applications [5].

In order to provide a seamless automation process, the LET tool has been
included included into the higher-order ATP system Leo-III [26], so that the
above problem statements in SDL and DDL can be given to Leo-III without
the need for any external pre-processing via LET by the user. Unsurprisingly,
Leo-III can automatically establish the unsatisfiability of the four SDL formu-
las norm1-sdl, norm2-sdl, norm3-sdl and fact1-sdl, thus proving their joint
inconsistency; by contrast consistent conclusions can be drawn from the DDL
representation.

6 Conclusion

In this paper we presented a flexible approach for using general-purpose (classi-
cal) ATP systems for normative reasoning. This is motivated, on the one hand,
by the widespread availability of mature and practically effective ATP systems,
and, on the other-hand, by practical challenges for providing ATP systems for
the many different deontic logics employed in normative reasoning. Hence, we
aim at bridging between the ATP systems community (users of the TPTP prob-
lem representation languages) and the normative knowledge representation and
reasoning community (users of the LegalRuleML standard).

Our proposed approach consists in first translating a subset of LegalRuleML
to a specifically crafted domain-specific language, denoted NMF, based on the
TPTP standard for ATP systems. NMF is semantically underspecified and acts
as an intermediate layer between natural-language representations and repre-
sentations in specific logical formalisms. NMF is subsequently translated into
different reasoning problems in concrete logics, represented in the recent non-
classical TPTP standard. Finally, automation for non-classical TPTP is provided
by shallow semantical embeddings into classical higher-order logic for which many
different ATP systems exist. While from a purely conceptual knowledge rep-
resentation perspective the intermediate NMF language might not be strictly
necessary (i.e., LegalRuleML could be translated directly into concrete TPTP
problem), we argue that the usage of a semantically underspecified TPTP-based
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representation language comes with several pragmatic advantages with respect
to practical automation. The TPTP languages are the standard formats for auto-
mated reasoning and experimentation using ATP systems, hence lowering the
engineering-related barriers of providing automation for different deontic logics,
and at the same time providing an abstract language for experimentation with
different logics and ATP systems. In particular, the standard TPTP problem
library for ATP system evaluation collects abstract problems (so-called gener-
ators) from which concrete reasoning tasks can be generated. The NMF layer
thus connects to these efforts by providing means for the logic-pluralistic repre-
sentation of domain-specific reasoning benchmarks.

The different steps in this process have been implemented as open-source
tools available at GitHub. By doing so, we provided a flexible reasoning infras-
tructure for logic-pluralistic normative reasoning that is in line with the LogiKEy
methodology [6] for designing normative theories. In contrast to LogiKEy, our
focus is on flexible reasoning via ATP systems instead of enabling the inter-
active use of proof assistants. Two examples, one of them being the discussed
Chisholm’s paradox, are available as supplemental dataset via Zenodo [28]. The
dataset contains the initial LegalRuleML documents, their NMF representations
and all translations to the three concrete logics.

Further Work. In this paper, we focused on three deontic logics as reasoning
backends for NMF. We plan to extend the portfolio of supported deontic logics
towards further relevant ones, including Input/Output logic [20]. It is planned to
extend the translation tool to produce LegalRuleML output from deontic logic
reasoning problems formulated in TPTP.

The DSL presented in this work is still prototypical. It does not yet cap-
ture many important aspects that are encoded in LegalRuleML documents.
In particular, it is possible to extend our approach to a layered hierarchy of
DSLs aiming for knowledge representation at different levels of abstraction (or
domain-specificity), together with translation mechanisms for successively spec-
ifying their intended semantics. Furthermore, RuleML does allow to specify so-
called semantic profiles. It seems a fruitful venue to closer connect these profiles
to TPTP logic specifications in order to allow for a more principled approach to
adjust the target logic in automation.
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