
Guido Governatori
Anni-Yasmin Turhan (Eds.)

LN
CS

 1
37

52

Rules and Reasoning
6th International Joint Conference on Rules and Reasoning, RuleML+RR 2022
Berlin, Germany, September 26–28, 2022
Proceedings

Lecture Notes in Computer Science 13752

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Guido Governatori · Anni-Yasmin Turhan (Eds.)

Rules and Reasoning
6th International Joint Conference on Rules and Reasoning, RuleML+RR 2022
Berlin, Germany, September 26–28, 2022
Proceedings

Editors
Guido Governatori
Singapore Management University
Singapore, Singapore

Anni-Yasmin Turhan
Dresden University of Technology
Dresden, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-21540-7 ISBN 978-3-031-21541-4 (eBook)
https://doi.org/10.1007/978-3-031-21541-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9878-2762
https://orcid.org/0000-0001-6336-335X
https://doi.org/10.1007/978-3-031-21541-4

Preface

In September 2022 the 6th International Joint Conference on Rules and Reasoning
(RuleML+RR) took place online. Initially, we had planned to conduct the conference as
a physical meeting in Berlin, but the COVID-19 situation prevented it. The RuleML+RR
conference was part of the umbrella event DeclarativeAI, which also featured Decision-
CAMP and the Reasoning Web Summer School. This year’s motto of the event was
Rules, Reasoning, Decisions, and Explanations. RuleML+RR itself comprised, besides
the conference, the Doctoral Consortium organized by Alexander Steen and Evgeny
Kharlamov and the international Rule Challenge organized by Dörthe Arndt, Ahmet
Soylu, and Jan Vanthienen. The conference, as expressed in the call for papers, had a
focus on explainable algorithmic decision-making involving rule-based representation
and reasoning.We appointed well over 75 ProgramCommittee (PC)members, from sev-
eral scientific sub-communities that work on rule-based reasoning, to ensure a rigorous
and robust reviewing process.

There were 52 submissions from 23 countries (and five continents) after a deadline
extension of three weeks. Each submitted paper was assigned four PC members to be
forearmed against unavailability because of covid-related issues. In the end each paper
received at least three reviews. For papers involving one of the chairs or authors from
their institutions, the other chair was solely in charge of the review process, and the
reviews were anonymised before they were inserted in the submission system. Some
of these were provided at short notice by the emergency reviewers Shiqponja Ahmetaj,
Sebastian Rudolph, Stefan Schlobach, and Sergio Tessaris. We thank all PC members
and additional reviewers for their efforts!

We accepted 19 papers resulting in a 37% acceptance rate for RuleML+RR 2022.
From the accepted papers an award committee selected the papers meritorious of the
conference awards. The paper plingo: A system for probabilistic reasoning in clingo
based on lpmln by Susana Hahn, Tomi Janhunen, Roland Kaminski, Javier Romero,
Nicolas Ruehling, and Torsten Schaub won the Harold Boley Best System Description
award. TheBest Student Paper awardwent to FaiqMiftakhul Falakh, Sebastian Rudolph,
and Kai Sauerwald for the paper Semantic Characterizations of AGM Revision for
Arbitrary Tarskian Logics. Finally, the Best Paper award was presented to the paper
In the Head of the Beholder: Comparing Different Proof Representations by Christian
Alrabbaa, Stefan Borgwardt, Anke Hirsch, Nina Knieriemen, Alisa Kovtunova, Anna
Milena Rothermel, and Frederik Wiehr. Congratulations to all of the authors!

Long before we were finalizing the program of the conference, we were lucky to be
able to appoint four great keynote speakers. In the evening of the first and the last day
we had keynote talks shared with DecisionCamp by Paul Vincent on “The Evolution of
Decisioning in IT, andWhat Happens Next” and by Christian De SaintMarie on “Neuro-
Symbolic AI andDecision Rules”. The second and the third day of the conference started
with keynote talks by Ian Horrocks on “Knowledge Graphs: Theory, Applications and
Challenges and by Torsten Schaub on ASP in Industry, Here and There”, respectively.

vi Preface

We are grateful to the generous financial contribution of the Artificial Intelligence
Journal, Springer, the Fachbereich Künstliche Intelligenz of the Gesellschaft für Infor-
matik, and OASIS LegalRuleML that supported the RuleML+RR 2022 awards, the
publication of the proceedings, and the wide participation of students and scholars.

Finally, we deeply acknowledge Adrian Paschke and the Freie Universität Berlin for
the kind administrative, technical, and logistic support for the DeclarativeAI event.

September 2022 Guido Governatori
Anni-Yasmin Turhan

Organization

General Chair

Adrian Pasckhe Freie Univerität Berlin and Fraunhofer FOKUS,
Germany

Program Committee Chairs

Guido Governatori Singapore Management University, Singapore
Anni-Yasmin Turhan Technische Universität Dresden, Germany

Program Committee

Nurulhuda A. Manaf National Defence University of Malaysia,
Malaysia

Shqiponja Ahmetaj TU Wien, Austria
Grigoris Antoniou University of Huddersfield, UK
Dörthe Arndt TU Dresden, Germany
Nick Bassiliades Aristotle University of Thessaloniki, Greece
Roman Bauer University of Surrey, UK
Leopoldo Bertossi SKEMA Business School Canada Inc., Canada
Mehul Bhatt Örebro University, Sweden
Antonis Bikakis University College London, UK
Andreas Billig Fraunhofer FOKUS, Germany
Piero Bonatti University of Naples Federico II, Italy
Richard Booth Cardiff University, UK
Loris Bozzato Fondazione Bruno Kessler, Italy
Pedro Cabalar University of A Coruña, Spain
Diego Calvanese Free University of Bozen-Bolzano, Italy
Gong Cheng Nanjing University, China
Horatiu Cirstea Loria, Université de Lorraine, France
Stefania Costantini Università degli Studi dell’Aquila, Italy
Matteo Cristani University of Verona, Italy
Madalina Croitoru LIRMM, Université Montpellier II, France
Bernardo Cuenca Grau University of Oxford, UK
Giovanni De Gasperis Università degli Studi dell’Aquila, Italy
Francesco M. Donini Università della Tuscia, Italy
Cristina Feier University of Bremen, Germany

viii Organization

Paul Fodor Stony Brook University, USA
Thom Fruehwirth University of Ulm, Germany
Johannes Fürnkranz Johannes Kepler University Linz, Austria
Sarah Alice Gaggl TU Dresden, Germany
Martin Giese University of Oslo, Norway
Giancarlo Guizzardi Free University of Bozen-Bolzano, Italy, and

University of Twente, The Netherlands
Faruk Hasic Katholieke Universiteit Leuven, Belgium
Daniela Inclezan Miami University, USA
Evgeny Kharlamov University of Oslo, Norway
Tomas Kliegr Prague University of Economics and Business,

Czech Republic
Roman Kontchakov Birkbeck, University of London, UK
Patrick Koopmann TU Dresden, Germany
Egor Kostylev University of Oslo, Norway
Manolis Koubarakis National and Kapodistrian University of Athens,

Greece
Paul Krause University of Surrey, UK
Markus Krötzsch TU Dresden, Germany
Juliana Küster Filipe Bowles University of St Andrews, UK
Evelina Lamma University of Ferrara, Italy
Domenico Lembo Sapienza University of Rome, Italy
Maurizio Lenzerini Sapienza University of Rome, Italy
Francesca Alessandra Lisi Università degli Studi di Bari “Aldo Moro”, Italy
Thomas Lukasiewicz University of Oxford, UK
Marco Manna University of Calabria, Italy
Marco Maratea University of Genoa, Italy
Maria Vanina Martinez Universidad de Buenos Aires, Argentina
Viviana Mascardi University of Genoa, Italy
Stephan Mennicke TU Dresden, Germany
Angelo Montanari University of Udine, Italy
Sotiris Moschoyiannis University of Surrey. UK
Filip Murlak University of Warsaw, Poland
Grzegorz J. Nalepa Jagiellonian University, Poland
Adeline Nazarenko LIPN, CNRS, Université Paris 13, France
Francesco Olivieri Griffith University, Australia
Monica Palmirani University of Bologna, Italy
Rafael Peñaloza University of Milano-Bicocca, Italy
Andreas Pieris University of Edinburgh, UK
Nico Potyka Imperial College London, UK
Livia Predoiu Free University of Bozen-Bolzano, Italy
Shashishekar Ramakrishna Free University of Berlin, Germany

Organization ix

Jan Rauch Prague University of Economics and Business,
Czech Republic

Francesco Ricca University of Calabria, Italy
Livio Robaldo University of Swansea, UK
Antonino Rotolo University of Bologna, Italy
Sebastian Rudolph TU Dresden, Germany
Emanuel Sallinger TU Wien, Austria
Francesco Santini Università di Perugia, Italy
Konstantin Schekotihin Alpen-Adria Universität Klagenfurt, Austria
Stefan Schlobach Vrije Universiteit Amsterdam, The Netherlands
Rolf Schwitter Macquarie University, Australia
Bariş Sertkaya Frankfurt University of Applied Sciences,

Germany
Mantas Simkus TU Vienna, Austria
Tran Cao Son New Mexico State University, USA
Davide Sottara Mayo Clinic, USA
Ahmet Soylu Oslo Metropolitan University, Norway
Giorgos Stamou National Technical University of Athens, Greece
Alexander Steen University of Greifswald, Germany
Petros Stefaneas National Technical University of Athens, Greece
Umberto Straccia ISTI-CNR, Italy
Theresa Swift Universidade Nova de Lisboa, Portugal
Alireza Tamaddoni-Nezhad Imperial College London, UK
Sergio Tessaris Free University of Bozen-Bolzano, Italy
Kia Teymourian University of Texas at Austin, USA
Michaël Thomazo Inria, DIENS, ENS, CNRS, PSL University,

France
Dominik Tomaszuk University of Bialystok, Poland
Hans Tompits TU Wien, Austria
Ryan Urbanowicz University of Pennsylvania, USA
William Van Woensel University of Dalhousie, USA
Jan Vanthienen Katholieke Universiteit Leuven, Belgium
Serena Villata CNRS and Université Côte d’Azur, France
Kewen Wang Griffith University, Australia
Frank Wolter University of Liverpool, UK
Adam Wyner Swansea University, UK
Guohui Xiao University of Bergen, Norway

x Organization

Additional Reviewers

Artale, Alessandro
Baryannis, George
Bellodi, Elena
Cao, Huiping
Colucci, Simona
Ivliev, Alex
Kain, Tobias
Marte, Cinzia

Mollas, John

Oetsch, Johannes

Rechenberger, Sascha

Ricioppo, Aldo

Rigas, Emmanouil

Scholl, Tobias

Zese, Riccardo

Contents

Answer Set Programming

Applying Answer Set Optimization to Preventive Maintenance Scheduling
for Rotating Machinery . 3

Anssi Yli-Jyrä and Tomi Janhunen

On the Generalization of Learned Constraints for ASP Solving in Temporal
Domains . 20

Javier Romero, Torsten Schaub, and Klaus Strauch

The Stream Reasoning System I-DLV-sr: Enhancements and Applications
in Smart Cities . 38

Francesco Calimeri, Elena Mastria, Simona Perri, and Jessica Zangari

Plingo: A System for Probabilistic Reasoning in Clingo Based on LPMLN 54
Susana Hahn, Tomi Janhunen, Roland Kaminski, Javier Romero,
Nicolas Rühling, and Torsten Schaub

Foundations of Nonmonotonic Reasoning

From Defeasible Logic to Counterfactual Reasoning . 65
Matteo Cristani, Guido Governatori, Francesco Olivieri,
and Antonino Rotolo

KLM-Style Defeasibility for Restricted First-Order Logic 81
Giovanni Casini, Thomas Meyer, Guy Paterson-Jones,
and Ivan Varzinczak

Semantic Characterizations of AGM Revision for Tarskian Logics 95
Faiq Miftakhul Falakh, Sebastian Rudolph, and Kai Sauerwald

Datalog

iWarded: A Versatile Generator to Benchmark Warded Datalog+/–
Reasoning . 113

Paolo Atzeni, Teodoro Baldazzi, Luigi Bellomarini, and Emanuel Sallinger

The Temporal Vadalog System . 130
Luigi Bellomarini, Livia Blasi, Markus Nissl, and Emanuel Sallinger

xii Contents

An Existential Rule Framework for Computing Why-Provenance
On-Demand for Datalog . 146

Ali Elhalawati, Markus Krötzsch, and Stephan Mennicke

Queries Over Ontologies

Explaining Ontology-Mediated Query Answers Using Proofs
over Universal Models . 167

Christian Alrabbaa, Stefan Borgwardt, Patrick Koopmann,
and Alisa Kovtunova

Seminaïve Materialisation in DatalogMTL . 183
Dingmin Wang, Przemysław Andrzej Wałęga, and Bernardo Cuenca Grau

Magic Sets in Interpolation-Based Rule Driven Query Optimization 198
Eva Feng, David Toman, and Grant Weddell

Proofs, Error-Tolerance, and Rules

In the Head of the Beholder: Comparing Different Proof Representations 211
Christian Alrabbaa, Stefan Borgwardt, Anke Hirsch, Nina Knieriemen,
Alisa Kovtunova, Anna Milena Rothermel, and Frederik Wiehr

Error-Tolerant Reasoning in the Description Logic EL Based on Optimal
Repairs . 227

Franz Baader, Francesco Kriegel, and Adrian Nuradiansyah

Bridging Between LegalRuleML and TPTP for Automated Normative
Reasoning . 244

Alexander Steen and David Fuenmayor

Agents and Argumentation

A Rule-Based Behaviour Planner for Autonomous Driving 263
Frédéric Bouchard, Sean Sedwards, and Krzysztof Czarnecki

Cooperation Among Groups of Agents in the Epistemic Logic L-DINF 280
Stefania Costantini, Andrea Formisano, and Valentina Pitoni

Prudens: An Argumentation-Based Language for Cognitive Assistants 296
Vassilis Markos and Loizos Michael

Author Index . 305

Answer Set Programming

Applying Answer Set Optimization
to Preventive Maintenance Scheduling

for Rotating Machinery

Anssi Yli-Jyrä(B) and Tomi Janhunen

Tampere University, Tampere, Finland
{anssi.yli-jyra,tomi.janhunen}@tuni.fi

Abstract. Preventive maintenance (PM) of manufacturing units aims
at maintaining the operable condition of the production line while opti-
mizing the maintenance timing and the loss of productivity during main-
tenance operations. The lesser studied type of preventive maintenance
understands a production line as a single machine with multiple com-
ponents of different maintenance needs. This is relevant when rotating
machinery is deployed, e.g., in the paper and steel industries, in the mass
production of raw materials consumed by other businesses. A failure in
any stage of the production line has the potential of making the entire
machine inoperable and enforcing a shutdown and corrective mainte-
nance costs. This work gives an abstract formalization of PM scheduling
for multi-component machines as an optimization problem. To provide
a lower bound for the complexity of the optimization problem, we prove
that the underlying decision problem is NP-complete for varying-size
multi-component machines and scheduling timelines. Besides the formal-
ization, the second main contribution of the paper is due to the practical
need to solve the problem in industrial applications: the work gives the
first encoding of the PM scheduling problem using Answer Set Optimiza-
tion (ASO). Some preliminary experiments are conducted and reported
to set the scene for further algorithm development.

1 Introduction

Preventive maintenance (PM) complements corrective, failure-driven mainte-
nance and plays a key role when it comes to ensuring resource-efficient and
timely production as demanded by global manufacturing and resilient industry.
While PM brings obvious benefits, the scheduling part of PM is tricky and worth
digitalization and optimization. Digitized PM scheduling (PMS) is a challeng-
ing computational problem. Scheduling for one- or two-component machines has
been studied a lot, but research has increasingly shifted to the PMS of multi-
component machines with serial or serial-parallel dependencies [9].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-21541-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_1&domain=pdf
http://orcid.org/0000-0003-0731-2114
http://orcid.org/0000-0002-2029-7708
https://doi.org/10.1007/978-3-031-21541-4_1

4 A. Yli-Jyrä and T. Janhunen

Fig. 1. A paper machine (knowpap.com)

Multi-component machines
with rotating components are
commonly deployed and main-
tained, e.g., in the dairy, paper
and steel industries, for the
mass production of raw mate-
rials like dairy, newsprint, and
rolled steel. Their rotating com-
ponents, rotors, operate in syn-
chrony to form a serial, continuous production line, the best example of which
is perhaps a paper machine (see Fig. 1).

Both preventive and run-to-failure, corrective maintenance policies and
respective scheduling are needed for these machines. According to the
component-wise failure distribution of paper machines [22], the aging of the
components in the first sections of the production line increases their risk of
predictable failure. These kinds of components demand time- or condition-based
preventive maintenance, while the latter sections of the paper machine demand
a corrective maintenance policy and are out of the scope of the current work.
Olde Keizer et al. [21] review condition-based maintenance policies for multi-
component systems with various dependencies. A particular structural property
of serially connected rotating multi-component machines is that their compo-
nents are physically dependent on one another. Not only the independent main-
tenance of dependent components is restricted, but maintenance of any stage
of the machinery often makes the entire production line inoperable [19,20]. For
this reason, we concentrate on the maintenance of components that are relevant
in this respect.

Selective maintenance is a PM policy whose purpose is to help select a group
of components for maintenance operations so as to optimize the PM schedule
with respect to chosen optimization criteria such as system availability, mainte-
nance cost, life cycle cost, and reliability ; as analyzed, e.g., in [6,18,23]. Unlike
[17], we neither integrate production and maintenance scheduling explicitly nor
study concrete machines. Instead, our goal is to investigate options when it comes
to the formalization of new kinds of simple optimization criteria. We express a
limit for maintenance cost as a limit for maintenance breaks, and we establish
new optimization criteria that are somewhat dissimilar to the former criteria.
The first criterion, under-coverage, measures how often a preventive mainte-
nance action is delayed in the timeline, reducing the reliability of the system.
The second criterion, over-coverage, measures how often a preventive mainte-
nance action occurs earlier than necessary, increasing the life cycle cost.

According to the survey [17], most approaches to PMS allow no exceptions
beyond designated time intervals and flexibility windows around them, but we
do not insist on maintenance that is based on such periodic recommended main-
tenance intervals of components. Our target for maintaining a particular com-
ponent is extremely flexible and opportunistic: We do not only allow delays or
advances in timing [1,27], but we allow arbitrary deviations from the recom-
mended maintenance interval if this is beneficial to the optimization criteria.

Preventive Maintenance Scheduling 5

Any maintenance break is an opportunity to maintain components ahead [30] of
their due time. Such over-maintenance (over-coverage) can reduce the need for
separate scheduled maintenance breaks and help to improve system availability.

Hoai and Luong [18] determine a policy for scheduling one maintenance
period. This gives a convex, efficient model for availability and cost. You and
Meng [26] present a PM scheduling for small multi-component serial machines
and a small timeline. Similarly, our goal is to schedule multiple maintenance
breaks and operating periods. This unlocks numerous opportunities to optimize
the schedule as a whole. As any future state of the machine has a finite model
description, periods longer than individual intervals can ultimately emerge in
the optimal schedules. However, due to degradation and random changes in the
machine condition, the distant future in the schedule is highly speculative. For
this reason, our model is intended to be used inside a modularized predictive
maintenance framework with real-time sensory-updated prognostic information
of the current machine state and a rescheduling loop [26].

Previous implementations of PMS have deployed a myriad of AI techniques,
including genetic algorithms (GAs) [8], mixed-integer programming (MIP) [7],
dynamic programming [29], and formulations as constraint satisfaction problems
(CSPs) [12]. In 1975, Zurn and Quintana [29] classified the PMS search tech-
niques into those that search for (i) a local optimum, (ii) a piece-wise approxima-
tion, and (iii) a globally optimal, exact solution. Frost and Dechter [12] showed
that a CSP solver can be extended to an iterative framework that solves the
PMS as an optimization problem. Since then, the performance of exact solvers,
including their extensions for solving optimization problems, has improved dras-
tically. It is already known that answer set programming (ASP) is well-suited
for solving scheduling problems (see, e.g., [3,10,11]). The ASP paradigm (see
[4] for an overview) offers a rule-based language for encoding search problems
as logic programs such that solutions are captured by answer sets. When an
objective function is incorporated in the program, the search process turns into
answer set optimization (ASO). However, to the best of our knowledge, there is
no prior PMS implementation nor up-to-date feasibility studies based on ASO.
The current work fills this gap by presenting two PMS models implemented in
ASP and their global, iterative optimization supported by modern ASP solvers.

This work claims three major contributions to the area: (1) We present a
highly abstracted PMS formalization. While this ignores many previously stud-
ied aspects, such as failure models, resource limits, duration of actions, produc-
tion targets, it is a part of exploratory, non-incremental research and extensible
through additional constraints and a modularized framework. (2) By studying
the complexity of the formalization, we connect it to other formalizations with a
similar complexity (e.g. [12]). (3) By making the ASP encodings publicly avail-
able, we facilitate the systematic improvement of encodings for the problem.

The rest of this article is organized as follows. In Sect. 2, we provide the
formal definition of a multi-component machine and its maintenance schedule,
and investigate some objective functions that are relevant for the optimization
of schedules. These definitions are crucial building blocks in Sect. 3 where we for-
malize PMS for multi-component machines from a number of perspectives. The
computational complexity of the resulting decision and function problems is then

6 A. Yli-Jyrä and T. Janhunen

1 9 not coverednot coveredcovered covered

t t + ρ(c)ι(c)

Fig. 2. Illustration of ι(c) = 5 and ρ(c) = 6 with a service at time step t = 9

roughly characterized in the same section. To move from the theoretical analy-
sis to practice, we present an ASP encoding of the PMS optimization problem
in Sect. 4. The performance obtained by this encoding for PMS is preliminarily
studied in Sect. 5 using the Clasp solver to implement the actual optimization
of schedules. Section 6 concludes the paper.

2 Definitions of Machines and Schedules

In this section, we provide an abstraction of a multi-component machine and
a schedule specifying preventive maintenance actions for its components in the
scheduling timeline. These definitions pave the way for the definition of the
scheduling problem whose variants will be studied further in the next section.

Definition 1. A multi-component machine is a triple M = 〈C, ι, ρ〉 consisting
of a finite set of components C, an initial lifetime function ι : C → N, and a
recommended maintenance interval function ρ : C → N\{0}.

Figure 2 illustrates how the values of the functions in Definition 1 are to be
interpreted. The initial lifetime function ι tells how many time steps are cov-
ered by maintenance actions performed prior to the timeline for intended PM
scheduling. Quite similarly, the recommended maintenance interval (RMI) func-
tion ρ indicates how many time steps are covered by each preventive maintenance
action. Thus, a preventive maintenance action taking place at a time step t starts
an RMI that is over at the time step t + ρ(c). Every time t when a component
is maintained it becomes as good as new while all non-maintained components
continue aging during the time step t. When multiple components and several
preventive maintenance actions are taken into consideration and restricted to a
finite timeline, the resulting notion of a schedule is detailed as follows.

Definition 2. A preventive maintenance schedule (PMS, or schedule for short)
for machine M is represented as a quadruple S = 〈h, �, b, A〉 where

– h ∈ N\{0} marks the horizon of the scheduling timeline,
– � ∈ {1, . . . , h} is the limit for the last possible time step of a preventive

maintenance action,
– b ∈ {0, . . . , �} is the maximum size of a set B ⊆ {1, . . . , �} of time steps,

also called scheduled maintenance breaks, during which any preventive main-
tenance action must take place,

Preventive Maintenance Scheduling 7

– A : C × {1, . . . , �} → {0, 1}, called the service selection function, is a char-
acteristic function indicating, for each component c ∈ C of the machine M,
the set Bc = {t | A(c, t) = 1} ⊆ B of time steps of preventive maintenance
actions used to service component c.

The limit � controls how far towards the horizon the breaks can be allocated,
having a compressing effect on the schedule. If � = h, any preventive maintenance
action performed at the time step h is mainly a wasted investment in the future
without a significant effect on the scheduling timeline. The schedule is empty if
b = 0. Four evaluation functions for the quality of component-wise schedules are
defined. Their definitions are facilitated by two auxiliary functions: let π(c) =
{(s, t) ∈ Bc × Bc | s < t, and s < u < t for no u ∈ Bc} be the pairs of
consecutive maintenance times of component c ∈ C and δ : Z → N a filter
function defined in such a way that δ(x) = 0 when x < 0 and δ(x) = x otherwise.

Definition 3. For each schedule S, we define the component-wise over-coverage
function oc : C → N, the component-wise under-coverage function uc : C → N,
the component-wise miscoverage function mc : C → N, and the component-wise
action count function ac : C → N as follows.

If Bc is empty, we have oc(c) = ac(c) = 0, uc(c) = mc(c) = h − ι(c).
Otherwise, the values of the componentwise functions are given by

oc(c) = δ(ι(c) − min Bc + 1) +
∑

(s,t)∈π(c)

δ(min(s + ρ(c), h + 1) − t),

uc(c) = δ(min Bc − ι(c) − 1) +
∑

(s,t)∈π(c)∪{(maxBc,h+1)}
δ(t − (s + ρ(c)),

mc(c) = oc(c) + uc(c), ac(c) = |Bc|.

Intuitively, the value oc(c) indicates the number of time steps during which
the implementation of a due preventive maintenance action of component c is
advanced earlier from the time suggested by the recommended maintenance inter-
val ρ(c). The value uc(c) indicates, for component c, the number of time steps that
are neither covered by the initial lifetime nor a recommended maintenance interval
started by a preventive maintenance action. The miscoverage mc(c) simply com-
bines these two quality evaluation functions into a sum, and the action count ac(c)
tells the number of preventive maintenance actions of component c.

Lemma 1 links the under-coverage, the over-coverage and the number of
preventive maintenance actions to each other. Lemma 2 demonstrates that over-
coverage is potentially much larger than under-coverage. Finally, Lemma 3 shows
that servicing too often does not help to reduce the under-coverage.

Lemma 1. Let c ∈ C and assume that � + ρ(c) ≤ h. Then uc(c) = h − ι(c) −
ac(c)ρ(c) + oc(c).

Proof. Define first the sequence B0
c , B1

c , . . . , B
ac(c)
c , in such a way that B0

c = ∅,
B1

c = min Bc, and Bk
c = Bk−1

c ∪ {t | (max Bk−1
c , t) ∈ π(c)}. This gives us a

growing sequence of service times t1 = max B1
c , . . . , tac(c) = max B

ac(c)
c .

8 A. Yli-Jyrä and T. Janhunen

in uc(c) in uc(c)in oc(c) in vain reduced uc(c)

in oc(c)

w w + ρ(c)
v v + ρ(c)

t t + ρ(c)

Fig. 3. Servicing too often does not pay off

The lemma is now proven by induction on k, 0 ≤ k ≤ ac(c).

k = 0: oc0(c) = 0,
uc0(c) = h − ι(c) − kρ(c) + oc0(c).

k = 1: (i) ι(c) < t1 : oc1(c) = 0,
uc1(c) = h − ι(c) − kρ(c) + oc1(c).

(ii) ι(c) ≥ t1 : oc1(c) = t1 − ι(c) + 1,
uc1(c) = h − ι(c) − kρ(c) + oc1(c).

k > 1: (i) tk−1 + ρ(c) ≤ tk : ock(c) = ock−1(c),
uck(c) = h − ι(c) − kρ(c) + ock(c).

(ii) tk−1 + ρ(c) > tk : ock(c) = ock−1(c) + (tk−1 + ρ(c) − tk),
uck(c) = h − ι(c) − kρ(c) + ock(c).

Thus uck(c) = h − ι(c) − kρ(c) + ock(c) for all k, 1 ≤ k ≤ ac(c). ��
Lemma 2. Let c ∈ C, and assume that � + ρ(c) − 1 ≤ h and ι(c) = 0. Then
0 ≤ uc(c) ≤ h, and 0 ≤ oc(c) ≤ (� − 1)(ρ(c) − 1).

Proof. Clearly, uc(c) ≥ 0. On one hand, the value uc(c) reaches 0 when the
services of the component c occur at time steps � and t = ι(c) + 1 + kρ(c), such
that k ≥ 0 and t < �. In this way, uc(c) = h − (� + ρ(c) − 1). If � = h − ρ(c) + 1,
we reach uc(c) = h − (h − ρ(c) + 1 + ρ(c) − 1) = 0. If � > h − ρ(c) + 1 and
Bc = {1, . . . , h}, we still have uc(c) = 0. On the other hand, the value uc(c) is
the greatest when Bc = ∅. In this case, uc(c) = h, and oc(c) = 0.

Clearly, oc(c) ≥ 0. In fact, oc(c) = 0 when Bc = ∅, but the value oc(c) is the
greatest when Bc = {1, . . . , �}. In this case, oc(c) = (� − 1)(ρ(c) − 1). ��
Lemma 3. Let w and t such that w + 2 ≤ t ≤ w + ρ(c) be two maintenance
times of component c, contributing w + ρ(c) − t to oc(c). Adding a maintenance
time v, such that w + 1 ≤ v ≤ t − 1, increases oc(c) without decreasing uc(c). ��
Proof. Figure 3 shows a situation described in the lemma. The service at time
step v has only an increasing effect on the over-coverage of the schedule. ��

The component-wise evaluation functions are lifted for a machine as follows:

Preventive Maintenance Scheduling 9

Definition 4. For every schedule S = (h, �, b, A), there are associated measures:
the over-coverage oc(C) =

∑
c∈C oc(c), the under-coverage uc(C) =

∑
c∈C uc(c),

the miscoverage mc(C) = uc(C)+oc(C), and action count ac(C) =
∑

c∈C ac(c).

In the rest of the paper, when solving PMS problems, we employ no other
measures of quality than under-coverage and miscoverage. The following two
lemmas identify corner cases for these measures.

Lemma 4. Let M = 〈C, ι, ρ〉 be a multi-component machine. For any horizon
h ∈ N \ {0}, and limit � ∈ {1, . . . , h}, there is a schedule S = 〈h, �, b, A〉 such
that the over-coverage oc(C) associated with the schedule is 0.

Proof. The over-coverage oc(C) of the empty schedule is 0. ��
Lemma 5. Let M = 〈C, ι, ρ〉 be a multi-component machine. For any hori-
zon h ∈ N \ {0}, and breakset size b ≥ h/minc ρ(c)� there is a schedule
S = 〈h, �, b, A〉 such that the under-coverage uc(C) associated with S is 0.

Proof. Assume without loss of generality that ι(C) = {0}. Construct a schedule
〈h, �, b, A〉 such that Bc = {1 + i × (minc ρ(c)) | i = 0, . . . , b − 1} for all c ∈
C. These preventive maintenance actions are enough to cover the scheduling
timeline, giving under-coverage uc(C) = 0. ��

3 Basic PMS Problems and Their Complexities

In the following, we define some variants of the PMS problem and study their
computational complexities.

Definition 5. The EXACT MISCOVERAGE PMS problem is a decision prob-
lem that assumes, as its input, a multi-component machine M = 〈C, ι, ρ〉 and
a quadruple T = 〈h, �, b,m〉 of scheduling parameters, and poses the question of
whether the machine has a schedule S = 〈h, �, b, A〉 such that mc(C) = m.

The NP membership of EXACT MISCOVERAGE PMS will be shown under
the assumption that all the elements of the scheduling timeline {1, . . . , h} are
separate units of the input, i.e., h is essentially encoded in unary. The following
lemma gives an upper bound for the computation of the miscoverage.

Lemma 6. Let M = 〈C, ι, ρ〉 be an arbitrary multi-component machine and
S = 〈h, �, b, A〉 be one of its schedules. The miscoverage mc(C) associated with
S can be computed in O(|C|h) time and O(|C|h) space.

Proof. Assume accessing of A takes O(1) time steps. We compute the miscov-
erage of the schedule S with a loop that runs over C, and with an inner loop
over all time steps {1, . . . , h} in O(|C|h) time: For each component c, the inner
loop starts from time step 1 and keeps track of the initial lifetime and the RMI
that starts at a preventive maintenance action. (i) Every extra RMI covering
the time step contributes one over-coverage to mc(C). (ii) Each time step not
covered by any RMI contribute one under-coverage to mc(C). In addition, it is
safe to say that the space requirement of the computation is O(|C|h). ��

10 A. Yli-Jyrä and T. Janhunen

Theorem 1. The EXACT MISCOVERAGE PMS problem is in NP.

Proof. Let an EXACT MISCOVERAGE PMS problem instance consist of a
multi-component machine M = 〈C, ι, ρ〉 and parameters T = 〈h, �, b,m〉. Since
ι(c) < ρ(c) for all c ∈ C, and h ≥ � ≥ b, the input length is Ω(|C|maxc ρ(c) +
h+log m). A certificate to the EXACT MISCOVERAGE PMS problem consists
of a schedule S = 〈h, �, b, A〉 that requires O(|C|h) space, which is polynomial
in the input size. Let S be an arbitrary certificate. To verify it, we only need
to check that the miscoverage mc(C) associated with S equals m. By Lemma 6,
mc(C) can be computed in a polynomial time and space. ��

The SUBSET SUM problem (SSP) is an example of an NP-complete problem
[13]. In the sequel, it will be shown to be at most as hard as the EXACT
MISCOVERAGE PMS problem by using an appropriate reduction.

Definition 6. The SSP is a decision problem that assumes as its instance a pair
〈N, s〉 where N = {c1, c2, . . . , cn} is a multiset of positive integers ci ∈ N\{0},
i = 1, . . . , n, and s ∈ N\{0} is the target sum for a subset of these integers. The
problem is to decide whether there is a subset N ′ ⊆ N such that the target s is
obtainable as the sum of the elements of N ′, i.e.,

∑
N ′ = s.

Theorem 2. The EXACT MISCOVERAGE PMS problem is NP-hard.

Proof. Let P = 〈N, s〉, N = {c1, c2, . . . , cn} be an arbitrary instance of SSP.
Without loss of generality, assume that ci ≤ ci+1, for 1 ≤ i ≤ n − 1. This
SSP instance reduces by a poly-time function to an instance of EXACT MIS-
COVERAGE PMS given by machine M = 〈C, ι0, ρ〉 and scheduling parame-
ters T = 〈max N, 1, 1, nmax N − s〉, such that C = {1, . . . , n}, and ι0(i) = 0,
ρ(i) = ci for all i ∈ C. Since all preventive maintenance actions are enforced to
occur at time step 1, we have oc(C) = 0 for all schedules S. If S is the empty
schedule, then uc(C) reaches its maximum value nmax N .

Let N ′ ⊆ N be a multiset subset with sum s, being a solution to the SSP
instance 〈N, s〉. In the reduction, each integer ci ∈ N ′ is encoded by A(i, 1) = 1,
while A(i, 1) = 0 encodes that ci /∈ N ′. This gives a schedule 〈max N, 1, 1, A〉
whose associated under-coverage uc(C) is nmax N−s. This schedule is a solution
to the EXACT MISCOVERAGE PMS instance 〈M, T 〉.

Conversely, let S = 〈max N, 1, 1, A〉 be a solution to the EXACT MISCOV-
ERAGE PMS instance 〈M, T 〉. The associated under-coverage is nmax N − s.
The schedule encodes the multiset subset N ′ = {ci | i ∈ C,A(i, 1) = 1} ⊆ N
with sum s. This subset is a solution to the SSP instance 〈N, s〉. ��
Definition 7. The BOUNDED MISCOVERAGE PMS problem is a decision
problem that assumes, as its input, a multi-component machine M = 〈C, ι, ρ〉
and a quadruple T = 〈h, �, b,m〉 of bounds, and poses the question of whether
the machine has a schedule S = 〈h, �, b, A〉 such that mc(C) ≤ m.

Theorem 3. The BOUNDED MISCOVERAGE PMS problem is in NP.

Preventive Maintenance Scheduling 11

The proof of Theorem 3 is similar to Theorem 1 and thus left to the reader.
Function problems can be defined almost in a similar way as decision prob-

lems. The following function problems concern the optimization of schedules
with respect to particular measures associated with them.

Listing 1. A PMS problem instance

1 comp (1,5,2). comp (3 ,7,0). comp (5,9,0). comp (7,5,4).
2 comp (2,10,0). comp (4,4,3). comp (6,11,2). comp (8,8,0).

Listing 2. PMS encoding: parameters, domains, choices, and service actions

1 % Parameters and domains
2 #const h=32. #const l=32. #const b=3.
3 time (0..h).
4 comp(C) :- comp(C,_,_).
5
6 % Breaks and the allocation of components for maintenance
7 { break(T): time(T), T>0, T <= l } <= b.
8 1 <= { serv(C,T): comp(C) } :- break(T).
9

10 % End of maintenance interval
11 emi(C,T+R) :- comp(C,R,L), serv(C,T), time(T+R).
12 emi(C,L+1) :- comp(C,R,L), L>0, time(L+1).

Definition 8. The UNDER-COVERAGE PMS and MISCOVERAGE PMS
are optimizing function problems whose inputs consists of a multi-component
machine M = 〈C, ι, ρ〉 and a triple 〈h, �, b〉 of scheduling parameters. The solu-
tion to the UNDER-COVERAGE PMS problem is a schedule S = 〈h, �, b, A〉 such
that the under-coverage uc(C) associated with the schedule S is minimized, and
the solution to the MISCOVERAGE PMS problem is a schedule S = 〈h, �, b, A〉
such that the miscoverage mc(C) associated with the schedule S is minimized.

4 An ASO-Based Implementation

In what follows, we present an ASP encoding of the PMS problem. The encoding
is presented in the language fragment of the Gringo grounder as described by
Gebser et al. in [16]. Thus existing ASP solvers such as Clasp [14] and WASP
[2] can be readily used to implement the search for optimal schedules in practice.

Listing 1 illustrates the representation of an eight-component machine using
the domain predicate comp(C,R,L) whose arguments give the identity C, the rec-
ommended maintenance interval R, and the initial lifetime L due to a preventive
maintenance action before the scheduling timeline. The machine instantiates the
PMS problem whose encoding is split into three sections given in Listings 2–4.

In Listing 2 (Line 2), the parameters h, l, and b for the number of time
steps, the limit for the last maintenance break, and the number of scheduled

12 A. Yli-Jyrä and T. Janhunen

Listing 3. PMS encoding: counting overlap of intervals

1 % Component -specific coverage of time steps by RMIs
2 cov1(C,0) :- comp(C,R,L), L>0.
3 cov1(C,T) :- not cov1(C,T-1), not cov2(C,T-1),
4 serv(C,T), not emi(C,T), time(T-1).
5
6 cov1(C,T+1) :- cov1(C,T), not serv(C,T+1), not emi(C,T+1), time(T+1).
7 cov1(C,T+1) :- cov1(C,T), serv(C,T+1), emi(C,T+1), time(T+1).
8 cov2(C,T+1) :- cov1(C,T), serv(C,T+1), not emi(C,T+1), time(T+1).
9

10 cov2(C,T+1) :- cov2(C,T), not serv(C,T+1), not emi(C,T+1), time(T+1).
11 cov2(C,T+1) :- cov2(C,T), serv(C,T+1), emi(C,T+1), time(T+1).
12 cov1(C,T+1) :- cov2(C,T), not serv(C,T+1), emi(C,T+1), time(T+1).

Listing 4. PMS encoding: constraints and objective function

1 % Deny (excessive) overlaps of RMIs
2 :- cov2(C,T), serv(C,T+1), not emi(C,T+1), time(T+1).
3
4 % Optimization with respect to miscoverage
5 #minimize {1,C,T: not cov1(C,T), not cov2(C,T),
6 comp(C), time(T), T>0;
7 1,C,T: cov2(C,T), comp(C), time(T) }.

maintenance breaks, respectively, are set to their default values. In Line 3, we
define time/1 as a domain predicate for representing time steps. Moreover, the
identities of components are extracted as the extension of the comp/1 predicate
in Line 4, recall comp/3 from Listing 1. Then we are ready to choose time steps
for scheduled maintenance breaks, as formalized by the choice rule in Line 7.
At most b scheduled maintenance breaks are picked first and for each of these
breaks at least one component is selected for an preventive maintenance action
in Line 8. This is represented in terms of the serv/2 predicate that eventually
captures solutions to PMS problems. In Line 11, we define when the respective
RMI ends using the emi/2 predicate for each such action. For components C
with some initial lifetime, the analogous time step is defined in Line 12.

Based on the predicates introduced so far, we may define how time steps are
covered by RMIs on a component-by-component basis, see Listing 3. This leads
to an encoding (’2-level’) with recursive definitions of two predicates cov1(C,T)
and cov2(C,T) denoting that a component C is covered by exactly one or two
RMIs, respectively, at time T. Naturally, the target is that cov1(C,T) would
hold for every C and T, indicating that C is neither under- nor over-serviced over
time. The base cases for cov1 are given in Lines 2–4: either C has some initial
lifetime L due to recent maintenance, or C is maintained at time T not covered by
any earlier maintenance actions at the preceding time step T-1. Based on this,
we may infer that cov1(C,T+1) holds for the following time step T+1: either C is
not maintained again nor the RMI ends (Line 6), or C is maintained again but
the preceding RMI ends at the same time (Line 7). The third possibility is that
C is maintained again within the same RMI, a reason for making cov2(C,T+1)
true in Line 8. The inertial rules for cov2/2 in Lines 10–11 are analogous to the

Preventive Maintenance Scheduling 13

ones of cov1/2 in Lines 6–7. The final possibility is formalized by Line 12: there
is an end of a RMI falsifying cov2(C,T+1) but making cov1(C,T+1) true again.
Note that according to answer set semantics, any other instances of cov1(C,T)
and cov2(C,T) are false by default and need not be specified by any rules.

Finally, Listing 4 sets the scene for solving the optimization problem in ques-
tion. Firstly, in Line 2, more than two overlapping RMIs are banned in the spirit
of Lemma 3. This is also why predicates cov1/2 and cov2/2 are sufficient to keep
track of overlaps in the first place. Secondly, the objective function penalizes for
under servicing (time steps not covered) and over servicing (time steps covered
twice) on equal basis in Lines 5 and 7, respectively. For the sake of illustration, we
have depicted two globally optimal schedules for the 8-component machine from
Listing 1. The one in Fig. 4a is based on the minimization of under-coverage (red
cells) only. This leads to a substantial overlap of RMIs and over-coverage indi-
cated in blue. A periodic pattern of 10 time steps seems to be emerging, although
the overall applicability of the preventive maintenance actions involved remains
open in the future due to finite time horizon. However, if over-coverage is penal-
ized equally, far better schedules result as shown in Fig. 4b. The risks from under
service are slightly higher but over servicing resulting from too frequent preven-
tive maintenance actions are decreased substantially. The number of individual
preventive maintenance actions is also decreased from 44 to 36. Interestingly,
the dimensions of the schedules reflect the space complexity of ground logic

(a) Schedule for b = 7 (Under-coverage)

(b) Schedule for b = 7 (Miscoverage)

Fig. 4. Globally optimal schedules for the machine of Listing 1: blue lines indi-
cate scheduled maintenance breaks and individual preventive maintenance actions are
marked with letter “s”

14 A. Yli-Jyrä and T. Janhunen

programs obtained from our encoding (cf. Lemma 6). The effect of the bound b
on the size of the ground program is negligible.

Proposition 1. The size of the ground program resulting from Listings 2–4 is
O(|C|h) for a set of components C and the time horizon h.

Theorem 4. Let M = 〈C, ι, ρ〉 be a machine, 〈h, �, b〉 the triple of scheduling
parameters, and PM their representation as a ground logic program based on
Listings 2–4 and a set of facts encoding M.

1. If X is an (optimal) answer set of PM, then there is an (optimal) solution
SX = 〈h, �, b, AX〉 to the MISCOVERAGE PMS problem 〈M, 〈h, �, b〉〉.

2. If a schedule S = 〈h, �, b, A〉 is an (optimal) solution to the MISCOVERAGE
PMS problem 〈M, 〈h, �, b〉〉, then there is an (optimal) answer set XS of PM.

Proof (Sketch). Due to space restrictions, we concentrate on describing the one-
to-one correspondence between answer sets and schedules as follows. Firstly,
given an answer set X of PM, the respective PMS is SX = 〈h, �, b, AX〉 where for
a component c ∈ C and a time step 1 ≤ i ≤ h, AX(c, i) = 1 ⇐⇒ serv(c, i) ∈ X.

Secondly, given a PMS S = 〈h, �, b, A〉 for M subject to scheduling parame-
ters 〈h, �, b〉, we may calculate for each component and a time step 0 ≤ i ≤ h,

cnt(c, i) = |{j ∈ Bc | j ≤ i < j + ρ(c)}| + |{1 | ι(c) > 0, i ≤ ι(c)}|, (1)

i.e., the number of recommended maintenance intervals covering i while main-
taining c ∈ C. Based on these, the respective answer set XS of PM contains

– comp(c, ρ(c), ι(c)) and comp(c) for every c ∈ C;
– time(i) for every 0 ≤ i ≤ h;
– break(i) for every 1 ≤ i ≤ h such that A(c, i) = 1 for some c ∈ C;
– serv(c, i) for every c ∈ C and 1 ≤ i ≤ h such that A(c, i) = 1;
– emi(c, i+ρ(c)) for every c ∈ C and 1 ≤ i ≤ h with A(c, i) = 1 and i+ρ(c) ≤ h;
– emi(c, ι(c) + 1) for every c ∈ C with ι(c) > 0 and ι(c) + 1 ≤ h;
– cov1(c, i) for every c ∈ C and 0 ≤ i ≤ h such that cnt(c, i) = 1; and
– cov2(c, i) for every c ∈ C and 1 ≤ i ≤ h such that cnt(c, i) = 2.

The idea is that X(SX) = X and S(XS) = S hold in the bijective correspon-
dence. Moreover, the measures uc(c) = |{i | cov1(c, i) �∈ X, cov2(c, i) �∈ X}| and
oc(c) = |{i | cov2(c, i) ∈ X}| can be read off from answer sets X. Thus, the
minimality of mc(C) = uc(C) + oc(C) coincides with the optimality of X. ��

It is known that function problems corresponding to optimization problems—
formalized in terms of disjunction-free logic programs as above—are FPNP-
complete function problems [24], i.e., only polynomially many calls to an NP-
oracle are needed in the worst case. As a consequence, the computational com-
plexities of MISCOVERAGE PMS and UNDER-COVERAGE PMS are bounded
from above and the corresponding decision problems reside in ΔP

2 .

Corollary 1. Given a machine M = 〈C, ι, ρ〉 and the scheduling parameters
〈h, �, b〉, the respective function problems MISCOVERAGE PMS and UNDER-
COVERAGE PMS for computing optimal schedules are in FPNP.

Hardness results in this respect are left for future work.

Preventive Maintenance Scheduling 15

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16

Ti
m

e/
s

Breakset size

MC: BB
MC: USC

UC: BB
UC: USC

(a) Under vs. miscoverage; USC vs. BB

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16

Ti
m

e/
s

Breakset size

MC: USC: elevator
MC: USC: 2-Level

MC: USC: 2-level (compact)
MC: USC: 1-level

(b) Alternative MC encodings

Fig. 5. Runtimes in seconds for b = 1 . . . 16 on logarithmic scale

5 Experiments

In this section, we evaluate the performance of the encoding from Listings 2–
4. In the experiments, we use Gringo (v. 5.2.2) as the grounder and Clasp
(v. 3.3.6) as the solver. All runs are executed on an Intel(R) Xeon(R) Gold 6248
CPU with a 2.50GHz clock rate under Linux operating system.

Our preliminary screening showed that the 8-component machine from List-
ing 1 is already sufficient to create great variance with respect to runtimes.
Thus, we concentrate on analyzing the performance of Clasp on this particular
instance when the number of scheduled maintenance breaks b is increased from
1 to 16 for schedules in a scheduling timeline h = 32. The time required for
grounding the encoding is negligible and omitted altogether.

The runtime behavior of Clasp as the back-end solver can be inspected from
Fig. 5. It turns out that the minimization of under-coverage (UC) is quite easy.
The lowest two plots in Fig. 5a concern optimization according to two differ-
ent strategies based branch-and-bound (BB) and unsatisfiable cores (USC). For
small values of b, the BB strategy is faster but becomes slower than USC when
almost fully covered schedules become feasible at b = 8. The upper two plots in
Fig. 5a relate to the minimization of miscoverage (MC) which seems to be a far
more difficult task from the computational point of view. Now the USC strategy
performs much better. We think that this is due to the fact that USC approaches
optimal solutions from below and since the values of the objective function are
relatively small in this example, the optimal value can be reached soon. The
BB strategy, however, uses upper bounds and finally, when the optimality of a
found schedule is to be proved, a potentially high number of other candidates—
not improving the objective value—must be excluded by the solver. Indeed, the
last stage of optimization dominates in the BB strategy, and the runtimes for
b = 6 . . . 13 are clear outliers that reside beyond the range visible in Fig. 5a.

We have developed several variants of the ASP encoding (’2-level’) from
Sect. 4 and include results for some of them in Fig. 5b. The first alternative
encoding (’2-level (compact)’) expresses predicates cov1(C,T) and cov2(C,T)
using a single predicate cov(C,T,N) for N=1..2 and thus amalgamates some

16 A. Yli-Jyrä and T. Janhunen

repeated rules. However, the performance gets slightly worse despite compaction.
Yet another encoding (’1-Level’) infers coverage and over-coverage information
straight from preventive maintenance actions, e.g., if serv(C,T) is made true
(Line 8) then cov(C,T), cov(C,T+1), . . . , cov(C,T+R-1) are inferred for the
length R of the RMI. Analogous rules for over-coverage ocov/2 are no longer
linear in scheduling timeline h. It performs very well for small values of b, but
degrades soon so that clearly more time is required for values b = 9, . . . , 14.
Finally, we mention our initial encoding (’Elevator’) based on up-and-down
counting of the number of overlapping maintenance intervals in direct analogy
to (1). In Listing 3, the predicates cov1/2 and cov2/2 are the counterparts of
cnt(C,T,1) and cnt(C,T,2) used in that encoding, and there is no pendant
for cnt(C,T,0) expressible via default negation, i.e., if not cov1(C,T) and not
cov2(C,T) hold simultaneously. The respective plot in Fig. 5b indicates that
such a systematic saving in the number of predicates pays off.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16

Ti
m

e/
s

Number of components in machine

MC: BB
MC: USC

UC: BB
UC: USC

Fig. 6. Effect of machine size

To further assess the scalability
of the method, we tested the 2-Level
encoding of miscoverage and the USC
strategy with 8 scheduled mainte-
nance breaks and 10 randomly gen-
erated machines per each of the sizes
from 1 to 16 components. Figure 6
shows the averages of the running
times in this experiment. When opti-
mizing the miscoverage, a majority of
the larger machine sizes hit the time-
out of 32800 s. This highlights that
without approximations and further
optimizations, the problem cannot be solved on a large scale.

6 Conclusion

This paper studies PMS of continuously operating, rotating multi-component
machines and formalizes the PMS problem as a search problem that abstracts
away from side-constraints and stochastic aspects of PMS. The focus is on glob-
ally optimal maintenance scheduling under discrete-valued optimization criteria.

Although the efficiency of global optimization techniques has been constantly
improving, the problem formalization, encoding and optimization techniques can
make a major difference in the feasibility of the technological approach. We
present an ASP encoding for the EXACT MISCOVERAGE PMS problem and
carry out a preliminary feasibility study for it, according to which the quest
for performance improvement remains substantial if we extend the breakset size
or the machine size. Our problem sizes are on a par with previous research
[12,26], but a precise comparison is omitted because prior implementations of
PMS are not generally available and they differ substantially in their concepts
and parameters. Nevertheless, we show that the EXACT MISCOVERAGE PMS

Preventive Maintenance Scheduling 17

problem is one of the NP-hard (scheduling) problems [13,25]. In addition, by
putting our encodings publicly availablewe facilitate their improvement in the
future. New kinds of encodings could be devised, e.g., by using recent extensions
based on temporal operators [5] or multi-shot solving [15].

It is worth noting that although we compute globally optimal schedules, the
same formalization can be approached with local or approximate optimization
techniques. It is also within our interests to study extensions of the PMS prob-
lem. Hard side-constraints such as availability and resource constraints are easy
to incorporate into ASP encodings in an orthogonal way, and the EXACT MIS-
COVERAGE PMS problem can be embedded into a modularized framework for
condition-based rescheduling. See, e.g., [27,28] where the recommended mainte-
nance intervals depend on the workload or the current condition of the machine.

Acknowledgment. The support from the Academy of Finland within the project
AI-ROT (#335718) is gratefully acknowledged.

References

1. Ali, M.B., Sassi, M., Gossa, M., Harrath, Y.: Simultaneous scheduling of production
and maintenance tasks in the job shop. Int. J. Prod. Res. 49, 3891–3918 (2011).
https://doi.org/10.1080/00207543.2010.492405

2. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: LPNMR
2015, pp. 40–54 (2015). https://doi.org/10.1007/978-3-319-23264-5 5

3. Banbara, M., et al.: Teaspoon: solving the curriculum-based course timetabling
problems with answer set programming. Ann. Oper. Res. 275, 3–37 (2019).
https://doi.org/10.1007/s10479-018-2757-7

4. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

5. Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T.: Telingo = ASP + time. In:
LPNMR 2019, pp. 256–269 (2019). https://doi.org/10.1007/978-3-030-20528-7 19

6. Cassady, C., Murdock, P., Pohl, E.: Selective maintenance for support equipment
involving multiple maintenance actions. EJOR 129(2), 252–258 (2001), a Global
View of Industrial Logistics. https://doi.org/10.1016/S0377-2217(00)00222-8

7. Chansombat, S., Pongcharoen, P., Hicks, C.: A mixed-integer linear programming
model for integrated production and preventive maintenance scheduling in the
capital goods industry. Int. J. Prod. Res. 57(1), 61–82 (2019). https://doi.org/10.
1080/00207543.2018.1459923

8. Chen, X., An, Y., Zhang, Z., Li, Y.: An approximate nondominated sorting genetic
algorithm to integrate optimization of production scheduling and accurate main-
tenance based on reliability intervals. J. Manuf. Syst. 54, 227–241 (2020). https://
doi.org/10.1016/j.jmsy.2019.12.004

9. Do, P., Vu, H.C., Barros, A., Bérenguer, C.: Maintenance grouping for multi-
component systems with availability constraints and limited maintenance teams.
Reliab. Eng. & Syst. Safety 142, 56–67 (2015). https://doi.org/10.1016/j.ress.2015.
04.022

10. Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: Bal-
duccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp.
301–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5 27

https://doi.org/10.1080/00207543.2010.492405
https://doi.org/10.1007/978-3-319-23264-5_5
https://doi.org/10.1007/s10479-018-2757-7
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1007/978-3-030-20528-7_19
https://doi.org/10.1016/S0377-2217(00)00222-8
https://doi.org/10.1080/00207543.2018.1459923
https://doi.org/10.1080/00207543.2018.1459923
https://doi.org/10.1016/j.jmsy.2019.12.004
https://doi.org/10.1016/j.jmsy.2019.12.004
https://doi.org/10.1016/j.ress.2015.04.022
https://doi.org/10.1016/j.ress.2015.04.022
https://doi.org/10.1007/978-3-319-61660-5_27

18 A. Yli-Jyrä and T. Janhunen

11. Eiter, T., Geibinger, T., Musliu, N., Oetsch, J., Skocovský, P., Stepanova, D.:
Answer-set programming for lexicographical makespan optimisation in parallel
machine scheduling. In: KR 2021, pp. 280–290 (2021). http://dx.doi.org/10.24963/
kr.2021/27

12. Frost, D., Dechter, R.: Optimizing with constraints: a case study in scheduling
maintenance of electric power units. In: Maher, M., Puget, J.-F. (eds.) CP 1998.
LNCS, vol. 1520, pp. 469–469. Springer, Heidelberg (1998). https://doi.org/10.
1007/3-540-49481-2 40

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory
of NP-Completeness. W. H. Freeman & Company (1979)

14. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in
clasp series 3. In: LPNMR 2015, pp. 368–383 (2015). https://doi.org/10.1007/978-
3-319-23264-5 31

15. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theor. Pract. Log. Program. 19(1), 27–82 (2019). https://doi.org/10.1017/
S1471068418000054

16. Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input lan-
guage of ASP grounder Gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR
2009. LNCS (LNAI), vol. 5753, pp. 502–508. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04238-6 49

17. Geurtsen, M., Didden, J.B., Adan, J., Atan, Z., Adan, I.: Production, maintenance
and resource scheduling: a review. EJOR (2022). https://doi.org/10.1016/j.ejor.
2022.03.045

18. Hoai, M.T., Luong, H.T.: Selective maintenance policy with time-window con-
straint. In: Proceedings of the 7th Asia Pacific Industrial Engineering and Man-
agement Systems Conference 2006. Bangkok, Thailand (2006)

19. Nguyen, K.A., Do, P., Grall, A.: Condition-based maintenance for multi-component
systems using importance measure and predictive information. Int. J. Syst. Sci.:
Oper. Logist. 1(4), 228–245 (2014). https://doi.org/10.1080/23302674.2014.983582

20. Nguyen, K.A., Do, P., Grall, A.: Multi-level predictive maintenance for multi-
component systems. Reliab. Eng. Syst. Safety 144, 83–94 (2015). https://doi.org/
10.1016/j.ress.2015.07.017

21. Olde Keizer, M., Flapper, S., Teunter, R.: Condition-based maintenance policies
for systems with multiple dependent components: a review. EJOR 261(2), 405–420
(2017). https://doi.org/10.1016/j.ejor.2017.02.044

22. Rajaprasad, S.V.S.: Investigation of reliability, maintainability and availability of
a paper machine in an integrated pulp and paper mill. Int. J. Eng. Sci. Technol.
10(3), 43–56 (2018). https://doi.org/10.4314/ijest.v10i3.5

23. Sachdeva, A., Kumar, D., Kumar, P.: Planning and optimizing the maintenance
of paper production systems in a paper plant. Comput. Industr. Eng. 55, 817–829
(2008). https://doi.org/10.1016/j.cie.2008.03.004

24. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1–2), 181–234 (2002). https://doi.org/10.1016/S0004-
3702(02)00187-X

25. Ullman, J.: NP-complete scheduling problems. JCSS 10(3), 384–393 (1975).
https://doi.org/10.1016/S0022-0000(75)80008-0

26. You, M.Y., Meng, G.: A modularized framework for predictive maintenance
scheduling. Proc. Instit. Mech. Eng. Part O: J. Risk Reliab. 226(4), 380–391 (2012).
https://doi.org/10.1177/1748006X11431209

http://dx.doi.org/10.24963/kr.2021/27
http://dx.doi.org/10.24963/kr.2021/27
https://doi.org/10.1007/3-540-49481-2_40
https://doi.org/10.1007/3-540-49481-2_40
https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1007/978-3-642-04238-6_49
https://doi.org/10.1007/978-3-642-04238-6_49
https://doi.org/10.1016/j.ejor.2022.03.045
https://doi.org/10.1016/j.ejor.2022.03.045
https://doi.org/10.1080/23302674.2014.983582
https://doi.org/10.1016/j.ress.2015.07.017
https://doi.org/10.1016/j.ress.2015.07.017
https://doi.org/10.1016/j.ejor.2017.02.044
https://doi.org/10.4314/ijest.v10i3.5
https://doi.org/10.1016/j.cie.2008.03.004
https://doi.org/10.1016/S0004-3702(02)00187-X
https://doi.org/10.1016/S0004-3702(02)00187-X
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1177/1748006X11431209

Preventive Maintenance Scheduling 19

27. Youssef, H., Brigitte, C.M., Noureddine, Z.: Lower bounds and multiobjective evo-
lutionary optimisation for combined maintenance and production scheduling in job
shop. In: IEEE 2003 Conference on EFTA, vol. 2, pp. 95–100 (2003). https://doi.
org/10.1109/ETFA.2003.1248675

28. Zheng, Y., Lian, L., Mesghouni, K.: Comparative study of heuristics algorithms in
solving flexible job shop scheduling problem with condition based maintenance. J.
Industr. Eng. Manag. 7(2), 518–531 (2014). http://dx.doi.org/10.3926/jiem.1038

29. Zurn, H., Quintana, V.: Generator maintenance scheduling via successive approxi-
mations dynamic programming. IEEE Trans. Power Apparat. Syst. 94(2), 665–671
(1975). https://doi.org/10.1109/T-PAS.1975.31894

30. Öhman, M., Hiltunen, M., Virtanen, K., Holmström, J.: Frontlog scheduling in
aircraft line maintenance: from explorative solution design to theoretical insight
into buffer management. J. Oper. Manag. 67(2), 120–151 (2021). https://doi.org/
10.1002/joom.1108

https://doi.org/10.1109/ETFA.2003.1248675
https://doi.org/10.1109/ETFA.2003.1248675
http://dx.doi.org/10.3926/jiem.1038
https://doi.org/10.1109/T-PAS.1975.31894
https://doi.org/10.1002/joom.1108
https://doi.org/10.1002/joom.1108

On the Generalization of Learned
Constraints for ASP Solving in Temporal

Domains

Javier Romero(B) , Torsten Schaub , and Klaus Strauch(B)

University of Potsdam, Potsdam, Germany

javier@cs.uni-potsdam.de, kstrauch@uni-potsdam.de

Abstract. The representation of a dynamic problem in ASP usually
boils down to using copies of variables and constraints, one for each
time stamp, no matter whether it is directly encoded or via an action
or temporal language. The multiplication of variables and constraints is
commonly done during grounding and the solver is completely ignorant
about the temporal relationship among the different instances. On the
other hand, a key factor in the performance of today’s ASP solvers is
conflict-driven constraint learning. Our question is now whether a con-
straint learned for particular time steps can be generalized and reused
at other time stamps, and ultimately whether this enhances the overall
solver performance on dynamic problems. Knowing full well the domain
of time, we study conditions under which learned dynamic constraints
can be generalized and propose a simple translation of the original logic
program such that, for the translated programs, all learned constraints
can be generalized to other time points. Last but not least, we empir-
ically evaluate the impact of adding the generalized constraints to an
ASP solver.

Keywords: Answer set programming · Answer set solving · Temporal
reasoning

1 Introduction

Although Answer Set Programming (ASP; [12]) experiences an increasing pop-
ularity in academia and industry, a closer look reveals that this concerns mostly
static domains. There is still quite a chasm between ASP’s level of development
for addressing static and dynamic domains. This is because its modeling lan-
guage as well as its solving machinery aim so far primarily at static knowledge,
while dynamic knowledge is mostly dealt with indirectly via reductions to the
static case. This also applies to dedicated dynamic formalisms like action and
temporal languages [1,13]. In fact, their reduction to ASP or SAT usually relies
on translations that introduce a copy of each variable for each time step. The
actual dynamics of the problem is thus compiled out and a solver treats the
result as any other static problem.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 20–37, 2022.
https://doi.org/10.1007/978-3-031-21541-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_2&domain=pdf
http://orcid.org/0000-0001-5546-9939
http://orcid.org/0000-0002-7456-041X
http://orcid.org/0000-0002-3288-8978
https://doi.org/10.1007/978-3-031-21541-4_2

On the Generalization of Learned Constraints 21

We address this by proposing a way to (partly) break the opaqueness of the
actual dynamic problem and equip an ASP solver with means for exploiting
its temporal nature. More precisely, we introduce a method to strengthen the
conflict-driven constraint learning framework (CDCL) of ASP solvers so that
dynamic constraints learned for specific time points can be generalized to other
points in time. These additional constraints can in principle reduce the search
space and improve the performance of the ASP solvers.

We start by reviewing some background material in Sect. 2. Next, in Sect. 3,
we introduce a simple but general language to reason about time in ASP. We
then define temporal problems, and characterize their solutions in terms of com-
pletion and loop nogoods, paralleling the approach to regular ASP solving [10].
In Sect. 4, using this language, we study conditions under which learned con-
straints can be generalized to other time steps. With it, in Sect. 5, we propose
a simple translation such that, for the translated programs, learned constraints
can be generalized to other time points without the need for any proof method.
Finally, in Sect. 6 we empirically evaluate the impact of adding the generalized
constraints to the ASP solver clingo.

Our work can be seen as a continuation of the approach of ginkgo [9], which
also aimed at generalizing temporal constraints but resorted to an external induc-
tive proof method (in ASP) for warranting correctness. More generally, a lot
of work has been conducted over recent years on lazy ASP solving [14,15,17].
Notably, conflict generalization was studied from a general perspective in [4],
dealing with several variables over heterogeneous domains. Lazy grounding via
propagators was investigated in [5]. Finally, it is worth mentioning that the
usage of automata, as done in [3], completely abolishes the use of time points.
A detailed formal and empirical comparative study of these approaches is inter-
esting future work.

2 Background

We review the material from [11] about solving normal logic programs, and adapt
it for our purposes to cover normal logic programs with choice rules and integrity
constraints over some set P of atoms.

A rule r has the form H ← B where B is a set of literals over P, and H is
either an atom p ∈ P, and we call r a normal rule, or {p} for some atom p ∈ P,
making r a choice rule, or ⊥, so that r is an integrity constraint. We usually
drop braces from rule bodies B, and drop the arrow ← when B is empty. We use
the extended choice rule {p1; . . . ; pn} ← B as a shorthand for the choice rules
{p1} ← B, . . . , {pn} ← B. A program Π is a set of rules. By Πn, Πc, and Πi

we denote its normal rules, choice rules and integrity constraints, respectively.
Semantically, a logic program induces a collection of stable models, which are
distinguished models of the program determined by the stable models semantics
(see [10,12] for details).

For a rule r of the form H ← B, let h(r) = p be the head of r if H has the
form p or {p} for some atom p ∈ P, and let h(r) = ⊥ otherwise. Let B(r) = B

22 J. Romero et al.

be the body of r, B(r)+ = {p | p ∈ P, p ∈ B} be the positive body of r, and
B(r)− = {p | p ∈ P,¬p ∈ B} be the negative body of r. The set of atoms
occurring in a rule r and in a logic program Π are denoted by A(r) and A(Π),
respectively. The set of bodies in Π is B(Π) = {B(r) | r ∈ Π}. For regrouping
rule bodies sharing the same head p, we define B(p) = {B(r) | r ∈ Π, h(r) = p},
and by Bn(p) we denote the restriction of that set to bodies of normal rules, i.e.,
{B(r) | r ∈ Πn, h(r) = p}.

A Boolean assignment A over a set A, called the domain of A, is a set
{σ1, . . . , σn} of signed literals σi of the form Tp or Fp for some p ∈ A and
1 ≤ i ≤ n; Tp expresses that p is true and Fp that it is false. We omit the
attribute signed for literals whenever clear from the context. We denote the
complement of a literal σ by σ, that is, Tp = Fp and Fp = Tp. Given this,
we access true and false propositions in A via AT = {p ∈ A | Tp ∈ A} and
AF = {p ∈ A | Fp ∈ A}. We say that a set of atoms X is consistent with
an assignment A if AT ⊆ X and AF ∩ X = ∅. In our setting, a nogood is a set
{σ1, . . . , σn} of signed literals, expressing a constraint violated by any assignment
containing σ1, . . . , σn. Accordingly, the nogood for an integrity constraint r,
denoted by ng(r), is {Tp | p ∈ B(r)+} ∪ {Fp | p ∈ B(r)−}. We say that an
assignment A over A is total if AT ∪ AF = A and AT ∩ AF = ∅. A total
assignment A over A is a solution for a set Δ of nogoods, if δ
⊆ A for all δ ∈ Δ.
A set Δ of nogoods entails a nogood δ if δ
⊆ A for all solutions A over A for Δ,
and it entails a set of nogoods ∇ if it entails every nogood δ ∈ ∇ in the set.

We say that a nogood δ is a resolvent of a set of nogoods Δ if there is a
sequence of nogoods δ1, . . . , δn with n ≥ 1 such that δn = δ, and for all i such
that 1 ≤ i ≤ n, either δi ∈ Δ, or there are some δj , δk with 1 ≤ j < k < i such
that δi = (δj \ {σ}) ∪ (δk \ {σ}) for some signed literal σ. In this case, we say
that the sequence δ1, . . . , δn is a proof of δn. We say that a signed literal σ is
unit resulting for a nogood δ and an assignment A if δ \ A = {σ} and σ /∈ A.
For a set of nogoods Δ and an assignment A, unit propagation is the process of
extending A with unit-resulting literals until no further literal is unit resulting
for any nogood in Δ.

Inferences in ASP can be expressed in terms of atoms and rule bodies.
We begin with nogoods capturing inferences from the Clark completion. For
a body β = {p1, . . . , pm,¬pm+1, . . . ,¬pn}, we have that δ(β) = {Fβ,Tp1, . . . ,
Tpm,Fpm+1, . . . , Fpn} and Δ(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,
Tpm+1}, . . . , {Tβ, Tpn} }. For an atom p such that Bn(p) = {β1, . . . , βk}, we
have that Δ(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} }, and if B(p) = {β1, . . . , βk}
then δ(p) = {Tp,Fβ1, . . . ,Fβk}. Given this, the completion nogoods of a logic
program Π are defined as follows:

ΔΠ = {δ(β) | β ∈ B(Π \ Πi)} ∪ {δ ∈ Δ(β) | β ∈ B(Π \ Πi)}
∪ {δ(p) | p ∈ A(Π)} ∪ {δ ∈ Δ(p) | p ∈ A(Π)}
∪ {ng(β) | β ∈ B(Πi)}

Choice rules of the form {p} ← β are considered by not adding the corresponding
nogood {Fp,Tβ} to Δ(p), and integrity constraints from Πi of the form ⊥ ← β

On the Generalization of Learned Constraints 23

are considered by adding directly their corresponding nogood ng(β). The defini-
tion of the loop nogoods ΛΠ , capturing the inferences from loop formulas, is the
same as in [11]. We do not specify them here since they do not pose any special
challenge to our approach, and they are not needed in our (tight) examples.

To simplify the presentation, we slightly deviate from [11] and consider a
version of the nogoods of a logic program where the occurrences of the empty
body are simplified. Note that δ(∅) = {F∅} and Δ(∅) = ∅. Hence, if ∅ ∈ B(Π)
then any solution to the completion and loop nogoods of Π must contain T∅.
Based on this, we can delete from ΔΠ ∪ ΛΠ the nogoods that contain F∅, and
eliminate the occurrences of T∅ from the others. Formally, we define the set of
(simplified) nogoods for Π as:

ΣΠ = {δ \ {T∅} | δ ∈ ΔΠ ∪ ΛΠ ,F∅ /∈ δ}.

To accommodate this change, for a program Π, we fix the domain A of the
assignments to the set A(Π) ∪ (B(Π) \ ∅). Given this, the stable models of a
logic program Π can be characterized by the nogoods ΣΠ for that program. This
is made precise by the following theorem, which is an adaptation of Theorem
3.4 from [11] to our setting.

Theorem 1. Let Π be a logic program. Then, X⊆A(Π) is a stable model of Π
iff X =AT ∩ A(Π) for a (unique) solution A for ΣΠ .

To compute the stable models of a logic program Π, we apply the algorithm
CDNL-ASP(Π) from [11] implemented in the ASP solver clingo. The algorithm
searches for a solution A to the set of nogoods ΣΠ , and when it finds one it
returns the corresponding set of atoms AT ∩ A(Π). CDNL-ASP maintains a
current assignment A and a current set of learned nogoods ∇, both initially
empty. The main loop of the algorithm starts by applying unit propagation to
ΣΠ ∪∇, possibly extending A. Every derived literal is “implied” by some nogood
δ ∈ ΣΠ∪∇, which is stored in association with the derived literal. This derivation
may lead to the violation of another nogood. This situation is called conflict. If
propagation finishes without conflict, then a (heuristically chosen) literal can be
added to A, provided that A is partial, while otherwise A represents a solution
and can be directly returned. On the other hand, if there is a conflict, there
are two possibilities. Either it is a top-level conflict, independent of heuristically
chosen literals, in which case the algorithm returns unsatisfiable. Or, if that is
not the case, the conflict is analyzed to calculate a conflict nogood δ, that is
added to ∇. More in detail, δ is a resolvent of the set of nogoods associated with
the literals derived after the last heuristic choice. Hence, every learned nogood
δ added to ∇ is a resolvent of ΣΠ ∪ ∇ and, by induction, it is also a resolvent
of ΣΠ . After recording δ, the algorithm backjumps to the earliest stage where
the complement of some formerly assigned literal is implied by δ, thus triggering
propagation and starting the loop again.

This algorithm has been extended for solving under assumptions [7]. In this
setting, the procedure CDNL-ASP(Π,S) receives additionally as input a partial
assignment S over A(Π), the so-called assumptions, and returns some stable

24 J. Romero et al.

model of Π that is consistent with S. To accommodate this extension, the algo-
rithm simply decides first on the literals from S, and returns unsatisfiable as soon
as any of these literals is undone by backjumping. No more changes are needed.
Notably, the learned nogoods are still resolvents of ΔΠ , that are independent of
the set of assumptions S.

3 Temporal Programs, Problems and Nogoods

We introduce a simple language of temporal logic programs to represent temporal
problems. These programs represent the dynamics of a temporal domain by
referring to two time steps: the current step and the previous step. We refer
to the former by atoms from a given set P, and to the latter by atoms from
the set P ′ = {p′ | p ∈ P}, that we assume to be disjoint from P. Following
the common-sense flow of time, normal or choice rules define the atoms of the
current step in terms of the atoms of both the current and the previous step.
Integrity constraints forbid some current situations, possibly depending on the
previous situations. Syntactically, a temporal logic program Π over P has the
form of a (non-temporal) logic program over P ∪ P ′ such that for every rule
r ∈ Π, if r ∈ Πn ∪ Πc then h(r) ∈ P, and otherwise (B(r)+ ∪ B(r)−) ∩ P
= ∅.
Given that temporal logic programs over P can also be seen as (non-temporal)
logic programs over P ∪ P ′, in what follows we may apply the notation of the
latter to the former. We say that the rules r ∈ Π such that A(r) ⊆ P are static,
and otherwise we say that they are dynamic.

One of the goals of the design of this language was to capture the core of
the translations to ASP of action and temporal languages [1,13]. We do not
elaborate this further, but from this perspective, temporal programs can be seen
as an intermediate language in the workflow of ASP solving for those higher
level languages. On the other hand, a variant of this language was used recently
to represent the transition function of various types of planning problems [8].
More in detail, this representation consists of choice rules of the form {a} ← to
generate the occurrences of actions a, normal rules of the form f ← B to define
the value of the fluents f in terms of the values of other fluents or actions at the
current or previous steps, and integrity constraints of the form ⊥ ← B, where
some action a belongs to B, to specify the preconditions of the actions.

Example 1. Our running example is the temporal logic program Π1 over P1 =
{a, b, c, d} that consists only of choice rules and integrity constraints:

{a; b; c; d} ← ⊥ ← a′,¬b
⊥ ← ¬b′, b ⊥ ← ¬c′, a
⊥ ← d′, b ⊥ ← c,¬d
⊥ ← ¬a′,¬c ⊥ ← ¬a′, c′,¬a

Temporal logic programs Π can be instantiated to specific time intervals. We
introduce some notation for that. Let m and n be integers such that 1 ≤ m ≤ n,
and [m,n] denote the set of integers {i | m ≤ i ≤ n}. For p ∈ P, the symbol p[m]

On the Generalization of Learned Constraints 25

denotes the atom pm, and for p′ ∈ P ′, the symbol p′[m] denotes the atom pm−1.
For a set of atoms X ⊆ P ∪ P ′, X[m] denotes the set of atoms {p[m] | p ∈ X},
and X[m,n] denotes the set of atoms {p[i] | p ∈ X, i ∈ [m,n]}. For a rule r over
P ∪ P ′, the symbol r[m] denotes the rule that results from replacing in r every
atom p ∈ P ∪ P ′ by p[m], and r[m,n] denotes the set of rules {r[i] | i ∈ [m,n]}.
Finally, for a temporal program Π, Π[m] is {r[m] | r ∈ Π}, and Π[m,n] is
{r[i] | r ∈ Π, i ∈ [m,n]}.

Example 2. The instantiation of Π1 at 1, denoted by Π1[1], is:

{a1; b1; c1; d1} ← ⊥ ← a0,¬b1
⊥ ← ¬b0, b1 ⊥ ← ¬c0, a1

⊥ ← d0, b1 ⊥ ← c1,¬d1
⊥ ← ¬a0,¬c1 ⊥ ← ¬a0, c0,¬a1

The programs Π1[i] for i ∈ {2, 3, 4} are the same, except that the subindex 1 is
replaced by i, and the subindex 0 is replaced by i − 1. The instantiation of Π1

at [1, 4], denoted by Π1[1, 4], is Π1[1] ∪ Π1[2] ∪ Π1[3] ∪ Π1[4].

To represent temporal reasoning problems, temporal programs are comple-
mented by assignments I and F that partially or completely describe the initial
and the final situation of a problem. Formally, a temporal logic problem over some
set of atoms P is a tuple 〈Π, I, F 〉 where Π is a temporal logic program over P,
and I and F are assignments over P. A solution to such a problem is a sequence
of situations that is consistent with the dynamics described by Π and with the
information provided by I and F . The possible sequences of situations of length
n, for some integer n ≥ 1, are represented by the generator program for Π and
n, denoted by gen(Π,n), that consists of the rules {{p0} ← | p ∈ P} ∪ Π[1, n].
Then, a solution to a temporal problem 〈Π, I, F 〉 is defined as a pair (X,n),
where n is an integer such that n ≥ 1, and X is a stable model of gen(Π,n)
consistent with I[0] ∪ F [n].

Temporal problems can be used to formalize planning problems, using a tem-
poral logic program Π of the form described above, a total assignment I that
assigns a value to every possible atom (action occurrences are made false ini-
tially), and a partial assignment F to fix the goal. The solutions of the temporal
problem correspond to the plans of the planning problem.

Example 3. The temporal problem 〈Π1, ∅, ∅〉 has three solutions of length 4:
(Y, 4), (Y ∪ {d(2)}, 4), and (Y ∪ {b(3)}, 4), where Y is the set of atoms
{a(0), b(0), c(0), a(1), b(1), b(2), c(3), d(3), a(4), c(4), d(4)}.

To pave the way to the nogood characterization of temporal logic problems,
we define the transition program trans(Π) of a temporal logic program Π as the
(non-temporal) logic program Π ∪ {{p′} ←| p′ ∈ P ′} over P ∪ P ′. Each stable
model of this program represents a possible transition between a previous and
a current step, where the former is selected by the additional choice rules over
atoms from P ′, and the latter is determined by the rules of Π, interpreted as
non-temporal rules.

26 J. Romero et al.

Example 4. The transition program trans(Π1) is the (non-temporal) program
Π1 ∪{{a′; b′; c′; d′} ←} over P1 ∪{p′ | p ∈ P1}. Some stable models of trans(Π1)
are {a′, b′, c′, a, b} and {c′, d′, a, c, d}, that correspond to the transitions to step
1 and step 4 of the solution (Y, 4), respectively.

Next, we introduce temporal nogoods and their instantiation. Given a tem-
poral logic program Π over P, a temporal nogood over P ∪ B(Π) has the form
of a (non-temporal) nogood over P ∪ P ′ ∪ B(Π). For a temporal nogood δ over
P ∪ B(Π) and an integer n ≥ 1, the instantiation of δ at n, denoted by δ[n],
is the nogood that results from replacing in δ any signed literal Tα (Fα) by
Tα[n] (by Fα[n], respectively). We extend this notation to sets of nogoods and
to intervals like we did above. For example, δ1 = {Fb′,Tb} is a temporal nogood
over P1 ∪ B(Π1), and δ1[1, 2] is

{
{Fb0,Tb1}, {Fb1,Tb2}

}
.

We are now ready to define the temporal nogoods for a temporal logic pro-
gram Π over P. Recall that trans(Π) is a (non-temporal) logic program over
P ∪ P ′, whose corresponding nogoods are denoted by Σtrans(Π). Then, the set
of temporal nogoods for Π, denoted by ΨΠ , has the form Σtrans(Π), interpreted
as a set of temporal nogoods over P ∪B(Π), and not as a set of (non-temporal)
nogoods over P ∪ P ′ ∪ B(Π).

Example 5.
The set ΨΠ1 of temporal nogoods for Π1 is

{
{Ta′,Fb}, {Fb′,Tb}, {Fc′,

Ta}, {Td′,Tb}, {Tc,Fd}, {Fa′,Fc}, {Fa′,Tc′,Fa}
}
.

Temporal nogoods provide an alternative characterization of the nogoods of
gen(Π,n).

Proposition 1. Let Π be a temporal logic program, and n ≥ 1 some integer.
Then, Σgen(Π,n) = ΨΠ [1, n].

In words, the nogoods for gen(Π,n) are the same as the instantiation of the
temporal nogoods for Π, that are nothing else than the nogoods of the logic
program trans(Π) interpreted as temporal nogoods. Then, by Theorem 1, the
temporal nogoods can be used to characterize the solutions of temporal logic
problems.

Theorem 2. Let 〈Π, I, F 〉 be a temporal logic problem. The pair (X,n) is a
solution to 〈Π, I, F 〉 for some integer n ≥ 1 and X ⊆ P[0, n] iff X = AT∩P[0, n]
for a (unique) solution A for ΨΠ [1, n] such that I[0] ∪ F [n] ⊆ A.

4 Generalizing Learned Constraints

A common software architecture to solve a temporal problem 〈Π, I, F 〉 combines
a scheduler that assigns resources to different values of n, with one or many
solvers that look for solutions of the assigned lengths n (see [16], for example).
The standard approach for the solvers is to extend the program gen(Π,n) with
facts and integrity constraints to adequately represent I and F , and call the

On the Generalization of Learned Constraints 27

procedure CDNL-ASP with this extended program without assumptions. This
method does not work well for our purposes, because it leads to a nogood rep-
resentation of the initial and the final steps that is different from the nogood
representation of the other steps. Hence, the constraints learned using nogoods
specific to the initial and final steps may not be generalizable to the other
steps. To overcome this issue, in our approach the solvers apply the proce-
dure CDNL-ASP(gen(Π,n), I[0]∪F [n]) to the generator program for Π and n,
using assumptions to fix the assignments about the initial and final situations.
Observe that in this case, by Proposition 1, the solver initially contains exactly
the nogoods ΨΠ [1, n], and all the nogoods that it learns afterwards are resolvents
of ΨΠ [1, n].

Once this is settled, we ask ourselves:

What generalizations of the nogoods learned by the algorithm can be applied
to the same or other problems?

We make the question more precise step by step. First, instead of talking
about “the nogoods learned by the algorithm”, we refer to the resolvents of
ΨΠ [1, n] for some temporal problem 〈Π, I, F 〉. Or more precisely, we refer to the
resolvents of ΨΠ [i, j] for some i and j such that 1 ≤ i ≤ j ≤ n, since the learned
nogoods are always the result of resolving nogoods belonging to some interval
[i, j] that may be smaller than [1, n].

To formalize the notion of the “generalizations of nogoods”, we introduce
some notation for shifting a non-temporal nogood an amount of t time steps.
For integers n ≥ 1 and t, and a non-temporal nogood δ over (P∪P ′∪B(Π))[1, n],
the symbol δ〈t〉 denotes the nogood that results from replacing in δ any signed
literal Tαm (Fαm) by Tαm+t (by Fαm+t, respectively). For example, δ〈0〉 = δ,
and if δ = {Ta2,Fb3}, then δ〈1〉 is {Ta3,Fb4}, and δ〈−1〉 is {Ta1,Fb2}. We
say that δ〈t〉 is a shifted version of the nogood δ, and that a generalization of a
nogood is a set of some of its shifted versions. For example, {{Ta2,Fb3}} and
{{Ta1,Fb2}, {Ta2,Fb3}, {Ta3,Fb4}} are generalizations of {Ta2,Fb3} and of
{Ta3,Fb4}.

Next, by the “other problems” mentioned in the question, we refer to varia-
tions m of the length of the solution, and to variations 〈Π, I ′, F ′〉 of the original
problem where the initial and final situation may change, but the temporal pro-
gram remains the same. Then, a generalization of a nogood “can be applied”
to such problems if it can be added to the set of nogoods used by the algo-
rithm CDNL-ASP without changing the solutions to the problem. For any vari-
ation 〈Π, I ′, F ′〉, those nogoods are ΨΠ [1,m], and a generalization can be added
to them if the generalization is entailed by them. Hence, a generalization of a
nogood “can be applied” to “some problem” 〈Π, I ′, F ′〉, searching for a solution
of length m, if the generalization is entailed by ΨΠ [1,m]. Putting all together,
we can rephrase our question as follows:

Given some temporal logic problem 〈Π, I, F 〉, what generalizations of a resol-
vent δ of ΨΠ [i, j] are entailed by ΨΠ [1,m]?

28 J. Romero et al.

Example 6. Consider a call of CDNL-ASP(gen(Π1, n), ∅) to search for a solution
of length n to the temporal problem 〈Π1, ∅, ∅〉, where n has the value 4. Initially,
the solver may choose to make a3 true by adding Ta3 to the initial assign-
ment. Then, by unit propagation, it could derive the literal Tc2 by {Fc′,Ta}[3],
the literal Td2 by {Tc,Fd}[2], the literal Fb3 by {Td′,Tb}[3], and the literal
Fb4 by {Fb′,Tb}[4], leading to a conflict due to the violation of the nogood
{Ta′,Fb}[4]. At this stage, the solver would learn the nogood δ = {Ta}[3] by
resolving iteratively {Ta′,Fb}[4] with the nogoods {Fb′,Tb}[4], {Td′,Tb}[3],
{Tc,Fd}[2], and {Fc′,Ta}[3] used for propagation. Hence, δ is a resolvent of
the set of those nogoods. Moreover, given that those nogoods are instantiations
of some temporal nogoods of ΨΠ1 at the interval [2, 4], δ is also a resolvent
of ΨΠ1 [2, 4] and of ΨΠ1 [1, n]. Observe that, by shifting the nogoods −1 time
points, we obtain that δ〈−1〉 = {Ta}[2] is a resolvent of ΨΠ1 [1, 3], and therefore
also of ΨΠ1 [1, n]. Then, by the correctness of resolution, we have that the gen-
eralization {{Ta}[2], {Ta}[3]} of δ is entailed by ΨΠ1 [1, n]. On the other hand,
δ〈−2〉 = {Ta}[1] is a resolvent of ΨΠ1 [0, 2], but not of ΨΠ1 [1, n], (partly) because
the instantiations at 0 do not belong to ΨΠ1 [1, n]. Similarly, δ〈1〉 = {Ta}[4] is a
resolvent of ΨΠ1 [3, 5], but not of ΨΠ1 [1, n], (partly) because the instantations at
5 do not belong to ΨΠ1 [1, n] (see Fig. 1).

Fig. 1. Representation of different shifted versions of the nogood δ = {Ta}[3]. The
surrounding rectangles cover the interval of the nogoods needed to prove them. For
example, the rectangle of {Ta}[2] covers the interval [1, 3] because {Ta}[2] is a resolvent
of ΨΠ1 [1, 3].

This example suggests a sufficient condition for the generalization of a nogood
δ learned from ΨΠ [i, j]: a shifted version δ〈t〉 of some generalization of δ is
entailed by ΨΠ [1, n] if the nogoods that result from shifting ΨΠ [i, j] an amount
of t time points belong to ΨΠ [1, n]. We answer our previous question by stating
this condition precisely in the next theorem.

Theorem 3. Let 〈Π, I, F 〉 be a temporal logic problem, and δ be a resolvent
of ΨΠ [i, j] for some i and j such that 1 ≤ i ≤ j. Then, for every n ≥ 1, the
generalization consisting of the shifted nogoods δ〈t〉 such that [i+ t, j + t] ⊆ [1, n]
is entailed by ΨΠ [1, n].

On the Generalization of Learned Constraints 29

The proof is based on the fact that the resolution proof that derived δ from
ΨΠ [i, j] can be used to derive every δ〈t〉 from ΨΠ [i + t, j + t], simply by shifting
the nogoods t time steps. This means that δ〈t〉 is a resolvent of ΨΠ [i + t, j + t].
Given that [i + t, j + t] ⊆ [1, n], the nogood δ〈t〉 is also a resolvent of ΨΠ [1, n].
Then, the theorem follows from the correctness of resolution.

This result allows us to generalize the learned nogoods to different lengths
and different initial and final situations, as long as the specified conditions hold.
Following our example, if we were now searching for a solution of length 9 to the
temporal problem 〈Π1, {Tc}, {Tb}〉, we could add the generalization {{Ta}[i] |
i ∈ [2, 8]} to CDNL-ASP(gen(Π1, 9), {Tc0,Tb9}).

The theorem can be applied in an online setting, where the generalizations
are added while solving, or in an offline setting, where the generalizations are
stored to apply them later to other problems. Observe that to benefit the most
from the result, we should know what is the specific interval [i, j] of the nogoods
used to obtain a learned nogood. We could obtain this information by modifying
the solving algorithm, and recording that interval for every learned nogood. We
leave that option for future work, and in the next section we follow another
approach that does not require to modify the solver.

5 Translations

In this section, we present a translation of the original temporal program such
that the nogoods learned using the translated program can be generalized to
all time points. We start with a simple translation trλ that works for temporal
programs where all dynamic rules are integrity constraints. Later, we show that
all temporal programs can be translated to this form.

We say that a temporal logic program Π over P is in previous normal form
(PNF) if A(Π \ Πi) ∩ P ′ = ∅, and that a temporal logic problem 〈Π, I, F 〉 over
P is in PNF if Π is in PNF. Given a temporal logic program Π over P, let
Πdi denote the set {r | r ∈ Πi,A(r) ∩ P ′
= ∅} of dynamic integrity constraints
of Π. Note that if Π is in PNF, then the dynamic rules of Π belong to Πdi .
The translation trλ(Π) tags the rules in Πdi with a new atom λ, that does not
belong to P or P ′, and extends the program with a choice rule for λ. Formally,
by trλ(Π) we denote the temporal logic program:

Π \ Πdi ∪
{
{λ} ←

}
∪ {⊥ ← B(r) ∪ {λ} | r ∈ Πdi}.

It is easy to see that when λ is chosen to be true, trλ(Π) generates the same
transitions as Π. Then, we can solve temporal programs 〈Π, I, F 〉 by solving
temporal problems 〈trλ(Π), I, F 〉, if we consider only solutions that make λ
true at all steps after the initial one. For convenience, at the initial step we
consider only the case where λ is false. To make this precise, we say that a
solution (X,n) to a temporal problem is λ-normal if X ∩ ({λ}[0, n]) = {λ}[1, n].
The next proposition states the relation between these λ-normal solutions and
the original solutions using Π.

30 J. Romero et al.

Proposition 2. Let T1 = 〈Π, I, F 〉 and let T2 = 〈trλ(Π), I, F 〉 be temporal logic
problems. There is a one-to-one correspondence between the solutions to T1 and
the λ-normal solutions to T2.

The call CDNL-ASP(gen(trλ(Π), n), I[0]∪F [n]∪{Fλ0}∪{Tλ}[1, n]) computes
λ-normal solutions to T2, enforcing the correct value for λ at every time point
using assumptions. The solutions to the original problem T1 can be extracted
from the λ-normal solutions, after deleting the atoms in {λ}[1, n].

We turn now our attention to the resolvents δ of the set of nogoods
Ψtrλ(Π)[1, n] used by the procedure CDNL-ASP . As we will see, just by looking
at these resolvents δ, we can approximate the specific interval [i, j] ⊆ [1, n] of
the nogoods that were used to prove them.

To this end, we say that the nogoods containing literals of different steps are
dynamic nogoods, and they are static nogoods otherwise. All dynamic nogoods
in Ψtrλ(Π)[1, n] come from the instantiation of some dynamic integrity constraint
{⊥ ← B(r) ∪ {λ} | r ∈ Πdi} at some time step i and, therefore, they contain
some literal of the form Tλi. On the other hand, in Ψtrλ(Π)[1, n] there are no
literals of the form Fλi. Hence, the literals Tλi occurring in the dynamic nogoods
can never be resolved away. Then, if some dynamic nogood is used to prove a
learned nogood δ, the literal Tλi occurring in that dynamic nogood must belong
to δ. This means that the literals Tλi from a learned nogood δ tell us exactly
the steps i of the dynamic nogoods that have been used to prove δ.

Observe now that two nogoods δ1 ∈ Ψtrλ(Π)[i] and δ2 ∈ Ψtrλ(Π)[i + 1] can
only be resolved if δ2 is a dynamic nogood. Otherwise, the nogoods would have
no opposite literals to resolve. Applying the same reasoning, if two nogoods
δ1 ∈ Ψtrλ(Π)[i] and δ2 ∈ Ψtrλ(Π)[j], such that i < j, are part of the same
resolution proof of a learned nogood δ, then the proof must also contain some
dynamic nogoods from each step in the interval [i + 1, j]. Therefore, the learned
nogood δ must contain the literals {Tλ}[i + 1, j].

This implies that, given the literals {Tλ}[k, j] occurring in a learned nogood
δ, we can infer the following about the nogoods from Ψtrλ(Π)[1, n] used to prove
δ: dynamic nogoods from all the steps [k, j] were used to prove δ, possibly some
static nogoods of the step k − 1 were used as well, and no nogoods from other
steps were used in the proof. It is possible that some static nogoods at steps [k, j]
were also used, but no dynamic nogoods at k − 1 could be used, since otherwise
δ should contain the literal Tλk−1.

We formalize this with the function step(δ), that approximates the specific
interval [i, j] of the nogoods that were used to prove δ: if δ contains some literal
of the form Tλi for i ∈ [1, n], then step(δ) is the set of steps {j −1, j | Tλj ∈ δ}.
For example, if δ is {Ta3,Tλ3} then the value of step(δ) is {2, 3}. It is clear
that δ was derived using some dynamic nogood of step 3, that added the literal
Tλ3. And it could also happen that some static nogood of step 2 was used, but
we are uncertain about it. That is why we say that step is an approximation.
To continue, note that it can also be that δ has no literals of the form Tλi. In
this case, δ must be the result of resolving some static nogoods of a single time
step, and we can extract that time step from the unique time step of the literals

On the Generalization of Learned Constraints 31

occurring in the nogood. Hence, in this case we define step(δ) as the set of steps
{i | Tpi ∈ δ or Fpi ∈ δ}. For example, step({Tc2,Td2}) = {2}. With this, we
can generalize a nogood δ to the shifted nogoods δ〈t〉 whose step value fits in
the interval [1, n]. We state this precisely in part (i) of the next theorem.

Theorem 4. Let 〈Π, I, F 〉 be a temporal logic problem in PNF, and δ be a
resolvent of Ψtrλ(Π)[1,m] for some m ≥ 1. Then, for every n ≥ 1:

(i) the generalization {δ〈t〉 | step(δ〈t〉) ⊆ [1, n]} is entailed by Ψtrλ(Π)[1, n], and
(ii) the generalization {δ〈t〉 | step(δ〈t〉) ⊆ [0, n]} is entailed by Ψtrλ(Π)[0, n].

Observe that part (i) excludes the shifted nogoods δ〈t〉 that contain the literal
Tλ1, since in that case step(δ〈t〉) contains the step 0 /∈ [1, n]. This makes sense
because to prove δ〈t〉 we could need some static nogoods at step 0, and they
do not belong to Ψtrλ(Π)[1, n]. However, once we add the nogoods at step 0 in
part (ii), those shifted nogoods are entailed. Intuitively, this addition enforces
that the initial situation is reachable from some possible previous situation. We
note that this restriction holds in most of the temporal problems that we have
found. In particular, it holds in all the (classical) planning problems that we
tried in our experiments. In fact, in those problems the atoms of the initial step
are completely fixed by the given instance, and therefore we can apply part (ii)
of the Theorem without having to consider any additional nogoods. In other
words, in that case we can add the generalization of part (ii) but keep solving
with the nogoods of part (i). Finally, let us mention that, given that the literals
Tλi are only true at steps i ∈ [1, n], a shifted nogood δ〈t〉 can only be violated
if step(δ〈t〉) ⊆ [0, n]. Hence, adding shifted nogoods with step values outside
of the interval [0, n] cannot change the solutions computed by the algorithm
CDNL-ASP . This is why we say that the nogoods learned by the translated
program can be generalized to all time points.

Example 7. Consider the call CDNL-ASP(gen(trλ(Π1), 4), {}), similar to the
one that we have seen before using the original program Π1. The nogoods
Ψtrλ(Π1)[1, n] are the same as those in ΨΠ1 [1, n], except that every dynamic
nogood contains one instantiation of the literal Tλ. Instead of learning the
nogood {Ta3} (written before as {Ta}[3]) the algorithm would learn the nogood
δ = {Ta3,Tλ3,Tλ4}. Then, applying part (i) of Theorem 4 the nogood δ can be
generalized to δ〈−1〉 = {Ta2,Tλ2,Tλ3}, but not to δ〈1〉 = {Ta4,Tλ4,Tλ5} or
to δ〈−2〉 = {Ta1,Tλ1, Tλ2} (see Fig. 2). On the other hand, with part (ii), the
latter is also valid. Observe how in that case we could even add to the algorithm
CDNL-ASP the nogoods δ〈1〉 or δ〈−3〉 = {Ta0,Tλ0,Tλ1} since their respec-
tive literals Tλ5 and Tλ0 can never be part of any assignment computed by the
algorithm.

The next step is to show how temporal programs in general can be translated
to PNF form. For this, given a temporal logic program Π over P, let P∗ = {p∗ |
p ∈ P}, and assume that this set is disjoint from P and P ′. The translation
tr∗(Π) consists of two parts. The first part consists of the result of replacing

32 J. Romero et al.

Fig. 2. Representation of different shifted versions of the nogood δ = {Ta3,Tλ3,Tλ4}.
The surrounding rectangles cover the interval of their step value. For example, the
rectangle of {Ta2,Tλ2,Tλ3} covers the interval [1, 3] because step({Ta2,Tλ2,Tλ3}) =
[1, 3].

in Π every atom p′ ∈ P ′ by its corresponding new atom p∗. The second part
consists of the union of the rules

{{p∗} ←;⊥ ← p′,¬p∗;⊥ ← ¬p′, p∗}
for every p ∈ P. The idea of the translation is that the atoms p′ ∈ P ′ are confined
to integrity constraints by replacing them by new atoms p∗ ∈ P∗, whose truth
value is completely determined by the corresponding p′ ∈ P ′ atoms by means of
the last set of rules.

Proposition 3. For any temporal logic program Π, the program tr∗(Π) is in
PNF.

The solutions to temporal problems with Π are the same as the solutions to the
same temporal problems with tr∗(Π) where the atoms p∗[i] are false at i = 0 and
have the truth value of p[i − 1] at the other time steps i. Just like before, when
we use this translation, we have to add to CDNL-ASP the correct assumptions
to fix the value of the p∗ atoms at step 0.

Proposition 4. Let T1 = 〈Π, I, F 〉 and let T2 = 〈tr∗(Π), I, F 〉 be temporal logic
problems. There is a one-to-one correspondence between the solutions to T1 and
the solutions to T2 that do not contain any atom p∗ ∈ P∗ at step 0.

This proposition allows us to replace any temporal program Π by a temporal
program tr∗(Π) in PNF. We can then apply the translation trλ and benefit from
Theorem 4. In fact, we can go one step further, and apply the nogoods learned
with the program trλ(tr∗(Π)) directly to the original problem with Π. We make
this claim precise in the next theorem. For that, we define the simplification of
a nogood δ, written simp(δ), as the nogood {Vpi | Vpi ∈ δ,V ∈ {T,F}, p ∈
P} ∪ {Vpi−1 | Vp∗

i ∈ δ,V ∈ {T,F}, p∗ ∈ P∗} that results from skipping the λi

literals of δ, and replacing the atoms p∗
i by their corresponding atoms pi−1.

Theorem 5. Let 〈Π, I, F 〉 be a temporal logic problem, and for some m ≥ 1 let
δ be a resolvent of Ψtrλ(tr∗(Π))[1,m] . Then, for every n ≥ 1:

(i) the generalization {simp(δ〈t〉) | step(δ〈t〉) ⊆ [1, n]} is entailed by ΨΠ [1, n],
and

(ii) the generalization {simp(δ〈t〉) | step(δ〈t〉) ⊆ [0, n]} is entailed by ΨΠ [0, n].

On the Generalization of Learned Constraints 33

6 Experiments

In this section, we experimentally evaluate the generalization of learned nogoods
in ASP planning using the solver clingo. The goal of the experiments is to study
the performance of clingo when the planning encodings are extended by the
generalizations of some constraints learned by clingo itself. We are interested
only in the solving time and not in the grounding time, but in any case we have
observed no differences between grounding times among the different configu-
rations compared. We performed experiments in two different settings, single
shot and multi shot, that we detail below. Following the approach of [9], in all
experiments we disregarded the learned nogoods of size greater than 50 and of
degree greater than 10, where the degree of a nogood is defined as the differ-
ence between the maximum and minimum step of the literals of the nogood.
In all the experiments, the learned nogoods are always sorted either by size or
by literal block distance (lbd, [2]), a measure that is usually associated with the
quality of a learned nogood. We tried configurations adding the best 500, 1000,
or 1500 nogoods, according to either their nogood size or their lbd. The results
ordering the nogoods by lbd were similar but slightly better than those ordering
by size. For reasons of space, from now on we focus on the former. We used two
benchmark sets from [6]. The first consists of PDDL benchmarks from planning
competitions, translated to ASP using the system plasp presented in that paper.
This set contains 120 instances of 6 different domains. The second set consists
of ASP planning benchmarks from ASP competitions. It contains 136 instances
of 9 domains. We adapted the logic programs of these benchmarks to the format
of temporal logic programs as follows: we deleted the facts used to specify the
initial situation, as well as the integrity constraints used to specify the goal, we
added some choice rules to open the initial situation, and we fixed the initial
situation and the goal using assumptions. All benchmarks were run using the
version 5.5.1 of clingo on an Intel Xeon E5-2650v4 under Debian GNU/Linux
10, with a memory limit of 8 GB, and a timeout of 15 min per instance.

The task in the single shot experiment is to find a plan of a fixed length n
that is part of the input. For the PDDL benchmarks we consider plan lengths
varying from 5 to 75 in steps of 5 units, for a total of 2040 instances. The ASP
benchmarks already have a plan length, and we use it. In a preliminary learning
step, clingo is run with every instance for 10 minutes or until 16000 nogoods are
learned, whatever happens first. The actual learning time is disregarded and not
taken into account in the tables. Some PDDL instances overcome the memory
limit in this phase. We leave them aside and are left with 1663 instances of this
type. We compare the performance of clingo running normally (baseline), versus
the (learning) configurations where we add the best 500, 1000, or 1500 learned
nogoods according to their lbd value. In this case we apply Theorem 5 and learn
the nogoods using a translated encoding, but use the original encoding for the
evaluation of all configurations.

Tables 1 and 2 show the results for the PDDL and the ASP benchmarks,
respectively. The first columns include the name and number of instances of
every domain. The tables show the average solving times and the number of

34 J. Romero et al.

Table 1. Single shot solving of PDDL benchmarks.

Baseline 500 1000 1500

Blocks (300) 0.5 (0) 0.1 (0) 0.1 (0) 0.1 (0)

Depots (270) 145.9 (30) 138.3 (29) 129.7 (27) 124.8 (28)

Driverlog (135) 14.0 (1) 12.6 (1) 12.5 (1) 12.7 (1)

Elevator (300) 3.0 (0) 3.3 (0) 4.1 (0) 7.0 (0)

Grid (30) 11.3 (0) 5.3 (0) 3.3 (0) 5.7 (0)

Gripper (255) 381.1 (96) 372.2 (90) 367.9 (93) 365.4 (90)

Logistics (238) 4.2 (1) 2.3 (0) 2.4 (0) 2.4 (0)

Mystery (135) 94.4 (8) 79.8 (6) 71.0 (4) 67.5 (5)

Total (1663) 92.3 (136) 88.1 (126) 85.4 (125) 84.5 (124)

Table 2. Single shot solving of ASP benchmarks.

Baseline 500 1000 1500

HanoiTower (20) 158.4 (2) 88.4 (0) 86.6 (0) 79.3 (0)

Labyrinth (20) 243.8 (3) 243.2 (2) 242.7 (2) 242.2 (2)

Nomistery (20) 583.2 (12) 526.8 (11) 559.8 (11) 566.2 (12)

Ricochet Robots (20) 463.0 (8) 443.3 (8) 360.7 (6) 356.5 (4)

Sokoban (20) 457.0 (9) 420.2 (8) 424.7 (8) 427.5 (8)

Visit-all (20) 558.3 (12) 536.2 (11) 522.3 (10) 553.5 (11)

Total (120) 410.6 (46) 376.3 (40) 366.1 (37) 370.9 (37)

timeouts, in parenthesis, for every configuration and domain. We can observe
that in general the learning configurations are faster than the baseline and in
some domains they solve more instances. The improvement is not huge, but
is persistent among the different settings. The only exception is the elevator
domain in PDDL, where the baseline is a bit faster than the other configurations.
We also analyzed the average number of conflicts per domain and configuration,
and the results follow the same trend as the solving times.

In the Multi shot solving experiment, the solver first looks for a plan of length
5. If the solver returns that there is no such plan, then it looks for a plan of length
10, and so on until it finds a plan. At each of these solver calls, we collect the best
learned nogoods. Then, before the next solver call, we add the generalization of
the best 500, 1000, or 1500 of them, depending on the configuration. In this case
we rely on Theorem 4 and use the same translated encoding for learning and
solving.

The results for PDDL and ASP are shown in Tables 3 and 4, respectively.
For PDDL the baseline and the different configurations perform similarly, and
we do not observe a clear trend. On the other hand, in the ASP benchmarks

On the Generalization of Learned Constraints 35

Table 3. Multi shot solving of PDDL benchmarks.

Baseline 500 1000 1500

Blocks (20) 2.1 (0) 2.0 (0) 2.2 (0) 2.3 (0)

Depots (18) 266.8 (5) 212.7 (3) 248.0 (4) 207.9 (3)

Driverlog (9) 106.7 (1) 122.0 (1) 105.3 (1) 125.7 (1)

Elevator (20) 280.4 (5) 275.5 (5) 249.1 (5) 257.7 (5)

Freecell (16) 900.0 (16) 900.0 (16) 900.0 (16) 900.0 (16)

Grid (2) 5.7 (0) 4.0 (0) 4.2 (0) 4.4 (0)

Gripper (17) 847.9 (16) 847.8 (16) 847.8 (16) 847.4 (16)

Logistics (20) 135.2 (3) 137.5 (3) 137.5 (3) 137.5 (3)

Mystery (14) 321.8 (5) 321.8 (5) 321.8 (5) 321.8 (5)

Total (136) 348.9 (51) 342.3 (49) 342.0 (50) 339.3 (49)

Table 4. Multi shot solving of ASP benchmarks.

Baseline 500 1000 1500

HanoiTower (20) 536.7 (9) 651.7 (14) 880.4 (19) 827.9 (18)

Labyrinth (20) 647.6 (14) 647.8 (14) 647.9 (14) 647.8 (14)

Nomistery (20) 427.2 (8) 494.1 (10) 566.7 (11) 586.1 (12)

Ricochet Robots (20) 527.3 (11) 521.9 (11) 529.4 (11) 534.5 (11)

Sokoban (20) 900.0 (20) 900.0 (20) 900.0 (20) 900.0 (20)

Visit-all (20) 678.5 (13) 900.0 (20) 900.0 (20) 900.0 (20)

Total (120) 619.5 (75) 685.9 (89) 737.4 (95) 732.7 (95)

the learning configurations perform worse than the baseline configuration. The
analysis of the average number of conflicts shows similar results.

We expected similar results on the single shot and the multi shot solving
experiments. However, this is not what we have observed. The learning configu-
rations perform better than the baseline in the former, but worse in the latter.
At the moment, we have found no clear explanation for these results, but we
hope to make some progress in this regard in the future.

7 Conclusion

Conflict-driven constraint learning (CDCL) is the key to the success of mod-
ern ASP solvers. So far, however, ASP solvers could not exploit the temporal
structure of dynamic problems. We addressed this by elaborating upon the gener-
alization of learned constraints in ASP solving for temporal domains. We started
with the definition of temporal logic programs and problems. For temporal pro-
grams that only refer to previous time steps within integrity constraints, we show
that a simple modification of the temporal program is enough to generalize all

36 J. Romero et al.

learned constraints to all time points. This is no real restriction because any
temporal program can be translated into this restricted format. Hence, once we
apply both translations, we have a representation whose nogoods can always be
generalized. Our experiments show mixed results. In some settings, the addition
of the learned constraints results in a consistent improvement of performance,
while in others the performance clearly deteriorates. We plan to continue this
experimental investigation in the future. Another avenue of future work is to
continue the approach sketched at the end of Sect. 4, and develop a dedicated
implementation within an ASP solver based in Theorem 3.

Acknowledgments. This work was supported by DFG grant SCHA 550/15.

References

1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium
logic: a survey. J. Appl. Non-Classical Logics 23(1–2), 2–24 (2013). https://doi.
org/10.1080/11663081.2013.798985

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) Proceedings of the Twenty-first International Joint Confer-
ence on Artificial Intelligence (IJCAI 2009), pp. 399–404. AAAI/MIT Press (2009)

3. Cabalar, P., Diéguez, M., Hahn, S., Schaub, T.: Automata for dynamic answer
set solving: preliminary report. In: Proceedings of the Fourteenth Workshop on
Answer Set Programming and Other Computing Paradigms (ASPOCP 2021)
(2021). http://ceur-ws.org/Vol-2970/aspocpinvited1.pdf

4. Comploi-Taupe, R., Weinzierl, A., Friedrich, G.: Conflict generalisation in asp:
learning correct and effective non-ground constraints. Theory Pract. Logic Pro-
gram. 20, 799–814 (2020). https://doi.org/10.1017/S1471068420000368

5. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Overcoming the grounding bot-
tleneck due to constraints in ASP solving: constraints become propagators. In:
Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence (IJCAI 2020), pp. 1688–1694. ijcai.org (2020)

6. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., Schaub, T.: plasp 3: towards
effective ASP planning. Theory Pract. Logic Program. 19(3), 477–504 (2018)

7. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

8. Fandinno, J., Laferriere, F., Romero, J., Schaub, T., Son, T.: Planning with incom-
plete information in quantified answer set programming. Theory Pract. Logic Pro-
gram. 21(5), 663–679 (2021). https://doi.org/10.1017/S1471068421000259

9. Gebser, M., Kaminski, R., Kaufmann, B., Lühne, P., Romero, J., Schaub, T.:
Answer set solving with generalized learned constraints. In: Carro, M., King, A.
(eds.) Technical Communications of the Thirty-Second International Conference
on Logic Programming (ICLP 2016). OpenAccess Series in Informatics (OASIcs),
vol. 52, pp. 9:1–9:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers, San Rafael (2012)

11. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: Veloso, M. (ed.) Proceedings of the Twentieth International Joint Con-
ference on Artificial Intelligence (IJCAI 2007), pp. 386–392. AAAI/MIT Press
(2007)

https://doi.org/10.1080/11663081.2013.798985
https://doi.org/10.1080/11663081.2013.798985
http://ceur-ws.org/Vol-2970/aspocpinvited1.pdf
https://doi.org/10.1017/S1471068420000368
https://doi.org/10.1017/S1471068421000259

On the Generalization of Learned Constraints 37

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference
and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press
(1988). https://doi.org/10.1201/b10397-6

13. Gelfond, M., Lifschitz, V.: Action languages. Electron. Transac. Artif. Intell. 3(6),
193–210 (1998). http://www.ep.liu.se/ej/etai/1998/007/

14. Lefèvre, C., Béatrix, C., Stéphan, I., Garcia, L.: ASPeRiX, a first-order forward
chaining approach for answer set computing. Theory Pract. Logic Program. 17(3),
266–310 (2017)

15. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: GASP: answer set programming
with lazy grounding. Fund. Inform. 96(3), 297–322 (2009)

16. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans
and algorithms for plan search. Artif. Intell. 170(12–13), 1031–1080 (2006)

17. Weinzierl, A., Taupe, R., Friedrich, G.: Advancing lazy-grounding ASP solving
techniques – restarts, phase saving, heuristics, and more. Theory Pract. Logic
Program. 20(5), 609–624 (2020). http://arxiv.org/abs/2008.03526

https://doi.org/10.1201/b10397-6
http://www.ep.liu.se/ej/etai/1998/007/
http://arxiv.org/abs/2008.03526

The Stream Reasoning System I-DLV-sr :
Enhancements and Applications in Smart

Cities

Francesco Calimeri1,2 , Elena Mastria1(B) , Simona Perri1 ,
and Jessica Zangari1

1 Department of Mathematics and Computer Science,
University of Calabria, Rende, Italy

{francesco.calimeri,elena.mastria,simona.perri,
jessica.zangari}@unical.it
2 DLVSystem Srl, Rende, Italy

calimeri@dlvsystem.com

Abstract. I-DLV-sr is a recently proposed logic-based system for rea-
soning over data streams, which relies on a framework enabling a tight,
fine-tuned interaction between Apache Flink and the ASP system I2-
DLV . Flink enables distributed stream processing, whereas I2-DLV acts
as full-fledged reasoner capable of transparently performing incremental
evaluations. In this paper, we present a new and optimized version of
I-DLV-sr that features an improved management of parallel computa-
tions and communications between Flink and I2-DLV , along with new
linguistic extensions aiming at allowing its effective application in smart
city scenarios.

Keywords: Stream reasoning · Stream processing · Knowledge
representation and reasoning · Answer set programming · Smart city ·
Applications

1 Introduction

A smart city [21,23] is a urban area in which data collected via modern digital
technologies are strategically exploited to implement an efficient management of
infrastructures, resources and services, with the aim of improving the life quality
of residents. First visions of smart cities were basically static and infrastructure-
centered (i,e., relying on installation and management of edge devices coupled
with analytics over such data), thus leaning towards single-purpose, vertical
solutions. Recently, more complex visions have been proposed based on rich

This work has been partially supported by the Italian MIUR Ministry and the
Presidency of the Council of Ministers under the project “Declarative Reason-
ing over Streams” under the “PRIN” 2017 call (CUP H24I17000080001, project
2017M9C25L_001) and under Italian Ministry of Economic Development (MISE)
under the PON project “MAP4ID - Multipurpose Analytics Platform 4 Industrial
Data”, N. F/190138/01-03/X44.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 38–53, 2022.
https://doi.org/10.1007/978-3-031-21541-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_3&domain=pdf
http://orcid.org/0000-0002-0866-0834
http://orcid.org/0000-0003-0681-776X
http://orcid.org/0000-0002-8036-5709
http://orcid.org/0000-0002-6418-7711
https://doi.org/10.1007/978-3-031-21541-4_3

The Stream Reasoning System I-DLV-sr 39

ensembles of physical, human and ICT infrastructures, and on a tight integration
of research and technological solutions from different areas [12,15]; across such
areas (e.g., Internet of Things, Social Computing, Artificial Intelligence, etc.), a
crucial role is played by Stream Reasoning.

Stream Reasoning (SR) [13] consists in the application of inference techniques
to highly dynamic and potentially heterogeneous data streams over typically
large background knowledge bases. Recently, different SR approaches have been
proposed such as those in the contexts of Complex Event Processing (CEP),
Semantic Web and Knowledge Representation and Reasoning (KRR) [2,22,26,
27]. Among declarative KRR paradigms, Answer Set Programming (ASP) [7,
20] is acknowledged as a particularly attractive basis for SR [13]. Indeed, some
important contributions towards ASP-based SR have been proposed, both for
the definition of expressive languages and for the implementation of efficient and
reliable systems [3,5,6,14,16,18,25,26,28].

In this respect, I-DLV-sr is a recently proposed ASP-based system for rea-
soning over data streams [10]; thanks to a proper integration with the well-
established stream processor Apache Flink [11] and the incremental ASP rea-
soner I2-DLV [24], the system is able to efficiently scale over real-world applica-
tion domains. It features an input language that inherits the highly declarative
nature and ease of use from ASP, while being also extendable with new con-
structs that are relevant for practical SR scenarios. Since its first prototypical
release, I-DLV-sr has been significantly improved. In particular, it has been
deeply revised with the aim of improving stability, scalability and performance;
furthermore, inspired by applications in the smart city domain, the supported
language has been further extended with new constructs, that ease the modeling
of reasoning tasks and enable new functionalities of practical relevance.

In this paper, we present the system, highlighting updates and novelties, and
illustrating applicability in smart city contexts, both from modeling capabilities
and performance perspectives. Moreover, we discuss performance improvements
with respect to the prototypical version.

2 The I-DLV-sr System

I-DLV-sr relies on the tight integration of two well-established solutions in the
fields of Stream Processing and ASP: a custom application leveraging on Apache
Flink, a stream processor for efficiently managing data streams, and I2-DLV , an
ASP grounder and a full-fledged deductive database system that enables incre-
mental evaluation via overgrounding [9,24]. The input language inherits the
declarative nature and ease of use of ASP; in particular, it consists in normal
(i.e., non-disjunctive) stratified ASP programs, enriched with a set of proper con-
structs for enabling reasoning over streams. More in detail, I-DLV-sr programs
feature, in the rule bodies, streaming literals over the operators: in, always,
count, at least, and at most ; recursion involving streaming literals is allowed. We
recall that, “standard” ASP literals are a special case of streaming literals. For
space reasons, we briefly summarize next the main features of I-DLV-sr , relying

40 F. Calimeri et al.

on an example to illustrate its knowledge representation capabilities. Detailed
descriptions of the full language and the incremental computational process are
reported in the work presenting I-DLV-sr [10]; for more details on overgrounding,
we refer the reader to the dedicated literature [9,24].

Example 1. [10] Suppose that we need to build an Intelligent Monitoring Sys-
tem (IMS) for a photo-voltaic system (PVS) to promptly detect malfunctions.
Without going into technical details, for the sake of simplicity, let us suppose
that the PVS is composed by a grid of interconnected panels via solar cables
and each panel is provided with a sensor that measures the amount of energy
produced and continuously sends data to the IMS. Each panel continuously pro-
duces energy to be transferred to a Central Energy Accumulator (CEA), directly
or via a path between neighbor panels across the grid. Let us assume that a time
point corresponds to a second. A panel is working if it is known to have produced
an amount of energy greater than a given threshold within the last 4 s, and, in
addition, if it is reachable by the CEA (i.e., there exists a path of working panels
linking it to the CEA). If some unreachable working panels have been detected
more than 2 times in the last 3 s, an alert must be raised for an identified mal-
function. Furthermore, the IMS must request a maintenance intervention if the
failure is continuously observed for 5 s. This scenario can be modeled via an
I-DLV-sr program Ppvs, as reported next.

r1 : workingPanel(P) :- energyThreshold(Et),
energyDelivered(P,W) at least 1 in [4 sec], W>=Et.

r2 : reachable(cea,P2) :- link(cea,P2), workingPanel(P2).
r3 : reachable(P1,P3) :- reachable(P1,P2), link(P2,P3),

workingPanel(P3).
r4 : unlinked :- workingPanel(P), not reachable(cea,P).
r5 : regularFunctioning :- unlinked at most 2 in [3 sec].
r6 : alert :- not regularFunctioning.
r7 : callMaintenance :- alert always in [5 sec].

The predicates link and energyThreshold represent the PVS configura-
tion and the threshold defining a working panel; these data do not change. The
predicate energyDelivered represents the amount of energy produced by each
panel; at each time point, the current values are sent to the IMS, thus producing
a stream. A panel is defined as working by rule r1 if it has transmitted an amount
of energy greater than the threshold at least once in the latest 4 s. r2 and r3
recursively define the set of reachable working panels starting from the CEA. r4
detects if there are unlinked working panels and r5 defines proper functioning
by checking that the atom unlinked appeared no more than two times in the
last 3 s. Eventually, r6 raises up an alert if there is not a regular functioning and
r7 asks to call the maintenance if an alert has been raised in all the latest 5 s. �

Hereafter, we provide the reader with a high-level description of the com-
putation workflow performed by I-DLV-sr when an input program P has to be
evaluated over a data stream Σ. The program P is properly split in subprograms
P1, . . . , Pn (i.e., set of rules) taking into account dependencies among predicates

The Stream Reasoning System I-DLV-sr 41

appearing in streaming literals; such dependencies also induce an evaluation
order among subprograms. To grasp the intuition behind predicate dependen-
cies, let us consider again the program Ppvs of Example 1. In this case, given that
rules are evaluated in a bottom-up way, three subprograms can be individuated:
{r1, r2, r3, r4}, {r5, r6}, {r7}. Intuitively, in order to fulfill the evaluation of r1
and thus determine the set of working panels (i.e., via the workingPanel pred-
icate), the streaming literal energyDelivered(P,W) at least 1 in [4 sec]
needs to be evaluated first. Moreover, r2, r3 and r4 are in cascade related to r1
because their bodies feature the workingPanel predicate. It turns out that rules
r1, r2, r3 and r4 require, either directly or indirectly, the evaluation of ener-
gyDelivered(P,W) at least 1 in [4 sec]. Similarly, rules r5 ad r6 depends
on unlinked at most 2 in [3 sec] and rule r7 depends on alert always in
[5 sec]; hence, the correct evaluation order is {r1, r2, r3, r4}, then {r5, r6} and
finally {r7}.

Once subprograms are individuated, they undergo through a rewriting pro-
cess. In particular, each Pi is rewritten by mapping each streaming literal to a
standard ASP literal, thus obtaining a “flattened” version P ′

i . At each time point,
each Pi ∈ P is evaluated according to the chosen evaluation order as described
next. By making use of properly customised Flink -based features, the set Li of
the streaming literals appearing in Pi is evaluated on the basis of both Σ and
the results of previous evaluations; this produces the set Ri consisting of ground
instances of the standard ASP literals of P ′

i that are related to streaming lit-
erals of Li via the aforementioned mapping. Then, the flattened version P ′

i is
incrementally evaluated by an instance of I2-DLV over the set Ri. Notably, in
case of recursion, a subprogram might be evaluated more times. Therefore, for
the given time point t, the output of I-DLV-sr consists of the composition of the
evaluation results of each subprogram Pi at t; continuous evaluations of P , time
point by time point, form the output stream.

3 Re-engineering the System and Improving Performance

In this section, we overview how the system has been re-engineered for optimizing
the computation; furthermore, we report about some experimental activities
aimed at assessing the impact of such changes on performance.

The overall computational process performed by I-DLV-sr to evaluate a given
input program over a data stream is designed in order to take advantage from
both Flink parallel and distributed nature and I2-DLV incremental evaluation.
According to the program splitting discussed in Sect. 2, I-DLV-sr identifies all
the activities to be done to properly perform the computation; then, it defines
multiple tasks to be executed in parallel, each one incorporating an ordered
sequence of activities. Moreover, also the execution of activities in each task is
possibly done in parallel via a number of threads. Note that, some activities (and
hence, the involved tasks) depend on the results from others, requiring related
threads to communicate and synchronize. Consequently, it turns out that a kind
of trade-off between the granularity of tasks and the dependencies among them

42 F. Calimeri et al.

must be found. Indeed, the smaller are the tasks in terms of number of activities,
the higher is their number and, consequently, the higher can be the overall
level of inter-dependency among tasks. Such dependency level directly influences
performance since the synchronization and communication among threads are
expensive. In the first I-DLV-sr version, much effort was spent on designing
strategies to define tasks at a finer granularity, in order to increase parallelism
as much as possible. For the herein described re-engineered version, instead, we
designed new strategies that induce tasks at a coarser granularity in some points,
in order to reduce synchronization and communication duties. One of the main
change in this respect regards the watermark management strategy, that is the
assignment of a timestamp to each event1.

Furthermore, the interplay between Flink and I2-DLV has been significantly
improved. In the first I-DLV-sr version, different threads interact with a unique
I2-DLV instance that represents a shared resource to be accessed in mutual
exclusion in order to preserve semantics. The new version of the system uses
instead a number of instances of I2-DLV that is greater or equal to the number
of subprograms individuated (see Sect. 2). In particular, each thread in charge of
executing the task relative to the evaluation of a subprogram has its own I2-DLV
instance. Incrementality is still preserved but fruited at subprogram level rather
than at program level. Indeed, every I2-DLV instance always considers the same
subprogram over different inputs. The goal is again to reduce the synchronization
duties among threads, as they can directly communicate with their own reasoner
instance without waiting for others to finish.

3.1 Performance Evaluation

In order to assess the effectiveness of the introduced enhancements, we compared
the previous version of I-DLV-sr with the new one over the Photo-voltaic Sys-
tem domain. The measures adopted are (i) total time, i.e., the total elapsed
time for each execution, excepting the time spent for the initial set up; (ii) the
processing-time latency (latency for short), i.e., the time interval between the
moment the input relative to a time point is received and the moment when the
system actually returns the corresponding output. For the sake of readability,
the first version of the system is referred to as I-DLV-sr-v1 , the second one as
I-DLV-sr-v2 . For this experimental evaluation, we propose the same settings
and analyses conducted for evaluating performance of I-DLV-sr-v1 in [10]. In
particular, the encoding showed in Example 1 has been evaluated over problem
instances composed by grids of increasing size ranging from 20× 20 panels with
11, 970 links up to 30× 30 panels with 60, 682 links. For each problem instance,
the corresponding input data stream contains data for 60 time points. All exper-
iments have been performed on a NUMA machine equipped with two 2.8 GHz
AMD Opteron 6320 CPUs, with 16 cores and 128 GB of RAM.

1 https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/event-
time/generating_watermarks.

https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/event-time/generating_watermarks
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/event-time/generating_watermarks

The Stream Reasoning System I-DLV-sr 43

Fig. 1. Top and center plots: results of I-DLV-sr-v1 and I-DLV-sr-v2 , resp. Bottom
plots: latency (left) and total time (right) for I-DLV-sr-v1 and I-DLV-sr-v2 , resp.

Results are reported in Fig. 1: the top plots ((1.a) and (1.b)) report latency
and total time for I-DLV-sr-v1 , while the center plots ((2.a) and (2.b)) report
the same measures for I-DLV-sr-v2 . Each of these four plots reports results over
different fixed periods among consecutive incoming requests; the period ranges
from 0.1 s to 1 s. Each line represents a problem instance, while a marker on a
line corresponds to the average of the results of three executions for the given
fixed period. The plots show that I-DLV-sr-v2 clearly outperforms I-DLV-sr-
v1 ; it enjoys a significant reduction of both latency (up to more than 300%)
and total time (up to 80%). The bottom plots in Fig. 1 ((3.a) and (3.b)) show
latency and total time of both versions when on the x-axis, instance size
increases and the period is fixed to 0.1s; here, it is evident that I-DLV-sr-v2
scales much better than I-DLV-sr-v1 thus confirming the positive impact of
re-engineering and introduced enhancements.

44 F. Calimeri et al.

4 New Language Features

We illustrate next how the language of I-DLV-sr has been extended with respect
to the previous version [10]. In particular, inspired by applications in smart city
contexts, new constructs for easing the modeling of SR tasks and enabling new
functionalities of practical relevance have been introduced.

The @now Construct. In an I-DLV-sr program, usually the user is not required
to explicitly handle time (points); everything is transparently handled so that,
at each time point t, each atom that is either inferred or part of the input
stream is automatically associated with t. However, some applications require
the capability of explicitly reasoning over time and time points. To this aim, we
introduced the @now construct, which consists of a special term that, at each
time point t, is automatically assigned with the value of t. For instance, one
could write the following rule:
grantPermission(X) :- allowed(X), validityInterval(X,T1,T2),

T1 <= @now, @now <= T2.

Note that, the term @now can be either (1) numeric, i.e., an integer num-
ber representing t in seconds, minutes or hours or (2) textual, i.e., a string in
the datetime format: yyyy-MM-ddTHH:mm:ss.SSS , where milliseconds (.SSS)
can be omitted if time points are expressed in larger time units. By default,
@now is in seconds, but the format can be set via the option: --now-format
= <sec|min|hrs|datetime>.

Trigger Rules. As Sect. 2 pointed out, for a given program P and an input
stream Σ, at each time point t, I-DLV-sr evaluates all the rules in P w.r.t. Σ.
This produces the output stream consisting of all the inferences obtained from
P w.r.t. Σ for each t. However, in certain scenarios, some rule has to be taken
into account only with a given time frequency, rather than at each time point; to
express this we endowed I-DLV-sr with a new form of rule, called trigger rule.
A trigger rule is of the form:

#trigger_frequency(f) a: - l1, . . . , lb.
where f indicates the frequency according to which the rule has to be evaluated.
The trigger frequency can be expressed in terms of milliseconds, seconds, minutes
or hours, by simply indicating msec, sec, min and hrs respectively. For instance,
the rule r1 in the program below is a legitimate rule.

r1 : #trigger_frequency(2 min)
ok : - a(X), b(X) at least 2 in [1 min].

Let us assume that time points are expressed in minutes, and that the input
stream is always featuring the atoms b(1) and a(1) at each time point. r1
is a trigger rule, that will be processed only every 2 min and ignored in all
other time points; hence, the trigger frequency impacts on both evaluation and
performance, as it allows to explicitly avoid the evaluation in not involved time
points. According to the presence of atoms matching with a(X) and b(X) in the

The Stream Reasoning System I-DLV-sr 45

input stream, r1 allows to infer ok. Indeed, focusing on the first five time points
for simplicity, the output stream will contain: {0 : {}, 1 : {}, 2 : {ok}, 3 : {},
4 : {ok}}. If instead, #trigger_frequency(2min) is omitted in r1, then the
output stream would be: {0 : {}, 1 : {ok}, 2 : {ok}, 3 : {ok}, 4 : {ok}}.

Variable Counting Terms. In the new version of I-DLV-sr herein discussed, some
streaming literals have been further generalized. In particular, the counting term
of the two operators at least and at most can now be either a constant or a
variable; in the latter case, the variable must be safe. Note that, given a rule r, a
variable is safe in r if it appears at least once in the positive body of r excluding
the counting terms of other at least and at most operators. Recursion through
predicates appearing in streaming literals with a variable as counting term is
currently not allowed.

For instance, it is possible to write rules like the following one.

a(X) :- currentThreshold(X,Y), b(X) at most Y in [10 sec].

Here, Y is safe, as it appears in the positive body literal currentThresh-
old(X,Y).

External Sources of Computation. I-DLV-sr now supports external literals [8] in
rule bodies, that can be used to call external sources of computation via Python3.
We recall that a external atom e is of the form &p(i0, . . . , in; o0, . . . , om) where
n,m ≥ 0, &p is a predicate name, i0, . . . , in are input terms and o0, . . . , om are
output terms; input and output terms can be both constants or variables. An
external literal is either e or not e . The semantics is externally defined via
Python and output terms are computed based on input ones by applying such
user-defined semantics. This construct is useful in scenarios where the reasoning
tasks should also consider the results of domain-specific algorithms. Furthermore,
it is worth noting that they allow to use all the Python features, thus paving the
way to a number of interesting possibilities, such as the integration of Machine
Learning solutions within deductive SR applications.

5 Stream Reasoning via I-DLV-sr in Smart City
Scenarios

CityBench [1] is a benchmark designed to evaluate the usability of SR systems
in real-world smart city scenarios. It has been conceived for RDF-based stream
processors but brings a number of requirements and challenges that fit also
to other kind of SR systems, such as the ASP-based ones. CityBench collects
real-time data streams2 coming from sensors spread along the city of Aarhus in
Denmark. Furthermore, it features 13 continuous queries that require to reason
on large background knowledge and dynamic data streams. More in details, the
queries are envisioned in the context of the smart city applications described
below.
2 http://iot.ee.surrey.ac.uk:8080/datasets.html.

http://iot.ee.surrey.ac.uk:8080/datasets.html

46 F. Calimeri et al.

Multi-modal Context-aware Travel Planner : this application aims to find a set
of alternative suitable paths based on user’s preferences, travel cost and other
factors, along with continuously monitored events that change over time (e.g.,
traffic, weather, etc.), so to provide the best up-to-date option in real time. Five
queries are the part of this application and regard the traffic congestion level,
the weather conditions, the travel time and the proximity of social events to the
users, as they travel along the planned paths.

Parking Space Finder Application: this application aims to help the user finding
a parking spot based on parking data streams and availability estimations. Four
are the queries proposed in this application to identify what are the current
parking conditions on places that are close to the user, its destination or some
social event of interest.

Smart City Administration Console: this application aims to ease the identifi-
cation of both anomalies and trends by the city administrators. Four are the
queries proposed in this application to notify to the administrators on critical
events related to pollution, weather and traffic congestion level, so that imme-
diate actions can be applied in case of need.

Besides CityBench, another work based on the same Aarhus data streams
has been recently proposed [17]: an approach based on Deep Neural Networks
allows to perform high-speed query answering at the price of approximating
results. It includes 5 queries in smart city scenarios, each focused on identifying
the occurrence of special events in temporal windows by analyzing weather,
parking, traffic and pollution data streams. As an example, one of the proposed
query is: “In the last four timestamps, in which sectors an anomaly has been
detected?”, where an anomaly occurs in a sector in a given time window, if such
sector is a city and it is classified as an industrial sector, together with two of
its suburbs.

5.1 Modeling Smart City Applications with I-DLV-sr

In the following, we illustrate how some CityBench queries can be expressed via
the I-DLV-sr language.

Query 5. Let us consider the query: “What is traffic congestion level on the road
where a given cultural event X is happening? Notification for congestion level
should be generated every minute starting from 10min before the event X is
planned to end, till 10min after”. We can model this query as follows.
r1 : eventsToConsider(E):- eventOfInterest(E),

eventDuration(E,StartTime,EndTime), CurrentTime=@now,
CurrentTime>=EndTime-10, CurrentTime<=EndTime+10.

r2 : closeRoads(RoadID) :- eventsToConsider(E),
eventLocation(E,X2,Y2), roadLocation(RoadID,X1,Y1),
&areClose(X1,Y1,X2,Y2;).

r3 : congestionLevel(RoadID, CL):- closeRoads(RoadID),
vehicleCount(RoadID,VC), distanceInMeters(RoadID,DM),
&floatDivision(VC,DM;CL).

The Stream Reasoning System I-DLV-sr 47

where eventDuration, eventLocation, roadLocation, distanceInMeters
represent the background knowledge about cultural events and roads, i.e., the
location of an event, the end time of an event, the start location of a road and the
length of a road, respectively; vehicleCount represents the streaming informa-
tion on the traffic state of the city roads; &areClose is an external atom holding
if two positions are considered to be close to each other; and, &floatDivision
is another external atom that performs the division between two integer num-
bers preserving the decimal part of the result3. In this program, r1 filters the
events that must be considered according to the query condition: it uses @now
to identify the current time and determine if an event ended at most 10min
ago from now, or if it will end in 10min from now. r2 selects the roads close to
the filtered social events. r3 computes the congestion level on the selected roads
based on the traffic information. Note that this encoding assumes times (i.e.,
those referred to as StartTime and EndTime) to be expressed in minutes, hence
the --now-format=min command-line option is needed. Furthermore, since all
the information required to determine if a location is exactly on a road is not
available in the provided data set, we suppose an event being on a road if they are
close. The semantics of the streaming external atoms used above, i.e., &areClose
and &floatDivision, are defined via two Python functions, as reported below.

import haversine as hs
def areClose(Lat1, Lon1, Lat2, Lon2):

loc1=(Lat1,Lon1)
loc2=(Lat2,Lon2)
return hs.haversine(loc1,loc2) <= 1

def floatDivision(VC,DM):
CL=VC/DM
return ":.3f".format(CL)

The areClose function makes use of the haversine Python package to
determine the geographic distance between two locations, and considers them
close if their distance is at most 1 km. The floatDivision function computes
the division between two integers and returns a string containing the result with
a three-digit precision. Notably, returning a string permits to keep the precision
while still handling the division result in I2-DLV .

Query 10. Let us now consider the query “Notify me every 10min, about the
most polluted area in the city”. We can model this problem according to the
European Air Quality Index (EAQI). As reported in Table 1, the EAQI is based
on concentration values of five pollutants; each of which has six classification
levels ranging form Good to Extremely Poor.

To determine the EAQI level of each pollutant measured in every road, we
define a set of rules that straightforwardly encode Table 1, representing as inte-
gers the classification levels, from 0 (meaning Good) up to 5 (meaning Extremely

3 The use of the external atom to compute the division is needed as floating points
numbers are not supported yet, and native division among integers would only pro-
duce truncated integer results.

48 F. Calimeri et al.

Table 1. European Air Quality Index levels as defined by the European Environment
Agency: https://www.eea.europa.eu/themes/air/air-quality-index/index – Classifica-
tion levels are based on pollutant concentrations in µg/m3

Pollutant Good Fair Moderate Poor Very poor Extremely poor

Particles ≤ 2.5 µm (PM2.5) 0–10 10–20 20–25 25–50 50–75 75–800

Particles ≤ 10 µm (PM10) 0–20 20–40 40–50 50–100 100–150 150–1200

Nitrogen dioxide (NO2) 0–40 40–90 90–120 120–230 230–340 340–1000

Ozone (O3) 0–50 50–100 100–130 130–240 240–380 380–800

Sulphur dioxide (SO2) 0–100 100–200 200–350 350–500 500–750 750–1250

Poor). For instance, we encode the Good classification of the ozone ("O3") (row
4, column 1) with the rule:

roadPollutantLevel(RoadID, "O3", 0):-
pollutionMeasurement(RoadID,O3,PM10,SO2,NO2), O3<50.

where pollutionMeasurement represents the streaming information about the
air quality indexes of the pollutants measured in each road of the city.

Since pollution level of a road is given by the worst EAQI level measured in
that road, r1 determines the highest pollutant level for each road and r2 finds
the city areas whose pollution level is the maximum.

r1 : #trigger_frequency(10 min) worstAirQualityLevel(Level):-
#max{L: roadPollutantLevel(RoadID,P,L)}=Level.

r2 : #trigger_frequency(10 min) mostPollutedArea(RID,P,L):-
roadPollutantLevel(RID,P,L), worstAirQualityLevel(L).

Query 12. Let us consider the query: “Notify me whenever the congestion level
on a given road goes beyond a predefined threshold more than 3 times within
the last 20min”. We can model this query as follows.

r1 : congestionLevel(RoadID, CL) :- roadOfInterest(RoadID),
vehicleCount(RoadID,VC), distanceInMeters(RoadID,DM),
&floatDivision(VC,DM;CL).

r2 : beyondThreshold :- congestionLevel(_, CL), threshold(T),
CL>T.

r3 : warningBeyondThreshold :- minTimesTrigger(X),
beyondThreshold at least X in [20 min].

where roadOfInterest specifies the identifier of the road for which notifi-
cations on congestion level must be produced; vehicleCount represents the
streaming information about the number of vehicles currently passing on a road;
distanceInMeters represents the length of a road; &floatDivision is the
external atom introduced in Query 5 above; threshold contains the threshold
that causes a notification to be produced, if the number of times specified via
minTimesTrigger is exceeded.

https://www.eea.europa.eu/themes/air/air-quality-index/index

The Stream Reasoning System I-DLV-sr 49

In this program, r1 computes the traffic congestion level on the road of inter-
est; r2 derives the event beyondThreshold if it goes beyond the specified thresh-
old; r3 arises a warning if the event beyondThreshold has been derived at least
X times within the last time window of 20 min. Notice that the threshold and
minTimesTrigger predicates are used to keep the encoding more generic. For
instance, supposing that the threshold is 1, and that it must not be exceeded
more than 3 times, the following facts can be used to model such information
without any need for updates in the rules: threshold(1) and minTimesTrig-
ger(4).

5.2 Performance Evaluation

We discuss below the result of I-DLV-sr-v2 when tested over the two benchmarks
introduced above [1,17], in the following referred to as SmartCityDomain1 and
SmartCityDomain2 , respectively. All the proposed queries have been properly
modeled using the I-DLV-sr input language; the encodings, along with the used
input streams, are available at: https://demacs-unical.github.io/I-DLV-sr/. The
experiments have been performed on a NUMA machine equipped with two 2.8 GHz
AMD Opteron 6320 CPUs, with 16 cores and 128 GB of RAM.

Results are reported in Fig. 2. We tested I-DLV-sr-v2 when receiving input
events at each minute; hence, the red line indicates the time limit within which
the system has to evaluate one time point before the next one arrives.

In detail, Fig. 2a depicts the results on the 13 queries of CityBench (SmartC-
ityDomain1) reporting the average latency computed over all time points. The
nature and the number of input events at each time point depend on the infor-
mation related to the query. As an example, for queries Q1, Q2, Q3, Q5, Q12,
and Q13, which concern traffic, information on about 100 roads is received: per
each road, number of vehicles, average speed, average travel time and median
travel time are given; additionally, for Q2, also information on weather condi-
tions is received. As we can see, I-DLV-sr-v2 is able to answer in less than 0.8
second in general, much before than events for the next time point arrive (i.e., 1
min)4. We also note that Q11 and Q12 represent the most complex queries as,
differently from the others, they require to reason over wide windows of 10 and
20 min, respectively.

Figure 2b reports result on the 5 queries of SmartCityDomain2 . The plot
depicts how the latency (y-axis) varies over the time points (x-axis) per each
query. The queries in this domain significantly differ from the ones in SmartC-
ityDomain1 as all of them make use of several windows, and these are often
joined or temporally dependent. This requires, in general, a more complex rea-
soning effort. The input stream features about 2, 680 events per time point. We
observe that I-DLV-sr-v2 maintains the latency far below the red line for all
the queries. For Q2 and Q5, that make use of less and smaller windows w.r.t.

4 In the original papers [1,17] the minimum arriving frequency of input events for both
benchmarks was set to 5 min; we purposely experimented with a higher frequency
to test the system in more challenging conditions.

https://demacs-unical.github.io/I-DLV-sr/

50 F. Calimeri et al.

Fig. 2. Results on SmartCityDomain1 [1] (top) and on SmartCityDomain2 [17] (bot-
tom).

the others (i.e., 3 and 4 min, respectively), latency is always less than 1 s for
Q2 and 2 s for Q5. Higher latency times are registered for Q1, Q3 and Q4, with
performance on Q1 and Q3 basically overlapping: these three queries make use
of wider time windows (9 min), thus causing the system to reason on a consider-
ably large amount of events at each time point. For Q1 and Q3, latency ranges
from 5.7 to 12.1 s, whereas for Q4 from 3.8 to 8.9 s.

6 Related Work

In the latest years, SR gained more and more attention thanks also to real-world
application scenarios such as smart city. Diverse proposals have been arising;
however, the lack of standards makes the comparison among approaches rely-
ing on different formalisms and technologies rather difficult. Even considering
proposals more related to I-DLV-sr , thus focusing on ASP-based SR solutions,
the semantics differ and in turn, the final outcome may not coincide. Indeed,
also competitions are still more geared towards “model and solve” rather than
performance comparisons [29].

The main well-established ASP-based proposal is LARS (Logic for Analytic
Reasoning over Streams [5]), a formal framework enriching ASP with tempo-
ral modalities and window operators. LARS implementations include Laser [3],
Ticker [6], Distributed-SR [16] and BigSR [28]. All of them support practically

The Stream Reasoning System I-DLV-sr 51

relevant LARS fragments. Laser requires programs to be negation-stratified and
stream-stratified, i.e., recursion is not supported if it involves either negation or
temporal windows [4]. Ticker features two evaluation modes: one is intended
for stratified programs admitting a single model and makes use of clingo [19] as
back-end; the other uses incremental truth maintenance techniques under ASP
semantics and, in case of multiple solutions, chooses to maintain just a model.
Distributed-SR relies on Ticker and implements an interval-based semantics of
LARS to support distributed computation, at the price of disabling the support
for recursion through window operators. BigSR [28] is a distributed stream rea-
soner released in two implementations built on top of Spark Streaming and Flink,
respectively. The input language features a limited set of window operators and
does not include negation. In addition, depending on the stream processor, some
limitations are posed. The version relying on Spark Streaming accepts stratified
programs that can be recursive but have only global windows. The version built
on top of Flink , instead, accepts non-recursive stratified programs, but with
global windows at rule scope.

I-DLV-sr supports the ASP fragment stratified w.r.t. negation, which is
extended with streaming literals over temporal intervals; recursion involving
streaming literals is also allowed. Semantics of the supported language, reflected
in the computational process, has been conceived to guarantee sound and com-
plete models. The implementation takes advantage of incremental evaluations,
thanks to I2-DLV , and parallel/distributed computations, thanks to Flink .

7 Conclusions

In this work, we described how the I-DLV-sr system has been improved both
in performance and linguistic features. First, we described how the implemen-
tation has been re-engineered by limiting synchronization to improve benefits
stemming from parallel computations. Experiments confirmed that a better scal-
ability has been achieved w.r.t. the first prototypical version released. Second,
we presented new constructs, inspired by smart city contexts, that extend the
modeling capabilities of I-DLV-sr . Eventually, we conducted an experimental
analysis on challenging and publicly available benchmarks from the smart city
domain, in order to asses I-DLV-sr applicability and performance. In the future,
we plan to study means to extend the language to deal with disjunction to some
extent, and further move towards a more expressive SR reasoner [13].

References

1. Ali, M.I., Gao, F., Mileo, A.: CityBench: a configurable benchmark to evaluate
RSP engines using smart city datasets. In: Arenas, M., et al. (eds.) ISWC 2015.
LNCS, vol. 9367, pp. 374–389. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25010-6_25

2. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a
continuous query language for RDF data streams. Int. J. Semantic Comput. 4(1),
3–25 (2010)

https://doi.org/10.1007/978-3-319-25010-6_25
https://doi.org/10.1007/978-3-319-25010-6_25

52 F. Calimeri et al.

3. Bazoobandi, H.R., Beck, H., Urbani, J.: Expressive stream reasoning with laser.
In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 87–103. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_6

4. Beck, H., Dao-Tran, M., Eiter, T.: Answer update for rule-based stream reasoning.
In: IJCAI, pp. 2741–2747. AAAI Press (2015)

5. Beck, H., Dao-Tran, M., Eiter, T.: LARS: a logic-based framework for analytic
reasoning over streams. Artif. Intell. 261, 16–70 (2018)

6. Beck, H., Dao-Tran, M., Eiter, T., Folie, C.: Stream reasoning with LARS. Kün-
stliche Intell. 32(2–3), 193–195 (2018)

7. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

8. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: External computations and interop-
erability in the new DLV grounder. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F.
(eds.) AI*IA 2017, vol. 10640, pp. 172–185. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70169-1_13

9. Calimeri, F., Ianni, G., Pacenza, F., Perri, S., Zangari, J.: Incremental answer set
programming with overgrounding. TPLP 19(5–6), 957–973 (2019)

10. Calimeri, F., Manna, M., Mastria, E., Morelli, M.C., Perri, S., Zangari, J.: I-DLV-
sr: a stream reasoning system based on I-DLV. TPLP 21(5), 610–628 (2021)

11. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flinkTM: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015)

12. D’Aniello, G., Gaeta, M., Orciuoli, F.: An approach based on semantic stream
reasoning to support decision processes in smart cities. Telemat. Inform. 35(1),
68–81 (2018)

13. Dell’Aglio, D., Valle, E.D., van Harmelen, F., Bernstein, A.: Stream reasoning: a
survey and outlook. Data Sci. 1(1–2), 59–83 (2017)

14. Do, T.M., Loke, S.W., Liu, F.: Answer set programming for stream reasoning.
In: Butz, C., Lingras, P. (eds.) AI 2011. LNCS (LNAI), vol. 6657, pp. 104–109.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21043-3_13

15. Dustdar, S., Nastic, S., Scekic, O.: Smart Cities - The Internet of Things, People
and Systems. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60030-7

16. Eiter, T., Ogris, P., Schekotihin, K.: A distributed approach to LARS stream rea-
soning (system paper). TPLP 19(5–6), 974–989 (2019)

17. Ferreira, J., Lavado, D., Gonçalves, R., Knorr, M., Krippahl, L., Leite, J.: Faster
than LASER - towards stream reasoning with deep neural networks. In: Marreiros,
G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds.) EPIA 2021. LNCS
(LNAI), vol. 12981, pp. 363–375. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86230-5_29

18. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set program-
ming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol.
6645, pp. 54–66. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
20895-9_7

19. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. TPLP 19(1), 27–82 (2019)

20. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation
techniques and systems for answer set programming: a survey. In: IJCAI, pp. 5450–
5456. ijcai.org (2018)

21. Hall, R.E., Bowerman, B., Braverman, J., Taylor, J., Todosow, H., Von Wim-
mersperg, U.: The vision of a smart city. Technical report, Brookhaven National
Laboratory (BNL), Upton, NY (United States) (2000)

https://doi.org/10.1007/978-3-319-68288-4_6
https://doi.org/10.1007/978-3-319-70169-1_13
https://doi.org/10.1007/978-3-319-70169-1_13
https://doi.org/10.1007/978-3-642-21043-3_13
https://doi.org/10.1007/978-3-319-60030-7
https://doi.org/10.1007/978-3-030-86230-5_29
https://doi.org/10.1007/978-3-030-86230-5_29
https://doi.org/10.1007/978-3-642-20895-9_7
https://doi.org/10.1007/978-3-642-20895-9_7

The Stream Reasoning System I-DLV-sr 53

22. Hoeksema, J., Kotoulas, S.: High-performance distributed stream reasoning using
S4. In: Ordring Workshop at ISWC (2011)

23. Hollands, R.G.: Will the real smart city please stand up? City 12(3), 303–320
(2008)

24. Ianni, G., Pacenza, F., Zangari, J.: Incremental maintenance of overgrounded logic
programs with tailored simplifications. TPLP 20(5), 719–734 (2020)

25. Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: a non-
monotonic stream reasoning system for the semantic web. In: Faber, W., Lembo,
D. (eds.) RR 2013. LNCS, vol. 7994, pp. 247–252. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39666-3_23

26. Pham, T., Ali, M.I., Mileo, A.: C-ASP: continuous asp-based reasoning over RDF
streams. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) LPNMR 2019. LNCS,
vol. 11481, pp. 45–50. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
20528-7_4

27. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25073-6_24

28. Ren, X., Curé, O., Naacke, H., Xiao, G.: BigSR: real-time expressive RDF stream
reasoning on modern big data platforms. In: IEEE BigData, pp. 811–820. IEEE
(2018)

29. Schneider, P., Alvarez-Coello, D., Le-Tuan, A., Duc, M.N., Phuoc, D.L.: Stream
reasoning playground. In: Groth, P., et al. (eds.) ESWC 2022. LNCS, vol. 13261, pp.
406–424. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06981-9_24

https://doi.org/10.1007/978-3-642-39666-3_23
https://doi.org/10.1007/978-3-030-20528-7_4
https://doi.org/10.1007/978-3-030-20528-7_4
https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1007/978-3-031-06981-9_24

Plingo: A System for Probabilistic
Reasoning in Clingo Based on LPMLN

Susana Hahn1 , Tomi Janhunen2 , Roland Kaminski1 , Javier Romero1 ,
Nicolas Rühling1 , and Torsten Schaub1(B)

1 University of Potsdam, Potsdam, Germany
torsten@cs.uni-potsdam.de

2 University of Tampere, Tampere, Finland

Abstract. We present plingo, an extension of the ASP system clingo
with various probabilistic reasoning modes. Plingo is centered upon
LPMLN , a probabilistic extension of ASP based on a weight scheme from
Markov Logic. This choice is motivated by the fact that the core prob-
abilistic reasoning modes can be mapped onto optimization problems
and that LPMLN may serve as a middle-ground formalism connecting to
other probabilistic approaches. As a result, plingo offers three alterna-
tive frontends, for LPMLN , P-log, and ProbLog. The corresponding input
languages and reasoning modes are implemented by means of clingo’s
multi-shot and theory solving capabilities. The core of plingo amounts
to a re-implementation of LPMLN in terms of modern ASP technology,
extended by an approximation technique based on a new method for
answer set enumeration in the order of optimality. We evaluate plingo’s
performance empirically by comparing it to other probabilistic systems.

Keywords: Answer set programming · Probabilistic reasoning

1 Introduction

Answer Set Programming (ASP; [13]) offers a rich knowledge representation
language along with powerful solving technology. In the last years, several prob-
abilisitic extensions of ASP have been proposed, among them LPMLN [10],
ProbLog [15], and P-log [3].

In this work, we present an extension of the ASP system clingo, called
plingo, that features various probabilistic reasoning modes. Plingo is centered
on LPMLN , a probabilistic extension of ASP based upon a weight scheme from
Markov Logic [16]. LPMLN has already proven to be useful in several set-
tings [1,11] and it serves us also as a middle-ground formalism connecting to
other probabilistic approaches. We rely on translations from ProbLog and P-log
to LPMLN [10,12], respectively, to capture these approaches as well. In fact,
LPMLN has already been implemented in the system lpmln2asp [9] by map-
ping LPMLN -based reasoning into reasoning modes in clingo (viz. optimiza-

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 54–62, 2022.
https://doi.org/10.1007/978-3-031-21541-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_4&domain=pdf
http://orcid.org/0000-0003-2622-2632
http://orcid.org/0000-0002-2029-7708
http://orcid.org/0000-0002-1361-6045
http://orcid.org/0000-0001-5546-9939
http://orcid.org/0000-0001-5157-6788
http://orcid.org/0000-0002-7456-041X
https://doi.org/10.1007/978-3-031-21541-4_4

plingo: A System for Probabilistic Reasoning 55

tion and enumeration of stable models). As such, plingo can be seen as a re-
implementation of lpmln2asp that is well integrated with clingo by using its
multi-shot and theory reasoning functionalities.

In more detail, the language of plingo constitutes a subset of LPMLN restrict-
ing the form of weight rules while being extended with ASP’s regular weak
constraints. This restriction allows us to partition logic programs into two inde-
pendent parts: A hard part generating optimal stable models and a soft part
determining the probabilities of these optimal stable models. Arguably, this sep-
aration yields a simpler semantics that leads in turn to an easier way of modeling
probabilistic logic programs. Nonetheless, it turns out that this variant is still
general enough to capture full LPMLN . Moreover, plingo allows us to capture
such probabilistic programs within the input language of clingo. The idea is to
describe the hard part in terms of normal rules and weak constraints at priority
levels different from 0, and the soft part via weak constraints at priority level
0.1 On top of this, plingo offers three alternative frontends, for LPMLN , P-log,
and ProbLog, featuring dedicated language constructs that are in turn translated
into the format described above. As regards solving, plingo follows the approach
of lpmln2asp of reducing probabilistic reasoning to clingo’s regular optimization
and enumeration modes. In addition, plingo features an approximation method
that calculates probabilities using only the most probable k stable models for
an input parameter k. This is accomplished by an improved implementation
of answer set enumeration in the order of optimality [14]. We have empirically
evaluated plingo’s performance by contrasting it to original implementations of
LPMLN , ProbLog and P-log. For reasons of space, we have left the description
of the frontends and part of the discussion of the experiments to an extended
version of this paper, available at https://arxiv.org/abs/2206.11515.

2 Background

In our setting, a logic program is a set of propositional formulas. A logic program
with weak constraints is a set Π1 ∪ Π2 where Π1 is a logic program and Π2 is a
set of weak constraints of the form :∼ F [w , l] where F is a formula, w is a real
number, and l is a nonnegative integer. For the definition of the stable models
of a logic program, possibly with weak constraints, we refer the reader to [4,6].
We denote by SM (Π) the set of stable models of a logic program Π.

We next review the definition of LPMLN from [10], focusing on the alternative
semantics presented there. An LPMLN program Π is a finite set of weighted
formulas w : F where F is a propositional formula and w is either a real number
(in which case, the weighted formula is called soft) or α for denoting the infinite
weight (in which case, the weighted formula is called hard). If Π is an LPMLN

program, by Πsoft and Πhard we denote the set of soft and hard formulas of Π,
respectively. For any LPMLN program Π and any set X of atoms, Π denotes
the set of (unweighted) formulas obtained from Π by dropping the weights, and
1 This fits well with the semantics of clingo, where higher priority levels are more

important.

https://arxiv.org/abs/2206.11515

56 S. Hahn et al.

ΠX denotes the set of weighted formulas w : F in Π such that X |= F . Given
an LPMLN program Π, SSM (Π) denotes the set of soft stable models {X |
X is a (standard) stable model of ΠX that satisfies Πhard}, The total weight of
Π, written TW (Π), is defined as exp(

∑
w:F∈Π w). The weight WΠ(X) of an

interpretation and its probability PΠ(X) are defined, respectively, as

WΠ(X) =

{
TW (Πsoft

X) if X ∈ SSM (Π)
0 otherwise

and PΠ(X) =
WΠ(X)

∑

Y ∈SSM (Π)

WΠ(Y)
.

An interpretation X is called a probabilistic stable model of Π if PΠ(X) �= 0. Note
that the set SSM (Π) may be empty if there is no soft stable model that satisfies
all hard formulas of Π, in which case PΠ(X) is not defined. On the other hand,
if SSM (Π) is not empty, then the probabilities assigned to each interpretation
by this alternative semantics and the standard semantics from [10] coincide (cf.
Proposition 2 of that paper).

3 LPMLN± and the Language of Plingo

LPMLN± programs are based on LPMLN programs under the alternative seman-
tics. On the one hand, they are a subset of LPMLN programs where the soft
formulas are so-called soft integrity constraints of the form w : ¬F , for some
propositional formula F . This restriction is attractive because it allows us to
provide a definition of the semantics that is arguably very simple and intuitive.
Interestingly, the translations from ProbLog and P-log [10,12] fall into this frag-
ment of LPMLN . Recall that in ASP, integrity constraints of the form ¬F do not
affect the generation of stable models, but they can only eliminate some of the
stable models generated by the rest of the program. In LPMLN , soft integrity
constraints parallel that role, since they do not affect the generation of soft sta-
ble models, but they can only affect the probabilistic weights of the soft stable
models generated by the rest of the program. More precisely, it holds that the
soft models of an LPMLN program Π remain the same if we delete from Π all its
soft integrity constraints. This observation leads us to the following proposition.

Proposition 1. If Π is an LPMLN program such that Πsoft contains only soft
integrity constraints, then SSM (Π) = SM (Πhard).

This allows us to leave aside the notion of soft stable models and simply replace
in WΠ(X) and PΠ(X) the set SSM (Π) by SM (Πhard). From this perspective,
an LPMLNprogram of this restricted form has two separated parts: Πhard , that
generates stable models; and Πsoft , that determines the weights of the stable
models, from which their probabilities can be calculated.

On the other hand, LPMLN± extends LPMLN with regular ASP’s weak con-
straints. This is a natural extension that moreover allows us to capture the whole

plingo: A System for Probabilistic Reasoning 57

LPMLN language under both the alternative and the standard semantics (see
footnote 2).

With this, we can define the syntax and semantics of LPMLN± programs.
Formally, an LPMLN± program Π is a set of hard rules, soft integrity con-
straints, and weak constraints, denoted respectively by Πhard , Πsoft and Πweak .
By OSM±(Π) we denote the optimal stable models of Πhard ∪Πweak . Then, the
weight and the probability of an interpretation X, written W±

Π (X) and P±
Π (X),

respectively, are the same as WΠ(X) and PΠ(X), but replacing the set SSM (Π)
by OSM±(Π):

W±
Π (X) =

{
TW (Πsoft

X) if X ∈ OSM±(Π)
0 otherwise

and P±
Π (X) =

W±
Π (X)

∑

Y ∈OSM±(Π)

W±
Π (Y)

.

Note that, as before, OSM±(Π) may be empty, in which case P±
Π (X) is not

defined.
We can capture LPMLN by LPMLN± programs using a translation that is

based on the translation lpmln2wc from [12]. Given an LPMLN program Π under
the alternative semantics, by Π� we denote the LPMLN± program that contains
the hard formulas {α : F | w : F ∈ Π,w = α} joined with {α : F ∨ ¬F | w :
F ∈ Π,w �= α}, as well as the soft formulas {w : ¬¬F | w : F ∈ Π,w �= α}. The
hard formulas generate the soft stable models of Π, while the soft rules attach
the right weight to each of them, without interfering with their generation.2

Proposition 2. Let Π be an LPMLN program. For every interpretation X, it
holds that PΠ(X) = P±

Π�(X).

We can move on now to the implementation of LPMLN± in plingo. The main
idea of the system is to keep the input language of clingo, and re-interpret weak
constraints at priority level 0 as soft integrity constraints. These constraints are
not considered to determine the optimal stable models, but instead are used
to determine the weights of those models, from which their probabilities are
calculated. For propositional formulas, this boils down to interpreting the union
of a set Π1 of propositional formulas with a set Π2 of weak constraints as the
LPMLN± program that contains the hard rules {α : F | F ∈ Π1}, the soft
integrity constraints {w : ¬¬F | :∼ F [w, 0] ∈ Π2}, and the weak constraints Π2\
{:∼ F [w, 0] | :∼ F [w, 0] ∈ Π2}. For programs in the input language of plingo (or
of clingo, that is the same) we can in fact provide a general definition that relies
on the definitions used for clingo [5], and that therefore covers its whole language.
We define a plingo program Π as a logic program in the language of clingo, and
we let OSM pl(Π) denote the optimal models of Π without considering weak
2 We can capture the standard semantics by replacing the two sets of hard formulas

by the hard formulas {α : F ∨ ¬F | w : F ∈ Π}, and adding the weak constraints
{:∼ F [−1, 1] | w : F ∈ Π, w = α}. In this case, the hard formulas guess whether
or not to satisfy each formula occurring in Π, and the weak constraints select the
stable models that satisfy most of the hard rules of Π.

58 S. Hahn et al.

constraints at level 0, and CostΠ(X, 0) denote the cost of the interpretation X

at priority level 0, according to the definitions of [5]. Then, the weight W pl
Π (X)

of an interpretation X and its probability P pl
Π (X) are defined as:

W pl
Π (X) =

{
exp(CostΠ(X, 0)) if X ∈ OSM pl(Π)
0 otherwise

and

P pl
Π (X) =

W pl
Π (X)

∑

Y ∈OSMpl (Π)

W pl
Π (Y)

.

4 The System Plingo

The implementation of plingo is based on clingo and its Python API (v5.5, [8]).
The system architecture is described in Fig. 1. The input is a logic program
written in some probabilistic language: LPMLN±, LPMLN , ProbLog or P-log. For
LPMLN±, the input language (orange element of Fig. 1) is the same as the input
language of clingo, except for the fact that the weights of the weak constraints
can be strings representing real numbers. For the other languages, the system
uses the corresponding frontends, that translate the input logic programs (yellow
elements of Fig. 1) to the input language of plingo using the transformer module,
combining the translations from ProbLog and P-log to LPMLN of [10,12] with the
translation to LPMLN± presented in Sect. 3.

Fig. 1. System architecture of plingo. Inputs are yellow for the different frontends
provided. Modules of the system are gray boxes. The green flow corresponds to MAP
inference, the blue to exact marginal inference, and the purple to approximate marginal
inference. (Color figure online)

Plingo can be used to solve two reasoning tasks: maximum a posteriori
(MAP) inference and marginal inference. MAP inference is the task of finding a
most probable stable model of a probabilistic logic program. Following the app-
roach of [9], this task is reduced in plingo to finding one optimal stable model
of the input program using clingo’s built-in optimization methods. The only

plingo: A System for Probabilistic Reasoning 59

changes that have to be made concern handling the strings that may occur as
weights of weak constraints, and switching the sign of such weights, since other-
wise clingo would compute the least probable stable models. Regarding marginal
inference, it can be either applied in general, or with respect to a query. In the
first case, the task is to find all stable models and their probabilities. In the sec-
ond case, the task is to find the probability of some query atom, that is defined
as the sum of the probabilities of the stable models that contain that atom. The
implementation for both cases is the same. First, plingo enumerates all optimal
stable models of the input program excluding the weak constraints at level 0.
Afterwards, those optimal stable models are passed, together with their cost at
level 0, to the probability module, that calculates the required probabilities.

In addition to this exact method (represented by the blue arrows in Fig. 1),
plingo implements an approximation method (purple arrows in Fig. 1) based
on the approach presented in [14]. The idea is to simplify the solving process
by computing just a subset of the stable models, and using this smaller set to
approximate the actual probabilities. Formally, in the definitions of W pl

Π (X) and
P pl

Π (X), this implies replacing the set OSM pl(Π) by one of its subsets. In the
implementation, the modularity of this change is reflected by the fact that the
probability module is agnostic to whether the stable models that it receives as
input are all or just some subset of them. For marginal inference in general, this
smaller subset consists of k stable models with the highest possible probability,
given some positive integer k that is part of the input. To compute this subset,
the solver module of plingo uses a new implementation for the task of answer set
enumeration in the order of optimality (ASEO) presented in [14].3 Given some
positive integer k, the implementation first computes the stable models of the
smallest cost, then, among the remaining stable models, computes the ones of the
smallest cost, and so on until k stable models (if they exist) have been computed.
For marginal inference with respect to a query, the smaller subset consists of
k stable models containing the query of the highest possible probability, and
another k stable models without the query of the highest possible probability. In
this case, the algorithm for ASEO is set to compute 2k stable models. But once
it has computed k stable models that contain the query, or k stable models that
do not contain the query, whichever happens first, it adds a constraint enforcing
that the remaining stable models fall into the opposite case.

5 Experiments

In this section, we experimentally evaluate plingo and compare it to native imple-
mentations of LPMLN , ProbLog and P-log.4 For LPMLN , we evaluate the system
lpmln2asp [9], that is the basis for our implementation of plingo. For ProbLog, we
consider the problog system version 2.1 [7], that implements various methods for
3 The implementation of the method for clingo in general is available at https://

github.com/potassco/clingo/tree/master/examples/clingo/opt-enum.
4 Available, respectively, at https://github.com/azreasoners/lpmln, https://github.

com/ML-KULeuven/problog, and https://github.com/iensen/plog2.0.

https://github.com/potassco/clingo/tree/master/examples/clingo/opt-enum
https://github.com/potassco/clingo/tree/master/examples/clingo/opt-enum
https://github.com/azreasoners/lpmln
https://github.com/ML-KULeuven/problog
https://github.com/ML-KULeuven/problog
https://github.com/iensen/plog2.0

60 S. Hahn et al.

probabilistic reasoning. In the experiments, we use one of those methods, that is
designed specifically to answer probabilistic queries. It converts the input pro-
gram to a weighted Boolean formula and then applies a knowledge compilation
method for weighted model counting. For P-log, we evaluate two implementa-
tions, that we call plog-naive and plog-dco [2]. While the former works like plingo
and lpmln2asp by enumerating stable models, the latter implements a different
algorithm that builds a computation tree specific to the input query. All bench-
marks were run on an Intel Xeon E5-2650v4 under Debian GNU/Linux 10, with
24 GB of memory and a timeout of 1200 seconds per instance.

The goal of our first experiment is to evaluate the performance of the exact
and the approximation methods of plingo and compare it to the performance
of all the other systems on the same domain. In particular, we want to analyze
how much faster is the approximation method than the exact one, and how
accurate are the probabilities that it returns. To this end, we compare all systems
on the task of marginal inference with respect to a query in a probabilistic
Grid domain from [17], that appeared in a slightly different form in [7]. We
have chosen this domain because it can be easily and similarly represented in
all these probabilistic languages, which is required if we want to compare all
systems at the same time. In this domain, there is a grid of size m × n, where
each node (i, j) passes information to the nodes (i + 1, j) and (i, j + 1) if (i, j)
is not faulty, and each node in the grid can be faulty with probability 0.1.
The task poses the following question: what is the probability that node (m,n)
receives information from node (1, 1)? To answer this, we run exact marginal
inference with all systems, and approximate marginal inference with plingo for
different values of k: 101, 102, . . . , and 106. The results are shown in Fig. 2.
On the left side, there is a cactus plot representing how many instances where
solved within a given runtime. The dashed lines represent the runtimes of the
approximate marginal inference of plingo for k = 105 and k = 106. Among
the exact implementations, the system problog is the clear winner. In this case,
its specific algorithm for answering queries is much faster than the other exact
systems that either have to enumerate all stable models or, in the case of plog-
dco, may have to explore its whole solution tree. The runtimes among the rest
of the exact systems are comparable, but plingo is a bit faster than the others.
For the approximation method, on the right side of Fig. 2, for every value of k
and every instance, there is a dot whose coordinates represent the probability
calculated by the approximation method and the true probability (calculated
by problog). This is complemented by Table 1, that shows the average absolute
error and the maximal absolute error for each value of k in %, where the absolute
error for some instance and some k in % is defined as the absolute value of the
difference between the calculated probability and the true probability for that
instance, multiplied by 100. We can see that, as the value of k increases, the
performance of the approximation method deteriorates, while the quality of the
approximated probabilities increases. A good compromise is found for k = 105,
where the runtime is better than problog, and the average error is below 1%.

plingo: A System for Probabilistic Reasoning 61

Fig. 2. Runtimes of all systems and quality of the approximation method on the Grid
domain.

Table 1. Average and maximal error (in %) of the approximation method on the Grid
domain for different values of k.

k 101 102 103 104 105 106

Avg. Error 4.7 ± 4.3 3.3 ± 2.7 2.1 ± 1.5 1.4 ± 1.2 0.9 ± 0.9 0.6 ± 0.8

Max. Error 20.3 12.7 6.5 4.3 2.5 2.3

We carried out another two experiments, where we compared separately
plingo using the LPMLN frontend with lpmln2asp, and plingo using the P-log
frontend with the two native implementations of P-log, on domains that are
specific to these languages. In general, the results show that the performance
of plingo is similar to the performance of those systems. For a more detailed
description of these experiments, we refer the reader to the longer version of this
paper, available at https://arxiv.org/abs/2206.11515.

6 Conclusion

We have presented plingo, an extension of the ASP system clingo with various
probabilistic reasoning modes. Although based on LPMLN , it also supports P-log
and ProbLog. While the basic syntax of plingo is the same as the one of clingo, its
semantics relies on re-interpreting the cost of a stable model at priority level 0 as
a measure of its probability. Solving exploits the relation between most probable
stable models and optimal stable models [12]; it relies on clingo’s optimization
and enumeration modes, as well as an approximation method based on answer set
enumeration in the order of optimality [14]. Our empirical evaluation has shown
that plingo is at eye height with other ASP-based probabilistic systems, except
for problog that relies on well-founded semantics. Notably, the approximation
method produced low runtimes and low error rates (below 1%). Plingo is freely
available at https://github.com/potassco/plingo.

Acknowledgements. This work was supported by DFG grant SCHA 550/15.

https://arxiv.org/abs/2206.11515
https://github.com/potassco/plingo

62 S. Hahn et al.

References

1. Ahmadi, N., Lee, J., Papotti, P., Saeed, M.: Explainable fact checking with prob-
abilistic answer set programming. In: Liakata, M., Vlachos, A. (eds.) Proceedings
of the 2019 Truth and Trust Online Conference (2019)

2. Balaii, E.: Investigating and extending P-log. Ph.D. thesis, Texas Tech University
(2017)

3. Baral, C., Gelfond, M., Rushton, J.: Probabilistic reasoning with answer sets. The-
ory Pract. Logic Program. 9(1), 57–144 (2009)

4. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints.
IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)

5. Calimeri, F., et al.: ASP-Core-2: input language format (2012). https://www.mat.
unical.it/aspcomp2013/ASPStandardization

6. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005). https://doi.org/10.1007/11546207 10

7. Fierens, D., et al.: Inference and learning in probabilistic logic programs using
weighted boolean formulas. Theory Pract. Logic Program. 15(3), 385–401 (2015)

8. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Carro, M., King, A. (eds.) Technical
Communications of ICLP 2016. OpenAccess Series in Informatics (OASIcs), vol.
52, pp. 2:1–2:15 (2016)

9. Lee, J., Talsania, S., Wang, Y.: Computing LPMLN using ASP and MLN solvers.
Theory Pract. Logic Program. 17(5–6), 942–960 (2017)

10. Lee, J., Wang, Y.: Weighted rules under the stable model semantics. In: Baral, C.,
Delgrande, J., Wolter, F. (ed.) Proceedings of KR 2016, pp. 145–154. AAAI/MIT
Press (2016)

11. Lee, J., Wang, Y.: Weight learning in a probabilistic extension of answer set pro-
grams. In: Proceedings of KR 2018, pp. 22–31 (2018)

12. Lee, J., Yang, Z.: LPMLN, weak constraints and P-log. In: Proceedings of the 31st
AAAI Conference on Artificial Intelligence, pp. 1170–1177 (2017)

13. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1–2),
39–54 (2002)

14. Pajunen, J., Janhunen, T.: Solution enumeration by optimality in answer set pro-
gramming. Theory Pract. Logic Program. 21(1), 750–767 (2021)

15. Raedt, L.D., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic prolog and its
applications in link discovery. In: Proceedings of AAAI 2007, pp. 2468–2473. AAAI
Press (2007)

16. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006)

17. Zhu, W.: Plog: its algorithms and applications. Ph.D. thesis, Texas Tech University
(2012)

https://www.mat.unical.it/aspcomp2013/ASPStandardization
https://www.mat.unical.it/aspcomp2013/ASPStandardization
https://doi.org/10.1007/11546207_10

Foundations of Nonmonotonic
Reasoning

From Defeasible Logic to Counterfactual
Reasoning

Matteo Cristani1 , Guido Governatori2 , Francesco Olivieri3 ,
and Antonino Rotolo4(B)

1 University of Verona, Verona 37136, Italy
matteo.cristani@univr.it

2 Centre for Computational Law, Singapore Management University,
Singapore, Singapore

guido@governatori.net
3 IIIS, Griffith University, Nathan 4111, Australia

f.oliveri@griffith.edu.au
4 Alma AI, University of Bologna, Bologna 40121, Italy

antonino.rotolo@unibo.it

Abstract. Counterfactual reasoning has been the subject of extensive
study in philosophy, logics, and AI. The connection between counterfac-
tual reasoning and theory revision is well-known since Ramsey’s intu-
ition, according to which “to find out whether the counterfactual ‘if A
were true, then B would be true’ is satisfied in a state S, change the
state S minimally to include A, and test whether B is satisfied in the
resulting state”. In this paper we study how to model this idea in Defea-
sible Logic for devising logics for counterfactual reasoning and suitable
selection function models.

Keywords: Defeasible logic · Theory revision · Counterfactual
reasoning

1 Introduction

What if everyone got the COVID-19 vaccine, would the pandemics be over? What
if JFK had survived the assassination attempt? These modes of reasoning have
been the subject of extensive study in philosophy, logics, and AI, among others.
As is well-known, the first question exemplifies a case of subjective conditional,
while the second is an example of counterfactual, i.e., a subjunctive conditional
whose antecedent is assumed to be false.

Subjective conditionals and counterfactuals have been notably modeled
through two-place modal operators (see [9,11] for an overview). In this paper
we study counterfactuals from another, but related, perspective. We are inter-
ested in identifying formal relations between counterfactual logics and Defeasible

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 65–80, 2022.
https://doi.org/10.1007/978-3-031-21541-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_5&domain=pdf
http://orcid.org/0000-0001-5680-0080
http://orcid.org/0000-0002-9878-2762
http://orcid.org/0000-0003-0838-9850
http://orcid.org/0000-0001-5265-0660
https://doi.org/10.1007/978-3-031-21541-4_5

66 M. Cristani et al.

Logic (DL), which is an efficient rule-based non-monotonic formalism where the
knowledge base consists of a finite set F of facts, a set of rules, and a priority
relation to solve conflicts among rules [2]. Despite the wide variety of applica-
tions of DL, to the best of our knowledge, no research has been so far developed
in this regard.

Suppose that the following rules govern the dynamic spread of COVID-19
infections:

R = {r1 : positive, quarantine ⇒ ¬spread
r2 : positive ⇒ spread
r3 : positive,mask ⇒ ¬spread
r4 : spread , vax ⇒ ¬high lethality
r5 : spread , old ⇒ high lethality
r6 : high lethality ⇒ hospital collapse}

and assume that r1 and r3 are stronger than r2, while r4 is stronger than r5.
Also, suppose that the following facts hold:

F = {positive, quarantine,¬mask , old}.

One can consider different and hypothetical scenarios where

1. quarantine does not work: we could thus change or remove r1 from R;
2. vax does not prevent high lethality: we could thus make r4 no longer stronger

than r5;
3. people are not old: we should remove old from F .

In general, this intuition suggests that we can model counterfactual reasoning
by changing the knowledge base of Defeasible Logic from three different angles.
From the theoretical standpoint, there is nothing radically new in this analysis,
which is just an elaboration in Defeasible Logic of the original intuition behind
Ramsey’s test [13]:

To find out whether the counterfactual “if A were true, then B would be
true” is satisfied in a state S, change the state S minimally to include A,
and test whether B is satisfied in the resulting state.

However, to the best of our knowledge, no work has proposed minimal change
operations over non-monotonic theories that are constructively used to build
similarity semantics for counter-factuals.

In this paper we study in Defeasible Logic two mechanisms for changing
theories to perform various types of counterfactual reasoning. In particular, we
show how to devise semantic structures for counterfactuals that are generated
by

1. minimally changing the facts of the knowledge base of Defeasible Logic,
2. contracting or revising the set of defeasible rules of the knowledge base.

From Defeasible Logic to Counterfactual Reasoning 67

In the first case, the resulting sets facts are used to define worlds that are the
most similar to the actual one. In the second case, the set of conclusions of the
original theory corresponds to the formulas true at the actual world, while the
sets of conclusions that follow from the changed sets of rules are used to build
an appropriate selection function.

Several issues raise. For example:

– Should the revision of theories be minimal? Would such an idea of minimality
be close to the classic concept of similarity between worlds in Lewis’ sense
[9]?

– What other properties should the facts revision enjoy?

The layout of the paper is as follows. Sections 2 and 3 recall, respectively,
the basics of Standard Defeasible Logic and of counterfactual logics (a spe-
cific axiomatisation is mentioned simply for the sake of illustration). Section
4 presents a variant of selection function semantics where the function is defined
by minimally changing the set of facts of a given Defeasible Theory. Section 5
works instead on contracting or revising the set of rules of a given theory. Some
basic results are sketched in Sect. 6. Brief conclusions end the paper.

2 Defeasible Logic

Let us briefly recall the basics of Standard Defeasible Logic (SDL) [2]. We start
by defining the language LSDL.

Let PROP be the set of propositional atoms, then the set of literals Lit =
PROP ∪ {¬p | p ∈ PROP}. The complementary of a literal p is denoted by ∼p:
if p is a positive literal q then ∼p is ¬q, if p is a negative literal ¬q then ∼p is q.
Literals are denoted by lower-case Roman letters. Let Lab be a set of labels to
represent names of rules, which will be denoted as lower-case Greek letters.

A defeasible theory D is a tuple (F, R,≺), where F is the set of facts (indis-
putable statements), R is the rule set, and ≺ is a binary relation over R.

R is partitioned into three distinct sets of rules, with different meanings
to draw different “types of conclusions”. Strict rules are rules in the classical
fashion: whenever the premises are the case, so is the conclusion. We then have
defeasible rules which represent the non-monotonic part (along which defeaters)
of the logic: if the premises are the case then typically the conclusion holds as
well unless we have contrary evidence that opposes and prevents us to draw such
a conclusion. Lastly, we have defeaters, which are special rules whose purpose
is to prevent contrary evidence to be the case. It follows that in DL, through
defeasible rules and defeaters, we can represent in a natural way exceptions (and
exceptions to exceptions, and so forth).

We finally have the superiority relation ≺ a binary relation among couples
of rules, that is the mechanism to solve conflicts. Given the two rules α and β,
we have (α, β) ∈≺ (or simply α ≺ β), in the scenario where both rules may fire
(can be activated), α’s conclusion will be preferred to β’s.

68 M. Cristani et al.

A rule α ∈ R has the form α : A(α) � C(α), where: (i) α ∈ Lab is the unique
name of the rule, (ii) A(α) ⊆ Lit is α’s (set of) antecedents, (iii) C(α) = l ∈ Lit
is its conclusion, and (iv) �∈ {→,⇒,�} defines the type of rule, where: → is
for strict rules, ⇒ is for defeasible rules, and � is for defeaters.

Some standard abbreviations. The set of strict rules in R is denoted by Rs,
and the set of strict and defeasible rules by Rs; R[l] denotes the set of all rules
whose conclusion is l.

A conclusion of D is a tagged literal with one of the following forms:

±Δl means that l is definitely proved (resp. strictly refuted/non provable) in D,
i.e., there is a definite proof for l in D (resp. a definite proof does not exist).

±∂l means that l is defeasibly proved (resp. defeasibly refuted) in D, i.e., there is
a defeasible proof for l in D (resp. a definite proof does not exist).

The definition of proof is also the standard in DL. Given a defeasible theory
D, a proof P of length n in D is a finite sequence P (1), P (2), . . . , P (n) of tagged
formulas of the type +Δl, −Δl, +∂l, −∂l, where the proof conditions defined in
the rest of this section hold. P (1..n) denotes the first n steps of P .

All proof tags for literals are standard in DL [2]. We report only the positive
ones as the negative proof tags can be straightforwardly obtained by applying
the strong negation principle to the positive counterparts. The definition of Δ
describes forward chaining of strict rules.

Definition 1 (+Δ).

+Δl: If P (n + 1) = +Δl then either
(1) l ∈ F, or
(2) ∃α ∈ Rs[l].∀a ∈ A(α). + Δa ∈ P (1..n).

A literal is strictly proved if it is a(n initial) fact of the theory, or there exists a
strict rule that is applicable.

Defeasible derivations are based on the notions of a rule being applicable or
discarded. A rule is applicable at a given derivation step when every antecedent
has been proved at any previous derivation step. Symmetrically, a rule is dis-
carded when at least one antecedent has been previously refuted.

Definition 2 (Applicable & Discarded).
Given a defeasible theory D, a literal l, and a prove P (n), we say that

– α ∈ R[l] is applicable at P (n + 1) iff ∀a ∈ A(α). + ∂a ∈ P (1.n).
– α ∈ R[l] is discarded at P (n + 1) iff ∃a ∈ A(α). − ∂a ∈ P (1.n).

Note that a strict rule can be used to derive defeasible conclusions when is
applicable and at least one of its premises is defeasibly but not strictly proved.

Definition 3 (+∂).

+∂l: If P (n + 1) = +∂l then either
(1) +Δl ∈ P (1..n), or

From Defeasible Logic to Counterfactual Reasoning 69

(2.1) −Δ∼l ∈ P (1..n), and
(2.2) ∃α ∈ R[l] applicable s.t.
(2.3) ∀β ∈ R[∼l] either

(2.3.1) β discarded, or
(2.3.2) ∃ζ ∈ R[l] applicable s.t. ζ ≺ β.

A literal is defeasibly proved if (1) it has already proved as a strict conclusion, or
(2.1) the opposite is not and (2.2) there exists an applicable, defeasible or strict,
rule such that any counter-attack is either (2.3.1) discarded or (2.3.2) defeated
by an applicable, stronger rule supporting l. Note that, whereas β and ζ may be
defeaters, α may not, as we need a strict or defeasible, applicable rule to draw a
conclusion.

The last notions introduced in this section are those of extension of a defeasi-
ble theory and of equivalence of theories. Informally, an extension is everything
that is derived and disproved; two theories are equivalent iff they have the same
extension

Definition 4 (Theory Extension). Given a defeasible theory D, we define
the set of positive and negative conclusions of D as its extension:

E(D) = (Δ+(D),Δ−(D), ∂+(D), ∂−(D)),

where #±(D) = {l| l appears in D and D � ±#l}, # ∈ {Δ, ∂}.
Theorem 1. [10] Given a defeasible theory D, its extension E(D) can be com-
puted in time polynomial to the size of the theory. (The size of the theory is given
by the number of symbols in it.)

3 Counterfactuals

Let L> be the language obtained by adding the conditional connective > to
propositional language L. The set of (well-formed) formulas of L> is defined in
the usual way. Formulas of L> are interpreted in terms of Lewis-type semantic
structures [6]. While some, like [1], rejected nested conditionals when a prob-
abilistic treatment of them is considered, others admitted this possibility even
though it was argued that the intuitive meaning of such formulas is far from
clear [7,9,11]. To keep the logical constructions simple, we follow this view and
avoid nested counterfactuals.

The following definitions are standard from [6].

Definition 5. A minimal selection function (MSF) frame is a pair M = 〈W, f〉
where

1. W is a nonempty set (of possible worlds);
2. f is a selection function P(W) × W �→ P(P(W)).

Definition 6. A minimal selection function (MSF) model is a triple M =
〈W, f, υ〉 where

70 M. Cristani et al.

1. W and f are as in Definition 5;
2. υ is a valuation assigning to each u in W and A ∈ L an element from the set

{T, F}.
In fact, the function f picks out a subset f(A, u) of W for each u in W and
A ∈ L.1 We refer to the set of worlds f(A, u) as the most similar set of worlds
with respect to u.

Truth of a formula A at a world u in a model M , |=M
u A, is defined as usual

with the counterfactual case given by

|=M
u A > B iff ‖B‖M ∈ f(A, u) (1)

where ‖B‖M denotes the set of worlds where B is true in M , i.e., ‖B‖M = {w ∈
W : υ(B,w) = T}: we omit the subscript M when it is clear from the context
the model in which a formula is evaluated. A formula A is valid in a model M
(|=M) just when |=M

u A for all worlds u in M . A formula A is valid (|=SF) just
when |=M

u A for all worlds u in all SF models.
Perhaps one of the weakest systems of counterfactuals requires to adopt the

following semantics [6,12].

Definition 7. A minimal selection function counterfactual frame (MSFC) is
an MSF frame M = 〈W, f, 〉 satisfying the following conditions:

1. X ∈ f(X,u) (Success)
2. {u} ∈ f(X,u) if u ∈ X (Weak Centering)

Notice that Success ensures that f(A, u) also contains the set of A-worlds. It is
not hard to see that the class of MSFC frames fits exactly the conditional logic
which contains classical propositional logic, the following axioms

1. A > A (ID)
2. (A > B) → (A → B) (> MP)

and is closed under the usual inference rules

A ≡ B

(A > C) ≡ (B > C)
(RCEA)

B ≡ C

(A > B) ≡ (A > C)
(RCEC)

As is well-known, the logic consisting of RCEA and RCEC is the system
CE [6]. A standard Henkin-style construction proves the completeness of CE⊕
ID⊕> MP with respect to the class of MSFC frames. Proofs are standard and
are omitted. Let us call this system S (see [5,6]).

Theorem 2. |=SFC A iff �S A.
1 Notice that A �∈ L> since we do not admit nested conditionals.

From Defeasible Logic to Counterfactual Reasoning 71

4 Counterfactuals in Defeasible Logic: Fact Revision

Consider a counterfactual conditional

φ > ψ (2)

As is well-known, on similarity analysis of genuine counterfactuals we hold in
possible-world semantics the following:

φ > ψ is true in any world w0 in case all φ-worlds most similar worlds to
w0 are ψ-worlds.

In SDL, recall the COVID example from Sect. 1 and assume that we want to
block the derivation of hospital collapse without imposing a quarantine, thus by
removing quarantine from F . We can abuse the notation and see the issue as
follows: if w0 = F

¬quarantine > ¬hospital collapse (3)

Then we can argue that (3) is true in w0 iff we derive ¬hospital collapse (or,
alternatively, we block the derivation of hospital collapse) by revising F at least
by removing quarantine (or replacing quarantine with ¬hospital collapse) in such
a way as to minimize the effect of such a revision of F .

The following section formally reconstructs the above intuition in a suitable
version of selection function semantics.

4.1 Preliminaries

Definition 8 ([4]). Let D = (F,R,≺) be any Defeasible Theory. The non-
monotonic consequence relation |∼D is defined as follows:

– F |∼Dl iff D � +∂l;
– F � |∼Dl iff D � −∂l.

Remark 1. Trivially, given any D = (F,R,≺) and according to Definition 4 the
extension E(D) = (Δ+(D),Δ−(D), ∂+(D), ∂−(D)) is such that

– F |∼Dl iff l ∈ ∂+(D)
– F � |∼Dl iff l ∈ ∂−(D).

Definition 9 (Well-formed propositional formulas). Let Lit be the set of
literals of LSDL. The set WFF of well-formed propositional formulas is defined
as follows:

WFF = {P |P ∈ Lit ∪ {
n∧

i=0

p|p ∈ Lit}}.

Henceforth, we use the expression “formula” to mean a well-formed propositional
formula. A counterfactual is an expression A > B where A,B are well-formed
propositional formulas. Thus, as recalled in the previous sections, we do not
admit nested conditionals.

72 M. Cristani et al.

Definition 10 (Minimal revision). Let X be any set of formulas and let
(X)∗

A denote the usual AGM-operation of revision. We write (X)∗min
A iff, ∀Y ⊇

X : A ∈ Y , (X)∗
A ⊆ Y .

Definition 11. For any set F of literals, let (F)−
q be the usual AGM operation

of contraction in F of q. Let us stipulate that

F−
{q1∧···∧qn} := F−

{q1,...,qn} := (. . . (((F)−
q1)

−
q2) . . .)−

qn

F ∗min
{q1∧···∧qn} := F ∗min

{q1,...,qn} := (. . . (((F)∗min
q1)∗min

q2) . . .)∗min
qn

The above definition is very useful because of the following proposition.

Proposition 1. Let X = l1, . . . , ln and Y = {q1, . . . , qm} be two consistent
sets of literals. For any qi, qk ∈ Y , the contraction and minimal revision are
commutative, i.e.,

(((X)−
qi)

−
qk

) = (((X)−
qk

)−
q1)

(((X)∗min
qi)∗min

qk
) = (((X)∗min

qk
)∗min
qi)

Proof. The proof is trivial, since X and Y are consistent sets of literals. Hence,
whatever order of contraction and revision we follow, the operations only affect
the literal considered.

Definition 12 (D-p-minimality). Let D = (F,R,≺) be any Defeasible The-
ory. For any literal p, the Defeasible Theory D′ = (F ′, R,≺) is D-m-p-critical
iff

1. F is consistent;
2. F ′|∼D′p, and
3. for some consistent set of literals {q1, . . . , qm}, either

(a) if {q1, . . . , qm} �⊆ F , then F ′ − {q1, . . . , qm} � |∼D′p and F ′ = F ∗min
{q1,...,qm};

or
(b) if {q1, . . . , qm} ⊆ F , then and F � |∼Dp and F ′ = F−

{q1,...,qm}.

The Defeasible Theory D′ is D-p-minimal iff there is no Defeasible Theory D′′

such that

– D′′ is D-j-p-critical, and
– j < m.

We also say that the set F ′ of facts of D′ is D-p-minimal if D′ is is D-p-minimal.

Example 1 (Running Example). Let us illustrate Definition 12 by resuming the
Covid example from Sect. 1 with some adjustments in the set of facts. The theory

From Defeasible Logic to Counterfactual Reasoning 73

D = (F,R,≺) is as follows:

F = {positive, vax ,¬mask , old}
R = {r1 : positive, quarantine ⇒ ¬spread ,

r2 : positive ⇒ spread ,

r3 : positive,mask ⇒ ¬spread ,

r4 : spread , vax ⇒ ¬high lethality ,

r5 : spread , old ⇒ high lethality ,

r6 : high lethality ⇒ hospital collapse}
≺= {〈r1, r2〉, 〈r3, r2〉, 〈r4, r5〉}.

First of all, we trivially observe that F is consistent. The extension E(D) is such
that2

F |∼D{positive, vax ,¬mask , old , spread ,¬high lethality}
Suppose F ′ = F − {vax}. We fall under condition 3.(b) where {q1, . . . , qm} =
{vax} and p = high lethality : in fact, we note that F ′ = F−

{vax},
F ′|∼D′high lethality while F � |∼Dhigh lethality .

Hence, the theory D is D-1-high lethality-critical. Also, such a theory is triv-
ially D-high lethality-minimal because m = 1.

We are now ready to use classical AGM contraction and revision to build
suitable selection-function structures.3

4.2 Mapping SDL into Counterfactuals - Part I

For our purposes, we need to express that each Defeasible Theory D corresponds
to a special SFC model where just one word makes the facts of D true: such a
world—the actual world w0—is fixed in the model. Also, we have to capture the
idea that, for any formula A, the A-worlds selected by f are the most similar to
the world w0 where a counterfactual formula is evaluated.

Definition 13 (D-1-counterfactual models). Let D = (F,R,≺) be any
Defeasible Theory where F = {f1, . . . , fn}. A selection function D-1-
counterfactual model (D-1-SFDC model) is a structure M = 〈W,w0, f, υ〉 where:

1. w0 ∈ W is the actual world of M such that
⋂n

i=0 ‖fi‖ = {w0};
2. for any set of literals {q1, . . . , qm}, f(

∧m
i=0 qi, w0) is a set X of sets of

worlds such that, for each Y ∈ X, there is a set of literals Fw
f(

∧m
i=0 qi,w0)

=

{p1, . . . , pk} where Y =
⋂k

i=0 ‖pi‖ and, for some set Z of literals, either

2 We abuse the notation and write F |∼X where X is a set to mean that F non-
monotonically imply each element of X.

3 In Sect. 5 we will go beyond standard AGM operations and exploit specific revision
operations devised to handle non-monotonic theories.

74 M. Cristani et al.

– Fw
f(

∧m
i=0 qi,w0)

= F ∗min
Z , or

– Fw
f(

∧m
i=0 qi,w0)

= F−
Z .

Definition 14 (Counterfactual 1-evaluation). Let D = (F,R,≺) be any
Defeasible Theory. The truth of any counterfactual A > B at a world w0 in an
D-1-SFDC model M is defined as follows:

|=M
w0

A > B (4)

iff

– ‖B‖ ∈ f(A,w0);
– Fw

f(A,w0)
is D-p-minimal.

The frame conditions of Success and Weak Centering recalled in Definition
7 can be easily adapted for D-1-SFDC models.

The language LD> for the counterfactual logic generated by any Defeasible
Theory is clearly a fragment of L>.

Let us illustrate the above definitions with our running example and build a
toy model.

Example 2 (Running Example (cont’d)). Resume the theory D from Example
1 and build an appropriate D-1-SFDC model considering the following literals

positive, vax ,¬mask , old , spread ,¬high lethality , hospital collapse, quarantine

and only three worlds: w0, w1, and w2. Let proceed as follows:

– Evaluations of propositional formulas are as follows:

‖positive‖ = {w0, w1}
‖vax‖ = {w0, w1, w2}
‖¬mask‖ = {w0, w1}

‖old‖ = {w0, w1}
‖spread‖ = {w1, w2}

‖¬high lethality‖ = {w1}
‖hospital collapse‖ = {w1}
‖quarantine‖ = {w1, w2}

– Clearly, ‖positive‖ ∩ ‖vax‖ ∩ ‖¬mask‖ ∩ ‖old‖ = {w0};
– Define, among others,

f(¬vax , w0) = Fw
f(¬vax ,w0)

= {{w1}}.

where Z = F − {vax} = F−
vax .

It is easy to check that Fw
f(¬vax ,w0)

is D-high lethality-minimal, thus

|=M
w0

¬vax > high lethality .

From Defeasible Logic to Counterfactual Reasoning 75

5 Counterfactuals in Defeasible Logic: Theory Revision

[3] reframed AGM operations for SDL, i.e., investigated revision and contraction
operators for defeasible theories, and proposed postulates motivated by the form
or the intuition of the AGM postulates for classical belief revision. This result is
interesting because we can build counterfactual models by exploiting minimality
in AGM sense.

5.1 Revising Defeasible Theories

Let us recall the basic definitions and results of [3]. Let D = (F,R,≺) be a Defea-
sible Theory and c = p1, . . . pn be the formulas to considered. By convention, for
any literal l, by l ∈ E(D) we mean that F |∼Dl.

Definition 15 (Expansion). Expansion is defined as follows:

D+
c =

{
D if ∼pi ∈ ∂+(D) or ∼pi = pj for some i, j ∈ {1, . . . , n}
(F,R′,≺′) otherwise

where
R′ =R ∪ {⇒ p1, . . . ,⇒ pn}
≺′ =(≺ ∪ {⇒ pi ≺ r | i ∈ {1, . . . , n}, r ∈ R[∼pi]})−

{r ≺ ⇒ pi | i ∈ {1, . . . , n}, r ∈ R[∼pi]}.
(5)

AGM revision works in the same way as AGM expansion when the formula
to be added does not cause an inconsistency, but revision adds a formula even
if its negation is in the belief set. In [3]’s framework the definition of revision is
as follows.

Definition 16 (Revision). Revision is defined as follows:

D∗
c =

{
D if p1, . . . , pn ∈ E(D)
(F,R′,≺′) otherwise

where
R′ =R ∪ {⇒ p1, . . . ,⇒ pn}
≺′=(≺ ∪ {⇒ pi ≺ r | i ∈ {1, . . . , n}, r ∈ R[∼ pi]})−

{r ≺ ⇒ pi | i ∈ {1, . . . , n}, r ∈ R[∼ pi]}.

(6)

Definition 17 (Contraction). Contraction is defined as follows:

D−
c =

{
D if p1, . . . , pn �∈ ∂+(D)
(F,R′,≺′) otherwise

where
R′ =R ∪ {p1, . . . , pi−1, pi+1, . . . , pn � ∼pi | i ∈ {1, . . . , n}}
≺′ = ≺ − {s ≺ r | r ∈ R′ − R, s ∈ R}.

(7)

76 M. Cristani et al.

Theorem 3. Operations in Definitions 15, 16, and 17 satisfy the reformulation
of AGM postulates given in [3].

As regards minimality in the AGM sense, we have to define belief sets for
SDL.

Definition 18. The belief set B(D) of a Defeasible Theory D is defined as
follows:

B(D) = {P |P ∈ E(D) ∪ {
n∧

i=0

p|p ∈ E(D)} and B(D)

is closed under sub-formulas}
Then, it should be noted that the following postulate, among others, holds for
any formula c [3]:

If c �∈ B(D) then B(D)−
c = B(D). (-3)

In general, minimality for modeling counterfactuals is guaranteed by Defini-
tions 16 and 17 since the operations just add the rules only needed, respectively,
to prove or to disprove the considered formula. Just notice that SDL is skeptical,
so it may happen that revision may lead, e.g., to block other literals that were
in the extension, while contraction may contribute to prove new conclusions.

Consider again our running example.

Example 3 (Running Example (cont’d)). In Example 1 we considered how to
revise the set of facts by removing vax from F . In Example 2, we used this change
for building an appropriare semantic structure for counterfactuals. Here operate
at a different level, i.e., by considering the defeasible extension of the theory.
Suppose we retain F ′ and aim at applying Definition 17 to contract spread :

D′′ = D−
spread (F ′, R′,≺′)

where

R′ = R ∪ { � ∼spread}
≺′=≺ − {s ≺ r | r ∈ R′ − R, s ∈ R}.

It is easy to check that F ′ � |∼D′′{spread , high lethality , hospital collapse}.

5.2 Mapping SDL into Counterfactuals - Part II

Once minimal contraction and revision for SDL are defined, we can use the exten-
sions of theories and the corresponding belief sets to generate suitable selection
function counterfactual models for the logic S.

Definition 19 (D-2-counterfactual models). Let D = (F,R,≺) be any
Defeasible Theory and E(D) = {f1, . . . , fn} be its extension. A selection function
D-2-counterfactual model (D-2-SFDC model) is a structure M = 〈W,w0, f, υ〉
where:

From Defeasible Logic to Counterfactual Reasoning 77

1. w0 ∈ W is the actual world of M such that
⋂n

i=0 ‖fi‖ = {w0};
2. for any set of literals {q1, . . . , qm}, f(

∧m
i=0 qi, w0) is a set X of worlds such

that, for each w ∈ X, there is a set of literals Fw
f(

∧m
i=0 qi,w0)

= {p1, . . . , pk}
where w ∈ ⋂k

i=0 ‖pi‖ and, for some set Z of literals, either
– Fw

f(
∧m

i=0 qi,w0)
= B(D∗

Z), or
– Fw

f(
∧m

i=0 qi,w0)
= B(D−

Z).

Using theory extensions to define the set of worlds allows for keeping standard
the notion of evaluation:

Definition 20 (Counterfactual 2-evaluation). Let D = (F,R,≺) be any
Defeasible Theory. The truth of any counterfactual A > B at a world w0 in an
D-2-SFDC model M is defined as follows:

|=M
w0

A > B iff ‖B‖ ∈ f(A,w0). (8)

Example 4 (Running Example (cont’d)). Let us proceed similarly as we did in
Example 2. Consider the usual three worlds: w0, w1, and w2. We modify the
scenario as follows:

– Evaluations of propositional formulas:

‖positive‖ = {w0, w1}
‖vax‖ = {w0, w1, w2}
‖¬mask‖ = {w0, w1}

‖old‖ = {w0, w1}
‖spread‖ = {w1, w2}

‖¬high lethality‖ = {w1}
‖hospital collapse‖ = {w1}
‖quarantine‖ = {w1, w2}

– Clearly, ‖positive‖ ∩ ‖vax‖ ∩ ‖¬mask‖ ∩ ‖old‖ = {w0};
– Apply Definition 17 and define, among others (remember that D′′ =

D−
spread (F ′, R′,≺′)),

f(¬spread , w0) = Fw
f(¬spread,w0)

= {{w1}}.

where Z = B(D′′).

It is easy to check that the resulting structure M is a D-2-counterfactual model
where

|=M
w0

¬spread > ¬hospital collapse.

78 M. Cristani et al.

6 Results

Under the language limitations mentioned above for S, completeness is a rather
easy result for both versions of the semantics and trivial adjustments from [6]
can be settled. Indeed, except for the fact that we fix an actual world, selection
function D-1 and D-2-counterfactual models are standard.

Hence, let us consider, for the sake of illustration, canonical frames for selec-
tion function D-2-counterfactual semantics [6].

Definition 21 (Canonical structures). Let W be the set of LD>-maximal
consistent sets of formulas of LD>, and f be a selection function P(W) × W �→
P(P(W)) where, for any w ∈ W

A > B ∈ w0 iff |B|LD>
∈ f(|A|LD>

, w0).

The structure F = 〈W,w0, f〉 is a canonical frame for LD>.

A second, and perhaps less trivial result is that the models generated from
Defeasible Theories are related with the notion of filtration [5,6].

Again, let us focus on the second variant of semantics and define the notion
of filtration with a fixed actual world.

Definition 22 (Filtrations). Let M = 〈W,w0, f, υ〉 be a D-2-SFDC model,
Γ be a finite set of formulas closed under sub-formulas, and ∼ be the equivalence
relation on the set W of worlds such that

u ∼ w iff, for every A ∈ Γ, |=M
u A iff |=M

w A

[w] is the ∼-equivalence class of worlds in M generated by w and [X] = {[w]|w ∈
X ⊆ W}.

A filtration of M through Γ is any model MΓ = 〈WΓ , wΓ
0 , fΓ , υΓ 〉 where

– WΓ = [W];
– wΓ

0 = [w0];
– fΓ is a function P(WΓ) × WΓ �→ P(P(WΓ)) such that

• [f(X,w)] = fΓ ([X], [w]);
• fΓ ([X], [w0]) = [Y] where, for every counterfactual A > B ∈ Γ we have

that X = ‖A‖M , Y = ‖B‖M , and |=M
w0

A > B.
– υΓ is a valuation assigning to each uΓ in WΓ and A ∈ Γ an element from

the set {T, F}.
All results proved in [5,6] apply as well to this case. We should note however
that an additional property holds. Such a property illustrates under what simple
conditions a D-2-counterfactual model generated by a theory is a filtration of
some other model.

Theorem 4. Let D = (F,R,≺) be any Defeasible Theory, E(D) = {f1, . . . , fn}
be its extension, and M be a selection function D-2-counterfactual model M =
〈W,w0, f, υ〉 where

From Defeasible Logic to Counterfactual Reasoning 79

1. w0 is as in Definition 19;
2. for any set of literals {q1, . . . , qm}, f(

∧m
i=0 qi, w0) is such that there is no

{p1, . . . , pn} where Fw
f(

∧n
i=0 pi,w0)

= Fw
f(

∧m
i=0 qi,w0)

.
If XD is the set of literals occurring in D and each {q1, . . . , qm} ⊆ XD, then
M is a filtration of some model M ′ through

⋃s
j=0 Yj such that {Y1, . . . , Ys} is

the codomain of f .

Proof. Since XD is finite, f is finite as well, so is {Y1, . . . , Ys}. By construction
w0 is [

∧n
i=1 fi] while each set of worlds Yk in {Y1, . . . , Ys} is the set of worlds

that make true the elements of the corresponding belief set.

7 Conclusions

In this paper we have investigated in Defeasible Logic two mechanisms for chang-
ing theories which can be used to devise semantic structures for counterfactual
logics.

We have proposed semantic structures for counterfactuals that are generated
by

1. minimally changing the facts of the knowledge base of Defeasible Logic,
2. contracting or revising the set of defeasible rules of the knowledge base.

This paper offers a preliminary but fresh idea: to the best of our knowledge,
no work has proposed minimal change operations over non-monotonic theories
that are constructively used to build similarity semantics for counter-factuals.

Another work has investigated the relation between Defeasible Logic and
possible world semantics [8]. However, that work was meant to address a dif-
ferent research challenge, i.e., to develop neighbourhood semantics for a modal
extension of SDL, thus going beyond operational and argumentation semantics
for it.

This paper has a rather different goal: interpret Ramsey’s test by showing
how the change of defeasible theories allows for constructing selection function
models for counterfactuals.

One limit of our work is that we exclude nested conditionals from the lan-
guage. While some, like [1], rejected nested conditionals when a probabilistic
treatment is considered, or it was argued that the intuitive meaning of such for-
mulas is not clear [7,9,11], this is still a technical possibility. How to extend our
methodology to deal with this case is a matter of future work.

References

1. Adams, E.: The logic of conditionals. Reidel (1975)
2. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results

for defeasible logic. ACM Trans. Comput. Logic 2, 255–287 (2001)
3. Billington, D., Antoniou, G., Governatori, G., Maher, M.: Revising nonmonotonic

belief sets: the case of defeasible logic. In: Proceedings of the KI-99. Springer (1999)

80 M. Cristani et al.

4. Billington, D.: Defeasible logic is stable. J. Log. Comput. 3(4), 379–400 (1993).
https://doi.org/10.1093/logcom/3.4.379

5. Chellas, B.F.: Modal Logic. Cambridge University Press, An Introduction (1980)
6. Chellas, B.F.: Basic conditional logic. J. Philos. Logic 4, 133–153 (1975)
7. Delgrande, J.P.: A first-order conditional logic for prototypical properties. Artif.

Intell. 33, 105–130 (1987)
8. Governatori, G., Rotolo, A., Calardo, E.: Possible world semantics for defeasi-

ble deontic logic. In: Ågotnes, T., Broersen, J., Elgesem, D. (eds.) DEON 2012.
LNCS (LNAI), vol. 7393, pp. 46–60. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31570-1 4

9. Lewis, D.: Counterfactuals. Harvard University Press, Cambridge, Mass (1973)
10. Maher, M.J.: Propositional defeasible logic has linear complexity. Theor.

Pract. Log. Program. 1(6), 691–711 (2001). https://doi.org/10.1017/
S1471068401001168’doi.org/10.1017/S1471068401001168’

11. Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)
12. Pollock, J.: Subjunctive Reasoning. Reidel, Dordrecht (1976)
13. Ramsey, F.: Truth and probability. In: Braithwaite, R. (ed.) Foundations of Math-

ematics and other Logical Essays, pp. 156–198. Kegan, Paul, London (1931)

https://doi.org/10.1093/logcom/3.4.379
https://doi.org/10.1007/978-3-642-31570-1_4
https://doi.org/10.1007/978-3-642-31570-1_4
https://doi.org/10.1017/S1471068401001168'doi.org/10.1017/S1471068401001168'
https://doi.org/10.1017/S1471068401001168'doi.org/10.1017/S1471068401001168'

KLM-Style Defeasibility for Restricted
First-Order Logic

Giovanni Casini1,2,3 , Thomas Meyer1,2,3(B) , Guy Paterson-Jones2,3,
and Ivan Varzinczak1,3,4,5

1 ISTI–CNR, Pisa, Italy
2 University of Cape Town, Cape Town, South Africa

3 CAIR, Cape Town, South Africa
tmeyer@cs.uct.ac.za

4 LIASD, Université Paris 8, Paris, France
5 Stellenbosch University, Stellenbosch, South Africa

Abstract. In this paper, we extend the KLM approach to defeasible
reasoning beyond the propositional setting. We do so by making it appli-
cable to a restricted version of first-order logic. We describe defeasibility
for this logic using a set of rationality postulates, provide a suitable and
intuitive semantics for it, and present a representation result character-
ising the semantic description of defeasibility in terms of our postulates.
An advantage of our semantics is that it is sufficiently general to be
applicable to other restricted versions of first-order logic as well. Based
on this theoretical core, we then propose a version of defeasible entail-
ment that is inspired by the well-known notion of Rational Closure as
it is defined for defeasible propositional logic and defeasible description
logics. We show that this form of defeasible entailment is rational in the
sense that it adheres to the full set of rationality postulates.

Keywords: Defeasible reasoning · First-order logic · Rationality

1 Introduction

The past 15 years have seen a flurry of activity to introduce defeasible-reasoning
capabilities into languages that are more expressive than that of propositional
logic [5,6,9,16,17,27]. Most of the focus has been on defeasibility for description
logics (DLs), with much of it devoted to versions of the so-called KLM approach
to defeasible reasoning initially advocated for propositional logic by Kraus et
al. [22]. In DLs, knowledge is expressed as class inclusions of the form C � D,
with the intended meaning that every instance of C is also an instance of D.
Defeasible DLs allow, in addition, for defeasible inclusions of the form C �∼ D
with the intended meaning that instances of C are usually instances of D. For
example, Student �∼ ¬∃pays.Tax (students usually don’t pay tax) is a defeasible
version of Student � ¬∃pays.Tax (students don’t pay tax).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 81–94, 2022.
https://doi.org/10.1007/978-3-031-21541-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_6&domain=pdf
http://orcid.org/0000-0002-4267-4447
http://orcid.org/0000-0003-2204-6969
http://orcid.org/0000-0002-0025-9632
https://doi.org/10.1007/978-3-031-21541-4_6

82 G. Casini et al.

In this paper, we focus instead on a restricted version of first-order logic
(RFOL), for which a semantics in terms of Herbrand interpretations suffices. We
provide the theoretical foundations for an extension of RFOL modelling defeasi-
ble reasoning (DRFOL). However, the availability of non-unary predicates means
that the definition of an appropriate semantics for DRFOL is a non-trivial exer-
cise. This is because the intuition underlying KLM-style defeasibility generally
depends on the underlying language. For propositional logics the intuition dic-
tates a notion of typicality over possible worlds. The statement “birds usually
fly”, formalised as bird |∼ fly, says that in the most typical worlds in which bird is
true, fly is also true. In contrast, defeasibility in DLs invokes a form of typicality
over individuals. Thus Student �∼ ¬∃pays.Tax states that of all those individuals
that are students, the most typical ones don’t pay taxes. To see the problem
in extending either of these intuitions to the case with non-unary predicates,
consider the following version of an example by Delgrande [13].

Example 1. The following DRFOL knowledge base states that humans don’t feed
wild animals, that elephants are usually wild animals, that keepers are usually
human, and that keepers usually feed elephants, but that Fred the keeper usually
does not feed elephants (the connective � refers to defeasible implication and
variables are implicitly quantified).

K =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wild_animal(x) ∧ human(y) → ¬feeds(y, x),
elephant(x) � wild_animal(x),

keeper(x) � human(x),
elephant(x) ∧ keeper(y) � feeds(y, x),

elephant(x) ∧ keeper(fred) � ¬feeds(fred, x)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

For any appropriate semantics, K above should be satisfiable (given a suit-
able notion of satisfiability). Then it soon becomes clear that the propositional
approach cannot achieve this. To see why, note that applying the propositional
intuition to the example would result in elephant(x) ∧ keeper(y) � feeds(y, x),
meaning that in the most typical worlds (Herbrand interpretations in this case)
all keepers feed all elephants. This is in conflict with elephant(x)∧keeper(fred) �

¬feeds(fred, x), which states that in the most typical Herbrand interpretations,
keeper Fred does not feed any elephants. For any reasonable definition of satis-
fiability, this would render the knowledge base unsatisfiable.

The DL-based intuition of object typicality is also problematic. Under this
intuition, the statement elephant(x) � wild_animal(x) would mean that the most
typical elephants are wild animals. Similarly, keeper(x) � human(x) would mean
that the most typical keepers are human. Combined with the first statement
in K, it would then follow that the most typical keepers (being humans) do not
feed the most typical elephants (being wild animals). On the other hand, the
fourth statement in K explicitly states that the most typical keepers feed the
most typical elephants, from which we obtain the counter-intuitive conclusion
that typical elephants and typical keepers cannot exist simultaneously. Some
reflection on this example should be sufficient to indicate that it represents a

KLM-Style Defeasibility for Restricted First-Order Logic 83

genuine limitation of the standard propositional and DL approaches to defeasi-
bility when applied to FOL.

In this paper, we resolve this matter with a semantics that is in line with
the propositional intuition of a typicality ordering over worlds, but also includes
aspects of the DL intuition of typicality of individuals. We achieve the latter
by enriching our semantics with typicality objects, which are used to represent
typical individuals. Thus, elephant(x) ∧ keeper(y) � feeds(y, x) means that in
the most typical enriched Herbrand interpretations, all typical keepers feed all
typical elephants, with the understanding that there may be exceptional keepers
that don’t feed some elephants. Note that the term typical is used here in two
different, but related, ways.

Our central theoretical result is a representation result (Theorems 1 and 2),
showing that defeasible implication defined in this way can be characterised
w.r.t. a set of KLM-style rationality postulates adapted for DRFOL. Another
important consequence of our representation result is that it provides the theo-
retical foundation for the definition of various forms of defeasible entailment for
DRFOL. We present one such form of defeasible entailment and show that it
can be viewed as the DRFOL analogue of Rational Closure as originally defined
for the propositional case [24].

In the rest of the paper, we start by providing a brief introduction to RFOL
and to KLM-style defeasible reasoning (Sect. 2). In Sect. 3, we introduce DRFOL,
describe an abstract notion of satisfaction w.r.t. a set of KLM-style postulates,
provide a suitable semantics, and prove a representation result, showing that
the KLM-style postulates characterise the semantic construction. In Sect. 4, we
present a form of defeasible entailment for DRFOL that can be viewed as the
DRFOL equivalent of the well-known notion of Rational Closure. Before con-
cluding the paper, we discuss related work in Sect. 5.

2 Background

The language of RFOL builds on three disjoint sets of symbols: a finite set of
constants const, a countably infinite set of variable symbols var, and a finite set
of predicate symbols pred. It has no function symbols. A term is an element of
const∪var. Each predicate symbol α ∈ pred has an arity, denoted ar(α) ∈ N,
representing the number of terms it takes as arguments. We assume the existence
of predicate symbols 	 and ⊥, which have arity 0. An atom is an expression of
the form α(t1, . . . , tar(α)), where α ∈ pred and each ti is a term. Observe that
	 and ⊥ are atoms as well.

A compound is a Boolean combination of atoms (i.e., built from atoms and
the logical connectives ¬, ∧, and ∨). An implication has the form A(�x) → B(�y),
where A(�x) and B(�y) are compounds, and where the terms occurring in �x and �y
may overlap. A compound (resp. implication) is ground if all the terms contained
in it are constants; otherwise it is open. Ground atoms are also known as facts.

The only formulas we permit are compounds and implications and these
are understood to be implicitly universally quantified. We shall also adopt the

84 G. Casini et al.

following conventions. Constant symbols and variables are written in lowercase,
with early letters used for constants (a, b, . . .) and later letters for variables
(x, y, . . .). Compounds are denoted by uppercase letters (A,B, . . .). Tuples of
variables or constants are written with overbars, such as �x and �a resp., and A(�x)
and B(�a) are used as shorthand for compounds over their respective tuples of
terms. We use lowercase early Greek letter (α, β, . . .) to denote RFOL formulas,
sometimes with tuples of terms (α(�x)). The set of all formulas (compounds and
implications) is denoted by L. A knowledge base K is a finite subset of L.

The Herbrand universe U is the set const. The Herbrand base of U, denoted
B, is the set of facts defined over U. A Herbrand interpretation is a subset H ⊆ B.
The set of Herbrand interpretations is denoted by H . Substitutions are defined
to be functions ϕ : var → var∪const assigning a term to each variable symbol.
Variable substitutions are substitutions that assign only variables, and ground
substitutions are substitutions that assign only constants. The application of a
substitution ϕ to a compound A(�x) is denoted A(ϕ(�x)).

RFOL knowledge bases are interpreted by Herbrand interpretations H as
follows: (1) if A(�a) is a ground atom, then H � A(�a) iff A(�a) ∈ H; (2) if A(�a)
and B(�b) are ground compounds (where �a and �b may overlap), then H � A(�a)
and H � A(�a) → B(�b) as usual for Boolean connectives; (3) if A(�x) is an open
compound, then H � A(�x) iff H � A(ϕ(�x)) for every ground substitution ϕ;
(4) if A(�x) → B(�y) is an open implication (where �x and �y may overlap), then
H � A(�x) → B(�y) iff H � A(ϕ(�x)) → B(ϕ(�y)) for every ground substitution
ϕ, and (5) if K is a knowledge base, then H � K iff H � α for every α ∈ K.
A Herbrand interpretation satisfying a knowledge base K is a Herbrand model
of K.

Kraus et al. [22] originally defined |∼ as a consequence relation over a propo-
sitional language, with statements of the form α |∼ β to be interpreted as the
meta-statement “β is a defeasible consequence of α”. Subsequently, Lehmann
and Magidor [24] made a subtle shift in considering an object-level language
containing statements of the form α |∼ β, to be interpreted as the object-level
statement “α defeasibly implies β”, and with |∼ viewed as an object-level con-
nective. This view is captured by a set of rationality postulates, which have been
widely discussed in the literature. We do not repeat these rationality postulates
here, but note that Definition 3, our definition of rationality for DRFOL, the
defeasible version of RFOL, relies heavily on versions of the KLM rationality
postulates that are lifted to DRFOL (see Sect. 3).

A semantics for defeasible implications is provided by ranked interpretations
R, with R a function from U (the set of all valuations) to N∪{∞}, satisfying the
following convexity property : for every i ∈ N, if R(u) = i, then, for every j < i,
there is a u′ ∈ U for which R(u′) = j. R(v) indicates the degree of atypicality
of v. The valuations judged most typical are those with rank 0, while those with
infinite rank are judged so atypical as to be impossible. A defeasible statement
α |∼ β is satisfied in R (R � α |∼ β) if the models of α with the smallest finite
rank in R are all models of β. A classical statement α is satisfied in R (R � α)
if every valuation of finite rank satisfies α.

KLM-Style Defeasibility for Restricted First-Order Logic 85

Note that R � ¬α |∼ ⊥ iff all the models of ¬α have infinite rank, which is
equivalent by definition to R � α.

3 Defeasible Restricted First-Order Logic

Defeasible Restricted First-Order Logic (DRFOL) extends the logic RFOL pre-
sented above with defeasible implications of the form A(�x) � B(�y), where A(�x)
and B(�y) are compounds, and where �x and �y may overlap. The set of defeasible
implications is denoted L�, and a DRFOL knowledge base K is defined to be
a subset of L ∪ L�. Note that DRFOL knowledge bases may include (classical)
RFOL formulas.

As demonstrated in Example 1, defeasible implications are intended to model
properties that typically hold, but which may have exceptions. In this exam-
ple, for instance, elephant(x) ∧ keeper(fred) � ¬feeds(fred, x), is an exception
to elephant(x) ∧ keeper(y) � feeds(y, x). A DRFOL knowledge base contain-
ing these statements ought to be satisfiable (for an appropriate notion of sat-
isfaction). The same goes for the DRFOL knowledge base {bird(x) � fly(x),
bird(tweety), ¬fly(tweety)}. To formalise these intuitions we first describe the
intended behaviour of the defeasible connective � and its interaction with (clas-
sical) RFOL formulas in terms of a set of rationality postulates in the KLM style
[22,24]. These postulates are expressed via an abstract notion of satisfaction:

Definition 1. A satisfaction set is a subset S ⊆ L ∪ L�.

We denote the classical part of a satisfaction set by SC = S ∩ L. The first
postulate we consider ensures S respects the classical notion of satisfaction when
restricted to classical formulas, where |= refers to classical entailment:

(Cla)
SC |= α

α ∈ S
Next, we consider the interaction between classical and defeasible implications:

(Sup)
A(�x) ∈ S

¬A(�x) � ⊥ ∈ S
We now consider the core of the proposal for defining rational satisfaction sets, the

KLM rationality postulates, lifted to DRFOL, and expressed in terms of satisfaction
sets:

(Refl) A(�x) � A(�x) ∈ S

(Rw)
A(�x) � B(�y) ∈ S, |= B(�y) → C(�z)

A(�x) � C(�z) ∈ S

(Lle)
A(�x) � C(�z) ∈ S, |= A(�x) → B(�y), |= B(�y) → A(�x)

B(�y) � C(�z) ∈ S

(And)
A(�x) � B(�y) ∈ S, A(�x) � C(�z) ∈ S

A(�x) � B(�y) ∧ C(�z) ∈ S

(Or)
A(�x) � C(�z) ∈ S, B(�y) � C(�z) ∈ S

A(�x) ∨ B(�y) � C(�z) ∈ S

(Rm)
A(�x) � ¬B(�y) �∈ S, A(�x) ∧ B(�y) � C(�z) �∈ S

A(�x) � C(�z) �∈ S

86 G. Casini et al.

Next we consider instantiations of implications (applicable to all substitutions of the
right type):

(Dui)
A(�x) � B(�y) ∈ S

A(ϕ(�x)) � B(ϕ(�y)) ∈ S

To begin with, note that universal instantiation is not a desirable property for defea-
sible implications. To see why, consider a satisfaction set S containing elephant(x) ∧
keeper(y) � feeds(y, x) and elephant(x)∧keeper(fred) � ¬feeds(fred, x). From (Dui) we
have elephant(x) ∧ keeper(fred) � feeds(fred, x) ∈ S, and hence by (And) and (Rw)
that elephant(x) ∧ keeper(fred) � ⊥ ∈ S as well, which is in conflict with the intuition
that exceptional cases (all elephants usually not being fed by keeper Fred) should be
permitted to exist alongside the general case (all elephants usually being fed by all
keepers).

Weaker forms of instantiation for defeasible implications are more reasonable. Con-
sider keeper(x) � feeds(x, y), which states that keepers typically feed everything. While
we cannot conclude anything about instances of x, for the reasons discussed above, we
should at least be able to conclude things about instances of y, since y only appears
in the consequent of the implication. This motivates the following postulate (again,
applicable to all substitutions of the right type), where ψ is a variable substitution and
�x ∩ �y = ∅:

(Irr)
A(�x) � B(�x, �y) ∈ S

A(�x) � B(�x, ϕ(�y)) ∈ S

There are some more subtle forms of defeasible instantiation that seem reasonable as
well. Consider the following relation defined over L:

Definition 2. A(�x) is at least as typical as B(�y) w.r.t. S, denoted A(�x) �S B(�y), iff
A(�x) ∨ B(�y) � ¬A(�x) �∈ S.

Intuitively, A(�x) �S B(�y) states that typical instances of A(�x) are at least as typical as
typical instances of B(�y). Note that for any variable substitution ϕ, a typical instance
of A(ϕ(�x)) is always an instance of A(�x). Thus the following postulate should hold,
where ϕ is any variable substitution:

(Typ) A(�x) �S A(ϕ(�x))

The last postulate we consider has to do with defeasibly impossible formulas. Suppose
A(ϕ(�x)) � ⊥ ∈ S for all substitutions ϕ : var → var ∪ U. This states that if all
specialisations of A(�x) are defeasibly impossible, then we should expect that there are
in fact no instances of A(�x) at all:

(Imp)
A(ϕ(�x)) � ⊥ ∈ S for all ϕ : var → var ∪ U

¬A(�x) ∈ S

This puts us in a position to define the central construction of the paper, namely
that of a rational satisfaction set.

Definition 3. S is rational iff it satisfies (Cla), (Sup), (Irr), (Typ), (Imp) and
(Refl)-(Rm).

KLM-Style Defeasibility for Restricted First-Order Logic 87

Rational satisfaction sets satisfy the following form of label invariance for defeasible
implications, where the variable substitution ϕ is a permutation:

(Per)
A(�x) � B(�y) ∈ S

A(ϕ(�x)) � B(ϕ(�y)) ∈ S

Proposition 1. Let S be a rational satisfaction set. Then S satisfies (Per).

We define a semantics for defeasible implications by enriching the Herbrand universe
with a set T of typicality objects. Typicality objects represent individuals that are not
explicitly mentioned in a given knowledge base, and are used here to interpret defeasible
implications in a ranking of (enriched) Herbrand interpretations.

Definition 4. Given a set of typicality objects T , the corresponding enriched Herbrand
universe is defined to be the set UT = U ∪ T . For each possible partition of U into
two sets Ut and Ue (both possibly empty), we have a typicality set Typ = Ut ∪ T .
An enriched Herbrand interpretation (or EHI) E is a Herbrand interpretation defined
over an enriched Herbrand universe UT , and associated with TypE , one of the possible
typicality sets in UT .

Using the typicality sets in enriched Herbrand interpretations we distinguish
between typical and atypical objects. That is, we assume that, given an interpreta-
tion E , all the objects in TypE are typical objects, while the set Ue = UT \ TypE
represents the exceptional ones.

Every EHI E restricts to a unique Herbrand interpretation HE over U, defined
by HE = E ∩ B. The set of EHIs over T is denoted by HT . To interpret defeasible
implications we make use of preference rankings over HT .

Definition 5. A ranked interpretation is a function rk : HT → Ω ∪ {∞}, for some
linear poset Ω, satisfying the following properties, where we define H rk

T = {E ∈ HT :
rk(E) �= ∞} to be the set of possible EHIs w.r.t. rk, and H rk

T (A(�x)) = {E ∈ H rk
T : E �

A(ϕ(�x)) for some ϕ : var → TypE} to be the set of possible EHIs w.r.t. rk satisfying
some typical instance of A(�x) ∈ L:

1. if rk(E) = x < ∞, then for every y ≤ x there is some E ′ ∈ HT such that rk(E ′) = y;
2. for all A(�x) ∈ L, H rk

T (A(�x)) is either empty or has an element that is an rk-
minimal model of A(�x). This is smoothness [22].

The set of ranked interpretations over T is denoted RT .

Definition 6. Let rk be a ranked interpretation. For all A(�x), B(�y) ∈ L:

1. rk � A(�x) iff E � A(�x) for all E ∈ H rk
T ;

2. rk � A(�x) → B(�y) iff E � A(�x) → B(�y) for all E ∈ H rk
T ;

3. rk � A(�x) � B(�y) iff E � A(ϕ(�x)) → B(ϕ(�y)) for all E ∈ minrk H
rk

T (A(�x)) and
all ϕ : var → TypE .

Thus, compounds and classical implications are true in a ranked interpretation rk
if they are true in all possible EHIs w.r.t. rk, while a defeasible implication is true
in rk if its classical counterparts, with variables substituted by typicality objects, are
true in all minimal EHIs (possible w.r.t. rk) in which the antecedent of the defeasible
implication is true. A ranked interpretation in which a statement is true is a ranked
model of the statement.

88 G. Casini et al.

Example 2. This is a (slightly modified) example proposed by Delgrande [13]. Let
const = {clyde, fred}, var = {x, y}, and pred = {elephant, keeper, likes}. The fol-
lowing DRFOL knowledge base states that elephants and keepers are disjoint, that
elephants usually like keepers, that elephants usually don’t like keeper Fred, and that
elephant Clyde usually does like Fred:

K =

⎧
⎪⎪⎨

⎪⎪⎩

elephant(x) → ¬keeper(x),
elephant(x) ∧ keeper(y) � likes(x, y),

elephant(x) ∧ keeper(fred) � ¬likes(x, fred),
elephant(clyde) ∧ keeper(fred) � likes(clyde, fred)

⎫
⎪⎪⎬

⎪⎪⎭

Let T = {t1, . . .} be the set of typicality objects. For readability we abbreviate
elephant with e, keeper with k and likes with l.

Consider the EHIs E1 = {e(t1), k(t2), l(t1, t2), e(t2), e(clyde), k(fred), l(clyde, fred)},
E2 = {e(t1), k(t2), l(t1, t2), k(t3), l(t1, t3), e(clyde), k(fred), l(clyde, fred)}, and E3 =
{e(t1), k(t2), e(t2), e(clyde), k(fred), l(clyde, fred)}. In all these EHIs let Ut = ∅ and
consequently Typ = T . That is, in each of them the defeasible implications are eval-
uated only w.r.t. the typicality objects. Let rk1(E1) = rk1(E2) = 0, rk1(E3) = 1, and
rk1(E) = ∞ for all other EHIs. Then rk1 is a ranked model of the knowledge base
above. Let rk2(E1) = rk2(E3) = 0, rk2(E2) = 1, and rk2(E) = ∞ for all other EHIs.
Then rk2 is not a ranked model of elephant(x) ∧ keeper(y) � likes(x, y), but is a ranked
model of elephant(x)∧keeper(fred) � ¬likes(x, fred) and elephant(clyde)∧keeper(fred) �

likes(clyde, fred).

The main important technical result of the paper is a representation result, com-
prising a soundness result (Theorem 1) and a completeness result (Theorem 2), showing
that ranked interpretations precisely characterise rational satisfaction sets:

Definition 7. The satisfaction set Srk corresponding to a ranked interpretation rk is:
Srk = {α ∈ L ∪ L� : rk � α}.

First we show that all ranked interpretations generate rational satisfaction sets as
defined above:

Theorem 1. For every ranked interpretation rk, Srk is a rational satisfaction set.

Then we show every rational set S can be realised as the satisfaction set corre-
sponding to some ranked interpretation:

Theorem 2. For every rational satisfaction set S there exists a ranked interpretation
rk, over an infinite set of T of typicality objects, such that S = Srk.

4 Defeasible Entailment

A central question that we have postponed until now is entailment. That is, given a
DRFOL knowledge base K, when are we justified in asserting that a DRFOL formula
α follows defeasibly from K? In this section, we provide one answer to this question
by defining a semantic version of Rational Closure [24] for DRFOL. It is, by now,
well-established that systems for defeasible reasoning are amenable to multiple forms
of entailment, and the work we present in this section should therefore be viewed as
the first step in a larger investigation into defeasible entailment.

KLM-Style Defeasibility for Restricted First-Order Logic 89

In this section we consider the question of defeasible entailment for DRFOL and
define a semantic version of Rational Closure [24] for DRFOL. Due to the so-called
drowning effect [4], it is considered inferentially too weak for some application domains.
Despite that, it is a semantic construction that can be extended to obtain other inter-
esting entailment relations [10,12,15,23]. It has gained attention in the framework of
DLs [6,9,11,17]. An equivalent semantic construction, System Z [26], has been con-
sidered for unary first-order logic [2,3,20]. Several equivalent definitions of Rational
Closure can be found in the literature. Here we refer to the approach due to Booth and
Paris [7] and Giordano et al. [17].

Let a knowledge base K be a set of propositional defeasible implications α |∼ β.
Booth and Paris provide a construction with the following two immediate consequences:
(i) Given all the ranked models of K, there is a model R∗ of K, that we can call
the minimal one, which assigns to every propositional valuation v the minimal rank
assigned to it by any of the ranked models of K. (ii) Propositional Rational Closure can
be characterised using R∗. That is, α |∼ β is in the (propositional) Rational Closure
of K iff R∗ � α |∼ β. The intuition behind the use of the ranked model R∗ for the
definition of entailment is that it formalises the presumption of typicality [23]: assigning
to each valuation the lowest possible rank, we model a reasoning pattern in which we
assume that we are in one of the most typical situations that are compatible with our
knowledge base.

We can define an analogous construction for DRFOL, but to do so we first need to
address a technical restriction regarding typicality objects. More specifically, Theorem
2 requires an infinite set of typicality objects to be true in general. The next result
shows that ranked interpretations can be restricted to finite sets of typicality objects,
which is exactly what we need for our definition of defeasible entailment.

Proposition 2. Let K ⊆ L ∪ L�. Then K has a unique minimal ranked model iff it
has a unique minimal ranked model over a finite set T ′ of typicality objects, with the
size of T ′ referred to as the order of K.

The order of K depends on the number of formulas in K and the number of
quantifier-bound variables in the formula, and is easy to calculate. The minimal ranked
interpretation is defined in two stages, combining the two minimisation approaches used
in propositional logic and DLs, respectively: first the rank rk∗

K, a minimisation with
respect to the rank of the EHIs, in line with the propositional approach [7,17]; then we
refine it into the rank rkK, based on the minimisation of the position of the constants
inside the EHIs, in line with the DL approach [9,17].

Definition 8. Let K ⊆ L ∪ L� be of order n, and take T ′ ⊂ T to be a finite set of
typicality objects of cardinality n. The rank rk∗

K : HT ′ → N∪{∞} is defined as follows:

rk∗
K(E) = min{rk(E) : rk ∈ RT ′ and rk � K}.

The minimal ranked model of K, which we denote by rkK : HT ′ → (N×N) ∪ {∞},
is defined as:

• rkK(E) = ∞, if rk∗
K(E) = ∞;

• rkK(E) = (i, j), if:

a) rk∗
K(E) = i (i ∈ N); and

b) for every k ≥ j, there is no E ′ s.t. Typ′
E ⊃ TypE and rkK(E ′) = (i, k); and

c) for every l < j, there is some E ′ s.t. Typ′
E ⊃ TypE and rkK(E ′) = (i, l).

90 G. Casini et al.

The order is defined lexicographically: (i, j) ≤ (k, l) iff i < j, or i = j and j ≤ l.

Given a consistent K and fixed a finite set of typicality constants, rkK exists and
is unique.

Proposition 3. Let K be a knowledge base with a ranked model rk. Then, for a fixed
finite enriched Herbrand universe UT , K has exactly one minimal ranked model rkK.

Note that by convention min ∅ = ∞, and rkK is a ranked interpretation over T ′,
since the lexicographic order defined in Definition 8 can easily be translated into an
order defined over N∪∞ satisfying the constraints from Definition 5. Hence rkK ∈ RT ′ .
Intuitively, rkK is the result of first “pushing” every EHI rank as low as possible amongst
the models of K, similar to how it’s done in the propositional approach, and then giving
priority to the EHIs that have a bigger set of objects considered typical. That is, a
bigger set Typ, in line with the DL approach. This minimal ranked model can be used
to define a defeasible entailment relation for DRFOL:

Definition 9. Let K ⊆ L ∪ L� and α ∈ L ∪ L�. Then α is in the Rational Closure
of K, denoted K |≈rc α, iff rkK � α.

The idea is that we give preference to the EHIs in which the set of typical individuals
is maximal. That is, we assume that as many objects as possible behave according to
our expectations.

Example 3. Assume K as in Example 2. The order of K is 2, so we build our minimal
model rkK using the set of EHIs HT ′ , where the set of typical constants is T ′ = {t1, t2}.
Each EHI E satisfying K will be assigned rank rk∗

K′(E) = 0. That is, all the EHIs in
which, given two constants a, b ∈ TypE , if a is an elephant and b is a keeper, a likes
b but, if fred is a keeper, a does not like fred. Also, if fred is a keeper and clyde is an
elephant, clyde likes fred. All the other EHIs will be assigned rank 1, apart those in
which keepers and elephants are not disjoint, that will have rank ∞. For example, the
EHI E1 from Example 2 would have rank 0, while E3 would have rank 1, since it does
not satisfy the formula elephant(x)∧keeper(y) � likes(x, y) (E2 is not considered in rkK,
since it uses the constant t3).

Now extend K into K′ by adding the facts elephant(dustin) and keeper(george). Also,
add the unary predicate purple(x) to pred. The order of K′ is still 2, so we build our
minimal model rkK′ using again the set of EHIs HT ′ . Again, each EHI E satisfying K′

will be assigned rank rk∗
K′(E) = 0, while only the EHIs in which elephants and keepers

are not disjoint, and either dustin is not an elephant or george is not a keeper, will have
rank ∞.

We need to refine rk∗
K into rkK looking at the relative sizes of the sets Typ associated

to each EHI. Among the EHIs E s.t. rk∗
K(E) = 0, the ones in which TypE is bigger are

those in which TypE = T ∪ U. In order to satisfy K′, in such EHIs it is necessary
that fred is not a keeper. Such EHIs will have rank (0, 0) in rkK′ . Since we have no
information forcing the exceptionality of dustin and george, such minimal models must
satisfy likes(dustin, george), and we obtain the intuitive conclusion that K′ |≈rc � �

likes(dustin, george).
Being a ranked interpretation, the desirable form of monotonicity (Rm) holds. For

example, note that all EHIs E at rank (0, 0) in the minimal model rkK′ would either sat-
isfy purple(a) or not for any a ∈ TypE , since it is irrelevant w.r.t. the satisfaction of K′.
The outcome would be that, while satisfying elephant(x)∧keeper(fred) � ¬likes(x, fred)
(which is in K′), rkK′ would not satisfy elephant(x) ∧ keeper(fred) � ¬purple(x), while
it would satisfy elephant(x) ∧ purple(x) ∧ keeper(fred) � ¬likes(x, fred).

KLM-Style Defeasibility for Restricted First-Order Logic 91

More generally, Rational Closure, in the propositional and DL cases, satisfies a
number of attractive properties:

(Incl) α ∈ K implies K |≈rc α

(Smp) S = {α : K |≈rc α} is rational

It is straightforward that these properties carry over to our definition of |≈rc.

Theorem 3. |≈rc satisfies (Incl) and (Smp).

It is worthwhile delving a bit deeper into each of these properties. The first one, (Incl),
also known as Inclusion, simply requires that statements in K also be defeasibly entailed
by K. It is a meta-version of the (Refl) rationality postulate for propositional logic
(described in Sect. 2) and for DRFOL (described in Sect. 3). While the property itself
might seem self-evident, it is instructive to view it in concert with the definition of
rkK. From this it follows that rkK, which essentially defines Rational Closure, is the
ranked interpretation in which EHIs are assigned a ranking that is truly as low (i.e.,
as typical) as possible, subject to the constraint that rkK is a model of K. This aligns
with the intuition of propositional Rational Closure which requires of valuations in a
ranked interpretation to be as typical as possible.

(Smp) requires the set of statements corresponding to the Rational Closure of K to
be rational (cf. Definition 3). By virtue of Theorem 2, this requires defeasible entailment
to be characterised by a single ranked interpretation, whence the fact the property is
also referred to as Single Model Property.

5 Related Work

Defeasible reasoning is part of a broader research programme on conditional reasoning
[1], most of which was developed for propositional logic. This paper falls in the class
of approaches aimed at moving beyond propositional expressivity. Besides the many
extensions of defeasible reasoning to DLs in the recent literature [5,9,17], there have
also been proposals to extend this approach to FOL. Most of these define a preference
order on the domain [8,14,28], in line with some of the aforementioned DL proposals,
and present rationality postulates, but they do not provide characterisations in terms
of rationality postulates. Others [13,21] are formally closer to our work in that they
use preference orders over interpretations.

Delgrande [13] proposes a semantics closer to the intuitions behind circumscrip-
tion [25], giving preference to interpretations minimising counter-examples to defeasi-
ble conditionals. On the other hand, Kern-Isberner and Thimm [21] propose a technical
solution much closer to the work we present here. Like ours, their semantics is based
on Herbrand interpretations. They define ordinal conditional functions over the set of
Herbrand interpretations, obtaining a structure that is very close to our ranked inter-
pretations. They identify some individuals as representatives of a conditional. This is
done to formalise the same intuition (or, at least, an intuition that is very similar) that
underlies our decision to introduce typicality objects. Apart from other formal differ-
ences (e.g. the expressivity of their language is slightly different), their work focuses
on the definition of a notion of entailment based on a specific semantic construction
carried over from the propositional framework known as c-representations of a condi-
tional knowledge base [18,19]. In contrast, our focus in this paper is on getting the
theoretical foundations of defeasible reasoning for restricted FOL in place. Thus, our

92 G. Casini et al.

work here is centred around a representation result that provides a characterisation of
the semantics in terms of structural properties. And while we present some results on
defeasible entailment, we have left a more in-depth study of this important topic as
future work. Indeed, it is our conjecture that the foundations we have put in place in
this paper will allow for the definition of more than one form of defeasible entailment.
At the same time, a more in-depth comparison with the proposal of Kern-Isberner and
Thimm remains to be done.

Kern-Isberner and Beierle [20] and Beierle et al. [2,3] use the same semantic app-
roach of Kern-Isberner and Thimm [21] to develop an extension of Pearl’s System Z [26]
for first-order logic, but they restrict their attention to unary predicates. System Z is
a form of entailment that is very close to the approach we introduce here.

Brafman [8] suggests preference orders over the domain should result in forms of
reasoning quite different from the use of preference orders on interpretations, compa-
rable to the difference between statistical and subjective readings of probabilities. We
leave an investigation of the differences between these two modelling solutions as future
work.

We conclude this section with some remarks on the differences between DRFOL
and the defeasible DL DALC [9]. When DALC is stripped of existential and value
restrictions and confined to TBox statements, and when DRFOL is restricted to unary
predicates and open implications (defeasible and classical), every concept C in DALC
can be mapped to a compound C(x) in DRFOL, and vice versa. It is then possible
to obtain a result that is analogous to the propositional case, with one exception: a
defeasible implication of the form C(x) � ⊥ has a meaning that is different than C�∼⊥,
its DALC counterpart.

This marks an important distinction between DRFOL and both the propositional
KLM framework and DALC, in which classical statements are equivalent to certain
defeasible implications. In the propositional case, α is equivalent to ¬α |∼ ⊥ (R � α iff
R � ¬α |∼ ⊥ for all R) while, for DALC, C � ⊥ is equivalent to C�∼⊥. But in DRFOL,
defeasible implications cannot inform us about compounds or classical implications.
Formally, rational satisfaction sets do not necessarily satisfy the following postulate:

(Sub)
A(�x) � ⊥ ∈ S
A(�x) → ⊥ ∈ S

Note nevertheless that for a ground compound α (including those containing 0-ary
predicates) it is indeed the case that α � ⊥ is equivalent to α → ⊥. It is when α is
an open compound that (Sub) need not hold. As result, DRFOL provides the domain
modeler with greater flexibility in that it leaves open the possibility of there being only
atypical objects, something that is not possible in the propositional and DL cases.

6 Conclusion and Future Work

In this paper, we have laid the theoretical groundwork for KLM-style defeasible RFOL.
Our primary contribution is a set of rationality postulates describing the behaviour
of DRFOL, a typicality semantics for interpreting defeasibility, and a representation
result, proving that the proposed postulates characterise the semantic behaviour pre-
cisely.

KLM-Style Defeasibility for Restricted First-Order Logic 93

With the theoretical core in place, we then proceeded to define a form of defeasible
entailment for DRFOL that can be viewed as the DRFOL equivalent of the proposi-
tional form of defeasible entailment known as Rational Closure.

With a suitable definition of DRFOL defeasible entailment in place, the next step
is to design algorithms for computing DRFOL defeasible entailment. Here we plan to
draw inspiration from both the propositional and DL cases, where defeasible entailment
can be reduced to a series of classical entailment checks, sometimes in polynomial time
and with a polynomial number of classical entailment checks.

The theoretical framework presented in this paper also places us in a position to
investigate extensions to other restricted versions of first-order logic.

Acknowledgments. This work was partially supported by the ANR Chaire IA
BE4musIA: BElief change FOR better MUlti-Source Information Analysis, and by
TAILOR, a project funded by EU Horizon 2020 research and innovation programme
under GA No. 952215.

References

1. Arlo-Costa, H.: The logic of conditionals. In: The Stanford Encyclopedia of Philos-
ophy. Summer 2019 edition. Springer Dordrecht (2019). https://doi.org/10.1007/
978-94-015-7622-2

2. Beierle, C., Falke, T., Kutsch, S., Kern-Isberner, G.: Minimal tolerance pairs for
system Z-like ranking functions for first-order conditional knowledge bases. In:
Proeedings of FLAIRS 2016, pp. 626–631. AAAI Press (2016)

3. Beierle, C., Falke, T., Kutsch, S., Kern-Isberner, G.: System ZFO: default reasoning
with system Z-like ranking functions for unary first-order conditional knowledge
bases. Int. J. Approx. Reason. 90, 120–143 (2017)

4. Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency manage-
ment and prioritized syntax-based entailment. In: Proceedings of IJCAI-1993, pp.
640–645. Morgan Kaufmann Publishers Inc. (1993)

5. Bonatti, P.A.: Rational closure for all description logics. Artif. Intell. 274, 197–223
(2019)

6. Bonatti, P.A., Faella, M., Petrova, I.M., Sauro, L.: A new semantics for overriding
in description logics. Artif. Intell. 222, 1–48 (2015)

7. Booth, R., Paris, J.B.: A note on the rational closure of knowledge bases with both
positive and negative knowledge. J. Log. Lang. Inf. 7(2), 165–190 (1998)

8. Brafman, R.I.: A first-order conditional logic with qualitative statistical semantics.
J. Log. Comput. 7(6), 777–803 (1997)

9. Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Principles
of KLM-style defeasible description Logics. ACM T. Comput. Log. 22(1) (2021)

10. Casini, G., Meyer, T., Moodley, K., Nortjé, R.: Relevant closure: a new form of
defeasible reasoning for description logics. In: Fermé, E., Leite, J. (eds.) JELIA
2014. LNCS (LNAI), vol. 8761, pp. 92–106. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11558-0_7

11. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Jan-
hunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15675-5_9

12. Casini, G., Straccia, U.: Defeasible inheritance-based description logics. J. Artif.
Intell. Res. 48, 415–473 (2013)

https://doi.org/10.1007/978-94-015-7622-2
https://doi.org/10.1007/978-94-015-7622-2
https://doi.org/10.1007/978-3-319-11558-0_7
https://doi.org/10.1007/978-3-319-11558-0_7
https://doi.org/10.1007/978-3-642-15675-5_9

94 G. Casini et al.

13. Delgrande, J.P.: On first-order conditional logics. Artif. Intell. 105(1), 105–137
(1998)

14. Delgrande, J.P., Rantsoudis, C.: A Preference-based approach for representing
defaults in first-order logic. In: Proceedings of NMR 2020, pp. 120–129 (2020)

15. Giordano, L., Gliozzi, V.: Strengthening the rational closure for description logics:
an overview. In: Proceedings of CILC 2019, pp. 68–81. CEUR-WS.org (2019)

16. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A non-monotonic description
Logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

17. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Semantic characterization of
rational closure: from propositional logic to description logics. Art. Int. 226, 1–33
(2015)

18. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision -
Considering Conditionals as Agents, LNCS, vol. 2087. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44600-1

19. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preser-
vation in belief revision. Ann. Math. Artif. Intell. 40(1–2), 127–164 (2004)

20. Kern-Isberner, G., Beierle, C.: A system Z-like approach for first-order default
reasoning. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances
in Knowledge Representation, Logic Programming, and Abstract Argumentation.
LNCS (LNAI), vol. 9060, pp. 81–95. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-14726-0_6

21. Kern-Isberner, G., Thimm, M.: A ranking semantics for first-order conditionals.
In: Proceedings of ECAI 2012, pp. 456–461. IOS Press (2012)

22. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44, 167–207 (1990)

23. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell.
15(1), 61–82 (1995)

24. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Art.
Intell. 55, 1–60 (1992)

25. McCarthy, J.: Circumscription, a form of nonmonotonic reasoning. Art. Intell.
13(1–2), 27–39 (1980)

26. Pearl, J.: System Z: a natural ordering of defaults with tractable applications to
nonmonotonic reasoning. In: Proceedings of TARK 1990 (1990)

27. Pensel, M., Turhan, A.Y.: Reasoning in the Defeasible Description Logic EL⊥
- computing standard inferences under rational and relevant semantics. Int. J.
Approx. Reason. 103, 28–70 (2018)

28. Schlechta, K.: Defaults as generalized quantifiers. J. Log. Comput. 5(4), 473–494
(1995)

https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/978-3-319-14726-0_6
https://doi.org/10.1007/978-3-319-14726-0_6

Semantic Characterizations of AGM
Revision for Tarskian Logics

Faiq Miftakhul Falakh1(B) , Sebastian Rudolph1 , and Kai Sauerwald2

1 Technische Universität Dresden, Dresden, Germany
{faiq_miftakhul.falakh,sebastian.rudolph}@tu-dresden.de

2 FernUniversität in Hagen, Hagen, Germany
kai.sauerwald@fernuni-hagen.de

Abstract. Given the increasingly dynamic nature of knowledge in the
era of Web-based information exchange, techniques to revise recorded
knowledge – such as knowledge graphs or ontologies – with respect to
new findings are more important than ever. For knowledge representa-
tion approaches based on formal logics, the AGM belief revision postu-
lates by Alchourrón, Gärdenfors, and Makinson continue to represent a
cornerstone in research related to belief change. Katsuno and Mendel-
zon (K&M) adopted the AGM postulates for changing belief bases and
characterized AGM belief base revision in propositional logic over finite
signatures. We generalize K&M’s approach to (multiple) base revision
in arbitrary Tarskian logics, covering all logics with a classical model-
theoretic semantics and hence a wide variety of logics used in knowledge
representation and beyond. Our generic formulation applies to various
notions of “base”; such as belief sets, arbitrary or finite sets of sentences,
or single sentences. The core result is a representation theorem showing
a two-way correspondence between AGM base revision operators and
certain “assignments”: functions mapping belief bases to total — yet not
transitive — “preference” relations between interpretations. We also pro-
vide a characterization of all Tarskian logics for which our result can be
strengthened to assignments producing transitive preference relations as
in K&M’s original work.

Keywords: Belief revision · Tarskian logics · Semantic
characterization

1 Introduction

The question of how a rational agent should change her beliefs in the light of
new information is crucial to AI systems. It gave rise to the area of belief change,
which has been massively influenced by the AGM paradigm of Alchourrón, Gär-
denfors, and Makinson [2]. The AGM theory assumes that an agent’s beliefs are
represented by a deductively closed set of sentences (commonly referred to as
a belief set). A change operator for belief sets is required to satisfy appropriate

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 95–110, 2022.
https://doi.org/10.1007/978-3-031-21541-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_7&domain=pdf
http://orcid.org/0000-0001-7974-9898
http://orcid.org/0000-0002-1609-2080
http://orcid.org/0000-0002-1551-7016
https://doi.org/10.1007/978-3-031-21541-4_7

96 F. M. Falakh et al.

postulates in order to qualify as a rational change operator. While the contri-
bution of AGM is widely accepted as solid and inspiring foundation, it lacks
support for certain relevant aspects: it provides no immediate solution on how
to deal with multiple inputs (i.e., several sentences instead of just one), with
bases (i.e., arbitrary collections of sentences, not necessarily deductively closed),
or with the problem of iterated belief changes.

Katsuno and Mendelzon [14] – henceforth abbreviated K&M – deal with the
issues of belief bases and multiple inputs in an elegant way: as in propositional
logic, every set of sentences (including an infinite one) is equivalent to one single
sentence, belief states and multiple inputs are considered as such single sentences.
In this setting, K&M provide the following set of postulates, derived from the
AGM revision postulates, where ϕ,ϕ1, ϕ2, α, and β are propositional sentences,
and ◦ is a base change operator:

(KM1) ϕ ◦ α |= α.
(KM2) If ϕ ∧ α is consistent, then ϕ ◦ α ≡ ϕ ∧ α.
(KM3) If α is consistent, then ϕ ◦ α is consistent.
(KM4) If ϕ1 ≡ ϕ2 and α ≡ β, then ϕ1 ◦ α ≡ ϕ2 ◦ β.
(KM5) (ϕ ◦ α) ∧ β |= ϕ ◦ (α ∧ β).
(KM6) If (ϕ ◦ α) ∧ β is consistent, then ϕ ◦ (α ∧ β) |= (ϕ ◦ α) ∧ β.

The postulates (KM1)–(KM6) together are equivalent to the AGM revision pos-
tulates, thus they also yield minimal change with respect to the initial beliefs.
Note that, in this setting, the semantic content of the revision result is fully
determined by the semantic contents of the prior base and the new incoming
information; syntactic variations are irrelevant. This sets K&M’s approach apart
from other prominent lines of work, where revision is performed on a syntactic
level and thus the syntactic form of the input may have a semantic effect on
the result. A prominent example for such syntactic approaches is base change
according to Hansson [13].

While the AGM paradigm is axiomatic, much of its success originated from
operationalizations via representation theorems. Yet, most existing characteri-
zations of AGM revision impose additional assumptions on the underlying logic
such as compactness, closure under standard connectives, deduction, or supra-
classicality [22]. Leaving the safe grounds of these assumptions complicates mat-
ters; representation theorems do not easily generalize to arbitrary logics. This
has sparked investigations into tailored characterizations of AGM belief change
for specific logics, such as Horn logic [6], temporal logics [3], action logics [25],
first-order logic [28], and description logics [8,12,19]. More general approaches
to revision in non-classical logics were given by Ribeiro, Wassermann, and col-
leagues [20–22], Delgrande, Peppas, and Woltran [7], Pardo, Dellunde, and Godo
[17], or Aiguier et al. [1].

In this article, we consider (multiple) base revision in arbitrary Tarskian
logics, i.e., logics exhibiting a classically defined model theory. We thereby refine
and generalize the popular approach by Katsuno and Mendelzon [14] which was
tailored to belief base revision in propositional logic with a finite signature.
K&M start out from belief bases, assigning to each a total preorder on the

Semantic Characterizations of AGM Revision for Tarskian Logics 97

interpretations, which expresses – intuitively speaking – which interpretation
is “closer to being a model”. The models of the result of any AGM revision
then coincide with the preferred (i.e., preorder-minimal) models of the injected
information.

We consider base revision in base logics, which provides an abstraction that
elegantly captures different notions of bases. Our approach extends the idea of
preferences over interpretations from the propositional to the general setting of
Tarskian logics. This requires to adjust the nature of the assignments indicating
the degree of model-alikeness: We have to explicitly require that minimal models
always exist (min-completeness) and that they can be described in the logic
(min-expressibility). Moreover, we show that demanding preference relations to
be preorders is infeasible in the general setting; we have to waive transitivity
and retain only a weaker property (min-retractivity).

The main contributions of this article are the following:

– We introduce the notion of base logics to uniformly capture various popular
ways of defining belief states by certain sets of sentences over Tarskian logics.
Among others, this includes the cases where belief states are arbitrary sets of
sentences and where belief states are belief sets.

– We extend K&M’s semantic approach from the setting of singular base revi-
sion in propositional logic to multiple base revision in arbitrary base logics.

– For this setting, we provide a representation theorem characterizing AGM
belief change operators via appropriate assignments.

– We characterize all those logics for which every AGM operator can even
be captured by preorder assignments (i.e., in the classical K&M way). In
particular, this condition applies to all logics supporting disjunction and hence
all classical logics. For those logics, we provide one representation theorem
for the syntax-independent and one for the syntax-dependent setting.

Detailed proofs, illustrative examples and comprehensive discussions on
related aspects can be found in the extended online version of the paper [9].

2 Preliminaries

In this section, we introduce the logical and algebraic notions used in the paper.

2.1 Logics with Classical Model-Theoretic Semantics

We consider logics endowed with a classical model-theoretic semantics. The syn-
tax of such a logic L is given syntactically by a (possibly infinite) set L of sen-
tences, while its model theory is provided by specifying a (potentially infinite)
class Ω of interpretations (also called worlds) and a binary relation |= between
Ω and L where ω |= ϕ indicates that ω is a model of ϕ. Hence, a logic L is
identified by the triple (L,Ω, |=). We let �ϕ� = {ω ∈ Ω | ω |= ϕ} denote the set
of all models of ϕ ∈ L. Logical entailment is defined as usual (overloading “ |=")

98 F. M. Falakh et al.

via models: for two sentences ϕ and ψ we say ϕ entails ψ (written ϕ |= ψ) if
�ϕ� ⊆ �ψ�.

Notions of modelhood and entailment are easily lifted from single sentences
to sets. We obtain the models of a set K ⊆ L of sentences via �K� =

⋂
ϕ∈K�ϕ�.

For K ⊆ L and K′ ⊆ L we say K entails K′ (written K |= K′) if �K� ⊆ �K′�. We
write K ≡ K′ to express �K� = �K′�. A (set of) sentence(s) is called consistent
with another (set of) sentence(s) if the two have models in common. Unlike many
other belief revision frameworks, we impose no further requirements on L (like
closure under certain operators or compactness).

The existence of such a classical model-theoretic semantics ensures that the
logic is Tarskian, meaning that taking all consequences is a closure operator
[24,26], which also implies the monotonicity condition: if K1 |= ϕ and K1 ⊆
K2, then K2 |= ϕ. Besides many well-known classical logics, the model-theoretic
framework assumed by us captures many more (and more expressive) logics, e.g.
first-order and second-order predicate logic, modal logics, and description logics.
Our considerations do, however, not apply to non-monotonic formalisms, such
as default logic, circumscription, or logic programming using negation as failure.

2.2 Relations over Interpretations

For describing belief revision on the semantic level, it is purposeful to endow
the interpretation space Ω with some structure. In particular, we will employ
binary relations � over Ω (formally: � ⊆ Ω × Ω), where the intuitive meaning
of ω1 � ω2 is that ω1 is “equally good or better” than ω2 when it comes to
serving as a model. We call � total if ω1 � ω2 or ω2 � ω1 for any ω1, ω2 ∈ Ω
holds. We write ω1 ≺ ω2 as a shorthand, whenever ω1 � ω2 and ω2 	� ω1 (the
intuition being that ω1 is “strictly better” than ω2). For a selection Ω′ ⊆ Ω of
interpretations, an ω ∈ Ω′ is called �-minimal in Ω′ if ω � ω′ for all ω′ ∈ Ω′.1
We let min(Ω′,�) denote the set of �-minimal interpretations in Ω′. We call �
a preorder if it is transitive and reflexive.

2.3 Bases

This article addresses the AGM revision of and by bases. In the belief revision
community, the term of base commonly denotes an arbitrary (possibly infinite)
set of sentences [10]. However, in certain scenarios, other assumptions might be
more appropriate. Hence, for the sake of generality, we decided to define the
notion of a base on an abstract level with minimal requirements (just as we
introduced our notion of logic), allowing for its instantiation in many ways.

Definition 1. A base logic is a quintuple B = (L,Ω, |=,B,�), where

– (L,Ω, |=) is a logic,
– B ⊆ P(L) is a family of sets of sentences, called bases, and

1 If � is total, this definition is equivalent to the absence of any ω′′ ∈ Ω′ with ω′′ ≺ ω.

Semantic Characterizations of AGM Revision for Tarskian Logics 99

– � : B × B → B is a binary operator over bases, called the abstract union,
satisfying �B1 � B2� = �B1� ∩ �B2�.

Next, we will demonstrate how, for some logic L = (L,Ω, |=), a corresponding
base logic can be chosen depending on one’s preferred notion of base.

Arbitrary Sets. If all (finite and infinite) sets of sentences should qualify as bases,
one can simply set B = P(L). In that case, � can be instantiated by set union
∪, then the claimed behavior follows by definition.

Finite Sets. In some settings, it is more convenient to assume bases to be finite
(e.g. when computational properties or implementations are to be investigated).
In such cases, one can set B = Pfin(L), i.e., all (and only) the finite sets of
sentences are bases. Again, � can be instantiated by set union ∪ (as a union of
two finite sets will still be finite).

Belief Sets. This setting is closer to the original framework, where the “knowledge
states” to be modified were assumed to be deductively closed sets of sentences.
We can capture such situations by accordingly letting B = {B ⊆ L | ∀ϕ ∈ L :
B |= ϕ ⇒ ϕ ∈ B}. In this case, the abstract union operator needs to be defined
via B1 � B2 = {ϕ ∈ L | B1 ∪ B2 |= ϕ}.

Single Sentences. In this popular setting, one prefers to operate on single sen-
tences only (rather than on proper collections of those). For this to work prop-
erly, an additional assumption needs to be made about the underlying logic
L = (L,Ω, |=): it must be possible to express conjunction on a sentence level,
either through the explicit presence of the Boolean operator ∧ or by some
other means. Formally, we say that L = (L,Ω, |=) supports conjunction, if for
any two sentences ϕ,ψ ∈ L there exists some sentence ϕ � ψ ∈ L satisfying
�ϕ � ψ� = �ϕ� ∩ �ψ� (if ∧ is available within the logic, we would simply have
ϕ�ψ = ϕ∧ψ). For such a logic, we can “implement” the single-sentence setting
by letting B = {{ϕ} | ϕ ∈ L} and defining {ϕ} � {ψ} = {ϕ � ψ}.

For any of the four different notions of bases, one can additionally choose to
disallow or allow the empty set as a base, while maintaining the required closure
under abstract union. In the following, we will always operate on the abstract
level of “base logics”; our notions, results and proofs will only make use of the
few general properties specified for these. This guarantees that our results are
generically applicable to any of the four described (and any other) instantiations,
and hence, are independent of the question what the right notion of bases ought
to be. The cognitive overload caused by this abstraction should be minimal; e.g.,
readers only interested in the case of arbitrary sets can safely assume B = P(L)
and mentally replace any � by ∪.

2.4 Base Change Operators

In this paper, we use base change operators to model multiple revision, which
is the process of incorporating multiple new beliefs into the present beliefs held

100 F. M. Falakh et al.

by an agent, in a consistent way (whenever that is possible). We define change
operators over a base logic as follows.

Definition 2. Let B = (L,Ω, |=,B,�) be a base logic. A function ◦ : B×B → B
is called a multiple base change operator over B.

We will use multiple base change operators in the “standard” way of the belief
change community: the first parameter represents the actual beliefs of an agent,
the second parameter contains the new beliefs. The operator then yields the
agent’s revised beliefs. The term “multiple” references the fact that the second
input to ◦ is not just a single sentence, but a belief base that may consist of
several sentences. For convenience, we will henceforth drop the term “multiple”
and simply speak of base change operators instead.

So far, the pure notion of base change operator is unconstrained and can
be instantiated by an arbitrary binary function over bases. Obviously, this does
not reflect the requirements or expectations one might have when speaking of a
revision operator. Hence, in line with the traditional approach, we will consider
additional constraints (called “postulates”) for base change operators, in order
to capture the gist of revisions.

2.5 Postulates for Revision

We consider multiple revision, focusing on package semantics for revision, which
is that all given sentences have to be incorporated, i.e. given a base K and new
information Γ (also a base here), we demand success of revision, i.e. K ◦ Γ |= Γ.

Besides the success condition, the belief change community has brought up
and discussed several further requirements for belief change operators to make
them rational [10,13]. This has led to the now famous AGM approach of revision
[2], originally proposed through a set of rationality postulates, which correspond
to the postulates (KM1)–(KM6) by K&M presented in the introduction. In our
article, we will make use of the K&M version of the AGM postulates adjusted
to our generic notion of a base logic B = (L,Ω, |=,B,�):

(G1) K ◦ Γ |= Γ.
(G2) If �K � Γ� 	= ∅ then K ◦ Γ ≡ K � Γ.
(G3) If �Γ� 	= ∅ then �K ◦ Γ� 	= ∅.
(G4) If K1 ≡ K2 and Γ1 ≡ Γ2 then K1 ◦ Γ1 ≡ K2 ◦ Γ2.
(G5) (K ◦ Γ1) � Γ2 |= K ◦ (Γ1 � Γ2).
(G6) If �(K ◦ Γ1) � Γ2� 	= ∅ then K ◦ (Γ1 � Γ2) |= (K ◦ Γ1) � Γ2.

Together, the postulates implement the paradigm of minimal change, stating
that a rational agent should change her beliefs as little as possible in the process
of belief revision. We consider the postulates in more detail: (G1) guarantees
that the newly added belief must be a logical consequence of the result of the
revision. (G2) says that if the expansion of K by Γ is consistent, then the result
of the revision is equivalent to the expansion of K by Γ. (G3) guarantees the
consistency of the revision result if the newly added belief is consistent. (G4) is

Semantic Characterizations of AGM Revision for Tarskian Logics 101

the principle of the irrelevance of the syntax, stating that the revision operation
is independent of the syntactic form of the bases. (G5) and (G6) ensure more
careful handling of (abstract) unions of belief bases. In particular, together, they
enforce that K ◦ (Γ1 � Γ2) ≡ (K ◦ Γ1) � Γ2, unless Γ2 contradicts K ◦ Γ1.

We can see that, item by item, (G1)–(G6) tightly correspond to (KM1)–
(KM6) presented in the introduction. Note also that further formulations similar
to (G1)–(G6) are given in multiple particular contexts, e.g. in the context of belief
base revision specifically for Description Logics [19], for parallel revision [5] and
investigations on multiple revision [15,18,27]. An advantage of the specific form
of the postulates (G1)–(G6) chosen for our presentation is that it does not require
L to support conjunction (while, of course, conjunction on the sentence level is
still implicitly supported via (abstract) union of bases).

3 Base Revision in Propositional Logic

A well-known and by now popular characterization of base revision has been
described by Katsuno and Mendelzon [14] for the special case of propositional
logic. To be more specific and apply our terminology, K&M’s approach applies
to the base logic

PLn = (LPLn
,ΩPLn

, |=PLn
,Pfin(LPLn

),∪)

for arbitrary, but fixed n, where LPLn contains all propositional formulae over
the atom set {p1, . . . , pn} and ΩPLn

consists of all functions mapping {p1, . . . , pn}
to {true, false} and |=PLn

is the usual satisfaction relation of propositional
logic. The requirement that the number of propositional atoms must be finite
is not overtly explicit in K&M’s paper, but it becomes apparent upon investi-
gating their arguments and proofs, and their characterization fails as soon as
this assumption is dropped. K&M’s approach also hinges on other particulari-
ties of this setting: As discussed earlier, any propositional belief base K can be
equivalently written as a single propositional sentence. Consequently, in their
approach, belief bases are actually represented by single sentences, without loss
of expressivity.

One key contribution of K&M is to provide an alternative characterization
of the propositional base revision operators satisfying (KM1)–(KM6) by model-
theoretic means, i.e. through comparisons between propositional interpretations.
We next present their results in a formulation that facilitates later generalization.
One central notion for the characterization is the notion of faithful assignment.

Definition 3 (assignment, faithful). Let B = (L,Ω, |=,B,�) be a base logic.
An assignment for B is a function �(.): B → P(Ω×Ω) that assigns to each belief
base K ∈ B a total binary relation �K over Ω. An assignment �(.) for B is called
faithful if it satisfies the following conditions for all ω, ω′ ∈ Ω and all K,K′ ∈ B:

(F1) If ω, ω′ |= K, then ω ≺K ω′ does not hold.
(F2) If ω |= K and ω′ 	|= K, then ω ≺K ω′.

102 F. M. Falakh et al.

(F3) If K ≡ K′, then �K =�K′ .

An assignment �(.) is called a preorder assignment if �K is a preorder for every
K ∈ B.

Intuitively, faithful assignments provide information about which of the two
interpretations is “closer to K-modelhood”. Consequently, the actual K-models
are �K-minimal. The next definition captures the idea of an assignment ade-
quately representing the behaviour of a revision operator.

Definition 4 (compatible). Let B = (L,Ω, |=,B,�) a base logic. A base
change operator ◦ for B is called compatible with some assignment �(.) for B if
it satisfies �K ◦ Γ� = min(�Γ�,�K) for all bases K and Γ from B.

With these notions in place, K&M’s representation result can be smoothly
expressed as follows:

Theorem 1 (Katsuno and Mendelzon [14]). A base change operator ◦ for
PLn satisfies (G1)–(G6) if and only if it is compatible with some faithful preorder
assignment for PLn.

In the next section, we discuss and provide a generalization of this charac-
terization to the setting of arbitrary base logics.

4 Approach for Arbitrary Base Logics

In this section, we prepare our main result by revisiting K&M’s concepts for
propositional logic and investigating their suitability for our general setting of
base logics. The result by Katsuno and Mendelzon established an elegant combi-
nation of the notions of preorder assignments, faithfulness, and compatibility in
order to semantically characterize AGM base change operators. However, as we
mentioned before, K&M’s characterization hinges on features of signature-finite
propositional logic that do not generally hold for Tarskian logics. Here we go
further, by extending the K&M approach by novel notions to the very general
setting of base logics.

4.1 First Problem: Non-existence of Minima

The first issue with K&M’s original characterization when generalizing to arbi-
trary base logics is the possible absence of �K-minimal elements in �Γ�: for arbi-
trary base logics, the minimum from Definition 4, required in Theorem 1, might
be empty. To remedy this problem, one needs to impose the requirement that
minima exist whenever needed, as specified in the notion of min-completeness,
defined next.

Definition 5 (min-complete). Let B = (L,Ω, |=,B,�) be a base logic. A
binary relation � over Ω is called min-complete (for B) if min(�Γ�,�) 	= ∅
holds for every Γ ∈ B with �Γ� 	= ∅.

Semantic Characterizations of AGM Revision for Tarskian Logics 103

In the special case of � being transitive and total, min-completeness triv-
ially holds whenever Ω is finite (as, e.g., in the case of propositional logic over n
propositional atoms). In the infinite case, however, it might need to be explic-
itly imposed, as already noted in earlier works [7] (cf. also the notion of limit
assumption by Lewis [16]). Note that min-completeness does not entirely disal-
low infinite descending chains (as well-foundedness would), it only ensures that
minima exist inside all model sets of consistent belief bases.

4.2 Second Problem: Transitivity of Preorder

When generalizing from the setting of propositional to arbitrary base logics,
the requirement that assignments must produce preorders (and hence transitive
relations) turns out to be too restrictive.

In fact, it has been observed before that the incompatibility between tran-
sitivity and K&M’s approach already arises for propositional Horn logic [6]. As
a consequence, we cannot help but waive transitivity (and hence the property
of the assignment providing a preorder) if we want our characterization result
to hold for all Tarskian logics. However, for our result, we need to retain a new,
weaker property (which is implied by transitivity) defined next.

Definition 6 (min-retractive). Let B = (L,Ω, |=,B,�) be a base logic. A
binary relation � over Ω is called min-retractive (for B) if, for every Γ ∈ B and
ω′, ω ∈ �Γ� with ω′ � ω, ω ∈ min(�Γ�,�) implies ω′ ∈ min(�Γ�,�).

We conveniently unite the two identified properties into one notion.

Definition 7 (min-friendly). Let B = (L,Ω, |=,B,�) be a base logic. A binary
relation � over Ω is called min-friendly (for B) if it is both min-retractive and
min-complete. An assignment �(.): B → P(Ω × Ω) is called min-friendly if �K
is min-friendly for all K ∈ B.

5 One-way Representation Theorem

We are now ready to generalize K&M’s representation theorem from proposi-
tional to arbitrary Tarskian logics, by employing the notion of compatible min-
friendly faithful assignments.

Theorem 2. Let ◦ be a base change operator for some base logic B. Then, ◦
satisfies (G1)–(G6) if and only if it is compatible with some min-friendly faithful
assignment for B.

For the “if” direction, we show that the notion of min-friendly compatible
assignment is sufficient to enforce that any compatible base revision operator
satisfies (G1)–(G6).

For the more involved “only if” direction, we provide a canonical way of
obtaining an assignment for a given revision operator and show that our con-
struction indeed yields a compatible min-friendly faithful assignment. To this

104 F. M. Falakh et al.

end, we suggest the following construction, which we consider one of this paper’s
core contributions. It realizes the idea that one should (strictly) prefer ω1 over
ω2 only if there is a witness belief base Γ that certifies that ◦ prefers ω1 over ω2.
Should no such witness exist, ω1 and ω2 will be deemed equally preferable.

Definition 8. Let B = (L,Ω, |=,B,�) be a base logic, let ◦ be a base change
operator for B and let K ∈ B be a belief base. The relation �◦

K over Ω is defined
by ω1 �◦

K ω2 if ω2 |= K◦Γ implies ω1 |= K◦Γ for all Γ ∈ B with ω1, ω2 ∈ �Γ�.

Definition 8 already yields an adequate encoding strategy for many base
logics. However, to also properly cope with certain “degenerate” base logics, we
have to hard-code that the prior beliefs of an agent are prioritized in all cases,
that is, only models of the prior beliefs are minimal. The following relation builds
upon the relation �◦

K and takes explicit care of handling prior beliefs, which is
strong enough for always obtaining a relation that is total and reflexive.

Definition 9. Let B = (L,Ω, |=,B,�) be a base logic, let ◦ be a base change
operator for B and let K ∈ B be a belief base. The relation �◦

K over Ω is then
defined by ω1 �◦

K ω2 if ω1 |= K or (ω1, ω2 	|= K and ω1 �◦
K ω2). Let �◦

(.):
B → P(Ω × Ω) denote the mapping K �→ �◦

K.

6 Two-way Representation Theorem

Theorem 2 establishes the correspondence between operators and assignments
under the assumption that ◦ is given and therefore known to exist. What remains
unsettled is the question if generally every min-friendly faithful assignment is
compatible with some base change operator that satisfies (G1)–(G6). As this is
not the case, a full, two-way correspondence, requires an additional condition on
assignments, capturing operator existence. More specifically, it is essential that
any minimal model set of a belief base obtained from an assignment corresponds
to some belief base, a property which is formalized by the following notion.

Definition 10 (min-expressible). Let B = (L,Ω, |=,B,�) be a base logic. A
binary relation � over Ω is called min-expressible if for each Γ ∈ B there exists
a belief base BΓ,� ∈ B such that �BΓ,��= min(�Γ�,�). An assignment �(.) will
be called min-expressible, if for each K ∈ B, the relation �K is min-expressible.
Given a min-expressible assignment �(.), let ◦�(.)

denote the base change operator
defined by K ◦�(.)

Γ = BΓ,�K .

It should be noted that min-expressibility is a straightforward generalization
of the notion of regularity by Delgrande and colleagues [7] to base logics. By
virtue of this extra notion, we now find the following bidirectional relationship
between assignments and operators, amounting to a full characterization.

Theorem 3. Let B be a base logic. Then the following hold:

– Every base change operator for B satisfying (G1)–(G6) is compatible with
some min-expressible min-friendly faithful assignment.

Semantic Characterizations of AGM Revision for Tarskian Logics 105

– Every min-expressible min-friendly faithful assignment for B is compatible
with some base change operator satisfying (G1)–(G6).

As an aside, note that the above theorem also implies that every min-
expressible min-friendly faithful assignment is compatible only with AGM base
change operators. This is because, one the one hand, any such assignment
fully determines the corresponding compatible base change operator model-
theoretically and, on the other hand, (G1)–(G6) are purely model-theoretic con-
ditions.

7 Total-Preorder-Representability

As we have shown, regrettably, not every AGM belief revision operator in every
Tarskian logic can be described by a total preorder assignment. Yet, we also saw
that, for some logics (like PLn), this correspondence does indeed hold. Conse-
quently, this section is dedicated to finding a characterization of precisely those
logics wherein every AGM base change operator is representable by a compatible
min-complete faithful preorder assignment. The following definition captures the
notion of operators that are well-behaved in that sense.

Definition 11 (total-preorder-representable). A base change operator ◦
for some base logic is called total-preorder-representable if there is a min-
complete faithful preorder assignment compatible with ◦.

Recall that transitivity implies min-retractivity, and thus, every min-
complete preorder is automatically min-friendly. The following definition
describes the occurrence of a certain relationship between several bases. Such
an occurrence will turn out to be the one and only reason to prevent total-
preorder-representability.

Definition 12 (critical loop). Let B = (L,Ω, |=,B,�) be a base logic. Three
or more bases Γ0,1,Γ1,2, . . . ,Γn,0 ∈ B are said to form a critical loop of length
(n + 1) if there are a base K ∈ B and consistent bases Γ0, . . . ,Γn ∈ B such that

(1) �K � Γi,i⊕1� = ∅ for every i ∈ {0, . . . , n}, where ⊕ is addition mod (n + 1),
(2) �Γi�∪�Γi⊕1� ⊆ �Γi,i⊕1� and �Γj �Γi� = ∅ for each i, j ∈ {0, . . . , n} with i 	= j,

and
(3) for each Γ� ∈ B that is consistent with at least three bases from Γ0, . . . ,Γn,

there is a Γ′
� ∈ B such that �Γ′

�� 	= ∅ and �Γ′
�� ⊆ �Γ�� \ (�Γ0,1� ∪ . . . ∪ �Γn,0�).

The three conditions in Definition 12, illustrated in Fig. 1, describe the
canonic situation brought about by some bases Γ0,1, . . . ,Γn,0 allowing for the
construction of a revision operator that unavoidably gives rise to a circular com-
patible relation. Note that due to Condition (3), every three of Γ0,1,Γ1,2, . . . ,Γn,0

together are inconsistent, but each two of them which have an index in common
are consistent, i.e. Γi,i⊕1 � Γi⊕1,i⊕2 is consistent for each i ∈ {0, . . . , n}.

The next theorem is the central result of this section, confirming that the
notion of critical loop captures exactly those base logics for which some operator
exists that is not total-preorder-representable.

106 F. M. Falakh et al.

Fig. 1. Illustrations of Conditions (1)–(3) of a critical loop from Definition 12.

Theorem 4. Let B be a base logic which does not admit a critical loop. Then
the following hold:

– Every base change operator for B satisfying (G1)–(G6) is compatible with
some min-expressible min-complete faithful preorder assignment.

– Every min-expressible min-complete faithful preorder assignment for B is com-
patible with some base change operator satisfying (G1)–(G6).

We close this section with an important implication of Theorem 4. A base logic
B= (L,Ω, |=, B,�) is called disjunctive, if for every two bases Γ1,Γ2 ∈ B there
is a base Γ1 � Γ2 ∈ B such that �Γ1 � Γ2� = �Γ1� ∪ �Γ2�. This includes the case
of any (base) logic allowing disjunction to be expressed on the sentence level,
i.e., when for every γ, δ ∈ L there exists some γ � δ ∈ L with �γ � δ� = �γ�∪ �δ�,
such that Γ1 � Γ2 can be obtained as {γ � δ | γ ∈ Γ1, δ ∈ Γ2}.

Corollary 1. In a disjunctive base logic, every belief change operator satisfying
(G1)–(G6) is total-preorder-representable.

As a consequence, for a vast amount of well-known logics, including all clas-
sical logics such as first-order and second order predicate logic, one directly
obtains total-preorder-representablility of every AGM base change operator by
Corollary 1.

8 Related Work

In settings beyond propositional logic, we are aware of three closely related
approaches that propose model-based frameworks for revision of belief bases (or

Semantic Characterizations of AGM Revision for Tarskian Logics 107

sets) without fixing a particular logic or the internal structure of interpretations,
and characterize revision operators via minimal models à la K&M with some
additional assumptions.

One semantic-based approach related to the one of K&M was proposed by
Grove [11] in the setting of Boolean-closed logics. He originally characterized
AGM revision operators via systems of spheres, collections S of sets of interpre-
tations satisfying certain conditions. Delgrande and colleagues [7] then reformu-
lated Grove’s representation theorem stating that (expressed in our terminology)
any AGM revision operator can be obtained from a compatible min-complete
faithful preorder assignment, provided the set of interpretations is Ω-expressible,
i.e. for any subset Ω′ ⊆ Ω there exists a base Γ such that �Γ� = Ω′. In this
formulation, Groves result also holds for logics with infinite Ω. Grove’s result
constitutes a special case of our representation theorem: from the assumption
of Boolean-closedness, it follows that the considered logics are disjunctive and
therefore free of critical loops (cf. Theorem 4 and Corollary 1). The assumption
of Ω-expressibility immediately implies min-expressibility for all relations.

The representation result of Delgrande et al. [7] confines the considered log-
ics to those where the set Ω of interpretations (or possible worlds) is finite2 and
where any two different interpretations ω, ω′ ∈ Ω can be distinguished by some
sentence ϕ ∈ L, i.e., ω ∈ �ϕ� and ω′ 	∈ �ϕ�. Moreover, they extend the AGM
postulates by the following extra one, denoted (Acyc). With these ingredients in
place, they [7] establish that, for the logics they consider, there is a two-way cor-
respondence between those AGM revision operators satisfying (Acyc) and min-
expressible faithful preorder assignments. Instead of the term “min-expressible”,
they use the term regular. The approach of Delgrande et al. [7] can be seen as
complementary to ours. While our proposal is to relinquish the requirement of
using preorders, their (Acyc) postulate allows for a preorder characterization
even in logics with critical loops by disallowing some “unnatural” AGM revision
operators.

The approach of Aiguier et al. [1] considers AGM belief base revision in
logics with a possibly infinite set Ω of interpretations. Notably, they propose
to consider certain bases, that actually do have models, as inconsistent (and
thus in need of revision). While, in our view, this is at odds with the foun-
dational assumptions of belief revision (revision should be union/conjunction
unless facing unsatisfiability), this appears to be a design choice immaterial to
the established results. As far as the postulates are concerned, Aiguier et al. [1]
decide to rule out (KM4)/(G4), arguing in favor of syntax-dependence. Like us,
they [1] propose to drop the requirement that assignments have to yield pre-
orders. In addition to the standard notion of compatibiliy, their result hinges on
an additional correspondence between the assignment and the preorder (third
bullet point).

2 Note that this precondition excludes not only more complex logics such as first-
order or modal logics and most of their fragments, but also propositional logic with
infinite signature. On the positive side, this choice guarantees min-completeness of
any preorder.

108 F. M. Falakh et al.

9 Conclusion

The central objective of our treatise was to provide an exact model-theoretic
characterization of AGM belief revision in the most general reasonable sense,
i.e., one that uniformly applies to every logic with a classical model theory (i.e.,
every Tarskian logic), to any notion of bases that allows for taking some kind
of “unions” (including the cases of belief sets, sets of sentences, finite sets of
sentences, and single sentences), and to all base change operators adhering to
the unaltered AGM postulates (without imposing further restrictions through
additional postulates).

We found that in the general case considered by us, the original result of
K&M for signature-finite propositional logic fails in many ways and needs sub-
stantial adaptations. In particular, aside from delivering total relations and being
faithful, the assignment now needs to satisfy (i) min-expressibility, guaranteeing
existence of a describing base for any model set obtained by taking minimal
interpretations among some base’s models, (ii) min-completeness, ensuring that
minimal interpretations exist in every base’s model set, and (iii) min-retractivity
instead of transitivity, making sure that minimality is inherited to more prefer-
able elements.

While the first two adjustments have been recognized and described in prior
work, the notion of min-retractivity (and the decision to replace transitivity
by this weaker notion and thus give up on the requirement that preferences
be preorders) seems to be novel. Yet, it turns out to be the missing piece for
establishing the desired two-way compatibility-correspondency between AGM
revision operators and preference assignments of the described kind (cf. Theorem
3).

Conceding that transitivity is a rather natural choice for preferences and
preorder assignments might be held dear by members of the belief revision com-
munity, we went on to investigate for which logics our general result holds even
if assignments are required to yield preorders. We managed to pinpoint a spe-
cific logical phenomenon (called critical loop), the absence of which in a logic
is necessary and sufficient for total-preorder-representability. While the criterion
by itself maybe somewhat technical and unwieldy, it can be shown to subsume
all logics featuring disjunction and therefore all classical logics.

Next to advancing the general model-theoretic understanding of AGM belief
revision for the vast class of Tarskian logics, our research also opens up more
concrete opportunities: Among others, it allows for the definition of novel AGM
belief revision operators from a model-theoretic perspective, through the design
of an appropriate assignment. Another interesting direction may be to study
the potential relationship between our notion of min-retractivity and notions of
quasi-transitivity and Suzumura-consistency in social choice theory [4] or interval
orders in belief set contraction [23].

Acknowledgements. Faiq Miftakhul Falakh was supported by the Indonesia Endow-
ment Fund for Education (LPDP) Scholarship and by the Federal Ministry of Education
and Research, Germany (BMBF) in the Center for Scalable Data Analytics and Artifi-

Semantic Characterizations of AGM Revision for Tarskian Logics 109

cial Intelligence (ScaDS. AI). Sebastian Rudolph is supported by the ERC through his
Consolidator Grant 771779 (DeciGUT). Kai Sauerwald is supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) Grant BE 1700/9-1 and
Grant BE 1700/10-1 awarded to Christoph Beierle as part of the priority program
“Intentional Forgetting in Organizations” (SPP 1921). We are grateful for the reviews
and comments by the three anonymous reviewers.

References

1. Aiguier, M., Atif, J., Bloch, I., Hudelot, C.: Belief revision, minimal change and
relaxation: a general framework based on satisfaction systems, and applications to
description logics. Artif. Intell. 256, 160–180 (2018)

2. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symb. Log. 50(22), 510–530
(1985)

3. Bonanno, G.: Axiomatic characterization of the AGM theory of belief revision in
a temporal logic. Artif. Intell. 171(2–3), 144–160 (2007)

4. Bossert, W., Suzumura, K.: Quasi-transitive and suzumura consistent relations.
Soc. Choice Welf. 39(2–3), 323–334 (2012)

5. Delgrande, J., Jin, Y.: Parallel belief revision: revising by sets of formulas. Artif.
Intell. 176(1), 2223–2245 (2012)

6. Delgrande, J.P., Peppas, P.: Belief revision in Horn theories. Artif. Intell. 218, 1–22
(2015)

7. Delgrande, J.P., Peppas, P., Woltran, S.: General belief revision. J. ACM 65(5),
29:1–29:34 (2018)

8. Dong, T., Duc, C.L., Lamolle, M.: Tableau-based revision for expressive description
logics with individuals. J. Web Semant. 45, 63–79 (2017)

9. Falakh, F.M., Rudolph, S., Sauerwald, K.: Semantic characterizations of general
belief base revision. CoRR abs/2112.13557 (2021)

10. Fermé, E.L., Hansson, S.O.: Belief Change - Introduction and Overview. Springer
Briefs in Intelligent Systems, Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-60535-7

11. Grove, A.: Two modellings for theory change. J. Philos. Log. 17(2), 157–170 (1988)
12. Halaschek-Wiener, C., Katz, Y.: Belief base revision for expressive description log-

ics. In: Grau, B.C., Hitzler, P., Shankey, C., Wallace, E. (eds.) Proceedings of
the 2nd Workshop on OWL: Experiences and Directions (OWLED 2006). CEUR
Workshop Proceedings, vol. 216. CEUR-WS.org (2006)

13. Hansson, S.O.: A Textbook of Belief Dynamics: Theory Change and Database
Updating. Springer Dordrecht (1999)

14. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artif. Intell. 52(3), 263–294 (1991)

15. Kern-Isberner, G., Huvermann, D.: What kind of independence do we need for
multiple iterated belief change? J. Appl. Log. 22, 91–119 (2017)

16. Lewis, D.K.: Counterfactuals. Harvard University Press, Cambridge (1973)
17. Pardo, P., Dellunde, P., Godo, L.: Base Belief change for finitary monotonic logics.

In: Meseguer, P., Mandow, L., Gasca, R.M. (eds.) CAEPIA 2009. LNCS (LNAI),
vol. 5988, pp. 81–90. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14264-2_9

18. Peppas, P.: The limit assumption and multiple revision. J. Log. Comput. 14(3),
355–371 (2004)

https://doi.org/10.1007/978-3-319-60535-7
https://doi.org/10.1007/978-3-319-60535-7
https://doi.org/10.1007/978-3-642-14264-2_9
https://doi.org/10.1007/978-3-642-14264-2_9

110 F. M. Falakh et al.

19. Qi, G., Liu, W., Bell, D.A.: Knowledge Base revision in description logics. In:
Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS
(LNAI), vol. 4160, pp. 386–398. Springer, Heidelberg (2006). https://doi.org/10.
1007/11853886_32

20. Ribeiro, M.M.: Belief Revision in Non-Classical Logics. Springer Briefs in Com-
puter Science, Springer, London (2013). https://doi.org/10.1007/978-1-4471-4186-
0

21. Ribeiro, M.M., Wassermann, R.: Minimal change in AGM revision for non-classical
logics. In: Baral, C., Giacomo, G.D., Eiter, T. (eds.) Proceedings of the 14th Inter-
national Conference of Principles of Knowledge Representation and Reasoning (KR
2014). AAAI Press (2014)

22. Ribeiro, M.M., Wassermann, R., Flouris, G., Antoniou, G.: Minimal change: rele-
vance and recovery revisited. Artif. Intell. 201, 59–80 (2013)

23. Rott, H.: Four floors for the theory of theory change: the case of imperfect discrim-
ination. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp.
368–382. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_26

24. Sernadas, A., Sernadas, C., Caleiro, C.: Synchronization of logics. Stud. Logica.
59(1), 217–247 (1997)

25. Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.J.: Iterated belief change
in the situation calculus. Artif. Intell. 175(1), 165–192 (2011)

26. Tarski, A.: Logic Semantics, Metamathematics Papers From 1923 to 1938. Claren-
don Press, Translated by J.H. Woodger (1956)

27. Zhang, D.: Belief revision by sets of sentences. J. Comput. Sci. Technol. 11(2),
108–125 (1996)

28. Zhuang, Z., Wang, Z., Wang, K., Delgrande, J.P.: A generalisation of AGM con-
traction and revision to fragments of first-order logic. J. Artif. Intell. Res. 64,
147–179 (2019)

https://doi.org/10.1007/11853886_32
https://doi.org/10.1007/11853886_32
https://doi.org/10.1007/978-1-4471-4186-0
https://doi.org/10.1007/978-1-4471-4186-0
https://doi.org/10.1007/978-3-319-11558-0_26

Datalog

iWarded: A Versatile Generator
to Benchmark Warded Datalog+/–

Reasoning

Paolo Atzeni1, Teodoro Baldazzi1(B), Luigi Bellomarini2,
and Emanuel Sallinger3,4

1 Università Roma Tre, Rome, Italy
teodoro.baldazzi@uniroma3.it
2 Banca d’Italia, Rome, Italy
3 TU Wien, Vienna, Austria

4 University of Oxford, Oxford, UK

Abstract. Warded Datalog+/– is a powerful member of the
Datalog+/– family, which extends the logic language Datalog with
existential quantification and provides full support for recursion. Such
expressive power, paired with a promising trade-off with the offered data
complexity, was the catalyst for the recent rise of the language as a rele-
vant candidate for knowledge graph traversal and ontological reasoning
applications. Despite the growing research and industrial interest towards
Warded Datalog+/–, we observe a substantial lack of specific tools able
to generate non-trivial settings and benchmark scenarios, essential to
evaluate, analyze and compare reasoning systems over such tasks. In
this paper, we aim at filling this gap by introducing iWarded, a versa-
tile generator of Warded Datalog+/– benchmarks. Our system is able
to efficiently create very large, complex, and realistic reasoning settings
while providing extensive control over the theoretical underpinnings of
the language. iWarded was developed and employed in the context of the
Vadalog system, a state-of-the-art Warded Datalog+/—based reasoner.

Keywords: Warded Datalog+/– · Vadalog · Ontological reasoning ·
Benchmark generator

1 Introduction

Recent years have witnessed a rising interest, both in academia and industry,
towards querying and exploiting large volumes of data in the form of knowl-
edge graphs (KGs). This led to the development of modern intelligent systems
with reasoning capabilities that allow augmenting extensional data and effi-
ciently derive new intensional knowledge thanks to ontologies encoded in expres-
sive formalisms [23,27]. Among the languages for knowledge representation and
ontological reasoning employed by such systems [9], the members (technically,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 113–129, 2022.
https://doi.org/10.1007/978-3-031-21541-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-21541-4_8

114 P. Atzeni et al.

fragments) of the Datalog± family [7,16–19] became broadly adopted over the
last decade. Their high expressive power, extending plain Datalog with existen-
tial quantification while supporting full recursion and arbitrary joins, and their
good trade-off with the computational complexity of the reasoning task, are vital
requirements for KG navigation and complex real-world applications [10,12].

The growing importance of developing efficient reasoning methodologies and
systems determined a consequential and pressing demand for benchmarks. As
Patterson [37] states, “When a field has good benchmarks, we settle debates and
the field makes rapid progress”. For instance, numerous benchmarking solutions
have been proposed in the database and the theorem proving communities over
the years: among them, the TPC family [33,35,38,39], the standard option to
evaluate database systems, SMTLib [8] and TPTP [41], for theorem proving
ones, as well as advanced research tools like iBench [2], a schema mapping
generator for the analysis of data integration and data exchange scenarios.

An essential aspect in reasoning evaluation, especially Datalog+/–based,
involves analyzing how the theoretical underpinnings of the employed language
affect performance. Indeed, the combinations of existentials, recursion, joins (and
aggregations to some extent) allowed by the syntax of the fragments determine
their complexity. Moreover, specifically chosen interactions between these fea-
tures have crucial impact on the reasoning runtime [11,42]: this is also confirmed
by the adoption of rewriting and optimization techniques, such as Harmful Join
Elimination [6], to improve reasoning performance under certain syntactic con-
ditions. Yet, developing tools that enable such a fine-grained impact analysis is
by no means trivial, and hardly any benchmarks covering this aspect exist to this
day. Currently, experimental evaluation and comparison of reasoning method-
ologies and systems are mostly represented by ChaseBench [13], a set of query
answering benchmarks focused on chase-based techniques [20]. However, such
benchmarks only allow for generic testing of a very limited subset of the above
features, considering them individually and not with a combined approach.

With this work, we tackle such limitations, aiming to contribute to bench-
marking Datalog±-based reasoners. To achieve this, we propose a generator of
Datalog± programs that leverages the theoretical bases of the language to create
heterogeneous reasoning benchmarks with different characteristics. Specifically,
our tool is based on Warded Datalog ± [24], a broad and powerful fragment that
features relevant correlations with multiple Datalog± members of interest for the
community, such as Shy [5,30] and Guarded [16]. Also, it keeps the reasoning
task PTIME in data complexity, while capturing SPARQL queries under OWL 2
QL entailment regime and set semantics [10]. It is implemented in the Vadalog
system [9], a state-of-the-art reasoner for complex and real-world scenarios.
Contributions. The generator we propose fulfills a number of different require-
ments, as we shall see. First, it supports versatility, efficiently creating bench-
mark scenarios to be employed in the evaluation and the comparison of chase
techniques, reasoning strategies, and systems [9], with respect to specific com-
binations of features in the Warded fragment. Also, it enables adaptability of
such scenarios in benchmarks with different purposes, to sustain a comprehen-

A Versatile Generator to Benchmark Warded Datalog+/– Reasoning 115

sive and effective analysis of the language. Moreover, it provides full support for
Warded Datalog±, thus allowing users to generate benchmarks that include all
the language features while building a foundation for novel reasoning systems to
effectively employ the fragment. Finally, it sustains straightforward extensibility
and usability, to integrate and test new features with minimal effort.
Specifically, our contributions in this work can be summarized as follows.

– We present iWarded, the first, to the best of our knowledge, generator of
Warded Datalog± programs for reasoning benchmarks, designed according to
the fundamental requirements listed above.

– We provide an open-source implementation [3] of iWarded that encapsulates
the Warded fragment, and we illustrate how it is operated in practice.

– We discuss an experimental evaluation, comparing Vadalog with the top
reasoning systems over iWarded benchmarks, with the twofold aim of con-
firming the usefulness of the benchmark, thus providing a baseline for future
analysis, and giving us some insight into the Vadalog system itself.

Overview. The remainder of this paper is organized as follows. In Sect. 2 we
provide an overview of Warded Datalog±. In Sect. 3 we present features and
operating principles of our generator. Section 4 is dedicated to experiments. In
Sect. 5 we discuss the related work. We draw our conclusions in Sect. 6.

2 Syntax and Semantics of Warded Datalog±

In this section, we briefly recall the syntax and the semantics of Warded
Datalog±, focusing on the main concepts that are relevant to guide our dis-
cussion.
Background Notions. A (relational) schema S is a finite set of relation sym-
bols (or predicates) with associated arity. A term is a either a constant or a
variable. An atom over S is an expression of the form R(v̄), where R ∈ S is of
arity n > 0 and v̄ is an n-tuple of terms. A database (instance) over S asso-
ciates with each relation symbol in S a relation of the respective arity over the
domain of constants and nulls. The members of the relations are called tuples or
facts [11].
Rules and Existentials. Datalog± languages extend standard Datalog by
introducing existential quantifiers and other features to make it suitable for
ontological reasoning, while employing restrictions to the syntax for scala-
bility and decidability [18]. A Datalog± program consists of a set of facts
and existential rules, or tuple-generating dependencies (TGDs), of the form
∀x̄∀ȳ(ϕ(x̄, ȳ)→∃z̄ ψ(x̄, z̄)), where ϕ (the body) and ψ (the head) are conjunc-
tions of atoms over the respective predicates and the arguments are vectors
of variables and constants. An alternate syntax is ψ(x̄, z̄) :- ϕ(x̄, ȳ), adopting
right-to-left implication, “:-” for “←”, and omitting quantifiers. A predicate is
intensional (idb) if it occurs in at least one head, otherwise it is extensional
(edb).

116 P. Atzeni et al.

Chase and Reasoning. Given a database D and a set Σ of TGDs, the satis-
faction of Σ over D is enforced by means of chase-based procedures [34]. Intu-
itively, the chase expands D into a new instance chase(D,Σ) with additional
facts derived from the application of the rules in Σ. Such facts may contain
freshly generated symbols (technically, labelled nulls) that act as placeholders
for the existentially quantified variables. A TGD σ : ϕ(x̄, ȳ)→∃z̄ ψ(x̄, z̄) ∈ Σ is
applicable to D if there exists a homomorphism θ that maps the atoms of ϕ(x̄, ȳ)
to facts in D (i.e., θ(ϕ(x̄, ȳ)) ⊆ D). In such case, a chase step occurs and the
fact θ′(ψ(x̄, z̄)) is added to D (if not present), where θ′ ⊇ θ extends θ by map-
ping the variables in z̄ to new labelled nulls in lexicographic order. Given a pair
Q = (Σ,Ans), where Ans is an n-ary predicate, the evaluation of a query Q over
D is the set of tuples Q(D) = {t̄ ∈ dom(D)n |Ans(t̄) ∈ chase(D,Σ)}, where t̄ is
a tuple of constants. An ontological reasoning task consists in finding an instance
J s.t.: (i) Ans(t̄) ∈ J iff t̄ ∈ Q(D); and (ii) for every other J ′ s.t. Ans(t̄) ∈ J ′

iff t̄ ∈ Q(D), there is a homomorphism from J to J ′ [9]. An application of the
chase is provided below.

Example 1 (Chase Procedure). Let D = {Person(a),Person(b),Parent(a,b)} be
a database instance, Σ be a set of Datalog± rules with existential quantification

Person(x) → ∃y Ancestor(y, x). (α)
Parent(x, z),Ancestor(y, x) → Ancestor(y, z). (β)

and let Q = (Σ,Ans), Ans = Ancestor be the reasoning task of finding
all the Ancestor facts. First, the extensional facts Person(a), Person(b) trig-
ger the existential rule α, the chase starts and the intensional facts Ances-
tor(ν1, a), Ancestor(ν2, b) are added to D, where ν1, ν2 are labelled nulls.
Then, via the join in rule β between Ancestor(ν1, a) and the extensional
Parent(a, b) on a, Ancestor(ν1, b) is created. Thus, the instance J = D ∪
{Ancestor(ν1, a),Ancestor(ν1, b),Ancestor(ν2, b)} is the solution to the reason-
ing task.

Affectedness and Wardedness. Warded Datalog± introduces a syntactic
restriction whose goal is to constrain the propagation of labelled nulls in the
chase. Let Σ be a set of rules and p[i] a position (i.e., the i-th term of a predicate
p with arity k, where i ≤ k). We inductively define p[i] as affected if: (i) p appears
in the head of a rule in Σ with an existentially quantified variable (∃-variable) in
position p[i]; (ii) there is a rule in Σ such that a universally quantified variable
(∀-variable) is in p[i] in the head and only in affected positions in the body. A
∀-variable x is harmful, with respect to a rule ρ in Σ, if x appears only in affected
positions in ρ, otherwise it is harmless: a rule that contains a harmful variable
is a harmful rule, otherwise it is a harmless rule. If the harmful variable also
appears in the head of ρ, it is dangerous: rules containing dangerous variables
are called dangerous rules. We define a set Σ as warded if, for each rule σ ∈ Σ,
the following conditions hold: (1) all the dangerous variables only appear in a
single body atom, called ward ; and, (2) the ward only shares harmless variables
with other atoms. Such restrictions, collectively known as wardedness, isolate

A Versatile Generator to Benchmark Warded Datalog+/– Reasoning 117

the dangerous variables of a rule, taming the propagation of labelled nulls pos-
sibly binding to them in the chase, to guarantee reasoning decidability and data
tractability [11]. In Example 1 Ancestor[1] is affected due to the existential in
rule α and the variable y in rule β is dangerous: the rules belong to Warded
Datalog±, as Person(x) and Ancestor(y, x) are wards for α and β, respectively.

3 iWarded System

We are now ready to discuss iWarded. In Sect. 3.1, we provide an overview of
the generator and its features. In Sect. 3.2, we illustrate its operating principles
and the generation procedure of reasoning benchmarks.

3.1 Overview of the Generator

The goal of iWarded is to provide tailored benchmarks for ontological reason-
ing, in the form of Warded Datalog± programs and data sources that enable the
evaluation of how specific features affect performance over distinct chase tech-
niques, reasoning strategies and systems [9]. Program generation is based on the
concept of dependency graph, which is a directed graph such that there is a node
for each predicate x and an edge from x to a predicate y if there is a rule where x
appears in a body atom and y appears in the head atom. Intuitively, iWarded
builds such a graph as a set of unique paths, from the extensional predicates
linked to input data sources (namely, input predicates, labelling input nodes) to
the intensional ones that form the output of the reasoning tasks (namely, output
predicates, labelling output nodes). Before illustrating this procedure in detail,
we discuss the features that the generated programs may include.
Types of Rules. iWarded programs are comprised of sets of existential rules
and, in particular, harmless, harmful and dangerous rules, both linear (i.e., single
body atom) and join. To sustain readability, rules are generated at most with
two body atoms and only with joins on single variables. This design choice does
not affect generality or finiteness of the chase [11]. In this setting, joins can
be harmless-harmless, harmless-harmful and harmful-harmful, depending on the
nature of the variables involved. To preserve wardedness, the generated harmful-
harmful joins must not contain dangerous variables. Harmless-harmless joins can
in turn be created with ward (one of the body atoms is a ward containing the
dangerous variables), and without ward (with no dangerous variables). These
types of rules model different forms of propagation of and interplay between
affected positions. Indeed, they (harmful and dangerous rules, in particular) are
an essential aspect to integrate in benchmarks with the goal of evaluating the
impact of existential quantification on reasoning performance.
Types of Recursion. Generated programs may feature different kinds of recur-
sion. Intuitively, a rule is involved in a recursion if it contains at least one recur-
sive atom, that is, an atom whose predicate is a node in a cycle of the dependency
graph. The length of the recursion is the number of edges that form the corre-
sponding cycle in the graph. Specifically, iWarded can build direct recursions,

118 P. Atzeni et al.

consisting of only a body atom that also appears in the head of the same rule
(i.e., with length = 1), and indirect ones (i.e., with length ≥ 2): distinct recur-
sions may be linked to form strongly connected components in the dependency
graph. With the goal of varying the structure of such components, according to
the nature of the generated rule that closes each cycle (namely, recursion-closing
rule), left join, right join, left-right join and linear recursions are possible, if the
recursive join atom is the left one, the right one or both, or the rule is lin-
ear, respectively: for instance, rule β in Example 1 models a direct, right join
recursion, with Ancestor as recursive atom.
Language Extensions. iWarded supports the generation of real-world like
benchmarks expressed in an extension of the standard Warded Datalog±.
For instance, it integrates into the programs equality-generating dependencies
(EGDs), first-order implications of the form ∀x̄∀ȳ(ϕ(x̄, ȳ)→xi = xj), where ϕ is
a conjunction of atoms over the respective predicates and xi, xj ∈ x̄, that allow
to fully exploit the power of existential quantification [19]. Similarly, it enables
the creation of warded programs that also belong to other relevant Datalog±

fragments, such as Shy [5,30] (i.e., with rules not containing harmful join vari-
ables or dangerous variables affected by the same existential) and Guarded [16]
(i.e., all the ∀-variables in a rule are comprised within a single guard atom of
the body). Additional features, such as expressions enriched with selection con-
ditions (=, >, <,. . .) and monotonic aggregations (sum, min, max,. . .) [40] are
also supported.
Benchmark Parameters. To sustain versatility and adaptability, iWarded is
enriched with an ergonomic design that allows generating combinations of the
above features by manually tuning the following set of structural parameters.

– Predicate-level parameters: they control the dimension of the benchmark,
setting the number of input and output predicates in the program, while
determining predicate arity from mean and variance.

– Rule-level parameters: they control the heterogeneity of the benchmark,
determining the number of linear and join rules (of the different types) in
the program, as well as how many of those are harmless, harmful, dangerous
and existential. Regarding the latter, they also regulate the number of exis-
tential variables in the head atom of each rule, based on mean and variance.

– Program-level parameters: they control the complexity of the benchmark.
They set number and length of recursions (of the different types), affecting the
strongly connected components in the dependency graph. They also regulate
number and length of the paths from input to output nodes.

– Benchmark-level parameters: they extend the benchmark with additional fea-
tures, setting the number of linear and join EGDs, monotonic aggregations
and conditions in the rules of the program, as well as their average selectivity
(i.e., the number of facts filtered in by the condition). They also determine
whether the warded program is required to belong to other fragments, such
as Shy or Guarded. Finally, they regulate the number of records in the input
data sources, taking into account the selectivity of possible conditions.

A Versatile Generator to Benchmark Warded Datalog+/– Reasoning 119

Indeed, such a variety of parameters and features allows for an accurate and fine-
grained control over the properties of the generated program, an essential and
yet, to the best of our knowledge, not currently covered requirement for Datalog±

benchmarks. However, it also poses multiple technical challenges, such as man-
aging the generation in the face of possibly incompatible user requirements, as
well as ensuring the wardedness of the program in an efficient fashion, overseeing
and limiting the complexity of rules and recursions, generating data sources that
take into account selectivity to produce realistic results in the reasoning tasks,
etc. These topics will be covered in the upcoming section.

3.2 Benchmark Generation Procedure

The generation procedure of Warded Datalog± programs and data sources in
iWarded is structured in the following five main phases.

1. Graph Definition: the first step involves tuning the properties of the bench-
mark, with respect to user requirements, and beginning the creation of the
dependency graph with input and output nodes.

2. Main Rule Path Generation: the main set of rules in the program is created,
building paths in the corresponding dependency graph from input to output
nodes, with respect to the properties of the benchmark.

3. Recursion Generation with Wardedness: recursions are then added, grouping
the nodes into strongly connected components of the graph, while adopting
specific precautions to uphold the wardedness of the program.

4. Secondary Rule Path Generation: secondary input-output paths and single
rules are now built in the graph, to satisfy remaining user requirements.

5. Data Generation: finally, the input data sources are generated, taking into
account the characteristics of the program to produce realistic results.

In the following paragraphs, we discuss each phase of the generation more in
detail, with a specific focus on its main technical challenges and the adopted
solutions. Algorithm 1 provides the pseudo-code for the overall procedure.
1. Graph Definition. First, iWarded performs the tuning of the benchmark
properties, according to user requirements provided via configuration files that
list the input parameters as key-value pairs: for instance, it determines the length
of each recursion and each path from input to output nodes, based on the corre-
sponding average length. However, this heterogeneous collection of parameters
could hamper the usability of the generator. Indeed, such a fine-grained control
over the generation could not be required by the user, and it could also lead to
combinations of incompatible requirements: for example, an erroneous assign-
ment of mean and variance could cause the number of expected ∃-variables in
a rule to be greater than the arity of the head atom. To address this issue and
provide a baseline for practical usage, iWarded is enriched with a set of default
configuration settings and pre-built scenarios [3]. Moreover, to sustain extensi-
bility, it features a component responsible for adjusting conflicting parameters,
modifying them according to a pre-defined priority (line 2). If some values are

120 P. Atzeni et al.

not provided by the user, the corresponding parameters are set to their default.
Then, the graph is initialized with the set of nodes corresponding to input and
output predicates, whose arity is selected via Gaussian distribution from mean
and variance parameters. Note that such predicates are identified via input and
output annotations [9]: specifically, output ones designate the Ans predicates,
each corresponding to a distinct query for a reasoning task (line 4).
2. Main Rule Path Generation. The main foundation of iWarded consists
in abstracting any set of rules as a network of input-output sequences, each
corresponding to a path in the dependency graph from input to output nodes.
A sequence is a chain of rules ρ1, . . . , ρn, where the head of ρi appears as a
body atom of ρi+1, from input atoms to output atoms (atoms over an input or
output predicate, resp.) and with possible intensional atoms in between. This
approach allows creating sets of rules following a common design, easy to inspect,
debug, adapt and reuse in different settings. Specifically, this phase involves
generating one main sequence for each output predicate (line 8). The warded
rules are created taking into account the benchmark properties, choosing if they
are linear or join rules (of the different types), if they introduce affected positions
via existential quantification and how they propagate them (that is, whether
they are harmless, harmful or dangerous), as well as if they are required to also
satisfy syntactic restrictions for other Datalog± fragments and if they feature
aggregations and selection conditions. The number of rules in each main sequence
derives from the input-output length, set in Phase 1: intuitively, this dimension
identifies the depth of the chase, that is, the number of chase steps (not involving
recursions) triggered at most to generate facts for an output predicate (line 10).
3. Recursion Generation with Wardedness. In this phase, iWarded

enriches the program with direct and indirect recursions that group the nodes
of the dependency graph into strongly connected components (line 14). Each
component includes edges from the main input-output sequences generated in
Phase 2, as well as additional ones responsible for completing the corresponding
strongly connected component and satisfying the recursion length assigned in
Phase 1: similarly to the input-output length, such dimension corresponds to
the number of chase steps triggered by the rules involved in a recursion and is
an indicator of the complexity of the component and of the overall program,
due to multiple recursions possibly linked to one another. Each recursive-closing
rule, which closes the corresponding cycle by linking it to the input-output
sequences, is built according to whether the recursion is linear, left, right or
left-right (line 16).

In general, when reasoning with Warded Datalog±, verifying the wardedness
of a program is by no means trivial: this is due to its syntactic properties, which
require monitoring the interplay between recursion and existential quantification
and determining how it impacts the propagation of affected positions [11]. This
is an essential aspect to consider in our generation procedure, as iWarded is
tasked to enforce the wardedness on the rules it creates. Indeed, the näıve brute-
force approach would first require creating the full program; then, by backtrack-
ing along each affected position up to the ∃-variable introducing it, it would

A Versatile Generator to Benchmark Warded Datalog+/– Reasoning 121

amend the rules that are found not to be warded. Yet, this would computation-
ally be very costly, with possible exponential blowup in the number of rules.
Instead, iWarded’s network structure allows to proceed inductively, incremen-
tally building rules in such a way that each addition does not hamper warded-
ness. Such memory-free generation approach is based on the design principle that
the affected positions in a predicate only depend on the ones propagated from
the parent nodes in the input-output sequences of the dependency graph. As a
consequence, recursions cannot introduce new affected positions, as they might
otherwise undermine the wardedness of the rules in the input-output sequence
they belong to; conversely, they can feature existential quantification in positions
that are already known to be affected due to the main input-output sequences.
This approach offers multiple benefits, such as avoiding complex memory struc-
tures to keep track of how affected positions are propagated: wardedness is easy
to enforce and verify even when inspecting elaborate sequences, and, once a rule
has been classified as warded, it becomes an invariant throughout the generation.
4. Secondary Rule Path Generation. This phase covers the creation of

additional rules and features to satisfy remaining input requirements, such as
the expected number of sequences for a certain output predicate (line 18). Impli-
cations with EGDs are generated as well. iWarded either builds single rules
(such as in the case of EGDs) or full secondary input-output sequences, whose
length was set in Phase 1. To achieve this, note that additional adjustments to
the benchmark properties may be performed in this phase.
5. Data Generation. The last phase of the generation involves creating the

data sources to be employed as input facts of the extensional predicates in the
chase. Such facts are produced as records in CSV files that are linked to the
corresponding predicates via bind and mapping annotations [9], which bind input
and output predicates to data sources (line 20). Indeed, input data is an essential
part of the benchmarks and its generation is non-trivial, as it is required to
populate the chase in a way that balances the impact of the output predicates
over the reasoning task. To achieve this, iWarded’s rule sequence network comes
into play, allowing us to employ a forward-propagating approach: the tuples in
the CSV files are defined according to the joins in the generated rules, such that
each join rule is guaranteed to activate an average number of times, whereas
linear rules simply propagate the values from body to head. Additionally, the
selectivity of the condition is taken into account, managing the average number
of the facts that will be filtered in when the corresponding rule activates.
Finally, we enrich the discussion by illustrating the generation of a simple bench-
mark with iWarded, based on the following configuration scenario:

– input predicates, 2; output predicates, 1; mean arity, 1; variance arity, 1.
– linear rules, 4; harmless-harmful join rules, 1; harmful-harmful join rules, 1; existen-

tial rules, 2; harmless rules, 3; harmful rules, 2; dangerous rules, 2; mean existentials
per rule, 1; variance existentials per rule, 1;

– direct recursions, 1; indirect recursions, 1; average recursion length, 2; linear recur-
sions, 1; left-right join recursions, 1; number of input-output sequences, 2; average
input-output sequence length, 2;

122 P. Atzeni et al.

Algorithm 1. Benchmark Generation in iWarded.
Input: Set Σ of benchmark parameters
Output: Pair

〈
program Π,data sources Δ

〉

1: function iWardedBenchmarkGeneration(Σ)
2: Σ ← tuneAndAdaptProperties(Σ) � phase 1 generation
3: G ← empty dependency graph
4: G ← G ∪ generateInputOutputPredicates(Σ)
5: for outPred in G.getOutputPredicates() do � phase 2 generation
6: nChaseSteps ← 0
7: while nChaseSteps ≤ outPred.getInputOutputLength(Σ, G) do
8: G ← G ∪ generateRuleMainSequence(Σ, G)
9: nChaseSteps ← nChaseSteps + 1

10: G ← G ∪ generateOutputRuleMainSequence(Σ, G, outPred)

11: for rec in getRecursions(Σ) do � phase 3 generation
12: recLength ← 0
13: while recLength ≤ rec.getRecursionLength(Σ, G) do
14: G ← G ∪ generateRecursion(Σ, G)
15: recLength ← recLength + 1

16: G ← G ∪ generateRecursionClosingRule(Σ, G, rec)

17: while hasRemainingRequirements(Σ, G) = true do � phase 4 generation
18: G ← G ∪ generateRuleSecondarySequence(Σ, G)

19: Π ← extractProgramFromGraph(G) � phase 5 generation
20: Δ ← generateDataSources(Π)

return
〈
Π,Δ

〉

– conditions, 1; mean selectivity, 50%; input facts per EDB, 100;

Figure 1 shows the generated program and its dependency graph. A description
of the figure and of the underlying generation procedure is provided below.

Fig. 1. Dependency graph and program generated by iWarded

Phase 1 first checks the compatibility of the input parameters, adjusting the
number of existentials in a rule to 1, according to mean and variance of predicate
arity. Then, it performs the tuning of the benchmark properties, setting, for
instance, the length of the input-output sequences for the output predicate out1

A Versatile Generator to Benchmark Warded Datalog+/– Reasoning 123

(3 and 1) and the length for the recursions rec1, rec2 (3 and 1, respectively).
Finally, it creates input (blue) and output (red) nodes, labelled by edb1, edb2

and out1, respectively, whose arity derives from provided mean and variance.
Phase 2 creates the main input-output sequence (plain arrows) for out1, of
length 3. The names of the variables reflect their type, thus existential, harmless,
harmful and dangerous ones are named EXi, HLi, HFi and DGi, respectively.
Here, harmless linear rule α introduces an existential EX1 in position idb1[2],
which is then propagated to idb2[1] via dangerous linear rule β. Finally, harmless
rule γ contains a harmless-harmful join with edb2: as the number of chase steps
is 3, out1 is the head of rule γ and the corresponding output node is thus reached.
Moreover, rule α is integrated with a selection condition in the body over HL1.
Phase 3 covers the generation of the recursive sequences (dotted arrows) rec1, of
length 3, and rec2, of length 1. The former is a linear indirect recursion, involving
β, the harmless linear rule δ, which contains an existential, and the dangerous
linear rule ε, which completes the cycle. By memory-free generation approach,
rule ε propagates the new affected position from idb3[2] to idb1[2], which is
already affected due to rule α. The latter is a left-right join direct recursion on
idb2 via harmful rule ζ, involving a harmful-harmful join.
Phase 4 builds the secondary input-output sequence for out1. As the current
number of harmless rules is 2, the sequence consists in the harmless linear rule η:
to achieve this, the total number of linear rules in the program is increased to 5.
Phase 5 completes the benchmark generation by creating and mapping the data
sources to edb1 and edb2. The input facts for edb1 are integers, defined taking
into account the selectivity of the condition in rule α such that only 50% of them
is filtered in: according to it, only half of them is equal to or greater than 25.
All the requirements are now satisfied and the program is warded. The program
and its data sources are the output of the generation procedure.

4 Experimental Evaluation

Let us first remark that the goal of this work is to propose and present our
benchmark generator, its operating principles and features, rather than employ-
ing it to develop a benchmarking suite for reasoners. In this section, however,
we enrich the discussion with a set of experiments for known systems over rel-
evant iWarded benchmarks, to provide a baseline for future evaluations and
analysis with it. With this goal in mind, we illustrate 3 sets of experiments, each
corresponding to a distinct use case for our generator. We ran each experiment
10 times, averaging the elapsed times. Specifically, Fig. 2(a2),(b),(c) report the
average execution times, i.e., the sum of chase times and query answering times.
Hardware Configuration. Experiments were performed on a local installation
of the compared systems, using a machine with an M1 Pro CPU and 32 GB of
RAM. The benchmarks were made public in the online version of iWarded [3].
(a) Structural Scenarios. The first set of experiments consists in evaluat-

ing the Vadalog system over synthetic benchmarks featuring distinct combi-
nations of relevant syntactic properties. This system, available upon request,

124 P. Atzeni et al.

performs reasoning via a streaming approach, building a reasoning query graph
as a processing pipeline, where nodes correspond to algebra operators that exe-
cute transformations over the data pulled from their predecessors, and edges are
dependency connections between the rules [9]. We tested it over 8 benchmarks
generated with iWarded, each comprising 100 rules and 10k input facts, based
on the scenarios provided in Fig. 3. Specifically, SynthA and SynthB feature a
prevalence of linear and join rules (equally distributed among harmless-harmful
and harmless-harmless), respectively. SynthC and SynthD include distinct pro-
portions of the various types of join. Similarly, SynthE and SynthF are built to
determine how recursions affect reasoning in the presence of existentials. Finally,
SynthG and SynthH allow to assess the effect of (linear and join, respectively)
EGDs. Each scenario features an average of 30 input-output sequences. Regard-
ing program generation (Fig. 2(a1)), iWarded requires less than 3 second to cre-
ate each benchmark, even in cases with a high number of complex recursions such
as SynthE and SynthF, thanks to the memory-free generation approach. Regard-
ing reasoning execution (Fig. 2(a2)), the results show the significant impact of
complex recursive sequences, especially linear ones from SynthE and in the pres-
ence of multiple existential quantifications. Such behaviour can be motivated by
the injection of many labelled nulls in the linear rules, which, combined with the
presence of harmful joins activating on them, cause a longer time for the chase
procedure to complete. This is also confirmed by the time of SynthD, featuring
fewer recursions but more harmful join rules. Similarly, SynthH indicates that a
high number of join EGDs heavily affects reasoning performance.
(b) Scalability Scenarios. The goal of this benchmark is to assess how

relevant properties of the programs affect the behaviour of distinct reasoning
systems. Specifically, we evaluate the impact of the length for input-output
sequences (i.e., number of chase steps) and recursions, both key indicators for
measuring the complexity of a program. The comparison involves the Vada-
log system and DLV∃ [30], an extension of the answer set programming sys-
tem DLV [31] for query answering in the Shy fragment. This system, available
online [29], employs a materialization approach, producing and storing all the
facts for each predicate via semi-naive evaluation [1], where rules are evaluated
according to a bottom-up strategy from the database. We tested them over shy
iWarded programs, with 10 input-output sequences and recursions of increas-
ing length, and data sources with 10k records as input facts: regarding the other
benchmark parameters, the same values, selected arbitrarily, are employed. As
the syntax of the programs did not comply with the one required by DLV∃, we
employed a script to rewrite them in a form that enables the evaluation.

We observe that DLV∃ outperforms the Vadalog system over input-output
sequences of increasing complexity, thanks to its powerful optimization and chase
techniques that limit the loading of redundant data and the space to materialize
the query results [30]. On the other hand, the efficient recursion control provided
by the latter prevents the exploration of redundant areas of the reasoning space
and allows for better performance in increasingly complex recursive settings [9].

A Versatile Generator to Benchmark Warded Datalog+/– Reasoning 125

Fig. 2. Reasoning statistics for the experimental evaluation.

Fig. 3. Configuration settings of the structural scenarios.

(c) Integration Scenarios. The last set of tests provides insight into a distinct
use case of iWarded to contribute to benchmarking Warded Datalog± reason-
ing. A typical and straightforward approach to compare systems and method-
ologies involves evaluating them over well-known real-world benchmarks that
provide interesting combinations of features to be tested. Indeed, a related goal
would consist in testing novel variants of such benchmarks, to determine how
specific changes to one or more properties affect reasoning. However, attempt-
ing to manually modify some of their characteristics while preserving the others
is by no means trivial and it could lead to subtle issues, such as an erroneous
propagation of affected positions that undermines the wardedness of the pro-
gram. In this context, iWarded solves such issues and enables the creation and
the evaluation of workable variants for real-world benchmark scenarios. Indeed,
once the configuration file corresponding to the original program has been pro-
vided, our generator allows modifying individual parameters while preserving

126 P. Atzeni et al.

the other properties of the benchmark, thanks to its rule network structure and
the support of the aforementioned component that adapts conflicting settings.

Specifically, in this test we considered STB-128 and ONT-256, two rel-
evant first-order integration scenarios originally developed with iBench [2]
and included, for instance, in the ChaseBench benchmarking suite [13]. In
iWarded terms, STB-128 is a set of 250 warded rules, 25% of which contain
existentials, with 15 harmful joins, 30 dangerous rules, 193 EGDs and 112 pred-
icates; conversely, ONT-256 is a set of 789 warded rules, 35% of which contain
existentials, with 295 harmful joins, 300 dangerous rules, 921 EGDs and 220
predicates [11]. First, we manually built the corresponding configuration scenar-
ios for iWarded, deriving the program properties from the original benchmarks.
Then, with the goal of testing variants without EGDs, we modified the scenarios
accordingly (i.e., we set the number of EGDs to 0). Finally, we compared Vada-
log performance over them with DLV and Llunatic [22], an open-source data
exchange system that can handle TGDs and EGDs via materialization. We con-
sidered 10k facts per input predicate. As can be observed, the Vadalog system
outperforms the others in both cases, thanks to its efficient chase execution via
processing pipeline, being 3 times faster than DLV and 7 times faster than
Llunatic.

5 Related Work

Benchmarking is a crucial aspect in the development of efficient systems and
methodologies in every field [37]. Great effort in empiric evaluation has been
spent by both the database systems community (e.g., with TCP [33,35,38,39])
and the theorem proving one (e.g., with SMTLib [8] and TPTP [41]). On
the other hand, the literature about extending data management tools with
reasoning capabilities does not feature equivalent richness. Benchmarks for
ontology-based data access and query rewriting systems have been proposed
and employed [25,28] and the evaluation of many systems has been carried
out [15,21,26]. Yet, to this day the two main pillars for benchmarking are
iBench [2] and ChaseBench [13]. iBench is a popular metadata and schema
mapping generator for data integration settings that provides the user with high
customization capabilities; yet, there is no coverage for reasoning settings and
only standard TGD-based schema mappings are supported. On the other hand,
ChaseBench offers a comprehensive benchmarking suite for chase-based sys-
tems and techniques; yet, it does not focus on Datalog± nor on analyzing how
combinations of the properties of the employed language affect performance, as it
only allows to control chase depth and overall TGD and EGD complexity. To the
best of our knowledge, iWarded is the first attempt to provide the logic-based
reasoning community with a tool to generate tailored Datalog± benchmarks.
The goal of our work has been to fully develop the user control idea of iBench
into the specificities of the Datalog± fragments, taking into account the count-
less aspects deriving from the interplay between existential quantification and
recursion and making them tunable by the user. Many reasoning systems can

A Versatile Generator to Benchmark Warded Datalog+/– Reasoning 127

be considered iWarded target. Besides Vadalog [11], specifically motivating the
research, systems able to operate data integration and data exchange settings can
benefit from iWarded scenarios: among them, Llunatic [22] and DLV [32],
as shown in our experiment section, as well as Graal [4], RDFox [36] and
PDQ [14].

6 Conclusion

In this paper, we presented iWarded, a new generator of Warded Datalog±-
based reasoning benchmarks. An essential aspect in reasoning evaluation, and yet
showing a very limited coverage in current benchmarks, involves analyzing the
impact of the language underpinnings over performance. Our generator enables
such analysis, providing accurate and extensible control over the benchmark
properties and features to be tested. We hope that iWarded will contribute to
benchmarking Datalog±-based reasoning, providing a solid foundation to evalu-
ate, compare and improve reasoning systems and methodologies.

Acknowledgements. The work on this paper was partially supported by the Vienna
Science and Technology Fund (WWTF) grant VRG18-013.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-
Wesley Reading, Reading (1995)

2. Arocena, P.C., Glavic, B., Ciucanu, R., Miller, R.J.: The iBench integration meta-
data generator. VLDB Endow. 9(3), 108–119 (2015)

3. Atzeni, P., Baldazzi, T., Bellomarini, L., Sallinger, E.: iWarded. https://github.
com/joint-kg-labs/iWarded (2022) . Accessed 23 June 2022

4. Baget, J.-F., Leclère, M., Mugnier, M.-L., Rocher, S., Sipieter, C.: Graal: a toolkit
for query answering with existential rules. In: Bassiliades, N., Gottlob, G., Sadri,
F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 328–344.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21542-6 21

5. Baldazzi, T., Bellomarini, L., Favorito, M., Sallinger, E.: On the relationship
between shy and warded datalog+/-. arXiv preprint arXiv:2202.06285 (2022)

6. Baldazzi, T., Bellomarini, L., Sallinger, E., Atzeni, P.: Eliminating harmful joins
in warded datalog+/–. In: Moschoyiannis, S., Peñaloza, R., Vanthienen, J., Soylu,
A., Roman, D. (eds.) RuleML+RR 2021. LNCS, vol. 12851, pp. 267–275. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-91167-6 18

7. Barceló, P., Pichler, R. (eds.): Datalog in academia and Industry. In: Second Inter-
national Workshop, Datalog 2.0, Vienna, Austria, 11–13 September 2012. Proceed-
ings, LNCS, vol. 7494. Springer (2012). https://doi.org/10.1007/978-3-642-32925-
8

8. Barrett, C., et al.: The SMT-LIB standard: Version 2.0. In: Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories (Edinburgh, England).
vol. 13, p. 14 (2010)

9. Bellomarini, L., Benedetto, D., Gottlob, G., Sallinger, E.: Vadalog: a modern archi-
tecture for automated reasoning with large knowledge graphs. Inf. Syst. IS (2020)

https://github.com/joint-kg-labs/iWarded
https://github.com/joint-kg-labs/iWarded
https://doi.org/10.1007/978-3-319-21542-6_21
http://arxiv.org/abs/2202.06285
https://doi.org/10.1007/978-3-030-91167-6_18
https://doi.org/10.1007/978-3-642-32925-8
https://doi.org/10.1007/978-3-642-32925-8

128 P. Atzeni et al.

10. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and
knowledge graphs. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wie-
dermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 3–16. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73117-9 1

11. Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: datalog-based
reasoning for knowledge graphs. VLDB Endow. 11(9) (2018)

12. Bellomarini, L., Sallinger, E., Vahdati, S.: Chapter 6 reasoning in knowledge
graphs: an embeddings spotlight. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E.
(eds.) Knowledge Graphs and Big Data Processing. LNCS, vol. 12072, pp. 87–101.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53199-7 6

13. Benedikt, M., et al.: Benchmarking the chase. In: PODS, pp. 37–52 (2017)
14. Benedikt, M., Leblay, J., Tsamoura, E.: PDQ: proof-driven query answering over

web-based data. VLDB Endow. 7(13), 1553–1556 (2014)
15. Bonifati, A., Ileana, I., Linardi, M.: Functional dependencies unleashed for scalable

data exchange. CoRR abs/1602.00563 (2016)
16. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under

expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)
17. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for

tractable query answering over ontologies. J. Web Seman. 14, 57–83 (2012)
18. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A fam-

ily of logical knowledge representation and query languages for new applications.
In: 2010 25th Annual IEEE Symposium on Logic in Computer Science (2010)

19. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the
query answering problem. Artif. Intell. 193, 87–128 (2012)

20. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. In: ICDT (2003)

21. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: Mapping and cleaning. In: ICDE,
pp. 232–243. IEEE Computer Society (2014)

22. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: That’s all folks! llunatic goes open
source. VLDB Endow. 7(13), 1565–1568 (2014)

23. Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:
Rules to the rescue. In: IJCAI (2015)

24. Gottlob, G., Pieris, A., Sallinger, E.: Vadalog: recent advances and applications. In:
Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468,
pp. 21–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0 2

25. Imprialou, M., Stoilos, G., Grau, B.C.: Benchmarking ontology-based query rewrit-
ing systems. In: Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

26. Konstantinidis, G., Ambite, J.L.: Optimizing the chase: scalable data integration
under constraints. VLDB Endow. 7(14), 1869–1880 (2014)

27. Krötzsch, M., Thost, V.: Ontologies for knowledge graphs: breaking the rules. In:
Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 376–392. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46523-4 23

28. Lanti, D., Rezk, M.I., Xiao, G., Calvanese, D.: The NPD benchmark: reality check
for OBDA systems. In: Advances in database technology-EDBT 2015: 18th Inter-
national Conference on Extending Database Technology. Brussels, Belgium, 23–27
March 2015, Proceedings, pp. 617–628. University of Konstanz, University Library
(2015)

29. Leone, N., Manna, M., Terracina, G., Veltri, P.: Dlv∧E system. https://www.mat.
unical.it/dlve/ (2017). Accessed 23 June 2022

30. Leone, N., Manna, M., Terracina, G., Veltri, P.: Fast query answering over exis-
tential rules. ToCL 20(2), 1–48 (2019)

https://doi.org/10.1007/978-3-319-73117-9_1
https://doi.org/10.1007/978-3-030-53199-7_6
https://doi.org/10.1007/978-3-030-19570-0_2
https://doi.org/10.1007/978-3-319-46523-4_23
https://www.mat.unical.it/dlve/
https://www.mat.unical.it/dlve/

A Versatile Generator to Benchmark Warded Datalog+/– Reasoning 129

31. Leone, N., et al.: The dlv system for knowledge representation and reasoning. ACM
Trans. Comput. Logic (TOCL) 7(3), 499–562 (2006)

32. Leone, N., et al.: The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log. 7(3), 499–562 (2006)

33. Leutenegger, S.T., Dias, D.: A modeling study of the TPC-C benchmark. ACM
SIGMOD Rec. 22(2), 22–31 (1993)

34. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

35. Menascé, D.A.: TPC-W: a benchmark for e-commerce. IEEE Internet Comput.
6(3), 83–87 (2002)

36. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation
of datalog programs in centralised, main-memory RDF systems. In: AAAI (2014)

37. Patterson, D.: Technical perspective for better or worse, benchmarks shape a field.
Commun. ACM 55(7) (2012)

38. Poess, M., Floyd, C.: New TPC benchmarks for decision support and web com-
merce. ACM SIGMOD Rec. 29(4), 64–71 (2000)

39. Poess, M., Rabl, T., Jacobsen, H.A., Caufield, B.: TPC-DI: the first industry bench-
mark for data integration. PVLDB 7(13), 1367–1378 (2014)

40. Shkapsky, A., Yang, M., Zaniolo, C.: Optimizing recursive queries with monotonic
aggregates in deals. In: 2015 IEEE 31st International Conference on Data Engi-
neering, pp. 867–878. IEEE (2015)

41. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337–362 (2009)

42. Zaniolo, C., Yang, M., Das, A., Shkapsky, A., Condie, T., Interlandi, M.: Fixpoint
semantics and optimization of recursive datalog programs with aggregates. Theory
Pract. Logic Program. 17(5–6), 1048–1065 (2017)

The Temporal Vadalog System

Luigi Bellomarini1, Livia Blasi1,2(B), Markus Nissl2, and Emanuel Sallinger2,3

1 Bank of Italy, Rome, Italy
livia.blasi@bancaditalia.it
2 TU Wien, Vienna, Austria

3 University of Oxford, Oxford, UK

Abstract. The need for reasoning over temporal data has recently
emerged. DatalogMTL is a highly suitable language to handle many real-
world applications. In spite of the deep theoretical contribution and the
first experimental implementations of DatalogMTL, practical temporal
reasoning applications call for a fully engineered system, able to reason
with DatalogMTL while supporting a number of features of fundamental
utility such as recursion, aggregation, and negation.

We introduce Temporal Vadalog, a new reasoning system for Dat-
alogMTL that is capable of handling, among other elements, stratified
negation and a form of aggregation. We evaluate the system in real-world
and synthetic scenarios, comparatively showing its performance.

Keywords: Temporal reasoning · DatalogMTL · Vadalog

1 Introduction

Since recent years, Datalog [16] has been experiencing an unabated resur-
gence in both theory and practice. On the research side, the Datalog± fam-
ily [15] is proving to be a key ingredient in the Knowledge Representation
and Reasoning (KRR) context, with special regards to Knowledge Graph (KG)
applications [5,10,11,19,23], where the appreciation for deductive solutions has
been reignited by the favorable balance between computational complexity and
expressive power of recent fragments such as Warded [21] and Shy [26]. On
the practical side, aided by the efficiency of modern systems [9,25], Datalog is
experiencing success in production domains, such as the economic and financial
fields. In such practical endeavors, the need to support temporal reasoning clearly
emerges, e.g., to analyze stock market data [34], to capture time-dependent inter-
actions among IoT objects [31], to gain insights from log data [13].

Meanwhile, the rule-based AI community has been furthering a new extension
of Datalog with the support for temporal reasoning, namely DatalogMTL [13],
which promises to respond well to the uprising practical challenges. DatalogMTL

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-21541-4 9.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 130–145, 2022.
https://doi.org/10.1007/978-3-031-21541-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-21541-4_9
https://doi.org/10.1007/978-3-031-21541-4_9

The Temporal Vadalog System 131

inherits from Datalog the support for full recursion, of paramount importance in
KG applications, that require graph traversals and pattern matching, together
with forms of time awareness.

Let us start with a case from the economic domain encoded in DatalogMTL,
in Example 1. Albeit simplified, this setting is derived from a family of financial
applications in which we have experience and highlights some of the core features
a production system for temporal reasoning with DatalogMTL should support.

Example 1. A governmental institution is supervising the changes in the corpo-
rate structure of some companies that operate in economic sectors of national
strategic relevance. Not only does it wish to keep watch over such companies,
but also their shareholders’ actions, especially those who are buying into the
companies later in the game. Consider the set of rules Π:

[0,1]significantShare(X,Y),
¬ [0,1]significantShare(X,Y) → significantOwner(X,Y) (1)

watchCompany(Y), significantOwner(X,Y),
connected(X,Z) → watchCompany(Z) (2)

The atom watchCompany(Y) denotes that some company Y is in a watchlist
and significantShare(X,Y) models that X owns a relevant amount of shares of
Y . DatalogMTL is ideal for capturing the dynamics of new shareholders buying
in or increasing their shares, with the diamond operator: if at a certain inter-
val in the past (expressed by [0,1]), X does not hold a significant amount of
shares of Y , while that is the case at some point in a future interval (denoted
by [0,1]), then we consider X as a significantOwner(X,Y). Now, for every new
significantOwner(X,Y), we add to the watchlist all companies Z that are con-
nected—for instance, according to the definition of connection given by other
rules, omitted here—to the new owner X.

Functional Desiderata. The required characteristics of DatalogMTL reasoners
can be laid out along the lines of the desiderata of Graph Knowledge Manage-
ment Systems [5]. They should support simple, modular, highly expressive and
low-complexity fragments of DatalogMTL; they should have the ability to per-
form basic operations over numeric values, as well as aggregations and negation.
The recent DatalogMTL fragments, such as DatalogMTLFP [31] and its core and
linear eponymous DatalogMTL core and DatalogMTL lin [33], or Integer Data-
logMTL [32] bode well in this direction, offering simple structure, recursion, and
good complexity characteristics.

Yet, the development of temporal reasoners based on DatalogMTL is still
in its infancy: the two implementations currently available are experimental in
nature and do not satisfy these needs altogether. For example, the system pro-
posed by Brandt et al. [12] does not support recursion and is not yet engineered

132 L. Bellomarini et al.

for production use, as far as we are aware of. The second system, MeTeoR [35],
does support recursive queries, using a combination of materialisation for non-
recursive and automata-based reasoning for checking fact entailment for recursive
settings. However, despite showing efficient reasoning capabilities, MeTeoR lacks
support for aggregation and basic numeric operations.

Architectural Desiderata. The semantics of DatalogMTL is enforced by exist-
ing systems by inference algorithms based on time-aware variants of the well-
known chase procedure [27]. The native adoption of the chase presents a number
of limitations in the development of production architectures. For example, it
requires the entirety of the database and the generated data to be available at
every possible chase step. Also, it does not offer simple extension points, for
instance to plug in different termination control policies. This is essential when
infinite temporal patterns can be generated to toggle between different mem-
ory management policies, and, with specific respect to temporal reasoning, to
choose among multiple time interval merging strategies, needed to handle tem-
poral operators.

In this work, we make the first step towards a production-ready temporal
reasoner and present the first system that, to the best of our knowledge, captures
the functional and architectural limitations we have laid out.

Contribution. The Temporal Vadalog System is built around the core of Vada-
log [9], a state-of-the-art reasoner for the Datalog± family [15]. It offers:

– a fully engineered pipes-and-filter architecture that enables:
• the application of rewriting-based optimization, for instance, to deal with

more complex temporal operators;
• configurable termination strategies, activated by the system thanks to a

form of fragment awareness, that is, the ability to single out the specific
fragment of DatalogMTL used in the input programs, to guarantee ter-
mination of the reasoning process with pluggable algorithms that exploit
the specific theoretical underpinnings of the fragments;

• a clear interface between temporal and non-temporal reasoning;
– high expressive power, implementing:

• the DatalogMTL box and diamond operators natively, as well as
• recursion and stratified negation, and
• aggregate functions and numeric operations over time.

The paper discusses the system architecture, delving into our optimization
techniques, including specific termination strategies to detect infinite models as
well as query rewriting methods. We contribute an experimental evaluation of
the system on a variety of scenarios on real-world and synthetic data, compared
to the other available temporal reasoner and a number of temporal benchmarks.

Overview. In Sect. 2, we provide a short introduction to DatalogMTL. Section 3
illustrates the system. Section 4 covers a comparative evaluation of performance.
We discuss related work in Sect. 5 and conclude the paper in Sect. 6. More exper-
imental details and algorithms are in the on-line Appendix [1].

The Temporal Vadalog System 133

2 DatalogMTL

DatalogMTL extends Datalog with metric temporal logic. In this section we
summarize DatalogMTL with stratified negation under continuous semantics.

The timeline of DatalogMTL is defined over an ordered set of rational num-
bers Q, where each time point t is an element of the timeline. An interval
� = 〈�−, �+〉 is a subset of Q, such that the endpoints �−, �+ ∈ Q ∪ {−∞,∞},
and for each t ∈ Q where �− < t < �+ we have t ∈ �, and where brackets denote
whether the endpoints are included ([]) or not (()).

An interval is punctual if it is of the form [t, t], positive if �− ≥ 0, and bounded
if �−, �+ ∈ Q.

The syntax of DatalogMTL extends Datalog with negation [30] with temporal
operators: we consider a function-free first-order vocabulary consisting of disjoint
sets of constants, variables and predicates equipped with a non-negative arity. A
term is either a constant or a variable. An atom is of the form P (τ), where P is
a predicate and τ is a n-ary tuple of terms matching the arity of P . An atom is
ground if it contains no variables. A fact is an expression P (τ)@�, where � is a
non-empty interval and P (τ) a ground atom. A dataset is a set of facts. A literal
is an expression of the form A :: = 	 | ⊥ | P (τ) | ��A | ��A | �A | �A |
A S� A | A U� A, where � is a positive interval. A rule is an expression of form:
A1 ∧ · · · ∧ Ai ∧ notAi+1 ∧ · · · ∧ notAi+j → B, where i, j ≥ 0, each Ak is a literal
and B is an atom. The atom B is the head of the rule and the conjunction is
the body of the rule, where the literals A1 ∧ · · · ∧ Ai denote the positive body
atoms and Ai+1 ∧ · · · ∧ Ai+j are the negated body atoms. A rule is safe if each
variable occurs in at least one positive body atom, positive if j = 0 and ground
if it contains no variables. A program Π is a set of safe rules. A program Π is
stratifiable if there exists a stratification of a program Π. A stratification of Π
is given as a function σ that maps each predicate P in Π to positive integers s.t.
for each rule it holds σ(P+) ≤ σ(P) and σ(P−) < σ(P) for P+ mentioned in a
positive body literal, P− in a negated body literal and P in the rule head.

The semantics is given by an interpretation M that specifies for each time
point t ∈ Q and each ground atom P (τ), whether P (τ) is satisfied at t, in which
case we write M, t |= P (τ). An interpretation M is a model of a fact P (τ)@�,
if M, t |= P (τ) for all t ∈ � and a model of a set of facts D if it is a model of
each fact in D. The notion of satisfiability of an interpretation M is extended to
ground literals as follows:

134 L. Bellomarini et al.

M, t |= � for each t

M, t |= ⊥ for no t

M, t |= ��A iff M, s |= A for all s with t − s ∈ �

M, t |= ��A iff M, s |= A for all s with s − t ∈ �

M, t |= A S� A′ iff M, s |= A′ for some s with t − s ∈ � ∧ M, r |= A for all r ∈ (s, t)

M, t |= A U� A′ iff M, s |= A′ for some s with s − t ∈ � ∧ M, r |= A for all r ∈ (t, s)

M, t |= �A iff M, s |= A for some s with t − s ∈ �

M, t |= �A iff M, s |= A for some s with s − t ∈ �

An interpretation M satisfies not A (M, t |= not A), if M, t |= A and a ground
rule r, if M, t |= Ak for 0 ≤ k ≤ i and M, t |= not Ak for i + 1 ≤ k ≤ i + j for
every t. An interpretation M is a model of a rule when it satisfies every possible
grounding of the rule, and of a program, if it satisfies every rule in the program
and the program has a stratification. A program Π and a dataset D entail a fact
P (τ)@� ((Π,D) |= P (τ)@�) if M |= P (τ)@� for each model of both Π and D.
Each dataset D has a unique least model MD and the canonical interpretation
CΠ,D is the least model of Π and D.

3 The Temporal Vadalog System

We take inspiration from the vast amount of available experience in building
database and knowledge graph management systems [9] and propose a novel
reasoning architecture based on the volcano iterator model [22] implemented in
the form of a time-aware execution pipeline. Shunning an exhaustive taxonomy
of all the architectural components, we opt for a thematic walk-through in the
system, where our interest is in addressing the temporal reasoning challenges.
To get started, let us see our time-aware execution pipeline in the next section.

3.1 A Time-Aware Execution Pipeline

Along the lines of the pipe and filters architectural style [14], a DatalogMTL
program Π is compiled into an execution pipeline that reads the data from the
input sources, applies the needed transformations, be they relational algebra
operators (e.g., projection, selection) or time-based ones, and finally produces
the desired output as a result.

Construction of the Pipeline. The pipeline is built in four steps: (i) A logic
optimizer performs a set of rewriting tasks, with the aim of reducing programs to
a canonical form, where only combined (and not chains of) individual operators
are allowed. (ii) A logic compiler then transforms the DatalogMTL rules into
in-memory placeholder objects, each with the “responsibility of knowing” which
transformation needs to be performed. (iii) A heuristic optimizer intervenes at
this point, introducing perturbations and producing variants of the generated

The Temporal Vadalog System 135

Fig. 1. The reasoning pipeline for Example 1. The atom significantShare is denoted
by the filter S, significantOwner by N, watchCompany by W, connected by C, and J is
an artificial filter to decompose, for simplicity, the ternary join of Rule 2 into binary
joins.

pipeline to target higher performance, with ad-hoc simplifications. (iv) A query
compiler finally translates this logical graph structure into a reasoning query
plan, where a filter, with the “responsibility of doing” the transformations, is
generated out of each placeholder, and a pipe is induced by each read-write
dependency between the rules. The pipeline for our running Example 1 is shown
in Fig. 1.

Runtime Model. The reasoning process then consists of a pull-based approach,
where some rule heads are marked as sinks and iteratively pull data by issuing
next() and get() messages to their preceding filters, which in turn propagate
such messages to their predecessors and eventually to a set of source filters
that directly read from initial data source, thanks to dedicated record managers,
i.e., data adapters. Each filter applies specific transformations, depending on the
form of the associated rules (e.g., linear, joins, temporal operators, aggregations,
etc.). Clearly, the next() primitive succeeds as long as facts are available in the
cascade of invoked filters. For instance, in Fig. 1, the facts for our output filter
W are generated directly from the input data, but also recursively from J, since
in fact watchCompany is recursive in Rule 2.

Temporal Challenges. Implementing and optimizing the different relational
algebra operators is certainly interesting, but not of central relevance in this
work. Conversely, many time-related challenges arise, for which the Temporal
Vadalog System provides support. We give an overview next.

– Applying Temporal Operators. How the temporal operators are encoded
in the pipeline (e.g., the operator in Fig. 1) is dealt with in Sect. 3.2.

– Merging strategies. In order to correctly apply the semantics of the � oper-
ator, we must merge adjacent and overlapping time intervals. The adoption
of different merging strategies is discussed in Sect. 3.3.

– Temporal Joins and Stratified Negation. Temporal reasoning needs a
time-aware version of the usual join (e.g., filter W in the figure), where the

136 L. Bellomarini et al.

different intervals are considered when matching facts. Our implementation,
which also supports stratified negation, is presented in Sect. 3.4.

– Termination Strategy. DatalogMTL allows the formulation of programs
with infinite least Herbrand models [7], intuitively deriving from capturing
infinitely repeating domain events, like the repetition of weekdays. Section 3.5
describes our approach to handle termination.

– Aggregate functions and numeric operations. Our system offers stan-
dard scalar and temporal arithmetic operations. Aggregate functions are also
supported in the form of time-point or cross-time monotonic aggregations,
which allows for a non-blocking implementation that also works with recur-
sion. To the best of our knowledge, the Temporal Vadalog System is the
only DatalogMTL reasoner that implements aggregations; their syntax and
semantics is explained in our recent work [6].

– Temporal and non-Temporal Reasoning. The Temporal Vadalog sys-
tems combines temporal and non-temporal reasoning, as detailed in Sect. 3.6.

3.2 Temporal Operators in the Execution Pipeline

DatalogMTL provides six temporal operators, which are pairwise symmetric; we
can therefore concentrate only on the forward propagating ones: , S, and �.
The main idea of the reasoning pipeline is to introduce a filter node for each
occurrence of an operator in a rule, and feed it with the output of the operand
atom. Then, the output of the operator filter is provided as an intermediate
result. This process is straightforward for the operator, which is converted
into a single filter that applies a transformation of the interval according to
its semantics. Conversely, the � operator may require an additional pipeline
filter, to preliminarily merge adjacent and overlapping intervals, as we discuss
in Sect. 3.3.

3.3 Merging Strategies

The evaluation of the box operator, that is, deciding whether M, t |= ��A,
requires to check that for all s such that t − s ∈ �, it holds that M, s |= A.
Consider, for instance, Example 2, assuming the time unit is years.

Example 2. The variable X in the rule is a longTimeInvestor of Y if X has
continuously held a significantShare of Y for at least 2 years.

�[0,2]significantShare(X,Y) → longTimeInvestor(X,Y) (1)
D = {significantShare(A,B)@[1.6, 1.9], significantShare(A,B)@(1.8, 3.7],

significantShare(A,B)@(2.9, 4.0]}

Observe that the significantShare facts in D do not individually cover a 2-
years interval, while when considered together, their combined intervals result

The Temporal Vadalog System 137

Algorithm 1 Blocking Strategy
1: mergeStructure ← createMergeStructure()
2: counter ← 0
3: function Next
4: changed ← false;
5: if counter ≥ mergeStructure.length then
6: while super .next() do
7: (changed, mergedEntry) ← mergeStructure.add(getCurrentEntry())

8: if changed then
9: counter ← 0

10: else
11: counter ← counter + 1

12: return counter < mergeStructure.length

in the fact significantShare(A,B)@[1.6, 4.0] and hence the rule derives the final
fact longTimeInvestor(A,B)@[3.6, 4.0].

Intuitively, a software component implementing the box operator in a rea-
soning pipeline will accumulate enough evidence of ground atoms of A in �,
until the entire interval � is covered. One typical tradeoff in data pipelines
is between streaming processing, responsiveness, limited memory footprint, in-
memory computation vs. blocking processing, overall performance optimization,
large memory occupation, materialization of intermediate results. In relational
systems such a balance depends on both the semantics of the individual relational
algebra operators and the optimization choices. Some operators are inherently
streaming-oriented, or stateless (e.g., selection or projection), whereas others
are partially or fully blocking, or stateful (e.g., join or sort) [29]. Moreover, the
optimizer may interleave intermediate materialization filters into the pipeline to
pre-compute and store parts of it and maximize the reuse of intermediate results.

When it comes to the architecture of a modern temporal reasoning system,
we recognize similar challenges, and merging interval plays the same role as data
materialization in relational systems. Like the join, the box operator is partially
blocking: when invoked via a next() call, it is able to answer positively only once
it has accumulated enough evidence to cover �. Yet, unlike the sort operator,
once it starts to produce output, not necessarily is it finished with consuming
its input facts and therefore issues next() calls, in turn.

The Temporal Vadalog System offers two orthogonal options: two implemen-
tations of the box operators and three interleaving strategies.

Streaming and Blocking Box. The streaming box generates facts as soon as it has
merged enough input facts. The blocking box pulls and merges intervals until
next() returns false; then, for each next() call, it forwards a single stored fact
without calling the parent streams. The streaming box supports reactivity as
merging is done on-the-fly and the intermediate merging results are forwarded
without waiting for all the incoming data to be processed, while the blocking
box reduces the amount of facts and intervals in the system.

138 L. Bellomarini et al.

Algorithm 2 Streaming Strategy
1: mergeStructure ← createMergeStructure()
2: function Next
3: next ← super .next()
4: if next then
5: (changed, mergedEntry) ← mergeStructure.add(getCurrentEntry())
6: setCurrentEntry(mergedEntry)

7: return next

Algorithms 1 and 2 present the logic for the blocking and the streaming
strategy, respectively. Both inherit the logic of the linear filter of Vadalog to
retrieve the next entry, which is visualized by a call to super .next(). The next()
function returns a Boolean value denoting whether a new fact has been derived.
The access to the terms is handled in successive calls to getter functions returning
the value of a term’s position only if required by the next pipeline step. The
call createMergeStructure creates a data structure for merging1, and the call of
getCurrentEntry retrieves the current entry retrieved with the super.next() call
and setCurrentEntry updates the entry with the merged intervals. To exemplify
the difference between strategies, let us look at a variation on Example 2.

Example 3. Consider Example 2 again. The Streaming strategy would read the
first two entries, which is sufficient to apply the �[0,2] operator to derive the inter-
mediate result longTimeInvestor(A,B)@[3.6,3.7], before the final longTimeIn-
vestor(A,B)@[3.6,4.0] is derived; a Blocking strategy would wait for all signifi-
cantShare facts to be read first, and applies the box operator only then.

Fig. 2. Overview of interleaving strategies; merging positions are marked in red. (Color
figure online)

Interleaving Strategies. The planner is equipped with multiple options to decide
how to interleave explicit interval merge operations in the pipeline so as to
achieve different performance goals or even just to guarantee correctness. We
support the following options.

1 Our data structure is built around a hashmap, whose key is the fact and whose values
are a collection of intervals. Currently, we use a tree-like structure as a collection
that auto-merges adjacent intervals on insert.

The Temporal Vadalog System 139

– Minimal Merge. The planner inserts a merge operation only before each box
operator. In addition, one can provide to the planner hints regarding merging
s.t. it inserts an additional merge transformation prior to a linear transfor-
mation. Typically, such hints are useful after unions of different rules, after a
diamond operator that could produce many overlapping intervals that should
be combined, after the input or before the output to eliminate duplicates
before showing the results.

– Always Merge. The planner inserts merge operations whenever the intervals
are not merged. The application of temporal operators on a set of intervals
will always result in a merged set, as the coalescing is applied directly on the
set.

– Earliest Merge. If no merge operation is required (i.e., there is no box opera-
tor) the planner avoids merging; otherwise it inserts the merge in the earliest
position so that each fact contains all intervals when the box operator is
reached; previous operations benefit from the reduced number of facts.

3.4 Temporal Joins and Stratified Negation

In Temporal Vadalog, we extend the slot machine join algorithm of Vadalog [4].
This algorithm is based on an index nested loop join [20], enhanced with dynamic
in-memory indexing. In comparison to an index-nested loop join, there is no
persistent pre-calculated index, but the index is built in-memory during the first
full scan of each predicate Ak with 0 ≤ k < n to be joined. That is, for each Ak,
we first check whether a matching fact can be found in the index matching the
known terms from the previous Aj with 0 ≤ j < k, and if not, we continue with
the full scan until a fact matches in case the index is not yet fully built.

The index is unaware of intervals: when a fact matches, we either intersect
(join) or subtract (in case of stratified negation) the interval from the current
partially computed interval (i.e., the computed interval up to Aj), both opera-
tions ignoring non-overlapping intervals. In addition, for stratified negation we
consider all matching tuples of Ak. The full algorithm is in the Appendix.

3.5 Termination Strategy for the Infinite Chase of Intervals

We discussed in a previous work that fragments of DatalogMTL can produce infi-
nite models [7], which however admit a finite representation in DatalogMTLFP

(and symmetrically in DatalogMTLBP). In detail, three cases are possible for a
DatalogMTLFP (resp. BP) program Π: (i) it is harmless, a sufficient condition
to admit a finite model; (ii) it is DatalogMTL temporal linear or DatalogMTL�
union free, a sufficient condition to admit an eventually constant model under
certain conditions; (iii) it is not in the previous sets but in DatalogMTLFP, a
sufficient condition to admit an eventually periodic model.

The Temporal Vadalog System guarantees termination of the reasoning pro-
cess, with a two-phases compile time and runtime technique. At compile time,
the planner determines the fragment of Π, according to the following procedure.

140 L. Bellomarini et al.

– Using [7, Algorithm 1], that checks if the program has “harmful” temporal
cycles, it determines if Π is harmless. If so, we fix modelKind = Finite.

– Else, it determines whether Π is temporal linear, checking that for each rule
there is at most one body predicate that is mutually temporal recursive with
the head in the dependency graph of Π; if it is the case and temporal linear
operators [t1,t2] are such that t1 = t2, then we fix modelKind = Constant.

– Else, it determines whether Π is union free, checking that there are no rules
of Π sharing the same head predicate; if it is the case and the box operators
�[t1,t2] are such that t1 = t2, then we fix modelKind = Constant.

– Else, we are in DatalogMTLFP and fix modelKind = Periodic.

In all the non-finite cases, according to [7, Lemma 2], and [7, Theorem 4],
the system determines the repetition pattern length pLength, based on the
combination of the pattern lengths of the different Strongly Connected Com-
ponents (SCC) of Π. This will result in the production, at runtime, of facts
of the form P (τ)@� and {P (τ)@〈o1, o2〉,n}, where the intervals are given by
〈o1+x ∗pLength, o2+x ∗pLength〉 for all x ∈ N, where x ≥ n, in the periodic case,
or 〈o1+x ∗pLength,∞〉, in the constant case. All the pipeline filters are wrapped
by functional components named termination strategies, whose goal is inhibit-
ing the runtime generation of specific facts that may cause non-termination.
All termination strategies are instructed with modelKind and, where applicable,
pLength.

At runtime, the system behaves in a fragment-aware fashion, depending on
modelKind. If it is finite, the only causes of non-termination may be the usual
Datalog recursion, which is easily checked by the termination strategies with
an embedded hash index. The reasoning process will produce facts of the form
P (τ)@�. If modelKind is eventually constant or eventually periodic, then the ter-
mination strategies intercept the facts generated by the “non-finite” filters and
detect when they match a repeating pattern. If the model is eventually constant,
the reference interval of ground atoms is immediately converted by the termi-
nation strategies into 〈o1 + x ∗ pLength,∞〉, therefore preventing the generation
of redundant facts in sub-intervals; else, if eventually periodic, the termination
strategies associated to non-finite filters, generalize the numeric intervals, with
their pattern-based symbolic equivalent, so that redundant sub-intervals are not
generated in this case either.

Example 4.

[7,7]StockMarketOpeningDays → StockMarketOpeningDays (1)

[0,2]Anniversary(X) → Celebration(X) (2)
StockMarketOpeningDays,Celebration(X)
→ CelebrationDuringStockMarketDays(X) (3)

D = {StockMarketOpeningDays@[0 , 4],Anniversary(A)@[125, 125], ...}
Example 4 shows one of such cases. The stock market opening days are from

Monday to Friday (Rule 1). When there is an anniversary for a company X of

The Temporal Vadalog System 141

our multinational holding, the celebration lasts for two days (Rule 2). We want
to intercept all the cases in which a celebration coincides with the stock market
opening days for our company A, to study the impact on its business. In other
terms, we want to compute whether CelebrationDuringStockMarketDays(A)
holds.

At compile time, the planner determines that modelKind = Periodic and
from Rule 2, we have that pLength = 4. At runtime, after the genera-
tion of the fact StockMarketOpeningDays@[7, 11], the termination strategy
for Celebration, infers that n = 0, and so all facts generated by Rule 2
have the form StockMarketOpeningDays@[x × 7, x × 7 + 4], for x ≥ 0, and
their generation is blocked. It remains to apply the join of Rule 3 between
Celebration(A)@[125, 127] produced by Rule 2 and the pattern generated by
Rule 1, that is, computing x ∈ N such that [x × 7, x × 7 + 4] ∩ [125, 127]
is not the empty interval, which holds for x = 18. Thus we can conclude
CelebrationDuringStockMarketDays(A)@[126, 127].

3.6 Combining Temporal and Non-Temporal Reasoning

Current studies have not considered the combination of existentials (e.g., Warded
Datalog) and DatalogMTL, together. Hence, for the current implementation, we
consider the two fragments orthogonal—in Datalog with existentials [4] we forbid
temporal operators and in DatalogMTL we forbid existentials—to avoid unde-
cidability of the program. In order to support both modes within one program
we added support for temporal wrapping and unwrapping of rules which are of
form:

P1(τ)@temporalAtom(LB, �−, �+,RB) → P0(τ ,LB, �−, �+,RB)

P0(τ ,LB, �−, �+,RB) → P1(τ)@temporalAtom(LB, �−, �+,RB)

where LB (RB) denotes if the left (right) bracket is closed and temporalAtom is
an atom annotation to denote wrapping/unwrapping of intervals. Note that not
all terms in the tuple are required in the non-temporal atom and constants can
be used.

Example 5. Consider the conversion of a temporal fact P1(a)@[0, 4) and a non-
temporal fact P0(b, false, 0, 3, true) according to rules. Such rules will map the
temporal fact to P0(a, true, 0, 4, false) and the non-temporal fact to P1(b)@(0, 3].

4 Experiments

We evaluated our system in a variety of scenarios with temporal operators,
recursion, negation, numerical computation and aggregate functions, on real-
world, realistic, and synthetic datasets. The performance has been compared
with MeTeoR, when applicable, and against several benchmarks.

Setup. The execution environment for the experiment is a memory-optimized
virtual machine with 16 cores and 256 GB RAM on an Intel Xeon architecture.

142 L. Bellomarini et al.

Fig. 3. (a) Temporal, Negation, and Aggregation on N7-N28 over time; (b) Box and
Diamond in Temporal Vadalog and MeTeoR; (c) RW dataset in all scenarios; (d)
iTemporal Diamond; (e) iTemporal Box; (f) iTemporal Union and Intersection.

Datasets. We used real-world, realistic, and synthetic datasets. The real-world
dataset (RW) comes from the KG of the Italian companies [3] and represents
the proprietary chains from the second half of 2019 to the end of 2021, taken at
6-months snapshots with a monthly granularity, for a total of 5 timepoints and
around 31M edges evolving through time. The realistic datasets (N7, N11, N14,
N20, N28) represent the ownerships in a synthetic graph, generated as variations
on RW. These graphs evolve through time, e.g., with changes in shares, new
shareholders, exit of shareholders, and so on, over 5 timepoints, and have from
700K to 2.8M nodes and from 2.7M to 10.8M edges. The synthetic datasets (S1-
S10M) are randomly distributed over a given domain and comprise from 1K to
10M facts. More details are in the Appendix.

4.1 Experiments with Realistic and Real-World Data

Scenarios. We ran the experiments on realistic and real-world data on 5 scenar-
ios: 1) Temporal : temporal operator, recursion, and constraints on variables; 2)
Negation: stratified negation and recursion; 3) Aggregation: aggregation; 4) Dia-
mond : diamond operator and recursion; 5) Box : box operator and recursion. We
ran each scenario against the datasets N7-N28 and RW in the Temporal Vada-
log System and, for Box and Diamond, also in MeTeoR—scenarios not including
features not supported by MeTeoR. For Temporal, Negation, and Aggregation we
performed 3 runs each and averaged the elapsed time; the merging strategy was
always merge. For the Box scenario, we tested minimal, earliest and always
merge. We used an one-hour timeout to abort long-running experiments.

The Temporal Vadalog System 143

Discussion of the Results. Figure 3a shows the performance of our system
on the scenarios Temporal, Negation, and Aggregation over the realistic datasets
N7-N28. We have good scalability, with a linear increase in the elapsed time. The
more expensive Negation runs at just over 166 s for the biggest dataset, N28,
while Aggregation performs best at 32–141 s, given the non-recursive setting.

Figure 3b shows the Diamond and Box scenarios comparatively with
MeTeoR. Temporal Vadalog is 80% faster than MeTeoR in the Diamond sce-
nario. For Box, Temporal Vadalog is 80% faster with earliest merge (em) and
always merge (am). This test also highlights the importance of the merging
strategy choice. In fact, in the case of earliest merge the performance is better,
ranging from 43 to 186 s, while the minimal merge requires 4x of it, as more
data is sent through the pipeline until the merging operation is applied. In the
case of earliest merge, the merging operations are concentrated, and the same
happens for always merge.

Finally, Fig. 3c shows the performance of the 5 scenarios (plus 3 merging
strategy variations for Box) on our real-world dataset. While MeTeoR exceeds
the established timeout in all applicable scenarios, our system always terminates
within one hour, with the Temporal and the Negation scenarios being the best,
having an elapsed time of 780–790 s (∼13 min). In the case of Temporal, this
depends on the presence of one variable constraint in the scenario, which allows
to skip many edges. In fact, we can spot this behavior comparatively looking at
the Diamond scenario, which shares the same rules except for the constraint: it
shows a worse performance, with an elapsed of 964 s (∼16 min). The Box scenario
shows differences of around 2 min between the strategies, favoring minimal merge
due to less overlapping intervals in the graph.

4.2 Temporal Foundation Benchmark

Observing a substantial speedup of the Temporal Vadalog System with respect
to MeTeoR in the realistic scenarios, we generated specific temporal benchmarks
to confirm this aspect. In particular, we compared the systems as of their main
temporal operations, that is, temporal operators, joins and unions. To generate
our benchmarks, we used iTemporal [8], a generator for DatalogMTL with differ-
ent data sizes per input atom. Figures 3d-f present the results. For all operations,
we see that our system outperforms MeTeoR with a factor of 3 to 4 (depending
on the benchmark) for 10M facts.

5 Related Work

The first proposals for a temporal version of Datalog include Datalog1S [17]
(using successor functions) and Datalog extensions with temporal logic oper-
ators from Linear Temporal Logic (LTL) [28] and Computation Tree Logic
(CTL) [18]. More recently, Metric Temporal Logic [2,24] has been considered
as a formalism that can provide an expressive temporal extension for Datalog.
The first results have been presented by Brandt et al. [12,13], who introduced

144 L. Bellomarini et al.

DatalogMTL and presented a practical, although non-recursive, implementation
through SQL rewriting.

Theory for continuous semantics DatalogMTL [30–34] has been studied
extensively in recent years. Most recently Wa�lȩga et al. introduced MeTeoR [35],
a reasoner that employs a combination of materialisation and automata-based
reasoning, referred to in our comparative experiments.

6 Conclusion

In this paper, we presented a novel architecture and system for reasoning
with DatalogMTL. We emphasized its performance and scalability with vari-
ous benchmarks and outperformed state-of-the-art reasoners in this language.
In future work, we want to improve the reasoner, as well as work on additional
fragments that allow tractable reasoning in DatalogMTL.

Acknowledgements. This work was supported by the Vienna Science and Technol-
ogy Fund (WWTF) grant VRG18-013, and the “rAIson data” Royal Society grant of
Prof. Georg Gottlob.

References

1. The Temporal Vadalog System: Appendix. http://shorturl.at/biGR8
2. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf.

Comput. 104(1), 35–77 (1993)
3. Bellomarini, L., et al.: Reasoning on company takeovers during the COVID-19

crisis with knowledge graphs. In: RuleML+RR (Supplement), vol. 2644, pp. 145–
156 (2020)

4. Bellomarini, L., Benedetto, D., Gottlob, G., Sallinger, E.: Vadalog: A modern archi-
tecture for automated reasoning with large knowledge graphs. Inf. Syst. 101528
(2020)

5. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and
knowledge graphs. In: IJCAI (2017)

6. Bellomarini, L., Nissl, M., Sallinger, E.: Monotonic aggregation for temporal dat-
alog. In: Proceedings of the 15th International Rule Challenge, vol. 2956 (2021)

7. Bellomarini, L., Nissl, M., Sallinger, E.: Query evaluation in DatalogMTL - taming
infinite query results. CoRR abs/2109.10691 (2021)

8. Bellomarini, L., Nissl, M., Sallinger, E.: iTemporal: an extensible generator of tem-
poral benchmarks. In: ICDE, pp. 2021–2033. IEEE (2022)

9. Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: datalog-based
reasoning for knowledge graphs. PVLDB 11(9), 975–987 (2018)

10. Bellomarini, L., Sallinger, E., Vahdati, S.: Knowledge graphs: the layered perspec-
tive. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.) Knowledge Graphs
and Big Data Processing. LNCS, vol. 12072, pp. 20–34. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53199-7 2

11. Bellomarini, L., Sallinger, E., Vahdati, S.: Reasoning in knowledge graphs: an
embeddings spotlight. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.)
Knowledge Graphs and Big Data Processing. LNCS, vol. 12072, pp. 87–101.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53199-7 6

http://shorturl.at/biGR8
https://doi.org/10.1007/978-3-030-53199-7_2
https://doi.org/10.1007/978-3-030-53199-7_6

The Temporal Vadalog System 145

12. Brandt, S., Kalayci, E.G., Kontchakov, R., Ryzhikov, V., Xiao, G., Zakharyaschev,
M.: Ontology-based data access with a horn fragment of metric temporal logic. In:
AAAI, pp. 1070–1076. AAAI Press (2017)

13. Brandt, S., Kalayci, E.G., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Querying
log data with metric temporal logic. J. Artif. Intell. Res. 62, 829–877 (2018)

14. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architec-
ture, 4th edn. Wiley, Hoboken (2007)

15. Cal̀ı, A., Gottlob, G., Pieris, A.: New expressive languages for ontological query
answering. In: Proceedings of AAAI, vol. 2011 (2011)

16. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). TKDE 1(1), 146–166 (1989)

17. Chomicki, J., Imielinski, T.: Temporal deductive databases and infinite objects.
In: PODS, pp. 61–73 (1988)

18. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

19. Dalgliesh, J.: How the Enterprise Knowledge Graph Connects Oil and Gas Data
Silos. Maana Blog (2016). https://shorturl.at/rsxU2

20. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems - The Complete
Book, 2nd edn. Pearson Education, London (2009)

21. Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:
rules to the rescue. In: IJCAI, pp. 2999–3007 (2015)

22. Graefe, G., McKenna, W.J.: The volcano optimizer generator: extensibility and
efficient search. In: ICDE, pp. 209–218 (1993)

23. He, Q., Chen, B.C., Agarwal, D.: Building The LinkedIn Knowledge Graph.
LinkedIn Blog (2016). https://shorturl.at/aouyW

24. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

25. Leone, N., et al.: Enhancing DLV for large-scale reasoning. In: LPNMR, vol. 11481,
pp. 312–325 (2019)

26. Leone, N., Manna, M., Terracina, G., Veltri, P.: Fast query answering over exis-
tential rules. ACM Trans. Comput. Log. 20(2), 12:1–12:48 (2019)

27. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–468 (1979)

28. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), pp. 46–57 (1977)

29. Sciore, E.: Database Design and Implementation, 2nd edn. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-33836-7

30. Tena Cucala, D.J., Walega, P.A., Cuenca Grau, B., Kostylev, E.V.: Stratified nega-
tion in datalog with metric temporal operators. In: AAAI, pp. 6488–6495 (2021)

31. Walega, P.A., Cuenca Grau, B., Kaminski, M., Kostylev, E.V.: Datalogmtl: com-
putational complexity and expressive power. In: IJCAI, pp. 1886–1892 (2019)

32. Walega, P.A., Cuenca Grau, B., Kaminski, M., Kostylev, E.V.: Datalogmtl over
the integer timeline. In: KR, pp. 768–777 (2020)

33. Walega, P.A., Cuenca Grau, B., Kaminski, M., Kostylev, E.V.: Tractable fragments
of datalog with metric temporal operators. In: IJCAI, pp. 1919–1925 (2020)

34. Walega, P.A., Kaminski, M., Cuenca Grau, B.: Reasoning over streaming data in
metric temporal datalog. In: AAAI, pp. 3092–3099 (2019)

35. Wang, D., Hu, P., Walega, P., Cuenca Grau, B.: Meteor: practical reasoning in
datalog with metric temporal operators. In: Proceedings of AAAI-2022 (2022)

https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://shorturl.at/rsxU2
https://shorturl.at/aouyW
https://doi.org/10.1007/978-3-030-33836-7

An Existential Rule Framework
for Computing Why-Provenance

On-Demand for Datalog

Ali Elhalawati , Markus Krötzsch , and Stephan Mennicke(B)

Knowledge-Based Systems Group, TU Dresden, Dresden, Germany
{ali.elhalawati,markus.kroetzsch,stephan.mennicke}@tu-dresden.de

Abstract. Why-provenance—explaining why a query result is
obtained—is an essential asset for reaching the goal of Explainable AI.
For instance, recursive (Datalog) queries may show unexpected deriva-
tions due to complex entanglement of database atoms inside recursive
rule applications. Provenance, and why-provenance in particular, helps
debugging rule sets to eventually obtain the desired set of rules. There
are three kinds of approaches to computing why-provenance for Data-
log in the literature: (1) the complete ones, (2) the approximate ones,
and (3) the theoretical ones. What all these approaches have in com-
mon is that they aim at computing provenance for all IDB atoms, while
only a few atoms might be requested to be explained. We contribute an
on-demand approach: After deriving all entailed facts of a Datalog pro-
gram, we allow for querying for the provenance of particular IDB atoms
and the structures involved in deriving provenance are computed only
then. Our framework is based on terminating existential rules, record-
ing the different rule applications. We present two implementations of
the framework, one based on the semiring solver FPsolve, the other one
based Datalog(S), a recent extension of Datalog by set terms. We per-
form experiments on benchmark rule sets using both implementations
and discuss feasibility of provenance on-demand.

Keywords: Datalog provenance · Why-provenance · Datalog(S)

1 Introduction

Explainability and justification of data that stems from complex, even recursive,
processes have attracted both, the community of knowledge representation as
well as the database community. The reason is that recursive programs tend to
get complicated, which makes it hard for users to debug, audit, establish trust in,
or even query the data. Data provenance is one particular way of achieving these
aspects and has a long-standing tradition in the field of relational databases and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 146–163, 2022.
https://doi.org/10.1007/978-3-031-21541-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_10&domain=pdf
http://orcid.org/0000-0003-1457-0031
http://orcid.org/0000-0002-9172-2601
http://orcid.org/0000-0002-3293-2940
https://doi.org/10.1007/978-3-031-21541-4_10

Computing Why-Provenance On-Demand for Datalog 147

non-recursive queries [5,8]. For recursive queries, provenance for Datalog has
been studied and found to be expressible with quite similar tools as the ones
underlying provenance for non-recursive queries [10,13]. Provenance describes
how annotations on database tuples or facts have been used to obtain a query
result.

In this work, we explore the task of providing explainability for Datalog
programs by why-provenance [5]. Why-provenance considers the witnesses of a
derivation, which are sets of database atoms that can be used to achieve the
derivation through reasoning. Previous works [3,12,14] contributed to comput-
ing why-provenance for databases, which are practical but restricted to non-
recursive programs (e.g., SQL queries). Only a few works actually considered
the implementation of why-provenance for Datalog. Most of it has been either
on the theoretical side [9,10], bound to certain underapproximations of why-
provenance [20], restricted to non-recursive Datalog programs [17], or require an
expensive transformation of the instantiated rules in a Datalog program to a
system of equations [11].

Since providing why-provenance for all the data derived from a database via
a Datalog program is an expensive task (the set of all witnesses is generally expo-
nential in the size of the database), we explore computing why-provenance for
Datalog programs in a more practical framework. Instead of computing prove-
nance for all atoms, we propose and implement an on-demand approach. Our
contributions are summarized as follows:

– We introduce a novel on-demand approach to why-provenance computation
restricting its computation to a given goal atom. This approach is a purely
rule-based one (Sect. 3).

– Upon the structures we introduce for the on-demand approach, we show how
to create a system of equations (on-demand) whose solutions, interpreted over
the so-called why-semiring, are identical with the why-provenance of the goal
atom (Sect. 4). This representation can be presented to a semiring solver, like
FPsolve [11], in a serialized form.

– Based on the same structures used before, we provide a novel approach to
computing why-provenance based on Datalog(S) rules (Sect. 5). Datalog(S)
is a recent extension of Datalog having set terms as first-class citizens [7].

– We experimented with both of the aforementioned realizations and get a first
insight on their runtime behavior (Sect. 6).

Beyond the main part of the paper (Sects. 3–6), we provide our basic notions
in Sect. 2, related work in Sect. 7, and our conclusions and future work in Sect. 8.

2 Preliminaries

In this section, we introduce our notation for databases, Datalog, and prove-
nance, in particular why-provenance. Therefore, we assume a fixed first-order
vocabulary C of constants, V of variables (C∩V = ∅), and P of predicate names.
Each predicate name p ∈ P has an arity ar (p) ∈ N. A list of terms t1, . . . , tn

148 A. Elhalawati et al.

(ti ∈ C∪V) is often abbreviated by �t and has length |
�t | = n. For convenience, we

treat lists of terms �t as sets when order is irrelevant. We call an expression p(�t)
an atom if p ∈ P, �t ⊆ C ∪ V, and |

�t | = ar (p). An atom is ground if each of its
terms is a constant and a finite set D of ground atoms is called a database.

A Datalog rule is a first-order formula of the form

ρ : ∀�x.p1(�t1) ∧ . . . ∧ pm(�tm) → q(�u), (1)

where p1(�t1), . . . , pm(�tm), and q(�u) are atoms using only variables in �x, such that
each variable in q(�u) further occurs in some atom pi(�ti) (safety). We call q(�u)
the head of ρ (denoted head(ρ)) and p1(�t1) ∧ . . . ∧ pm(�tm) the body of ρ (denoted
body(ρ)). We may treat conjunctions as sets, e.g., to write p1(�t1) ∈ body(ρ), and
tacitly omit the universal quantifiers for brevity. A variable-free rule is a rule
instance (i.e., in which all atoms are ground atoms). A set of Datalog rules Σ is
referred to as a Datalog program. A predicate p that occurs only in rule bodies
of Σ is an EDB predicate (extensional database predicate); all other predicates
are IDB predicates (intensional database predicates). Datalog programs Σ are
evaluated over databases that use only EDB predicates of Σ. The distinction in
EDB and IDB predicates is necessary for a construction in Sect. 3.

Datalog Semantics. The semantics of a Datalog program Σ over a database D

can equivalently be defined via least models, least fixpoints of a consequence
operator, or proof trees [1]. A ground substitution θ is a mapping from variables
to constants. For a database D and a rule ρ, a match is a ground substitution
θ with body(ρ)θ ⊆ D. It is satisfied in D if head(ρ)θ ⊆ D, and unsatisfied
otherwise. A rule is satisfied if all of its matches are. Models and entailment (of
ground facts) for Datalog is defined as usual. We will denote the least model of
program Σ and database D as Σ(D). An immediate consequence operator TΣ can
be defined on databases as TΣ(D) = {head(ρ)θ | ρ ∈ Σ, θ is a match for ρ on D}.
The iterative application of TΣ starting from the initial database converges to
Σ(D).

Example 1. Consider the database D = {e(1, 2), e(2, 2), e(2, 3), e(4, 3)} which may
be interpreted as a directed graph ({1, 2, 3, 4}, {(1, 2), (2, 2), (2, 3), (4, 3)}). Further-
more, let Σ = {ρ1, ρ2} with

ρ1 : e(x, y) → t(x, y)
ρ2 : e(x, z) ∧ t(z, y) → t(x, y)

Applying TΣ iteratively to D yields additional t-atoms. As a result, Σ(D) =

D ∪ {t(1, 2), t(1, 3), t(2, 2), t(2, 3), t(4, 3)}. For instance, t(1, 2) can be obtained by
applying ρ1 for θ1 = {x
→ 1, y
→ 2}. Another possibility to derive the same fact
is by ρ2 for match θ2 = {x
→ 1, y
→ 2, z
→ 2}. Of course, this application requires
us to have also derived t(2, 2), which can be done by ρ1 and θ3 = {x
→ 2, y
→ 2}.

Graph of Rule Instances. One can describe the derivation steps of TΣ in a
suitable hypergraph. A (vertex-labeled, directed) hypergraph H has the form

Computing Why-Provenance On-Demand for Datalog 149

(V, E, tip, tail, λ), where V is a finite set of vertices, E ⊆ 2V is a set of hyper-
edges, with each e ∈ E having tip(e) ∈ V and tail(e) ⊆ V, and λ : V → L

is a vertex labeling function for some set of labels L. Note that we only
allow a single tip per edge but many tails. H is a hypertree if the directed
graph with edges {t → tip(e) | t ∈ tail(e), e ∈ E} is a tree (with edges point-
ing from children to parents); we write leaves(H) for its leaves. The graph of
rule instances for a Datalog program Σ and database D is the hypergraph
GRI(Σ,D) := (Σ(D), E, tip, tail, λ), where E = {(ρ, θ) | ρ ∈ Σ, θ a satisfied match
for ρ over Σ(D)} with tip(ρ, θ) = head(ρ)θ and tail(ρ, θ) = body(ρ)θ. The labeling
λ is simply the identity function (non-identity labelings will be needed below).

Fig. 1. The graph of rule instances of Σ and D

Example 2. Reconsider Σ and D from Example 1. Each atom A ∈ Σ(D) is a
node in the graph of rule instances GRI(Σ,D) = (Σ(D), E, tip, tail, idΣ(D)

). The
hyperedges (E) are determined by the rules and matches producing Σ(D). For
instance, e = (ρ1, θ) ∈ E with tip(e) = t(1, 2) and tail(e) = {e(1, 2)} for applying
ρ1 for match θ = {x
→ 1, y
→ 2}. Figure 1 shows a depiction of the full graph,
including all the edges. Arrow tips point to the result of applying function tip to
the respective hyperedge. If an edge has a single tail-node, just like e above, we
depict it as a simple directed edge. Edges having more than one tail-node use a
small circle to join the tail-nodes via undirected edges. The distinction between
the gray part and the rest of the graph will be explained in Sect. 3.

Proof Trees. An alternative approach to the semantics of Datalog is the proof-
theoretic one, justifying inferred atoms A ∈ Σ(D) in terms of so-called proof
trees, a necessary prerequisite for provenance. A proof tree for A is a hypertree
T = (V, E, tip, tail, λ) with root node v such that λ(v) = A, v ∈ leaves(T) implies
λ(v) ∈ D, and for each non-leaf node v ∈ V \ leaves(T), there is exactly one edge
e ∈ E with tip(e) = v with a rule ρ ∈ Σ and satisfied match θ in Σ(D), such that
λ(tip(e)) = head(ρ)θ and {B | B ∈ body(ρ)θ} = {λ(t) | t ∈ tail(e)}. Such a proof
tree explains one possible derivation of atom A, of which there may be infinitely

150 A. Elhalawati et al.

many (due to recursion). Note that each atom A ∈ D has only a single proof
tree, which has a single vertex and no edges. By T(A, Σ,D) (or just T(A) if Σ and
D are clear from the context) we denote the set of all proof trees of A ∈ Σ(D).
There is a strong correspondence between GRI(Σ,D) and the union of all the
proof trees for all atoms A ∈ Σ(D):

Proposition 1. Let Σ be a Datalog program and D a database. Then

GRI(Σ,D) = (Σ(D), E, tip, tail, idΣ(D)

),

where for every A ∈ Σ(D), proof tree (V, E, tipT , tailT , λ) ∈ T(A), and e ∈ E, there
is an e′ ∈ E such that λ(tipT (e)) = tip(e′) and λ(tailT (e)) = tail(e′).

Thus, the graph of rule instances captures the set of all proof trees of the atoms
in Σ(D) by finite means. If a hypergraph H captures a (possibly infinite) set of
hypergraphs H in the sense of Proposition 1, we denote this fact by H � H.

Fig. 2. A selection of proof trees for t(1, 2)

Example 3. In Fig. 2, we depict three different proof trees deriving t(1, 2) from
Σ and D (cf. Example 1). While tree (a) represents the derivation by rule ρ1,
as discussed earlier, trees (b) and (c) use one or two rule applications of ρ2,
prepended by a rule application of ρ1. Note how in Fig. 2 (c), there are several
nodes having the same label. Observe that the unfolding step performed between
Fig. 2 (b) and (c) can be performed arbitrarily often, yielding an infinite set of
proof trees for t(1, 2).

Why-Provenance for Datalog. Provenance is about additional information, usu-
ally by means of annotations attached to the atoms of a database. Therefore, we
assume a dedicated set K of annotations (e.g., sources, multiplicities, or costs)

Computing Why-Provenance On-Demand for Datalog 151

and provide for each atom A ∈ D an annotation α(A) ∈ K. A K-annotated
database is, thus, a pair (D, α) such that D is a database and α : D → K. To
model tuples having no annotations we would assume special symbols like ⊥ or
∅ to be part of K.

Let Σ be a Datalog program and (D, α) a K-annotated database. Why-
provenance takes the annotations of database atoms and provides a set of wit-
nesses (sets of database annotations) from all those database atoms that can
be used to infer a given atom A ∈ Σ(D). In particular, the annotations of the
leaf nodes of a single proof tree for A ∈ Σ(D), as a set, form a witness in the
why-provenance of A. For atom A ∈ Σ(D) and a proof tree T ∈ T(A), we call the
set {α(λ(v)) | v ∈ leaves(T)} a witness for A, denoted by α(T). Why-provenance
of A (w.r.t. Σ and D) Why(A, Σ,D) (or Why(A) for short) is the set of all wit-
nesses for A, meaning Why(A, Σ,D) := {α(T) | T ∈ T(A)}. For every A ∈ Σ(D),
Why(A, Σ,D) ⊆ 22

D

and since D is finite, the set of all witnesses for A ∈ Σ(D)

is also finite, despite the fact that T(A, Σ,D) may be infinite.

3 Rule-Based Provenance On-Demand

Throughout this section, we assume the fixed Datalog program Σ and database
D. We have seen that the graph of rule instances GRI(Σ,D) captures all proof
trees of all atoms A ∈ Σ(D). However, this complete representation of the rule
instances is exponential and, therefore, quite costly to always compute with the
set Σ(D), especially when we are considering a debugging scenario, in which
the provenance of only a few atoms is ever queried. In this section, we present
how we avoid the full construction of the GRI, but may still access the nec-
essary parts of it, upon the query for why-provenance of a particular atom
A ∈ Σ(D). The key insight to our on-demand approach is that the downward
closure of A ∈ Σ(D) w.r.t. GRI(Σ,D) captures all proof trees T ∈ T(A). For hyper-
graph H = (V, E, tip, tail, λ) and node v ∈ V, we denote by v↓ the hypergraph
(W, F , tip

|F

, tail
|F

, λ
|W

), such that W and F are the smallest sets satisfying (1)
v ∈ W and (2) if u ∈ W and there is an edge E ∈ E with tip(E) = u, then E ∈ F

and tail(E) ⊆ V. Note, W ⊆ V and F ⊆ E, justifying the domain restrictions
tip

|F

, tail
|F

, and λ
|W

. Such downward closures are sufficiently representing proof
trees in the sense of Proposition 1:

Proposition 2. For GRI(Σ,D) = (Σ(D), E, tip, tail, λ) and A ∈ Σ(D), we have
A↓

� T(A).

Example 4. We stick with atom t(1, 2) ∈ Σ(D) from Example 1, whose downward-
closure is the black part of the GRI depicted in Fig. 1. Proof trees in Fig. 2 (a)
and (b) directly embed into the relevant part of the GRI. Note that there is no
proof tree of t(1, 2) relating to the grayed-out parts of the GRI (cf. Fig. 1).

To achieve an on-demand-driven provenance computation we therefore per-
form two steps: First, we record the nodes of GRI(Σ,D) (i.e., V), during the
derivation of Σ(D). This is a necessary prerequisite to prepare for subsequent

152 A. Elhalawati et al.

provenance computations. As we cannot use atoms as terms, we associate each
atom A ∈ Σ(D) with a term vA that may be seen as an identifier for A. Second,
when asked for the why-provenance of atom A, we only construct the downward
closure A↓ by resorting to vA. We subsequently show how we do both steps via
rule-based reasoning using existential quantification in the head of Datalog rules
only for the recording step.

For each predicate p occurring in Σ or D, let p+ be a fresh predicate name
with ar (p+) = ar (p)+1. For each atom A = p(�t), we introduce the aforementioned
identifier vA for A in the last component of its p+-copy (i.e., A = p(�t) entails the
atom p+(�t, vA)). We obtain such a copy by using the following rule for predicate
p:

p(x1, . . . , xar (p)) → ∃v. p+(x1, . . . , xar (p), v). (2)

Existential quantification in rule heads leaves the realm of pure Datalog, but is
here meant in a safe sense. State-of-the-art rule reasoners, like VLog [6], imple-
ment the standard chase which ensures that each atom is copied only once and,
therefore, also associated to exactly one (new) identifier vA. Any reasoner that
guarantees this uniqueness constraint may be used to obtain the same results.
For each predicate p occurring in Σ, we need to consider a respective rule (2).
Let Σ+ denote the set of all such rules. Note, Σ+ does not depend on D because
atoms with predicate names not occurring in Σ have no effect on the additional
atoms derived in Σ(D).

Upon the query for why-provenance of an atom p(t1, . . . , tn) ∈ Σ(D), we may
now resort to p+(t1, . . . , tn, v) ∈ (Σ∪Σ+)(D) as a starting point, where v indicates
the base node from which the downward closure shall be computed. If we add the
following rule to our overall rule set, we trigger the computation of the downward
closure from v by the derived fact G(v):

∀x. p+(t1, . . . , tn, x) → G(x) (3)

We assume G to be a fresh predicate. For an atom A, let us denote its triggering
rule (3) by trig(A). For the construction of the downward closure, we match rule
instances on atoms produced by rules in Σ+ (e.g., p+) and connect the associated
nodes accordingly. To cope with the different numbers of atoms per rule, we use
auxiliary fresh predicates E1, . . . , Ek , such that ar (Ei) = i (1 ≤ i ≤ k). We pick a
high enough k ∈ N (e.g., the maximum number of atoms in a rule of Σ). Then
for each rule ρ = p1(�t1) ∧ . . . ∧ pl(�tl) → q(�u) ∈ Σ, we create the rule

G(v0) ∧ q+(�u, v0) ∧ p+1 (�t1, v1) ∧ . . . ∧ p+l (�tl, vl) → El+1(v0, v1, . . . , vl) ∧

l∧

i=1

G(vi), (4)

where v0, v1, . . . , vl is a list of variables distinct from those used in ρ. Note, having
more than one head atom in a Datalog rule, as in (4), is just a shorthand for
as many single-head rules as there are atoms in the head. Requiring the deriva-
tion of atoms G(v1), . . . ,G(vl) makes sure that the downward closure is triggered
recursively. Let Σ� be the set of rules like (4) for each ρ ∈ Σ. Additionally, add
to Σ� one rule

q+(�t, v) → E1(v) (5)

Computing Why-Provenance On-Demand for Datalog 153

for each EDB predicate p of Σ. E1-atoms will later be used as the base case for
provenance computation. For an atom A ∈ Σ(D), adding trig(A) to Σ ∪ Σ+ ∪ Σ�

suffices to fully describe the downward closure of A (via vA) as follows:

Proposition 3. Let A ∈ Σ(D) and M = (Σ ∪ Σ+ ∪ Σ� ∪ {trig(A)})(D), Then E
with tip(E) = vB0 and tail(E) = {vB1, . . . , vBn} is an edge of A↓ if, and only if,
there is a set {i1, i2, . . . , in} = tail(E), such that En+1(vB0, vi1, . . . , vin) ∈ M.

Throughout the next two sections, we incorporate these preliminary con-
structions in two solutions for obtaining why-provenance of atoms A ∈ Σ(D).
The first is based on a representation of why-provenance as the solutions to
a system of equations [13] specific to Σ(D). The second is a purely rule-based
approach, incorporating the recent extension of Datalog by set primitives, called
Datalog(S) [7].

4 Realization as Solutions to Systems of Equations

Green et al. [13] have shown that provenance for Datalog (over K-annotated
databases) can be generalized to solutions of a system of equations, specific to
the Datalog program Σ and the K-annotated database (D, α), interpreted over
certain semirings. In the equations we use a generalized join operator ⊗ (for
combining the leaf nodes of a single proof tree) and ⊕ as the generalized union
(for combining alternative proof trees). Furthermore, a system of equations uses
variables from a set V, such that for each atom A ∈ Σ(D), V(A) ∈ V and

V(A) =
⊕

T ∈T(A,Σ,D)

��
�

⊗

B∈α(T)

V(B)
�	

(6)

is the characteristic equation for A (w.r.t. Σ and D). The system of equations
for Σ and D is then the pair (V,E), such that E contains the characteristic
equation (6) for each A ∈ Σ(D). (V,E) is interpreted over semirings that provide
different granularities of provenance information. For Datalog provenance, it is
of utmost importance that the semiring at hand is ω-continuous, guaranteeing
that infinite sums, like the ones introduced by (6) (recall that the set T(A, Σ,D)

is generally infinite), have well-defined solutions. Fortunately, the semiring for
why-provenance, Why(V,K) = (22

K
,∪, �, ∅, {∅}) enjoys this property. Note, for

sets A and B of subsets of K, A� B := {a∪ b | a ∈ A, b ∈ B}. An assignment over
Why(V,K) is a function β : V → 22

K
. An assignment β is valid for (V,E) if, and

only if, (a) β(V(A)) = α(A) for each A ∈ D, and (b) for each equation of the form
(6),

β(V(A)) =
⋃

T ∈T(A,Σ,D)

(β(V(B1)) � . . . � β(V(Bl))) , (7)

where for each T ∈ T(A, Σ,D), α(T) = {B1, . . . , Bl} (l ∈ N). Thus, operator ⊕ is
evaluated via union (∪) and ⊗ via cross-union (�).

154 A. Elhalawati et al.

The general infinity of equations like (6) is impractical for providing actual
tool support. Fortunately, an alternative system of equations makes use of
the fixpoint approach to solving equations over semirings, encompassed by the
finite representation of all proof trees, the graph of rule instances GRI(Σ,D) =

(Σ(D), E, tip, tail, λ). For the finite system of equations, we use the set Σ(D) as
the set of variables. To make the distinction between Σ(D) and its system of
equation clear, we will denote the variable of A ∈ Σ(D) by its identifier vA (cf.
Sect. 3). As set of equations E, we have the following equation for each atom
A ∈ Σ(D):

vA =
⊕

E ∈E,tip(E)=vA

��
�

⊗

w∈tail(E)

w
�	

(8)

Green et al. [13] showed that systems of equations created from (6) are equivalent
in their solutions with systems of equations using only finite equations of the
form (8) (one for each vA ∈ V).

Based on (8), we can also obtain a system of equations on-demand for node
vA by pursuing the additional rules we added in the last section. Upon why-
provenance query for A ∈ Σ(D), let Σ� = Σ ∪ Σ+ ∪ Σ� ∪ {trig(A)} and M =

Σ�(D). Then we derive the system of equations on-demand for A by querying for
the atoms of relations E1, . . . , Ek . Of course, we will use the node identifiers as
variables and define it by V := {v | p+(�t, v) ∈ M} (due to Σ+). For each variable
v ∈ V , let E(v) := {{v1, . . . , vl} | 1 ≤ l ≤ k ∧ El+1(v, v1, . . . , vl) ∈ M}. Both sets
can be constructed by querying for the respective atoms in M. The system of
equations for A on-demand is (V,E) where E is the set containing

v =
⊕

E ∈E(v)

(⊗

w∈E

w

)
(9)

for each v ∈ V . This is the system of equations we present a semiring solver like
FPsolve [11]. Interpreted over the why-semiring, the valid assignments for vA
refer to the provenance of A.

5 Realization with Datalog(S)

Our second solution to why-provenance on-demand is a pure rule-based app-
roach. Let us assume a Datalog program Σ, a database D, an atom A ∈ Σ(D)

we want to know why-provenance for, and the rule set Σ� containing Σ, Σ+, Σ�,
and {trig(A)} (cf. Sect. 3). We now associate with each node identifier v (due
to rules in Σ+) sets of node identifiers that each represents a witness for the
atom represented by A. Sets are not part of the terms in Datalog, but the recent
extension of Datalog with sets [7] does include special set terms. The language
facilitating basic set operations during reasoning is called Datalog(S) and will
be briefly introduced in the first part of this section. Later on, we give a fixed
set of Datalog(S) rules Σk

Why
for Σ, capable of traversing the downward closure

produced by Σ� and collecting witnesses in the above-mentioned sense.

Computing Why-Provenance On-Demand for Datalog 155

5.1 Datalog with Sets

Datalog(S) is a recent extension of Datalog that introduces a new term set, the
set variables VS, which can be used in a Datalog(S) program. Furthermore, the
set terms that can be used are defined inductively: (1a) V ∈ VS is a set term,
(1b) 0 is a set term representing the empty set in Datalog(S), (1c) for each term
t ∈ C ∪V, {t} is a set term, and (2) if T1 and T2 are set terms, then (T1

⋃
T2) is

a set term. We often drop the parenthesis in unions. A Datalog(S) rule has the
form

∀�x, �X . ϕ[�x, �X] → q(�u), (10)

where �x ⊆ V, �X ⊆ VS, ϕ ∪ {q(�u)} is a set of atoms (potentially) with set terms,
such that each variable in �u is an element of �x ∪

�X. Instances (and models)
are variable-free sets of atoms or set atoms (i.e., atoms containing set terms).
Since we use Datalog(S) only for the computation of provenance, we can assume
databases to be set-atom-free ground instances. Substitutions must match set
variables with set terms and variables in V with non-set terms, and matching
rules are defined accordingly. The procedures evaluating a set of Datalog(S) rules,
also called Datalog(S) programs, are similar to the ones for Datalog. Carral et
al. provide a reasoning approach based on an encoding of Datalog(S) programs
in existential rules [7]. We subsequently give a Datalog(S) program that traverse
the downward-closure we constructed in Sect. 3.

5.2 Collecting Sets from Downward Closures

Let prov be a fresh binary predicate (i.e., it does not occur in Σ�). The rules col-
lecting the witnesses as set terms produce prov -atoms with a node identifier in
the first position and a set term (a witness) in the second. Recall that the model
Σ�(D) contains facts for the predicates E1, . . . , Ek (for some k ∈ N determined
by the rules in Σ). Furthermore, all database node identifiers vA (with A ∈ D)
are represented by atoms E1(vA) ∈ Σ

�
(D). It is going to be these database node

identifiers that will be carried along in the witnesses of atoms B ∈ Σ(D). There-
fore, we construct a set of Datalog(S) rules Σk

Why
in which each rule introduces

new prov-atoms as witness information. In the base case, rule

E1(x) → prov (x, {x}) (11)

belongs to Σk
Why

. Upon evaluation, the provenance of each database atom A is
represented by the atom prov(vA, {vA}). For each j ∈ {1, . . . , k −1}, the set Σk

Why
contains the following rule:

E j+1(x0, x1, . . . , xj) ∧
j∧

i=1

prov(xi, Xi) → prov(x0, X1

⋃
· · ·

⋃
Xj) (12)

Since every edge of the downward closure effectively represents a rule instance,
the union of all witnesses belonging to the body of rule instance is a witness for
the head.

156 A. Elhalawati et al.

6 Implementation and Experimental Results

We implemented our on-demand approach (cf. Sect. 3) using VLog [6] and real-
ized why-provenance computation with the approaches described in Sects. 4 and
5. We chose FPsolve [11] as the semiring solver since it offers a built-in implemen-
tation of the why-semiring. We emulated Datalog(S) by means of terminating
existential rules, again using VLog, as described by Carral et al. [7]. For a given
Datalog program Σ, we have run a script translating the program into Σ� (cf.
Sect. 3). VLog does not only perform the initial Datalog reasoning step, but is
also crucial in the construction of the system of equations for FPsolve (Sect. 4)
and for performing the necessary reasoning steps of our Datalog(S)-based process
(Sect. 5).

As input, we used the Doctors scenario from the Chasebench [4] and a Dat-
alog implementation of the EL ontology Galen1 using the ELK reasoning calcu-
lus [15]. In particular, we rewrote the Doctors scenario into Datalog (originally,
it contains existential rules), which we obtained by replacing all occurrences of
existentially quantified variables uniformly by fresh constants. The Doctors
scenario provides seven queries (q1–q7) alongside the dataset 100k, which we sub-
sequently identify by the names of the queries. As for the EL ontology Galen, we
queried for the rdfs:subClassOf-property. As input data for Galen we obtained
10%, 15%, 25%, 40%, and 50% random samples (subsequently referred to as g10,
g15, . . . , g50). We are well aware that such a random sampling may destroy a lot
of the complicated reasoning in Galen. These initial experiments still allow for
a glimpse on how the two on-demand provenance approaches handle increasing
sizes of datasets, performance-wise.

Experimental Workflows. As input we get a Datalog program Σ and a database
D. Furthermore, why-provenance of (a randomly chosen) atom A ∈ Σ(D) must
be provided. We describe the tools and steps involved in the computation of
Why(A).

Common Preparation: We have created the rule set Σ� from Σ using python
scripts. Then VLog reasoned for Σ�(D) having created a node identifier vB
for each B ∈ Σ(D) and the downward-closure v

↓

A
.

FPsolve Process: When we ask FPsolve for Why(A), we query Σ�(D) as
described in Sect. 4 and produce an input file f for FPsolve that represents
a serialization of the downward-closure v

↓

A
. Then we call FPsolve on input f

to produce the output of why-provenance (as a string). For this process, we
could separate the times for (a) the common preparation step above, (b) the
writing of f (which requires querying Σ�(D)), and (c) the time for FPsolve
to solve the given system of equations.

Datalog(S) Process: VLog does not feature incremental reasoning, which
means that we had to simulate the materialization for Why(A) in one
shot : We measure the time taken by VLog to produce the materialization

1 Galen is an ontologies found in the Oxford Library.

http://www.cs.ox.ac.uk/isg/ontologies/

Computing Why-Provenance On-Demand for Datalog 157

(Σ� ∪ Σk
Why

)(D). The differences between the runtimes of the preparation
step (Σ� only) and the full materialization is inconclusive since different rule
sets have unpredicatably different runtime behavior. Even if the one rule set
is a superset of another, VLog may take less time for the materialization
because additional rules may mean that there are shortcuts that were previ-
ously impossible.

As one why-provenance query appears insufficient – we could have just been
lucky with the random choice of the atom A ∈ Σ(D) – we have picked 50 atoms
from Σ(D) at random and repeated the processes for each of them separately.
Therefore, we show aggregations of the runtime behavior. We have set a timeout
of 200 s for each run. All experiments have been performed on a machine with
an Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50 GHz processor, 378 GB of RAM,
1 TB of storage, and Debian GNU/Linux 9.13. Pointers to the datasets we have
used in the experiments and the resulting runtimes we obtained are available on
GitHub.

Fig. 3. Median runtimes of different phases of the FPsolve process

6.1 Feasibility of the On-Demand Approach to Why-Provenance

There are at least three user scenarios to consider for the question of feasibil-
ity of provenance on-demand: (1) the provenance power user, who constantly
queries for the provenance of any atom that has been derived, (2) the prove-
nance non-user, who never poses a query for provenance, and (3) the Datalog
debugger, who looks at the materialization, finds a small number atoms (to be

https://github.com/alloka/Provenance_Data

158 A. Elhalawati et al.

Fig. 4. Summary of the runtime results in seconds for the FPsolve process

buggy) and tries to fix the Datalog program according to the why-provenance
of the previously identified atoms. Then, user (3) starts over with a fresh Data-
log program for which provenance has to be computed anew. As an alternative
approach to provenance on-demand, we consider computing why-provenance of
all derived atoms alongside the derivation of Σ(D). This approach may be quite
satisfactory for user scenario (1) since, once provenance is computed by either
FPsolve or our Datalog(S) solution, retrieving provenance information is simply
reduced to query answering over a database. However, performing this exponen-
tial step alongside the computation of Σ(D) may be a lot more time-consuming
than just creating linearly many node identifiers. In fact, the blank and gray
bars in Fig. 3 show median reasoning times for Σ(D) (blank bar) and those for
Σ�(D) (gray bar), respectively. Especially for user scenario (2), the time differ-
ence between the different modes may be considered pleasant because even if
there is no provenance query at all, reasoning times for Σ�(D) are well below
1 s or close to the time for reasoning with just Σ. Our on-demand process has
especially been designed for user scenario (3) and needs to be integrated with,
for instance, Datalog synthesis processes like the one by Raghothaman et al. [18].
Here we can only tell from our experience with initial experiments with FPsolve:
when trying to compute all provenance for all atoms, FPsolve took hours or even
days to finish. By glimpsing on the runtime reports of the next subsection, we
see that our Datalog(S) approach would work equally bad. A final evaluation
comparing the on-demand approach with the “all provenance at once” approach
is left for future work.

Computing Why-Provenance On-Demand for Datalog 159

6.2 Performance of Why-Provenance Computation

For this experiment we report about the different time measurements we
explained earlier for the two approaches. Note that the preparation times (com-
mon to both processes) have been reported in the previous subsection (cf. gray
bars in Fig. 3).

The FPsolve Process. Additionally to the preprocessing step, producing the
downward-closure, we can report on the median times for producing the input
file for FPsolve (black bars in Fig. 3), which includes i/o operations to hard
disk. As we can see, this part of the process takes some time but in most cases
is superseded by FPsolve solving the system of equations (while solving also
always includes reading the file we produced). In Fig. 4, we see a summary of the
overall runtimes of the fifty runs for each query/scenario. The boxplots reflect
on the ranges of runtimes (rectangles), the media runtime (orange line), and
runtime deviations (whiskers). While most of the queries have somewhat stable
runtime results, queries q1, q5, and q7 seem to have rather diverse ones. In our
Galen experiments, we can see that from g40 (the 40% sample of Galen) on, we
produce timeouts. At g50, almost all runs did not finish within the time bound.
One reason may be that the file sizes (reflecting on the size of the system of
equations) grows by orders of magnitude from one Galen sample to a bigger one.

Looking for reasons of why FPsolve sometimes has bad runtimes, we observed
that the computed downward closures are significantly larger for queries q1, q5,
q7 than for the other ones in Doctors (up to one order magnitude). The size
of the downward closure correlates with the produced system of equations that
is given as input to FPsolve. It appears as if reading (from disk) and solving
bigger systems of equations is not the ideal use case for a tool like FPsolve. One
way resolving the issue is to create a service pipeline that does not have the
intermediate file representation that also has to be read from hard disk.

The Datalog(S) Process. Figure 5 reports on the overall runtime of our Data-
log(S) process (interpretation is as for Fig. 4). On one hand, we observe more
diversity in the smaller Galen samples than observed for FPsolve. On the other
hand, we obtain even more stable runtimes for the queries in the Doctors
scenario. By comparing Figs. 4 and 5, we see that FPsolve is faster than Dat-
alog(S) in Galen experiments by fine margins. However, Datalog(S) was faster
than FPsolve in the queries of the Doctor scenario, sometimes with significant
differences as, for instance, in q1, q5 and q7. Our Datalog(S) solution has the
advantage that we use a single tool, here VLog, that has been made for handling
large amounts of data. Even the big structures produced for computing witnesses
as sets can be handled in acceptable time. Especially the results in the Doctors
scenario came as a surprise, given that the implementation of Datalog(S) we use
is prone to introducing redundancy by means of having a single set represented
several (but finitely many) times [7].

Whether it really pays off that we do not have to leave the reasoner for
another (more specialized) tool is still an open question. A reasoner, particularly

160 A. Elhalawati et al.

Fig. 5. Summary of runtime results in seconds for the Datalog(S) process

designed to evaluate Datalog(S) programs, may show a lot more improvement
over the FPsolve process than we see with our implementation.

7 Related Work

We are not aware of any tool that computes why-provenance for Datalog pro-
grams besides FPsolve. However, several provenance notions as well as imple-
mentation ideas for Datalog provenance have been studied. GProM [3] and its
extension PUG [17] provide why- and why-not-provenance for non-recursive Dat-
alog programs with negations. These tools are also based on graph representa-
tions of the derivation process. Since they only consider non-recursive Datalog
programs, they do not have to deal with cycles. Having only a graph depiction
for a Datalog program with a huge database can be confusing and hard to trace,
as edges and nodes in the graph can get overwhelming. In [20], Zhao et al. rep-
resent provenance in the form of Proof Trees that show the rule applications
required to reach a particular derivation. The output of their provenance is the
minimal proof tree, from which only a single witness can be derived. Similar
ideas have been used as part of a synthesis process of Datalog programs [18].
However, presenting only a single witness does not cover the original notion of
why-provenance, as we tackle it here. Deutch et al. [10] introduced provenance
in the form of a finite circuit structure which is another representation of the
proof trees view and the GRI. One result of this work has been the absorp-
tive semiring for provenance, being incomparable to why-provenance. Köhler
et al. [16] produce the graph of rule instances for Datalog programs using a
rewriting with Skolem functions which is very similar to how we construct the

Computing Why-Provenance On-Demand for Datalog 161

downward closure by existential rules. They use this graph to provide the lin-
eage of an atom A, being the union of all witnesses of A, an easier task than
computing why-provenance which can completely be implemented in Datalog.
Recently, an interesting approach has been investigated by Ramusat et al. [19]
who view provenance computation as an operation of iterating over a graph to
obtain a shortest path. They consider graph databases but we can imagine this
work to also be generalizable to provenance for Datalog.

8 Conclusions

We presented an on-demand approach to why-provenance for recursive queries
by means of Datalog programs. As a preprocessing step, we annotate each and
every atom by a node identifier (linear in Σ(D)). We also showed how to com-
pute the necessary information for computing (why-)provenance (a form of sub-
hypergraph of the so-called graph of rule instances). These steps are purely
rule-based and enable for subsequent why-provenance computation, given an
atom A we want to know provenance of. We presented two realizations, one
based on a semiring solver and one based on Datalog(S) reasoning. The latter
solution builds on a recent extension of Datalog regarding set terms as first-class
citizens. Our initial experiments show that there is room for improvement, for
which more extensive experiments will be necessary. An interesting way to go
is to exploit the recent characterization of certain provenances as (generalized)
shortest paths [19]. Of course, this will leave the realm of a rule-based approach.
We also believe that the graph of rule instances, as we compute it, can be used
by Al-Rabbaa et al. [2] to give “good proofs” for Horn description logics with a
translation into Datalog. The key task here will be to translate “good proofs”
as obtained from traversing the GRI of the Datalog program into “good proofs”
of the underlying description logics.

Acknowledgments. This work is partly supported by the German Research Founda-
tion (DFG) in project number 389792660 (TRR 248, Center for Perspicuous Systems),
by the Federal Ministry of Education and Research (BMBF) in project number
13GW0552B (KIMEDS, KI-assistierte Zertifizierung medizinischer Software) and in
the Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), by
BMBF and German Academic Exchange Service (DAAD) in project 57616814 (SECAI,
School of Embedded Composite AI), as well as by the Center for Advancing Electron-
ics Dresden (cfaed).

https://www.perspicuous-computing.science/
https://www.scads.de/
https://www.secai.org/
https://cfaed.tu-dresden.de/

162 A. Elhalawati et al.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley,
Boston (1994)

2. Al-Rabbaa, C., Borgwardt, S., Koopmann, P., Kovtunova, A.: Explaining ontology-
mediated query answers using proofs over universal models. In: Governatori, G.,
Turhan, A.-Y. (eds.) RuleML+RR 2022. LNCS, vol. 13752, pp. 167–182. Springer,
Cham (2022)

3. Arab, B.S., Feng, S., Glavic, B., Lee, S., Niu, X., Zeng, Q.: GProM - a swiss army
knife for your provenance needs. Proc. IEEE Data Eng. Bull. 41(1), 51–62 (2018)

4. Benedikt, M., et al.: Benchmarking the chase. In: Sallinger, E., Van den Bussche,
J., Geerts, F. (eds.) Proceedings of 36th Symposium on Principles of Database
Systems (PODS 2017), pp. 37–52. ACM (2017)

5. Buneman, P., Khanna, S., Wang-Chiew, T.: Why and where: a characterization
of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 316–330. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44503-X 20

6. Carral, D., Dragoste, I., González, L., Jacobs, C., Krötzsch, M., Urbani, J.: VLog:
a rule engine for knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019, Part
II. LNCS, vol. 11779, pp. 19–35. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30796-7 2

7. Carral, D., Dragoste, I., Krötzsch, M., Lewe, C.: Chasing sets: how to use existential
rules for expressive reasoning. In: Kraus, S. (ed.) Proceedings of 28th International
Joint Conference on Artificial Intelligence (IJCAI 2019), pp. 1624–1631. ijcai.org
(2019)

8. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how, and
where. J. Found. Trends Databases 1(4), 379–474 (2009)

9. Viegas Damásio, C., Analyti, A., Antoniou, G.: Justifications for logic program-
ming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp.
530–542. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-
8 53

10. Deutch, D., Milo, T., Roy, S., Tannen, V.: Circuits for datalog provenance. In:
Schweikardt, N., Christophides, V., Leroy, V. (eds.) Proceedings of 17th Interna-
tional Conference on Database Theory (ICDT 2014), pp. 201–212. OpenProceed-
ings.org (2014)

11. Esparza, J., Luttenberger, M., Schlund, M.: FPsolve: a generic solver for fixpoint
equations over semirings. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol.
8587, pp. 1–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08846-
4 1

12. Glavic, B., Miller, R.J., Alonso, G.: Using SQL for efficient generation and querying
of provenance information. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan,
W.-C., Fourman, M. (eds.) In Search of Elegance in the Theory and Practice of
Computation. LNCS, vol. 8000, pp. 291–320. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41660-6 16

13. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
of 26th Symposium on Principles of Database Systems (ACM SIGACT-SIGMOD-
SIGART 2007), pp. 31–40 (2007)

14. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data provenance. In: Elma-
garmid, A.K., Agrawal, D. (eds.) Proceedings of International Conference on Man-
agement of Data (SIGMOD 2010), pp. 951–962. ACM (2010)

https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/978-3-030-30796-7_2
https://doi.org/10.1007/978-3-030-30796-7_2
https://doi.org/10.1007/978-3-642-40564-8_53
https://doi.org/10.1007/978-3-642-40564-8_53
https://doi.org/10.1007/978-3-319-08846-4_1
https://doi.org/10.1007/978-3-319-08846-4_1
https://doi.org/10.1007/978-3-642-41660-6_16
https://doi.org/10.1007/978-3-642-41660-6_16

Computing Why-Provenance On-Demand for Datalog 163

15. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The incredible ELK: from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reason. 53, 1–61
(2013)

16. Köhler, S., Ludäscher, B., Smaragdakis, Y.: Declarative datalog debugging for mere
mortals. In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp.
111–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32925-
8 12

17. Lee, S., Ludäscher, B., Glavic, B.: PUG: a framework and practical implementation
for why and why-not provenance. Proc. VLDB 28(1), 47–71 (2019)

18. Raghothaman, M., Mendelson, J., Zhao, D., Naik, M., Scholz, B.: Provenance-
guided synthesis of datalog programs. Proc. ACM Program. Lang. 4(POPL), 62:1–
62:27 (2020)

19. Ramusat, Y., Maniu, S., Senellart, P.: Provenance-based algorithms for rich queries
over graph databases. In: Velegrakis, Y., Zeinalipour-Yazti, D., Chrysanthis, P.K.,
Guerra, F. (eds.) Proceedings of the 24th International Conference on Extending
Database Technology (EDBT 2021), pp. 73–84. OpenProceedings.org (2021)

20. Zhao, D., Subotic, P., Scholz, B.: Debugging large-scale datalog: a scalable prove-
nance evaluation strategy. Proc. ACM Trans. Program. Lang. Syst. 42(2), 7:1–7:35
(2020)

https://doi.org/10.1007/978-3-642-32925-8_12
https://doi.org/10.1007/978-3-642-32925-8_12

Queries Over Ontologies

Explaining Ontology-Mediated
Query Answers Using Proofs

over Universal Models

Christian Alrabbaa , Stefan Borgwardt , Patrick Koopmann ,
and Alisa Kovtunova(B)

Institute of Theoretical Computer Science, Technische Universität Dresden,
Dresden, Germany

{christian.alrabbaa,stefan.borgwardt,patrick.koopmann,
alisa.kovtunova}@tu-dresden.de

Abstract. In ontology-mediated query answering, access to incomplete
data sources is mediated by a conceptual layer constituted by an ontol-
ogy, which can be formulated in a description logic (DL) or using exis-
tential rules. In the literature, there exists a multitude of complex tech-
niques for incorporating ontological knowledge into queries. However, few
of these approaches were designed for explainability of the query answers.
We tackle this challenge by adapting an existing proof framework toward
conjunctive query answering, based on the notion of universal models.
We investigate the data and combined complexity of determining the
existence of a proof below a given quality threshold, which can be mea-
sured in different ways. By distinguishing various parameters such as
the shape of the query, we obtain an overview of the complexity of this
problem for several Horn DLs.

1 Introduction

Description logics (DLs) are a family of knowledge representation formalisms
that can be seen as decidable fragments of first-order logic using only unary and
binary predicates [9]. This family contains very expressive DLs like SROIQ,
which underlies the standardized Web Ontology Language OWL 2,1 as well as
the light-weight DLs DL-LiteR and EL, corresponding to the OWL 2 profiles QL
and EL, respectively. We focus here on Horn DLs up to Horn-ALCHOI [27,31],
whose axioms can be expressed as existential rules (with equality) [14]. The
complexity of standard reasoning problems such as entailment of axioms or facts
(ground atoms) from an ontology (a finite set of axioms) has been studied for
decades and is well-understood by now [9,30]. Another popular reasoning prob-
lem for DLs is that of ontology-mediated query answering (OMQA), which gen-
eralizes query answering over databases by allowing to query implicit knowledge
that is inferred by the ontology [15,31].

1 https://www.w3.org/TR/owl2-overview/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 167–182, 2022.
https://doi.org/10.1007/978-3-031-21541-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_11&domain=pdf
http://orcid.org/0000-0002-2925-1765
http://orcid.org/0000-0003-0924-8478
http://orcid.org/0000-0001-5999-2583
http://orcid.org/0000-0001-9936-0943
https://www.w3.org/TR/owl2-overview/
https://doi.org/10.1007/978-3-031-21541-4_11

168 C. Alrabbaa et al.

Fig. 1. The query (on the left) and the relevant part of the universal model (on the
right) from Example 1.

Explaining DL reasoning has a long tradition, starting with the first works
on proofs for standard DL entailments [12,29]. A popular and very effective
method is to compute justifications, which simply point out the axioms from
the ontology that are responsible for an entailment [10,22,32,35]. More recently,
work has resumed on techniques to find proofs for explaining more complex
logical consequences [3–5,23,24]. On the other hand, if a desired entailment does
not hold, one needs different explanation techniques such as abduction [17,19,26]
or counterinterpretations [8]. Explaining answers to conjunctive queries (CQs)
has also been investigated before, in the form of abduction for missing answers
over DL-Lite ontologies [17], provenance for positive answers in DL-Lite and
EL [13,16], as proofs for DL-Lite query answering [11,20,36], as well as proofs and
provenance for rule reasoning [21,33]. Inspired by the latter, we also investigate
proofs for CQ answers, but consider more expressive DLs and want to find good
proofs according to different quality measures. We focus on Horn DLs, for which
every ontology has a universal model that captures exactly the query answers
over the ontology [14]. While classically models are used for explaining missing
entailments [8], this property allows us to use universal models also to explain
positive query answers.

Example 1. Consider the fact A(a), the existential rules (which can be expressed
in Horn-ALCHOI)

A(x) → ∃y. r(x, y) ∧ B(y), s(x, y) ∧ r(z, x) → E(x),
B(x) → ∃z. s(x, z) ∧ A(z), E(x) ∧ r(y, x) → D(y),

and the conjunctive query q(x) = ∃x′, y. r(x, y) ∧ r(x′, y) ∧ D(x′). Individual
a is an answer to q in this ontology. The query instantiated with this answer
is depicted on the left in Fig. 1, using edges for binary predicates and node
labels for unary predicates. To explain the answer, we show on the right of the
figure the relevant part of the universal model of the ontology, where unary
and binary predicates are represented similarly. The nodes represent objects in
the model and are identified by Skolem terms, together with the assignments
to the variables in the query. For example, f(a) can be described as “the r-
successor of a”, which has to be present in any model of the ontology due to

Finding Good Proofs for Ontology-Mediated Queries 169

Table 1. Summary of the combined complexity results for OPsk(L,m).

Measure DL-Lite EL Horn-ALCHOI
tree-shaped CQ IQ CQ CQ

Domain size NP-c [Theorem 9, 12] in ExpTime [Theorem 9] in NExpTime [Theorem 16]

Tree size in P [Theorem 11] NP-c [Theorem 9, 10] P-c [Theorem 13] NP-c [Theorem 13] in PSpace [Theorem 16]

Proof size NP-c [Theorem 9, 12] in ExpTime [Theorem 17]

Proof size bound polynomial [Lemma 7] exponential [Lemma 7] double exponential [Lemma 14]

the first rule. The Skolem functions like f and g are created uniquely for each
existentially quantified variable in the rules. In addition to explaining how the
query is matched to the universal model, the dashed gray edges indicate a proof
of q(a). For instance, A(a), together with the first rule, implies the existence
of the r-successor satisfying B, and D(a) follows from E(f(a)) and r(a, f(a))
through the last rule. To make this representation more accessible for larger
proofs, in real applications we would show proof steps only on demand, whenever
a user selects a fact to be explained in the model.

In previous work [3,5], we developed a formal framework for proofs in
standard DL reasoning. We investigated the complexity of finding small proofs
according to different proof measures: (proof) size, i.e. the number of distinct
formulas in a proof, and (proof) tree size, i.e. the size when the proof is presented
as tree, as it is done often in practice [2,24]. In this framework, proofs are
generated by a so-called deriver that specifies which inferences are possible in a
proof.

To be able to reuse results, the present work develops proofs for query answers
within the same framework. In particular, in order to explain query answers using
universal models, we introduce a special deriver that applies to a large family
of Horn-DLs, and in which inferences in the proof directly correspond to the
construction of the universal model. For such proofs, if we visualize them as in
the example, another proof measure becomes relevant: the domain size, which is
the number of elements from the universal model that are used in the proof. In
the example, the domain size of the proof is 3. After introducing our deriver, we
investigate the complexity of finding good proofs w.r.t. the different measures,
as well as bounds on the size of the obtained proofs. An overview of our results is
shown in Table 1. Because it introduces fresh objects, our deriver is only sound
for a Skolemized version of the TBox, and not for the original TBox. At the
end of the paper, we have a brief look at another deriver in which all inferences
are sound w.r.t. the original TBox, and argue that, while the complexity of the
resulting decision problem is often similar, this deriver is less helpful in explaining
query answers to users. This paper extends initial results in this direction from
a workshop paper [7]. Proof details can be found online [6].

2 Preliminaries

Logics. We assume basic knowledge about first-order logic and familiarity with
terminology such as variables, terms, atoms, sentences, etc. Throughout the

170 C. Alrabbaa et al.

Table 2. Sentences of Horn-ALCHOI, where A,B,C ∈ NC, a ∈ NI, R,R1, R2 are roles
of the form r or r− (inverse role), r ∈ NR, and we identify r−(x, y) with r(y, x).

(i) A � B A(x) → B(x)

(ii) A � B � C A(x) ∧ B(x) → C(x)

(iii) ∃R.A � B R(x, y) ∧ A(y) → B(x)

(iv) A � ∃R.B A(x) → ∃y.R(x, y) ∧ B(y)

(v) A � ∀R.B A(x) ∧ R(x, y) → B(y)

(vi) A � {a} A(x) → x = a

(vii) R1 � R2 R1(x, y) → R2(x, y)

paper, we use L to refer to fragments of first-order logic. DLs are fragments of
the two-variable fragment, for which we assume unary predicates to be taken
from a countably infinite set NC of concept names, binary predicates to be taken
from a countably infinite set NR of role names, and constants to be taken from
a countably infinite set NI of individual names [9]. Moreover, we use � and
⊥ as special concept names that are always satisfied or always not satisfied,
respectively. We focus on Horn DLs that can be represented using existential
rules with equality [14]. An existential rule is a first-order sentence of the form
∀�y, �z. ψ(�y, �z) → ∃�u. χ(�z, �u), with the body ψ(�y, �z) and the head χ(�z, �u) being
conjunctions of atoms of the form A(t1), R(t1, t2), or t1 = t2, where t1 and
t2 are constants or variables from �z, �u and �y. We usually omit the universal
quantification.

For DLs, one usually uses a different, dedicated syntax. Table 2 shows the
allowed rules in Horn-ALCHOI, together with their representation in DL syn-
tax, where, for simplicity, we assume the rules to be normalized. A set T of
such rules is called TBox or ontology. In Horn-ALC, only expressions of the
forms (i)–(v) without inverse roles are allowed, EL further restricts Horn-ALC
by disallowing (v) and ⊥, and DL-Lite only allows expressions R1 � R2, A � C,
C � A, and A 	 B � ⊥, where R1, R2 are (possibly inverse) roles, A,B ∈ NC,
and C is either a concept name or ∃R.�, for a (possibly inverse) role R.

Query Answering. An ABox A is a set of ground atoms (called facts) of the
form A(a) or r(a, b), which together with a TBox T forms a knowledge base (KB)
K = T ∪ A. Its signature sig(K) is the set of all concept, role, and individual
names ind(K) occurring in it. A conjunctive query (CQ) q(�x) is an expression of
the form ∃�y. φ(�x, �y), where φ(�x, �y) is a conjunction of atoms A(t) or r(s, t) and
s, t are variables or constants. The variables in �x are called answer variables and
�y are the existentially quantified variables. If q(�x) contains only a single unary
atom, it is called instance query (IQ). If �x is empty, then q(�x) is called Boolean.
Note that ABox facts are a special case of Boolean CQs with only one atom and
no variables. A tuple �a of constants from A is a certain answer to q(�x) over a
KB K, written K |= q(�a), if every model of K satisfies the sentence q(�a). We
may write A(x) ∈ q to indicate that A(x) is an atom in φ. A union of CQs

Finding Good Proofs for Ontology-Mediated Queries 171

(UCQ) is a disjunction of CQs sharing the same answer variables. A CQ q(�x)
is UCQ-rewritable over a TBox T if there exists a UCQ qT (�x) such that, for
every ABox A and tuple �a, T ∪ A |= q(�a) iff A |= qT (�a). This is the case, for
example, for all CQs over DL-LiteR TBoxes [15]. Since we consider proofs for a
given, fixed answer �a, we consider only the Boolean CQ q(�a), which we denote
in the following simply as q.

Proofs. Following the formal framework in [3–5], we view proofs in a logic L
as finite directed hypergraphs (V,E, �) where each vertex v ∈ V is labeled by
an L-sentence �(v), and every hyperedge is of the form (S, d) ∈ E the finite set
S ⊆ V being the premises and d ∈ V the conclusion, which we may depict as

p p → q
q or

p p → q

q

We call these edges also inferences. Proofs can be found by looking at derivation
structures. Formally, a derivation structure over a KB K is a possibly infinite
hypergraph as above in which each inference (S, d) is sound, that is, the labels of
S logically entail the label of d, and every leaf (vertex without incoming edges) is
labeled by an element of K. A proof for an entailment K |= η is a finite derivation
structure that (i) is acyclic, (ii) has exactly one sink (the conclusion), which is
labeled by the goal sentence η, and (iii) in which each vertex v is the conclusion
of at most one hyperedge (S, v). The size of a proof is the number of its vertices,
and the tree size is the size of its tree unraveling, starting from the sink.

Proofs are usually generated based on a calculus or some reasoning system.
This is formalized by the notion of a deriver, which, for a given entailment
K |= η, generates a derivation structure in which different possible proofs can be
found. Formally, a deriver D for a logic L is a function that takes as input an
L-theory K and an L-sentence η, and returns a derivation structure D(K, η) over
K that describes all inference steps that D could perform in order to derive η
from K. This structure is not necessarily computed explicitly, but can be accessed
through an oracle (in practice, this corresponds, for example, to checking whether
an inference conforms to a calculus).

Remark 2. We argue that we can make some simplifying assumptions on the
shape of Horn-ALCHOI rules.

(a) To keep constructions easier, we assume TBoxes to be normalized as
in [18,31]. Such a normalization can always be performed in polynomial
time by introducing fresh names as abbreviations for complex formulas and
applying standard transformations. We can transform a proof over a normal-
ized TBox to a proof for the original non-normalized TBox by (i) replacing
the new names with the original complex expressions, which may result
in intermediate proof steps using atoms like (∃r.A)(x), and (ii) possibly
introducing new inference steps corresponding to normalization steps. This
increases the size of the proofs at most polynomially, which is why we believe
our results are also relevant to non-normalized TBoxes.

(b) We assume KBs to be consistent. Since for Horn DLs, ⊥ is only useful to
create inconsistencies, we assume in the following that ⊥ is never used.

172 C. Alrabbaa et al.

3 A Deriver Using Universal Models

A distinguishing feature of Horn DLs is that every KB has a universal model
which satisfies exactly the Boolean CQs that are entailed by the KB. In the
literature on existential rules, the term chase refers to (different variants of)
universal models [14]. Intuitively, a chase is constructed by applying rules to
facts, where fresh objects are introduced for existential quantified variables. As
we illustrate in the introduction, proofs connected to universal models can help
to explain query answers. However, because we require inferences to be sound,
our framework does not allow for an inference mechanism that introduces fresh
objects. Our solution is to provide a deriver that is sound w.r.t. the Skolemized
TBox, rather than the original TBox. By Skolemizing, we eliminate existential
quantification using fresh function symbols. The saturation of an ABox using a
Skolemized TBox produces the least Herbrand model, which in turn corresponds
to the Skolem chase (a.k.a. semi-oblivious chase) [28] of the original TBox. In our
case, existential quantification only occurs in rules of the form (iv) (see Table 2),
which then get transformed into A(x) → r(x, f(x)) ∧ B(f(x)) where f is unique
for each existentially quantified variable. Given a TBox T , we denote by T s the
result of Skolemizing all axioms in T . A universal model of T ∪ A can then be
obtained by “applying” the rules in T s to A until a fixpoint is reached (which
may result in an infinite set of atoms).

In the following, let T ∪ A be a KB in some DL L and q a Boolean CQ
with T ∪ A |= q, which we want to explain. For this, we define an appropriate
deriver over the extended logic Lcq, which contains the results of Skolemizing the
rules in Table 2 as well as all Boolean CQs. To provide good explanations, infer-
ences should be simple, i.e. involve only small modifications of the premises. For
TBox entailment, in [3–5], we considered derivers based on the inference schemas
used by consequence-based reasoners. To obtain proofs for CQs, we present the
deriver Dsk, which inspired by the approach from [11] and mainly operates on
ground CQs that may use Skolem terms, but no existential quantification. Since
ground atoms do not share variables, we mainly need to consider inferences on
single atoms, which allows for fine-grained proofs (see Fig. 2). Only at the end
we need to compose atoms to obtain the desired CQ q.

The inference schemas of Dsk are shown in Fig. 3. In (MP), αi(�ti) and β(�s)
are ground atoms, ψ(�y, �z) → χ(�z) is a Skolemized rule from T s, and there
must be a substitution π such that π(ψ(�y, �z)) = {α1(�t1), . . . , αn(�tn)} and β(�s) ∈
π(χ(�z)). (E) deals with equalities t1 = t2 by copying atoms α(�t) that contain t1
or t2 (we consider =-atoms to be symmetric). We only apply (E) to replace
top-level terms, not nested terms. Replacing also nested terms might be logically
sound, but would not improve the readability of the proof, and is also not needed
for completeness. To complete the proof, (C) combines several ground atoms into
a conjunction, and (G) generalizes ground terms to variables in order to produce
the final CQ (see Fig. 2). Note that the same atom can be used several times as
a premise for (MP) or (C), which then however results in a double connection
as in Fig. 2 for r(a, f(a)). Consequently, the premise (and the subproof above it)
would be duplicated in the tree unraveling of the proof.

Finding Good Proofs for Ontology-Mediated Queries 173

Fig. 2. A Skolemized proof for the example (colors are used for the ease of reading)

Fig. 3. Inference schemas in Dsk (modus ponens, equality, conjunction, generalization).

Definition 3. Dsk(T s ∪ A,q) is an infinite derivation structure over T s ∪ A
with vertices for the axioms in T s ∪ A and all Boolean CQs over sig(T s ∪ A),
and hyperedges for all possible instances of (MP), (E), (C), and (G) over these
vertices.2 An (admissible) proof in Dsk(T s ∪ A,q) is a proof of T s ∪ A |= q that
has a label-preserving homomorphism into this derivation structure.

It is easy to check that these inferences are sound. Moreover, they are also
complete, i.e. if T ∪ A |= q holds, then there exists a proof for it (w.r.t. T s).
To see this, observe that we closely follow the (Skolem) chase construction for
existential rules [14,28], where (MP) corresponds to standard chase steps, and
(E) can be seen as merging domain elements in case of equalities ((C) and (G)
are only relevant to obtain the final CQ). The resulting model M is universal,
which means that T ∪ A |= q implies M |= q, which, in turn, shows that there
must be a proof in Dsk(T s ∪ A,q).

2 This derivation structure is uniquely determined except for the names of the vertices,
which are irrelevant for our purposes since we use only their labels.

174 C. Alrabbaa et al.

4 Finding Good Proofs in Dsk

We are interested in the worst-case complexity of computing good proofs with
our deriver Dsk. In the following, we denote by ms(P) (mt(P)) the (tree) size of
a proof P. In addition, we consider the domain size md(P), which is defined as
the number of ground terms appearing in P. We consider the following decision
problem OPsk(L,mx) for some DL L and measure mx ∈ {ms,mt,md}: given an L-
KB T ∪A, a (Boolean) CQ q such that T ∪A |= q, and a natural number n > 1
encoded in binary,3 is there a proof P for q in Dsk(T s ∪ A,q) with mx(P) ≤ n?

To better isolate the complexity of finding small proofs from that of query
answering, we assume T ∪ A |= q as prerequisite, which fits the intuition that
users would request an explanation only after they know that q is entailed.
Similarly to Lemma 7 in [5], instead of looking for arbitrary proofs and homo-
morphisms into the derivation structure (see Definition 3), one can restrict the
search to subproofs4 of Dsk(T s ∪ A,q), which we will often do implicitly.

Lemma 4. For any measure mx ∈ {ms,mt,md}, if there is an admissible proof
P w.r.t. Dsk(T s ∪ A,q) with mx(P) ≤ n, then there exists a subproof P ′ of
Dsk(T s ∪ A,q) for T s ∪ A |= q with mx(P ′) ≤ n.

Since domain size also satisfies the preconditions of Lemma 7 in [5], the statement
of Lemma 4 can be shown similarly.

4.1 The Data Complexity of Finding Good Proofs

It is common in the context of OMQA to distinguish between data complexity,
where only the data varies, and combined complexity, where also the influence
of the other inputs is taken into account. This raises the question whether the
bound n is seen as part of input for the data complexity or not. It turns out
that fixing n trivializes the data complexity, because then n also fixes the set of
relevant ABoxes modulo isomorphism, so that the problem can be reduced to
UCQ entailment.

Theorem 5. For a constant n, any L, and any mx ∈ {ms,mt,md}, OPsk(L,mx)
is in AC0 in data complexity.

One may argue that, since the size of the proof depends on A, the bound
n on the proof size should be considered part of the input as well. Under this
assumption, our decision problem is not necessarily in AC0 anymore. For exam-
ple, consider the EL TBox {∃r.A � A} and q(x) ← A(x). For every n, there is an
ABox A such that A(a) is entailed by a sequence of n role atoms, and thus needs

3 Unary encoding of n would make the problem much easier due to imposing a small
(polynomial) upper bound on the (domain/tree) size of proofs. Hence, binary encod-
ing puts more emphasis on the impact of the KB and the query on the decision
problem.

4 A subproof S of a hypergraph H is a subgraph of H that is a proof s.t. the leaves of
S are a subset of the leaves of H.

Finding Good Proofs for Ontology-Mediated Queries 175

a proof of size at least n. Deciding whether this query admits a bounded proof is
thus as hard as deciding whether it admits an answer at all in A, i.e. P-hard [34].
However, the problem stays in AC0 for DLs over which CQs are UCQ-rewritable,
e.g. DL-LiteR [15], because the number of (non-isomorphic) proofs that we need
to consider is bounded by the size of the rewriting, which is constant in data
complexity.

Theorem 6. For any mx ∈ {ms,mt,md} and any L such that all CQs are UCQ-
rewritable over L-TBoxes, OPsk(L,mx) is in AC0 in data complexity.

4.2 Finding Good Proofs with Lightweight Ontologies

We now consider the combined complexity of our problems for DL-LiteR and
EL. In [3,5], we established general upper bounds for finding proofs of bounded
size. These results depend only on the size of the derivation structure obtained
for the given input. However, Dsk does not produce finite derivation structures
since there can be Skolem terms of arbitrary nesting depth. Nevertheless, proofs
cannot be infinite, and therefore we first study how large proofs in Dsk can get
in the worst case. In particular, for EL one can enforce proofs that are binary
trees of polynomial depth, and therefore of exponential size.

Lemma 7. One can construct a TBox TL,n in time polynomial in n such that
TL,n ∪{A(a)} |= B(a), but every proof of the entailment is of (domain/tree) size

1. polynomial in n for L = DL-LiteR,
2. exponential in n for L = EL.

Moreover, there exists an EL-TBox T for which one can construct an ABox An

in time polynomial in n such that T ∪ An |= A(a), but every proof of it is of a
tree size exponential in n.

To obtain matching upper bounds, we can bound the number of relevant
Skolem terms in Dsk by investigating which part of the universal model is nec-
essary to satisfy the query q.

Lemma 8. For any CQ entailment T ∪ A |= q, there exists a proof of

1. (domain/tree) size polynomial in |T ∪ A| and |q| if L = DL-LiteR,
2. (domain) size exponential in |T | and |q| and polynomial in |A| if L = EL,
3. tree size exponential in |T ∪ A| and |q| if L = EL.

This immediately allows us to show some generic upper bounds by guessing
proofs up to the specified sizes.

Theorem 9. For any mx ∈ {ms,mt,md}, OPsk(EL,mx) is in NExpTime and
OPsk(DL-LiteR,mx) is in NP.

176 C. Alrabbaa et al.

In some cases, we can show matching lower bounds via reductions from the
Boolean query entailment problem. Using Lemma 8, we can find an upper bound
n for any proof showing K |= q provided that it holds. To satisfy the prerequisites
of OPsk, we then extend K by a second KB K′ in which K′ |= q, but only with a
proof larger than n.

Theorem 10. For mx ∈ {ms,mt}, OPsk(DL-LiteR,mx) is NP-hard.

To obtain tractability, we can restrict the shape of the query. The Gaifman graph
of a query q is the undirected graph that uses the terms of q as nodes and has
an edge between terms occurring together in an atom. A query is tree-shaped if
its Gaifman graph is a tree. We can exploit this structure to deterministically
explore in polynomial time all relevant proofs of minimal tree size over DL-LiteR
KBs.

Theorem 11. Given a DL-LiteR KB T ∪A and a tree-shaped query q, one can
compute in polynomial time a proof of minimal tree size in Dsk(T s ∪ A,q).

The central property used in the proof of Theorem 11 is that for tree size the
proof of each atom in q is counted separately, even if two atoms are proven in the
same way. Since md and ms do not exhibit this redundancy, we can show that the
corresponding decision problems are already NP-hard for tree-shaped queries,
and even without a TBox, via reductions from the propositional satisfiability
problem.

Theorem 12. Let L be an arbitrary DL and mx ∈ {ms,md}. For tree-shaped
CQs, OPsk(L,mx) is NP-hard.

For EL, we can similarly show improved complexity bounds for the case of tree
size, where the lower bounds are obtained using the same idea as for Theorem 10,
however this time using the exponential bound on the tree size from Lemma 8.

Theorem 13. OPsk(EL,mt) is NP-complete in combined, and in P in data
complexity. For IQs, the problem is P-complete in combined complexity.

4.3 Finding Good Proofs with Expressive Ontologies

We continue our journey towards more expressive DLs. First, we establish a
more expressive counterpart of Lemma 7. This time, we can even enforce trees
of exponential depth, by implementing a binary counter using concept names for
the different bit values. To produce the entailment, the proof has to increment
the counter all the way to the maximum value, and do so on every branch of a
binary tree, which gives us the desired lower bound.

Lemma 14. One can construct a Horn-ALC-TBox TL,n in time polynomial
in n such that TL,n ∪ {A(a)} |= B(a), but every proof of the entailment is of
(domain/tree) size doubly exponential in n.

Finding Good Proofs for Ontology-Mediated Queries 177

In the case of (domain) size, we can also find a matching upper bound. The
general idea is using a kind of type construction. Intuitively, we identify the terms
occurring the proof based on the predicates they occur in. Because there are at
most exponentially many possibilities for this, we can bound the nesting depth
of Skolem terms by an exponential, which gives a double exponential bound on
domain size and size. For tree size, this is not so straightforward, and we leave
the exact bounds for future work.

Lemma 15. For any CQ entailment T ∪A |= q with T being a Horn-ALCHOI-
TBox, there exists a proof of (domain) size double-exponential in T and polyno-
mial in A.

In contrast to Lemma 8 for DL-Lite and EL, we cannot use Lemma 15 to reduce
OPsk(Horn-ALCHOI,m) to query entailment in Horn-ALCHOI since a double
exponential bound cannot be expressed using only polynomially many bits. On
the positive side, the fact that the bound n is encoded in binary means that
for OPsk(Horn-ALCHOI,m), we do not need to consider proofs of more than
exponential size, which gives us a NExpTime upper bound for ms; for md it
holds as well since there are exponentially many facts over sig(T s ∪ A) with a
domain bounded by n. Using a technique from [5], we can even improve this to
PSpace in the case of mt.

Theorem 16. OPsk(Horn-ALCHOI,mx) is in NExpTime for mx ∈ {ms,md},
and in PSpace for mx = mt.

For ms, we are able to improve this complexity even further using a more
involved technique. The idea is to virtually construct the proof from proof seg-
ments which are represented using tuples of the form 〈t, In,Out,Size〉, where
t is a term, In and Out are sets of atoms of restricted shape that may use a
placeholder to represent relative Skolem terms, and Size is an integer. Intu-
itively, such a tuple tells us that it is possible to derive Out from In using a
proof of size at most Size. t may optionally store what the placeholder stands
for, provided that this is relevant for the query answer. We impose additional
syntactic restrictions to ensure that there can be at most exponentially many
such tuples. The decision procedure starts from a set of initial proof segments
that correspond to proofs of polynomial size, and then step-wise aggregates proof
segments to represent larger proofs, with the concise tuple representation mak-
ing sure that there can be at most exponentially many such operations. We can
thus prove the following theorem.

The main observation underlying this algorithm is that Horn-ALCHOI rules
can only increase or decrease the nesting depth of a term by at most 1, while
we can assume that (E) only replaces terms by constants. This introduces a
kind of locality to proofs that allows us to decompose proofs in the way that is
required by our method. Since for logics with number restrictions (such as Horn-
ALCHOIQ), this locality assumption failed, we did not consider such logics yet
in our investigations.

Theorem 17. OPsk(Horn-ALCHOI,ms) is in ExpTime.

178 C. Alrabbaa et al.

Fig. 4. A CQ proof for the example

5 Directly Deriving CQs

In addition to connecting proofs to the universal model, Dsk has the advan-
tage that we can work with single atoms, which makes it easy to see how the
existential rules are applied. However, the resulting proofs are not sound w.r.t.
the ontology T , but only w.r.t. the Skolemized rules T s. In order to be sound
w.r.t. T , inspired by [20,36], we can work directly with Boolean CQs (see Fig. 4).
Because these proofs do not work on universal models, and do not refer to intro-
duced individuals directly, domain size is irrelevant in this setting, which is why
we do not consider it here.

The corresponding inference schemas are shown in Fig. 5. Now, the basic
inference (MPe) matches the left-hand side of a rule in T to part of a CQ
and then replaces it by (part of) the right-hand side. Additionally, we allow
to keep the replaced atoms from the original CQ. Again, (MPe) is admissi-
ble only if there exists a substitution π such that π(ψ(�y, �z)) ⊆ φ(�x), and then
ρ(�w) is the result of replacing any subset of π(ψ(�y, �z)) in φ(�x) by any subset
of π(χ(�z, �u′)), where the variables �u are renamed into new existentially quanti-
fied variables �u′ to ensure that they are disjoint with �x. To duplicate variables,
we introduce tautological rules such as P (x, z) → ∃z′. P (x, z′) via (Te), which
yields ∃z, z′. P (b, z)∧P (b, z′) when combined with ∃z. P (b, z) using (MPe). The
remaining inference schemas are similar to the ones in Dsk, but not restricted to
ground atoms. For (Ce), we rename the variables �y to �u to avoid overlap with �x.

Definition 18. [CQ Deriver] The derivation structure Dcq(T ∪ A,q) is defined
similarly to Dsk, but using (MPe), (Te), (Ee), (Ce), and (Ge). We also define
OPcq analogously to OPsk.

Proofs obtained through Dcq are sound w.r.t. the original KB and do not
depend on the notion of universal model. However, these proofs are more complex

Finding Good Proofs for Ontology-Mediated Queries 179

Fig. 5. Inference schemas for Dcq.

since vertices are not labeled with single atoms anymore, making it harder to
understand how a rule is applied in case of an (MPe) inference. Indeed, verifying
individual (MPe) steps is even NP-hard, since it requires to match one set of
atoms into another, which is equivalent to database query answering [1]. This
could potentially be solved by also showing the substitutions corresponding to
these inference steps to the user, but this would lead to even more information
being included in a single inference step. In general, we believe that except for
the advantage of soundness, proofs based on CQs are less helpful for explaining
query answers to users. In case users still prefer an inference system that is sound
w.r.t. the original TBox rather than just the Skolemized version, we observe that
it is not hard to translate proofs based on Dsk into proofs in Dcq and vice versa.

Theorem 19. Any proof P in Dcq(T ∪A,q) can be transformed into a proof in
Dsk(T s ∪ A,q) in time polynomial in the sizes of P and T , and conversely any
proof P in Dsk(T s ∪ A,q) can be transformed into a proof in Dcq(T ∪ A,q) in
time polynomial in the sizes of P and T . The latter also holds for tree proofs.

This theorem also shows that this deriver is complete for query entailment
since we already know that Dsk is complete. However, it is not the case that
minimal proofs are equivalent for these two derivers, i.e. a minimal proof may

Fig. 6. A Skolemized proof for the example with hidden TBox inferences

180 C. Alrabbaa et al.

become non-minimal after the transformation. Nevertheless, many of the results
we have seen before also apply to Dcq (see the extended version and [7] for
details). However, due to duplication of atoms via (Te), some results can differ
(cf. Theorem 12):

Theorem 20. Let L be an arbitrary DL. For tree-shaped CQs, OPcq(L,ms) and
OPcq(L,mt) are NP-hard.

6 Conclusion

We have presented a general framework for generating proofs for answers to
ontology-mediated queries. The central idea is to explain the reasoning steps that
contributed to the answer by referring to a universal model. We have also shown
some initial complexity results, and intend to obtain a more precise picture in
the future. An interesting future direction is to investigate derivers that combine
TBox and query entailment rules, e.g. Dsk plus the rules of the ELK reasoner [25].
On one extreme end, one could completely hide all TBox reasoning steps, which
could result in a proof like in Fig. 6, but it would be interesting to evaluate
mixed proofs w.r.t. the comprehensibility of TBox- vs. query-based inferences.
For explaining missing answers, we also want to investigate how to find (optimal)
counter-interpretations or abduction results [26].

Acknowledgments. This work was supported by the DFG grant 389792660 as part
of TRR 248 – CPEC (https://perspicuous-computing.science), and QuantLA, GRK
1763 (https://lat.inf.tu-dresden.de/quantla).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases (1995)
2. Alrabbaa, C., Baader, F., Borgwardt, S., Dachselt, R., Koopmann, P., Méndez, J.:

Evonne: interactive proof visualization for description logics (system description).
In: IJCAR (2022). https://doi.org/10.1007/978-3-031-10769-6 16

3. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
small proofs for description logic entailments: theory and practice. In: LPAR-23
(2020). https://doi.org/10.29007/nhpp

4. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: On the
complexity of finding good proofs for description logic entailments. In: DL Work-
shop (2020). http://ceur-ws.org/Vol-2663/paper-1.pdf

5. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
good proofs for description logic entailments using recursive quality measures. In:
CADE (2021). https://doi.org/10.1007/978-3-030-79876-5 17

6. Alrabbaa, C., Borgwardt, S., Koopmann, P., Kovtunova, A.: Explaining ontology-
mediated query answers using proofs over universal models (technical report)
(2022). https://doi.org/10.48550/ARXIV.2208.14381

7. Alrabbaa, C., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding good proofs
for answers to conjunctive queries mediated by lightweight ontologies. In: DL Work-
shop (2022). http://ceur-ws.org/Vol-3263/paper-3.pdf

https://perspicuous-computing.science
https://lat.inf.tu-dresden.de/quantla
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.29007/nhpp
http://ceur-ws.org/Vol-2663/paper-1.pdf
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.48550/ARXIV.2208.14381
http://ceur-ws.org/Vol-3263/paper-3.pdf

Finding Good Proofs for Ontology-Mediated Queries 181

8. Alrabbaa, C., Hieke, W., Turhan, A.: Counter model transformation for explaining
non-subsumption in EL. In: Workshop on Formal and Cognitive Reasoning (2021).
http://ceur-ws.org/Vol-2961/paper 2.pdf

9. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic
(2017). https://doi.org/10.1017/9781139025355

10. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Annual German Conference on AI (KI) (2007). https://doi.org/10.1007/
978-3-540-74565-5 7

11. Borgida, A., Calvanese, D., Rodriguez-Muro, M.: Explanation in the DL-Lite fam-
ily of description logics. In: On the Move to Meaningful Internet Systems: OTM
(2008). https://doi.org/10.1007/978-3-540-88873-4 35

12. Borgida, A., Franconi, E., Horrocks, I.: Explaining ALC subsumption. In: ECAI
(2000). http://www.frontiersinai.com/ecai/ecai2000/pdf/p0209.pdf

13. Bourgaux, C., Ozaki, A., Peñaloza, R., Predoiu, L.: Provenance for the description
logic ELHr. In: IJCAI (2020). https://doi.org/10.24963/ijcai.2020/258

14. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Semant. (2012). https://doi.
org/10.1016/j.websem.2012.03.001

15. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. (2007). https://doi.org/10.1007/s10817-007-9078-x

16. Calvanese, D., Lanti, D., Ozaki, A., Peñaloza, R., Xiao, G.: Enriching ontology-
based data access with provenance. In: IJCAI (2019). https://doi.org/10.24963/
ijcai.2019/224

17. Calvanese, D., Ortiz, M., Simkus, M., Stefanoni, G.: The complexity of explaining
negative query answers in DL-Lite. In: KR (2012). http://www.aaai.org/ocs/index.
php/KR/KR12/paper/view/4537

18. Carral, D., Dragoste, I., Krötzsch, M.: The combined approach to query answering
in Horn-ALCHOIQ. In: KR (2018). https://aaai.org/ocs/index.php/KR/KR18/
paper/view/18076

19. Ceylan, İ.İ., Lukasiewicz, T., Malizia, E., Molinaro, C., Vaicenavicius, A.: Expla-
nations for negative query answers under existential rules. In: KR (2020). https://
doi.org/10.24963/kr.2020/23

20. Croce, F., Lenzerini, M.: A framework for explaining query answers in DL-Lite.
In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.) EKAW 2018.
LNCS (LNAI), vol. 11313, pp. 83–97. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03667-6 6

21. Elhalawati, A., Krötzsch, M., Mennicke, S.: An existential rule framework for com-
puting why-provenance on-demand for datalog. In: Governatori, G., Turhan, A.-Y.
(eds.) RuleML+RR 2022, LNCS, vol. 13752, pp. 146–163. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-21541-4 10

22. Horridge, M.: Justification based explanation in ontologies. Ph.D. thesis, University
of Manchester, UK (2011). https://www.research.manchester.ac.uk/portal/files/
54511395/FULL TEXT.PDF

23. Horridge, M., Parsia, B., Sattler, U.: Justification oriented proofs in OWL. In:
ISWC (2010). https://doi.org/10.1007/978-3-642-17746-0 23

24. Kazakov, Y., Klinov, P., Stupnikov, A.: Towards reusable explanation services in
protege. In: DL Workshop (2017). http://www.ceur-ws.org/Vol-1879/paper31.pdf

25. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The Incredible ELK. J. Autom. Reason.
53(1), 1–61 (2013). https://doi.org/10.1007/s10817-013-9296-3

http://ceur-ws.org/Vol-2961/paper_2.pdf
https://doi.org/10.1017/9781139025355
https://doi.org/10.1007/978-3-540-74565-5_7
https://doi.org/10.1007/978-3-540-74565-5_7
https://doi.org/10.1007/978-3-540-88873-4_35
http://www.frontiersinai.com/ecai/ecai2000/pdf/p0209.pdf
https://doi.org/10.24963/ijcai.2020/258
https://doi.org/10.1016/j.websem.2012.03.001
https://doi.org/10.1016/j.websem.2012.03.001
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.24963/ijcai.2019/224
https://doi.org/10.24963/ijcai.2019/224
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4537
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4537
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18076
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18076
https://doi.org/10.24963/kr.2020/23
https://doi.org/10.24963/kr.2020/23
https://doi.org/10.1007/978-3-030-03667-6_6
https://doi.org/10.1007/978-3-030-03667-6_6
https://doi.org/10.1007/978-3-031-21541-4_10
https://www.research.manchester.ac.uk/portal/files/54511395/FULL_TEXT.PDF
https://www.research.manchester.ac.uk/portal/files/54511395/FULL_TEXT.PDF
https://doi.org/10.1007/978-3-642-17746-0_23
http://www.ceur-ws.org/Vol-1879/paper31.pdf
https://doi.org/10.1007/s10817-013-9296-3

182 C. Alrabbaa et al.

26. Koopmann, P.: Signature-based abduction with fresh individuals and complex con-
cepts for description logics. In: IJCAI (2021). https://doi.org/10.24963/ijcai.2021/
266

27. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of horn description logics.
ACM Trans. Comput. Logic (2013). https://doi.org/10.1145/2422085.2422087

28. Marnette, B.: Generalized schema-mappings: from termination to tractability. In:
PODS (2009). https://doi.org/10.1145/1559795.1559799

29. McGuinness, D.L.: Explaining reasoning in description logics. Ph.D. thesis, Rutgers
University, USA (1996). https://doi.org/10.7282/t3-q0c6-5305

30. Ortiz, M., Rudolph, S., Simkus, M.: Worst-case optimal reasoning for the Horn-
DL fragments of OWL 1 and 2. In: KR (2010). http://aaai.org/ocs/index.php/
KR/KR2010/paper/view/1296

31. Ortiz, M., Rudolph, S., Simkus, M.: Query answering in the Horn fragments of
the description logics SHOIQ and SROIQ. In: IJCAI (2011). https://doi.org/
10.5591/978-1-57735-516-8/IJCAI11-178

32. Peñaloza, R.: Axiom-pinpointing in description logics and beyond. Ph.D. thesis,
Technische Universität Dresden, Germany (2009). https://nbn-resolving.org/urn:
nbn:de:bsz:14-qucosa-24743

33. Ramusat, Y., Maniu, S., Senellart, P.: Efficient provenance-aware querying of graph
databases with datalog. In: GRADES-NDA ACM Workshop (2022). https://doi.
org/10.1145/3534540.3534689

34. Rosati, R.: On conjunctive query answering in EL. In: DL Workshop (2007). http://
ceur-ws.org/Vol-250/paper 83.pdf

35. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI (2003). http://ijcai.org/Proceedings/03/
Papers/053.pdf

36. Stefanoni, G.: Explaining query answers in lightweight ontologies. Diploma thesis,
Technische Universität Wien, Austria (2011). http://www.cs.ox.ac.uk/files/7942/
thesis.pdf

https://doi.org/10.24963/ijcai.2021/266
https://doi.org/10.24963/ijcai.2021/266
https://doi.org/10.1145/2422085.2422087
https://doi.org/10.1145/1559795.1559799
https://doi.org/10.7282/t3-q0c6-5305
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-178
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-178
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-24743
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-24743
https://doi.org/10.1145/3534540.3534689
https://doi.org/10.1145/3534540.3534689
http://ceur-ws.org/Vol-250/paper_83.pdf
http://ceur-ws.org/Vol-250/paper_83.pdf
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://www.cs.ox.ac.uk/files/7942/thesis.pdf
http://www.cs.ox.ac.uk/files/7942/thesis.pdf

Seminaïve Materialisation in DatalogMTL

Dingmin Wang(B), Przemysław Andrzej Wałęga, and Bernardo Cuenca Grau

Department of Computer Science, University of Oxford, Oxford, UK
{dingmin.wang,przemyslaw.walega,bernardo.cuenca.grau}@cs.ox.ac.uk

Abstract. DatalogMTL is an extension of Datalog with metric tem-
poral operators that has found applications in temporal ontology-based
data access and query answering, as well as in stream reasoning. Practi-
cal algorithms for DatalogMTL are reliant on materialisation-based rea-
soning, where temporal facts are derived in a forward chaining manner
in successive rounds of rule applications. Current materialisation-based
procedures are, however, based on a naïve evaluation strategy, where
the main source of inefficiency stems from redundant computations. In
this paper, we propose a materialisation-based procedure which, anal-
ogously to the classical seminaïve algorithm in Datalog, aims at min-
imising redundant computation by ensuring that each temporal rule
instance is considered at most once during the execution of the algo-
rithm. Our experiments show that our optimised seminaïve strategy for
DatalogMTL is able to significantly reduce materialisation times.

Keywords: DatalogMTL · Temporal reasoning · Materialisation

1 Introduction

DatalogMTL is a temporal rule-based language that has found a growing number
of applications in ontology-based data access [9–11] and stream reasoning [20],
amongst others [13,16]. DatalogMTL extends Datalog [1,6] with operators from
metric temporal logic [12] interpreted over the rational timeline. For example,
the following rule states that travellers can enter the US if they had a negative
test sometime in the last 2 days (�[0,2]) and have held fully vaccinated status
throughout the last 15 days (⊟[0,15]):

Authorised(x) ← �[0,2]NegativeLFT (x) ∧ ⊟[0,15]FullyVaccinated(x).

Datasets in this setting consist of temporal facts composed of a first-order fact
annotated with a temporal interval, for example, Authorised(John)@[13, 213.5].

DatalogMTL is a powerful KR language and standard reasoning tasks, such
as consistency and fact entailment, are PSpace-complete in data complexity [18].
This makes efficient implementation in data-intensive applications challenging.

The most common technique of choice in scalable Datalog reasoners is mate-
rialisation (a.k.a., forward chaining) [2,4,5,15]. Facts entailed by a program and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 183–197, 2022.
https://doi.org/10.1007/978-3-031-21541-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-21541-4_12

184 D. Wang et al.

dataset are derived in successive rounds of rule applications until a fixpoint is
reached; both this process and its output are often referred to as materialisation.
The seminaïve algorithm forms the basis for efficient implementation by ensuring
that each inference during rule application is only performed once, thus elimi-
nating redundant computations. Once the materialisation has been computed,
queries can be answered directly and rules are not further considered.

The use of metric temporal operators in rules, however, introduces a num-
ber of challenges for materialisation-based reasoning. First, interpretations over
the rational timeline are intrinsically infinite, whereas partial materialisations
computed during reasoning must be finitely represented. Second, in contrast to
Datalog where materialisation naturally terminates, in DatalogMTL a fixpoint
may only be reachable after infinitely many rounds of rule applications. As a
matter of fact, reasoning techniques initially proposed for DatalogMTL were not
materialisation-based. In particular, optimal decision procedures are automata-
based [18], and reasoning is also feasible by reduction to satisfiability checking
in linear temporal logic (LTL) [3]; finally, the Ontop system implements a query
rewriting approach which is applicable only to non-recursive programs [9].

In our recent work [22], we proposed a materialisation-based procedure opti-
mised for efficient application of DatalogMTL rules by means of suitable tem-
poral indices, and where partial materialisations are succinctly represented as
sets of temporal facts. We also identified a fragment of DatalogMTL [21] for
which our materialisation-based procedure is guaranteed to terminate; this frag-
ment imposes suitable restrictions which effectively disallow programs expressing
‘recursion through time’. To ensure termination in the general case for consis-
tency and fact entailment tasks, we proposed and implemented in the MeTeoR
system [22] an algorithm combining materialisation with the construction of
Büchi automata, so that the use of automata-based techniques is minimised in
favour of materialisation; thus, the scalability of this approach in most practi-
cal cases is critically dependent on that of its materialisation component. The
materialisation-based procedure in MeTeoR is, however, based on a naïve strat-
egy where the main source of inefficiency stems from redundant computations.

In this paper, we propose a seminaïve materialisation-based procedure for
DatalogMTL, which can be seamlessly applied in isolation to finitely materialis-
able fragments [21], or used in the general case in combination with automata-
based techniques [22]. As in [22], our procedure iteratively performs materialisa-
tion steps which compute partial materialisations consisting of temporal facts;
furthermore, each materialisation step performs a round of rule applications fol-
lowed by a coalescing phase where temporal facts differing only in their (overlap-
ping) intervals are merged together. However, in contrast to [22] and analogously
to the classical seminaïve algorithm for Datalog [1], our procedure aims at min-
imising redundant computation by considering only rule instances that involve
information newly derived in the previous materialisation step. Lifting the sem-
inaïve strategy to DatalogMTL involves significant technical challenges. In par-
ticular, rule bodies now involve metric atoms, and derived temporal facts can be
coalesced with existing facts in the previous partial materialisation. As a result,

Seminaïve Materialisation in DatalogMTL 185

keeping track of new information and identifying the relevant rule instances to
consider in each materialisation step becomes much more involved than in Dat-
alog. We show that these difficulties can be overcome in an elegant and effective
way, and propose additional optimisations aimed at further reducing redundancy
for programs satisfying certain syntactic restrictions.

We have implemented our approach as an extension of MeTeoR and evaluated
its performance. Our experiments show that our seminaïve strategy and the
additional optimisations lead to significant reductions in materialisation times.
A technical appendix containing full proofs of our technical results and the code
for our implementation are available online.1

2 Preliminaries

We recapitulate the definition of DatalogMTL interpreted under the standard
continuous semantics for the rational timeline [3].

A relational atom is a function-free first-order atom of the form P (s), with P
a predicate and s a tuple of terms. A metric atom is an expression given by the
following grammar, where P (s) is a relational atom, and �, �, ⊟, ⊞, S, U are
MTL operators indexed with intervals � containing only non-negative rationals:

M := � | ⊥ | P (s) | ��M | ��M | ⊟�M | ⊞�M | MS�M | MU�M.

We call �, ⊟, and S past operators and we call �, ⊞, and U future operators. A
rule is an expression of the form

M ′ ← M1 ∧ · · · ∧ Mn, for n ≥ 1, (1)

with each Mi a metric atom, and M ′ is generated by the following grammar:2

M ′ ::=� | P (s) | ⊟�M
′ | ⊞�M

′.

The conjunction M1 ∧ · · · ∧ Mn in Expression (1) is the rule’s body and M ′ is
the rule’s head. A rule is forward-propagating if it does not mention � or ⊥,
mentions only past operators in the body, and only future operators in the head.
A rule is backwards-propagating, if it satisfies analogous conditions but with past
operators replaced with future operators and vice versa. A rule is safe if each
variable in its head also occurs in the body, and this occurrence is not in a
left operand of S or U . A program is a finite set of safe rules; it is forward- or
backward-propagating if so are all its rules.

An expression is ground if it mentions no variables. A fact is an expression
M@� with M a ground relational atom and � an interval; a dataset is a finite set
of facts. The coalescing of facts M@�1 and M@�2, where �1 and �2 are adjacent
or have a non-empty intersection, is the fact M@�3 with �3 the union of �1 and
�2. The grounding ground(Π,D) of program Π with respect to dataset D is the
set of ground rules obtained by assigning constants in Π or D to variables in Π.
1 https://github.com/wdimmy/MeTeoR/tree/main/experiments/RR2022.
2 For presentation convenience, we disallow ⊥ in rule heads, which ensures satisfiability

and allows us to focus on the materialisation process itself.

https://github.com/wdimmy/MeTeoR/tree/main/experiments/RR2022

186 D. Wang et al.

Table 1. Semantics of ground metric atoms

I, t |= � for each t

I, t |= ⊥ for no t

I, t |= ��M iff I, t′ |= M for some t′ with t − t′ ∈ �

I, t |= ��M iff I, t′ |= M for some t′ with t′ − t ∈ �

I, t |= ⊟�M iff I, t′ |= M for all t′ with t − t′ ∈ �

I, t |= ⊞�M iff I, t′ |= M for all t′ with t′ − t ∈ �

I, t |= M1S�M2 iff I, t′ |= M2 for some t′ with t − t′ ∈ � and
I, t′′ |= M1 for all t′′ ∈ (t′, t)

I, t |= M1U�M2 iff I, t′ |= M2 for some t′ with t′ − t ∈ � and
I, t′′ |= M1 for all t′′ ∈ (t, t′)

An interpretation I specifies, for each ground relational atom M and each
time point t ∈ Q, whether M holds at t, in which case we write I, t |= M . This
extends to atoms with metric operators as shown in Table 1. For an interpretation
I and an interval �, we define the projection I |� of I over � as the interpretation
that coincides with I on � and makes all relational atoms false outside �. An
interpretation I satisfies a fact M@� if I, t |= M for all t ∈ �. Interpretation
I satisfies a ground rule r if, whenever I satisfies each body atom of r at a
time point t, then I also satisfies the head of r at t. Interpretation I satisfies a
(non-ground) rule r if it satisfies each ground instance of r. Interpretation I is a
model of a program Π if it satisfies each rule in Π, and it is a model of a dataset
D if it satisfies each fact in D. Program Π and dataset D are consistent if they
have a model, and they entail a fact M@� if each model of both Π and D is a
model of M@�. Each dataset D has a unique least model ID, and we say that
dataset D represents interpretation ID.

The immediate consequence operator TΠ for a program Π is a function map-
ping an interpretation I to the least interpretation containing I and satisfy-
ing the following property for each ground instance r of a rule in Π: when-
ever I satisfies each body atom of r at time point t, then TΠ(I) satisfies the
head of r at t. The successive application of TΠ to ID defines a transfinite
sequence of interpretations Tα

Π(ID) for ordinals α as follows: (i) T 0
Π(ID) = ID,

(ii) Tα+1
Π (ID) = TΠ(Tα

Π(ID)) for α an ordinal, and (iii) Tα
Π(ID) =

⋃
β<α T β

Π(ID)
for α a limit ordinal. The canonical interpretation CΠ,D of Π and D is the inter-
pretation Tω1

Π (ID), with ω1 the first uncountable ordinal. If Π and D have a
model, the canonical interpretation CΠ,D is the least model of Π and D [3].

3 Naïve Materialisation in DatalogMTL

In this section, we formulate the naïve materialisation procedure implicit in our
theoretical results in [21] and implemented in the MeTeoR reasoner [22].

Seminaïve Materialisation in DatalogMTL 187

In order to illustrate the execution of the algorithm and discuss the ineffi-
ciencies involved, let us consider as a running example the dataset

Dex = {R1(c1, c2)@[0, 1], R2(c1, c2)@[1, 2], R3(c2, c3)@[2, 3], R5(c2)@[0, 1]}
and the program Πex consisting of the following rules:

R1(x, y) ← �[1,1]R1(x, y), (r1)
⊞[1,1]R5(y) ← R2(x, y) ∧ ⊞[1,2]R3(y, z), (r2)

R4(x) ← �[0,1]R5(x), (r3)
R6(y) ← R5(y) ∧ ⊟[0,2]R4(y) ∧ R1(x, y). (r4)

The naïve materialisation procedure applies a rule by first identifying the
facts that can ground the rule body, and then determining the maximal intervals
for which all the ground body atoms hold simultaneously. For instance, the pro-
cedure applies rule r2 to Dex by first noticing that relational atoms R2(c1, c2) and
R3(c2, c3) can be used to ground the rule body and then establishing that [1, 1]
is the maximal interval for which the metric atoms R2(c1, c2) and ⊞[1,2]R3(c2, c3)
in the body of the relevant instance of r2 are simultaneously true in Dex; as a
result, ⊞[1,1]R5(c2)@[1, 1] can be derived, and so fact R5(c2)@[2, 2] is added to
the materialisation. In this way, the first round of rule application of the naïve
materialisation procedure on Πex and Dex also derives fact R1(c1, c2)@[1, 2] using
rule r1 and fact R4(c2)@[0, 2] using r3. The following set of facts is thus derived
as a result of a single step of application of the rules in Πex to Dex:

Πex[Dex] = {R1(c1, c2)@[1, 2], R4(c2)@[0, 2], R5(c2)@[2, 2]}.

The following definition formalises the notion of rule application.

Definition 1. Let r be a rule of the form M ′ ← M1 ∧· · ·∧Mn, for some n ≥ 1,
and let D be a dataset. The set of instances for r and D is defined as follows:

instr[D] =
{
(M1σ@�1, . . . ,Mnσ@�n) | σ is a substitution and, for each

i ∈ {1, . . . , n}, �i is a subset-maximal interval such that D |= Miσ@�i

}
.

The set r[D] of facts derived by r from D is defined as follows:

r[D] = {Mσ@� | σ is a substitution, M is the single relational atom in M ′σ,

and there exists (M1σ@�1, . . . ,Mnσ@�n) ∈ instr[D] such that � is the unique
subset-maximal interval satisfying M ′σ@(�1 ∩ . . . ∩ �n) |= Mσ@�}.

(2)

The set of facts derived from D by one-step application of Π is

Π[D] =
⋃

r∈Π

r[D]. (3)

188 D. Wang et al.

Procedure 1: Naïve(Π,D)
Input: A program Π and a dataset D
Output: A dataset representing the canonical interpretation CΠ,D

1 Initialise N to ∅ and D′ to D;
2 loop
3 N := Π(D′); // derive new facts
4 C := D′ � N ; // coalesce with the new facts
5 if C = D′ then return D′;
6 D′ := C;

Once rule application has been completed and facts Πex[Dex] have been
derived, the partial materialisation D1

ex that will be passed on to the next mate-
rialisation step is obtained as D1

ex = Dex � Πex[Dex] by coalescing facts in Dex

and Πex[Dex], where the coalescing operator � is semantically defined next.

Definition 2. For datasets D1 and D2, we define D1�D2 as the dataset consist-
ing of all relational facts M@� such that D1∪D2 |= M@� and D1∪D2
|= M@�′,
for each �′ with � � �′.

The use of coalescing makes sure that intervals associated to facts are maxi-
mal. In our example, facts R1(c1, c2)@[0, 1] in Dex and R1(c1, c2)@[1, 2] are coa-
lesced, so we have R1(c1, c2)@[0, 2] in Dex � Πex[Dex]. Thus,

D1
ex = {R1(c1, c2)@[0, 2], R2(c1, c2)@[1, 2], R3(c2, c3)@[2, 3],

R5(c2)@[0, 1], R4(c2)@[0, 2], R5(c2)@[2, 2]}.

In the second round, rules are applied to D1
ex. The application of r1 derives

fact R1(c1, c2)@[1, 3] (from R1(c1, c2)@[0, 2]) and the application of r2 rederives
a redundant fact R5(c2)@[2, 2]. In contrast to the previous step, rule r4 can now
be applied to derive the new fact R6(c2)@[2, 2]. Finally, the application of r3
derives the new fact R4(c2)[2, 3] and rederives the redundant fact R4(c2)[0, 2].

The procedure then coalesces fact R1(c1, c2)[1, 3] with R1(c1, c2)[0, 2] to
obtain R1(c1, c2)[0, 3]; similarly, R4(c2)[2, 3] is coalesced with R4(c2)[0, 2] to
obtain R4(c2)[0, 3]. Thus, the second step yields the following partial materi-
alisation:

D2
ex = (Dex1 \ {R4(c2)[0, 2], R1(c1, c2)[0, 2]}) ∪

{R1(c1, c2)@[0, 3], R6(c2)@[2, 2], R4(c2)[0, 3]}.

In the third materialisation step, rules are applied to D2
ex, and derive the new fact

R1(c1, c2)@[1, 4], as well as redundant facts such as R5(c2)@[2, 2], R4(c2)@[0, 2],
R4(c2)@[2, 3], and R6(c2)@[2, 2]. The procedure will then continue completing
subsequent materialisation steps and stopping only if a fixpoint is reached.

Procedure 1 formalises this naïve materialisation strategy. As discussed, each
iteration of the main loop captures a single materialisation step consisting of a

Seminaïve Materialisation in DatalogMTL 189

round of rule application (c.f. Line 3) followed by the coalescing of relevant
facts (c.f. Line 4). The resulting partial materialisation passed on to the follow-
ing materialisation stem is stored as a dataset D′ (c.f. Line 6). The procedure
stops when a materialisation step does not derive any new facts, in which case
a fixpoint has been reached (c.f. Line 5). In our example, materialisation will
continue to recursively propagate the relational fact R1(c1, c2) throughout the
infinite timeline, and the procedure will not terminate as a result. Furthermore,
the number of redundant computations will increase in each subsequent materi-
alisation step.

It is worth recalling that, even in cases where materialisation does not reach
a fixpoint, it still constitutes a key component of terminating algorithms such as
that implemented in MeTeoR [22]. Therefore, the performance challenges stem-
ming from redundant computations remain a very significant issue in practice.

4 Seminaïve Evaluation

Seminaïve rule evaluation is the technique of choice for eliminating redundant
computations in Datalog-based systems. The main idea is to keep track of newly
derived facts in each materialisation step by storing them in a set Δ, and to make
sure that rule applications in the following materialisation step involve at least
one fact in Δ. In this way, the procedure considers each rule instance at most
once throughout its entire execution and it is said to enjoy the non-repetition
property. Note, however, that the same fact can still be derived multiple times
by different rule instances; this type of redundancy is difficult to prevent and is
not addressed by the standard seminaïve strategy.

Our aim in this section is to lift seminaïve rule evaluation to the setting of
DatalogMTL. As discussed in Sect. 3 on our running example, a rule instance
can be considered multiple times in our setting; for example, the instance
(R2(c1, c2)@[1, 2],⊞[1,2]R3(c2, c3)@[1, 1]) of r2 is considered in both the first and
second materialisation steps to derive R5(c2)@[2, 2] twice since the naïve pro-
cedure cannot detect that facts R2(c1, c2)@[1, 2] and R3(c2, c3)@[2, 3] used to
instantiate r2 in the second step had previously been used to instantiate r2.
Preventing such redundant computations, however, involves certain challenges.
First, by including in Δ just the newly derived facts as in Datalog, we could
overlook relevant information obtained by coalescing newly derived facts with
previously derived ones. Second, restricting application to relevant rule instances
requires taking into account the semantics of metric operators in rule bodies.

Procedure 2 extends the seminaïve strategy to the setting of DatalogMTL
while overcoming the aforementioned difficulties. Analogously to the naïve app-
roach, each iteration of the main loop captures a single materialisation step
consisting of a round of rule applications followed by the coalescing of relevant
facts; as before, dataset D′ stores the partial materialisation resulting from each
iteration and is initialised as the input dataset, whereas dataset N stores the
facts obtained as a result of rule application and is initialised as empty.

Following the rationale behind the seminaïve strategy for Datalog, newly
derived information in each materialisation step is now stored as a dataset Δ,

190 D. Wang et al.

Procedure 2: Seminaïve(Π,D)
Input: A program Π and a dataset D
Output: A dataset representing the canonical interpretation CΠ,D

1 Initialise N to ∅, and both Δ and D′ to D;
2 loop
3 N := Π[D′ ··· Δ];
4 C := D′ � N ;
5 Δ := {M@� ∈ C | M@� entails some fact in N � D′};
6 if Δ = ∅ then return D′;
7 D′ := C;

which is initialised as the input dataset D and which is suitably maintained
in each iteration; furthermore, Procedure 2 ensures in Line 3 that only rule
instances, for which it is essential to involve facts from Δ (as formalised in the
following definition) are taken into account during rule application.

Definition 3. Let r be a rule of the form M ′ ← M1 ∧· · ·∧Mn, for some n ≥ 1,
and let D and Δ be datasets. The set of instances for r and D relative to Δ is
defined as follows:

instr[D ··· Δ] =
{
(M1σ@�1, . . . ,Mnσ@�n) ∈ instr[D] |

D \ Δ
|= Miσ@�i, for some i ∈ {1, . . . , n}}
. (4)

The set r[D ··· Δ] of facts derived by r from D relative to Δ is defined analo-
gously to r[D] in Definition 1, with the exception that instr[D] is replaced with
instr[D ··· Δ] in Expression (2). Finally, the set Π[D ··· Δ] of facts derived from D
by one-step seminaïve application of Π is defined as Π[D] in Expression (3), by
replacing r[D] with r[D ··· Δ].

In each materialisation step, Procedure 2 exploits Definition 3 to identify as
relevant the subset of rule instances where some conjunct is ‘new’, in the sense
that it cannot be entailed without the facts in Δ. The facts derived by such
relevant rule instances in each iteration are stored in set N (c.f. Line 3).

As in the naïve approach, rule application is followed by a coalescing step
where the partial materialisation is updated with the facts derived from rule
application (c.f. Line 4). In contrast to the naïve approach, however, Proce-
dure 2 needs to maintain set Δ to ensure that it captures only new facts. This is
achieved in Line 5, where a fact in the updated partial materialisation is consid-
ered new if it entails a fact in N that was not already entailed by the previous
partial materialisation. This is formalised with the following notion of ‘semantic’
difference between temporal datasets.

Definition 4. Let D1 and D2 be datasets. We define D1 � D2 as the dataset
consisting of all relational facts M@� such that M@� ∈ D1 and D2
|= M@�.

Seminaïve Materialisation in DatalogMTL 191

The procedure terminates in Line 6 if Δ is empty. Otherwise, the procedure
carries over the updated partial materialisation and the set of newly derived
facts to the next materialisation step.

We next illustrate the execution of the procedure on Dex and Πex. In the first
materialisation step, all input facts are considered as newly derived (i.e., Δ = D)
and hence N = Π[D′ ··· Δ] = Π(D′) and the result of coalescing coincides with
the partial materialisation computed by the naïve procedure (i.e., C = D1

ex).
Then, the procedure identifies as new all facts in N (i.e., Δ = N). In the
second step, rule evaluation in Line 3 no longer considers the redundant instance
of r2 consisting of fact R2(c1, c2)@[1, 2] and metric atom ⊞[1,2]R3(c2, c3)@[1, 2]
since they are respectively entailed by facts R2(c1, c2)[1, 2] and R3(c2, c3)[2, 3]
in D′ \ Δ. Finally, the procedure also disregards the redundant instance of r3
re-deriving fact R4(c2)[0, 2]. In contrast, all non-redundant facts derived by the
naïve strategy are also derived by the seminaïve procedure and after coalescing
dataset C = D2

ex. Set Δ is now updated as follows:

Δ = {R1(c2, c2)@[0, 3], R6(c2)@[2, 2], R4(c2)@[0, 3]}.

In particular, note that Δ contains the coalesced fact R4(c2)@[0, 3] rather than
fact R4(c2)@[2, 3] derived from rule application. Datasets Δ and D′ = D2

ex are
passed on to the third materialisation step, where all redundant computations
identified in Sect. 3 are avoided with the only exception of fact R6(c2)@[2, 2],
which is re-derived using the instance of r4 consisting of facts R5(c2)@[2, 2],
R1(c2, c2)@[0, 3] and metric atom ⊟[0,2]R4(c2)@[2, 3]. Note that this is a new
instance which was not used in previous iterations, and hence the non-repetition
property remains true. Note also that, as with the naïve strategy, our seminaïve
procedure does not terminate on our running example.

We conclude this section by establishing correctness of our procedure. To this
end we next show that, upon completion of the k-th iteration of the main loop
(for any k), the partial materialisation D′ passed on to the next iteration rep-
resents the interpretation T k

Π(ID) obtained by applying k times the immediate
consequence operator TΠ for the input program Π to the interpretation ID rep-
resenting the input dataset D. This provides a precise correspondence between
the procedure’s syntactic operations and the semantics of fixpoint computation.

Soundness relies on the observation that rule instances processed by semi-
naïve evaluation are also processed by the naïve evaluation; thus, instr[D ··· Δ] ⊆
instr[D], for each r, D, and Δ. As a result, each fact derived by the seminaïve
evaluation is also derived by the naïve evaluation.

Theorem 1 (Soundness). Consider Procedure 2 running on input Π and
D. Upon the completion of the kth (for some k ∈ N) iteration of the loop of
Procedure 2, it holds that ID′ ⊆ T k

Π(ID).

Completeness is proved by induction on the number k of iterations of the
main loop. In particular, we show that if T k

Π(ID) satisfies a new fact M@t, then
there must be a rule r and an instance in instr[D ··· Δ] witnessing the derivation
of M@t; otherwise, the fact would hold already in T k−1

Π (ID). Hence, each fact
satisfied by T k

Π(ID) is derived in the kth iteration of our procedure.

192 D. Wang et al.

Theorem 2 (Completeness). Consider Procedure 2 running on input Π and
D. For each k ∈ N, upon the completion of the kth iteration of the loop of
Procedure 2, it holds that T k

Π(ID) ⊆ ID′ .

5 Optimised Seminaïve Evaluation

Although the seminaïve procedure enjoys the non-repetition property, it can still
re-derive facts that were already obtained in previous materialisation steps, thus
incurring in a potentially large number of redundant computations. In particular,
as discussed in Sect. 4, fact R6(c2)@[2, 2] is re-derived using rule r4 in the third
materialisation step of our running example, and it will also be re-derived in all
subsequent materialisation steps (by different instances of rule r4).

In this section, we present an optimised variant of our seminaïve procedure
which further reduces the number of redundant computations performed during
materialisation. The main idea is to disregard rules during the execution of
the procedure as soon as we can be certain that their application will never
derive new facts in subsequent materialisation steps. In our example, rule r4 can
be discarded after the second materialisation step as its application will only
continue to re-derive fact R6(c2)@[2, 2] in each materialisation step.

To this end, we will exploit the distinction between recursive and non-
recursive predicates in a program, as defined next.

Definition 5. The dependency graph of program Π is the directed graph with
a vertex vP for each predicate P in Π and an edge (vQ, vR) whenever there is a
rule in Π mentioning Q in the body and R in the head. Predicate P is recursive
(in Π) if the dependency graph has a path containing a cycle and ending in vP ;
otherwise P is non-recursive. A metric atom is non-recursive in Π if so are all
its predicates; otherwise it is recursive. The (non-)recursive fragment of Π is the
subset of rules in Π with (non-)recursive atoms in heads.

In contrast to recursive predicates, for which new facts can be derived in
each materialisation step, the materialisation of non-recursive predicates will be
completed after linearly many materialisation steps; from then on, the rules will
no longer derive any new facts involving these predicates.

This observation can be exploited to optimise seminaïve evaluation. Assume
that the procedure has fully materialised all non-recursive predicates in the input
program. At this point, we can safely discard all non-recursive rules; further-
more, we can also discard a recursive rule r with a non-recursive body atom
M if the current partial materialisation does not entail any grounding of M (in
this case, r cannot apply in further materialisation steps). An additional optimi-
sation applies to forward-propagating programs, where rules cannot propagate
information ‘backwards’ along the timeline; in this case, we can compute the
maximal time points for which each non-recursive body atom in r may possibly
hold, select the minimum tr amongst such values, and discard r as soon as we can
determine that the materialisation up to time point tr has been fully completed.

Seminaïve Materialisation in DatalogMTL 193

Procedure 3: OptimisedSeminaïve(Π,D)
Input: A program Π and a dataset D
Output: A dataset representing the canonical interpretation CΠ,D

1 Initialise N to ∅, Δ and D′ to D, Π ′ to Π, flag to 0, and Sr (for each r ∈ Π)
to the set of body atoms in r that are non-recursive in Π;

2 loop
3 N := Π ′[D′ ··· Δ];
4 C := D′ � N ;
5 Δ := {M@� ∈ C | M@� entails some fact in N � D′};
6 if Δ = ∅ then return D′;
7 if flag = 0 & D′ and C entail the same facts with non-recursive predicates

then
8 Set flag to 1 and Π ′ to the recursive fragment of Π;
9 for each r ∈ Π ′ do

10 if there is M ∈ Sr such that D′ �|= Mσ@t, for each substitution σ
and time point t then Π ′ := Π ′ \ {r};

11 if flag = 1 and Π ′ is forward propagating then
12 for each r ∈ Π ′ and each M ∈ Sr do
13 tM

max := maximum right endpoint amongst all intervals � satisfying
D′ |= Mσ@�, for some substitution σ;

14 tr := minimum value in {tM
max | M ∈ Sr};

15 if D′ and C coincide on all facts over intervals � satisfying �+ ≤ tr

then Π ′ := Π ′ \ {r};

16 D′ := C;

The materialisation of the non-recursive predicates R2, R3, R4, and R5 of our
running example is complete after two materialisation steps. Hence, at this point
we can disregard rules r2 and r3 and focus on the recursive forward-propagating
rules r1 and r4. Furthermore, the maximum time point at which R4 and R5 can
hold is 3 and 2, respectively, and hence tr4 = 2; thus, upon completion of the
second materialisation step we can be certain that R1 has been materialised up
to tr and we can also discard r6. In subsequent materialisation steps we can
apply only rule r1, thus avoiding many redundant computations.

Procedure 3 implements these ideas by extending seminaïve materialisation.
In each materialisation step, the procedure checks whether all non-recursive
predicates have been fully materialised (c.f. Line 7), in which case it removes
all non-recursive rules in the input program as well as all recursive rules with
an unsatisfied non-recursive body atom (c.f. Lines 7–10). It also sets a flag to 1,
which activates the additional optimisation for forward propagating programs,
which is applied in Lines 11–15 whenever possible.

We conclude this section by establishing correctness of our procedure. We
first observe that, as soon as the algorithm switches the flag to 1, we can be
certain that all non-recursive predicates have been fully materialised.

194 D. Wang et al.

Lemma 1. Consider Procedure 3 running on input Π and D and let Πnr be the
non-recursive fragment of Π. If flag = 1, then CΠnr,D ⊆ ID′ .

Next, we show how we can detect if a forward-propagating program has com-
pleted materialisation of all facts (also with recursive predicates) up to a given
time point. Namely it suffices to check that two consecutive partial materialisa-
tions satisfy the same facts up to a given time point. Note that our procedure
checks this condition syntactically in Line 15.

Lemma 2. If ID |(−∞,t]= TΠ(ID) |(−∞,t], for a forward propagating program
Π, dataset D, and time point t, then ID |(−∞,t]= CΠ,D |(−∞,t].

We can use this lemma to show that each rule discarded in Lines 10 and 15
can be safely ignored as it will have no effect in subsequent materialisation steps.

Lemma 3. If in Procedure 3 a rule r is removed from Π ′ in Line 10 or in
Line 15, then CΠ′,D′�N = CΠ′\{r},D′�N .

Finally, using Lemmas 1 and 3 together with the soundness and completeness
of our seminaïve evaluation (established in Theorems 2 and 1), we can show
soundness and completeness of the optimised version of the procedure.

Theorem 3 (Soundness and Completeness). Consider Procedure 3 run-
ning on input Π and D. For each k ∈ N, the partial materialisation D′ obtained
upon completion of the kth iteration of the main loop represents the interpreta-
tion T k

Π(ID).

We conclude by observing that our optimisation for forward-propagating pro-
grams in Lines 11–15 can be modified in a straightforward way to account also
for backwards-propagating programs, as these two cases are symmetric.

6 Evaluation

We have implemented Procedures 2 and 3 as an extension of our open-source
MeTeoR reasoner [22], which so-far implemented only the naïve strategy from
Procedure 1 to perform materialisation.

For evaluation, we have considered the temporal extension of the Lehigh
University Benchmark (LUBM) [8] used in previous evaluations of MeTeoR [22].
The benchmark provides a DatalogMTL program consisting of 56 Datalog rules
obtained from the OWL 2 RL fragment of LUBM’s ontology plus 29 temporal
rules involving recursion and covering all metric operators of DatalogMTL. To
make materialisation more challenging, we have included additional body atoms
in some of the temporal rules. The benchmark also provides an extension of
LUBM’s data generator which randomly assigns intervals non-temporal facts.
We used nine datasets D1–D9, each consisting of 10 million facts, but with an
increasing number of constants occurring in these facts (and thus with a smaller
number of intervals per relational fact), namely, these datasets contain 0.8, 1.0,

Seminaïve Materialisation in DatalogMTL 195

Fig. 1. Experimental results for dataset D5 in sub-figures (a) and (b), and for the first
15 iterations for datasets D1–D9 in sub-figures (c) and (d)

1.2, 1.3, 2.1, 2.5, 5.2, 10.1, and 15.8 million constants, respectively. We compared
running time and memory requirements (maximal number of stored facts) of our
procedures with that of the naïve approach as depicted in Fig. 1. Experiments
were conducted on a Dell PowerEdge R730 server with 512 GB RAM and two
Intel Xeon E5-2640 2.6GHz processors running Fedora 33, kernel version 5.8.17.

Figures 1 (a) and (b) show time and memory usage on a single dataset D5

through the first 30 iterations of the procedures. As we can see, the seminaïve
procedure significantly outperforms the naïve approach both in terms of run-
ning time and memory consumption, especially as materialisation progresses. In
turn, the optimised seminaïve approach is able to start disregarding rules after
9 materialisation steps, and at that point it starts outperforming the basic semi-
naïve procedure. We can also observe that, at this point, many of the predicates
have been materialised already and the number of new facts generated in each
further step is very small (thus, memory consumption stops growing). Despite

196 D. Wang et al.

this, the naïve algorithm continues to perform a large number of redundant com-
putations, and hence its running time increases at a similar rate as before; in
contrast, the optimised seminaïve approach avoids most of this redundancy and
subsequent materialisation steps are completed very efficiently.

Figures 1 (c) and (d) summarise our results for 15 materialisation steps on
datasets D1–D9 with increasing numbers of constants. We can observe that both
the time and memory consumption in the naïve approach increase linearly (and
in a significant way) with the number of constants. Indeed, by increasing the
number of constants, we are also increasing the number of ground rule instances
to be examined. In contrast, the effect on both of our seminaïve procedures is
much less noticeable as they can quickly disregard irrelevant instances.

7 Conclusion and Future Work

In this paper, we have presented an optimised seminaïve materialisation proce-
dure for DatalogMTL, which can efficiently materialise complex recursive pro-
grams and large datasets involving millions of temporal facts.

We see many exciting avenues for future research. First, DatalogMTL has
been extended with stratified negation-as-failure [7] and our seminaïve procedure
could be extended accordingly. It would also be interesting to consider seminaïve
evaluation for reasoning under alternative semantics for DatalogMTL such as
the integer semantics [19] or the point-wise semantics [17]. We are also working
on blocking conditions that exploit the periodic structure of canonical models
to ensure termination of materialisation-based reasoning. Finally, incremental
materialisation-based reasoning has been studied in context of Datalog [14], and
it would be interesting to lift such approaches to the DatalogMTL setting.

Acknowledgments. This work was supported by the EPSRC project OASIS
(EP/S032347/1), the EPSRC project UK FIRES (EP/S019111/1), and the SIRIUS
Centre for Scalable Data Access, and Samsung Research UK.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-
Wesley, Reading (1995)

2. Bellomarini, L., Sallinger, E., Gottlob, G.: The vadalog system: Datalog-based
reasoning for knowledge graphs. Proc. VLDB Endow. 11(9), 975–987 (2018)

3. Brandt, S., Kalaycı, E.G., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Querying
log data with metric temporal logic. J. Artif. Intell. Res. 62, 829–877 (2018)

4. Bry, F., et al.: Foundations of rule-based query answering. In: Reasoning Web, pp.
1–153 (2007)

5. Carral, D., Dragoste, I., González, L., Jacobs, C.J.H., Krötzsch, M., Urbani, J.:
Vlog: a rule engine for knowledge graphs. In: Proceedings of ISWC, pp. 19–35
(2019)

6. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog
(and never dared to ask). IEEE TKDE 1(1), 146–166 (1989)

Seminaïve Materialisation in DatalogMTL 197

7. Cucala, D.J.T., Wałęga, P.A., Cuenca Grau, B., Kostylev, E.V.: Stratified negation
in Datalog with metric temporal operators. In: Proceedings of AAAI, pp. 6488–
6495 (2021)

8. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

9. Kalaycı, E.G., Xiao, G., Ryzhikov, V., Kalayci, T.E., Calvanese, D.: Ontop-
temporal: a tool for ontology-based query answering over temporal data. In: Pro-
ceedings of CIKM, pp. 1927–1930 (2018)

10. Kikot, S., Ryzhikov, V., Wałęga, P.A., Zakharyaschev, M.: On the data complexity
of ontology-mediated queries with MTL operators over timed words. In: Proceed-
ings of DL (2018)

11. Koopmann, P.: Ontology-based query answering for probabilistic temporal data.
In: Proceedings of AAAI, pp. 2903–2910 (2019)

12. Koymans, R.: Specifying real-time properties with metric temporal logic. J. R Time
Syst. 2(4), 255–299 (1990)

13. Mori, M., Papotti, P., Bellomarini, L., Giudice, O.: Neural machine translation for
fact-checking temporal claims. In: Proceedings of FEVER, p. 78 (2022)

14. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Maintenance of Datalog materialisa-
tions revisited. Artif. Intell. 269, 76–136 (2019)

15. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation
of Datalog programs in centralised, main-memory RDF systems. In: Proceedings
of AAAI (2014)

16. Nissl, M., Sallinger, E.: Modelling smart contracts with datalogmtl. In: Ramanath,
M., Palpanas, T. (eds.) Proceedings of the Workshops of the EDBT/ICDT. CEUR,
vol. 3135. CEUR-WS.org (2022)

17. Ryzhikov, V., Wałęga, P.A., Zakharyaschev, M.: Data complexity and rewritabil-
ity of ontology-mediated queries in metric temporal logic under the event-based
semantics. In: Proceedings of IJCAI, pp. 1851–1857 (2019)

18. Wałęga, P.A., Cuenca Grau, B., Kaminski, M., Kostylev, E.V.: DatalogMTL: com-
putational complexity and expressive power. In: Proceedings of IJCAI, pp. 1886–
1892 (2019)

19. Wałęga, P.A., Cuenca Grau, B., Kaminski, M., Kostylev, E.V.: DatalogMTL over
the integer timeline. In: Proceedings of KR, pp. 768–777 (2020)

20. Wałęga, P.A., Kaminski, M., Cuenca Grau, B.: Reasoning over streaming data in
metric temporal Datalog. In: Proceedings of AAAI, pp. 3092–3099 (2019)

21. Wałęga, P.A., Zawidzki, M., Cuenca Grau, B.: Finitely materialisable Datalog
programs with metric temporal operators. In: Proceedings of KR (2021)

22. Wang, D., Hu, P., Wałęga, P.A., Grau, B.C.: MeTeoR: practical reasoning in Dat-
alog with metric temporal operators. In: Proceedings of AAAI (2022)

Magic Sets in Interpolation-Based Rule
Driven Query Optimization

Eva Feng(B), David Toman, and Grant Weddell

University of Waterloo, Waterloo, Canada
{ehfeng,david,gweddell}@uwaterloo.ca

Abstract. Query reformulation under constraints is an essential part of
modern query optimizers. This paper introduces an enhancement to an
interpolation-based rule-driven query optimizer that extends the space
of valid rewritings for a user query in order to find better execution plans
otherwise not found. The enhancement is inspired by the so-called magic
set transformation (MST). However, in contrast with the traditional use
of MST, our approach uses MST-like transformation to derive additional
formulae constituting a desirable extension to the space of query plans.

1 Introduction

Information systems rely critically on query optimizers to find efficient query
plans for user queries over their underlying databases. More recent interpolation-
based query optimizers [3,4,9,10] have proven to be more effective at finding such
plans compared to earlier approaches. The input to an optimizer consists of a user
query and a database schema composed of logical and physical constraints. The
logical constraints, such as declarations of primary/foreign keys, are sentences
over an alphabet of logical atoms, atoms that appear in user queries. The physical
constraints are sentences over both the logical and the physical atoms, atoms that
abstract data structures storing the actual data in the database system, such as
B+trees. The goal of query optimization is to find performance-wise optimal
query plan—a formula over the physical atoms that is logically equivalent to
the user query under the database schema—among all query plans. The query
optimization process is summarized in Fig. 1.

In this paper, we consider the interpolation-based optimizer presented in
[10]. This optimizer is a two-phase system which (1) constructs a representation
of a partial analytic tableau proof, called conditional tableau, and (2) performs
query plan enumeration over physical atoms using results extracted from the
conditional tableau. Since both database schemata and relational queries use
a range-restricted subset of first-order logic [1], the first phase is implemented
using forward chaining that applies rules on ground atoms. This yields an overall
performance advantage in searching among many possible plans since one avoids
the need for free variables, unification, etc., which are common in other tableau-
based first-order theorem provers. Unfortunately, the forward chaining design
also has a limitation which prevents the optimizer from fully utilizing the power
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 198–207, 2022.
https://doi.org/10.1007/978-3-031-21541-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-21541-4_13

Magic Sets in Interpolation-Based Rule Driven Query Optimization 199

of interpolation-based optimizers, which we now illustrate with Examples 1
and 2. In presenting these examples, we introduce a view definition q to inter-
nalize a user query in the database schema.

Fig. 1. Overview of query optimization

Example 1. Consider a query optimization problem for the user query a(x)∧c(x)
with respect to the database schema

Logical/Physical View Definition Rules
Constraints

q(x) ↔ a(x) ∧ c(x)
normalize−−−−−−−→ q(x) → a(x)

q(x) → c(x)
a(x) ∧ c(x) → q(x)

c(x) → ∃y.b(x, y) normalize−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ c(x) → ∃y.b(x, y)

presented as a set of rules and the set of physical atoms {a, b, c}. The system
will generate the following two alternative query plans (among others):

a(x) ∧ c(x) and a(x) ∧ (∃y.b(x, y)) ∧ c(x).

While the second plan seems redundant, it may still be more efficient than the
first plan. This happens when a is large (has a large number of tuples), when
checking the satisfaction of ∃y.b(x, y) is relatively inexpensive compared to check-
ing the satisfaction of c(x), and when the intersection of x values in a(x) and
b(x, y) is much smaller than the size of a.

Note that—intuitively—the atom b(x, y) in the above example can be obtained
from c(x) by forward chaining the schema rules, and that c(x) must be present
in any query plan for q(x); see Sect. 2 for details. Unfortunately, certain desirable
query plans cannot be found due to the forward chaining nature of the system.
A simple variation of the above example illustrates the issue:

Example 2. Consider the following modification of Example 1.

Logical/Constraints View Definition Rules
Constraints

q(x) ↔ a(x) ∧ c(x)
normalize−−−−−−−→ same as Example 1

c(x) ∧ b(x, y) → ⊥ normalize−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ c(x) ∧ b(x, y) → ⊥

200 E. Feng et al.

The system will still generate the query plan a(x) ∧ c(x), but not the plan

a(x) ∧ (¬∃y.b(x, y)) ∧ c(x),

even though the schema implies c(x) → ¬∃y.b(x, y). For reasons similar to those
for Example 1, the second plan may also be more efficient than the first plan,
again, when a is large, when checking the satisfaction of ¬∃y.b(x, y) is relatively
inexpensive compared to checking the satisfaction of c(x), and when the inter-
section of x values in a(x) and b(x, y) is now close to the size of a.

The failure to derive the second plan in this case can be traced to the forward
chaining implementation of the system: the rule c(x) ∧ b(x, y) → ⊥ is never
executed since b atoms cannot be derived by forward chaining.

The Contribution: A straightforward way to rectify this problem is to extend
the tableau construction by allowing negated atoms alongside the positive atoms.
This, however, leads immediately to the need for handling free/universally quan-
tified variables, unification, etc. In this paper, we propose an alternative solu-
tion inspired by the magic set transformation (MST) [2] that allows the con-
ditional tableau construction to be based on efficient forward chaining of rules
over ground atoms while providing a general solution to the problem illustrated
by Example 2.

The remainder of the paper is organized as follows: Sect. 2 provides the nec-
essary background and definitions for our proposed rewriting procedure. Due to
space limitations, details which are not immediately relevant to our main con-
tribution are omitted in Sect. 2 but can be found in [8,10]. Section 3 introduces
the variant of MST used in this paper and illustrates both its necessity and effi-
cacy. We conclude in Sect. 4 with directions of future research, which includes
other applications of MST to query optimization, in particular with making the
optimization algorithm(s) themselves more efficient.

2 Preliminaries and Definitions

Let Σ be the database schema and q(ȳ) be the view definition of the user query.
Let the superscripts .L and .R denote a uniform renaming of symbols in a for-
mula (or set of formulae) and the physical atoms p provide the alphabet of the
interpolant, hereon called the query plan. Our approach is a variation on con-
structing an analytic tableau proof of the entailment-style formulation of the
Beth definability condition [5],

ΣL ∪ ΣR ∪ {∀x̄.pL(x̄) ↔ p(x̄) ↔ pR(x̄) | p physical} |= ∀ȳ.qL(ȳ) → qR(ȳ). (∗)

In contrast to the classical version of the Craig interpolation theorem [6,7],
this modification allows our system to separate the theorem proving part of
the problem, called the conditional tableau, from the plan enumeration phase
based on closing sets, an abstraction of the conditional tableau constructed for
a particular user query.

Magic Sets in Interpolation-Based Rule Driven Query Optimization 201

Conditional Tableau. As outlined in the introduction, our approach is a varia-
tion on the above and proceeds in two phases. In the first phase, we construct a
conditional tableau consisting of two separate partial tableaux TL and TR that
capture inferences in ΣL ∪ {qL(c̄)} and ΣR ∪ {qR(c̄) → ⊥}, respectively. Con-
structing these tableaux separately alleviates the need for renaming the formulae
using superscripts in the rest of the paper. The main building blocks of a condi-
tional tableau are so-called conditional atoms; both TLand TR are encoded as
sets of such atoms:

Definition 1. Let r be a ground atom (or ⊥), P = {p1, . . . , pn} a set of ground
physical atoms, and B = {i1 : j1, . . . , im : jm} a set of pairs of numbers corre-
sponding to a branch number and direction. We call r[P]〈B〉 a conditional atom
for r that depends on ground physical atoms in P (called dependencies) and that
belongs to tableau branches described by the set B.

The conditional tableau is constructed by applying the following rules on the
initial conditional tableaux TL = {q(c̄)[]〈〉} and TR = {} for a user query q(x̄).
In the table, we write P(a) and B(a) to refer to the dependencies and branches
of a conditional atom a(c̄)[P]〈B〉 substituted for an atom a(x) in a rule, and
where n is a fresh branch number whenever a new “or” is encountered.

Rules P(b1)[,P(b2)] B(b1)[,B(b2)]

a1(x̄) → b1(ȳ) ȳ ⊆ x̄ P(a1) B(a1)

a1(x̄) ∧ a2(ȳ) → b1(z̄) z̄ ⊆ x̄ ∪ ȳ P(a1) ∪ P(a2) B(a1) ∪ B(a2)

a1(x̄) → ∃y.b1(x̄, y) P(a1) B(a1)

a1(x̄) → b1(x̄) ∨ b2(x̄) P(a1), P(a1) B(a1) ∪ {n : 0}, B(a1) ∪ {n : 1}

In addition, we use a physical rule, that adds a conditional atom p[{p}]〈〉 to
TR (resp. TL) when a physical atom p[P]〈B〉 occurs in TL (resp. TR). We also
use an additional rule q(c) → ⊥ in constructing TR. Note that the use of the
physical rule is always sound since it essentially adds a tautology p → p; we use
this observation again for the MST-based physical rule in Sect. 3.

Closing Sets and Query Plans. The second phase of our approach extracts so-
called closing sets from TL and TR. These are minimal sets of physical literals
that close every branch in TL and TR.

Definition 2 (Closing Sets [10]). We define closing sets constructively. A left
(resp. right) closing set is a minimal set of physical literals that close all open
branches in TL (resp. TR). We write CSL (resp. CSR) to refer to the set of all
closing sets for TL (resp. TR).

The candidate closing sets for a tableau T are constructed as follows [10]:

1. Set CS := {{¬r, p1, . . . , pn}〈B〉 | r[{p1, . . . , pn}]〈B〉 ∈ T, r physical or ⊥}.

202 E. Feng et al.

2. Repeat CS := CS−{S1〈B1 ∪ {n.0}〉, S2〈B2 ∪ {n.1}〉} ∪ {S1 ∪ S2〈B1 ∪ B2〉}
while S1〈B1 ∪ {n.0}〉, S2〈B2 ∪ {n.1}〉 ∈ CS for some n.

This construction is applied both on TL and TR yielding CSL and CSR after
discarding non-minimal candidate closing sets. Finally, to generate query plans,
we can simply compute the sets LP and RP for a candidate formula using the
table below and then compare these sets to the closing sets for TL and TR.

ψ : ψL ψR

r(c̄) : {{¬r(c̄)}} {{r(c̄)}}
ψ1 ∧ ψ2 : ψL

1 ∪ ψL
2 {S1 ∪ S2 | S1 ∈ ψR

1 , S2 ∈ ψR
2 }

ψ1 ∨ ψ2 : {S1 ∪ S2 | S1 ∈ ψL
1 , S2 ∈ ψL

2 } ψR
1 ∪ ψR

2

¬ψ1 : ψR
1 ψL

1

∃x.ψ1[x/a] : ψL
1 ψR

1

This construction relies on the remaining {∀x̄.pL(x̄) ↔ p(x̄) ↔ pR(x̄) |
p physical} formulae in (∗) above to complete the tableau proof of (∗). Overall,
we have:

Proposition 1 ([8]). Let Σ be a database schema, q(x̄) a user query, and P a
candidate plan. Then the following are equivalent:

1. For each S ∈ ψX there is S′ ∈ CSX such that S′ ⊆ S for X ∈ {L,R}; and
2. Σ |= ∀x̄.q(x̄) ↔ ψ.

The following example illustrates the conditional tableau construction and sub-
sequent plan synthesis using the closing sets. We hereon only consider the nor-
malized schema constraints.

Example 3. Consider a database schema Σ = {q(x) → a(x), q(x) ∧ b(x, y) →
⊥, a(x) → d(x) ∨ q(x), d(x) → ∃y.b(x, y)} for a user query q(x) and a set of

physical atoms {a, b}. Let
phys−−−−→ denote the application of a physical rule. The

conditional tableau is then as follows:

TL TR

q(0)[]{}
a(0)[]{} phys−−−−→ a(0)[a(0)]{}

d(0)[a(0)]{0.0}, q(0)[a(0)]{0.1}
b(0, 1)[b(0, 1)]{} phys←−−−− b(0, 1)[a(0)]{0.0}, ⊥[a(0)]{0.0}

⊥[b(0, 1)]{}

The closing sets are CSL = {{¬a(0)}, {b(0, 1)}} and CSR = {{¬b(0, 1), a(0)}}.
Hence, since both ψL = {{¬a(0)}, {b(0, 1)}} and ψR = {{¬b(0, 1), a(0)}},
ψ = a(x) ∧ ¬∃y.b(x, y) is a query plan for q(x).

Applying the same approach to Examples 1 and 2 yields the results outlined in
the introduction.

Magic Sets in Interpolation-Based Rule Driven Query Optimization 203

3 MST and Rule Rewriting

A Messy Guessing Game. Recall from the introduction that some negative atoms
cannot be generated via forward chaining. We rectify this issue by guessing and
generating tautologies a(ca)[a(ca)] with appropriate arguments for the missing
physical atoms. Let us illustrate this guessing game with Example 2.

Example 2 (Continued). Recall that c(x)∧b(x, y) → ⊥ is never executed because
no conditional tableau rule contains b(x, y) on the right hand side. Applying
forward chaining, the left closing sets for Example 2 are {¬a(0)} and {¬c(0)},
and the right closing set is {a(0), c(0)}. However, to generate the query plan
‘a(x) ∧ (¬∃y.b(x, y)) ∧ c(x)’, we are missing the left closing set {b(0, 1)} because
the system fails to generate its corresponding conditional atom ⊥[b(0, 1)]. To
introduce b in the tableau, we mirror the physical rule and insert tautologies
b(c1, c2)[b(c1, c2)], where c1, c2 are Skolem constants. The task remains to guess
appropriate Skolem constants for c1, c2 so that ⊥[b(0, 1)] is generated. In this
simple case, we obviously guess c1 = 0 and c2 = 1, where 1 is a new Skolem
constant. However, in most cases, guessing appropriate arguments is a non-trivial
task.

Example 2 shows how a simple guessing game can generate appropriate con-
ditional atoms for missing plans. In the next example, we illustrate difficulties
with chaining of negative atoms, which can make the guessing game messy. We
also see how MST is used to solve the messy guessing game.

Example 4. Consider a database schema Σ = {q(x) → d(x), q(x) → a(x), d(x) ∧
a(x) → q(x), a(x)∧ b(x, y) → ∃z.c(x, y, z), b1(x, z)∧ b2(z, y) → b(x, y)} for a user
query q and a set of physical atoms {a, b1, b2, c, d}.

This example contains both existential variables and chaining of negative
atoms b(x, y), b1(x, z), b2(z, y). The current system fails to produce condi-
tional atoms for physical predicates b1, b2, c, resulting in missing plan ‘d(x) ∧
¬∃y, z, t.((b1(x, z) ∧ b2(z, y)) ∧ ¬c(x, y, t)) ∧ a(x)’.

To produce appropriate argument bindings in plans, we must make educated
guesses for c(x, y, t) depending on previous guesses for b(x, y). Similarly, we guess
b(x, y) depending on previous guesses for b1(x, z) and b2(z, y). Hence, in the
presence of chaining, the guessing game becomes messy since previously guessed
arguments must be back propagated into new guesses. The key observation is
that any solution that plays the messy guessing game correctly must perform
back chaining on previously guessed arguments.

Since MST is a rule rewriting procedure designed to simulate back chaining
using forward chaining evaluation, it precisely solves the messy guessing game for
our forward chaining system. Ultimately, the goal is to guess as few conditional
atoms as needed to extend the query plan space. Given the above considerations,
MST-based rule rewriting provides a well-rounded solution given the positive and
forward chaining nature of the system.

204 E. Feng et al.

Magic Set Transformation for Conditional Tableau. As illustrated by Example 4,
an MST-like rewriting procedure is necessary for argument back propagation.
The idea is to create auxiliary magic atoms which serve as medium for back
chaining needed to communicate argument bindings.

The rewriting procedure transforms conditional tableau rules Ro coupled
with a set of physical predicate symbols into MST-enhanced rules Ro ∪Rg ∪Rp,
where Rg are the rules that generate magic atoms, and Rp the rules that generate
missing conditional atoms from magic atoms. The procedure consists of 3 stages:
(a) a first stage that initializes the set of magic atoms Pm from rules with
conjunction on their left-hand-sides; (b) a second stage that recursively computes
magic atoms from right-hand-sides and uses P s to record explored magic atoms;
and (c) a final stage that computes the set of magic propagation rules Rp.

1. Initial Transformation. For each rule in Ro of the form

a(xa) ∧ b(xb) → c(xc),

compute variable overlap xab = xa ∩xb, and adornment string A ∈ {0, 1}l. Here,
l is the number of arguments in xb, and Ai = 1 if the ith argument in xb appears
in xab (Ai = 0 otherwise). Create predicate magic bA(xab) for predicate b with
respect to argument binding xab. Add generation rule

a(xa) → magic bA(xab)

to Rg, and add new predicate magic bA to Pm. Note that conditional atoms
magic bA(xab)[]{} always have empty conditions and branches. Repeat for rule
b(xb) ∧ a(xa) → c(xc) where arguments are passed from b to a.

2. Chain Transformation. While Pm is non-empty, select magic aA ∈ Pm,
remove it from Pm, and add it to P s. For each binary rule

b(xb) ∧ c(xc) → a(xa)

with the right-hand-side matching magic aA, compute the subset of arguments
xA
a from xa indicated by A, and add magic generation rule

magic aA(xA
a) → magic bA

′
(xA

ab)

to Rg, where xA
ab = xA

a ∪ xb. Then, add one additional magic generation rule

magic aA(xA
a) ∧ b(xb) → magic cA

′
(xA

abc)

to Rg, where arguments xA
abc = (xA

a ∪ xb) ∩ xc, and new adornment string A′

computed from xA
abc and xc. Repeat for the rule c(xc) ∧ b(xb) → a(xa) where

arguments are passed from c to b. Transformations for all remaining rules are
defined analogously. Add new predicates to Pm if not already in Pm ∪ P s.

Magic Sets in Interpolation-Based Rule Driven Query Optimization 205

3. Magic Propagation. For each predicate magic aA corresponding to some phys-
ical predicate a, add a special propagation rule (symmetric to physical rule) to
Rp such that magic aA(x) generates conditional atom a(xa)[a(xa)] on the same
side of the tableau for its corresponding non-magic predicate, where the argu-
ments indicated by A are copied from x, and the rest of the arguments are fresh
Skolem constants.

Soundness and Efficacy. Previous work on interpolation-based query optimizers
show that conditional tableau rules are sound. Now we show that the MST-
enhanced rules are sound and effectively generate appropriate negative condi-
tions without using negative ground literals.

Theorem 1 (Soundness of MST-enhanced Rules). Given original conditional
tableau rules Ro, the MST-enhanced rewriting of Ro, denoted by Rm, is sound.

Proof. Magic generation and magic propagation rules only insert tautologies
which preserve soundness. Hence, since Ro is sound [8], Rm is sound.

In addition to soundness, the patterns seen in Example 2 and 4 generalize
easily to complex input schemata containing arbitrarily many negative implica-
tions and long chains for which the missing physical atoms cannot be identified
by inspection.

Theorem 2 (Efficacy of MST-enhanced Rules). Let Ro be the set of original
conditional tableau rules and Rm be its MST-enhanced rewriting. If a negative
atom is logically implied on some branch of the conditional tableau, then it is
generated with the correct dependencies and branches by forward chaining with
respect to Rm.

Proof. The base case is identical to Example 2. Efficacy generalizes to schemata
with chaining by induction on the length of chains.

Example 2 (revisited). We now illustrate the MST-based rewriting procedure
with Example 2. Performing the MST-based rewriting procedure on conditional
tableau rules obtains the following MST-enhanced rules (some rules are redun-
dant, but included for the sake of completeness):

Ro ={q(x) → a(x), q(x) → c(x), a(x) ∧ c(x) → q(x), c(x) ∧ b(x, y) → ⊥};

Rg ={c(x) → magic b10(x), b(x, y) → magic c1(x), a(x) → magic c1(x), c(x) →
magic a1(x),magic a1(x) → magic q1(x),magic c1(x) → magic q1(x),

magic q1(x) → magic a1(x),magic q1(x) ∧ a(x) → magic c1(x)}; and

Rp ={magic b10(x) → ∃y.b(x, y),magic c1(x) → c(x),magic a1(x) → a(x)}.

206 E. Feng et al.

Executing the above MST-enhanced rules using forward chaining produces the
following conditional tableau, where the missing atom ⊥[b(0, 1)] is generated.

TL TR

q(0)[]{}
a(0)[]{} phys−−−−→ a(0)[a(0)]{}
c(0)[]{} phys−−−−→ c(0)[c(0)]{}

q(0)[a(0), c(0)]{}
⊥[a(0), c(0)]{}

magic b10(0)
b(0, 1)[b(0, 1)]{}

⊥[b(0, 1)]{}

Hence, the MST rewriting procedure effectively generates the missing physical
atoms without additional reasoning beyond rule transformation. Ultimately, this
yields the sought-after plan a(x) ∧ (¬∃y.b(x, y)) ∧ c(x). Similarly, applying the
MST-based rule rewriting procedure to Example 4 yields MST-enhanced rules
that generate the missing query plans even in the presence of chaining.

4 Conclusion

We present a novel rule rewriting procedure based on MST for a rule-based,
forward chaining conditional tableau system, and show that our rule rewrit-
ing procedure can generate missing conditional atoms that usefully extend the
space of query plans for a given query. With Examples 2 and 4 we have shown
that certain patterns of negation generalize to complex schemata and queries.
Moreover, if a chain of implications contains no physical predicates, one can eas-
ily preprocess the schema to inhibit magic transformation on such chains. This
avoids redundant reasoning since logical predicates do not appear in closing sets
or resulting plans.

Finally, observe that the usual magic guards used to prune the search space
that are introduced by the standard algorithm for MST are unnecessary here.
However, we plan on exploring the use of such guards for conditional tableau
in future work to enable additional optimizations. It would also be constructive
to compare the MST-based rewriting procedure with alternative solutions using
different proof systems such as resolution.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995). http://webdam.inria.fr/Alice/

2. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange
ways to implement logic programs. In: ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems (PODS), pp. 1–15. ACM (1986)

http://webdam.inria.fr/Alice/

Magic Sets in Interpolation-Based Rule Driven Query Optimization 207

3. Benedikt, M.: How can reasoners simplify database querying (and why haven’t
they done it yet)? In: ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems (PODS), pp. 1–15. ACM (2018)

4. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating plans from proofs:
the interpolation-based approach to query reformulation. Synth. Lect. Data Manag.
8(1), 1–205 (2016)

5. Beth, E.W.: On Padoa’s method in the theory of definition. Indag. Math. 15,
330–339 (1953)

6. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Logic 22(3), 269–285 (1957)

7. Fitting, M.: First-Order Logic and Automated Theorem Proving. Texts in Com-
puter Science, 2nd edn. Springer, New York (1996). https://doi.org/10.1007/978-
1-4612-2360-3

8. Hudek, A., Toman, D., Weddell, G.: On enumerating query plans using analytic
tableau. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp.
339–354. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2 23

9. Toman, D., Weddell, G.: Fundamentals of Physical Design and Query Compilation.
Synthesis Lectures on Data Management, Morgan & Claypool Publishers, San
Rafael (2011)

10. Toman, D., Weddell, G.E.: An interpolation-based compiler and optimizer for
relational queries (system design report). In: Eiter, T., Sands, D., Sutcliffe, G.,
Voronkov, A. (eds.) IWIL@LPAR 2017 Workshop and LPAR-21 Short Presenta-
tions. Kalpa Publications in Computing, vol. 1. EasyChair (2017)

https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-3-319-24312-2_23

Proofs, Error-Tolerance, and Rules

In the Head of the Beholder: Comparing
Different Proof Representations

Christian Alrabbaa1(B) , Stefan Borgwardt1 , Anke Hirsch2,
Nina Knieriemen2, Alisa Kovtunova1 , Anna Milena Rothermel2,

and Frederik Wiehr2

1 Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany
{christian.alrabbaa,stefan.borgwardt,alisa.kovtunova}@tu-dresden.de

2 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
{anke.hirsch,nina.knieriemen,anna milena.rothermel,frederik.wiehr}@dfki.de

Abstract. Ontologies provide the logical underpinning for the Semantic
Web, but their consequences can sometimes be surprising and must be
explained to users. A promising kind of explanations are proofs generated
via automated reasoning. We report about a series of studies with the
purpose of exploring how to explain such formal logical proofs to humans.
We compare different representations, such as tree- vs. text-based visu-
alizations, but also vary other parameters such as length, interactivity,
and the shape of formulas. We did not find evidence to support our main
hypothesis that different user groups can understand different proof rep-
resentations better. Nevertheless, when participants directly compared
proof representations, their subjective rankings showed some tendencies
such as that most people prefer short tree-shaped proofs. However, this
did not impact the user’s understanding of the proofs as measured by an
objective performance measure.

1 Introduction

Explanations of automated decisions are currently an important topic of
research. However, apart from the discussion about how explainable different
AI methods are, the main task of explanations is understanding, i.e. that the
information transmitted is actually received by the human user [32]. Even meth-
ods that are “explainable by design”, such as logic-based ones, are not necessarily
understandable by design when presenting them to laypersons.

In the area of Description Logics (DLs) [10], research on explanations first
focused on proofs for explaining logical consequences [13,30], but it was quickly
realized that often it is enough to point out a minimal set of responsible axioms
from the ontology, i.e. so-called justifications [11,21,37]. While justifications are
already very helpful for designing or debugging an ontology, depending on the
complexity of the inference and the expertise of the user, more detailed proofs
are needed to fully understand why the consequence follows from the axioms.
Therefore, researchers have thought about providing (partial) proofs [23,26] and
developed more user-friendly presentation formats, e.g. using natural language
instead of logical formulas [33–35].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 211–226, 2022.
https://doi.org/10.1007/978-3-031-21541-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_14&domain=pdf
http://orcid.org/0000-0002-2925-1765
http://orcid.org/0000-0003-0924-8478
http://orcid.org/0000-0001-9936-0943
https://doi.org/10.1007/978-3-031-21541-4_14

212 C. Alrabbaa et al.

Following a line of research on the understandability of description logic infer-
ences and proofs [3–5,18,23,26,33,34], in this paper we compare the usefulness of
different proof representations. In an effort to understand which approaches are
most promising for improving explainability, we studied which representations
of DL proofs are preferred by users (with and without prior experience in logic)
and which of them actually lead to an increased performance when doing logic-
related tasks. In this paper, we summarise the lessons learned after conducting
four experiments. All studies use proofs in a traditional tree shape, e.g. based on
consequence-based reasoning procedures [27,39], and linearized translations of
these proofs into text, e.g. as done by various verbalization techniques [8,33,35].
These conditions are representative of the state-of-the-art in DL explanations.
We hand-crafted all proofs for the studies, but tried to stay as close as possible to
the actual output of these systems. The main goal throughout these studies was
to find differences in user preferences between different user groups. Our main
hypothesis was that users with a different level of experience with logic would
work better with different proof representations, e.g. text- vs. tree-based ones.
While this was not confirmed, we gained some insights about subjective prefer-
ences of proof presentations, e.g. that short, tree-shaped proofs are preferred in
general.

Related Work. Several approaches for converting description logic axioms
and proofs into textual representations have been developed and evaluated
[1,8,29,34,35]. For example, generation of verbalized explanations for non-trivial
derivations in a real world domain was tested on computer scientists in [35]. The
authors distinguish short and long textual explanations, but the participants’
opinions on conciseness turned out to be mixed and not too strong. In [29], it has
been confirmed that statements in a controlled natural language are understood
significantly better than the Manchester OWL Syntax, where DL axioms are
expressed by sentences with words like “SubTypeOf”, “DisjointWith”, “HasDo-
main”, etc. Moreover, the experiment [1] has shown that the Manchester syntax
is not more effective than the formal DL syntax. Differently from previous stud-
ies [33–35], in most of our experiments we directly compared textual and tree
proof formats. In [28], the authors look into various hybrid proof representations
and evaluate them in terms of understanding. In contrast to our work, they
focus on defeasible logics, they do not consider pure textual representations, and
the user evaluation involved postgraduate students. The work described in [17]
deals with explaining logical inconsistencies in a healthcare domain using natural
language, but it does not consider graphical proof representations.

More details and printable versions of the surveys are available online.1 Stud-
ies I–III have previously been presented in workshop papers [7,14].

2 Background

The proofs we use are loosely based on the DL ALCQ [10], but deep knowledge
of this logic is not required here. We denote DL statements (called axioms) by α

1 gitlab.perspicuous-computing.science/a.kovtunova/user-study-collection.

gitlab.perspicuous-computing.science/a.kovtunova/user-study-collection
https://gitlab.perspicuous-computing.science/a.kovtunova/user-study-collection

Comparing Different Proof Representations 213

Fig. 1. A proof for the unsatisfiability of A w.r.t. O, i.e. that O |= A � ⊥.

Table 1. Different proof representations for our experiments.

Study Text proofs Length Tree proofs Domain

Long Short DL syntax Arrows Real Nonsense Letters

I * * * * *

II * * *

III * * * *

IV * * * *

and ontologies, which are finite sets of axioms, by O. Let O be an ontology and α
be a consequence of O (written O |= α). The first step towards understanding
why this consequence holds is to compute justifications [11,21,37], i.e. minimal
subsets J ⊆ O such that J |= α, which already point out the axioms from O
that are responsible for α. However, actually understanding why α follows may
require a more detailed proof. Informally, a proof is a tree consisting of inference
steps α1...αn

α , where each step is sound, i.e. {α1, . . . αn} |= α holds (see Fig. 1).
Often, such a proof is built from the inference rules of an appropriate calculus
[9,39]. However, there also exist approaches to generate DL proofs that start
with a justification, and extend it with intermediate axioms (lemmas) using
heuristics [21,22], concept interpolation [36], or forgetting [3].

It is important that proofs are neither too detailed nor too short. In fact,
a justification can itself be seen as a one-step proof of a consequence α, but if
each element of the justifications seems reasonable to the user, then it can be
hard to track down the precise interaction between these axioms that causes
the problem. Axioms may not always behave as the user expects, e.g. “every A
has only rs that are Bs” (A � ∀r.B) does not imply that “every A has an r that
is a B” (A � ∃r.B). On the other hand, too many small proof steps can also be
detrimental for understanding, because they are distracting. For example, it may
happen that a reasoner includes the trivial step C�B�⊥

B�C�⊥ in Fig. 1 to make the two
conjunctions match syntactically, which may not be necessary for understanding
the essence of the proof. Apart from proof length, in our experiments we also
use other ways of varying the proof representations (see Table 1). For example,
in Studies II–IV we use a more flexible visualization of trees in which arrows are
used instead of horizontal lines (see the supplementary PDF file in the repository
(see footnote 1)).

A textual representation of a proof is necessarily a linearization, where the
inference steps are explained in a sequence, for example in a top-down left-right
order. A text corresponding to the tree proof in Fig. 1 could be the following:

214 C. Alrabbaa et al.

Table 2. Overview of the experiments

Study 1-on-1 interview Onlinea survey # Participants Avg. time (min) Mean age (SD) Pay

Male Female Non-binary

I * 12 4 – 90 23.0 (1.71) 20e

II * 56 45 – 29 24.5 (6.8) £ 5.20

III * 102 71 – 51 24.8 (8.2) £ 8.75

IV * 41 66 1 44 25.9 (6.9) £ 6.25
aThe participants were recruited using Prolific (https://www.prolific.co/). No restric-
tions on participant background were imposed.

Since every A has an r and every A has only rs that are Bs and Cs, every
A has an r which is a B and a C. Since there is no object which is a C and
a B at the same time, there is no object of type A.

Other aspects in which a text differs from a proof tree are that conjunctions
(e.g. “since”, “and”) are used to illustrate proof steps and that statements may
be repeated if they are reused later.

We use the formal DL syntax for tree proofs only in the first experiment over
axioms expressing medical knowledge, e.g. the statement “there is no object
which is both a compound and an atom at the same time” is presented as the
expression Atom � Compound � ⊥. In the later experiments, we do not use real
domains to avoid interference from prior knowledge about the domain. We also
adopt the approach from [29,35] and avoid the formal syntax in order to include
more participants. For example, in Study IV, A � ∃r.� would be shown as
“Every A has an r.” In the remaining two experiments, we use nonsense names
that vaguely look and sound English to enable more natural-sounding sentences,
e.g. “Every woal is munted only with luxis that are kakes” instead of “Every A
has only rs that are Bs and Cs” (A � ∀r.(B � C)); see also Table 1.

General Study Information. In Table 2 we summarize the demographic data
for the experiments. All study participants were at least 18 years old. For the
online surveys, we had to filter out participant answers of low quality. For this
purpose, attention check questions, e.g. “In this statement, please choose “No”.”
were introduced. To compute all quantitative analyses, IBM SPSS Statistics
(Version 26) for Windows [24] and the Macro PROCESS [20] was used. For all
hypotheses, we used a p-value threshold of 0.05.

3 Study I – Are Short Proofs Preferred?

We started our investigation of participants’ understanding of different proof
representations by interviewing participants. Here, we used both textual proofs
and classical tree proofs using DL syntax. To find out how detailed proofs should
be, we used shortened versions for each of tree and text representations, in which
some (easy) reasoning steps were omitted or merged. During the interviews, we

https://www.prolific.co/

Comparing Different Proof Representations 215

observed whether participants’ understanding differs between these four con-
dition combinations. Moreover, we wanted to investigate if experience in logic
influences the performance and preferences.

Conditions and Design. We used two different conditions with two levels each.
One condition was the representational form of the proof, which was either text
or tree. The other condition was the length of the proof, which was either short
or long. Thus, there were the four following condition combinations: Long Text,
Short Text, Long Tree, and Short Tree. We used a 2 × 2 within-subjects design,
which means that each participant saw all four representations on four different
proofs following a Latin square design (see footnote 1). The independent variable
was the experience, while the dependent variable was the rating of the proofs.

Material. Proofs from the medical domain were chosen such that they represent
unintuitive consequences, e.g. the unsatisfiability of a concept name, or that an
amputation of a finger is also an amputation of the whole hand [12]. All four
examples were chosen from the literature on DL explanations [12,25,31,38]. For
each of them, four different proof representations were manually created, not
automatically generated, to make them comparable in difficulty.

To make sure the participants really understood the proofs, a logic expert
reviewed the video of each participant after each session. We used the think-
aloud technique, so the expert was able to follow the participant’s thoughts and
rated the video based on the participant’s understanding on a scale from 1 (no
understanding) to 3 (complete understanding).

Further Information. To assess participants’ experience, we asked them how they
would rate their experience with propositional-, description-, and first-order logic
on a scale from 1 (no knowledge) to 5 (expert). We evaluated how they rated
the difficulty of each proof on a scale from 1 (very easy) to 5 (very difficult). To
compare the proof representations, at the end of the experiment we asked the
participants to rank the proofs based on their comprehensibility (first rank =
very easy, fourth rank = very difficult). It was possible to give several proofs the
same rank.

Participants (see Table 2). Our participants were recruited from undergrad-
uate and graduate university students with basic knowledge of logic, which was
required to understand the proofs. Screening criteria were familiarity with first-
order logic (e.g. through a lecture), a stable Internet connection and the per-
mission to record their handwriting and voice during the experiment. One par-
ticipant was excluded since they did not understand the proofs but rated them
as easy. The mean of the participant’s experience with propositional logic was
M = 3.25 (SD = 1.0), on a scale of 1 to 5. Furthermore, 37.5% of the participants
seldomly worked with propositional logic, while 31.3% worked with it often.

Hypotheses. We stated three hypotheses concerning the participants’ self-
rating of the difficulty of the proofs and their self-rated experience with logic.

Hypothesis 1 : It is easier to understand a short, concise explanation than a longer
version (in the same representation format).

216 C. Alrabbaa et al.

Hypothesis 2 : Users with less experience in logic can understand the longer text
better than a short tree proof. This will be shown by a lower difficulty rating of
the long textual proof.

Hypothesis 3 : Users with more experience in logic can understand a long tree
proof better than a long text. This will be shown by a lower difficulty rating of
the long tree proof.

Results. For Hypothesis 1, a multiple linear regression with contrast coding
(K1, K2, K3) was conducted. K1 contrasted the textual representation against
the tree. K2 contrasted the short vs. long proofs and K3 the interaction between
the two general conditions. The three contrasts explained 14.2% of variance in the
rating after each proof, R2 = .14, F(3, 60) = 3.30, p < .05. Only K2 was found
to be a significant predictor in the linear regression, β = −.29, t(60) = −2.42,
p < .05. This means that the participants rated the shorter proofs as being easier
than the longer ones, which was independent of the presentation format. Thus,
Hypothesis 1 could be supported by our data.

For Hypotheses 2 and 3, we computed moderator analyses with the two
condition combinations as a predictor, the experience as a moderator variable
and the rating after each proof as the criterion. However, neither Hypothesis 2
nor 3 was supported by our data. Experience with logic did not make a difference
on the understanding of the different proof representations.

Additionally to the three hypotheses, we used Friedman’s test for compar-
ing the comprehensibility ranking of the proof representations at the end of the
experiment (first rank = very easy, fourth rank = very difficult). It revealed a sig-
nificant difference in the ranking of the condition combinations, χ2(3) = 15.29,
p < .01 with a moderate effect size (Kendall’s W = .32). For the post-hoc pair-
wise comparisons, Bonferroni correction was used, which resulted in a p-threshold
of 0.008, resulting in only two significant comparisons. The participants’ ranking
of condition combinations is shown in Fig. 2. The combination Short Text was
preferred over Long Text, Z = 1.53, p < .008. The median ranking for Short
Text and Long Text was 2 and 3.5, respectively. Additionally, Short Tree was
preferred over Long Text, Z = 1.50, p < .008. Short Tree had the lowest median
ranking with 1.5. Both comparisons showed moderate effect sizes with r = 0.38.
The median ranking for Long Tree was 2.

4 Study II – Connecting Cognitive Abilities and Proof
Understanding

Our first experiment revealed some weaknesses in our design choices. First, the
direct interviews with each person meant that we were only able to include
few participants. Therefore, in the following we designed our experiments using
automated surveys. Second, the choice of proofs using real domains was not
ideal, as sometimes participants immediately spotted axioms that were counter-
intuitive, without looking at the proof. This is why we started to use nonsense
domains that could not interfere with participants’ prior knowledge. Last but

Comparing Different Proof Representations 217

Fig. 2. The participants’ ranking of conditions with 1 = very easy and 4 = very difficult

not least, the self-rating of experience in logic may be influenced by partici-
pants’ confidence or a fear of negative evaluation. Thus, we wanted to replace
the subjective experience rating by a more objective measure of an individual’s
ability to understand logical proofs. To evaluate the suitability of standardized
tests for our purposes, we conducted the following experiment comparing the
International Cognitive Ability Resource (ICAR162) [16] questionnaire against
the performance on tasks related to DL proofs.

Design. We used LimeSurvey3 for hosting our online survey. Since we did not
pre-screen our participants for experience with logic, we included an introduction
explaining the structure of proof trees. In order to exclude the effect of tiredness,
the order of the ICAR16 questions and the proof tasks was randomized.

Material. To assess the participants’ cognitive abilities, the abbreviated form
of ICAR16 was applied. It consists of 16 questions equally distributed over
four types: matrix reasoning, letter and number series, verbal reasoning, and
3-dimensional rotation. In the end, a mean score was calculated by coding cor-
rect answers with 1 and incorrect answers with 0. Thus, the maximum score
was 1, while the minimal score was 0. The internal consistency of ICAR16 is
α = .81 [16].

To test the performance with logical reasoning, participants had to solve
two tasks. The first described a set of axioms (in natural language) and they

2 https://icar-project.com/.
3 https://www.limesurvey.org/.

https://icar-project.com/
https://www.limesurvey.org/

218 C. Alrabbaa et al.

should decide which of the given statements follow from the axioms. Each of the
statements could be marked as “follows”, “does not follow” or “I do not know”.
In the second task, they were given a tree proof that contained a blank node,
and they were asked which of some given statements would be valid labels for
the node in the context of the proof (“yes”, “no”, “I do not know”). The score of
the performance in both tasks was calculated as the number of correct answers.
The highest possible score was 24.

Further Information. As before we asked participants about their experience
with propositional logic and their difficulty rating of each task.

Participants (see Table 2). We did not exclude any participants based on
the attention checks because no one missed more than one attention check. The
mean of the participants’ self-reported experience with propositional logic was
M = 1.83 (SD = 1.18), on a scale of 1 to 5. Additionally, 56.4% of the participants
had never worked with propositional logic before.

Hypothesis. The only hypothesis was that the ICAR16 score predicts the per-
formance in the logical tasks.

Descriptive Results. The mean of the ICAR16 scores was M = 0.55
(SD = 0.24) with the participants’ performance being spread in a normal dis-
tribution. The maximal achieved score was 1, the minimum was 0. The mean of
the score for both logical reasoning tasks was M = 15.99 (SD = 3.3), with the
maximum score being 23 and the minimum 6. The performance in these tasks
was also normally distributed across the participants.

Regression Analysis. A multiple regression analysis was carried out using the
performance in the logical reasoning tasks as the dependent and the ICAR16
performance as the independent variable. The ICAR16 score significantly pre-
dicted the performance in the logical tasks (F (1, 99) = 43.15, p < .001). The
ICAR16 explained 30% of the variation in the score of the logical tasks (R2

= .3, p < .001), which can be interpreted as large effect size/high explained
variance [15].

5 Study III – Logical Abilities and Proof Representation
Preferences

We now return to our main research question of which proof representation is
more preferred and results in a better performance in certain groups of partic-
ipants. For this experiment we investigated interactive, static, tree and textual
proof formats. Given that ICAR16 scores are highly correlated with performance
on logical reasoning tasks, we used it in our next experiment to distinguish par-
ticipants by their logical ability level. The goal was to find a difference in the
(subjective) preferences and (objective) performance on each proof representa-
tion, depending on the user’s level of logical reasoning ability.

Conditions and Design. We used two different conditions with two levels
each. One condition was the proof representation; either tree-shaped or textual.

Comparing Different Proof Representations 219

The other condition was the interactivity of the proof representation; either
static or interactive. Thus, there were the four following condition combinations:
(ir) interactive tree, (sr) static tree, (ix) interactive text, and (sx) static
text. We again used a 2 × 2 within-subjects design with a Latin square design.
The independent variable in the main study is the ICAR16 score. Objective
performance (the number of correct answers) and subjective rating of proofs as
well as proof rankings are dependent variables.

The survey was again implemented using LimeSurvey. As in the first exper-
iment, the order of the ICAR16 and the proof question groups was randomized.
Moreover, each participant was randomly assigned to one of the four groups
according to the Latin square. Before the proof tasks, there was a short expla-
nation and a small training example for both interactive formats (ir, ix).

Material. We again used ICAR16 to assess the participants’ cognitive abilities.
We developed four artificial proofs of roughly the same difficulty level. The

statements of each proof were given in textual form (also for (ir, sr)) using
nonsense words. The (ir) version started with only the final conclusion visible,
and participants could interact with each node to reveal or hide its predecessors
in the tree. The (ix) worked in a different way. At the beginning, participants
saw only the first sentence, i.e. the first assumption. The could then reveal the
next sentences step-by-step, and also highlight the premises that were used to
obtain a selected statement. Moreover, both interactive representations, (ir,ix),
could be freely zoomed and panned. The interactive proofs were provided by a
prototypical web application4 for explaining DL entailments [2,6,19]. For this
study, it was extended by a (linear) textual representation of proofs. The modes
of interaction were kept relatively basic to avoid overwhelming participants who
had little experience with logic and proofs.

For each proof, there were three questions. Each question had 6 answer
options (plus “none of these” and “I don’t know”). Questions were of the form
“Which of the following would be a correct replacement for the deduction “XYZ”
in the proof?” or “Which parts of the following summary/reformulation of the
proof are incorrect?” In the end, a score was calculated based on the number of
correct answers. Thus, the highest possible score was 12.

Further Information. We again asked participants about the experience with
propositional logic and the difficulty rating of proofs, as well as a ranking of all
four conditions they had seen according to their relative comprehensibility.

Participants (see Table 2). The mean of the participants’ experience with
propositional logic was M = 1.76 (SD = 1) on a scale between 1 and 5. Fur-
thermore, 60.7% of the participants indicated that they had never worked with
propositional logic. Due to technical errors, the proofs were not displayed for
3 participants, which were excluded. Four attention checks were implemented
in the study. 13 participants with more than 2 incorrectly answered attention
checks were excluded from the analysis.

4 https://imld.de/evonne.

https://imld.de/evonne

220 C. Alrabbaa et al.

Hypotheses. We stated two hypotheses concerning the preferences and perfor-
mance differences between the proof representations.

Hypothesis 1 : It is easier to understand interactive proofs than static proofs. This
will be shown by an increase in performance and by a higher comprehensibility
rating for the interactive conditions.

Hypothesis 2 : The relative level of comprehensibility of a tree-shaped vs. textual
proof depends on the cognitive abilities. This will be shown by a difference in
performance and difficulty rating between the condition combinations and in the
final comprehensibility ranking, in dependence of the ICAR16 scores.

Results. After the assumptions were considered as tenable, a regression analysis
was carried out, to confirm the results of Study II. Again, the predictive effect of
the ICAR16 on the performance in the proofs was significant, F (1, 171) = 24.8,
p < .001. With an R2 = .13 (corrected R2 = .12), the model shows a moderate
explained variance (Cohen, 1988).

A median split (mdn = .44) was carried out to divide the participants into
those who achieved high scores in the ICAR16 and thus presumably also have
higher cognitive abilities and those who scored lower.

For ICAR16 the mean was M = 0.46, while it was M = 2.36 for the proof
performance. The group containing those participants who scored low in the
ICAR16 achieved M = 1.9 across all proofs. In contrast, the group of participants
with high ICAR16 scores showed an overall proof performance of M = 2.87.

Performance and Comprehensibility Ratings. To compare the proof per-
formance and the subjective comprehensibility ratings after each proof, we ran a
multivariate analysis of variance (MANOVA). All the assumptions were consid-
ered as tenable. We found no significant overall difference between the conditions
across the two ICAR groups, Pillai’s Trace = .01, F (6, 1376) = 1.41, p = .206.
Also when looking at the groups separately, we could not find any significant
differences between the representations, neither in the low-ICAR group (Pillai’s
Trace = .03, F (6, 712) = 1.90, p = .078) nor in the group with high scores
(Pillai’s Trace = .01, F (6, 656) = .53, p = .788). Thus, we could not detect
differences in the comprehensibility ratings as well as the performance between
the various representations in each cognitive ability group and across the two
groups.

Ranking. To evaluate the ranking of the four representations (1 = most com-
prehensible, 4 = least comprehensible), we ran a Friedman’s test revealing a sig-
nificant difference across both ICAR groups, χ2(3) = 17.16, p = .001, n = 173
(see Fig. 3, light bars). Post-hoc pairwise comparisons were Bonferroni-corrected
and showed three significant comparisons. The (ir) was significantly more often
ranked higher than the (ix) (z = .40, p = .024, Cohen’s effect size r = .03) and
also higher than static text (z = −.50, p = .002, Cohen’s effect size r = .04).
The (sr) representation was also ranked significantly higher than (sx), z = .39,
p = .032, Cohen’s effect size r = .03 (see Fig. 3).

A Friedman’s test in the group with high ICAR performance showed a sig-
nificant difference in the ranking of representations, χ2(3) = 12.73, p = .005,

Comparing Different Proof Representations 221

Fig. 3. Rankings of all 173 participants (light bars) and of the 83 participants with
high ICAR scores (dark bars) for each condition combination.

n = 83 (see Fig. 3, dark bars). Bonferroni-corrected post-hoc pairwise com-
parisons revealed two significant comparisons. There is a significant difference
between (sr) and (sx) (z = .59, p = .019, Cohen’s effect size r = .06) with (sr)
being ranked higher than (sx). The (ir) was also preferred before (sx), (z =
−.54, p = .041, Cohen’s effect size r = .06).

The low-ICAR-performers showed no significant difference in the ranking of
representations, χ2(3) = 6.70, p = .082, n = 90.

6 Study IV – Final Experiment

The main shortcoming of the previous experiment was the difficulty of the proof
tasks, which could be seen in the mean score of 2.36 out of 12. Therefore, we
designed another experiment where the difficulty of the proof tasks was adjusted.
We also did not include the interactive conditions to be able to focus more on
the difference between the text vs. tree proofs. Furthermore, the number of proof
tasks was reduced and the nonsense words were replaced by letters, to reduce the
cognitive overload that some participants had reported in the previous study.

Conditions and Design. We only considered one condition with two levels,
namely textual and tree-shaped proof representation. We also used a between-
subjects design, which means that each participant saw either only text proofs
or only tree proofs. Dependent variables were proof performance and subjective
comprehensibility rating. The independent variable was the ICAR16 score.

We conducted the experiment via LimeSurvey. As before, the order of
ICAR16 and the proof tasks was randomized. Each participant was randomly
assigned to one of the two groups. We again included a short training example
at the beginning of the proof tasks.

Material. We again used ICAR16 to assess the participants’ cognitive abilities
(see page 7). For the proof tasks, we used simplified versions of the proofs from
the previous study, where additionally the nonsense words were replaced by

222 C. Alrabbaa et al.

letters, e.g. “every G has at least two Ys”. Overall, there were 2 proofs with 3
questions each. Thus, the highest possible score was 6.

Further Information. We again collected information about participants’ expe-
rience with propositional logic and subjective ratings after each proof.

Participants (see Table 2). We excluded 7 participants because they did
not pass the two attention checks. The experience with propositional logic was
M = 1.53 (SD = 0.97). Moreover, 69.4% indicated that they had never worked
with propositional logic before.

Hypotheses. We again wanted to test our previous hypothesis that the compre-
hensibility of a tree-shaped vs. textual proof depends on the cognitive abilities.
This would be shown by a difference in performance and difficulty rating between
the conditions, in dependence of the ICAR16 scores.

Results. The mean of ICAR16 was M = 0.36 (SD = 0.20) while it was M = 2.30
(SD = 1.25) for the proof performance. We carried out a regression analysis to
confirm the results of the previous two studies. These results should indicate
that ICAR16 scores predict proof performance. This is a precondition for any
following analyses, because we cannot split the sample based on the ICAR16
values if they are not sufficiently related to the proof values. The predictive
effect of the ICAR16 on the proof performance was not significant, F (1, 106) =
2.26, p = .135, which is why we did not perform any further tests.

7 General Discussion

Our main hypotheses that experience with logic or logical ability influences the
subjective rating or objective performance on different proof representations
could not be confirmed (see Hypotheses 2 and 3 in Study I, Hypothesis 2 in
Study III and the only hypothesis in Study IV). This may be partially due to
the shortcomings of each of the experiments, which we discuss in more detail
below. In addition, we could not find any advantage of specific representations
when it comes to the performance on proof-related tasks, even when ignoring
the ICAR16 scores (see Studies III and IV).

Nevertheless, our first experiment clearly showed a preference for shorter
proofs based on the subjective difficulty ratings and relative rankings of the
conditions by the participants. This shows that it is worthwhile to investigate
techniques for automatically shortening proofs to remove easy or redundant steps
that only distract the users. As a side result, in the second experiment we demon-
strated that cognitive abilities as measured by the standardized ICAR16 ques-
tionnaire can be used as a predictor for the performance on logical reasoning
tasks. The final ranking in third experiment showed a further subjective prefer-
ence for the conditions with tree-shaped proofs over their textual counterparts,
but this did not seem to impact the objective performance measure nor the
subjective ratings the participants gave after each proof. These preferences were
largely driven by the group with higher ICAR16 performance (cf. Fig. 3).

Comparing Different Proof Representations 223

7.1 Limitations

A general shortcoming of our main hypothesis was perhaps that it was too
specific. If there are any effects of proof representation between user groups,
they were maybe too small to detect in our experiments. After the first study,
we recruited more participants through the online platform Prolific, but this also
came with a loss of quality in the responses that we could not completely control
with the attention checks. Since everyone was paid the same amount of money,
the goal of many participants was to complete the study as fast as possible.
Several participants even finished the larger studies (including both ICAR16
and proof tasks) with successful attention checks in under 15 min, which hints at
a loss of quality in the responses. A solution to this could be using open instead
of multiple-choice questions. However, such answers must be evaluated manually
by an expert according to a-priori fixed criteria.

Another limitation of the first study was also that it did not include an
objective measure of performance; participants were simply asked to describe
their process of understanding the proofs which was later rated by an expert.
We therefore included objective proof tasks in Study III, which however were
too hard for most of the participants. According to the aims of our study, we
did not pre-select participants according to their experience with logic or field
of studies. 55.5% of the participants had no experience with propositional logic
and 60.7% had never worked with it. For many participants, even the ones with
higher ICAR scores, the proof tasks were very challenging, resulting in a mean
score of M = 2.36 out of a total of 12. 15 people commented about the high
difficulty level in the end, and only 3 said the proofs were easy to understand.
This resulted in many data points being clustered on the lower end of the scale
and differences being more difficult to detect.

In general, a between-subjects design is better suited to show differences
between proof representations because there is no interference between the con-
ditions, but this requires even more participants. In the last study, we attempted
to do this and also adjusted the difficulty of the proofs. Unfortunately, this study
failed to exhibit even the strong connection between ICAR16 scores and proof
performance that had been shown by the previous two studies. Possible reasons
for this are that there were too few data points for the proof tasks (the maximal
score was 6 since we did not want to overload the participants) and that the
participants in general seemed to differ from previous studies. It seemed that
participants showed higher ICAR16 scores in the second (M = 0.55, SD = 0.24)
and third (M = 0.46, SD = 0.24) than in the fourth study (M = 0.36, SD = 0.20),
and the self-reported experience with logic followed a similar pattern. This could
be a reason why the ICAR16 scores did not predict the proof performance in
Study IV.

7.2 Future Work

Although several of the experiments indicate a subjective preference of tree
proofs over texts, we would like to study more formally whether this can also

224 C. Alrabbaa et al.

influence performance (independent of the membership to any particular user
group such as logic experts or people with high cognitive abilities). In that con-
text, it could also make a difference whether the individual statements in tree
proofs are shown as natural language sentences or using logical syntax (as in our
first study). Another question with a larger expected effect is whether showing
proofs actually makes a difference when compared to only showing justifications,
i.e. the premises/leafs of the tree proofs without intermediate inference steps.

Moreover, it would be promising to look at an ontology that is actively used
in practice and to study domain experts performing specific relevant explana-
tion tasks for this ontology. Ultimately, our studies are just a first step towards
developing a user-centered interactive explanation tool for DL ontologies. Such a
tool should also take into account individual differences, such as user preferences
or the user’s existing knowledge, e.g. in the form of a background ontology that
the user is assumed to understand intuitively without needing an explanation.

Acknowledgements. This work was supported by the DFG grant 389792660 as part
of TRR 248 – CPEC (https://perspicuous-computing.science), and QuantLA, GRK
1763 (https://lat.inf.tu-dresden.de/quantla).

References

1. Alharbi, E., Howse, J., Stapleton, G., Hamie, A., Touloumis, A.: The efficacy of
OWL and DL on user understanding of axioms and their entailments. In: ISWC
(2017). https://doi.org/10.1007/978-3-319-68288-4 2

2. Alrabbaa, C., Baader, F., Borgwardt, S., Dachselt, R., Koopmann, P., Méndez, J.:
Evonne: interactive proof visualization for description logics (system description).
In: IJCAR (2022). https://doi.org/10.1007/978-3-031-10769-6 16

3. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
small proofs for description logic entailments: theory and practice. In: LPAR-23
(2020). https://doi.org/10.29007/nhpp

4. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: On the
complexity of finding good proofs for description logic entailments. In: DL Work-
shop (2020). http://ceur-ws.org/Vol-2663/paper-1.pdf

5. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
good proofs for description logic entailments using recursive quality measures. In:
CADE (2021). https://doi.org/10.1007/978-3-030-79876-5 17

6. Alrabbaa, C., Baader, F., Dachselt, R., Flemisch, T., Koopmann, P.: Visualising
proofs and the modular structure of ontologies to support ontology repair. In: DL
Workshop (2020). http://ceur-ws.org/Vol-2663/paper-2.pdf

7. Alrabbaa, C., Borgwardt, S., Knieriemen, N., Kovtunova, A., Rothermel, A.M.,
Wiehr, F.: In the hand of the beholder: comparing interactive proof visualizations.
In: DL Workshop (2021). http://ceur-ws.org/Vol-2954/paper-2.pdf

8. Androutsopoulos, I., Lampouras, G., Galanis, D.: Generating natural language
descriptions from OWL ontologies: the NaturalOWL system. JAIR 48, 671–715
(2013). https://doi.org/10.1613/jair.4017

9. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI (2005).
http://ijcai.org/Proceedings/09/Papers/053.pdf

https://perspicuous-computing.science
https://lat.inf.tu-dresden.de/quantla
https://doi.org/10.1007/978-3-319-68288-4_2
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.29007/nhpp
http://ceur-ws.org/Vol-2663/paper-1.pdf
https://doi.org/10.1007/978-3-030-79876-5_17
http://ceur-ws.org/Vol-2663/paper-2.pdf
http://ceur-ws.org/Vol-2954/paper-2.pdf
https://doi.org/10.1613/jair.4017
http://ijcai.org/Proceedings/09/Papers/053.pdf

Comparing Different Proof Representations 225

10. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/
9781139025355

11. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: KI (2007). https://doi.org/10.1007/978-3-540-74565-5 7

12. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: KR-MED (2008). http://ceur-ws.org/Vol-
410/Paper01.pdf

13. Borgida, A., Franconi, E., Horrocks, I.: Explaining ALC subsumption. In: ECAI
(2000). http://www.frontiersinai.com/ecai/ecai2000/pdf/p0209.pdf

14. Borgwardt, S., Hirsch, A., Kovtunova, A., Wiehr, F.: In the eye of the beholder:
which proofs are best? In: DL Workshop (2020). http://ceur-ws.org/Vol-2663/
paper-6.pdf

15. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Lawrence Erl-
baum Associates (1988). https://doi.org/10.4324/9780203771587

16. Condon, D.M., Revelle, W.: The international cognitive ability resource: devel-
opment and initial validation of a public-domain measure. Intelligence 43, 52–64
(2014). https://doi.org/10.1016/j.intell.2014.01.004

17. Donadello, I., Dragoni, M., Eccher, C.: Explaining reasoning algorithms with per-
suasiveness: a case study for a behavioural change system. In: ACM Symposium
on Applied Computing (2020). https://doi.org/10.1145/3341105.3373910

18. Engström, F., Nizamani, A.R., Stranneg̊ard, C.: Generating comprehensible expla-
nations in description logic. In: DL Workshop (2014). http://ceur-ws.org/Vol-
1193/paper 17.pdf

19. Flemisch, T., Langner, R., Alrabbaa, C., Dachselt, R.: Towards designing a tool
for understanding proofs in ontologies through combined node-link diagrams. In:
VOILA Workshop (2020). http://ceur-ws.org/Vol-2778/paper3.pdf

20. Hayes, A.F.: Introduction to Mediation, Moderation, and Conditional Process
Analysis: A Regression-Based Approach. Guilford Publications, New York (2017).
https://doi.org/10.1111/jedm.12050

21. Horridge, M.: Justification based explanation in ontologies. Ph.D. thesis, University
of Manchester, UK (2011). https://www.research.manchester.ac.uk/portal/files/
54511395/FULL TEXT.PDF

22. Horridge, M., Bail, S., Parsia, B., Sattler, U.: Toward cognitive support for OWL
justifications. Knowl.-Based Syst. 53, 66–79 (2013). https://doi.org/10.1016/j.
knosys.2013.08.021

23. Horridge, M., Parsia, B., Sattler, U.: Justification oriented proofs in OWL. In:
ISWC (2010). https://doi.org/10.1007/978-3-642-17746-0 23

24. IBM: SPSS Statistics. https://www.ibm.com/products/spss-statistics
25. Kalyanpur, A.: Debugging and repair of OWL ontologies. Ph.D. thesis, University

of Maryland, College Park, USA (2006). http://hdl.handle.net/1903/3820
26. Kazakov, Y., Klinov, P., Stupnikov, A.: Towards reusable explanation services in

Protege. In: DL Workshop (2017). http://www.ceur-ws.org/Vol-1879/paper31.pdf
27. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The incredible ELK. J. Autom. Reason.

53(1), 1–61 (2013). https://doi.org/10.1007/s10817-013-9296-3
28. Kontopoulos, E., Bassiliades, N., Antoniou, G.: Visualizing semantic web proofs of

defeasible logic in the DR-DEVICE system. Knowl. Based Syst. (2011). https://
doi.org/10.1016/j.knosys.2010.12.001

29. Kuhn, T.: The understandability of OWL statements in controlled English.
Semant. Web 4, 101–115 (2013). https://doi.org/10.3233/SW-2012-0063

https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1007/978-3-540-74565-5_7
http://ceur-ws.org/Vol-410/Paper01.pdf
http://ceur-ws.org/Vol-410/Paper01.pdf
http://www.frontiersinai.com/ecai/ecai2000/pdf/p0209.pdf
http://ceur-ws.org/Vol-2663/paper-6.pdf
http://ceur-ws.org/Vol-2663/paper-6.pdf
https://doi.org/10.4324/9780203771587
https://doi.org/10.1016/j.intell.2014.01.004
https://doi.org/10.1145/3341105.3373910
http://ceur-ws.org/Vol-1193/paper_17.pdf
http://ceur-ws.org/Vol-1193/paper_17.pdf
http://ceur-ws.org/Vol-2778/paper3.pdf
https://doi.org/10.1111/jedm.12050
https://www.research.manchester.ac.uk/portal/files/54511395/FULL_TEXT.PDF
https://www.research.manchester.ac.uk/portal/files/54511395/FULL_TEXT.PDF
https://doi.org/10.1016/j.knosys.2013.08.021
https://doi.org/10.1016/j.knosys.2013.08.021
https://doi.org/10.1007/978-3-642-17746-0_23
https://www.ibm.com/products/spss-statistics
http://hdl.handle.net/1903/3820
http://www.ceur-ws.org/Vol-1879/paper31.pdf
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1016/j.knosys.2010.12.001
https://doi.org/10.1016/j.knosys.2010.12.001
https://doi.org/10.3233/SW-2012-0063

226 C. Alrabbaa et al.

30. McGuinness, D.L.: Explaining reasoning in description logics. Ph.D. thesis, Rutgers
University, NJ, USA (1996). https://doi.org/10.7282/t3-q0c6-5305

31. Meehan, T.F., et al.: Logical development of the cell ontology. BMC Bioinform.
12, 1–12 (2011). https://doi.org/10.1186/1471-2105-12-6

32. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
AI 267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007

33. Nguyen, T.A.T., Power, R., Piwek, P., Williams, S.: Predicting the understand-
ability of OWL inferences. In: ESWC (2013). https://doi.org/10.1007/978-3-642-
38288-8 8

34. Schiller, M.R.G., Glimm, B.: Towards explicative inference for OWL. In: DL Work-
shop (2013). http://ceur-ws.org/Vol-1014/paper 36.pdf

35. Schiller, M.R.G., Schiller, F., Glimm, B.: Testing the adequacy of automated expla-
nations of EL subsumptions. In: DL Workshop (2017). http://ceur-ws.org/Vol-
1879/paper43.pdf

36. Schlobach, S.: Explaining subsumption by optimal interpolation. In: JELIA (2004).
https://doi.org/10.1007/978-3-540-30227-8 35

37. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI (2003). http://ijcai.org/Proceedings/03/
Papers/053.pdf

38. Schulz, S.: The role of foundational ontologies for preventing bad ontology design.
In: BOG Workshop (2018). http://ceur-ws.org/Vol-2205/paper22 bog1.pdf

39. Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond
Horn ontologies. In: IJCAI (2011). https://doi.org/10.5591/978-1-57735-516-8/
IJCAI11-187

https://doi.org/10.7282/t3-q0c6-5305
https://doi.org/10.1186/1471-2105-12-6
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1007/978-3-642-38288-8_8
https://doi.org/10.1007/978-3-642-38288-8_8
http://ceur-ws.org/Vol-1014/paper_36.pdf
http://ceur-ws.org/Vol-1879/paper43.pdf
http://ceur-ws.org/Vol-1879/paper43.pdf
https://doi.org/10.1007/978-3-540-30227-8_35
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://ceur-ws.org/Vol-2205/paper22_bog1.pdf
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-187
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-187

Error-Tolerant Reasoning
in the Description Logic EL
Based on Optimal Repairs

Franz Baader , Francesco Kriegel , and Adrian Nuradiansyah(B)

Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany
{franz.baader,francesco.kriegel,adrian.nuradiansyah}@tu-dresden.de

Abstract. Ontologies based on Description Logic (DL) represent gen-
eral background knowledge in a terminology (TBox) and the actual data
in an ABox. Both human-made and machine-learned data sets may con-
tain errors, which are usually detected when the DL reasoner returns
unintuitive or obviously incorrect answers to queries. To eliminate such
errors, classical repair approaches offer as repairs maximal subsets of
the ABox not having the unwanted answers w.r.t. the TBox. It is, how-
ever, not always clear which of these classical repairs to use as the new,
corrected data set. Error-tolerant semantics instead takes all repairs into
account: cautious reasoning returns the answers that follow from all clas-
sical repairs whereas brave reasoning returns the answers that follow from
some classical repair. It is inspired by inconsistency-tolerant reasoning
and has been investigated for the DL EL, but in a setting where the TBox
rather than the ABox is repaired. In a series of papers, we have devel-
oped a repair approach for ABoxes that improves on classical repairs in
that it preserves a maximal set of consequences (i.e., answers to queries)
rather than a maximal set of ABox assertions. The repairs obtained by
this approach are called optimal repairs. In the present paper, we inves-
tigate error-tolerant reasoning in the DL EL, but we repair the ABox
and use optimal repairs rather than classical repairs as the underlying
set of repairs. To be more precise, we consider a static EL TBox (which is
assumed to be correct), represent the data by a quantified ABox (where
some individuals may be anonymous), and use EL concepts as queries
(instance queries). We show that brave entailment of instance queries
can be decided in polynomial time. Cautious entailment can be decided
by a coNP procedure, but is still in P if the TBox is empty.

1 Introduction

Description Logics (DLs) [2] are a prominent family of logic-based knowledge rep-
resentation formalisms, which offer a good compromise between expressiveness

Partially supported by the AI competence center ScaDS.AI Dresden/Leipzig and the
German Research Foundation (DFG) in Project 430150274 and SFB/TRR 248.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 227–243, 2022.
https://doi.org/10.1007/978-3-031-21541-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_15&domain=pdf
http://orcid.org/0000-0002-4049-221X
http://orcid.org/0000-0003-0219-0330
http://orcid.org/0000-0002-9047-7624
https://doi.org/10.1007/978-3-031-21541-4_15

228 F. Baader et al.

and the complexity of reasoning and are the formal basis for the Web ontol-
ogy language OWL.1 Here we concentrate on the inexpressive and tractable DL
EL [1], which is frequently used to represent ontologies in biology and medicine,
such as the large medical ontology SNOMED CT.2

Like all large human-made digital artefacts, the ontologies employed in such
applications may contain errors, and this problem gets even worse if parts of
the ontology (usually the data) are automatically generated by inexact methods
based on information retrieval or machine learning. Errors are often detected
when reasoning finds an inconsistency or generates unintuitive consequences.
To correct such a mistake, classical repair approaches propose to use maximal
subsets of the ontology as repairs [9,17,19]. While these approaches preserve as
many of the original axioms as possible, they may not be optimal w.r.t. preserv-
ing consequences. In a series of papers [3,7,8], we have investigated how to char-
acterize and compute optimal repairs, which are defined to be ontologies entailed
by the erroneous ontology whose consequence sets are maximal among all such
ontologies. To illustrate the difference between classical and optimal repairs,
assume that the (quantified) ABox consists of the assertions owns(Ralf , x),
Red(x), and Bike(x), where x is an anonymous individual, but that the con-
sequence ∃owns.(Red � Bike)(Ralf) is assumed to be incorrect. There are three
classical repairs, obtained by respectively removing one of the assertions, but
only one optimal repair, which consists of the assertions owns(Ralf , y), Red(y),
owns(Ralf , z), and Bike(z). Clearly, this repair preserves more consequences (in
the sense of instance relationships for Ralf) than each of the classical repairs.

In general, a given repair problem may have exponentially many repairs,
both in the classical and the optimal sense, and it is often hard to decide which
one to use. Error-tolerant reasoning does not commit to a single repair, but
rather reasons w.r.t. all of them (within the classical or the optimal setting):
cautious reasoning returns the answers that follow from all repairs whereas brave
reasoning returns the answers that follow from some repair. For classical repairs
of TBoxes in EL, it was first investigated in [16,18], where it was shown that
brave entailment is NP-complete and cautious entailment is coNP-complete. For
more expressive DLs that can create inconsistencies, error-tolerant reasoning had
been considered before, for the case where the error is an inconsistency, under
the name of inconsistency-tolerant reasoning [10,11,15]. This latter work also
uses the classical notion of repair.

In the present paper, we investigate error-tolerant reasoning in the DL EL,
using optimal repairs of ABoxes as the underlying set of repairs. To be more
precise, we consider a static EL TBox (which is assumed to be correct, and
thus cannot be changed), represent the data by a quantified ABox, and consider
instance relationships between individuals and EL concepts as relevant conse-
quences. In [3] it is shown that, in this setting, each repair is entailed by an

1 https://www.w3.org/TR/owl2-overview/.
2 https://www.snomed.org/.

https://www.w3.org/TR/owl2-overview/
https://www.snomed.org/

Error-Tolerant Reasoning w.r.t. Optimal Repairs 229

optimal repair and that every optimal repair is equivalent to a so-called canoni-
cal repair, which is induced by a polynomially large repair seed function.3

For the case of brave reasoning, it is actually sufficient to know that every
repair is entailed by an optimal one. From this, we obtain that a set of concept
assertions is entailed by some optimal repair if, and only if, it is itself a repair. The
latter property can be tested by performing a polynomial number of polynomial-
time instance tests, which shows that brave reasoning is tractable.

Dealing with cautious reasoning is more complicated since we really need to
check what is entailed by all optimal repairs. The first problem is then that, while
seed functions are of polynomial size, the canonical repairs they induce may be
of exponential size. The solution to this problem is that we work directly with
the seed functions without computing the induced repairs. This is possible since
we can show that entailment from the canonical repair induced by a given seed
function can actually be decided in polynomial time in the size of the seed func-
tion, and not just in the size of the repair. The second problem is that, while the
set of canonical repairs contains (up to equivalence) all optimal repairs, there
may exist non-optimal canonical repairs. Thus, cautious reasoning cannot be
done w.r.t. all canonical repairs. Nevertheless, for cautious entailment w.r.t. the
empty TBox, we are able to provide a direct characterization, and can show that
this condition can be checked in polynomial time. For cautious reasoning w.r.t.
a non-empty TBox, we use the fact (shown in [6]) that the optimal repairs are
induced by seed functions that are minimal w.r.t. an appropriate pre-order on
such functions. Non-entailment can then be tested using a guess-and-check app-
roach that guesses a seed function, checks whether it is minimal, and then checks
non-entailment. To show that this yields an NP procedure for non-entailment, we
must prove that minimality of a seed function can be tested in polynomial time.
Overall, we obtain tractability of cautious reasoning w.r.t. the empty TBox, and
a coNP upper bound for cautious reasoning w.r.t. a non-empty TBox. Whether
this bound is tight remains an open problem.

2 Preliminaries

We start with recalling the DL EL as well as EL TBoxes and ABoxes, and then
introduce quantified ABoxes and the entailment relation used in this paper to
compare them. We assume that the reader is familiar with the basic notions of
description and first-order logic and base our presentation on the one in [5].

The Description Logic EL. Starting from a signature Σ, which is a disjoint
union of a set ΣI of individual names, a set ΣC of concept names, and a set ΣR of
role names, EL concept descriptions are built using the grammar C ::= � | A |
C � C | ∃r.C, where A ranges over ΣC and r over ΣR. An EL concept assertion
is of the form C(a) where C is an EL concept description and a ∈ ΣI, a role

3 Since we are only interested in instance relationships, the appropriate entailment
and equivalence relations between quantified ABoxes are IQ-entailment and IQ-
equivalence [3].

230 F. Baader et al.

assertion is of the form r(a, b) where r ∈ ΣR and a, b ∈ ΣI, and an EL concept
inclusion (CI) is of the form C � D for concept descriptions C,D. An EL ABox
A is a finite set of concept assertions and role assertions, and an EL TBox T
is a finite set of concept inclusions. Since EL is the only DL considered in this
paper, we will sometimes omit the prefix “EL,” and we will use “concept” as an
abbreviation for “concept description.”

The semantics of EL can be defined either directly in a model-theoretic way
of by a translation into first-order logic (FO) [2]. In the translation, the elements
of ΣI, ΣC, and ΣR are respectively viewed as constant symbols, unary predicate
symbols, and binary predicate symbols. EL concepts C are inductively translated
into FO formulas φC(x) with one free variable x:

– concept A for A ∈ ΣC is translated into A(x) and � into A(x) ∨ ¬A(x) for
an arbitrary A ∈ ΣC;

– if C,D are translated into φC(x) and φD(x), then C � D is translated into
φC(x) ∧ φD(x) and ∃r.C into ∃y.(r(x, y) ∧ φC(y)), where φC(y) is obtained
from φC(x) by replacing the free variable x by a different variable y.

CIs C � D are translated into sentences φC�D := ∀x.(φC(x) → φD(x)) and
TBoxes T into φT :=

∧
C�D∈T φC�D. Concept assertions C(a) are translated

into φC(a), role assertions r(a, b) stay the same, and ABoxes A are translated
into the conjunction φA of the translations of their assertions.

Let α, β be ABoxes, concept inclusions, or concept assertions (possibly not
both of the same kind), and T an EL TBox. Then we say that α entails β w.r.t.
T (written α |=T β) if the implication (φα ∧ φT) → φβ is valid according to the
semantics of FO. Furthermore, α and β are equivalent w.r.t. T (written α ≡T β),
if α |=T β and β |=T α. In case T = ∅, we will sometimes write |= instead of
|=∅. If ∅ |=T C � D, then we also write C �T D and say that C is subsumed
by D w.r.t. T ; in case T = ∅ we simply say that C is subsumed by D. The
subsumption problem in EL is known to be decidable in polynomial time [1],
and the same is true for all the entailment problems introduced above.

Quantified ABoxes. A quantified ABox (qABox) ∃X.A consists of a set X
of variables, which is disjoint with Σ, and a matrix A, which is a finite set of
concept assertions A(u) and role assertions r(u, v), where A ∈ ΣC, r ∈ ΣR and
u, v ∈ ΣI ∪ X. The matrix is an ABox built over the extended signature Σ ∪ X,
but cannot contain complex concept descriptions. An object of ∃X.A is either
an individual name in ΣI or a variable in X.

Like EL ABoxes, quantified ABox ∃X.A can be translated into FO sentences,
but where the elements of X are viewed as first-order variables rather than con-
stants and are existentially quantified. Thus, entailment between two qABoxes
(written ∃X.A |=T ∃Y.B) and between a qABox and a concept assertion (writ-
ten ∃X.A |=T C(a)) w.r.t. a TBox T can again be defined using the semantics
of first-order logic.4 If ∃X.A |=T C(a), then a is called an instance of C w.r.t.
∃X.A and T .
4 See [3,8] for more information on qABoxes.

Error-Tolerant Reasoning w.r.t. Optimal Repairs 231

Syntactically, not every EL ABox is a qABox, since EL ABoxes may con-
tain concept assertions C(a) for complex concepts C. However, every EL ABox
can be translated into an equivalent qABox, by writing the FO translation of
complex concepts C as a qABox. For example, if C = ∃r.(A � B), then the EL
ABox {C(a)} is equivalent to the qABox ∃{x}.{r(a, x), A(x), B(x)}. Conversely,
not every qABox can be expressed by an EL ABox since qABoxes may contain
cyclic role relations between variables. For example, if T is empty, then the
qABox ∃{x}.{r(a, x), r(x, x)} is not equivalent to an EL ABox [5]. One might
be tempted to think that one can just forget about the existential quantifier and
use an individual b instead of the variable x. However, the ABox {r(a, b), r(b, b)}
is not equivalent to the above qABox since it entails non-trivial instance rela-
tionships for b, whereas ∃{x}.{r(a, x), r(x, x)} does not. Also note that, while
entailment between EL ABoxes and entailment of a concept assertion by a qABox
can be decided in polynomial time, the entailment problem between qABoxes is
NP-complete [3,8].

However, since in this paper we are only interested in the instance relation-
ships that a given qABox entails, we can restrict our attention to IQ-entailment
between qABoxes: the qABox ∃X.A IQ -entails the qABox ∃Y.B w.r.t. T (writ-
ten ∃X.A |=T

IQ ∃Y.B) if ∃Y.B |=T C(a) implies ∃X.A |=T C(a) for each EL
concept assertion C(a). In contrast to the FO entailment introduced above,
IQ-entailment between qABoxes can be decided in polynomial time. This is a
consequence of the following result from [3]: given a qABox ∃X.A and an EL
TBox T , one can compute in polynomial time an IQ-saturation satTIQ(∃X.A)
such that the following statements are equivalent:

– ∃X.A |=T
IQ ∃Y.B

– satTIQ(∃X.A) |=IQ ∃Y.B
– There is a simulation from ∃Y.B to satTIQ(∃X.A).

The notion of simulation employed here is the usual one for labeled graphs,
whose existence can be decided in polynomial time (see [3] for details).

3 Optimal and Canonical Repairs

We first introduce the notion of an optimal repair w.r.t. IQ-entailment and recall
the approach for obtaining canonical IQ-repairs based on repair seed functions
described in [3]. Then, we show that reasoning w.r.t. canonical repairs can be
performed by considering the seed function rather than the induced canonical
repair. Since the optimal repairs are exactly the canonical ones induced by mini-
mal seed functions [3], we also investigate how minimality of a seed function can
be decided. The reason for employing IQ-entailment is that we are only inter-
ested in the instance relationships entailed by a given qABox and TBox. We use
repair requests to indicate which consequences are considered to be erroneous,
and thus need to be removed. Formally, a repair request R is a finite set of
concept assertions.

232 F. Baader et al.

Definition 1. Let T be an EL TBox, ∃X.A a qABox, and R a repair request.

– The qABox ∃Y.B is an IQ -repair of ∃X.A for R w.r.t. T if ∃X.A |=T
IQ ∃Y.B

and ∃Y.B �|=T C(a) for each C(a) ∈ R.
– Such a repair ∃Y.B is optimal if there is no IQ-repair ∃Z.C such that

∃Z.C |=T
IQ ∃Y.B, but ∃Y.B �|=T

IQ ∃Z.C.

Not every repair request has a repair, but the ones that have can easily be iden-
tified. We call a repair request R solvable w.r.t. a TBox T if, for each quantified
ABox ∃X.A, there exists a repair of ∃X.A for R w.r.t. T . As mentioned in [3],
this is the case iff � ��T C for each C(a) ∈ R.

In general, a given repair instance T , ∃X.A, R may have exponentially many
non-equivalent optimal repairs. Repair seed functions can be used to define (a
superset of) these repairs, by specifying, for each individual a in A, which atoms
should not hold for a in the repair. To take the TBox into account, one first
constructs the IQ-saturation ∃Y.B := satTIQ(∃X.A). We denote the set of all
subconcepts of concepts occurring in R or T with Sub(R, T). An atom is either
a concept name or an existential restriction, and we denote the set of atoms in
Sub(R, T) with Atoms(R, T).

Definition 2. Let T be an EL TBox, ∃X.A a qABox, R a repair request, and
∃Y.B the IQ-saturation of ∃X.A w.r.t. T . A repair type for an object u of ∃Y.B
is a subset K of Atoms(R, T) that satisfies the following three conditions:

1. K ��∅ K ′ for all distinct atoms K,K ′ ∈ K.
2. B |= K(u) for every atom K ∈ K.
3. K is premise-saturated, i.e., if K ∈ K and C ∈ Sub(R, T) are such that

B |= C(u) and C �T K, then there is K ′ ∈ K with C �∅ K ′.5

A repair seed function (rsf) s assigns to each individual name a ∈ ΣI a repair
type s(a) such that, for each unwanted consequence C(a) ∈ R with B |= C(a),
there is an atom K ∈ s(a) with C �∅ K.

As shown in [3], each rsf s induces a canonical IQ-repair, denoted as
repT

IQ(∃X.A, s), and the set of canonical IQ-repairs covers all IQ-repairs in the
sense that every repair is IQ-entailed by a canonical one. In particular, this
implies that, up to IQ-equivalence, the set of canonical IQ-repairs contains all
optimal IQ-repairs, and the set of optimal IQ-repairs also covers all IQ-repairs.

For the purposes of this paper, the exact definition of repT
IQ(∃X.A, s) is not

relevant since we intend to work directly with the (polynomial-sized) rsf s rather
than the (exponentially large) induced canonical repair. An important result that
helps us to do this is the following lemma, which is an extension of Lemma XII
in [4], whose proof is similar to the proof of Lemma VI in [14].

Lemma 3. Let s be a repair seed function, b an individual in A, and C an EL
concept. Then repT

IQ(∃X.A, s) |=T C(b) iff ∃X.A |=T C(b) and s(b) does not
contain an atom that subsumes C w.r.t. T .
5 A repair pre-type need only satisfy the first two conditions. If the TBox is empty,

then this third condition is trivially true since one can take K′ = K.

Error-Tolerant Reasoning w.r.t. Optimal Repairs 233

Since the right-hand side of this equivalence can obviously be checked in polyno-
mial time (since ∃X.A |=T C(b) iff A |=T C(b)) and s(b) is of polynomial size,
we obtain the following complexity result.

Proposition 4. Given a qABox ∃X.A, an EL TBox T , a repair request R,
a repair seed function s, and an EL concept assertion C(b), we can decide in
polynomial time (in the size of ∃X.A, T , and R) whether C(b) is entailed w.r.t.
T by the canonical IQ-repair induced by s.

The set of canonical repairs may contain non-optimal repairs. A simple
example is given by the empty TBox, the qABox ∃∅.{A(a), B(a)}, and the
repair request R = {(A � B)(a)}. There are three seed functions s1, s2, s3 with
s1(a) = {A}, s2(a) = {B}, s3(a) = {A,B}, which respectively induce the canon-
ical repairs ∃∅.{B(a)}, ∃∅.{A(a)}, and ∃∅.∅. Whereas the first two are optimal
repairs, the latter one is not optimal; in fact, it is strictly entailed by each of
the former ones. Obviously, the reason for this is that s3(a) is contained both in
s1(a) and in s2(a).

More generally, we can reflect entailment between canonical repairs by the
following covering relation between seed functions. Given sets K and L of concept
descriptions, we say that K is covered by L (written K ≤ L) if, for each K ∈ K,
there is L ∈ L such that K �∅ L. Applying the covering relation argumentwise
yields the following pre-order on seed functions: s ≤ t if s(a) ≤ t(a) for each
a ∈ ΣI. The following result, which is an easy consequence of Lemma 3, was
already mentioned in [6].

Lemma 5. s ≤ t iff repT
IQ(∃X.A, s) |=T

IQ repT
IQ(∃X.A, t).

Given any pre-order ≤, we write α < β if α ≤ β and β �≤ α, and say that α is
≤-minimal (≤-maximal) if there is no β such that β < α (α < β). For repair
seed functions s, t we have s < t iff s(a) ≤ t(a) for all a ∈ ΣI and there is b ∈ ΣI

with s(b) < t(b). As an immediate consequence of Lemma 5, we obtain that the
optimal repairs are induced by the minimal seed functions.

Proposition 6. If s is a ≤-minimal rsf, then repT
IQ(∃X.A, s) is an optimal

IQ-repair, and every optimal IQ-repair is IQ-equivalent to a canonical repair
repT

IQ(∃X.A, s) for a ≤-minimal rsf s.

In the rest of this section we show that ≤-minimality of seed functions can be
decided in polynomial time. More precisely, we characterise non-minimality by
showing how, for a given repair type, we can decide whether there exists a repair
type that is strictly covered by it. As before, we denote by ∃Y.B the saturation
satTIQ(∃X.A). We start by showing how, for a given repair type K, a non-empty
set M of atoms covered by it can be employed to construct a repair pre-type
that is strictly covered by K.

234 F. Baader et al.

Definition 7. Let K be a repair type for u and M be a non-empty subset of
Atoms(R, T) such that M ≤ K. We define the lowering of K w.r.t. M by

low(K,M) := Max�∅

⎧
⎪⎨

⎪⎩
E

∣
∣
∣
∣
∣
∣
∣

E ∈ Atoms(R, T), B |= E(u),

E �∅ K for some K ∈ K,

M ��∅ E for each M ∈ M

⎫
⎪⎬

⎪⎭
.

Due to the Max�∅ operator, which selects a representative for each equivalence
class of �∅-maximal elements, and the condition that each atom E in low(K,M)
must satisfy B |= E(u), we know that low(K,M) is a repair pre-type for u. Next,
we show that K strictly covers low(K,M).

Lemma 8. low(K,M) < K

Proof. By definition, each atom in low(K,M) is subsumed by some atom in K,
which means that low(K,M) ≤ K.

To show that K �≤ low(K,M), we consider an element M ∈ M, which exists
since we have assumed M �= ∅. Since M ≤ K, there is an atom K in K such
that M �∅ K. We show that K is not subsumed by any atom in low(K,M).

Assume to the contrary that K �∅ E for some atom E ∈ low(K,M). Then
E �∅ K ′ for some K ′ ∈ K, and thus K �∅ K ′. Since the repair type K cannot
contain distinct �∅-comparable atoms, K and K ′ must be equal. We infer from
K �∅ E �∅ K ′ that E and K are equivalent, and thus M �∅ K yield M �∅ E.
This contradicts our assumption that E ∈ low(K,M) ��

The lowering of K w.r.t. M need not be a repair type, but we can construct,
for each atom D ∈ K, a set MD such that low(K,MD) is a repair type.

Definition 9. Let K be a repair type for u and D ∈ K. We inductively define
the following sets:

M0
D := {D}

Mi+1
D := Mi

D ∪
{

F

∣
∣
∣
∣
∣

F ∈ low(K,Mi
D) and there is C ∈ Sub(R, T)

such that B |= C(u), C �T F, {C} �≤ low(K,Mi
D)

}

We further set MD := Mj
D where j is the minimal index such that Mj+1

D = Mj
D.

Since we can show by induction that Mi
D is non-empty and covered by K for all

i ≥ 0, K and Mi
D satisfy the conditions of Definition 7 on the arguments of low

in the definition of Mi+1
D .

Lemma 10. low(K,MD) is a repair type for u.

Error-Tolerant Reasoning w.r.t. Optimal Repairs 235

Proof. We have already seen that low(K,MD) is a repair pre-type. It remains to
prove that it is premise-saturated. Thus, let F ∈ low(K,MD) and C ∈ Sub(R, T)
be such that B |= C(u) and C �T F , and assume that C is not subsumed by
any atom in low(K,MD) = low(K,Mj

D). Then F ∈ Mj+1
D = MD, which yields

a contradiction since F ∈ low(K,MD) requires that F does not subsume any
atom in MD. ��

Next, we characterize the repair types that are strictly covered by a given
repair type K.

Lemma 11. Let K and L be repair types for u. Then, L < K iff there is some
D ∈ K such that L ≤ low(K,MD).

Proof. The if direction follows directly from Lemma 8. To show the only-if direc-
tion, assume that L < K, i.e., L ≤ K and K �≤ L. The latter yields an atom
D ∈ K that is not subsumed by any atom in L. We show by induction that
L ≤ low(K,Mi

D) for all i ≥ 0.
In the base case (i = 0), we have M0

D = {D}. Consider an atom L ∈ L.
Since L is a repair type for u, it holds that B |= L(u). Since L ≤ K, there is an
atom K ∈ K such that L �∅ K. We distinguish two cases:

– Assume that K = D. Since D is not subsumed by an atom in L, it holds that
D ��∅ L.

– Now let K �= D. Since K is a repair type, it does not contain �∅-comparable
atoms, which specifically implies that D ��∅ K. Thus D ��∅ L must hold as
otherwise D would be subsumed by K.

In both cases we conclude that low(K,M0
D) contains either L itself or (if L is not

maximal) an atom subsuming L, i.e., L is subsumed by an atom in low(K,M0
D).

We proceed with the induction step (i → i + 1). Therefore let L be an atom
in L. Since L is a repair type for u, we have B |= L(u). Due to L ≤ K it further
follows that L is subsumed by some atom K in K. We show that M ��∅ L for
each M ∈ Mi+1

D . It then follows that low(K,Mi+1
D) contains either L itself or

an atom subsuming L, and thus L is subsumed by an atom in low(K,Mi+1
D).

Assume to the contrary that there is an atom M in Mi+1
D such that M �∅ L.

It cannot be the case that M ∈ Mi
D since this would lead to a contradiction

with the induction hypothesis L ≤ low(K,Mi
D). Thus, consider the case where

M ∈ Mi+1
D \ Mi

D. According to Definition 9 it follows that M ∈ low(K,Mi
D)

and there is a subconcept C ∈ Sub(R, T) with B |= C(u), C �T M , and {C} �≤
low(K,Mi

D). From C �T M and M �∅ L it follows that C �T L. Since L is a
repair type for u, we infer that {C} ≤ L. Together with the induction hypothesis
L ≤ low(K,Mi

D), this yields {C} ≤ low(K,Mi
D), which is a contradiction.

Finally, recall that MD is defined as Mj
D where j is the smallest index for

which Mj+1
D equals Mj

D. We thus obtain that L ≤ low(K,MD). ��

Using this lemma, we can now characterize non-minimality of an rsf.

236 F. Baader et al.

Lemma 12. A repair seed function on ∃X.A for R w.r.t. T is not ≤-minimal
iff there exist an individual a and an atom D ∈ s(a) such that {P} ≤
low(s(a),MD) holds for each P (a) ∈ R with ∃X.A |=T P (a).

Proof. If s is not ≤-minimal, then there is an rsf s′ such that s′ < s, i.e., there
is a ∈ ΣI such that s′(a) < s(a). Since s′ is an rsf, we have {P} ≤ s′(a) for all
P (a) ∈ R with ∃X.A |=T P (a). By Lemma 11, s′(a) < s(a) implies that there
is D ∈ s(a) such that s′(a) ≤ low(s(a),MD). By transitivity, for each P (a) ∈ R
with ∃X.A |=T P (a), we have {P} ≤ low(s(a),MD).

To show the “if” direction, we construct a function s′ : ΣI → ℘(Atoms(R, T))
such that s′(b) := s(b) for each b ∈ ΣI \ {a} and s′(a) := low(s(a),MD). By
Lemma 10, s′(a) is a repair type for a. Since for each P (a) ∈ R with ∃X.A |=T

P (a), we have {P} ≤ low(s(a),MD), we infer that s′ is an rsf on ∃X.A for R
w.r.t. T . Since s′(b) = s(b) for each b ∈ ΣI \ {a} and s′(a) < s(a), by Lemma 8,
we infer that s is not ≤-minimal. ��

Since there are linearly many atoms D in s(a) and computing MD and
low(s(a),MD) can be done in polynomial time, we obtain the following com-
plexity result.

Proposition 13. ≤-minimality of repair seed functions is in P.

Let us illustrate the decision procedure for non-minimality suggested by
Lemma 12 by a small example.

Example 14. Consider the TBox T := {∃r.A1 � ∃r.A2}, the quantified ABox
∃X.A := ∃{x}.{r(a, x), A1(x), A2(x), B1(x), B2(x)}, and the repair request
R := {∃r.(A1 � B1)(a),∃r.(A2 � B2)(a)}. If we define a function s : ΣI →
℘(Atoms(R, T)) such that s(a) = {∃r.A1,∃r.A2}, then s(a) is a repair type for
a and s is a repair seed function on ∃X.A for R w.r.t. T .

We use Lemma 12 to show that s is not ≤-minimal. For this purpose, we
consider the atom ∃r.A1 in s(a), and construct the set M0

∃r.A1
:= {∃r.A1}.

By Definition 7, we have low(s(a),M0
∃r.A1

) = {∃r.(A1 � B1),∃r.A2}. However,
this lowering set is not yet premise-saturated w.r.t. T since ∃r.A2 is subsumed
w.r.t. T by the subconcept ∃r.A1, which is not subsumed w.r.t. ∅ by any atom
from low(s(a),M0

∃r.A1
). By Definition 9, we thus add ∃r.A2 to M0

∃r.A1
, which

yields the set M1
∃r.A1

:= {∃r.A1,∃r.A2}. The corresponding lowering set is
low(s(a),M1

∃r.A1
) = {∃r.(A1 � B1),∃r.(A2 � B2)}. It is easy to see that this

set is a repair repair type for a, which is strictly covered by s(a). By look-
ing at the repair request R, we see that, for each concept assertion in R, the
respective concept is subsumed by some atom in low(s(a),M1

∃r.A1
). Thus, the

condition on the right-hand side of the equivalence in Lemma 12 is satisfied for
low(s(a),M1

∃r.A1
).

If we define t(a) := low(s(a),M1
∃r.A1

), then t is an rsf such that t < s. By
Lemma 5, repT

IQ(∃X.A, t) strictly IQ-entails repT
IQ(∃X.A, s). For example, the

former repair entails (∃r.A1)(a) whereas the latter does not. This can be seen
using Lemma 3.

Error-Tolerant Reasoning w.r.t. Optimal Repairs 237

4 Error-Tolerant Reasoning w.r.t. Optimal Repairs

In error-tolerant reasoning, one does not commit to a single (classical or opti-
mal) repair, but rather reasons w.r.t. all repairs. Brave entailment produces
the consequences that are entailed by some repair whereas cautious entailment
only produces consequences that are entailed by every repair. In the literature
on inconsistency-tolerant and error-tolerant reasoning in the classical setting
[10,11,15,16,18], IAR entailment (for “intersections of all repairs”) is also con-
sidered, but in our setting of optimal repairs, where repairs are not necessarily
subsets of the original ontology, it is not clear how to define this notion in an
appropriate way.

If there is no repair, then everything is cautiously entailed and nothing is
bravely entailed. We prevent this anomalous case by requiring that the repair
request is solvable w.r.t. the given TBox.

Definition 15. Let ∃X.A be a qABox, T an EL TBox, R a repair request that
is solvable w.r.t. T , and Q a finite set of EL concept assertions. Then Q is
bravely entailed by ∃X.A w.r.t. T and R iff there is an optimal IQ-repair ∃Z.C
of ∃X.A for R w.r.t. T such that ∃Z.C |=T C(a) for each C(a) ∈ Q. It is
cautiously entailed by ∃X.A w.r.t. T and R iff every optimal IQ-repair ∃Z.C of
∃X.A for R w.r.t. T satisfies ∃Z.C |=T C(a) for each C(a) ∈ Q.

In the following, we first show that brave entailment can be decided in poly-
nomial time. For cautious entailment w.r.t. a TBox, the results proved in the
previous section provide us with a coNP upper bound. Without a TBox, the
complexity of cautious entailment drops to P.

4.1 Brave Entailment

The following lemma shows that brave entailment can be reduced to the instance
problem in EL.

Lemma 16. The set of EL concept assertions Q is bravely entailed by ∃X.A
for R w.r.t. T iff ∃X.A |=T Q and no assertion in P is entailed by Q w.r.t. T .

Proof. If Q is bravely entailed, then there is an optimal IQ-repair ∃Z.C of ∃X.A
for P w.r.t. T such that ∃Z.C |=T Q. Transitivity of entailment yields ∃X.A |=T

Q. In addition, since ∃Z.C is a repair for P, no assertion in P is entailed by ∃Z.C
w.r.t. T , and thus none can be entailed by Q w.r.t. T .

Assume that ∃X.A |=T Q, and no assertion in P is entailed by Q w.r.t. T .
The set Q is an EL ABox, and thus there is a qABox ∃Y.B that is equivalent to
Q. Our assumptions on Q imply that ∃Y.B is an IQ-repair of ∃X.A for R w.r.t.
T . Since every repair is entailed by an optimal repair [3], there is an optimal
IQ-repair ∃Z.C of ∃X.A for P w.r.t. T such that ∃Z.C |=T ∃Y.B, and thus
∃Z.C |=T Q. ��

Since the instance problem in EL can be decided in polynomial time, this
yields the following complexity result.

238 F. Baader et al.

Theorem 17. Brave entailment w.r.t. optimal IQ-repairs is in P.

This approach for testing brave entailment can also be used to support com-
puting a specific repair. In general, there may be exponentially many optimal
repairs, but this set can be narrowed down by specifying not only consequences
R to be removed, but also consequences Q that one wants to retain. Brave entail-
ment can be used to check in polynomial time whether such a repair exists: in
fact, Lemma 16 tells us that Q is bravely entailed by ∃X.A for R w.r.t. T iff
the translation of Q into a qABox ∃Y.B is an IQ-repair of ∃X.A for R w.r.t. T .
In general, this repair will not be optimal. However, the next proposition shows
that an rsf that induces an optimal repair entailing ∃Y.B (and thus also Q) can
be computed in polynomial time.

Proposition 18. Let ∃Y.B be an IQ-repair of ∃X.A for R w.r.t. T . Then we
can compute in polynomial time a ≤-minimal rsf t such that repT

IQ(∃X.A, t) |=T
IQ

∃Y.B. Since t is ≤-minimal, repT
IQ(∃X.A, t) is optimal.

Proof. We know that every repair is entailed by a canonical repair. The proof
of this fact (see proof of Proposition 8 in [4]) actually shows how to compute
in polynomial time an rsf that induces this canonical repair. Thus, in the set-
ting of our proposition, we can compute in polynomial time an rsf s such that
repT

IQ(∃X.A, s) |=T
IQ ∃Y.B. If s is ≤-minimal, then we are done. Otherwise, the

proof of Lemma 12 tells us how to find an rsf s′ such that s′ < s. The rsf s′ differs
from s in the image for one individual a, where s′(a) = low(s(a),MD) < s(a)
for an atom D ∈ s(a). If s′ is ≤-minimal, then we are done. Otherwise, we can
compute an rsf s′′ such that s′′ < s′, etc. Since the next lemma implies that the
length of such a chain s > s′ > s′′ > . . . is polynomially bounded by the number
of individual names in ∃X.A and the cardinality of Atoms(R, T), we reach a
≤-minimal rsf t with t < s after a polynomial number of steps. By Lemma 5,
repT

IQ(∃X.A, t) |=T
IQ repT

IQ(∃X.A, s), and thus repT
IQ(∃X.A, t) |=T

IQ ∃Y.B. ��

Lemma 19. Let S be a set of EL concepts of cardinality m and K0,K1, . . . ,Kn

be subsets of S such that K0 > K1 > . . . > Kn. Then n ≤ m.

Proof. For subsets K of S, we define

↓ K := {C | C ∈ S and C �∅ K for some K ∈ K }.

It is easy to see that K ≤ L iff ↓ K ⊆ ↓ L holds for all subsets K,L of S. Thus
K0 > K1 > . . . > Kn implies ↓ K0 ⊃ ↓ K1 ⊃ . . . ⊃ ↓ Kn. Since the cardinality of
↓ K0 is bounded by the cardinality m of S, this shows that n ≤ m. ��

Since, for solvable repair requests, the empty qABox ∃∅.∅ is a repair, Propo-
sition 18 also yields the following result.

Corollary 20. Let T be an EL TBox, ∃X.A a qABox, and R a repair request
that is solvable w.r.t. T . Then we can compute in polynomial time a ≤-minimal
rsf t, which thus induces an optimal IQ-repair of ∃X.A for R w.r.t. T .

Error-Tolerant Reasoning w.r.t. Optimal Repairs 239

4.2 Cautious Entailment

Using the polynomiality results of Sect. 3, we can prove that cautious entailment
is in coNP. For this, we show that non-entailment is in NP. To check whether
Q is not cautiously entailed by ∃X.A w.r.t. T and R, we guess a function
s : ΣI → ℘(Atoms(R, T)) and check whether (i) s is a repair seed function; (ii) s
is ≤-minimal; and (iii) there is Q(a) ∈ Q such that repT

IQ(∃X.A, s) �|=T Q(a).
Note that (i) can be decided in polynomial time by the definition of repair seed
functions, (ii) by Proposition 13, and (iii) Proposition 4.

Theorem 21. Cautious entailment w.r.t. optimal IQ-repairs is in coNP.

Whether this upper bound is tight is still an open problem. If the TBox is
empty, then we can show a polynomiality result.

The Case with an Empty TBox. We show the polynomial upper bound again
for non-entailment, i.e., we try to find out whether there is an optimal repair that
does not entail Q. First note that, if Q is not entailed by ∃X.A, then it cannot
be entailed by an optimal repair. Thus, it is sufficient to concentrate on the case
where ∃X.A entails Q. For this case, the next lemma gives a characterization of
non-entailment. While this characterization may look complicated, it is actually
easy to see that its conditions can be checked in polynomial time. Intuitively,
the reason why the case of the empty TBox is easier to handle is that then
premise-saturatedness of repair types (see Definition 2) is trivially satisfied. More
technically, this means that, in the characterization of non-minimality of a repair
seed function in Lemma 12, the set MD is equal to {D}, i.e., the iteration in
Definition 9 terminates for j = 0. This gives us more control over how the sets
low(s(a),MD) in Lemma 12 actually look like.

Lemma 22. Let Q be a finite set of EL concept assertions such that ∃X.A |= Q.
Then Q is not cautiously entailed by ∃X.A w.r.t. R iff there exist C(a) ∈ Q,
D ∈ Atoms(R), and P (a) ∈ R with A |= P (a) such that the following conditions
are satisfied:

1. P �∅ D and C �∅ D,
2. for each D′ ∈ Atoms(R) with D′ �∅ D and A |= D′(a), we have P ��∅ D′,
3. for each P ′(a) ∈ R \ {P (a)} with A |= P ′(a) and P ′ ��∅ D, there is E ∈

Atoms(R) such that P ′ �∅ E and P ��∅ E.

Proof. For the “only if” direction, if Q is not cautiously entailed by ∃X.A w.r.t.
R, then there exist C(a) ∈ Q and a ≤-minimal rsf s on ∃X.A for R such that
repIQ(∃X.A, s) �|= C(a). By Lemma 3, the latter implies that there is D ∈ s(a)
such that C �∅ D.

Next, we show that there is P (a) ∈ R such that P �∅ D and A |= P (a).
Since s is ≤-minimal (for the case of an empty TBox), Lemma 12 implies that,
for each a ∈ ΣI and each E ∈ s(a), there is PE(a) ∈ R with A |= PE(a)
such that {PE} �≤ low(s(a), {E}). However, {PE} ≤ s(a) by the definition of

240 F. Baader et al.

repair seed functions. By Definition 7, the only atom from s(a) that does not
occur in low(s(a), {E}) is E, which implies that PE �∅ E. Consequently, there
is P (a) ∈ R with A |= P (a) such that P �∅ D, which shows that Condition 1
of this lemma is satisfied by C, D, and P .

The construction of low(s(a), {D}) removes D and replace it with those atoms
D′ ∈ Atoms(R) that are strictly subsumed by D such that A |= D′(a). However,
{P} �≤ low(s(a), {D}) implies that, for each D′ ∈ Atoms(R) with D′ �∅ D and
A |= D′(a), we have P ��∅ D′, i.e., Condition 2 is satisfied.

To show that Condition 3 is satisfied, we consider P ′(a) ∈ R \ {P (a)} with
A |= P ′(a) and P ′ ��∅ D. By the definition of an rsf, there must be E ∈ s(a)\{D}
such that P ′ �∅ E. The fact that {P} �≤ low(s(a), {D}) implies that P ��∅ E,
which shows that Condition 3 of this lemma is indeed satisfied.

For the “if” direction, we assume that there exist P (a) ∈ R with A |= P (a)
and D ∈ Atoms(R) such that all the three conditions of this lemma are satisfied.
We construct the set
K := {D} ∪ Max�∅({E ∈ Atoms(R) | there is P ′(a) ∈ (R \ {P (a)}),A |= P ′(a),

P ′ ��∅ D,P ′ �∅ E,P ��∅ E}),

and show that it is a repair type. Since the TBox is empty, it suffices to consider
only the first two properties of the definition of repair types (see Definition 2).
The second property is immediately satisfied by the construction of K. To show
the first property, it is sufficient to prove that, for each E ∈ K \ {D}, the atoms
D and E are not �∅-comparable. In fact, if D �∅ E, then P �∅ E, which
contradicts our assumption that E ∈ K \ {D}. If E �∅ D, then P ′ �∅ D is a
contradiction for some P ′(a) ∈ R \ {P (a)}, where P ′ �∅ E.

Using this set K, we now define a function s : ΣI → ℘(Atoms(R)) such that
s(a) := K and s(b) := Mb for each individual b ∈ ΣI \ {a}, where Mb is a repair
type for b and for each R(b) ∈ R with A |= R(b), there is F ∈ Mb such that
R �∅ F . Such a repair type Mb exists for each b ∈ ΣI \ {a} since R is solvable
(see Proposition X in [4]).

We show that s is a repair seed function on ∃X.A for R. For individuals
b ∈ ΣI \ {a}, the condition on seed functions is satisfied, due to the way the sets
Mb were chosen, i.e., such that R(b) ∈ R with A |= R(b) implies that there is an
atom in s(b) that subsumes R. We show that the corresponding condition also
holds for s(a). For P (a), this is clear since is D ∈ s(a) and P �∅ D. Furthermore,
for each P ′(a) ∈ R \ {P (a)}, we distinguish two cases. If P ′ �∅ D, then we are
done. Otherwise, by Condition 3, P ′ ��∅ D implies that there is E ∈ Atoms(R)
such that P ′ �∅ E and P ′ ��∅ E. By the construction of K, such an atom E
occurs in s(a) = K. This finally shows that s is an rsf on ∃X.A for R.

Next, we show that, for each ≤-minimal rsf s′ covered by s, the canonical
repair induced by s′ still does not entail C(a). By Lemma 3, it is sufficient to
show that s′(a) contains an atom D′ such that D �∅ D′. In fact, then C �∅ D
yields C �∅ D′ for D′ ∈ s′(a), and thus C(a) is not entailed by the canonical
repair induced by s′, which is optimal since s′ is minimal.

By contradiction, assume that there is a ≤-minimal rsf s′ such that s′ ≤ s
and D ��∅ D′ holds for all D′ ∈ s′(a). Thus, for each D′ ∈ s′(a), we have either

Error-Tolerant Reasoning w.r.t. Optimal Repairs 241

D′ �∅ D or D′ ��∅ D. Consider again the concept P . Since s′ is an rsf, there
is D′ ∈ s′(a) such that P �∅ D′. Suppose that D′ �∅ D. However, this is a
contradiction since Condition 2 of this lemma states that P is not subsumed by
any concept that is strictly subsumed by D. Otherwise, D′ ��∅ D. Since s′ ≤ s, we
have D′ �∅ E, where E ∈ s(a) \ {D}. By the definition of K, P is not subsumed
by E. However, P �∅ D′ and D′ �∅ E, which yields a contradiction. ��

This lemma reduces the non-entailment test to polynomially many subsump-
tion and instance tests, each of which can be performed in polynomial time.

Theorem 23. For an empty TBox, cautious entailment w.r.t. optimal IQ-
repairs is in P.

5 Conclusion

Inconsistency-tolerant and error-tolerant reasoning have been introduced in the
DL literature [10,11,15,16,18] as a way to reason w.r.t. an inconsistent or erro-
neous ontology without having to commit to a specific repair. The usual entail-
ment relations employed for this purpose are brave entailment (consequences
entailed by some repair) and cautious entailment (consequences entailed by all
repairs). In contrast to previous work, we use optimal repairs [3] instead of classi-
cal ones [9,17,19] when defining these relations. We investigated the complexity
of the obtained entailment relations for the cases without and with a TBox, and
could show a polynomial time upper bound for all cases except the one of cau-
tious entailment with a TBox, for which we proved a coNP upper bound. The
intuition underlying our use of optimal repairs is that a repair should not invent
new consequences and should not have any of the unwanted consequences. A
good repair should only remove consequences if this is required to achieve the
other two goals.

Our approach for testing brave entailment can also be used to support com-
puting a specific repair. In general, there may be exponentially many optimal
repairs, but this set can be narrowed down by specifying not only consequences
to be removed, but also ones that one wants to retain. We have shown that brave
entailment can be used to check in polynomial time whether such a repair exists.
In the positive case, we can compute in polynomial time a repair seed function
that induces an optimal repair that entails all wanted consequences.

As pointed out in [16,18], cautious entailment can be used to reason w.r.t.
an erroneous ontology while waiting for a corrected update to be published by
the organization that maintains this ontology. If the application is not repair
but privacy preservation, one can use cautious entailment to define a censor [12]
that prevents revealing certain secrets. The reason is that, in contrast to brave
entailment, the set of cautious consequences is closed under (classical) entail-
ment.

As future work, we will investigate whether our coNP upper bound for cau-
tious entailment with a TBox is tight, and whether a notion of IAR entailment

242 F. Baader et al.

that is appropriate for optimal repairs can be found. We also intend to add sup-
port for role assertions both in the repair request and in the query. Furthermore,
it would be interesting to consider error-tolerant reasoning w.r.t. the optimal
TBox repairs in [13].

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI-05, Proceed-
ings of the Nineteenth International Joint Conference on Artificial Intelligence.
Professional Book Center (2005). https://www.ijcai.org/Proceedings/05/Papers/
0372.pdf

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

3. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal
repairs of quantified ABoxes w.r.t. static EL TBoxes. In: Platzer, A., Sutcliffe, G.
(eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 309–326. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5 18

4. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal
repairs of quantified ABoxes w.r.t. static EL TBoxes (extended version). LTCS-
Report 21-01, Chair of Automata Theory, Institute of Theoretical Computer Sci-
ence, Technische Universität Dresden, Dresden, Germany (2021). https://doi.org/
10.25368/2022.64

5. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair
w.r.t. static EL TBoxes: from quantified ABoxes back to ABoxes. In: Groth, P.,
et al. (eds.) ESWC 2022. LNCS, vol. 13261, pp. 130–146. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-06981-9 8

6. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair
w.r.t. static EL TBoxes: from quantified ABoxes back to ABoxes (extended ver-
sion). LTCS-Report 22-01, Chair of Automata Theory, Institute of Theoretical
Computer Science, Technische Universität Dresden, Dresden, Germany (2022).
https://doi.org/10.25368/2022.65

7. Baader, F., Kriegel, F., Nuradiansyah, A.: Privacy-preserving ontology publishing
for EL instance stores. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019.
LNCS (LNAI), vol. 11468, pp. 323–338. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-19570-0 21

8. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant
anonymisations of quantified ABoxes w.r.t. EL policies. In: Pan, J.Z., et al. (eds.)
ISWC 2020. LNCS, vol. 12506, pp. 3–20. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-62419-4 1

9. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Proceedings of the International Conference on
Representing and Sharing Knowledge Using SNOMED (KR-MED 2008), Phoenix,
Arizona (2008). http://ceur-ws.org/Vol-410/Paper01.pdf

10. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answer-
ing for robust ontology-based data access. In: IJCAI 2013, Proceedings of the
23rd International Joint Conference on Artificial Intelligence. IJCAI/AAAI (2013).
https://www.ijcai.org/Proceedings/13/Papers/121.pdf

https://www.ijcai.org/Proceedings/05/Papers/0372.pdf
https://www.ijcai.org/Proceedings/05/Papers/0372.pdf
https://doi.org/10.1007/978-3-030-79876-5_18
https://doi.org/10.25368/2022.64
https://doi.org/10.25368/2022.64
https://doi.org/10.1007/978-3-031-06981-9_8
https://doi.org/10.25368/2022.65
https://doi.org/10.1007/978-3-030-19570-0_21
https://doi.org/10.1007/978-3-030-19570-0_21
https://doi.org/10.1007/978-3-030-62419-4_1
https://doi.org/10.1007/978-3-030-62419-4_1
http://ceur-ws.org/Vol-410/Paper01.pdf
https://www.ijcai.org/Proceedings/13/Papers/121.pdf

Error-Tolerant Reasoning w.r.t. Optimal Repairs 243

11. Cal̀ı, A., Lembo, D., Rosati, R.: On the decidability and complexity of query
answering over inconsistent and incomplete databases. In: Proceedings of the
Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems. ACM (2003). https://doi.org/10.1145/773153.773179

12. Cima, G., Lembo, D., Rosati, R., Savo, D.F.: Controlled query evaluation in
description logics through instance indistinguishability. In: Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020.
ijcai.org (2020). https://doi.org/10.24963/ijcai.2020/248

13. Kriegel, F.: Optimal fixed-premise repairs of EL TBoxes. In: Bergmann, R., Mal-
burg, L., Rodermund, S.C., Timm, I.J. (eds.) KI 2022. LNCS, vol. 13404, pp.
115–130. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15791-2 11

14. Kriegel, F.: Optimal fixed-premise repairs of EL TBoxes (extended version). LTCS-
Report 22-04, Chair of Automata Theory, Institute of Theoretical Computer Sci-
ence, Technische Universität Dresden, Dresden, Germany (2022). https://doi.org/
10.25368/2022.321

15. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015).
https://doi.org/10.1016/j.websem.2015.04.002

16. Ludwig, M., Peñaloza, R.: Error-tolerant reasoning in the description logic EL. In:
Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 107–121.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 8

17. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings
of the 14th International Conference on World Wide Web (WWW 2005). ACM
(2005). https://doi.org/10.1145/1060745.1060837

18. Peñaloza, R.: Error-tolerance and error management in lightweight description
logics. Künstliche Intell. 34(4), 491–500 (2020). https://doi.org/10.1007/s13218-
020-00684-5

19. Schlobach, S., Huang, Z., Cornet, R., Harmelen, F.: Debugging incoherent ter-
minologies. J. Autom. Reason. 39(3), 317–349 (2007). https://doi.org/10.1007/
s10817-007-9076-z

https://doi.org/10.1145/773153.773179
https://doi.org/10.24963/ijcai.2020/248
https://doi.org/10.1007/978-3-031-15791-2_11
https://doi.org/10.25368/2022.321
https://doi.org/10.25368/2022.321
https://doi.org/10.1016/j.websem.2015.04.002
https://doi.org/10.1007/978-3-319-11558-0_8
https://doi.org/10.1145/1060745.1060837
https://doi.org/10.1007/s13218-020-00684-5
https://doi.org/10.1007/s13218-020-00684-5
https://doi.org/10.1007/s10817-007-9076-z
https://doi.org/10.1007/s10817-007-9076-z

Bridging Between LegalRuleML
and TPTP for Automated Normative

Reasoning

Alexander Steen1(B) and David Fuenmayor2,3

1 University of Greifswald, Greifswald, Germany
alexander.steen@uni-greifswald.de

2 University of Luxembourg, Esch-sur-Alzette, Luxembourg
david.fuenmayor@uni.lu

3 University of Bamberg, Bamberg, Germany

Abstract. LegalRuleML is a comprehensive XML-based representation
framework for modeling and exchanging normative rules. The TPTP
input and output formats, on the other hand, are general-purpose stan-
dards for the interaction with automated reasoning systems. In this paper
we provide a bridge between the two communities by (i) defining a logic-
pluralistic normative reasoning language based on the TPTP format,
(ii) providing a translation scheme between relevant fragments of Legal-
RuleML and this language, and (iii) proposing a flexible architecture
for automated normative reasoning based on this translation. We exem-
plarily instantiate and demonstrate the approach with three different
normative logics.

Keywords: Automated reasoning · LegalRuleML · Deontic logics

1 Introduction

Automated theorem proving (ATP) systems are computer programs that, given
a set A of assumptions and a conjecture C as input, try to prove that C is a
logical consequence of A, i.e., that it is impossible for C to be false whenever
every formula from A holds. ATP systems conduct the whole reasoning process
automatically, so that no user interaction is necessary during proof search.

In normative reasoning, logical formalisms are employed to represent and
reason about different notions of norms, including obligations, permissions and
prohibitions. In automated normative reasoning, the goal is hence to automate
the reasoning process in the context of normative discourse by employing suitable
logical systems. LegalRuleML [2,3] is a comprehensive XML-based representa-
tion framework for modeling and exchanging normative rules, e.g., legal norms
originating from national laws of some particular country. The LegalRuleML

The second author acknowledges financial support from the Luxembourg National
Research Fund (FNR) under grant CORE AuReLeE (C20/IS/14616644).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 244–260, 2022.
https://doi.org/10.1007/978-3-031-21541-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_16&domain=pdf
http://orcid.org/0000-0001-8781-9462
http://orcid.org/0000-0002-0042-4538
https://doi.org/10.1007/978-3-031-21541-4_16

Bridging Between LegalRuleML and TPTP 245

standard comes with fine-grained and expressive means for representing (pos-
sibly legal) norms in an isomorphic [4] fashion with respect to their original
source(s). At the same time, LegalRuleML is semantically underspecified, in the
sense that it deliberately does not prescribe a specific logic (or semantics) in
which the represented norms are to be interpreted.

LegalRuleML has been employed by Robaldo et al. to provide an exhaus-
tive formalization of the General Data Protection Regulation (GDPR) [24].
Palmirani and Governatori combine LegalRuleML with further technologies and
approaches to present an integrated framework for compliance checking with
legal rules, but also focusing on GDPR applications [22]. Still, there exist only
comparably few systems that, in fact, automate reasoning processes based on
normative knowledge. Notable examples are provided by Liu et al. who inter-
pret legal norms in a defeasible deontic logic and provide automation for it [19],
and the SPINdle prover [17] for propositional (modal) defeasible reasoning that
has been used in multiple works in the normative application domain.

In contrast, there are many general-purpose ATP systems available for clas-
sical logics, e.g., for propositional logic, first-order predicate logic, and more
recently for higher-order logic. These systems are being continuously improved
and are increasingly becoming more effective, as witnessed by the results of the
annual ATP system competition CASC [30]. The development of general-purpose
ATP systems for normative reasoning is, on the other hand, complicated by the
fact that there is no single logic acting as the de-facto standard formalism for
normative reasoning. In general, the design and implementation of practically
effective ATP systems is a non-trivial task and very laborious; and so it is easy
to see that developing custom ATP systems for each distinct normative formal-
ism is a quite unfeasible undertaking, in particular since, as witnessed in deontic
logic (see Sect. 2.2), those formalisms behave as moving targets.

In this paper, we therefore propose to employ for this task general-purpose
ATP systems for classical higher-order logic, and thus to reduce normative rea-
soning tasks to classical ATP problems in a general way. For this, we bridge
between LegalRuleML and the TPTP language standard for ATP systems [31],
so that any TPTP-compliant ATP system for higher-order logic can be reused
as a reasoning backend for a wide range of normative logics.

The contributions of this paper are as follows:

– We define a logic-pluralistic domain specific language (DSL) for normative
reasoning with TPTP-compliant ATP systems.

– We show how the DSL can be mechanically translated into ATP reasoning
problems in different concrete normative logics.

– We describe a reasoning architecture that provides flexible means of automa-
tion for these normative logics.

– We present a prototypical implementation of the whole reasoning tool chain
that is available as open-source code.

The remainder of this paper is structured as follows: In Sect. 2 we briefly
survey the TPTP and the LegalRuleML standards, together with a very brief
exposition of deontic logics as specific systems for normative reasoning. In Sect. 3,

246 A. Steen and D. Fuenmayor

we discuss the role of logical pluralism in normative reasoning, which is one of
the key motivations of this work. Subsequently, Sect. 4 presents the utilization
of a TPTP format for normative rules. In Sect. 5 we then present a flexible and
uniform approach for automating normative reasoning using general purpose
ATP systems. Finally, Sect. 6 concludes and sketches further work.

An extended version of this paper is available on arXiv [27].

Related Work. Automation approaches by translation have been studied by Lam
and Hashmi, where they translate LegalRuleML statements into a defeasible
modal logic for which an automated reasoning tool exists [18]. Their approach is,
however, fixed to one specific logic formalism as opposed to the logic-pluralistic
view that we put forward in this work. Similarly, Boley et al. translate RuleML
information to modal logic in TPTP format [9]. However, simple modal logics are
not fully adequate for normative reasoning, see the brief discussion in Sect. 2.2.
Our approach is in line with the LogiKEy methodology proposed by Benzmüller
et al. [6], which makes use of expressive higher-order logics for flexibly encoding,
reasoning, and experimenting with normative theories.

2 Preliminaries

2.1 The TPTP Infrastructure for ATP Systems

The Thousands of Problems for Theorem Proving (TPTP) library and infras-
tructure [31] is the core platform for contemporary ATP system development and
evaluation. It provides (i) a comprehensive collection of benchmark problems for
ATP systems; (ii) a set of utility tools for problem and solution inspection, pre-
and post-processing, and verification; and (iii) a comprehensive syntax standard
for ATP system input and output.

The TPTP specifies different ATP system languages varying in their expres-
sivity [31]: The first-order form (FOF) represents unsorted first-order logic, the
typed first-order form (TFF) represents many-sorted first-order logic, and typed
higher-order form (THF) represents classical higher-order logic. An ATP prob-
lem generally consists of symbol declarations (if the language is typed), con-
textual definitions and premises of the reasoning task (usually referred to as
axioms), and a conjecture that is to be proved or refuted in the given context.
The core building block of the ATP problem files in TPTP languages are so-
called annotated formulas of form . . .

language(name,role,formula[,source[,annotations]]).
Here, language is a three-letter identifier for the intended language in which

the annotated formula is expressed (fof, tff or thf). The name is a unique
identifier for referencing to the annotated formula but has no other effect on
the interpretation of it. The role field specifies whether the formula should be
interpreted, among others, as an assumption (role axiom), a type declaration
(role type), a definition (role definition) or as formula to be proved (role
conjecture). The formula is an ASCII representation of the respective logical

Bridging Between LegalRuleML and TPTP 247

expression, where predicate and function symbols are denoted by strings that
begin with a lower-case letter, variables are denoted by strings starting with an
upper-case letter, the logical connectives ¬, ∧, ∨, →, ↔ are represented by ~,
&, |, => and <=>, respectively. Quantifiers ∀ and ∃ are expressed by ! and ?,
respectively, followed by a list of variables bound by it. The TPTP defines sev-
eral interpreted constants starting with a $-sign, including $true and $false for
truth and falsehood, respectively. In typed languages, such as TFF and THF,
the type $i represents the type of individuals and $o is the type of Booleans.
In TFF, explicit types of symbols may be dropped and default to n-ary func-
tion types ($i * ... * $i) > $i and n-ary predicate types ($i * ... * $i)
> $o depending on their occurrence. Finally, the source and annotations are
optional extra-logical information, e.g., about its origin, its relevance, or other
properties. An example in TFF is as follows:

tff(union_def, axiom, ! [S, T, X]: (
member(X, union(S,T)) <=>

(member(X, S) | member(X, T))),
source(’definitions.ax’),
[relevance(1.0)]).

In this example, a TFF annotated formula of name union_def is given that
describes an axiom giving a fundamental property of set union and some aux-
iliary information about it. A complete description of the TPTP infrastructure
and its input languages, including the syntax BNF, is provided by Sutcliffe [31]
and the TPTP web page (tptp.org).

2.2 Deontic Logics and LegalRuleML

Deontic logics are logical systems intended to formally represent normative
notions, such as obligations, permissions and prohibitions, their relationships,
and their properties [14]. An early deontic logic, today still referred to as stan-
dard deontic logic (SDL), is based on simple modal logic D. In this context, the
modal operators are usually denoted O (for obligation) and P (for permission),
where Oϕ ↔ ¬P¬ϕ holds, and every instance of Oϕ → Pϕ is validated.

In normative reasoning contexts, usually other deontic logics are employed
today. Dyadic deontic logics specifically address conditional norms of the form
O(ϕ|ψ) (read: It ought to be ϕ given ψ) [23], defeasible deontic logics address
non-monotonic reasoning patterns with defeasible norms [15], and norm-based
deontic logics model norms separately from factual expressions [20].

A prominent example illustrating the shortcomings of SDL related to condi-
tional norms is Chisholm’s paradox [13], paraphrased as follows:
Assume that your neighbors are in trouble (and you like them), then . . .

(1) You ought to go help your neighbors.
(2) If you go help your neighbors, you ought to tell them you are coming over.
(3) If you do not go help your neighbors, you ought not to tell them you are

coming over.

http://tptp.org

248 A. Steen and D. Fuenmayor

(4) You do not go help your neighbors.

The sentences (1) – (4) above appear to describe a plausible situation, and,
intuitively, they also constitute a both logically consistent and independent set
of sentences. Hence, arguably, an adequate formalization should respect these
constraints. Chisholm’s paradox here mainly serves as a running example that
highlights the significant effects of interpreting normative information under dif-
ferent logical systems.

Table 1. Some possible formalizations of Chisholm’s paradox.

Natural language SDL-v1 SDL-v2 SDL-v3 DDL

You ought to go help your neighbors Oh O h O h O h

If you go help your neighbors, you ought to
tell them you are coming over

O (h → t) O (h → t) h → O t O (t|h)

If you do not go help your neighbors, you
ought not to tell them you are coming over

¬h → O¬t O (¬h → ¬t) ¬h → O¬t O (¬t|¬h)

You do not go help your neighbors ¬h ¬h ¬h ¬h

Table 1 shows several different interpretations for Chisholm’s scenario; three
of them formalized using SDL, and the fourth formalized using a dyadic deontic
logic (DDL) where h represents “helping your neighbors” and t represents “telling
them you are coming over”. As it happens, the set of formulas corresponding
to the first SDL-formalization variant (SDL-v1) is inconsistent, thus allowing
the derivation of every formula and, in particular, every obligation (e.g., O k
where k could represent “killing your neighbor”). In fact, the next two SDL-
formalizations are not logically independent, and thus inadequate, see [16, §8.5]
for a discussion. In dyadic deontic logics the conditional norms from above are
represented using dyadic obligation operators as in O(t|h) resp. O(¬t|¬h) instead
of material implications. These logic systems are specifically conceived in order
to remedy shortcomings of SDL in addressing the so-called ‘paradoxes’ of deontic
logic related to conditional obligations. Unsurprisingly, no logic formalism has
yet been found which successfully addresses all of the many different deontic
paradoxes and deficiencies, see [16, §8] for an exhaustive overview.

LegalRuleML. [2] is a comprehensive XML-based representation framework for
modeling and exchanging normative rules. It extends the general RuleML stan-
dard [10] with specialized concepts and features for normative rules, legal con-
texts, interpretations, etc. In LegalRuleML, conditional deontic norms are rep-
resented using specialized rules called PrescriptiveStatements of the form . . .

<lrml:PrescriptiveStatement>
<ruleml:Rule closure="universal">

<ruleml:if> ... </ruleml:if>

Bridging Between LegalRuleML and TPTP 249

<ruleml:then> ... </ruleml:then>
</ruleml:Rule>

</lrml:PrescriptiveStatement>

where both the if-node (the body) and the then-node (the head) may contain
the LegalRuleML deontic operators Obligation, Permission and Prohibition,
and combinations thereof using the usual connectives. The semantics of the deon-
tic operators is left underspecified by LegalRuleML, so that any deontic logic may
be assumed, e.g., via the appliesModality edge element, to interpret the rep-
resented norms. ConstitutiveStatements represent so-called counts-as norms,
and they cannot have deontic operators in their head.

For a thorough introduction to LegalRuleML we refer to the literature [2,3].

2.3 Domain-Specific Languages

Domain-specific languages (DSLs) are formal languages (e.g. programming or
logical languages) that have been designed for use in a particular domain. Their
expressivity is deliberately restricted to allow for a higher degree of abstraction,
and thus to better leverage specialized domain knowledge of their users.

DSLs can be divided into stand-alone and embedded. The former provide
their own custom syntax and semantics, thus allowing for a maximal level of
customization, but represent a significant implementation effort by requiring
the provision of a complete compilation tool chain (parser, type-checker, etc.).
The latter consist essentially in a collection of definitions encoded using a more
expressive ‘host’ language; this way the existing infrastructure and tools of the
host environment can be reused for the DSL. In this case we often speak of an
object language (the DSL) that has been embedded into the host language.

In the context of embedded DSLs, one can further differentiate between two
embedding techniques, termed deep and shallow embeddings. In a deep embed-
ding, the terms of the object language are encoded as inductive data structures
in the host language, i.e., as its abstract syntax tree (AST), and term interpreta-
tion functions (providing the semantics) can then be defined inductively, e.g. for
evaluation/execution or optimization. In contrast, terms in shallow embeddings
correspond to syntactic abbreviations of the host language, and thus directly
encode the intended semantics of object-language expressions. Hence, evaluation
in a shallow embedding corresponds to evaluation in its host language, bypassing
the need for defining and inductively traversing an AST. In the context of (non-
classical) logic a special technique, termed shallow semantical embeddings [5],
has been developed to harness shallow embeddings to encode (quantified) non-
classical logics into classical higher-order logic.

3 Logical Pluralism in Normative Reasoning

3.1 The Problem of Formalization

In computer science, the idea of mechanistically computing formal representa-
tions of natural language in a purely compositional way, made popular through

250 A. Steen and D. Fuenmayor

the seminal work of Richard Montague [21], has been pursued with the help
of automated reasoners during the last thirty or so years in the area known as
computational semantics [7]. One of the main insights has been that the expres-
sions in natural language are semantically underspecified in the sense that not
enough information can be extracted from them to construct the sort of mean-
ing representations Montague was dreaming of, that is, formulas in some formal
logical language. Thus, interpreting ordinary sentences can lead to an unfeasible
number of different meaning representations [11].

Among the main determinants behind this underspecification phenomenon,
we find ambiguity (syntactic and semantic) and the lack of background knowl-
edge. Among the proposed solutions to tackle the first issue, several kinds of
underspecified semantic representations have been proposed. However, they have
been seen as challenging the application of automated reasoning methods, since
disambiguation often results in different formalizations licensing disparate sets
of inferences [8]. This has been seen commonly as a problem according to the
traditional conception that each natural-language statement shall be correlated
with one most adequate (‘correct’) formalization.

On the other hand, the available (formalized) background knowledge is also
a degree of freedom determining which inferences are to be drawn from a formal-
ized set of sentences. This knowledge can be of a linguistic nature (e.g. lexica)
or more domain-specific (e.g. ontologies and knowledge bases). In fact, the avail-
ability of adequate sources for background knowledge is a well-known bottleneck
in the computational semantics endeavor. In this respect, RuleML and related
knowledge representation and interchange standards, in particular LegalRuleML,
play a fundamental role in enabling the interfacing with available normative
knowledge sources and ontologies.

3.2 Formalizing Normative Discourse

The problem of formalization depicted above applies notably to the logical encod-
ing of normative discourse. This has been experienced with particular intensity
in the area of deontic logic. An example of the above is the Chisholm’s paradox,
as presented in Sect. 2.2, where we could appreciate how the task of adequately
formalizing a set of simple natural-language sentences can give rise not only to
different logical forms, but also to different ways of interpreting logical connec-
tives, such as conditionals, (deontic) modalities, etc.

In this work, we aim at doing justice to the complex problem of formaliz-
ing normative discourse, and thus suggest to employ normative domain-specific
languages (DSLs) as an intermediate representation format to encode norma-
tive knowledge in a semantic underspecified fashion, even reaching to the level
of the logical connectives themselves, which thus require further specification
for subsequent reasoning tasks. This introduces a component of logical pluralism
into our approach, since (semantically underspecified) logical operators can (and
will) be given concrete interpretations in different non-classical logics, see Sect. 5.
Moreover, we aim at showing not only that such a DSL can (and should) be of

Bridging Between LegalRuleML and TPTP 251

a formal logical nature, but also that it can at the same time be fully machine-
readable for subsequent consumption by automated reasoning tools. Hence we
introduce an illustrative normative DSL embedded in a suitable TPTP language
below.

4 Normative Knowledge Representation in the TPTP

TPTP traditionally focused on classical logic, e.g., standards and benchmark
sets for classical propositional and (first- and higher-order) predicate logic for-
malisms. Only recently there have been some ongoing efforts on extending TPTP
towards non-classical logics as well [29]. For this purpose, the TFF language has
been extended with expressions of the form . . .

{connective_name} @ (arg1,. . . ,argn)
where connective_name is either a TPTP-defined name (starting with a $ sign)
or a user-defined name (starting with two $ signs) for a non-classical operator,
and the argi are terms or formulas to which the operator is applied. TPTP-
defined connectives have a fixed meaning and are documented by the TPTP;
the interpretation of user-defined connectives is provided by third-party sys-
tems, environments, or documentation. Non-classical operators may optionally
be parameterized with key-value arguments (see below for exemplary use). The
so enriched TPTP language is denoted NXF (non-classical extended first-order
form). An analogous extension of THF, called NHF (non-classical higher-order
form), has been introduced as well (not discussed here).

Non-classical logic languages often come with different logics (e.g., different
semantics) associated with them. A prominent example are modal logic lan-
guages in which the properties of the box operator � depend on the concrete
modal logic at hand. For example, in modal logic S5 all instances of �ϕ → ϕ
are tautologies, while this is not the case in modal logic K – still both logics
share the same vocabulary. In order to resolve these ambiguities and to specify
the exact logic under consideration, non-classical TPTP adds logic specifications
to the language [29]. They are annotated formulas of form (here: in NXF) . . .

tff(name, logic, logic_name == [options]).
where logic is the TPTP role, logic_name is a TPTP-defined or user-defined
designator for a logical language and options are comma-separated key-value
pairs that fix the specific logic based on that language. Of course, changing the
logic specification may change the provability/validity of the underlying reason-
ing problem.

The NXF problem representing the formalization (SDL-v3) of Chisholm’s
paradox, as introduced in Sect. 2.2, in simple modal logic D is as follows (where
{$box} represents the modal box operator, denoted O in SDL):

tff(spec, logic, $modal == [$modalities == $modal_system_D, ...]
tff(norm1, axiom, {$box} @ (help)).
tff(norm2, axiom, help => {$box} @ (tell)).
tff(norm3, axiom, ~help => {$box} @ (~tell)).
tff(fact1, axiom, ~help).

252 A. Steen and D. Fuenmayor

The first line specifies the modal logic to be used (here, modal logic D), while the
remaining four lines encode the formulas from Sect. 2.2. For illustration purposes,
not all of the logic parameters are shown in the logic specification. A list of logics
supported by the TPTP so far, their parameters, and their representation is
available in the literature [29].

4.1 NMF: A Normative DSL in TPTP

The non-classical TPTP formats introduced above allow for encoding non-
classical logics for use with generic ATP systems. Nevertheless, each problem
representation in that format needs to have a fixed underlying logic as specified
by the logic specification. In the present work we want to allow for working with
many different normative logics in a uniform way; for this sake we introduce
an embedded DSL (Sect. 2.3) hosted on top of non-classical TPTP formats, and
referred to as Normative Meta Form (NMF) in the remainder. This way, every
file represented in NMF will be syntactically well-formed TPTP, and hence we
can use standard TPTP tools, such as syntax checkers, for processing them.
Also, available software packages for ATP systems, e.g. parsers, can be reused.

More specifically, NMF extends NXF from above as follows: The operator
names $$obligation, $$permission, $$prohibition, and $$constitutive are
introduced. They are binary operators, and interpreted as follows . . .

– {$$obligation} @ (body, head) encodes “head is obligatory given body”,
– {$$permission} @ (body, head) encodes “head is permitted given body”,
– {$$prohibition} @ (body, head) encodes “head is prohibited given body”,
– each of the three deontic operators may optionally be parameterized with

the bearer option, e.g. {$$obligation(bearer := x) @ (body, head), to
denote a directed deontic statement towards entity x, and

– {$$constitutive} @ (body, head) encodes a constitutive norm (counts-as
norm) that establishes the institutional fact that body counts as head.

Since NMF extends NXF, it does not come with a fixed logic and is thus
semantically underspecified. We can choose a concrete interpretation of the
underspecified deontic operators using the logic specification as follows ...

tff(name, logic, $$normative == [$$logic == target_logic]).
where target_logic is some deontic logic identifier. We will describe the target
logics currently supported in Sect. 5. For the time being, it is important to high-
light that the description of the encoded norms will remain the same, regardless
of which target logic we choose, and we only need to give a logic specification
for the desired logic. Note that some deontic logics, such as SDL, do not come
with built-in operators for conditional deontic expressions. Hence, our norma-
tive DSL (NMF) has been designed to abstract away the deontic operators of
concrete logics, and we show in Sect. 5 how to translate from NMF to concrete
deontic logics.

The running example of Chisholm’s paradox can be encoded in NMF in a
logically underspecified way (i.e. without a logic specification) as follows:

Bridging Between LegalRuleML and TPTP 253

tff(norm1, axiom, {$$obligation} @ ($true, help)).
tff(norm2, axiom, {$$obligation} @ (help, tell)).
tff(norm3, axiom, {$$obligation} @ (~help, ~tell)).
tff(fact1, axiom, ~help).

Recall that NMF is defined on top of NXF and, as such, offers first-order
quantification, predicate symbols and function symbols. An even more expres-
sive, higher-order quantified, variant of NMF could be defined analogously on
top of NHF (not discussed here).

4.2 Conversion from LegalRuleML to NMF

The top-level LegalRuleML statements are translated into NMF as presented in
Table 2. Note that we are currently addressing only a small fragment of Legal-
RuleML with this translation; many important metadata present in the Legal-
RuleML documentation are not yet considered. In this initial stage we primarily
target automation of normative codes as formalized using deontic logics. In par-
ticular, suborder lists are currently not supported, and also strengths/exception
specifications of deontic statements are not yet captured.

The translation process recursively translates the prescriptive statements,
constitutive statements and factual statements of LegalRuleML into formulas in
NMF. For identification purposes, key references from LegalRuleML are kept as
formula names in the TPTP representation, and additional (legal) references and
associations, expressed via <lrml:LegalReferences> or <lrml:References>
blocks, and assigned by <lrml:Associations> blocks, respectively, are kept
during the translation as TPTP annotations (not shown in Table 2). If a deontic
operator in LegalRuleML comes with a <lrml:Bearer> node, this is mirrored
in NMF as sketched in Sect. 4.1.

The translation from LegalRuleML to the proposed logic-pluralistic TPTP-
based DSL is prototypically implemented as part of the tptp-utils tool, available
at GitHub1. tptp-utils will produce a NMF file according to the above transla-
tion scheme but without a logic specification. The latter can be added by the
user in order to assume concrete interpretations of the normative statements,
see Sect. 5. A logic specification could also be created automatically from the
LegalRuleML document, deriving from respective appliesModality edges; this
is an interesting venue for further work.

5 TPTP-Based Normative Reasoning Backends

The translation of LegalRuleML statements into a representation in the TPTP-
based DSL introduced above does not yet allow the utilization of automated
reasoning tools for automated normative reasoning. It does give, though, an
abstract representation of the encoded information in a format that we can use
to provide means for automation via the general TPTP automated reasoning
1 See https://github.com/leoprover/tptp-utils and its README there.

https://github.com/leoprover/tptp-utils

254 A. Steen and D. Fuenmayor

Table 2. Translation scheme from a fragment of LegalRuleML to NMF. In each case
except the last one the quantification closure of the formula is explicitly added to the
TPTP translation; so that {V1, . . . , Vn} = fv(formula1) ∪ fv(formula2) and Q = ! if
cl = universal and Q = ? if cl = existential. The explicit quantification is omitted
if n = 0. tr(.) is an adequate mapping from RuleML formulas to TPTP formulas.

LegalRuleML NMF

<lrml:PrescriptiveStatement key="id">
<ruleml:Rule closure ="cl">

<ruleml:if> formula1 </ruleml:if>
<ruleml:then >

<lrml:Obligation >
formula2

</lrml:Obligation >
</ruleml:then >

</ruleml:Rule >
</lrml:PrescriptiveStatement >

tff(id , axiom ,
Q [V1, . . ., Vn] :

{$$obligation} @ (
tr(formula1),
tr(formula2))).

<lrml:PrescriptiveStatement key="id">
<ruleml:Rule closure ="cl">

<ruleml:if> formula1 </ruleml:if>
<ruleml:then >

<lrml:Permission >
formula2

</lrml:Permission >
</ruleml:then >

</ruleml:Rule >
</lrml:PrescriptiveStatement >

tff(id , axiom ,
Q [V1, . . ., Vn] :

{$$permission} @ (
tr(formula1),
tr(formula2))).

<lrml:PrescriptiveStatement key="id">
<ruleml:Rule closure ="cl">

<ruleml:if> formula1 </ruleml:if>
<ruleml:then >

<lrml:Prohibition >
formula2

</lrml:Prohibition >
</ruleml:then >

</ruleml:Rule >
</lrml:PrescriptiveStatement >

tff(id , axiom ,
Q [V1, . . ., Vn] :

{$$prohibition} @ (
tr(formula1),
tr(formula2))).

<lrml:ConstitutiveStatement key="id">
<ruleml:Rule closure ="cl">

<ruleml:if> formula1 </ruleml:if>
<ruleml:then >

formula2
</ruleml:then >

</ruleml:Rule >
</lrml:ConstitutiveStatement >

tff(id , axiom ,
Q [V1, . . ., Vn] :

{$$constitutive} @ (
tr(formula1),
tr(formula2))).

<lrml:FactualStatement key="id">
formula1

</lrml:FactualStatement >
tff(id , axiom , tr(formula1)).

infrastructure. To this end, two steps are necessary: (i) The transformation of the
encoded norms into a concrete (deontic) logical formalism, and (ii) the provision
of ATP systems that can reason within the respective logics.

Bridging Between LegalRuleML and TPTP 255

Fig. 1. Visualization of the transformation and automation process. One LegalRuleML
file can be translated into multiple different TPTP reasoning problems which, in turn,
can be reduced to classical reasoning problems in HOL for automation, if no special-
purpose prover of the desired target logic is available.

The overall approach for logic-pluralistic automated reasoning presented in
this paper is visualized in Fig. 1. The translation of LegalRuleML into NMF con-
nects normative knowledge representation to the TPTP infrastructure, where
both LegalRuleML and NMF are logically underspecified. Subsequently, the
NMF representation is translated to multiple concrete logic problems formu-
lated in (standard) non-classical TPTP. These problems are not logically under-
specified anymore, as they have been encoded into specific deontic logics. Then,
the resulting non-classical problems are automated using the shallow semantical
embeddings approach [5,25], in which the problems are encoded into classical
higher-order logic (HOL). This way, general purpose HOL ATP solvers can be
employed for normative reasoning. Of course, also specialized ATP systems for
the respective deontic logic could be employed. However, for many quantified
non-classical logics there are no ATP systems available.

The NMF representation is interpreted with respect to a concrete logic by
adding a logic specification to it. It is of form . . .
tff(name, logic, $$normative == [$$logic == target_logic]).

where target_logic is one of ...

– $$sdl, representing SDL as introduced above,
– $$aqvistE, representing Åqvist dyadic deontic logic E [1], and
– $$carmoJones, representing the dyadic deontic logic of Carmo and Jones [12].

Of course, this list can be extended with many more concrete logics for deontic
reasoning. For the proof-of-concept presented in this paper, we restrict ourselves
to these logics for the time being. An NMF problem with a logic specification
can then be translated to a non-classical TPTP representation of the respectively
chosen logic. The translation schemes for translating NMF into SDL and into
DDL are presented in Tables 3 and 4.

256 A. Steen and D. Fuenmayor

Table 3. Translation of deontic operators from NMF to SDL based on the SDL-v3
scheme from Sect. 2.2 (narrow scope). Directed deontic operators are modeled, in each
case, via $box(#x) resp. $dia(#x) where x is the bearer of the modality.

NMF SDL
{$$obligation} @ (body, head) body => {$box} @ (head)
{$$permission} @ (body, head) body => {$dia} @ (head)
{$$prohibition} @ (body, head) body => {$box} @ (~head)
{$$constitutive} @ (body, head) body => head

Table 4. Translation of deontic operators from NMF to DDL. Directed deontic oper-
ators are not yet supported.

NMF DDL
{$$obligation} @ (body, head) {$$obl} @ (head, body)
{$$permission} @ (body, head) ~{$$obl} @ (~head, body)
{$$prohibition} @ (body, head) {$$obl} @ (~head, body)
{$$constitutive} @ (body, head) body => head

In SDL the obligation operator is expressed using the modal logic � operator;
and the logic is specified to be modal logic D (as usual for SDL). Since SDL
does not have any dyadic deontic operators, conditional norms are expressed
via a material implication. DDL does provide a dyadic deontic operator that
captures conditional norms, so the mapping is more natural here. Note that,
for simplicity, the translation scheme currently follows the interpretation variant
SDL-v3 (see Sect. 2.2) using a narrow-scope translation. It is planned to add
further parameters to the translation so that the translation scheme can be
chosen individually for each norm.

For the running example of Chisholm’s paradox, as formalized in NMF in
Sect. 4.1, the concrete output for SDL as reasoning target is as follows:

tff(target, logic, $modal == [$quantification == $constant,
$constants == $rigid,
$modalities == $modal_system_D]).

tff(norm1-sdl, axiom, {$box} @ (help)).
tff(norm2-sdl, axiom, help => {$box} @ (tell)).
tff(norm3-sdl, axiom, ~help => {$box} @ (~tell)).
tff(fact1-sdl, axiom, ~help).

In Åqvist system E the resulting representation is (note the different order
of parameters in the dyadic deontic operator) . . .

tff(target, logic, $$ddl == [$$system == $$aqvistE]).
tff(norm1-ddl, axiom, {$$obl} @ (help,$true)).
tff(norm2-ddl, axiom, {$$obl} @ (tell,help)).

Bridging Between LegalRuleML and TPTP 257

tff(norm3-ddl, axiom, {$$obl} @ (~tell,~help)).
tff(fact1-ddl, axiom, ~help).

For the DDL of Carmo and Jones, the output is identical except that the
logic specification gives $$carmoJones instead of $$aqvistE. For details on the
non-classical logics supported by the TPTP and the deontic logics used above,
we refer to the literature [25,29]. Note that in all three cases, the problems have
a fixed semantics and can thus be processed by ATP systems. The presented
translation process from NMF to the deontic logics is implemented in the LET
tool for logic embeddings [25].

In a second step, the NXF problems are embedded into classical HOL prob-
lems, represented in the THF TPTP-format. This is also done via the LET
tool. The automation of normative reasoning via shallow embedding into HOL,
as illustrated by Benzmüller et al. via their LogiKEy methodology [6], has been
successful for a broad range of applications [5].

In order to provide a seamless automation process, the LET tool has been
included included into the higher-order ATP system Leo-III [26], so that the
above problem statements in SDL and DDL can be given to Leo-III without
the need for any external pre-processing via LET by the user. Unsurprisingly,
Leo-III can automatically establish the unsatisfiability of the four SDL formu-
las norm1-sdl, norm2-sdl, norm3-sdl and fact1-sdl, thus proving their joint
inconsistency; by contrast consistent conclusions can be drawn from the DDL
representation.

6 Conclusion

In this paper we presented a flexible approach for using general-purpose (classi-
cal) ATP systems for normative reasoning. This is motivated, on the one hand,
by the widespread availability of mature and practically effective ATP systems,
and, on the other-hand, by practical challenges for providing ATP systems for
the many different deontic logics employed in normative reasoning. Hence, we
aim at bridging between the ATP systems community (users of the TPTP prob-
lem representation languages) and the normative knowledge representation and
reasoning community (users of the LegalRuleML standard).

Our proposed approach consists in first translating a subset of LegalRuleML
to a specifically crafted domain-specific language, denoted NMF, based on the
TPTP standard for ATP systems. NMF is semantically underspecified and acts
as an intermediate layer between natural-language representations and repre-
sentations in specific logical formalisms. NMF is subsequently translated into
different reasoning problems in concrete logics, represented in the recent non-
classical TPTP standard. Finally, automation for non-classical TPTP is provided
by shallow semantical embeddings into classical higher-order logic for which many
different ATP systems exist. While from a purely conceptual knowledge rep-
resentation perspective the intermediate NMF language might not be strictly
necessary (i.e., LegalRuleML could be translated directly into concrete TPTP
problem), we argue that the usage of a semantically underspecified TPTP-based

258 A. Steen and D. Fuenmayor

representation language comes with several pragmatic advantages with respect
to practical automation. The TPTP languages are the standard formats for auto-
mated reasoning and experimentation using ATP systems, hence lowering the
engineering-related barriers of providing automation for different deontic logics,
and at the same time providing an abstract language for experimentation with
different logics and ATP systems. In particular, the standard TPTP problem
library for ATP system evaluation collects abstract problems (so-called gener-
ators) from which concrete reasoning tasks can be generated. The NMF layer
thus connects to these efforts by providing means for the logic-pluralistic repre-
sentation of domain-specific reasoning benchmarks.

The different steps in this process have been implemented as open-source
tools available at GitHub. By doing so, we provided a flexible reasoning infras-
tructure for logic-pluralistic normative reasoning that is in line with the LogiKEy
methodology [6] for designing normative theories. In contrast to LogiKEy, our
focus is on flexible reasoning via ATP systems instead of enabling the inter-
active use of proof assistants. Two examples, one of them being the discussed
Chisholm’s paradox, are available as supplemental dataset via Zenodo [28]. The
dataset contains the initial LegalRuleML documents, their NMF representations
and all translations to the three concrete logics.

Further Work. In this paper, we focused on three deontic logics as reasoning
backends for NMF. We plan to extend the portfolio of supported deontic logics
towards further relevant ones, including Input/Output logic [20]. It is planned to
extend the translation tool to produce LegalRuleML output from deontic logic
reasoning problems formulated in TPTP.

The DSL presented in this work is still prototypical. It does not yet cap-
ture many important aspects that are encoded in LegalRuleML documents.
In particular, it is possible to extend our approach to a layered hierarchy of
DSLs aiming for knowledge representation at different levels of abstraction (or
domain-specificity), together with translation mechanisms for successively spec-
ifying their intended semantics. Furthermore, RuleML does allow to specify so-
called semantic profiles. It seems a fruitful venue to closer connect these profiles
to TPTP logic specifications in order to allow for a more principled approach to
adjust the target logic in automation.

References

1. Åqvist, L.: Deontic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philo-
sophical Logic, pp. 605–714. Springer, Dordrecht (1984). https://doi.org/10.1007/
978-94-009-6259-0_11

2. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.Z.:
OASIS LegalRuleML. In: ICAIL, pp. 3–12. ACM (2013)

3. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: LegalRuleML:
design principles and foundations. In: Faber, W., Paschke, A. (eds.) Reasoning
Web 2015. LNCS, vol. 9203, pp. 151–188. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21768-0_6

https://doi.org/10.1007/978-94-009-6259-0_11
https://doi.org/10.1007/978-94-009-6259-0_11
https://doi.org/10.1007/978-3-319-21768-0_6
https://doi.org/10.1007/978-3-319-21768-0_6

Bridging Between LegalRuleML and TPTP 259

4. Bench-Capon, T.J., Coenen, F.P.: Isomorphism and legal knowledge based systems.
Artif. Intell. Law 1(1), 65–86 (1992)

5. Benzmüller, C.: Universal (meta-)logical reasoning: recent successes. Sci. Comput.
Program. 172, 48–62 (2019)

6. Benzmüller, C., Parent, X., van der Torre, L.W.N.: Designing normative theories
for ethical and legal reasoning: LogiKEy framework, methodology, and tool sup-
port. Artif. Intell. 287, 103348 (2020)

7. Blackburn, P., Bos, J.: Representation and Inference for Natural Language - a First
Course in Computational Semantics. CSLI Publications, Stanford (2005)

8. Blackburn, P., Kohlhase, M.: Inference and computational semantics. J. Logic
Lang. Inform. 13(2), 117–120 (2004)

9. Boley, H., Benzmüller, C., Luan, M., Sha, Z.: Translating higher-order modal logic
from RuleML to TPTP. In: RuleML (Supplement). CEUR Workshop Proceedings,
vol. 1620. CEUR-WS.org (2016)

10. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: the overarching specification of
web rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS,
vol. 6403, pp. 162–178. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16289-3_15

11. Bunt, H., Muskens, R.: Computational semantics. In: Bunt, H., Muskens, R. (eds.)
Computing Meaning, pp. 1–32. Springer, Dordrecht (1999). https://doi.org/10.
1007/978-94-011-4231-1_1

12. Carmo, J., Jones, A.J.: Deontic logic and contrary-to-duties. In: Gabbay, D.M.,
Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 265–343. Springer, Dor-
drecht (2002). https://doi.org/10.1007/978-94-010-0387-2_4

13. Chisholm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis 24(2),
33–36 (1963)

14. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.):
Handbook of Deontic Logic and Normative Systems. College Publications, Georgia
(2013)

15. Governatori, G., Rotolo, A., Calardo, E.: Possible world semantics for defeasi-
ble deontic logic. In: Ågotnes, T., Broersen, J., Elgesem, D. (eds.) DEON 2012.
LNCS (LNAI), vol. 7393, pp. 46–60. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31570-1_4

16. Hilpinen, R., McNamara, P.: Deontic logic: a historical survey and introduction.
In: Handbook of Deontic Logic and Normative Systems, vol. 1, pp. 3–136 (2013)

17. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall,
J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-04985-9_29

18. Lam, H., Hashmi, M.: Enabling reasoning with LegalRuleML. Theory Pract. Log.
Program. 19(1), 1–26 (2019)

19. Liu, Q., Islam, M.B., Governatori, G.: Towards an efficient rule-based framework
for legal reasoning. Knowl. Based Syst. 224, 107082 (2021)

20. Makinson, D., Van Der Torre, L.: Input/output logics. J. Philos. Logic 29(4), 383–
408 (2000)

21. Montague, R.: Universal grammar. Theoria 36(3), 373–398 (1970)
22. Palmirani, M., Governatori, G.: Modelling legal knowledge for GDPR compliance

checking. In: JURIX. FAIA, vol. 313, pp. 101–110. IOS Press (2018)
23. Prakken, H., Sergot, M.: Dyadic deontic logic and contrary-to-duty obligations. In:

Nute, D. (ed.) Defeasible Deontic Logic, pp. 223–262. Springer, Dordrecht (1997).
https://doi.org/10.1007/978-94-015-8851-5_10

https://doi.org/10.1007/978-3-642-16289-3_15
https://doi.org/10.1007/978-3-642-16289-3_15
https://doi.org/10.1007/978-94-011-4231-1_1
https://doi.org/10.1007/978-94-011-4231-1_1
https://doi.org/10.1007/978-94-010-0387-2_4
https://doi.org/10.1007/978-3-642-31570-1_4
https://doi.org/10.1007/978-3-642-31570-1_4
https://doi.org/10.1007/978-3-642-04985-9_29
https://doi.org/10.1007/978-94-015-8851-5_10

260 A. Steen and D. Fuenmayor

24. Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini, G.:
Formalizing GDPR provisions in reified I/O logic: the DAPRECO knowledge base.
J. Log. Lang. Inf. 29(4), 401–449 (2020)

25. Steen, A.: An extensible logic embedding tool for lightweight non-classical reason-
ing. In: PAAR@IJCAR. CEUR Workshop Proceedings, vol. 3201. CEUR-WS.org
(2022)

26. Steen, A., Benzmüller, C.: Extensional higher-order paramodulation in Leo-III.
J. Autom. Reason. 65(6), 775–807 (2021). https://doi.org/10.1007/s10817-021-
09588-x

27. Steen, A., Fuenmayor, D.: Bridging between LegalRuleML and TPTP for Auto-
mated Normative Reasoning (extended version) (2022). https://doi.org/10.48550/
arxiv.2209.05090

28. Steen, A., Fuenmayor, D.: Supplemental data for the present article (2022).
https://doi.org/10.5281/zenodo.6702576

29. Steen, A., Fuenmayor, D., Gleißner, T., Sutcliffe, G., Benzmüller, C.: Automated
reasoning in non-classical logics in the TPTP world. In: PAAR@IJCAR. CEUR
Workshop Proceedings, vol. 3201. CEUR-WS.org (2022)

30. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101
(2016)

31. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

https://doi.org/10.1007/s10817-021-09588-x
https://doi.org/10.1007/s10817-021-09588-x
https://doi.org/10.48550/arxiv.2209.05090
https://doi.org/10.48550/arxiv.2209.05090
https://doi.org/10.5281/zenodo.6702576

Agents and Argumentation

A Rule-Based Behaviour Planner
for Autonomous Driving

Frédéric Bouchard(B) , Sean Sedwards , and Krzysztof Czarnecki

University of Waterloo, Waterloo, Canada
{frederic.bouchard,sean.sedwards,krzysztof.czarnecki}@uwaterloo.ca

Abstract. Autonomous vehicles require highly sophisticated decision-
making to determine their motion. This paper describes how such func-
tionality can be achieved with a practical rule engine learned from expert
driving decisions. We propose an algorithm to create and maintain a
rule-based behaviour planner, using a two-layer rule-based theory. The
first layer determines a set of feasible parametrized behaviours, given
the perceived state of the environment. From these, a resolution func-
tion chooses the most conservative high-level maneuver. The second layer
then reconciles the parameters into a single behaviour. To demonstrate
the practicality of our approach, we report results of its implementation
in a level-3 autonomous vehicle and its field test in an urban environment.

Keywords: Autonomous driving · Behaviour planning · Rule
learning · Rule engine · Structured rule base · Expert system ·
Explainable AI

1 Introduction

The motion planning problem in autonomous vehicles is computationally chal-
lenging [7] and is typically decomposed into three sub-problems [15]: (i) mis-
sion planning; (ii) behaviour planning; and (iii) local planning. This structure
is depicted on the right of Fig. 1. In our autonomous vehicle, the mission plan-
ner receives starting and target locations, and determines the sequence of lanes
on which the autonomous vehicle must drive. This sequence is converted into
intents (e.g. turning right at the next intersection) and is sent to the behaviour
planner, along with the environment representation. The behaviour planner then
generates a sequence of high-level parametrized driving maneuvers to navigate
through the environment towards the specified goal. The local planner finds a
smooth trajectory that meets the required behaviour and comfort. Finally, the
trajectory is used by the vehicle controller to determine the steering, throttle,
and braking commands.

Early approaches to behaviour planning used finite state machines [13,18].
Such systems are typically difficult to maintain because of the inherent complex-
ity of the driving problem. Combinations of state machines, decomposing the
problem into sub-problems, can mitigate this lack of maintainability [17]. The
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 263–279, 2022.
https://doi.org/10.1007/978-3-031-21541-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_17&domain=pdf
http://orcid.org/0000-0002-9529-7577
http://orcid.org/0000-0002-2903-0823
http://orcid.org/0000-0003-1642-1101
https://doi.org/10.1007/978-3-031-21541-4_17

264 F. Bouchard et al.

Mission Planner

Behaviour Planner
[Rule Engine]

Local Planner

Vehicle Controller

Fig. 1. Motion planning architecture of our autonomous vehicle

resulting hierarchy of state machines often introduces the need of precedence
tables [14], which is a concept that is also familiar to rule-based systems [5].

Recently, there has been a strong trend to use deep learning for autonomous
driving tasks. End-to-end machine learning approaches have been shown to han-
dle basic driving tasks [3], while imitation learning of behaviours [2] or trajecto-
ries [9] can produce highly nuanced behaviours in complex road environments.
The success of deep learning is in part due to its ability to learn the structure
of a problem at the same time as solving it [16]. Its main drawback is that the
resulting policies lack transparency and explainability [12].

By contrast, rule-based systems have the advantage of structured knowledge,
greatly aiding explainability, safety and trust. Early works proved the concept of
sophisticated direct vehicle control using rules [14,25], while more recent work
has tended to use rule-based systems indirectly, such as to validate, bound or
improve driving policies [19,22]. Finding the structure of a problem remains an
important challenge for rule-based systems [6,16], as is the maintenance and
update of the rule base as the problem evolves. To mitigate these challenges,
hybrid approaches distil rules from deep-leaned policies [4] or use pre-defined
rules to constrain the action space of deep learning [10].

In this paper, we define a two-layered rule engine for behaviour planning
and present an algorithm to create and maintain its rule-based theory. Rather
than learn the structure, we decompose the problem into meaningful concepts,
to maximize explainability. Our maintenance algorithm exploits this and allows
a theory to be learned incrementally from a set of expert-provided examples
that may be augmented over time. We have designed the layers to be modular,
allowing us in future to add layers and construct “deep theories” when we extend
the operational design domain (ODD) of our vehicle.

To demonstrate the success and practicality of our approach, we have used
it to construct a prototype implementation that we have deployed in our
autonomous vehicle (Fig. 1). We report the results of our vehicle’s 110 km field
test in a busy urban environment, during which our rule engine was able to make
decisions at up to 300 Hz and achieve a similar level of autonomy (98%) to a
highly-cited deep-learning approach [3]. While we acknowledge that this com-
parison is not rigorous, because the tasks and ODDs are not rigorously aligned,
we nevertheless claim that our approach has the advantage of being able to
immediately identify and potentially fix any logical errors of its decisions.

A Rule-Based Behaviour Planner for Autonomous Driving 265

While there is much in the literature that may be considered related to our
work, there appears to be very little that is directly comparable in terms of the
levels of detail, implementation and practical achievement that we present. The
following table summarizes our approach in the context of selected works that
apply rule-based decision-making to autonomous driving.

Ref. Explicit Unordered Learning Urban Realistic Validated

Layers Rule Base Algorithm ODD Perception in Reality

Ours � � � � � �
[19] implicit � �
[24] implicit � subset � �
[20] implicit � �
[8] implicit subset

[25] implicit subset

[14] implicit

[4] � � �
[11] � �
[21] � subset

[1] unspecified subset

[10] subset

In Sect. 2 we describe the conceptual data structures, rules and functions of
the layers that comprise our rule engine, explaining how a single behaviour is
chosen from a set of feasible options. In Sect. 3 we define a backward-chaining
coverage function and present an algorithm that uses it to learn and maintain the
rule-based theory of the rule engine. We also outline a knowledge engineering
cycle that makes use of our algorithm to incrementally build a set of rules.
In Sect. 4 we present the practical results of using our prototype rule engine,
emphasizing its successful deployment in an extended drive on public urban
roads. We conclude in Sect. 5, highlighting challenges and ongoing work.

2 Rule Engine

In this section, we describe the two-layer rule-based theory that is the con-
ceptual basis of our rule engine, noting that the syntactic sugar for expressing
rules compactly, such as bounded quantifiers, and the many optimizations of our
implementation are omitted to simplify our exposition.

Each layer of the theory uses a set of unordered “IF antecedent THEN con-
sequent” rules that map a set of input properties to a set of parametrized out-
put behaviours. The first layer, called the maneuver layer, takes properties of
the external environment as input and outputs a candidate set of parametrized
behaviours, which are then filtered according to their conservativeness. The
resulting behaviours, which now share the same high-level maneuver, are then

266 F. Bouchard et al.

transformed to become the input of the second layer, called the parameter layer.
The parameter layer resolves the different parameters and outputs a single high-
level maneuver with its parameter.

2.1 Layers and Rules

Each layer of our rule-based theory is described by a tuple of finite sets
(O,A,V,P ′, C,R). O is a set of objects recognized by the layer. A is a set of
attributes that an object may have (colour, speed, etc.) V is a set of values that
object attributes may take (green, 2.7, True, etc.) Triplets of type (O,A,V) con-
stitute input properties. For notational convenience, we write OA for O × A and
express properties in the forms (OA,V) and OA := V. We call elements of OA
features. We also include in V the special value undefined that may be assigned
to any feature that is not defined. We say a property or feature is undefined if
its value is undefined. P ′ is the set of output properties, defined analogously to
input properties, but w.r.t. the objects and attributes of the subsequent layer.
This allows the output of one layer to become the input of the next layer.

C is a set of logical constraints over features, which evaluate to either True
or False and have the type (OA, {=,≤,≥},V) or (OA, {=,≤,≥},OA), with the
obvious mathematical meaning. E.g., EgoApproaching = Intersection, EgoSpeed ≥
LeadingVehicleSpeed. We also include in C the trivial constraint True and note
that the operators {≤,≥} return False whenever they encounter an undefined
property.

Each layer has an associated set of rules R, in which a rule is a tuple
of type (P (C) ,B). The first element, referred to as the rule’s antecedent, is
a conjunction of constraints (P denotes the power set), and the second ele-
ment, referred as the rule’s consequent, is the behaviour induced when the
antecedent evaluates to true. A behaviour b ∈ B has type (H, P (P ′)), in which
H = {Emergency-Stop,Stop,Yield,Decelerate-To-Halt,Pass-Obstacle,Follow-
Leader,Track-Speed} is the globally-defined set of high-level maneuvers we use in
this work. We refer to the second element of the tuple as the behaviour’s parame-
ter. The syntax of rule antecedents is given by the following simple BNF grammar,
in which a constraint is c ∈ C:

〈antecedent〉 ::= 〈antecedent〉 AND 〈antecedent〉 | constraint

The antecedent of a rule typically contains only a subset of available features,
giving it only a partial view of the input, and thus capturing an abstract meaning.

We assume that the input to a layer is a complete set of properties that con-
stitute a function OA → V. We call this a scene and denote by S the set of all
scenes. A scene for the first layer contains properties representing the road envi-
ronment, whereas a scene for the second layer includes properties representing
the candidate behaviours for the ego vehicle, generated by the first layer.

A Rule-Based Behaviour Planner for Autonomous Driving 267

A rule r is then implicitly represented by a corresponding function Fr : S →
B that maps a scene e ∈ S to the behaviour b ∈ B that is r’s consequent, or the
empty set:

Fr(e) :=
{

b if the rule’s antecedent evaluates to true
∅ otherwise (1)

Given a rule-based theory R (a set of rules for a given layer), we lift (1) to a
function FR : S → P (B), where

FR(e ∈ S) := {Fr(e) | r ∈ R}. (2)

2.2 Resolving a Single Behaviour

The maneuver layer outputs all the behaviours that are at least partially com-
patible with the perceived outside world, according to a set of rules denoted
Rman and corresponding function FRman defined by (2). The following is an
example of a rule in Rman, where we expect the ego vehicle to stop at the stop
line when it approaches an intersection regulated by a stop sign:

IF EgoApproaching = Intersection AND RoadHasStopLine = True

THEN (Decelerate-To-Halt, {StopAtStopLine := True})

The output of the maneuver layer will often contain behaviours with incom-
patible high-level maneuvers, i.e., with different elements of H, as well as
behaviours having the same high-level maneuver, but with different parame-
ters. To eventually arrive at a single behaviour, we first narrow the range of
behaviours seen in the output of the maneuver layer, using a relation � that
defines a total order over the conservativeness of high-level maneuvers. We can
thus write Emergency-Stop � Track-Speed to mean Emergency-Stop is more con-
servative than Track-Speed. We then use the corresponding partial order relation
	 to define a resolution function

λman(FRman(e ∈ S)) :=
{(h, p) ∈ FRman(e) | ∀(h′, p′) ∈ FRman(e), h 	 h′}, (3)

which returns the behaviours sharing the highest priority maneuver.
The output of λman is fed to the input of the parameter layer, following a

transformation into a scene expected by the parameter layer, i.e., a function
of type (OA)par → Vpar, where (OA)par and Vpar are the features and values,
respectively, of the parameter layer. We thus define a transformation function
comprising the union of three sets:

268 F. Bouchard et al.

Tpar(e ∈ S) := {p | (h, p) ∈ λman(FRman(e))}
∪ {(Maneuverh,True) | (h, p) ∈ λman(FRman(e))}
∪ {(oa, undefined) | oa ∈ (OA)par\

{(oa)′ | (h, ((oa)′, v)) ∈ λman(FRman(e))}} (4)

The first set contains all the parameters output by λman, now interpreted as
input properties of the parameter layer. The second set is a singleton containing
a property that encodes the chosen high-level maneuver. The third set contains
properties that map all the undefined features to the undefined value.

The output of Tpar corresponds to a single high-level maneuver with possibly
ambiguous parameters. The purpose of the parameter layer is to resolve this
ambiguity, using different properties and a different set of rules to the maneuver
layer. We denote the parameter layer’s rules and their corresponding function
by Rpar and FRpar, respectively. The following example parameter rule guaran-
tees that whenever Decelerate-To-Halt does not target the stop-line, but instead
targets the end of the lane, then this latter should be included in the final set of
parameters:

IF ManeuverDecelerate−To−Halt = True
AND StopAtStopLine = undefined AND StopAtEndOfLane = True

THEN
(
Decelerate-To-Halt, {EgoStopAt := AtEndOfLane}

)

The output of the maneuver layer is a set of behaviours with the same high-
level maneuver and parameters that are consistent with one another. The resolu-
tion function for the parameter layer returns a single behaviour with its param-
eter being the union of the parameters returned by the parameter layer:

λpar

(
FRpar

(·)
)

:=
(
h | ∃(h, p) ∈ FRpar

(·), {p | (h, p) ∈ FRpar
(·)}

)
(5)

The overall function of our rule engine is thus given by

RE(e ∈ S) := λpar

(
FRpar

(Tpar(e))
)
,

which we also refer to as the driving policy. Figure 2 shows a diagrammatic repre-
sentation of the rule engine: (i) sensors present a perceived state to the maneuver
layer, which identifies a set of compatible, conservative behaviours using Rman

and λman; (ii) Tpar transforms and completes the resulting properties for input
to the parameter layer; (iii) the parameter layer resolves a single behaviour using
Rpar and λpar, which is sent to the local planner.

A Rule-Based Behaviour Planner for Autonomous Driving 269

Fig. 2. Diagrammatic representation of two-layer rule engine

2.3 Inference Example

Fig. 3. Example scene: autonomous vehicle
approaches intersection with crosswalk

To give an intuition of how the rule
engine makes a decision, we present
a toy example based on the scene
illustrated in Fig. 3: the autonomous
(Ego) vehicle approaches an intersec-
tion regulated by a stop line, while
a pedestrian concurrently negotiates
the crosswalk. We exclude all elements
of the rule engine not relevant to the
scene, noting that this simple example
is not intended to motivate the two-
layered structure of the rule engine,
which is required for the significantly
greater complexity encountered in realistic applications.

The scene in Fig. 3, denoted s, is defined with a minimal set of features by

s := {EgoApproaching := Intersection, EgoSpeed := 35 km/h,

EgoAt := undefined, RoadSpeedLimit := 50 km/h,

CrosswalkObstructed := True, RoadHasStopLine := True }.

We define a set of Ego behaviours relevant to s, having parameters specified
w.r.t. the input features of the parameter layer:

b1 := (Track-Speed, {TargetSpeed := RoadSpeedLimit})

b2 := (Decelerate-To-Halt, {StopAtEndOfLane := True})

b3 := (Decelerate-To-Halt, {StopAtStopLine := True})

270 F. Bouchard et al.

We then define Rman using b1, b2 and b3:

Rman := {({True}, b1)
({EgoApproaching = Intersection,CrosswalkObstructed = True}, b2)

({EgoAt = Intersection,CrosswalkObstructed = True}, b2)
({EgoApproaching = Intersection,RoadHasStopLine = True}, b3)

({EgoAt = Intersection,RoadHasStopLine = True}, b3)}

We also define a set of relevant behaviours for the parameter layer, with
parameters appropriate for the output of the rule engine:

b4 := (Track-Speed, {EgoSpeed := TargetSpeed})

b5 := (Decelerate-To-Halt, {EgoStopAt := EndOfLane})

b6 := (Decelerate-To-Halt, {EgoStopAt := StopLine})

Using b4, b5 and b6, we thus define Rpar:

Rpar := {({ManeuverTrack-Speed = True}, b4)
({ManeuverDecelerate-To-Halt = True,StopAtEndOfLane = True,

StopAtStopLine = undefined}, b5)

({ManeuverDecelerate-To-Halt = True,StopAtStopLine = True}, b6)}

Given the above definition of Rman, it follows from (2) that FRman(s) =
{b1, b2, b3}. The conservativeness of the high-level maneuvers is such that
Decelerate-To-Halt � Track-Speed, hence λman(FRman(s)) in (3) gives us:

λman(·) = (Decelerate-To-Halt,StopAtEndOfLane := True,StopAtStopLine := True})

This output is then transformed to the input format of the parameter layer
using (4):

Tpar(s) := {ManeuverDecelerate-To-Halt := True, StopAtEndOfLane := True,

ManeuverTrack-Speed := undefined, StopAtStopLine := True,

TargetSpeed := undefined }

With our definition of Rpar for the parameter layer, (2) determines the
parameter of the selected high-level maneuver, giving us FRpar(Tpar(s)) =
{b6}. The final output of the rule engine is resolved by (5), giving
λpar(FRpar(Tpar(s))) = b6.

3 Learning and Maintaining the Theory

To learn the theory, we assume an expert provides a finite set of training scenes
E ⊆ S and an associated labelling function L : E → B that assigns a behaviour to

A Rule-Based Behaviour Planner for Autonomous Driving 271

every training scene. Given the characteristics of sets and functions, we know that
every scene (a complete set of properties) is unique and is associated to exactly
one behaviour. Since a property may be trivially converted to a constraint using
equality, it follows that there always exists a set of rules that can correctly label
every scene.

To facilitate learning, we define a backward-chaining coverage function

Φ(r,R, λ, T , E) := {e ∈ E | Fr(T (e)) �= ∅,Fr(T (e)) ∈ λ(FR(T (e)))},

which returns the subset of training scenes that trigger rule r, i.e., cause the rule
to contribute to the resolved result of its theory R, associated to a layer with the
corresponding resolution function λ ∈ {λman, λpar} and property transformation
function T ∈ {Tman, Tpar}. The use of the property transformation function
allows the training of any layer to be performed with training scenes that are
defined w.r.t. the input of the rule engine. Tpar is given in (4). The maneuver
layer requires no transformation, so Tman is simply the identity transformation,

Tman(e ∈ S) := e.

3.1 Rule Engine Update Algorithm

The main method of the Rule Engine Update algorithm (Algorithm 1) exploits
the common structure of the two layers, calling the RuleUpdate subroutine
(Algorithm 2) per layer. Since the rules of the parameter layer are dependent on
those of the maneuver layer, Algorithm 2 is called on the maneuver layer first.

Algorithm 1: Rule Engine Update

input: E training scenes Rman base maneuver rules
L labelling function Rpar base parameter rules

Rman ← RuleUpdate (E ,L,Rman, λman, Tman)
Rpar ← RuleUpdate (E ,L,Rpar, λpar, Tpar)
return (Rman,Rpar)

The rule engine works by filtering a set of candidate behaviours. The purpose
of Algorithm 2 is to modify or create rules such that the set of behaviours output
by a layer contains the correct behaviour for every training scene. Other than
in unusual pathological cases (described below), the algorithm will find a theory
that satisfies this requirement. The following description applies to either layer.

Algorithm 2 is given an existing theory R that may be empty—the algorithm
will generate any new rules it needs. In line 1, the algorithm initializes an empty
set of bad rules RBad. This set is used to contain any rules that are discovered
to have no coverage in the training scenes. Such rules may already exist in R or
may be generated as candidates by the algorithm.

272 F. Bouchard et al.

The outer loop of the algorithm is controlled by the existence of training
scenes that are misclassified, i.e., when the set of output behaviours of the layer
does not contain the specified label of the scene (line 2). If there are no misclas-
sifications, the algorithm terminates correctly by returning the current theory
in line 23. If there exist misclassified scenes, one is selected at random in line 3.
We use random selection to avoid giving undue bias to any particular solution.
If there is no rule whose consequent is the labelled behaviour with the chosen
scene, the most general rule for this behaviour is added to R in lines 4 and 5.
The main rule-generating section of the algorithm then follows.

A rule r that is triggered by the chosen misclassified scene is selected at
random in line 8. Once again, random selection is used to avoid bias. line 9
generates the set of properties K, containing all the properties in the scenes
that trigger r. line 10 then creates a set of feasible constraints C, given K and

Algorithm 2: Rule Update
input: E training scenes λ resolution function

L labelling function T property transformation function
R base rule set

1 RBad ← ∅

2 while (ε ← {e ∈ E | L(e) /∈ λ (FR (T (e)))}) �= ∅ do
3 Select randomly e ∈ ε
4 if �r ∈ R | Fr (T (e)) = L(e) then
5 R ← R ∪ {(True,L(e))}
6 else
7 Select randomly r := (antecedent, consequent) ∈
8 {r ∈ R | Fr (T (e)) ∈ λ (FR (T (e)))}
9 K ←

⋃
Φ (r,R, λ, T , E)

10 C ← GenerateConstraints (K, {=,≤,≥})
11 R ← R \ {r}
12 repeat
13 if C = ∅ then
14 throw BadBaseRules

15 c ← GetConstraint (C, r, e, E ,L,R, λ, T)
16 C ← C \ {c}
17 r′ ← (antecedent AND c, consequent)
18 until r′ /∈ RBad ∪ R;
19 if �e ∈ E | Fr′ (T (e)) = consequent then
20 RBad ← RBad ∪ {r′}
21 else
22 R ← R ∪ {r′}

23 return R

A Rule-Based Behaviour Planner for Autonomous Driving 273

the operators {=,≤,≥}. Each of these operators includes equality to ensure that
every constraint covers the property observed in a training scene. The chosen
rule r is then removed from the current theory R in line 11. This allows r to be
updated and re-inserted or rejected if the update turns out to be bad, i.e., have
no coverage in the training scenes.

The repeat loop in line 12–18 creates a novel candidate rule r′ by adding a
single constraint c to the antecedent of r in line 17. In line 15, function GetCon-
straint chooses c from C according to a heuristic criterion that aims to improve
the chance that the misclassification will eventually be resolved, such as preci-
sion, coverage difference, rate difference, or Laplace estimate [5]. This implies
that the new constraint will not conflict with the existing ones. A single addi-
tional constraint may not resolve the misclassification, but it is sufficient for the
algorithm’s correct termination that the candidate rule is novel w.r.t. the union
of RBad and R (line). Informally, the existence of a novel candidate is ensured
by the fact that every training scene is uniquely defined by its properties—which
may be trivially converted into constraints—and that constraints may be added
to a rule until it specifies a unique scene. A counterexample to this intuition is
the unusual pathological case when a rule in the base rule set is triggered by
a misclassified example and already contains all the constraints derivable from
the training scenes. Under these circumstances, the repeat loop will exhaust all
candidates and throw an exception (lines 13 and 14). In such a case, the aberrant
rule must be removed from the base set.

On exiting the repeat loop, the candidate rule r′ is guaranteed novel, but may
not be good. If r′ has no coverage in the training scenes, line 20 adds it to RBad.
If there is coverage, r′ is added to R, although this does not guarantee that it
will immediately resolve the misclassification. This is achieved by the repeated
checking and iteration provided by the outer loop, and by the non-zero chance
that r′ will be further refined, if this is necessary. The antecedents of rules thus
increase monotonically, becoming more specific until the point at which they
resolve a misclassification, or have no coverage and are rejected.

Algorithm 2 does not necessarily converge monotonically: adding a constraint
to a rule makes it more specific, potentially increasing the number of misclassifi-
cations observed in line 2 before all necessary updates are completed. Removing
bad candidate rules from R in line 20 leaves the theory temporarily incom-
plete and has the same effect. The number of bad rules in RBad does increase
monotonically, thus ensuring eventual termination. In the worst case, the algo-
rithm will suffer the exponential complexity of trying all rules, with all possible
combinations of constraints. This does not happen in practice because function
GetConstraint in line 15 avoids obvious conflicts and makes heuristically good
choices.

3.2 Rule and Training Set Development

Our algorithms are sufficient to find a rule-based theory that perfectly agrees
with a set of labelled training scenes; however, they do not guarantee the under-
standability of the theory’s decisions. To bridge this gap between theory and

274 F. Bouchard et al.

practice, we give here an outline of a knowledge engineering cycle that allows
an expert to incrementally build a set of discriminating training scenes and cor-
responding rules. The four steps of the cycle, illustrated in Fig. 4, are described
below.

Fig. 4. Knowledge engineering cycle

Discrepancy Identification.
Rule set development is prompted
by the existence of discrepancies
between the actual and desired
behaviour of the rule engine.
These usually occur when the
rule engine encounters a novel
scene during deployment. Hence,
the first step is to identify a scene
that exemplifies the discrepancy,
either from test suites, simulation
testing, recordings of traffic flow, or open-road testing.

Misbehaviour Diagnosis. A discrepancy is not necessarily a misbehaviour
of the rule-based theory. To determine whether it is the fault of the theory or
something external, such as perception noise, forward and backward chaining are
used to identify the training scenes that also trigger the rules that misclassify
the discrepancy scene. We call these scenes the conflicting scenes, since they
are similar to the discrepancy scene but their behaviour label is different from
the desired label for the discrepancy scene. This procedure is in line with how
Algorithm 2 works. The comparison of the discrepancy and conflicting scenes
helps understand the discrepancy. If the analysis reveals that the current decision
for the discrepancy scene is reasonable as is, or that the problem is external to
the rule-based theory, there is no need to proceed. Otherwise, the theory is
deemed incomplete and the conflicting scenes, including the discrepancy scene,
are passed to the next step.

Knowledge Extraction. The discrepancy scene along with its correct decision
is an example of behaviour that must be incorporated in the theory; however, it
may contain irrelevant properties that make it too specific to be used without
modification, such as vehicles in the scene that are irrelevant to concluding the
correct behaviour. Such properties increase the number of existing rules the
new scene triggers, potentially causing Algorithm 2 to produce new rules that
are unnecessarily complex and opaque. The purpose of this step is therefore
to analyse the conflicting scenes and eliminate irrelevant properties from the
discrepancy scene by setting them as undefined.

Rule Engineering. Once the discrepancy scene has been sanitized in the previ-
ous step, it is added to the existing set of training scenes. The rule-based theory

A Rule-Based Behaviour Planner for Autonomous Driving 275

is then updated using Algorithm 1, with input parameters Rman and Rpar set to
the existing theory. Assuming that this theory correctly classifies the previous
training set (certainly true if it was produced by Algorithm 1), the outer loop
of Algorithm 2 will necessarily select the discrepancy scene as the first misclas-
sification to repair. The algorithm will then incrementally refine the rules, as
previously described, until every training scene derives its expected behaviour.

Incorporating the sanitized discrepancy scene in the rule-based theory does
not guarantee that the original misbehaviour will be cured, not even for the spe-
cific instance. The new theory is thus re-evaluated and the knowledge engineering
cycle is repeated, until no further discrepancies are detected.

4 Experimental Results

Using the schema outlined in Sect. 2 as a guide, we developed a prototype rule
engine in ECMAScript 2016–2017 [23] (standardized JavaScript), using polyfills
to ensure consistent behaviour with different interpreters. Our prototype makes
use of many optimizations not described in the text, including the use of quan-
tifiers over constraints in the syntax of rule antecedents, and caching the results
of rule antecedent evaluation (memoization). We executed the rule engine on
Google’s V8 interpreter1 in all the experiments described below.

The software stack of our autonomous vehicle is based on the Robot Operat-
ing System (ROS), within which the behaviour planner is a ROS node written
in C++. The behaviour planner node processes the autonomous vehicle’s sen-
sor data and communicates with the rule engine via JSON streams, using the
RESTful application programming interface.

4.1 Driving Policy

To learn the sets of maneuver and parameter rules of our rule engine, we incre-
mentally built a test suite consisting of 683 labelled scenes. Each scene was
expertly curated following the method presented in Sect. 3.2. Using this test
suite, we constructed a rule-based theory consisting of 330 maneuver rules and
16 parameter rules. The distributions of maneuver and parameter rules are shown
in Figs. 5 and 6, respectively. From Fig. 5, we see that 111/330 ≈ 33.6% of the
maneuver rules enforce an Emergency-Stop, delimiting the rule engine’s opera-
tional design domain (ODD). However, we note that 63 of these rules are only
required to ensure that the environment representation is well-formed and that
its attributes are used coherently during software integration. These rules can
therefore be removed once the integration is complete, and we may reasonably
conclude that the autonomous vehicle can drive in an urban environment with
only 267 maneuver rules. Figure 6 illustrates that the number of parameter rules
for a given high-level maneuver reflects the number of different ways in which
the maneuver is used.

1 https://V8.dev.

https://V8.dev

276 F. Bouchard et al.

Emergency-Stop

Decelerate-To-Halt

Follow-Leader

Track-Speed

Pass-Obstacle

Yield

Stop

111

67

54

53

20

23

2

Number of maneuver rules

Fig. 5. Maneuver rule distribution

Emergency-Stop

Decelerate-To-Halt

Follow-Leader

Track-Speed

Pass-Obstacle

Yield

Stop

0

8

3

1

2

2

0

Number of parameter rules

Fig. 6. Parameter rule distribution

4.2 Field Test

To demonstrate the viability of the rule-based theory within its ODD, the rule
engine was deployed in the University of Waterloo autonomous vehicle (shown
in Fig. 1) and tested by driving 110 km on public roads in full autonomy. During
the public drive, the rule engine was able to serve queries at up to 300 Hz. Given
that the typical rate of other components in our autonomous vehicle’s software
stack is 10 Hz, the rule-based theory was far from being the bottleneck.

The public drive was performed on a network of two-lane commercial roads
constrained by four-way intersections and T-intersections, with precedence vary-
ing between the autonomous vehicle (AV) and other dynamic objects (DO). The
route was planned to give the autonomous vehicle a non-trivial driving chal-
lenge. For instance, it had to effectively handle unprotected left-hand turns and
avoid a myriad of parked vehicles. In this latter case, the rules were implemented
to ensure that the autonomous vehicle could safely pass the parked vehicles by
temporarily encroaching on the oncoming lane. The numbers of various road
elements encountered and the numbers of different behaviours performed by our
autonomous vehicle are as follows:

48 Four-way intersections, precedence for AV 120 Straight crossings
60 Four-way intersections, precedence for DO 36 Protected left turns

144 T-intersections, precedence for AV 84 Unprotected left turns
72 T-intersections, with precedence for DO 84 Right turns
24 Cul-de-sacs

During the public drive, a safety driver had to intervene 58 times, with an
average time between interventions of over 5 min and 30 s. This is comparable
to the reported performance of the end-to-end deep-learning approach of [3].
Using metrics defined in that work, both approaches achieve ∼98% autonomy,
albeit with different ODDs. In our case, we believe that many of the interven-
tions derive from limitations external to the rule engine and could be avoided.

A Rule-Based Behaviour Planner for Autonomous Driving 277

Approximately 64% of the interventions were due to the driving scenario encoun-
tered being out of the ODD. Most of these scenarios involved interaction with
dynamic objects that our prototype system was not programmed to detect, such
as animals, bicycles, three-wheelers, and heavy vehicles. Approximately 36% of
the interventions were due to the cautious design of the driving policy, resulting
in deadlocks at some intersections when the dynamic object tracker was unable
to determine whether a vehicle was parked or was slowly moving (and thus might
have precedence to enter in the intersection).

5 Conclusion

We have defined a two-layer rule engine and provided an algorithm to create
and maintain its rule-based theory. We have demonstrated the practicality of
our approach by constructing a prototype that has been used to drive our level-
3 autonomous vehicle more than 110 km in a busy urban environment. Our rule
engine required few human interventions, achieving a similar degree of autonomy
to that of a highly-cited state-of-the-art approach based on deep learning [3].

Our ongoing work is focused on extending the operational design domain
(ODD) of our prototype rule engine, adding new high-level maneuvers and fur-
ther stratifying its rule-based theory to handle more complex driving scenarios.
Our current learning algorithm constructs a theory that perfectly agrees with the
training scenes, or reports the inconsistency. To accommodate imperfect training
data, which may contain unavoidable inconsistencies, we are also extending our
algorithm to refine rules based on statistical performance. The resulting theory
may then be more robust to inconsistencies encountered during deployment.

Although we encountered no problems of tractability in constructing our
prototype, we realize that this might not be the case if there are significantly
more rules or if the data structures are significantly enlarged. On the other
hand, it is not clear that our rule-based approach will be less tractable than
standard machine-learning approaches, which are known to be data inefficient.
To investigate this, we have incorporated the two-layer rule engine into our
reinforcement learning platform for autonomous driving [10]. This will allow us
to make a direct comparison of tractability using the same ODD, and also to
investigate how the rule engine performs when other vehicles drive unpredictably
or adversarially.

Acknowledgment. This work was supported throughout its development by Fonds
de Recherche du Québec – Nature et Technologies (FRQNT) and Natural Sciences and
Engineering Research Council (NSERC) Discovery Grant. Author SS was supported
by Japanese Science and Technology agency (JST) ERATO project JPMJER1603:
HASUO Metamathematics for Systems Design.

References

1. Aksjonov, A., Kyrki, V.: Rule-based decision-making system for autonomous vehi-
cles at intersections with mixed traffic environment. In: International Intelligent
Transportation Systems Conference (ITSC), pp. 660–666. IEEE (2021)

278 F. Bouchard et al.

2. Bansal, M., Krizhevsky, A., Ogale, A.S.: ChauffeurNet: learning to drive by imi-
tating the best and synthesizing the worst. In: Robotics: Science and Systems XV.
RSS Foundation (2019)

3. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
et al.: End to end learning for self-driving cars. arXiv: 1604.07316 (2016)

4. Fu, Y., Li, C., Yu, F.R., Luan, T.H., Zhang, Y.: Hybrid autonomous driving guid-
ance strategy combining deep reinforcement learning and expert system. Trans.
Intell. Transp. Syst. (T-ITS) 23(8), 11273–11286 (2022)

5. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7

6. Fürnkranz, J., Hüllermeier, E., Menćıa, E.L., Rapp, M.: Learning structured declar-
ative rule sets - a challenge for deep discrete learning. arXiv: 2012.04377 (2020)

7. González, D., Pérez, J., Milanés, V., Nashashibi, F.: A review of motion plan-
ning techniques for automated vehicles. Trans. Intell. Transp. Syst. (T-ITS) 17(4),
1135–1145 (2016)

8. Kapania, N.R., Govindarajan, V., Borrelli, F., Gerdes, J.C.: A hybrid control
design for autonomous vehicles at uncontrolled crosswalks. In: Intelligent Vehicles
Symposium (IV), pp. 1604–1611. IEEE (2019)

9. Kuderer, M., Gulati, S., Burgard, W.: Learning driving styles for autonomous vehi-
cles from demonstration. In: International Conference on Robotics and Automation
(ICRA), pp. 2641–2646. IEEE (2015)

10. Lee, J., Balakrishnan, A., Gaurav, A., Czarnecki, K., Sedwards, S.: WiseMove:
a framework to investigate safe deep reinforcement learning for autonomous driv-
ing. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 350–354.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8 20

11. Likmeta, A., Metelli, A.M., Tirinzoni, A., Giol, R., Restelli, M., Romano, D.: Com-
bining reinforcement learning with rule-based controllers for transparent and gen-
eral decision-making in autonomous driving. Robot. Auton. Syst. 131, 103568
(2020)

12. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018)
13. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., et al.: Junior: the Stanford

entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008)
14. Niehaus, A., Stengel, R.F.: An expert system for automated highway driving. IEEE

Control Syst. Mag. 11(3), 53–61 (1991)
15. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion

planning and control techniques for self-driving urban vehicles. Trans. Intell. Veh.
(T-IV) 1(1), 33–55 (2016)

16. de Sainte Marie, C.: Learning decision rules or learning decision models? In:
Moschoyiannis, S., Peñaloza, R., Vanthienen, J., Soylu, A., Roman, D. (eds.)
RuleML+RR 2021. LNCS, vol. 12851, pp. 276–283. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-91167-6 19

17. Shekhar, C., Moisan, S., Thonnat, M.: Use of a real-time perception program super-
visor in a driving scenario. In: Intelligent Vehicles Symposium (IV), pp. 363–368.
IEEE (1994)

18. Urmson, C., et al.: Autonomous driving in traffic: boss and the urban challenge.
AI Mag. 30(2), 17 (2009)

19. Vanderhaegen, F.: A rule-based support system for dissonance discovery and con-
trol applied to car driving. Expert Syst. Appl. 65, 361–371 (2016)

20. Wang, Q., Ayalew, B., Weiskircher, T.: Predictive maneuver planning for an
autonomous vehicle in public highway traffic. Trans. Intell. Transp. Syst. 20(4),
1303–1315 (2019)

http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-540-75197-7
http://arxiv.org/abs/2012.04377
https://doi.org/10.1007/978-3-030-30281-8_20
https://doi.org/10.1007/978-3-030-91167-6_19

A Rule-Based Behaviour Planner for Autonomous Driving 279

21. Xiao, W., et al.: Rule-based optimal control for autonomous driving. In: ACM/
IEEE 12th International Conference on Cyber-Physical Systems (ICCPS), pp. 143–
154. ACM (2021)

22. Yay, E., Madrid, N.M., Ramı́rez, J.A.O.: Using an improved rule match algorithm
in an expert system to detect broken driving rules for an energy-efficiency and
safety relevant driving system. Procedia Comput. Sci. 35, 127–136 (2014)

23. Zakas, N.C.: Understanding ECMAScript 6: The Definitive Guide for JavaScript
Developers. No Starch Press, San Francisco (2016)

24. Zhao, L., Ichise, R., Sasaki, Y., Liu, Z., Yoshikawa, T.: Fast decision making using
ontology-based knowledge base. In: Intelligent Vehicles Symposium (IV), pp. 173–
178. IEEE (2016)

25. Zimmerman, N., Schlenoff, C., Balakirsky, S.: Implementing a rule-based system
to represent decision criteria for on-road autonomous navigation. In: Spring Sym-
posium on Knowledge Representation and Ontologies for Autonomous Systems.
AAAI (2004)

Cooperation Among Groups of Agents in
the Epistemic Logic L-DINF

Stefania Costantini1,3 , Andrea Formisano2,3(B) , and Valentina Pitoni1

1 DISIM, Università di L’Aquila, via Vetoio-loc. Coppito, 67100 L’Aquila, Italy
{stefania.costantini,valentina.pitoni}@univaq.it

2 DMIF, Università di Udine, via delle Scienze 206, 33100 Udine, Italy
andrea.formisano@uniud.it

3 GNCS–INdAM, piazzale Aldo Moro 5, 00185 Rome, Italy

Abstract. The Logic of “Inferable” L-DINF has been recently proposed
as a declarative framework to formally model via epistemic logic (aspects
of) the group dynamics of cooperative agents. The framework permits
to model groups of cooperative agents that can jointly perform actions.
Various aspects of Multi-Agent Systems can be formalized in L-DINF,
such as costs of actions, agents’ preferences, and roles of agents within
groups. In this paper we extend the framework by introducing the possi-
bility of cooperation among different groups: if a group has not an agent
with the right role for performing an action, the group can ask another
group in order to have the action performed.

1 Introduction

The Logic of “Inferable” L-DINF [3,4,6] has been proposed to study the applica-
tion of epistemic logics to the formalization of group dynamics involving Intelli-
gent Agents participating to Multi-Agent Systems. The authors have developed
L-DINF by taking into account various aspects that concern the interaction
among agents within a group. The main aim consists in enabling modeling and
reasoning about the development and execution of joint plans. In particular,
the considered aspects include the possibility of modeling preferences about exe-
cution of actions, costs of actions and budget available to agents, mechanisms
to share the cost within a group (where agents are thus able to support each
other), actions that an agent is capable to perform (agents’ “competences”) and
actions that an agent is allowed by the group to perform (agents’ “role” in the
group). The Logic of “Inferable” has been developed so as to enable the for-
malization of aspects of the “Theory of Mind” (ToM), which is an important
social-cognitive skill that involves the ability to attribute mental states, includ-
ing emotions, desires, beliefs, and knowledge both one’s own and those of others,

Research partially supported by Action COST CA17124 “DigForASP” and by project
INDAM GNCS-2022 InSANE (CUP E55F22000270001).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 280–295, 2022.
https://doi.org/10.1007/978-3-031-21541-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_18&domain=pdf
http://orcid.org/0000-0002-5686-6124
http://orcid.org/0000-0002-6755-9314
http://orcid.org/0000-0002-4245-4073
https://doi.org/10.1007/978-3-031-21541-4_18

Cooperation Among Groups of Agents in the Epistemic Logic L-DINF 281

and to reason about the practical consequences of such mental states. The frame-
work supports the description of group dynamics, by modeling how an agent’s
set of beliefs evolves whenever the agent leaves a group or joins another group.

In this paper, we extend the framework so as to model situations in which
different groups can support each other. In particular, this may happen when
a group cannot perform an action because of insufficient competences (of its
members). Consequently, to get the action executed, the group can “borrow”
a competent agent from another group. The mechanism we introduce is in the
direction of strengthening the cooperation between agents in a MAS, so that they
may achieve their goals in a better and faster manner. In this way, a group, with
the help of members of other groups, can fulfil objectives that would otherwise be
unattainable. As we will see, in this approach the capabilities and roles of agents,
as well as the conditions for lending an agent to another group, are defined at the
semantic level. This is because the approach tries to combine the rigour of logic
and attention to practical aspects: in this way, in fact, a designer will be able to
specify these aspects in separate modules. In addition to ensuring modularity,
this choice also contributes to keep the complexity of the logic reasonable enough
to be practically manageable.

The paper is organized as follows. In Sect. 2 we introduce syntax and seman-
tics of L-DINF, together with an axiomatization of the proposed logical system.
In Sect. 3 we discuss an example of application of the new logic. In Sect. 4 we
present our definition of canonical model of an L-DINF theory. Finally, in Sect. 5
we conclude. For an in-depth discussion on the relationship of logic L-DINF with
related work, the reader may refer to [3] (we note here that our original inspira-
tion is an existing logic by Lorini and Balbiani [2]).

2 Logical Framework

L-DINF is a logic composed of a static component and a dynamic component.
The first, called L-INF, is a logic of explicit beliefs and background knowledge.
The dynamic component, called L-DINF, extends the static one with dynamic
operators. Such operators express the consequences of agents’ inferential actions
on their explicit beliefs.

2.1 Syntax

Let Atm = {p(t1, t2), q(t3, t4), . . . , h(ti, tj), . . .} where p, q, h are predicate sym-
bols and each t� ∈ N. Here an atomic proposition of the form p(t1, t2) stands for
“p is true from the time instant t1 to t2” with t1 � t2 (Temporal Representation
of the external world). As a special case we can have propositions of the form
p(t1, t1), which stands for “p is true in the time instant t1”. Customarily, we also
admit predicate symbols of higher arity, but in that case we assume that the first
two arguments are those that identify the time duration of the belief (e.g., the
atomic proposition open(1, 3,door) means “the agent knows that the door is open
from time 1 to time 3”). Prop denotes the set of all propositional formulas, that

282 S. Costantini et al.

is, the set of all Boolean formulas built out of the set of atomic propositions Atm.
The set AtmA is the set of the physical actions that agents can perform, includ-
ing “active sensing” actions (e.g., “let’s check whether it rains”, “let’s measure
the temperature”, etc.). In what follows, I is a MTL “time-interval” [8] which is
a closed finite interval [t, l] or an infinite interval [t,∞), for any pair of expres-
sions/values t, l such that 0 ≤ t ≤ l. Let Agt be a set of agents and Grp be a
set of groups of agents. As mentioned, agents can leave and join groups. Hence,
given an element G of Grp and an interval I, we write GI to emphasize the fact
that the composition of G does not change during I. The language of L-DINF,
denoted by LL-DINF, is defined by the following grammar:

ϕ,ψ ::= p(t1, t2) | ¬ϕ | ϕ ∧ ψ | Biϕ | Kiϕ | �Iϕ |
doi(φA, I) | can doi(φA, I) | doGI

(φA, I) | can doGI
(φA, I) |

intend i(φA, I) | intendGI
(φA, I) | execi(α) | execGI

(α) |
pref doi(φA, d, I) | pref doGI

(i, φA, I) | [GI : α]ϕ |
lend(i ,HI ,GI , φA)

α ::= �(ϕ,ψ) | ∩ (ϕ,ψ) | ↓(ϕ,ψ) | 	(ϕ,ψ)

where p(t1, t2) ranges over Atm, φA ∈ AtmA, i ∈ Agt , d ∈ N, I is a time interval,
and GI ,HI ⊆ Agt . (Other Boolean operators are defined from ¬ and ∧ in the
standard manner.)

The language of inferential actions of type α is denoted by LACT. The static
part L-INF of L-DINF, includes only those formulas not having sub-formulas of
the form [GI : α]ϕ.

Let us provide an intuitive semantics for the basic constructs of L-DINF
(formal semantics will be introduced in Sect. 2.2).

The formula intend i(φA, I) indicates the intention of agent i to perform the
physical action φA in the interval I, in the sense of the BDI agent model [10].
Formulas of this form can be part of agent’s knowledge base from the beginning
or it can be derived later. In this paper we do not cope with the formalization
of BDI, for which the reader may refer, e.g., to [7]. Hence, we will deal with
intentions rather informally, also assuming that intendGI

(φA, I) holds whenever
all agents of group GI intend to perform φA at a point in the time interval I.

The formula doi(φA, I) indicates the actual execution of action φA by agent
at a time point in I”. Note that, we do not provide an axiomatization for do
(and similarly doGI

, that indicates the actual execution of φA by the group of
agents GI). In fact, we assume that in any concrete implementation of the logical
framework, doi and doGI

are realized by means of a semantic attachment [11],
that is, a procedure which connects an agent with its external environment in a
way that is unknown at the logical level. The axiomatization only concerns the
relationship between doing and being enabled to do.

The expressions can doi(φA, I) and pref doi(φA, d, I) are closely related to
doi(φA, I). In particular, can doi(φA, I) must be seen as an enabling condition,
indicating that the agent i is enabled to perform the action φA in the interval
I, while instead pref doi(φA, d, I) indicates the level d of preference/willingness
of agent i to perform φA in the time interval I. The formula pref doGI

(i, φA, I)

Cooperation Among Groups of Agents in the Epistemic Logic L-DINF 283

indicates that agent i exhibits the maximum level of preference on performing
action φA within all group members in the time interval I. Notice that, if a
group of agents intends to perform an action φA, this will entail that the entire
group intends to do φA, that will be enabled to be actually executed only if at
least one agent i ∈ GI can do it, i.e., it can derive can doi(φA, I).

Unlike explicit beliefs, i.e., facts and formulas acquired via perceptions during
an agent’s operation and kept in the working memory, an agent’s background
knowledge is assumed to satisfy omniscience principles, such as: closure under
conjunction and known implication, closure under logical consequence, and intro-
spection. In fact, Ki is actually the well-known S5 modal operator often used
to model/represent knowledge. The fact that background knowledge is closed
under logical consequence is justified because we conceive it as a kind of stable
and reliable knowledge base, or long-term memory. We assume the background
knowledge to include: facts/formulas known by the agent from the beginning,
and facts the agent subsequently decided to store in its long-term memory (via a
decision-making mechanism not covered here) after processing them in its work-
ing memory. We therefore assume that background knowledge is irrevocable, in
the sense of being stable over time.

In the formula �Iφ the MTL interval “always” operator is applied to a for-
mula, which means that φ is always true during the interval I. For simplicity,
�[0,∞) will sometimes simply be written as �.

The formula lend(i ,HI ,GI , φA), where HI and GI are two disjoint groups of
agents and i ∈ HI , states that, if none of the agents in GI are authorized/enabled
to perform φA, then the group HI can lend agent i and i can perform φA, where
of course i must be entitled to do so and authorized by its group.

A formula of the form [GI :α]ϕ, where α must be an inferential action, states
that “ϕ holds after action α has been performed by at least one of the agents in
GI , and all agents in GI have common knowledge about this fact”.

Borrowing from [1,4,5], we distinguish four types of inferential actions α
that allow us to capture some of the dynamic properties of explicit beliefs and
background knowledge: ↓(ϕ,ψ), ∩(ϕ,ψ), 	(ϕ,ψ), and � (ϕ,ψ). These actions
characterize the basic operations of explicit belief formation through inference:

– ↓(ϕ,ψ) is the inferential action which consists in inferring ψ from ϕ, where
ψ is an atom, say p(t1, t2): an agent, believing that ϕ is true and having
in its long-term memory that ϕ implies ψ (in some suitable time interval
including [t1, t2]), starts believing that p(t1, t2) is true.

– ∩(ϕ,ψ) is the inferential action which closes the explicit belief ϕ and the
explicit belief ψ under conjunction. Namely, ∩(ϕ,ψ) characterizes the infer-
ential action of deducing ϕ ∧ ψ from the beliefs ϕ and ψ.

– 	(ϕ,ψ), where ϕ and ψ are atoms, is the inferential action that performs a
simple form of “belief revision”. That is, assuming ϕ and ψ are p(t1, t2) and
q(t3, t4), respectively, an agent believing p(t1, t2) and having in the long-term
memory that p(t1, t2) implies ¬q(t3, t4), removes the timed belief q(t3, t4) if
the intervals match. Note that, should q be believed in a wider interval I such

284 S. Costantini et al.

that [t1, t2] ⊆ I, the belief q(., .) is removed concerning intervals [t1, t2] and
[t3, t4], but it is left for the remaining sub-intervals, hence, it is “restructured”.

– �(ϕ,ψ), where ψ is an atom, say p(t1, t2); by means of this inferential action,
an agent believing that ϕ is true (i.e., it is in the working memory) and that ϕ
implies ψ in some suitable time interval including [t1, t2], starts believing that
p(t1, t2) is true. This last action operates exclusively on the working memory
without recovering anything from the background knowledge.

The formulas execi(α) and execGI
(α) express executability of inferential actions

either by agent i, or by a group GI (which is a consequence of the fact that any
member of the group is able to perform the action). They have to be read as:
“α is an inferential action that agent i (resp. an agent in GI) can perform”.

2.2 Semantics

Definition 1 introduces the notion of L-INF model, which is then used to define
semantics of the static fragment of the logic. Let us begin by introducing a “time
function” T that associates a time interval I with each formula:

– T (p(t1, t2)) = [t1, t2]; which, intuitively, should be read as “p is true in the
time interval [t1, t2]”. (By some abuse of notation, we have the special case
T (p(t1, t1)) = t1, which means “p is true in the time instant t1”);

– T (¬p(t1, t2)) = T (p(t1, t2)); (in this case, the intended meaning is that “p is
not true in the time interval [t1, t2]”);

– T (ϕ op ψ) = T (ϕ)
⊎

T (ψ) with op ∈ {∨,∧,→}, which is the unique smallest
interval including both T (ϕ) and T (ψ);

– T (Biϕ) = T (ϕ);
– T (Kiϕ) = T (ϕ);
– T (�Iϕ) = I;
– for formulas of the form T ([GI : α]ϕ) there are different cases depending on

the inferential action α:1

1. T ([GI : ↓(ϕ,ψ)]ψ) = T (ψ);
2. T ([GI : ∩(ϕ,ψ)] (ϕ ∧ ψ)) = T (ϕ ∧ ψ);
3. T ([GI : 	(ϕ,ψ)]ψ) = J , where J is the “restructured” interval in which

ψ is believed after the belief update action (cf., page 4);
4. T ([GI : �(ϕ,ψ)]ψ) = T (ψ);

– T (doi(φA, I)) = T (doGI
(φA, I)) = I;

– T (can doi(φA, I)) = T (can doGI
(φA, I)) = I;

– T (intend i(φA, I)) = T (intendGI
(φA, I)) = I;

– T (pref doi(φA, d, I)) = T (pref doGI
(i, φA, I)) = I;

– for formulas of the form T (execGI
(α)) there are several cases depending on α:

1. T (execGI
(↓(ϕ,ψ))) = T ([GI : ↓(ϕ,ψ)]ψ);

2. T (execGI
(∩(ϕ,ψ))) = T ([GI : ∩(ϕ,ψ)](ϕ ∧ ψ));

3. T (execGI
((ϕ,ψ))) = T ([GI : 	(ϕ,ψ)]ψ);

1 Note that we are only defining T ([GI : α]ϕ) for the specific forms of α and ϕ that
will come into play when defining the semantics of inferential actions (cf., Sect. 2.3).

Cooperation Among Groups of Agents in the Epistemic Logic L-DINF 285

4. T (execGI
(�(ϕ,ψ))) = T ([GI : �(ϕ,ψ))]ψ);

– T (execi(α)) = T (exec{i}(α));
– T (lend(i ,HI ,GI , φA)) = I.

Definition 1, below, depends on a given set of worlds W and on a valuation
function, namely a mapping V : W −→ 2Atm . For each world w ∈ W , let t1
the minimum time instant of T (p(t1, t)) where p(t1, t) ∈ V (w) and let t2 be the
supremum time instant (we can have t2 = ∞) w.r.t. the atoms p(t, t2) in V (w).
When useful, we will make explicit these two time instants t1 and t2 by denoting
w as wI with I = [t1, t2].

Note that many relevant aspects of an agent’s behaviour are specified in the
definition of L-INF model, including what mental and physical actions an agent
can perform, what is the cost of an action and what is the budget that the agent
has at its disposal, what is the degree of preference of the agent to perform
each action. This choice has the advantage of keeping the complexity of the logic
under control and making these aspects modularly modifiable.

As before, in what follows let Agt be the set of agents.

Definition 1. A model is a tuple M = (W,N,R, E,B,C,A,H, P, L, V, T)
where:

– W is a set of worlds (or situations);
– R = {Ri}i∈Agt is a collection of equivalence relations on W : Ri ⊆ W × W

for each i ∈ Agt;
– N : Agt × W −→ 22

W

is a neighborhood function such that, for each i ∈ Agt,
each wI , vI ∈ W , and each X ⊆ W these conditions hold:

(C1) if X ∈ N(i, wI) then X ⊆ {vI ∈ W | wIRivI},
(C2) if wIRivI then N(i, wI) = N(i, vI);

– E : Agt × W −→ 2LACT is an executability function of mental actions such
that, for each i ∈ Agt and wI , vI ∈ W , it holds that:

(D1) if wIRivI then E(i, wI) = E(i, vI);
– B : Agt × W −→ N is a budget function such that, for each i ∈ Agt and

wI , vI ∈ W , the following holds
(E1) if wIRivI then B(i, wI) = B(i, vI);

– C : Agt × LACT × W −→ N is a cost function such that, for each i ∈ Agt,
α ∈ LACT, and wI , vI ∈ W , it holds that:

(F1) if wIRivI then C(i, α, wI) = C(i, α, vI);
– A : Agt × W −→ 2AtmA is an executability function for physical actions such

that, for each i ∈ Agt and wI , vI ∈ W , it holds that:
(G1) if wIRivI then A(i, wI) = A(i, vI);

– H : Agt × W −→ 2AtmA is an enabling function for physical actions such
that, for each i ∈ Agt and wI , vI ∈ W , it holds that:

(G2) if wIRivI then H(i, wI) = H(i, vI);
– P : Agt × W × AtmA −→ N is a preference function for physical actions φA

such that, for each i ∈ Agt and wI , vI ∈ W , it holds that:
(H1) if wIRivI then P (i, wI , φA) = P (i, vI , φA);

286 S. Costantini et al.

– L : Agt × Grp × Grp × AtmA × W −→ {true, false} is a lending function for
agents. For each agent i, each GI ,HI ∈ Grp, and action φA, the value of
L(i, GI ,HI , φA, wI) = true iff w.r.t. wI no agent in GI can perform φA and
i ∈ HI and i is enabled to perform φA. (Intuitively, in such case, HI can lend
i to GI in order to get φA executed by i). Moreover, the following condition
holds for all HI , GI ∈ Grp, i ∈ HI , and wI , vI ∈ W :

(M1) if wIRivI then L(i,HI , GI , φA, wI) = L(i,HI , GI , φA, vI);
– V : W −→ 2Atm is a valuation function;
– T is the “Time Function”, defined before.

To simplify the notation, let Ri(wI) denote the set {vI ∈ W | wIRivI}, for
w∈W . The set Ri(wI) identifies the situations that agent i considers possible at
world wI . It is the epistemic state of agent i at wI . In cognitive terms, Ri(wI) can
be conceived as the set of all situations that agent i can retrieve from its long-
term memory and reason about. While Ri(wI) concerns background knowledge,
N(i, wI) is the set of all facts that agent i explicitly believes at world wI , a fact
being identified with a set of worlds. Hence, if X ∈ N(i, wI) then, the agent i has
the fact X under the focus of its attention and believes it. We say that N(i, wI)
is the explicit belief set of agent i at world wI .

Executability of inferential actions is determined by the function E. For an
agent i, E(i, wI) is the set of inferential actions that i can execute at world wI

in time interval I. The value B(i, wI) is the budget the agent has available to
perform inferential actions in time interval I. Similarly, the value C(i, α, wI) is
the cost to be paid by i to execute the inferential action α in the world wI in time
interval I. The executability of physical actions is determined by the function A.
For an agent i, A(i, wI) is the set of physical actions that agent i can execute at
world wI in time interval I. H(i, wI) instead is the set of physical actions that
agent i is enabled by its group to perform always in I. Which means, H defines
the role of an agent in its group, via the actions that it is allowed to execute.

Agent’s preference on execution of physical actions is determined by the
function P . For an agent i, and a physical action φA, P (i, wI , φA) is an integer
value d indicating the degree of willingness of i to execute φA at world wI .

Constraint (C1) imposes that agent i can have explicit in its mind only facts
which are compatible with its current epistemic state. Moreover, according to
constraint (C2), if a world vI is compatible with the epistemic state of agent i
at world wI , then agent i should have the same explicit beliefs at wI and vI . In
other words, if two situations are equivalent as concerns background knowledge,
then they cannot be distinguished through the explicit belief set. This aspect
of the semantics can be extended in future work to allow agents make plausible
assumptions. Analogous properties are imposed by constraints (D1), (E1), and
(F1). Namely, (D1) imposes that agent i always knows which inferential actions
it can perform and those it cannot. (E1) states that agent i always knows the
available budget in a world (potentially needed to perform actions). (F1) deter-
mines that agent i always knows how much it costs to perform an inferential
action. (G1) and (H1) determine that an agent i always knows which physical
actions it can perform and those it cannot, and with which degree of willingness,

Cooperation Among Groups of Agents in the Epistemic Logic L-DINF 287

where (G2) specifies that an agent also knows whether its group gives it the
permission to execute a certain action or not, i.e., if that action pertains to its
role in the group. (M1) specifies that an agent also knows whether its group
gives it the permission to be lent to an other group to perform an action.

Truth values of L-DINF formulas are inductively defined as follows.
Given a model M = (W,N,R, E,B,C,A,H, P, V, T), i ∈ Agt , G ⊆ Agt ,

wI ∈ W , and a formula ϕ ∈ LL-INF, we introduce this shorthand notation:

‖ϕ‖M
i,wI

= {vI ∈ W : wIRivI and M,vI |= ϕ}
whenever M,vI |= ϕ is well-defined (see below). Then, we set:

(t1) M,wI |= p(t1, t2) iff p(t1, t2) ∈ V (wI) and T (p(t1, t2)) ⊆ I
(t2) M,wI |= execi(α) iff α ∈ E(i, wI) and T (execi(α)) ⊆ I
(t3) M,wI |= execGI

(α) iff ∃i∈ GI with α ∈ E(i, wI) and T (execGI
(α)) ⊆ I

(t4) M,wI |= lend(i ,HI ,GI , φA) if L(i,HI , GI , φA, wI) = true
(t5) M,wI |= can doi(φA, J) iff φA ∈ A(i, wI) ∩ H(i, wI) and J ⊆ I
(t6) M,wI |= can doGI

(φA, J) iff (∃i∈ GI with φA ∈ A(i, wI) ∩ H(i, wI) and
J ⊆ I) ∨ (∃ HI ∈ Grp ∧ ∃j ∈ HI ∧ L(j,HI , GI , φA, wI) = true with
φA ∈ A(j, wI) ∩ H(j, wI) and J ⊆ I ∧ pref doHI

(j, φA, J))
(t7) M,wI |= pref doi(φA, d, J) iff φA ∈ A(i, wI), P (i, wI , φA) = d and J ⊆ I
(t8) M,wI |= pref doGI

(i, φA, J) iff M,w |= pref doi(φA, d, J) for d ∈ N such
that d = max{P (j, w, φA) | j ∈ GI ∧ φA ∈ A(j, w) ∩ H(j, w)} and J ⊆ I

(t9) M,wI |= ¬ϕ iff M,w �|= ϕ and T (¬ϕ) ⊆ I
(t10) M,wI |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ with T (ϕ), T (ψ) ⊆ I
(t11) M,wI |= Biϕ iff ||ϕ||Mi,w ∈ N(i, w) with T (ϕ) ⊆ I
(t12) M,wI |= Kiϕ iff M,v |= ϕ for all v ∈ Ri(w) with T (ϕ) ⊆ I
(t13) M,wI |= �Jϕ iff T (ϕ) ⊆ J ⊆ I and for all vI ∈ Ri(wI) it holds

M,wI |= ϕ.

As seen above, a physical action can be performed by a group of agents if
at least one agent of the group can do it. In this case, the level of preference
for performing this action is set to the maximum among those of the agents
enabled to execute the action. Rule (t6) models the extension that we propose
in this paper, stating that a group GI can perform in a certain situation (world
wI) and time interval I an action φA (in time interval I) if it has the right
competences and the right role internally (there exists agent i ∈ GI such that
φA ∈ A(j, wI) ∩ H(j, wI)), or if there exists another group HI including an
agent j with the right features, and which is available to lend the agent to G
(i.e., L(j,HI , GI , φA, wI) = true). Specifically, HI will lend the agent who most
prefers to perform the action in the time interval I.

For any inferential action α performed by any agent i, we set:

(t14) M,w |= [GI : α]ϕ iff M [GI :α], w |= ϕ

where M [GI :α] = 〈W,N [GI :α],R, E,B[GI :α], C,A,H, P, V, T 〉, is the model repre-
senting the fact that the execution of an inferential action α affects the sets of
beliefs of agent i and modifies the available budget in a certain time interval I.

288 S. Costantini et al.

Such operation can add new beliefs by direct perception, by means of one infer-
ence step, or as a conjunction of previous beliefs. Hence, when introducing new
beliefs (i.e., performing mental actions), the neighborhood must be extended
accordingly.

The following condition characterizes the circumstances in which an action
may be performed, and by which agent(s):

enabledwI
(GI , α) : ∃j ∈ GI (α ∈ E(j, w) ∧ C(j,α,wI)

|GI | ≤ minh∈GI
B(h,wI))

with T ([GI :α]ϕ) ⊆ I. This condition states when an inferential action is enabled.
In the above particular formulation (that is not fixed, but can be customized to
the specific application domain) if at least an agent can perform it and if the
“payment” due by each agent (obtained by dividing the action’s cost equally
among all agents of the group) is within each agent’s available budget. In case
more than one agent in GI can execute an action, we implicitly assume the agent
j performing the action to be the one corresponding to the lowest possible cost.
Namely, j is such that C(j, α, wI)= minh∈GI

C(h, α,wI). Other choices might be
viable, so variations of this logic can be easily defined simply by devising some
other enabling condition and, possibly, introducing differences in neighborhood
update. Notice that the definition of the enabling function basically specifies
the “concrete responsibility” that agents take while concurring with their own
resources to actions’ execution. Also, in case of specification of various resources,
different corresponding enabling functions might be defined.

2.3 Belief Update

In this kind of logic, updating an agent’s beliefs accounts to modify the neigh-
borhood of the present world. The updated neighborhood N [GI :α] resulting from
execution of a mental action α by a group GI of agents is as follows.

N [GI :↓(ψ,χ)](i, wI) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N(i, wI) ∪ {||χ||Mi,wI
} if i ∈ GI and T ([GI : ↓(ψ, χ)]χ) ⊆ I

and enabledwI (GI , ↓(ψ, χ)) and

M, wI |= Biψ ∧ Ki(ψ → χ)

N(i, wI) otherwise

N [GI :∩(ψ,χ)](i, wI) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N(i, wI) ∪ {||ψ ∧ χ||Mi,wI
} if i ∈ G and

T ([G : ∩(ψ,χ)](ψ ∧ χ)) ⊆ I

and enabledwI (GI , ∩(ψ,χ))

and M, wI |= Biψ ∧ Biχ

N(i, wI) otherwise

N [GI :�(ψ,χ)](i, wI) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N(i, wI) ∪ {||χ||Mi,wI
} if i ∈ GI and T ([GI :	 (ψ, χ)]χ) ⊆ I

and enabledwI (GI ,
(ψ,χ)) and

M, wI |= Biψ ∧ Bi(ψ → χ)

N(i, wI) otherwise

Cooperation Among Groups of Agents in the Epistemic Logic L-DINF 289

Notice that, after an inferential action α has been performed by an agent
j ∈ GI , all agents i ∈ GI see the same update in the neighborhood. Conversely,
for any agent h �∈ GI the neighborhood remains unchanged (i.e., N [GI :α](h,w) =
N(h,wI)). However, even for agents in GI , the neighborhood remains unchanged
if the required preconditions, on explicit beliefs, knowledge, and budget, do not
hold (and hence the action is not executed). Notice also that we might devise
variations of the logic by making different decisions about neighborhood update
to implement, for instance, partial visibility within a group.

For formulas of the form [GI : 	(ψ, χ)]χ, we take in account the following
case: given Q = q(j, k) such that T (q(j, k)) = T (q(t1, t2)) ∩ T (q(t3, t4)) with
j, k ∈ N and P ≡

((
M, wI |= Bi(p(t1, t2)) ∧ Bi(q(t3, t4)) ∧ Ki(p(t1, t2) → ¬q(t3, t4))

)

and
(
T ([GI :	 (p(t1, t2), q(t3, t4))]q(t5, t6)) ⊆ I

)
and there is no interval J �

T (p(t1, t2)) such that Bi(q(t5, t6)) where T (q(t5, t6))=J
)
, we put:

N [GI :�(p(t1,t2),q(t3,t4))](i, wI) =

{
N(i, wI) \ {||Q||Mi,wI

} if P holds

N(i, wI) otherwise

The following update of the budget function determines how each agent in GI

contributes to cover the costs of execution of an action, by consuming part of its
available budget. We assume, however, that only inferential actions that add new
beliefs have a cost. Hence, forming conjunctions and performing belief revision
are actions with no cost. As before, for an action α, we require enabledwI

(GI , α)
to hold and assume that j ∈ GI executes α. Then, depending on α, we have:

B[GI :↓(ψ,χ)](i, wI) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B(i, wI) − C(j,↓(ψ,χ),wI)
|GI | if i ∈ GI and T ([GI : ↓(ψ, χ)]χ) ⊆ I

and enabledwI (GI , ↓(ψ, χ))

and M, wI |= BIiψ ∧ Ki(ψ → χ)

B(i, wI) otherwise

B[GI :�(ψ,χ)](i, wI) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B(i, wI) − C(j,�(ψ,χ),wI)
|GI | if i ∈ GI and T ([GI :
(ψ,χ)]χ) ⊆ I

and enabledwI (GI ,
(ψ,χ))

and M, wI |= Biψ ∧ Bi(ψ → χ)

B(i, wI) otherwise

We write |=L-DINF ϕ to denote that M,wI |= ϕ holds for all worlds wI of
every model M .

We introduce below relevant consequences of our formalization, whose proof
can be developed analogously to what done in previous work [3].

For any set of agents GI and each i ∈ GI , we have the following:

– |=L-INF (Ki(ϕ → ψ)) ∧ Biϕ) → [GI : ↓(ϕ,ψ)]Biψ.
Namely, if an agent has ϕ among beliefs and Ki(ϕ → ψ) in its background
knowledge, then as a consequence of the action ↓(ϕ,ψ) the agent and any
group GI to which it belongs start believing ψ.

290 S. Costantini et al.

– |=L-INF (K(p(t1, t2) → ¬q(t3, t4)) ∧ Bi(p(t1, t2)) ∧ Bi(q(t3, t4))) →
[(GI : 	(p(t1, t2), q(t3, t4)))](Bi(q(t5, t6))) with T (q(t5, t6)) = T (q(t3, t4)) \
T (q(t1, t2)).
Namely, if the agent i has q(t3, t4) as one of its beliefs, q is not believed outside
T (q(t3, t4)), the agent perceives p(t1, t2) where T (p(t1, t2)) ⊆ T (q(t3, t4)),
and has Ki(p(t1, t2) → ¬q(t3, t4)) in its background knowledge. Then, after
the mental operation 	(p(t1, t2), q(t3, t4)), the agent starts believing q(t5, t6))
where T (q(t5, t6)) = T (q(t3, t4)) \ T (q(t1, t2)).

– |=L-INF (Biϕ ∧ Biψ) → [GI : ∩(ϕ,ψ)]Bi(ϕ ∧ ψ).
Namely, if an agent has ϕ and ψ as beliefs, then as a consequence of the action
∩(ϕ,ψ) the agent and any group GI to which it belongs start believing ϕ∧ψ.

– |=L-INF (Bi(ϕ → ψ)) ∧ Biϕ) → [GI : �(ϕ,ψ)]Bi, ψ.
Namely, if an agent has ϕ among its beliefs and Bi(ϕ → ψ) in its working
memory, then as a consequence of the action �(ϕ,ψ) the agent and any group
G to which it belongs start believing ψ.

2.4 Axiomatization

Below we introduce the axiomatization of our logic. The L-INF and L-DINF
axioms and inference rules are the following:

1. (Kiϕ ∧ Ki(ϕ → ψ)) → Kiψ;
2. Kiϕ → ϕ;
3. ¬Ki(ϕ ∧ ¬ϕ);
4. Kiϕ → KiKiϕ;
5. ¬Kiϕ → Ki¬Kiϕ;
6. Biϕ ∧ Ki(ϕ ↔ ψ) → Biψ;
7. Biϕ → KiBiϕ;
8. �Iϕ ∧ �I(ϕ → ψ) → �I(ψ);
9. �Iϕ → �Jϕ with J ⊆ I;

10. ϕ
Kiϕ

;
11. [GI : α]p ↔ p;
12. [GI : α]¬ϕ ↔ ¬[GI : α]ϕ;
13. execGI

(α) → Ki(execGI
(α));

14. lend(i ,HI ,GI , φA) → Ki(lend(i,HI , GI , φA));
15. [GI : α](ϕ ∧ ψ) ↔ [GI : α]ϕ ∧ [GI : α]ψ;
16. [GI : α]Kiϕ ↔ Ki([GI : α]ϕ);
17. [GI : ↓(ϕ,ψ)]Biχ ↔ Bi([GI : ↓(ϕ,ψ)]χ) ∨ [GI : ↓(ϕ,ψ)]Biχ ↔ (

(Biϕ ∧
Ki(ϕ → ψ)) ∧ [GI : ↓(ϕ,ψ)]Biχ ↔ Ki([GI : ↓(ϕ,ψ)]χ ↔ ψ)

)
;

18. [GI : ∩(ϕ,ψ)]Biχ ↔ Bi([GI : ∩(ϕ,ψ)]χ) ∨ [GI : ∩(ϕ,ψ)]Biχ ↔ (
(Biϕ ∧

Biψ) ∧ [GI : ∩(ϕ,ψ)]Biχ ↔ Ki[GI : ∩(ϕ,ψ)]χ ↔ (ϕ ∧ ψ)
)
;

19. [GI : �(ϕ,ψ)]Biχ ↔ Bi([GI : �(ϕ,ψ)]χ) ∨ [GI : �(ϕ,ψ)]Biχ ↔ (
(Biϕ ∧

Bi(ϕ → ψ)) ∧ [GI : �(ϕ,ψ)]Biχ ↔ Ki([G : �(ϕ,ψ)]χ ↔ ψ)
)
;

20. [GI : 	(ϕ,ψ)]¬Biχ ↔ Bi([G : 	(ϕ,ψ)]χ) ∨ [GI : 	(ϕ,ψ)]¬Biχ ↔ (
(Biϕ ∧

Ki(ϕ → ¬ψ)) ∧ [GI : 	(ϕ,ψ)]¬Biχ ↔ Ki([GI : 	(ϕ,ψ)]χ ↔ ψ)
)
;

Cooperation Among Groups of Agents in the Epistemic Logic L-DINF 291

21. intendGI
(φA, I) ↔ ∀i ∈ GI intendi(φA; I);

22. doGI
(φA, I) → can doGI

(φA, I);
23. doi(φA, I) → can doi(φA, I) ∧ pref doGI

(i , φA, I);
24. ψ↔χ

ϕ↔ϕ[ψ/χ]
.

We write L-DINF� ϕ to denote that ϕ is a theorem of L-DINF. It can be verified
that the above axiomatization is sound for the class of L-INF models, namely, all
axioms are valid and inference rules preserve validity. In particular, soundness of
axioms 17–20 follows from the semantics of [GI :α]ϕ, for each inferential action
α, as previously defined. Notice that, by abuse of notation, we have axiomatized
the special predicates concerning intention and action enabling. Axioms 21–23
concern, in fact, physical actions, stating that: what is intended by a group of
agents is intended by all members of the group; and, neither an agent nor a group
of agents can do what it is not enabled to do. Such axioms are not enforced by
semantics, but should be guaranteed by the encoding of the behavior of agents
done by the designer/programmer of the MAS at hand. In fact, axiom 21 requires
the agents of a group to be cooperative. Axioms 22 and 23 ensure that agents
will attempt to perform actions only if their preconditions are satisfied, that is,
if they can perform such actions. We do not handle such properties in semantics
as done, for example, in dynamic logic, because we want the definition of agents
to be independent of the practical aspect, so we explicitly intend to introduce
flexibility in the definition of such parts.

3 Problem Specification and Inference: An Example

In this section, we propose an example to explain the usefulness of this kind of
logic. Consider a group G composed by three agents who collaborate to fix the
road surface: the first agent a clears the road to fix, the second agent b prepares
the asphalt and the third agent c drives the truck. The third is the only one who
can drive the truck because he has the right license; the others are enabled to
perform different tasks, such as, e.g., outline the works, put the road signs of the
works, prepare the road surface, and so on.

In the same area there is a first-aid station (a second group H) where there
are two other agents, d and e, who are there to handle emergencies.

The group G receives notification of a deadline for a road repair. Conse-
quently, the members of G decide to organize to do it. The group will reason,
and devise the intention/goal Ki(�I intendGI

(road repaired(t0 , t2), I)). Here t0
is the time instant when the group begins to organize to work on the road,
whereas I = [t0, t1], where t1 is the deadline and t2 is the time instant when
they really finish repairing and t2 ≤ t1.

Among the physical actions that agents of G can perform, we have:

prepare road prepare asphalt place road signs
drive truck pave

292 S. Costantini et al.

Among the physical actions that agents of H can perform, we have:

provide first aid call ambulance if needed

The group G is now required to perform a planning activity. Assume that,
as a result of the planning phase, the knowledge base of each agent i contains
the following formula, that specifies how to reach the intended goal in terms of
actions to perform and sub-goals to achieve:

Ki

(
�I intendGI (road repaired(t0 , t2), I) →

�I1 intendGI (place road signs(t0 , t3), I1) ∧
�I2 intendGI (prepare asphalt(t0 , t4), I2) ∧

�I intendGI (drive truck(t0 , t5), I)
)
,

where I1, I2 ⊆ I, t3 is the time when the agent placed the road sign and t3 ≤ t1,
t4 is the time when the agent b actually finished preparing the asphalt (t4 ≤ t1),
and finally t5 is the time instant when the other agent drove the truck with the
asphalt in the right place. Thanks to axiom 21 (i.e., intendGI

(φA, I) ↔ ∀i ∈
GI intendi(φA, I)), each agent has the specialized formula (for i ≤ 3):

Ki

(
�I intendi(road repaired(t0 , t2), I) → �I1 intendi(place road signs(t0 , t3), I1) ∧

�I2 intendi(prepare asphalt(t0 , t4), I2) ∧
�I intendi(drive truck(t0 , t5), I)

)
.

Therefore, the following formulas can be entailed by each agent:

Ki

(
�I intendi(road repaired(t0 , t2), I) → �I1 intendi(place road signs(t0 , t3), I1)

)

Ki

(
�I intendi(road repaired(t0 , t2), I) → �I2 intendi(prepare asphalt(t0 , t4), I2)

)

Ki

(
�I intendi(road repaired(t0 , t2), I) → �I intendi(drive truck(t0 , t5), I)

)
.

Assume now that the knowledge base of each agent i contains also the fol-
lowing general formulas:

Ki

(
�I1

(
intendGI (place road signs(t0, t3), I1) ∧ can doGI (place road signs(t0, t3), I1)∧

pref doGI (i , place road signs(t0 , t3), I1)
) → �I1doGI (place road signs(t0 , t3), I1)

)

Ki

(
�I2

(
intendGI (prepare asphalt(t0 , t4), I2) ∧ can doGI (prepare asphalt(t0 , t4), I2)∧

pref doGI (i , prepare asphalt(t0 , t4), I2)
) → �I2doGI (prepare asphalt(t0 , t4), I2)

)

Ki

(
�I

(
intendGI (drive truck(t0 , t5), I) ∧ can doGI (drive truck(t0 , t5), I)∧
pref doGI (i , drive truck(t0 , t5), I)

) → �IdoGI (drive truck(t0 , t5), I)
)

These formulas state that the group is available to perform each of the nec-
essary actions. Which agent will perform each possible action φA? According
to (t4) and (t7) defined in page 8, the agent is the one which best prefers
to perform the action, among those that can do it. In the present situation,
pref doGI

(i , φA, I) identifies the agent i in the group with the highest degree
of preference on performing φA. Moreover, can doGI

(φA, I) is true if there is
some agent i in the group which is able and allowed to perform φA, that is,
it holds that φA ∈ A(i, w) ∧ φA ∈ H(i, w). For each action φA required by
the plan, there will be some agent i (let us assume for simplicity that it is

Cooperation Among Groups of Agents in the Epistemic Logic L-DINF 293

unique), for which doi(φA, I) can be concluded. In our case, agent a will conclude
doa(place road signs(t0 , t3), I1); b will conclude dob(prepare asphalt(t0 , t4), I2)
and c will conclude doc(drive truck(t0 , t5), I). Assume now that the agent b dur-
ing the preparation of asphalt has an accident. As a consequence an update of the
goal must occur: the new goal is Ki(�J intendGJ

(provide first aid(t6 , t7), J)).
Here, t6 is the time instant when the group begins to organize themselves for
providing first aid, J = [t6, t8] where t8 is the maximum time instant within
which first aid must be provided, t7 is the time instant when they really com-
plete administering first aid, and t7 ≤ t8. Assume that the knowledge base of each
agent i contains the following formula, that specifies how to reach the intended
goal in terms of actions to perform and sub-goals to achieve:

Ki

(
�J intendGJ (provide first aid(t6 , t7), J) →

�J1 intendGJ (provide first aid(t6 , t9), J1)
)

where J1 ⊆ J , t9 is the time instant when the agent have done the first aid and
t9 ≤ t8. Again, thanks to axiom 21, the following can be obtained by each agent
(for each agent i):

Ki

(
�J intendi(provide first aid(t6 , t7), J) →

�J1 intendi(provide first aid(t6 , t9), J1)
)

At this point a problem arises: none of the agents in the group G is allowed to
perform the action provide first aid . A solution consists in borrowing another
agent from group H, because both agents in H are enabled to perform such
action. Hence, the action will be performed by agent d ∈ H, that we assume to
be the one which best prefers to intervene. Thanks to the conditions expressing
semantics of formulas (in particular, (t4)–(t7) in page 8), we can obtain that

Ki

(
�J intendHJ (provide first aid(t6 , t7), J) →

�J1 intendHJ (provide first aid(t6 , t9), J1)
)

holds and that agent d can specialize such formula to obtain

Ki

(
�J intendd(provide first aid(t6 , t7), J) →

�J1 intendd(provide first aid(t6 , t9), J1)
)

and, to finally enable the execution of the action provide first aid by deriving
the formula dod(provide first aid(t6 , t9), J1). Clearly, to reach this conclusion,
further pieces of (background) knowledge enter into play, for instance, as hap-
pened for the planning developed by G, agent d might exploit formulas retrieved
from its long-term memory, such as the following implication:

Ki

(
�J1(intendd(provide first aid(t6 , t9), J1) ∧ can dod(provide first aid(t6 , t9), J1)∧
pref dod(i , provide first aid(t6 , t9), J1)) → �J1dod(provide first aid(t6 , t9), J1)

)
.

294 S. Costantini et al.

4 Canonical Model and Strong Completeness

Definition 2. Let Agt be a set of agents. The canonical L-INF model is a tuple
Mc = 〈Wc, Nc,Rc, Ec, Bc, Cc, Ac,Hc, Pc, Lc, Vc, Tc〉 where:

– Wc is the set of all maximal consistent subsets of LL-INF;
– Rc = {Rc,i}i∈Agt is a collection of equivalence relations on Wc such that, for

every i ∈ Agt and wI , vI ∈ Wc, wIRc,ivI if and only if (for all ϕ, Kiϕ ∈ wI

implies ϕ ∈ vI);
– For w ∈ Wc, ϕ ∈ LL-INF let Aϕ(i, wI) = {v ∈ Rc,i(wI) | ϕ ∈ v}. Then, we

put Nc(i, wI)={Aϕ(i, wI) | Biϕ ∈ wI};
– Ec : Agt × Wc −→ 2LACT is such that, for each i∈Agt and wI , vI∈Wc, if

wIRc,ivI then Ec(i, wI) = Ec(i, vI);
– Bc : Agt × Wc −→ N is such that, for each i ∈ Agt and wI , vI ∈ Wc, if

wIRc,ivI then Bc(i, wI) = Bc(i, vI);
– Cc : Agt × LACT × Wc −→ N is such that, for each i ∈ Agt, α ∈ LACT, and

wI , vI ∈ Wc, if wIRc,ivI then Cc(i, α, wI) = Cc(i, α, vI);
– Ac : Agt × Wc −→ 2AtmA is such that, for each i ∈ Agt and wI , vI ∈ Wc, if

wIRc,ivI then Ac(i, wI) = Ac(i, vI);
– Hc : Agt × Wc −→ 2AtmA is such that, for each i ∈ Agt and wI , vI ∈ Wc, if

wIRc,ivI then Hc(i, wI) = Hc(i, vI);
– Pc : Agt × Wc × AtmA −→ N is such that, for each i ∈ Agt and wI , vI ∈ W ,

if wIRc,ivI then Pc(i, wI , φA) = Pc(i, vI , φA);
– Lc : Agt×Grp×Grp×AtmA ×W −→ {true, false} is such that for all i ∈ Agt

and HI , GI ∈ Grp and wI , vI ∈ W , if wIRc,ivI then Lc(i,HI , GI , φA, wI) =
Lc(i,HI , GI , φA, vI);

– Vc : Wc −→ 2Atm is such that Vc(wI) = Atm ∩ wI ;
– Tc: the time function defined as before (see Sect. 2.2).

Let Rc,i(wI) denote the set {vI ∈ Wc | wIRc,ivI}, for each agent i ∈ Agt . Mc

is an L-INF model as stated in Definition 1, since, it satisfies conditions (C1),
(C2), (D1), (E1), (F1), (G1), (G2), (H1, (M1). Hence, it models the axioms
and the inference rules 1–21 and 24 introduced before (while, as mentioned in
Sect. 2.4, it is assumed that the axioms 21–23 are enforced by the specification of
agent behaviour). Consequently, the following properties hold too. Let wI ∈ Wc,
then:

– given ϕ ∈ LL-INF, it holds that Kiϕ ∈ wI if and only if ∀vI ∈ Wc such that
wIRc,ivI we have ϕ ∈ v;

– for ϕ ∈ LL-INF, if Biϕ ∈ wI and wIRc,iv then Biϕ ∈ vI ;

Thus, Rc,i-related worlds have the same knowledge and Nc-related worlds have
the same beliefs, i.e., there can be Rc,i-related worlds with different beliefs.

Proceeding in analogy to what was done in previous papers [3,6], we obtain
the proof of strong completeness, which we omit for conciseness.

Cooperation Among Groups of Agents in the Epistemic Logic L-DINF 295

5 Conclusions

In this paper, we have extended the logic L-DINF to enable modeling and rea-
soning on cooperation between different groups of agents. Namely, we have intro-
duced into the logic framework the possibility for a group to support another
group that does not have among its members any agent with the right compe-
tences to carry out an action. For the new extended logic, that takes time into
account, we revised the semantics previously appeared in [9] by proposing an
enhanced treatment of formulas, together with a belief update mechanism. In
future work, we intend to further extend the logic in the direction of formalizing
more complex interactions and synergies among multiple groups of agents.

References

1. Balbiani, P., Duque, D.F., Lorini, E.: A logical theory of belief dynamics for
resource-bounded agents. In: Proceedings of the 2016 International Conference
on Autonomous Agents & Multiagent Systems, AAMAS 2016, pp. 644–652. ACM
(2016)

2. Balbiani, P., Fernández-Duque, D., Lorini, E.: The dynamics of epistemic attitudes
in resource-bounded agents. Stud. Logica 107(3), 457–488 (2019)

3. Costantini, S., Formisano, A., Pitoni, V.: An epistemic logic for multi-agent sys-
tems with budget and costs. In: Faber, W., Friedrich, G., Gebser, M., Morak, M.
(eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 101–115. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-75775-5 8

4. Costantini, S., Formisano, A., Pitoni, V.: An epistemic logic for modular devel-
opment of multi-agent systems. In: Alechina, N., Baldoni, M., Logan, B. (eds.)
EMAS 2021. LNCS, vol. 13190, pp. 72–91. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-97457-2 5

5. Costantini, S., Formisano, A., Pitoni, V.: Temporalizing epistemic logic L-DINF.
In: Calegari, R., Ciatto, G., Omicini, A. (eds.) Proceedings of CILC 2022, CEUR
Workshop Proceedings. CEUR-WS.org (2022)

6. Costantini, S., Pitoni, V.: Towards a logic of “inferable” for self-aware transparent
logical agents. In: Musto, C., Magazzeni, D., Ruggieri, S., Semeraro, G. (eds.)
Proceedings of the Italian Workshop on Explainable Artificial Intelligence Co-
located with 19th International Conference of the Italian Association for Artificial
Intelligence, 2020. CEUR Workshop Proceedings, vol. 2742, pp. 68–79. CEUR-
WS.org (2020)

7. Ditmarsch, H.V., Halpern, J.Y., Hoek, W.V.D., Kooi, B.: Handbook of Epistemic
Logic. College Publications, Norcross (2015)

8. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

9. Pitoni, V., Costantini, S.: A temporal module for logical frameworks. In: Bogaerts,
B., et al. (eds.) Proceedings of ICLP 2019 (Tech. Comm.). EPTCS, vol. 306, pp.
340–346 (2019)

10. Rao, A.S., Georgeff, M.: Modeling rational agents within a BDI architecture. In:
Proceedings of the Second International Conference on Principles of Knowledge
Representation and Reasoning (KR 1991), pp. 473–484. Morgan Kaufmann (1991)

11. Weyhrauch, R.W.: Prolegomena to a theory of mechanized formal reasoning. Artif.
Intell. 13(1–2), 133–170 (1980)

https://doi.org/10.1007/978-3-030-75775-5_8
https://doi.org/10.1007/978-3-030-97457-2_5
https://doi.org/10.1007/978-3-030-97457-2_5

Prudens: An Argumentation-Based
Language for Cognitive Assistants

Vassilis Markos1(B) and Loizos Michael1,2

1 Open University of Cyprus, Nicosia, Cyprus
vasileios.markos@st.ouc.ac.cy, loizos@ouc.ac.cy

2 CYENS Center of Excellence, Nicosia, Cyprus

Abstract. In this short system paper, we present our implementation
of a prioritized rule-based language for representing actionable policies,
in the context of developing cognitive assistants. The language is asso-
ciated with a provably efficient deduction process, and owing it to its
interpretation under an argumentative semantics it can naturally offer
ante-hoc explanations on its drawn inferences. Relatedly, the language is
associated with a knowledge acquisition process based on the paradigm
of machine coaching, guaranteeing the probable approximate correctness
of the acquired knowledge against a target policy. The paper focuses
on demonstrating the implemented features of the representation lan-
guage and its exposed APIs and libraries, and discusses some of its more
advanced features that allow the calling of procedural code, and the
computation of in-line operations when evaluating rules.

Keywords: Logical programming · Non-monotonic reasoning ·
Cognitive assistants

1 Introduction

The widespread adoption of Artificial Intelligence (AI) in everyday applications
has led to an upsurging interest in the design of cognitive assistants, i.e., of sys-
tems “augmenting human intelligence”, as put by Engelbart [2]. Naturally, such
systems are required to be cognitively compatible with humans, in an effort to
facilitate human-machine interaction, which makes, explainability and under-
standability natural prerequisites as well [3,12]. Considering the above desider-
ata, argumentation-based designs seem as a proper choice that can at the same
time accommodate cognitive compatibility, while providing substantial potential
for interpretability and explainability for such systems [6,10].

Having in mind the above, with this work we present a declarative pro-
gramming language, Prudens, aiming to facilitate the design of cognitive assis-
tants. Prudens is an argumentation-based language that can fully support effi-
cient deduction as described in [11]. Moreover, Prudens is also compatible
with machine coaching, a provably efficient human-in-the-loop machine learn-
ing methodology, under the Probably Approximately Correct (PAC) semantics
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Governatori and A.-Y. Turhan (Eds.): RuleML+RR 2022, LNCS 13752, pp. 296–304, 2022.
https://doi.org/10.1007/978-3-031-21541-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21541-4_19&domain=pdf
https://doi.org/10.1007/978-3-031-21541-4_19

Prudens: An Argumentation-Based Language for Cognitive Assistants 297

[11,14]. Given its reliance on arguments, Prudens can also support the design of
assistants that can explain their decisions, by providing the internal arguments
that have led the system to draw a conclusion as an explanation.

The rest of this paper is structured as follows: (i) in Sect. 2 we present the
basic syntax of Prudens; (ii) in Sect. 3 we present extended features of the lan-
guage; (iii) in Sect. 4 we discuss currently ongoing and future works related to
Prudens and; (iv) in Sect. 5 we conclude. All online resources regarding Prudens
may be found at http://cognition.ouc.ac.cy/prudens/.

2 Basic Syntax and Semantics

First we discuss the basic syntax of Prudens, by describing the language’s basic
rule syntax and their prioritization as well as the underlying reasoning process.

2.1 Rule Syntax

The core (“vanilla”) version of Prudens basically implements the knowledge rep-
resentation language described in [11]. It provides constants, which correspond
to entities of the universe of discourse, as well as variables, which serve as place-
holders for constants. Moreover, first-order predicates (with variables and/or
constants as arguments) as well as propositional ones are provided, encoding
relations and conditions about the universe of discourse, respectively. Literals
are either predicates themselves or negated, with negation being understood as
classical negation within the scope of Prudens. Two literals corresponding to the
same predicate but with opposite signs are conflicting . The language, building
on the above, allows for if-then rules, which connect a set of premises, the rules’
body , with a single literal, the rules’ head . As with literals, two rules with con-
flicting heads are conflicting as well. Lastly, a list of rules alongside a priority
relation defined over all pairs of conflicting rules comprise a policy . By default,
priorities in a policy are determined by the rules’ order of appearance. That is,
the later a rule appears in the policy, the higher its priority is over conflicting
ones. Also, a context is a set of pairwise non-conflicting literals, corresponding
to a set of facts being known at the beginning of the reasoning process—see
Sect. 2.2 for more. The language’s “vanilla” constructs are shown in Table 1.

2.2 Reasoning

Reasoning in Prudens is performed utilizing prioritized forward-chaining seman-
tics, by exhaustively inferring all possible facts through all policy rules, respect-
ing priorities between them, given each time a set of currently known facts—
initially, the context. For instance, consider the example policy shown in Fig. 1.
In this case, a context containing isMonday and bobCalls would lead us
infer atWork and -answerCall, as follows: (i) At first, knowing isMonday and
bobCalls, R1 and R2 fire, allowing us to infer atWork and answerCall; (ii)
Knowing atWork, rule R3 fires, leading to -answerCall, which conflicts with

http://cognition.ouc.ac.cy/prudens/

298 V. Markos and L. Michael

Table 1. The syntax of Prudens.

Item Syntax Example

Constant Any non empty string containing alphanumeric
characters or underscores (a-zA-Z0-9), starting
with a lowercase latter (a-z)

alice, office 2

Variable Any non empty string containing alphanumeric
characters or underscores (a-zA-Z0-9), starting
with an uppercase latter (A-Z)

User, Place 23

Predicate Any non empty string starting with a lowercase
latter (a-z) and possibly followed by an arbitrary
number of alphanumeric characters or
underscores (a-zA-Z0-9). In case of first-order
predicates, a comma separated list of variables
and/or constants should follow, enclosed in
parentheses

atHome, at(X, bob)

Literal A predicate, possibly preceded by a dash (-),
indicating negation

-atWork, friends(X, Y)

Rule A string starting with a non empty sequence of
alphanumeric characters or underscores
(a-zA-Z0-9), followed by ::, followed by a
comma-separated list of literals (body), followed
by the keyword implies, followed by a single
literal (head)

R1 :: a, b implies z

r2 :: f(X, 3) implies g(X)

Policy A semicolon-separated list of rules, preceded by
the @Knowledge keyword

@Knowledge

R1 :: a implies z;

R2 :: a, b implies -z;

Context A semicolon-separated list of pairwise
non-conflicting literals.

a; b; -at(work);

answerCall, which is resolved by preferring -answerCall over answerCall,
since the former was inferred by R3, which is of higher priority than R2. (iii)
Having inferred atWork and -answerCall, nothing more may be inferred, so the
process terminates. For more on Prudens’s reasoning algorithm, see [11].

Fig. 1. A simple propositional policy regarding phone call management.

2.3 Custom Priorities and Dilemmas

Apart from order-induced implicit rule prioritization, one may define custom
rule priorities in essentially two ways: programmatically, by providing a prior-
ity function as an optional argument to the Prudens’s core reasoning function

Prudens: An Argumentation-Based Language for Cognitive Assistants 299

and; explicitly, by providing priorities within each rule’s declaration. Regarding
explicit priority manipulation, the language’s “vanilla” rule syntax is extended
to allow for priorities to be declared through integers following a rule’s head,
separated by a |, as in the policies shown in Fig. 2. There, numbers indicate pri-
ority, with negative values being allowed as well. So, given a context containing
bobCalls; atWork;, the top policy in Fig. 2 would yield answerCall, since R1
is preferred over R2.

Fig. 2. Two policies with custom priorities.

Naturally, allowing for custom priorities, there might be cases where two rules
are incomparable, either because no priority between them has been explicitly
determined, or because they are of the same priority, as in Fig. 2 (bottom). Such
cases are called dilemmas. Since there is no clear way to resolve a dilemma,
the reasoning engine abstains from making a decision, ignoring both rules and
proceeding with the reasoning process. Any dilemmas encountered throughout
a reasoning cycle are noted and returned separately from the rest inferences.

3 Extended Syntax and Semantics

Apart from the language’s core features presented in Sect. 2, there are several
additional features that are offered by Prudens, as discussed below.

3.1 The Unification Predicate

Prudens comes with a built-in multipurpose binary predicate, denoted by
?=(·,·). The unification predicate holds true provided that its two arguments are
unifiable. So, for instance, given a rule like: R1 :: f(X), ?=(X, Y) implies
g(Y); and a context containing f(2), we would get g(2) as an inference. In
general, (function-free) unification is conceptualized as with most logical pro-
gramming interfaces; so two constants unify if they are equal, a variable unifies
with any constant and two (unassigned) variables always unify. We shall note at
this point that the unification predicate might not be used as a head literal in
any rule.

The very same predicate also allows for numerical operations within its argu-
ments, provided that they do not invoke any variables that remain unassigned

300 V. Markos and L. Michael

once all other body predicates are grounded. So, a rule like R1 :: f(X), ?=(Y,
X+3) implies g(Y); with a context containing f(2) would infer g(5) but R2
:: f(X), ?=(Y-3, X) implies g(Y); with the same context would not, since
there is no value assigned to Y by the time the predicate is evaluated. Any math-
ematical expressions within ?=(·,·) should adhere to ECMAScript 6 syntax.

Fig. 3. A policy indicating that any calls before 17:00 should be rejected, with the help
of a procedural predicate (lessThan), evaluating numerical comparisons.

3.2 On-the-Fly Math Operations

Prudens also allows for math operations to be executed within any predicate,
given the restrictions mentioned above, about unassigned variables within the
unification predicate. Also, similarly to the unification predicate, numerical oper-
ations may not be used in head literals. For instance, the following rule: R1 ::
f(X, 2*X) implies double; given a context containing f(2,4) infers double.
An equivalent rule, avoiding within-predicate operations, would be R2 :: f(X,
Y), ?=(Y, 2*X) implies double;, which, however, introduces an additional
variable, Y, and leads to slightly slower processing time. Thus, whenever possi-
ble, within-predicate math operations should be preferred against ?=(·,·).

3.3 Procedural Predicates

Prudens allows for users to determine their own procedural predicates through
procedural code. Namely, one may provide general Boolean functions as a predi-
cate’s “definition”. For instance, expanding our running call management exam-
ple, let us consider the following scenario: we would like to answer all friends
calls, on condition that it is past 17:00. Assuming that time(H,M) represents
the time of the call, a policy that captures this functionality is shown in
Fig. 3. There, the procedural binary predicate ?lessThan, which compares its
two arguments and holds true whenever its first argument is less than its sec-
ond, facilitates an efficient execution of numerical comparisons. So, a context
containing calls(alice), friend(alice) and time(16,43) would result to
-answer(alice) using the above policy. However, substituting time(16,43)
with time(18,12) would result to answer(alice), as expected.

When working with procedural predicates there are several things one should
keep in mind: (i) the @Knowledge keyword should always come before the

Prudens: An Argumentation-Based Language for Cognitive Assistants 301

@Procedures keyword; (ii) predicate names, when referenced in a rule’s body,
should be preceded by a ?; (iii) procedural predicates are not allowed as rule
heads; (iv) predicate declarations should adhere to ECMAScript 6 standards;
(v) no function calls are allowed within a procedural predicate other than built-
in functions of JavaScript; (vi) every argument of a procedural predicate is by
default considered to be a string, so in case they are supposed to be treated as
integers or floats, the built-in JavaScript parseInt and parseFloat functions
should be used, respectively.

Fig. 4. Two first-order policies (left) and one with a compatibility constraint (right).

3.4 Partially Grounded Contexts

Literals in a context, in contrast to what is demanded by the language’s “vanilla”
version, may be partially or even totally ungrounded. That is, a context may
well contain literals like f(Y), even if Y is a free variable. In any such case, vari-
ables propagate throughout inferences, unifying with other variables whenever
it makes sense. For instance, consider the policies shown left in Fig. 4. Using the
top left one with a context containing f(Y); g(3); one infers h(3,Y). Using a
context containing f(Y) with the policy shown bottom left in Fig. 4 this time, we
infer z(3). Note here that fresh variables, not used elsewhere in the underlying
policy, should be preferred in contexts.

3.5 Extended Conflict Semantics

In the vanilla version of the language, two literals are considered conflicting
in case they stem from the same predicate but have opposite signs. Prudens,
however, also allows for rules that determine broader conflicts between arbitrary
predicates. Such rules are called compatibility constraints and adhere to the
following syntax:

ruleName :: pred1 # pred2;

302 V. Markos and L. Michael

So, for instance, using the policy shown in Fig. 4 (right) and a context containing
bobCalls; atWork;, one infers reject, since C1 declares reject and answer
as conflicting literals. Note at this point that there are no assumed priorities
between compatibility constraints, in contrast to what is the case with the rest
rules in a policy.

4 Ongoing and Future Work

Below we briefly present some of the most prominent works in progress invoking
Prudens as well as discuss possible future directions.

4.1 Deduction, Induction and Abduction

So far, Prudens has been utilized as the underlying deductive engine for machine
coaching [11], an interactive human-in-the-loop methodology that allows a
human coach to train a machine on a certain task by providing advice to it, echo-
ing ideas from McCarthy’s advice taking machines [9]. Furthermore, Prudens’s
semantics allow for abductive reasoning as well. Hence, a candidate domain of
application is, among others, Neural-Symbolic Integration [4], where machine
coaching could be used as an induction mechanism to train the symbolic module
and Prudens could serve as the underlying knowledge representation language
for both deduction as well as abduction, extending ideas found in [13].

4.2 Natural Language Interfaces

While cognitively easier than imperative programming, declarative programming
still requires from the programmer to be accustomed to some sort of coding for-
malism. Consequently, interfaces that allow users to program using natural lan-
guage provide a user-friendly and cognitively simple alternative to sheer coding.
We are currently working towards two independent Natural Language Interfaces
(NLIs). The first one relies on building a NL-to-Prudens translator utilizing
machine coaching [5] to learn the underlying translation grammar. Here, Pru-
dens itself is used at the meta-level as the interaction language between the
human coach and the machine. The second one is the design of a Controlled NLI
for Prudens, in the spirit of other works in the field of Logical Programming,
like Logical English [7]. Apart from the aforementioned ongoing projects, Large
Language Models are also under consideration as appropriate NL-to-Prudens
translators, with the potential of also capturing Prudens’s reasoning semantics
[1].

4.3 Applications

At the time of writing this, there are two applications being developed utiliz-
ing Prudens in the background. The first one, a mobile call assistant, intends
to use machine coaching so as to elicit a user’s preferences regarding their calls

Prudens: An Argumentation-Based Language for Cognitive Assistants 303

and notifications management, with Prudens serving as the knowledge represen-
tation language in the background. Inspired by previous work on chess coach-
ing [8], where again Prudens had been used in the background for deductive
and inductive purposes, our second ongoing project is related to another strat-
egy game: Minesweeper. There, users are asked to explain to an agent how to
play Minesweeper successfully, again utilizing machine coaching as the learning
methodology, with Prudens facilitating human-machine interaction.

5 Conclusions

We have presented Prudens, an argumentation-based language for the design
of cognitive assistants. We have discussed its syntax as well as any additional
features it provides. Moreover, we have presented several currently developed and
future applications as well as extensions of Prudens, aiming to further facilitate
the design of cognitive assistants by non-experts.

Apart from the aforementioned ongoing projects, we are also working on
the direction of generating comprehensive visualizations about Prudens and its
internal processes. Namely, effort is being put on visualizing the reasoning pro-
cess of Prudens in a step-by-step manner, so as to facilitate user understanding
and, consequently, build more trust with the end-user. At the same time, we are
also working on knowledge-graph based explanation representations, again, as an
attempt to make Prudens more accessible to a less expert audience. Ultimately,
our goal is to build an easy-to-use ecosystem for Machine Coaching, allowing for
an efficient and thorough in situ assessment of Machine Coaching.

Acknowledgements. This work was supported by funding from the European
Regional Development Fund and the Government of the Republic of Cyprus
through the Research and Innovation Foundation under grant agreement no. INTE-
GRATED/0918/0032, from the EU’s Horizon 2020 Research and Innovation Pro-
gramme under grant agreements no. 739578 and no. 823783, and from the Government
of the Republic of Cyprus through the Deputy Ministry of Research, Innovation, and
Digital Policy.

References

1. Chen, M., et al.: Evaluating large language models trained on code (2021). https://
doi.org/10.48550/ARXIV.2107.03374, https://arxiv.org/abs/2107.03374

2. Engelbart, D.C.: Augmenting human intellect: a conceptual framework. In: SRI
Summary Report AFOSR-3223 (1962)

3. de Graaf, M., Malle, B.F.: How people explain action (and autonomous intelligent
systems should too). In: AAAI Fall Symposia (2017)

4. Hammer, B., Hitzler, P.: Perspectives of Neural-Symbolic Integration, vol. 77.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73954-8

5. Ioannou, C., Michael, L.: Knowledge-based translation of natural language into
symbolic form. In: Proceedings of the 7th Linguistic and Cognitive Approaches To
Dialog Agents Workshop - LaCATODA 2021, pp. 24–32, Montreal, Canada (2021).
http://ceur-ws.org/Vol-2935/#paper3

https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1007/978-3-540-73954-8
http://ceur-ws.org/Vol-2935/#paper3

304 V. Markos and L. Michael

6. Kakas, A., Michael, L.: Cognitive systems: argument and cognition. IEEE Intell.
Inform. Bull. 17, 14–20 (2016)

7. Kowalski, R.: English as a logic programming language. New Gener. Comput. 8(2),
91–93 (1990). https://doi.org/10.1007/BF03037468

8. Markos, V.: Application of the machine coaching paradigm on chess coaching.
Master’s thesis. School of Pure & Applied Sciences, Open University of Cyprus
(2020)

9. McCarthy, J.: Programs with common sense. In: Proceedings of Teddington Con-
ference on the Mechanization of Thought Processes (1958)

10. Mercier, H., Sperber, D.: Why do humans reason? Arguments for an argumen-
tative theory. Behav. Brain Sci. 34(2), 57–74 (2011). https://doi.org/10.1017/
S0140525X10000968

11. Michael, L.: Machine coaching. In: IJCAI 2019 Workshop on Explainable Artifi-
cial Intelligence, pp. 80–86, Macau, China (2019). https://www.researchgate.net/
publication/334989337 Machine Coaching

12. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007

13. Tsamoura, E., Hospedales, T., Michael, L.: Neural-symbolic integration: a compo-
sitional perspective. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 35, no. 6, pp. 5051–5060 (2021). https://ojs.aaai.org/index.php/AAAI/
article/view/16639

14. Valiant, L.G.: A theory of the learnable. In: STOC 1984: Symposium on Theory
of Computing, pp. 1134–1142 (1984)

https://doi.org/10.1007/BF03037468
https://doi.org/10.1017/S0140525X10000968
https://doi.org/10.1017/S0140525X10000968
https://www.researchgate.net/publication/334989337_Machine_Coaching
https://www.researchgate.net/publication/334989337_Machine_Coaching
https://doi.org/10.1016/j.artint.2018.07.007
https://ojs.aaai.org/index.php/AAAI/article/view/16639
https://ojs.aaai.org/index.php/AAAI/article/view/16639

Author Index

Alrabbaa, Christian 167, 211
Atzeni, Paolo 113

Baader, Franz 227
Baldazzi, Teodoro 113
Bellomarini, Luigi 113, 130
Blasi, Livia 130
Borgwardt, Stefan 167, 211
Bouchard, Frédéric 263

Calimeri, Francesco 38
Casini, Giovanni 81
Costantini, Stefania 280
Cristani, Matteo 65
Cuenca Grau, Bernardo 183
Czarnecki, Krzysztof 263

Elhalawati, Ali 146

Falakh, Faiq Miftakhul 95
Feng, Eva 198
Formisano, Andrea 280
Fuenmayor, David 244

Governatori, Guido 65

Hahn, Susana 54
Hirsch, Anke 211

Janhunen, Tomi 3, 54

Kaminski, Roland 54
Knieriemen, Nina 211
Koopmann, Patrick 167
Kovtunova, Alisa 167, 211
Kriegel, Francesco 227
Krötzsch, Markus 146

Markos, Vassilis 296
Mastria, Elena 38
Mennicke, Stephan 146
Meyer, Thomas 81
Michael, Loizos 296

Nissl, Markus 130
Nuradiansyah, Adrian 227

Olivieri, Francesco 65

Paterson-Jones, Guy 81
Perri, Simona 38
Pitoni, Valentina 280

Romero, Javier 20, 54
Rothermel, Anna Milena 211
Rotolo, Antonino 65
Rudolph, Sebastian 95
Rühling, Nicolas 54

Sallinger, Emanuel 113, 130
Sauerwald, Kai 95
Schaub, Torsten 20, 54
Sedwards, Sean 263
Steen, Alexander 244
Strauch, Klaus 20

Toman, David 198

Varzinczak, Ivan 81

Wałęga, Przemysław Andrzej 183
Wang, Dingmin 183
Weddell, Grant 198
Wiehr, Frederik 211

Yli-Jyrä, Anssi 3

Zangari, Jessica 38

	 Preface
	 Organization
	 Contents
	Answer Set Programming
	Applying Answer Set Optimization to Preventive Maintenance Scheduling for Rotating Machinery
	1 Introduction
	2 Definitions of Machines and Schedules
	3 Basic PMS Problems and Their Complexities
	4 An ASO-Based Implementation
	5 Experiments
	6 Conclusion
	References

	On the Generalization of Learned Constraints for ASP Solving in Temporal Domains
	1 Introduction
	2 Background
	3 Temporal Programs, Problems and Nogoods
	4 Generalizing Learned Constraints
	5 Translations
	6 Experiments
	7 Conclusion
	References

	The Stream Reasoning System I-DLV-sr: Enhancements and Applications in Smart Cities
	1 Introduction
	2 The I-DLV-sr System
	3 Re-engineering the System and Improving Performance
	3.1 Performance Evaluation

	4 New Language Features
	5 Stream Reasoning via I-DLV-sr in Smart City Scenarios
	5.1 Modeling Smart City Applications with I-DLV-sr
	5.2 Performance Evaluation

	6 Related Work
	7 Conclusions
	References

	Plingo: A System for Probabilistic Reasoning in Clingo Based on LPMLN
	1 Introduction
	2 Background
	3 LPMLN and the Language of Plingo
	4 The System Plingo
	5 Experiments
	6 Conclusion
	References

	Foundations of Nonmonotonic Reasoning
	From Defeasible Logic to Counterfactual Reasoning
	1 Introduction
	2 Defeasible Logic
	3 Counterfactuals
	4 Counterfactuals in Defeasible Logic: Fact Revision
	4.1 Preliminaries
	4.2 Mapping SDL into Counterfactuals - Part I

	5 Counterfactuals in Defeasible Logic: Theory Revision
	5.1 Revising Defeasible Theories
	5.2 Mapping SDL into Counterfactuals - Part II

	6 Results
	7 Conclusions
	References

	KLM-Style Defeasibility for Restricted First-Order Logic
	1 Introduction
	2 Background
	3 Defeasible Restricted First-Order Logic
	4 Defeasible Entailment
	5 Related Work
	6 Conclusion and Future Work
	References

	Semantic Characterizations of AGM Revision for Tarskian Logics
	1 Introduction
	2 Preliminaries
	2.1 Logics with Classical Model-Theoretic Semantics
	2.2 Relations over Interpretations
	2.3 Bases
	2.4 Base Change Operators
	2.5 Postulates for Revision

	3 Base Revision in Propositional Logic
	4 Approach for Arbitrary Base Logics
	4.1 First Problem: Non-existence of Minima
	4.2 Second Problem: Transitivity of Preorder

	5 One-way Representation Theorem
	6 Two-way Representation Theorem
	7 Total-Preorder-Representability
	8 Related Work
	9 Conclusion
	References

	Datalog
	iWarded: A Versatile Generator to Benchmark Warded Datalog+/– Reasoning
	1 Introduction
	2 Syntax and Semantics of Warded Datalog
	3 iWarded System
	3.1 Overview of the Generator
	3.2 Benchmark Generation Procedure

	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	The Temporal Vadalog System
	1 Introduction
	2 DatalogMTL
	3 The Temporal Vadalog System
	3.1 A Time-Aware Execution Pipeline
	3.2 Temporal Operators in the Execution Pipeline
	3.3 Merging Strategies
	3.4 Temporal Joins and Stratified Negation
	3.5 Termination Strategy for the Infinite Chase of Intervals
	3.6 Combining Temporal and Non-Temporal Reasoning

	4 Experiments
	4.1 Experiments with Realistic and Real-World Data
	4.2 Temporal Foundation Benchmark

	5 Related Work
	6 Conclusion
	References

	An Existential Rule Framework for Computing Why-Provenance On-Demand for Datalog
	1 Introduction
	2 Preliminaries
	3 Rule-Based Provenance On-Demand
	4 Realization as Solutions to Systems of Equations
	5 Realization with Datalog(S)
	5.1 Datalog with Sets
	5.2 Collecting Sets from Downward Closures

	6 Implementation and Experimental Results
	6.1 Feasibility of the On-Demand Approach to Why-Provenance
	6.2 Performance of Why-Provenance Computation

	7 Related Work
	8 Conclusions
	References

	Queries Over Ontologies
	Explaining Ontology-Mediated Query Answers Using Proofs over Universal Models
	1 Introduction
	2 Preliminaries
	3 A Deriver Using Universal Models
	4 Finding Good Proofs in D sk
	4.1 The Data Complexity of Finding Good Proofs
	4.2 Finding Good Proofs with Lightweight Ontologies
	4.3 Finding Good Proofs with Expressive Ontologies

	5 Directly Deriving CQs
	6 Conclusion
	References

	Seminaïve Materialisation in DatalogMTL
	1 Introduction
	2 Preliminaries
	3 Naïve Materialisation in DatalogMTL
	4 Seminaïve Evaluation
	5 Optimised Seminaïve Evaluation
	6 Evaluation
	7 Conclusion and Future Work
	References

	Magic Sets in Interpolation-Based Rule Driven Query Optimization
	1 Introduction
	2 Preliminaries and Definitions
	3 MST and Rule Rewriting
	4 Conclusion
	References

	Proofs, Error-Tolerance, and Rules
	In the Head of the Beholder: Comparing Different Proof Representations
	1 Introduction
	2 Background
	3 Study I – Are Short Proofs Preferred?
	4 Study II – Connecting Cognitive Abilities and Proof Understanding
	5 Study III – Logical Abilities and Proof Representation Preferences
	6 Study IV – Final Experiment
	7 General Discussion
	7.1 Limitations
	7.2 Future Work

	References

	Error-Tolerant Reasoning in the Description Logic EL Based on Optimal Repairs
	1 Introduction
	2 Preliminaries
	3 Optimal and Canonical Repairs
	4 Error-Tolerant Reasoning w.r.t. Optimal Repairs
	4.1 Brave Entailment
	4.2 Cautious Entailment

	5 Conclusion
	References

	Bridging Between LegalRuleML and TPTP for Automated Normative Reasoning
	1 Introduction
	2 Preliminaries
	2.1 The TPTP Infrastructure for ATP Systems
	2.2 Deontic Logics and LegalRuleML
	2.3 Domain-Specific Languages

	3 Logical Pluralism in Normative Reasoning
	3.1 The Problem of Formalization
	3.2 Formalizing Normative Discourse

	4 Normative Knowledge Representation in the TPTP
	4.1 NMF: A Normative DSL in TPTP
	4.2 Conversion from LegalRuleML to NMF

	5 TPTP-Based Normative Reasoning Backends
	6 Conclusion
	References

	Agents and Argumentation
	A Rule-Based Behaviour Planner for Autonomous Driving
	1 Introduction
	2 Rule Engine
	2.1 Layers and Rules
	2.2 Resolving a Single Behaviour
	2.3 Inference Example

	3 Learning and Maintaining the Theory
	3.1 Rule Engine Update Algorithm
	3.2 Rule and Training Set Development

	4 Experimental Results
	4.1 Driving Policy
	4.2 Field Test

	5 Conclusion
	References

	Cooperation Among Groups of Agents in the Epistemic Logic L-DINF
	1 Introduction
	2 Logical Framework
	2.1 Syntax
	2.2 Semantics
	2.3 Belief Update
	2.4 Axiomatization

	3 Problem Specification and Inference: An Example
	4 Canonical Model and Strong Completeness
	5 Conclusions
	References

	Prudens: An Argumentation-Based Language for Cognitive Assistants
	1 Introduction
	2 Basic Syntax and Semantics
	2.1 Rule Syntax
	2.2 Reasoning
	2.3 Custom Priorities and Dilemmas

	3 Extended Syntax and Semantics
	3.1 The Unification Predicate
	3.2 On-the-Fly Math Operations
	3.3 Procedural Predicates
	3.4 Partially Grounded Contexts
	3.5 Extended Conflict Semantics

	4 Ongoing and Future Work
	4.1 Deduction, Induction and Abduction
	4.2 Natural Language Interfaces
	4.3 Applications

	5 Conclusions
	References

	Author Index

